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Abstract 
 

Healthcare industry is an ever-emerging field in the 21st century. The statistics from Centers for 

Medicare services (CMS) [15] website shows that in 2017, in USA, the healthcare industry has invested 

USD 7.4 billion for research collaborations with physicians. These research collaborations in CMS is 

spread across multiple facets ranging from contributing towards research, developing new products, 

running clinical trials, royalty, licences, patents, providing innovative ideas etc. In this thesis, we make an 

assumption that, a relationship between investment made by the healthcare company and the research 

profile of a physician exists. We aim to answer, what could possibly be the relation between payments 

made by the healthcare company; on the physicians and the research profile of the physicians. The 

research profile of a physician includes factors like h-index, years of research experience, citation count, 

physician citation network, etc. To validate this relationship we use the data corresponding to returns of 

the healthcare company. Some of the measures of returns, from a research collaboration between 

physicians, include, innovation, good will, fame, market share, Return on Investment (ROI). We choose 

ROI, as a measure of return, due to the availability of data and to determine the relationships 

mentioned above.   

To understand the above mentioned relationship, we explore two types of relationships, i.e., direct and 

indirect relationship. In the direct relationship, we use multiple regression model to understand the 

direct relationship between the research payments and the research profile of the physicians, by making 

an assumption that the research profile of the physician describes the research quality of the physician.  

In the indirect relationship, we make use of a weighted physician co-author citation network, to 

investigate the relationship between his/her co-author interactions and the research payments he/she 

received from the healthcare company. To accomplish this, we developed a spreading process that 

models influence diffusion in a physician citation network. The diffusion of influence is dependent on 

the topological property of the node in the network. 

Our models are an exemplification of the direct and indirect relationships, which exists in the real world. 

To evaluate our models, we use metrics such as coefficient of determination, Pearson correlation 

coefficient and Spearman's rank correlation. Once the models were evaluated, we inferred that the 

model for indirect relationship, explains the relationship between research profile, investments, and 

return 96.3% more than the model for direct relationship. We also perform a deep analysis, by 

investigating the nature of the distributions of the variables and scatter plots to understand the 

relationship between the variables used in understanding the direct and indirect relationship.  Lastly, we 

propose two different redistribution methods, where the original payments made to physicians are 

redistributed to a potential group of physicians in the physician citation network. These potential 
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physicians are identified based on their topological property. In consequence, our redistribution 

methods may inspire the healthcare companies, to design their future investments made to physicians.  
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1. INTRODUCTION 
Healthcare industry is an ever-emerging field in the 21st century. Over the last decade, we have seen 

many innovations and advancements in the technology pertaining to healthcare. This leads to an 

enormous amount of investments towards research and development of healthcare technology. 

Statistics obtained from Centers for Medicare services (CMS) [15], a U.S. government website with open 

data, show that in 2017, in USA, the healthcare industry has invested USD 7.4 billion to collaborate with 

physicians. This collaboration is spread across multiple facets ranging from contributing towards 

research, developing new products, running clinical trials etc. The amount invested on research and 

development contribute to USD 4.6 billion. In the same year, Healthcare company ABC, invested about 

USD 7.4 million towards research payments across 10,000 physicians [15]. The CMS/Open Payments 

Data makes the payments data available to the patients, analysts, physicians, citizens of the U.S.A for 

various purposes like transparency, fairness, equality etc. This website also classifies the research 

payments based on the nature of research payments. For healthcare company ABC, the nature of 

research payments is towards funding for a new study, coordination and implementation of existing 

research, royalty, licences, patents, providing innovative ideas, etc.  

1.1 Motivation   

There is a lack in understanding, if the enormous investment (60-65% of total investment) made by the 

healthcare industries, towards physicians for research purposes, is meaningful and worthwhile. This 

knowledge gap drives the motivation of this thesis.    

1.2 Problem Statement 

To address the motivation in Section 1.1, we aim to understand, what the relationship between the 

investment made by the healthcare companies on physicians, research profile1 of these physicians and 

the different types of return. In this thesis, we make an assumption that there exists a relationship 

between payments made to physicians, the research profile of the physician and the returns on 

investment and this relationship is unknown. The motivation behind using the research profile of the 

physician is, it describes the research quality of the physician. It includes factors like h-index, years of 

research experience, citation count, physician citation network, etc., which is elucidated in Chapter 3.  

The motivation behind using the return, is to validate the outcomes of the relationship between 

research payments and the research profile of the physicians. There are different types of return to a 

healthcare company, some of which are, being innovation leaders, good will, fame, being research 

leaders, ROI (Return on Investment) etc. We choose ROI because it is measurable, data is available and 

to illustrate the relationships mentioned above.    

To estimate the relationship mentioned above, we propose two types of relationship which is an 

imitation of the real world scenarios. First, the direct relationship, where physicians interact with 
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healthcare companies for research, and the outcomes of the research generate ROI to the healthcare 

company.   

Second, the indirect relationship, where physicians who interact with the healthcare company for 

research, also collaborate with other physicians, who do not receive any research investment from the 

healthcare company. The other physicians have research collaborations with physicians who receive 

investment from a healthcare company, in a research collaboration network. This could lead to the 

other physicians getting inspired by research or having a research collaboration. The outcome of this 

collaboration generates ROI from multiple sources to the healthcare company. These sources are 

hospitals, clinics or universities. Since, the return does not directly come from the physician on whom 

the healthcare company has a collaboration, we call this relationship indirect. The indirect relationship is 

represented in Figure 1.1, where a healthcare company interacts with a physician for a research 

collaboration, indicated as Phy1, and this physician in turn has collaborations with other physicians in a 

citation network, represented by Phy2-Phy10. The outcome of this collaboration generates multiple 

returns from hospitals, universities and clinics.  

 

 

Figure 1.1: A representation of indirect relationship 

 

After understanding the direct and indirect relationship, the problem statement is to find a relationship 

between the payments made by the healthcare company, the return on investment and the research 

profile of the physicians. 

1.3 Research Questions 

From the problem statement mentioned in section 1.2, the following research questions are 

constructed.  
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RQ1: What is the relationship between investments on physicians, ROI generated by the healthcare 

company and the research profile of a physician on whom the healthcare company invests? 

To answer this research question, two types of relationships have been proposed in this thesis. First, a 

direct relationship, which makes use of a machine learning model, known as regression technique. 

Second, an indirect relationship, where we designed a network spreading process that models how 

influence diffuses into a physician citation network. This spreading process is evaluated to explain the 

effectiveness of spread of influence on the ROI generated to the healthcare company.   

RQ2:  Do the three healthcare companies follow a strategy while making payments? 

Two other peer companies were considered to compare the payment strategy of healthcare company 

ABC with other companies in the healthcare industry. We attempt to answer RQ2, by performing 

Exploratory Data Analysis to estimate what are the research profile metrics that drive physician 

payments. 

RQ3: What is the effect of redistribution methods on the relationship between investment and its 

return? 

We propose two alternative payment redistribution methods in order to understand how the payment 

redistribution method affects the properties of the resultant nodal influence and their relationship 

between investment and nodal influence. We also investigate the relationship between investment and 

its return after the redistribution of payments to understand the effect of the redistribution methods.  

1.4 Contributions 

This section highlights the key findings from this thesis.     

 Captured the, direct and indirect relationship, between the investment made to physicians, ROI 

generated by the healthcare company and the research profile of a physician. We estimated the 

direct relationship by a recursive regression technique and we estimated the indirect 

relationship by modelling influence diffusion using a network spreading process.  

 We concluded that the indirect relationship can better explain the relationship between 

payments, research profile and ROI. 

 We developed network topological metrics based on topological properties that imitate real 

world influence spreading in a physician citation network.  

 Proposed a novel spreading process, which is used to model the diffusion of influence. 

 Decoded the payment strategy of the healthcare company ABC and its counter healthcare 

companies.    

 Developed a payment redistribution method which recommends different ways of investments 

to physicians in the future. 
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1.5 Thesis outline 

This thesis is structured in the following manner, chapter 2 focuses on the background study and 

terminologies that are required to understand the remaining chapters. Chapter 3 focuses upon data 

understanding, preliminary data exploration and analysis. Chapter 4 explains the regression analysis 

technique, outlier detection and elimination, effectiveness of regression model and the relationship 

between ROI and investment for healthcare company ABC. Chapter 5 explains the design of network 

metrics based on topological measures and the spreading process which is used to model influence. 

Chapter 6 discusses the evaluation of the spreading process discussed in chapter 5 by conducting 

experiments to evaluate the best fit parameters for the spreading process. Chapter 7 focuses if there are 

other ways in which we can invest on physicians research by developing and analysing two 

redistribution methods. Chapter 8 provides conclusions, limitations that were overcome in this thesis 

and future recommendations.      
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2. BACKGROUND and LITERATURE 

SURVEY 
In this chapter, the required background knowledge to understand the design and implementation of a 

machine learning model and network spreading process is discussed. Section 2.1 provides a brief of the 

machine learning approach used in this thesis. This is followed by section 2.2, which introduces the 

network science and the main terminologies used for the same. Further, topological measures of 

network are discussed in section 2.3. This is followed by section 2.4 which describes the nature of power 

law distributions as the degree distribution of the physician citation network follows power law.  The 

last section 2.5 consists of related work that supports the research involved in this thesis. 

2.1 Machine Learning Approach 

One of the most important and broadly used machine learning and statistical tool is the regression 

technique. Regression analysis helps in understanding the relationship between an outcome variable 

with one or more response or predictor variables.  It can be represented as a mathematical equation, 

that defines 𝑦 (output variable) as a function of  𝑥 (input variables). If this relationship is linear, it is 

termed as a linear regression model. In some situations, the relationship between the outcome and the 

predictor variables may not be linear, in such cases a non linear regression model such as a polynomial 

regression model is necessary to understand the relationship. A regression coefficient is estimated to 

understand the relationship between outcome and predictor variables, using Ordinary Least Squares 

(OLS) technique. In order to obtain estimates which satisfies all the required statistical properties, such 

as Best Linear Unbiased Estimate (BLUE), diagnostic tests are performed. If the tests detect the presence 

of heteroscedasticity or specification bias, then accordingly appropriate remedial measures are used 

such that the estimates do not suffer from the lack of these statistical properties. A detailed explanation 

of the diagnostic tests, remedial measures etc, are explained in chapter 4. 

2.2 Network Science Approach 

2.2.1 Terminologies 

This section discusses a set of terminologies that are required for further understanding: 

2.2.1 Network 

 A network  𝐺 = (𝑁, 𝐿) is a collection of nodes that are connected together where, nodes are 

represented as 𝑁 = {𝑛1, 𝑛2, 𝑛3, … . , 𝑛𝑖} and  𝑖  is the total number of nodes in G. These nodes are 

connected to each other with a set of links, represented as  𝐿 = {𝑙1, 𝑙2, 𝑙3, … . , 𝑙𝑗}, where  𝑗  is the total 

number of links in G.  A network can be categorized based on its homogenous and heterogeneous 

nature of nodes [18] where in a homogenous network all nodes in the network contain the same 
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attribute, for example, in an airport network all nodes are airports. On the other hand a heterogeneous 

network can carry an assortment of nodes such as hospitals, physicians, healthcare companies etc. 

2.2.3 Social Network Analysis 

Social Network Analysis is a study that maps the relationship between people, organizations, computers, 

URLs or any set of entities that are connected to one another. The nodes in the network are 

representations of people, organizations etc and the links in the network show relationships or flows 

between these nodes [22]. The physician citation network is a representation of a social network of 

physicians where the nodes represent physicians and the links represent the research collaboration 

between them. Hence, the physician citation network can be viewed from a socio-centered perspective 

[21]. Here we look for ties between nodes that indicate cohesive social groups amongst physicians that 

reflect social interactions and social stratification amongst these groups.  

2.3 Topological Measures of Networks 

Topology refers to the manner in which nodes and links are arranged in a network. Topological 

measures are used to capture various properties mainly the distance, spectra and connection [44]. This 

section explains three main topological measures which are used to develop network topological 

metrics in Chapter 5 of this thesis. 

2.3.1 Degree of a node 

The degree  𝑑𝑘 , for a node 𝑛𝑘,  is the total number of links a node possesses in a network [20, 25]. This is 

one of the fundamental properties of a network which is used in the computation of other metrics. 

When the network is a weighted network, then the weighted degree of a node is the sum of weights of 

all the edges of the node and is represented as  𝑤𝑑𝑘, further in this thesis. The weighted degree of a 

node is also called the strength of the node in the network.  

2.3.2 Hopcount between two nodes 

The shortest hopcount  𝐻𝑚→𝑘  between any two nodes  𝑛𝑚  and  𝑛𝑘 is the minimum number of hops 

required to reach  𝑛𝑘  from  𝑛𝑚 .  

2.3.3 Closeness Centrality of a node 
Closeness Centrality of a node is a measure of how close a node is to other nodes in the network. A 

closeness centrality is often noted as the reciprocal of hopcount of a node [44]. It is represented in       

Eq. (1)   

     𝐶𝑘 =
1

∑ 𝑑(𝑚, 𝑘)𝑚∈𝐺
                                                                                            (1) 
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Where, 𝑛𝑚 and  𝑛𝑘 are two nodes in the network G and 𝑑(𝑚, 𝑘) is the distance (number of citations in 

context to physician citation network)  between the two nodes.  

2.3.4 Clustering Coefficient of a node 

The clustering coefficient,  𝐶𝐶𝑘 , of a node,  𝑛𝑘 , is a measure of the  degree,  𝑑𝑘, to which nodes in a 

graph cluster together. The coefficient is a real number lying between 0 and 1, where higher the 

coefficient higher the tendency to cluster together. It can be mathematically represented in Eq. (2):  

                                                             𝐶𝐶𝑘 = 
2𝑙𝑘

𝑑𝑘(𝑑𝑘−1)
                                                                                               (2)  

Where,  𝑑𝑘 is the degree of the node and  𝑙𝑘  is the number of links between nodes within the 

neighbourhood of a node  𝑛𝑘 . 

2.4 Power law distribution 
Degree distribution of a node captures the difference in degree connectivity of a network. It was 

observed that the physician payment network follows a power law distribution. The power law degree 

distribution is represented in Eq. (3), where  𝑖  represents  the number of nodes that a given node  𝑛𝑘 is 

connected to other nodes and 𝛾 (degree exponent) represents a scale who's value lies between 2 < 𝛾 <

3  in most cases and very rarely the values go out of scale [23, 24]. According to Alert-Laszlo Barabasi, in 

his book Network Science, “a scale-free network is a network whose degree distribution follows a power 

law". These networks are commonly observed in networks such as the airport traffic network, railway 

network, social media network etc.  

 

                                     𝑃(𝑖) ~ 𝑖−𝛾                                                                                                          (3) 

  

Figure 2.1: Degree distribution of a Scale free physician citation network 
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Figure 2.1 shows the degree distribution of the physician citation network that follow a power law 

distribution. In such networks, it can be noted that some nodes have a much higher degree than other 

nodes in the network. In Figure 2.1, there are some nodes in the network that have a node degree 

greater than 100, but most nodes have a degree between 0-25. The nodes with a higher degree are 

mostly the hub nodes which on removal will disconnect the network, hence making them the most 

crucial nodes in the network. We could imagine this property in a physician citation network as the hub 

nodes represent the most influential physicians and the periphery nodes represent not so influential 

physicians. 

2.5 Related Work 

There are different ways to determine the research profile of a physician based on the healthcare 

requirement. Current day research [34, 35] associates a physician's profile, to their ability to provide 

patient centric care. This is indeed one of the primary attributes of a physician but other behaviors of a 

physicians such as participation in research, is worthy of understanding the physician's importance [36]. 

The article by Daniele et al. [32] aims to understand the relationship between the professional 

collaboration of the physician and evidence based medicine (EBM) [32]. EBM assists in the decision 

making process of medical practices based on evidence and research. They made use of a collaboration 

network of physicians to obtain a set of core and peripheral nodes in a network by using network 

centrality metrics. Results obtained indicated that the core nodes in the network are negatively 

associated with EBM and the peripheral nodes in the network show strong association. The behavior 

shown by core and professional nodes can be used by policy makers and healthcare organizations to 

address the right set of physicians [32].  

Studies also show that Social Network Analysis was not studied in the field of healthcare until 2012 [31]. 

The article by Chambers et al. [31] makes use of a minimum spanning tree on a physician-patient 

network to determine the cost involved in transporting information between patients-patients, patients-

physicians and physicians-physicians [31]. An inspiration to construct a physician-physician network was 

acquired from this paper.    

Agneessens et al. [43] introduces a tuning parameter to centrality metrics which regulates the impact of 

resources that are received by the nearby nodes and the nodes that are distant. This paper makes use of 

multiple centrality metrics such as closeness, degree, betweenness centrality which act as estimates of a 

geodesic distance. These centrality metrics are then used to distribute resources to the remaining nodes 

in the network. It was found that more nodes are influenced at a geodesic distance closer to the seed 

node than nodes that are at a farther geodesic distance. The rank correlation is computed for different 

values of δ and plotted for comparison. The metric of evaluation used is R2, which is the explanatory 

power of the variable resources. This is computed for different values of δ based on the reciprocal of 

closeness centrality.  This paper also focuses on estimation of output measures such as behaviour of δ in 

a diverse environment and resource richness which are of primary concern for future improvements. 
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We take inspiration from the idea of introducing a control or regulatory parameter,  δ, and introduce a 

similar parameter while designing  our metric.   

This paper [45], proposes models for influence propagation through social networks. They developed a 

greedy model and compared it with; a threshold model and cascade model to compare the 

performance. From this paper, we capture the idea of maximizing the influence propagation within 

nodes in a social network. We also take inspiration from an idea of activating and deactivating nodes 

dynamically in the spreading process. This paper also introduces an operational model to spread an idea 

or innovation through the network, by setting controls on nodes moving from inactive to active and not 

the other way around. The model used is said to be a progressive model, since only a single idea or 

innovation is spread through the network and once a node in a network is influenced with some 

information, it cannot be influenced again.  

Overall, most of the research performed are either narrowed down on geographical locations [31], field 

of study, such as radiology, cardiology etc. [26, 32, 33, 34] or based on specific requirements such as 

understanding the physician and patient interaction, information spread, innovation spread etc. [35]. It 

can be noted that research is mostly narrowed down either due to lack of data or requirement. 

However, we derive ideas and inspirations from this literature survey that can be developed with the 

current availability of data.    

2.5.1 PAYMENT as a form of INFLUENCE 

In this thesis, we conceptualize the idea of the investment made by a healthcare company as a form of 

influence. In simple terms it can be stated that, when a healthcare company invests on a physician 

he/she is influenced by the healthcare company and in return he/she could influence other physicians 

and also recommend to the hospitals/universities they are connected to. To support this idea, we 

researched if these ideas were used in the past. A study performed by Faden et al. [39] states that 

"Monetary payments are often used as inducements; they motivate people to do something that is 

preferred by the sponsor". To support this study he surveyed 57 pharmacists, with a questionnaire of 

which 2/3 of the sample responded positive to the idea of monetary payments being used as 

inducements, and the remaining 1/3 were put into the neutral or negative category.  

Another study conducted by Bentley et al. [40] states that monetary payments increase a person’s 

willingness to participate in research that is started by the sponsor. They also mentioned that their 

survey shows that, people tend to talk about their sponsor in social events like conferences, public 

events etc [40]. To validate the prior statement, a survey was conducted with 326 participants of which 

279 participants responded positively towards expressing the popularity of their sponsor. It was also 

seen that these participants received monetary payments below the third quartile range. The 

participants who received greater than the third quartile payments range did not express any significant 

popularity towards the sponsor [40]. This proves that there is certainly an upper bound on the monetary 

payments, beyond which the influence remains constant. 

A survey conducted by, Cornett et al. [41] shows a relationship between the payment levels by the 

sponsor and the relative willingness of the receiver to take risk involved in research. Here, risk refers to 
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how much effort a medical practitioner can put in factors of time, research and survey. It was shown 

that higher levels of payment make the respondents more willing to participate. 

From the above three surveys we can conclude that monetary investment from the healthcare company 

is a keen driver of influence for the physicians.      

2.6 Discussion 

In this chapter, we first discussed terminologies that are required to understand further chapters in this 

thesis. It is followed by a discussion on how a physician citation network follows a power law 

distribution. This chapter concludes with a deep dive on the related work from which we gain inspiration 

for designing a network spreading process. A study confirming our assumption of how payment is a form 

of influence is also made in this chapter.  
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3. DATA COLLECTION and EXPLORATION 
A well-prepared dataset is the most important requirement for a data science project and it involves 

cleaning up unstructured data and combining this data from multiple data sources into one. This chapter 

discusses the data required for the two types of relations, explained in section 1.2. The data 

corresponding to direct relation, where regression analysis is used, is explained in section 3.1, 3.2 and 

3.3. The data required for indirect relation, which makes use of network analysis and is explained in 

section 3.1, 3.2, 3.4, 3.5, 3.6 and 3.7. At the end of the chapter, we perform exploratory data analysis on 

the datasets obtained from the three healthcare companies in section 3.5 and answer the RQ2. This will 

also be used to explore company-wise  payment  strategy  in  chapter 4.   

3.1 Data requirement 

In this thesis, to answer the two types of relations mentioned in section 1.2, we required data from 

different sources. First, financial data which contains records of amounts invested, ROI, win rate and the 

physician’s affiliation such as a university or hospital he/she is currently associated to. Second, to explain 

the academic profile of a physician, research metrics such as citation count, total articles/documents 

published and some advanced metrics like h-index would be of utmost interest. The next section 

explains in detail different data sources from which we extract data for this thesis.  

3.2 Data Sources 

The three data sources used in this thesis are as follows, 

 Research data – Scopus is  one of the largest data source for citation and author data of peer 

reviewed research articles. It is available on the internet with restricted access, consisting of over 

16 million profiles of researchers from all over the world [16]. It consists of data from various 

fields of technology, medicine, science etc. and provides a broader scope to understand 

collaboration networks.  

There are various factors that contribute to the  research profile of the researcher. Some of these 

factors are calculated metrics from citation data and the other factors, mentioned in Table 3.1, 

are derived from the calculated metrics, previously mentioned. Table 3.1, explains all the metrics 

that are available from Scopus which are used in this thesis. 
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Metric Name Description 

Citation count Citation count for an author is the measure of number of other 

authors in the Scopus database that cite the current author’s 

articles.  

H-Index  H-Index is a formulated metric, measuring the productivity of an 

author. It is a function f that corresponds to the maximum of 

number of citations verses maximum number of papers published. 

Higher  the  h-index  greater the productivity of an author [27].   

Total number of articles 

published 

This metric represents the total number of all the publications the 

author possess in the Scopus database 

Total number of co-authors This metric counts the total number of co-authors a physician is 

connected to in the Scopus database  

Years of experience  This metric counts the number of years the physician is involved in 

research publications. 

Table 3.1: Metrics that determine the research profile of a physician 

Figure 3.1, demonstrates the structure of the Scopus dataset. The primary key is the author and all 

the other entities are attributes of the author, as explained in Table 3.1. 

 

Figure 3.1: Structure of the Scopus dataset 

 

 Payments data - OPENPAYMENTS is the outcome of the Physician Payment Sunshine Act 

passed by the US Congress in 2010, which aims to bring transparency in payments between 

physicians and healthcare companies [17]. The purpose is to promote affordable care to improve 

the overall health and well beings of individuals. This database is Open Data for public use and 

can be freely downloadable without much hassle. The data source is available for over 5 years 

from 2013 to 2017. As of 2017, the dataset consists of 11.27 million records of physicians and the 
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payments received from 1500 healthcare companies in the USA. Figure 3.2, represents the design 

of the Author/Physician datasets and its attributes. The physician/author is the primary key and 

its attributes are payments made to the physician, his/her address recorded when the payment 

being made and the field in which the physician is working.  

 

Figure 3.2: Structure of the OpenPayments dataset. 

 

 Return data – SALESFORCE is a customer relationship management (CRM) tool that records 

transactions between companies and their customers [29], which is leveraged by the company to 

improve returns, analyze win rates etc. This being a licensed software the ROI data is available 

only for healthcare company ABC. Figure 3.3 represents the structure of the Salesforce dataset. 

The affiliation (primary key) is either a hospital, clinic or a university making a purchase from a 

healthcare company. The attributes of the primary key are the affiliation’s address and the 

payment made.  

 

Figure 3.3: Structure of Return Dataset 

3.3 Crawling the web 

Data scraping also known as web crawling, is a process of importing information from a website to a 

local storage file on the computer, through a communicative medium of an API (application 

programming interface) provided by the website. It combines data that is scattered across multiple 

websites into a single structured form that is stored in one location of the dataset. The three main 

components required for web scraping are client, server and a communication link to interact between 

the two. The client is nothing but a script that defines the required information to be extracted. The 

server is a program that serves files from web pages to users. Communication takes place between the 

client and server using an API that provides a secure channel for interaction between the client and the 

   Return 
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server. These three components always need to remain synchronous to each other for data extraction. 

Once a secure connection is established between the client and the server, the client then requests the 

server for the required information which is extracted in restricted quantities.  

In this thesis, two API keys are used to provide two levels of secure authentication. The first key is the 

Scopus My API Key who’s primary function is to authenticate the IP address. It is also used to limit the 

number of times the server is hit to prevent service capacity overflow. This API key has a limitation of 

5000 requests made to the server in one week, hence around 3 million server requests are made to 

complete the data extraction process. The second authorization key made compulsory by Scopus is the 

Institution Token Key, provided by TU Delft and is accessible by connecting to the university’s VPN. This 

ensures that the data extracted is used only for research purposes and not for commercial use. With the 

help of these two authorization keys a scrape script is written over the Scopus API [30] to extract the 

required data. The Scopus API provides real time data, built under a RESTful architecture, thereby 

making the scraping process secure and trustworthy. It also allows for modification of data into the 

required data structure and shape. 

3.4 Combining data sources 

The three distinct data sources explained in section 3.2, needs to be combined to a single unique 

dataset. This is done in two steps, at first we combine the research data and payments data, based on 

the common primary key, which is the author/physician. In the second step, the affiliation from the ROI 

data is matched against the affiliation from the intermediate data obtained in the first step. 

From the return data it is observed that multiple physicians are associated to one affiliation resulting in 

overstatement of ROI. To fix this, the ROI of an affiliation is equally distributed over the physicians 

associated with that affiliation. The combined dataset now consists of author as a primary key and every 

author has research metrics, payments he/she received, the hospital or university he/she is affiliated to 

and the distributed ROI. This is represented in Table 3.2.  

 

Author  
Citation 
Count 

H-
Index  

# No. of 
article 
published  

# No. of 
coauthors 

Years of 
experience  

Payments 
(USD) 

Affiliati
on  

Return 
(USD) 

A 10 12 30 20 9 2000 KL 100000 

B 30 15 35 25 10 3500 MN 150000 

C 15 17 70 30 12 8000 KL 100000 

D 25 10 22 35 8 15000 KL 100000 

E 45 25 30 40 13 2500 ST 50000 

 Table 3.2: An example of the combined dataset 
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3.5 Data Insights 

In this section, we attempt to answer the RQ2 mentioned below by performing exploratory data analysis 

on the available data of the three companies. 

 

 

The data extracted and combined into datasets from three healthcare companies show some variation 

in their strategy towards making payments explained in Table 3.3. Before we understand the strategy 

followed by the three companies, it is important to note that we study these three companies as they 

are peer companies and it is useful for healthcare company ABC to be aware of the strategies followed 

by the peer companies. From Table 3.3 it can be noted that healthcare company ABC addresses almost 

twice the number of physicians compared to healthcare company XYZ and healthcare company LMN. It 

is interesting to note that the total number of publications from these three companies is almost 

uniform yet the number of coauthors being addressed by healthcare company ABC is significantly higher 

compared to the other two companies. Hence, the higher CROI (Coauthor Return on Investment) for the 

same. Another absorbing insight being, the average payment per physician  in healthcare company ABC 

is significantly less. This shows that healthcare company ABC addresses physicians whose nature is to 

collaborate with a wider audience and have half the number of publications. Whereas, healthcare 

company XYZ and healthcare company LMN collaborate with fewer researchers but have more number 

of publications. This variation in behavior from the peer companies provides a good base to understand 

and analyze the difference in payment strategy amongst these companies. 

 Healthcare Companies  
Total  ABC XYZ LMN 

Number of physicians paid by company 5096 2605 2657 10,358 

Number of coauthors of physicians 851,719 105,730 41,046 998,495 

Total Number of Publications of 
physicians paid by company  

197,628 197,348 203,220 598,198 

Amount invested by company on these 
physicians in Millions  of USD 

12,5 16 14,5 43 

Average coauthors per physician 167 41 16 224 

Average publications per physician 39 76 77 192 

Amount invested per physician in USD 2453 6142 5457 14,052 

PROI (publication return on investment) 
as publications per USD 1000 invested 

15,8 
 

15,78 16,26 47,84 
 

CROI (Coauthoring return on 
investment) i.e. 
size of network covered per each USD 
1000 invested 

68,14 8,46 3,28 79,88 

Table 3.3: Assessment of strategy for healthcare companies viz., ABC, XYZ and LMN 

 

RQ2:  Do the three healthcare companies follow a strategy while making payments? 
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3.6 Data required for network construction 

There are two main elements required to construct a network of physicians, represented as  𝐺 = (𝑁, 𝐿),                        

where N is the set of nodes and L is the set of links, discussed in section 2.2.1. The node can be 

represented as a physician node or co-author node. Co-author nodes can be nodes that represent a 

physician in practice or a researcher. In order to maintain simplicity we refer to these nodes as co-

author nodes further in this thesis. A link between any two nodes is formed if they have published 

research articles together. To enrich the network with more information, weights are added to the links 

which represent the strength of that link. These weights between any two nodes can be defined as the 

total number of articles the two nodes have collaborated together.    

3.7 Network Data Structure 

For the network construction, data is restricted to healthcare company ABC. This is because the data 

pertaining to ROI is only available for this company which is used to evaluate the effectiveness of the 

network. The network granularity can be broken down into two levels, a physician level and an 

affiliation level. At the physician level every node in the network is a physician or his/her co-author, and 

the edges represent research collaboration. From section 2.1.1 a set of nodes is represented as 𝑁 =

{𝑛1, 𝑛2, 𝑛3, … . , 𝑛𝑖} where 𝑖 is the total number of nodes that are present in the network. Each node 

consists of four attributes, i.e, name of the physician, current affiliation of the physician, the payment 

received by the physician, represented as  𝑃𝑘   for node 𝑛𝑘  and the topological metric , 𝑆𝑘  generated for 

a physician, 𝑛𝑘.  If a healthcare company invests on a physician the payment attribute is updated with 

the amount, measured in USD, else the attribute is updated with a zero. These set of nodes are 

connected to each other by a link, if the two nodes have research collaboration. They are represented as      

𝐿 = {𝑙1, 𝑙2, 𝑙3, … . , 𝑙𝑗}, where 𝑗  is the number of links connecting all the nodes in the network. These links 

also carry information and they are defined in an attribute  𝑊 = {𝑤1, 𝑤2, 𝑤3, … . . , 𝑤𝑗}. The weight on a 

link, equates to the number of articles published together by the two nodes present on either side of 

the link.   

At the affiliation level, nodes represent affiliations and can be defined as  𝐻 = {ℎ1, ℎ2, ℎ3, … . , ℎ𝑎}, 

where  𝑎  is the total number of affiliations in the dataset. Each node has three attributes, name of the 

affiliation, a list of physicians who are currently associated with this affiliation, represented as  𝑈,  and 

the ROI generated by the affiliation. The affiliation nodes are independent of each other and they are 

not connected to each other by links, the main reason being they are used only at the evaluation stage 

which does not involve interaction between these nodes.    

Figure 3.4, shows a detailed representation of the physician citation network at a physician level, where 

the physicians are interconnected to each other, whose names are labelled in black and the weights are, 

displayed in red and represent the weight of the link. Links with higher weights are displayed with 

thicker blue line.  
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Figure 3.4: Physician citation network with nodes and weighted links 

 

3.8 Discussion 

In this chapter we discussed the different data sources and how they were extracted and combined. The 

data that was analysed and extracted in this chapter is used to answer the two types of relations (direct 

and indirect relations) proposed in section 1.2.  Exploratory data insights were also provided for better 

understanding of the datasets. A network data structure was discussed with an illustrative example of 

the physician data that can be used to understand the network thoroughly. The granularity of the 

network at a physician level and affiliation level is also discussed.   
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4. STATISTICAL DATA EXPLORATION and 

MODELING 
In this chapter, we use statistical data analysis to analyse the direct relation,  explained in detail in 

section 1.2. By analysing the direct relationship between payments made to the physicians by the 

healthcare company and the ROI to the healthcare company we will answer the following research 

questions: 

What is the relationship between investments on physicians, ROI generated by the healthcare 

 

 

 

 

The motivation to use regression analysis is to explain the variation in the payments made to the 

physicians by using their research profile as an explaining factor, for the three healthcare companies. 

Then we decode the underlying payment strategy used by the three healthcare companies and compare 

them against each other to answer RQ2.   

Further we build a recursive regression model, who's main purpose is to understand the relationship 

between ROI generated by the healthcare company, the money invested on the corresponding 

physicians and the research profile of the physicians to answer RQ1 using the direct relationship 

mentioned in section 1.3. 

This chapter begins by describing the distribution of payments made to the physicians followed by 

determining the relationship between payments made to physicians and their research profile. This is 

explained in section 4.1. After understanding the univariate and bivariate structure of data, a more 

systematic approach of explaining the variation in payments made to the physicians is analyzed using 

the regression technique, which is explained in section 4.2.  Section 4.3 attempts to understand if the 

investment made by the healthcare companies is related to the ROI earned by the company. In this 

context, the analysis is restricted to only healthcare company ABC as the ROI data is not available for the 

other healthcare companies. The chapter ends with a discussion and interpretation of results from 

regression models.    

4.1 Basic Description of the Data 

The average payments made to the physicians are varied across the three healthcare companies. It was 

observed from the data that the payments made by healthcare company ABC was the lowest i.e., on 

average paid USD 862.5 to a physician whereas healthcare company XYZ on average paid the highest, 

RQ2: Do the three healthcare companies follow a strategy while making payments? 

RQ1: What is the relationship between investments on physicians, ROI generated by the 

healthcare company and the research profile of a physician on whom the healthcare company 

invests? 
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USD 1039.  The healthcare company LMN has an average payment of USD 953, making the overall 

average payment of the three healthcare companies combined to USD 950 per physician. We also 

noticed a wide variation in payments made to physicians across three health care companies reflecting a 

high standard deviation and a high coefficient of variation1. The coefficient of variation measures the 

inequality amongst the payments made to physicians and the coefficient of variation is greater than 1 

for all the three companies which confirms high level of inequality in the investment structure.  

It was also noticed that the distribution of payments made to physicians is highly positively skewed and 

appears as Skewness in Table 4.1. It can also be noted that nearly 50% of the physicians are getting less 

than USD 50.  Only around 8% to 17% of the physicians receive payments more than USD 500.  

 

  

Percentage of Physicians 
receiving the payment from 

healthcare companies 

Payment in USD ABC XYZ LMN 

Upto 50 51.3 55.3 50.7 

51 to 100 22.3 13.7 13.4 

101 to 200 12.9 10 15 

201 to 500 5.5 4.4 5.4 

501 to 1000 1.9 4.5 4.2 

1001 to 5000 3.1 9.2 5.4 

Above 5001 3.1 2.9 6 

Average payment  in USD 862.5 1039 953 

Standard Deviation in USD 6218.7 7752.4 3930.5 

Coefficient of Variation 7.2 7.5 4.1 

Skewness 15.1 17.4 10.6 

Table 4.1: Distribution of Payments across Healthcare Companies 

Here we attempt to explain the variation in payment through variables such as total number of articles 

published, number of co-authors, research experience of a physician and h-index [12]. All of these 

variables are previously explained in detail in section 3.2. To explain the above variation in payment, the 

associations between payments and the variables that represent research profile is measured using  

correlation coefficient2  and the computed results are presented in Table 4.2.   

                                                           
1𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =  

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝐴𝑣𝑒𝑟𝑎𝑔𝑒
 

 

2 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑒𝑛𝑡, 𝑟𝑥𝑦 = 
𝑐𝑜𝑣(𝑥,𝑦)

𝑠𝑥𝑠𝑦
= 

1

𝑛−1
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)
𝑛
𝑖=1

√ 1

𝑛−1
∑ (𝑥𝑖−�̅�)

2𝑛
𝑖=1 √

1

𝑛−1
∑ (𝑦𝑖−�̅�)

2𝑛
𝑖=1
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Healthcare Company ABC 

 

Total 
number 

of articles 
published 

Number 
of co-

authors 

Research 
experience 

h-index Payments 

Total number of articles 
published 1 0.620 0.012 0.830 0.012 

Number of co-authors 

 
1 -0.039 0.540 0.006 

Research experience 

  
1 0.070 0.026 

h-index 

   
1 0.027 

Payments 

    
1 

Healthcare Company XYZ 

Total number of articles 
published 1 0.370 0.037 0.680 0.034 

Number of co-authors 

 
1 0.100 0.590 0.019 

Research experience 

  
1 0.120 -0.016 

h-index 

   
1 0.100 

Payments 

    
1 

Healthcare Company LMN 

Total number of articles 
published 1 0.800 0.049 0.520 0.068 

Number of co-authors 

 
1 0.140 0.710 0.080 

Research experience 

  
1 0.190 0.046 

h-index 

   
1 0.068 

Payments 

    
1 

Table 4.2: Correlation Matrix across Health Care Companies 

 

The low correlation values show that the payments made to physicians do not have any linear 

relationship with other variables, as seen in the last column corresponding to Payments in the Table 4.2. 

The possibilities for low association could be either because the relationship is non-linear or the 

payments may not really depend upon the physician's research profile or experience. These are some of 

the possible reasons we could conclude, but they are limited, as correlation is not always a case of 

causation. 
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In reality, many variables may jointly contribute to explaining the variation in the payments made to the 

physicians and hence to account for the impact of two or more variables in a more general way, we 

resort to multiple regression model and is explained in the next section. 

4.2 Regression Analysis 

The relationship between two variables  𝑥  and  𝑦 , defined as 𝑦 = 𝑓(𝑥), is a set of all values of  𝑥  and  𝑦 

that are characterized by an equation which can be linear or non-linear. Here,  𝑥  is an independent 

variable and  𝑦  is a variable dependent on  𝑥. The relationship between these variables can be 

deterministic or stochastic. It is deterministic, if for every value in  𝑥  there is only one corresponding 

value in  𝑦 . For example, if  𝑦  is the payment made to a physician and  𝑥  is the h-index, and assume all 

the physicians with h-index 10 receive a payment of USD 500 then the relationship is deterministic. 

However, in reality, this cannot be true due to a number of reasons like unpredictable element of 

randomness in human response, effect of large number of omitted variables, measurement of errors in 

variables etc. [47]. Hence, this makes all the relationships, in general, stochastic in nature. From the 

previous example, if all the physicians have a h-index of 10, then the payments made to physicians is a 

complete distribution around the mean value  𝐸(𝑦|𝑥 = 10). Thus the relationship is specified as  𝑦 =

𝑓(𝑥) + 𝜀, where 𝜀 is a random disturbance.  

In this thesis, we make use of regression analysis, which is defined as a statistical technique to find the 

relationship between a dependent variable and one or more explanatory (independent) variables by 

quantifying it in a single equation. In a one-dimensional case, the linear equation can be represented as: 

                                                                    

  𝑦𝑖 = 𝛼 +  𝛽 𝑥𝑖 + 𝜖𝑖                                                                                                   (4) 

Where  𝑦𝑖   is the dependent variable,  𝑥𝑖  is an explanatory/independent variable and 𝜖𝑖  is the stochastic 

or random disturbance, 𝛼  and  𝛽 are the regression parameters, which are unknown parameters and 

are estimated from the model using the values of 𝑥𝑖  and 𝑦𝑖. Here the subscript 𝑖 refers to the 𝑖𝑡ℎ 

observation, i.e.,  𝑖𝑡ℎ physician. Hence, the full specification of the regression model includes the 

regression equation and the probability distribution of the disturbance term [7, 10]. (Refer Appendix 

[A.1]  for details of the assumptions on the error term and the parameter estimation technique) 

When the relationship between  𝑥  and  𝑦  is non-linear in nature, physicians with a higher h-index get 

higher payments until a certain threshold after which payments decline or remain constant. In such 

cases, the regression takes a quadratic form as seen in Eq. (5), which is a particular case of a polynomial 

regression. Another non linear form of expression, is exponential or semi log form, i.e., with a change in 

h-index, the payment changes exponentially and corresponding regression equation is termed as 

exponential regression or log linear regression and is approximated in Eq. (6).  

 

𝑦𝑖 = 𝛼 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑖
2 + 𝜖𝑖                                                                                  (5) 
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ln (𝑦𝑖) = 𝛼 +  𝛽 𝑥𝑖 + 𝜖𝑖                                                                                        (6) 

In reality, a single indicator may not be able to explain the variation in the dependent variable.  Hence, a 

set of explanatory variables are necessary to explain the variation of the dependent variable for linear or 

non-linear forms. In such situations, the model can be generally specified as  

              𝑦𝑖 =  𝛼 + ∑𝛽𝑗𝑥𝑗𝑖 + 𝜀𝑖                                                                                     (7) 

where, 𝑖=1,2,...n are observations  in the dataset and  𝑗=1,2,...m are  explanatory variables.    

Here  𝑦𝑖  is the dependent variable,  𝑥𝑗𝑖   is a set of explanatory variables, which are either linear or non 

linear (i.e., 𝑥𝑗 𝑜𝑟 𝑥𝑗
2 𝑜𝑟  𝑒𝑥𝑗) and with the assumption that, there is no linear dependences within them. 

The regression coefficients,  𝛼, 𝛽1, 𝛽2, … , 𝛽𝑚  are estimated by the method of least squares.  

The objective of regression is to estimate the regression coefficients, statistical inference on the 

estimated coefficients and to determine the strength of their relationship. These coefficients are usually 

estimated by the method of ordinary least squares3. Though this method provides optimum coefficients, 

they can be affected by issues such as outliers, misspecification of the regression equation and 

inefficient estimates due to heteroscedasticity which are common problems for cross sectional data. 

These problems are explained as follows:  

(a) Role of outliers: We observed that estimates of the regression parameters are influenced by 

extreme observations or outliers, termed as influential observations. In simple regression, i.e., 

regression with one explanatory variable, detecting outliers are relatively easier through 

residual plots obtained after regression analysis. However, in the case of multivariate 

regression, it is impossible to visualize multi dimensional data to analyze the estimated errors, 

 𝜖�̂� which are used to identify outliers. Tests such as DFFITS [4] and Cook’s distance [5] are used 

to identify outliers and are defined as follows.  

 

The DFFITS measure can be mathematically represented as,    

 

𝐷𝐹𝐼𝑇𝑆𝑖 = (
ℎ𝑖𝑖

1 − ℎ𝑖𝑖
)
1/2 𝑒𝑖

𝑠(𝑖)√1− ℎ𝑖𝑖
                                                                      (8) 

 

Where ℎ𝑖𝑖  is the diagonal elements of the  matrix  [𝑋(𝑋′𝑋)−1𝑋′], where X is the  explanatory 

variable matrix,  𝑒𝑖 is the estimated residual and  𝑠(𝑖) is the root mean square error from the 

regression that is computed without considering the corresponding  𝑖𝑡ℎ observation. The DFITS 

                                                           
3The method of least squares is the automobile of modern statistical analysis; despite its limitations, occasional 

accidents, and incidental pollution, it and its numerous variations, extensions and related conveyances carry the 
bulk of statistical analysis, and are known and valued by all [13]. 

Stephen M Stigler(1981) 
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measure is computed for all physicians and if the DIFFITS value is greater than  2√
(𝑚+1)

𝑛
  , then 

the payment made to the physician is considered as an outlier. 

 

The Cook’s distance can be mathematically represented as,  

 

𝐷𝑖
2 = 

𝑒𝑖
2

𝑚 ∗ 𝑠2
(

ℎ𝑖𝑖
(1 − ℎ𝑖𝑖)

2
)                                                                     (9) 

    

Where,  𝐷𝑖
2  is the Cook's distance measure,  𝑠2  is the mean square error of regression; ℎ𝑖𝑖  is 

the diagonal element of the matrix  [𝑋(𝑋′𝑋)−1𝑋′] of explanatory variable matrix X,  𝑒𝑖 is the 

estimated residual and  (𝑚 + 1) are the number of regression coefficients. The Cook’s distance 

is computed for all physicians and if the value is greater than  𝐹0.5(𝑚, 𝑛 − 𝑚 − 1) (or for large 

sample if  𝐷𝑖
2 > 1) then the physician is considered as an outlier. 

 

(b) Misspecification: A multiple regression model undergoes a functional form misspecification 

when it does not properly account for the relationship between the dependent and explanatory 

variables [6, 8, 9]. For example, if the data takes a log-linear form and it is estimated using a  

linear regression then this model is misspecified, which leads to coefficients being biased [8]. 

The test used to detect the misspecification of a model was suggested by Ramsey [1] and 

termed as RESET  (Regression Specification Error Test). 

 

This test augments the multiple linear regression, as specified in Eq. (7), with a set of regressors,  

𝑍, as  𝑦𝑖 = 𝛼 + 𝛽1𝑥𝑖 + 𝛽2𝑥2 +⋯+ 𝜂1𝑧1 + 𝜂2𝑧2 + 𝜂3𝑧3 + 𝜖𝑖 , and are tested if the hypothesis 

𝐻0: 𝜂1 = 𝜂2 = 𝜂3 = 0  is true. Here, the regressors take the form of squares, cubes and fourth 

power of the fitted value i.e., 𝑧1 = �̂�
2;  𝑧2 = �̂�

3;  𝑧3 = �̂�
4. 

 

(c) Heteroscedasticity: Heteroscedasticity can be defined when the error terms , 𝜖𝑖 , do not have a 

common variance,  𝜎2 . This problem arises when cross sectional data is used. When 

heteroscedasticity is not accounted, it leads to a biased estimate of standard errors of the 

regression coefficient thereby; making the t-test invalid. This might lead to major blunders in 

drawing conclusions of an explanatory variable. Thus, checking for the presence of 

heteroscedasticity is important and if it is present, appropriate measures should be taken to fix 

this issue [9, 11]. 

The generalized test used  to check for the presence of heteroscedasticity was introduced by 

Breusch and Pagan [2] and is termed as Breusch-Pagan test (BP test) explained below.  

Breusch-Pagan test (BP test):  

The assumption is that, the heteroscedasticity is a function of one or more independent 

variables, and it is applicable to a linear function assuming all variables in the model are 

independent. Consider   𝑣𝑎𝑟(𝜀𝑖) =  𝜎𝑖
2 = 𝑓(𝛼0 + 𝛼1𝑧1𝑖 +⋯+ 𝛼𝑔𝑧𝑔𝑖) , where  𝑍  are set of 
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regressors of the form 𝑥, 𝑥2, 𝑒𝑥 etc. The BP test, tests for the hypothesis  𝐻0: 𝛼1 = 𝛼2 = ⋯ =

𝛼𝑔 = 0.  

The test statistics,  
𝑆0

2�̂�4
   has a 𝜒2 distribution with 𝑔 degrees of freedom.  

 

If the test reveals the presence of heteroscedasticity, then the errors are converted to its 

homoscedastic form by performing certain transformations, which is only possible only if the 

functional form and magnitude of these errors are known. In a multiple regression analysis, it  is 

difficult to identify the functional form and magnitude of errors, hence we use 

Heteroscedasticity Consistent Covariance Matrix (HCCM) to convert the heteroscedastic nature 

of errors to its homoscedastic form, as suggested by White et al. [3]. This approach removes the 

bias which arises in the standard error of the coefficient. 

4.3 Discussion of Regression Results 

Multiple regression, as specified in Eq. (7), was estimated for the three healthcare companies 

separately. The basic model showed the presence of outliers, misspecifications and heteroscedastic 

errors. 

 

The outliers identified statistically through DFFIT and Cook’s distance are cross verified subjectively to 

justify why these payments were considered as outliers. The number of outliers from healthcare 

companies ABC, XYZ and LMN are 18, 39 and 6 respectively. These payments were identified as royalty, 

license or payments made towards research. The payments corresponding to these outliers were several 

hundred folds higher than the mean payments and hence identified statistically and subjectively as 

outliers. The detected outliers were not further considered in the regression model. 

 

Next, we checked for misspecification using the Ramsey RESET, as explained in section 4.2. Results 

indicate the presence of nonlinearity for healthcare companies ABC and XYZ whereas, healthcare 

company LMN fail to show the presence of misspecification, which is observed from Table 4.3. Hence we 

introduced polynomial terms to the regression model, to eliminate misspecification. 

 

 Healthcare Companies 

 ABC XYZ LMN 

𝑅𝑎𝑚𝑠𝑒𝑦 𝑅𝐸𝑆𝐸𝑇 𝐹 3.27 178.40 2.02 

Prob>F 0.0212 0.0000 0.1085 

Table 4.3: Ramsey RESET F statistics of the three healthcare companies 

 

The final issue to be handled is the presence of heteroscedasticity. The results obtained from BP Test, 

presented in Table 4.4, show the presence of heteroscedasticity. To overcome this issue we make use of 
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White’s solution, as explained in section 4.2, to obtain heteroscedastic consistent standard error which 

validates the t-test. 

  

 

 Healthcare Companies 

 ABC XYZ LMN 

𝐵𝑟𝑒𝑢𝑠𝑐ℎ
− 𝑃𝑎𝑔𝑎𝑛 𝜒2(1) 

318.20 179.96 300.58 

𝑝𝑟𝑜𝑏 >  𝜒2(1) 0.0000 0.0000 0.0000 

Table 4.4:  Heteroscedasticity test statistics of the three healthcare companies 

 

The regression models, represented in Eq. (10), Eq. (11) and Eq. (12), correspond to the healthcare 

companies ABC,  XYZ and LMN respectively.  

To come up with these regression models, we tried various forms of regression models for each 

healthcare company, by including/excluding explanatory variables and various polynomial forms of the 

explanatory variables in the regression model, Eq. (7). We also experimented with exponential and log 

forms of the explanatory variables. All these combinations were used in an attempt  to improve the 

explanatory power of the dependent variable. After multiple trials we ended up with different 

regression models for the three healthcare companies. This result is shows that there are different 

payment strategies used by the three healthcare companies.  

𝐻𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒 𝑐𝑜𝑚𝑝𝑎𝑛𝑦 𝐴𝐵𝐶:  𝑝𝑎𝑦𝑚𝑒𝑛𝑡 =  𝛼0 + 𝛼1 ℎ − 𝑖𝑛𝑑𝑒𝑥 + 𝛼2 ℎ − 𝑖𝑛𝑑𝑒𝑥
2 + 𝛼3 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 (10)  

𝐻𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒 𝑐𝑜𝑚𝑝𝑎𝑛𝑦 𝑋𝑌𝑍: 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 =  𝛽0 + 𝛽1 ℎ − 𝑖𝑛𝑑𝑒𝑥 + 𝛽2 ℎ − 𝑖𝑛𝑑𝑒𝑥
2 + 𝛽3 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒  (11)  

𝐻𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒 𝑐𝑜𝑚𝑝𝑎𝑛𝑦 𝐿𝑀𝑁: 𝑝𝑎𝑦𝑚𝑒𝑛𝑡 =  𝛾0 + 𝛾1 ℎ − 𝑖𝑛𝑑𝑒𝑥 + 𝛾2 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒                                  (12) 

In Table 4.5, the 𝑅2 values indicate that only a small variation in payments could explain the research 

profile and the experience of the physician. However, the F values indicate that the 𝑅2 is significant.  

Hence, we deep dive into the results to understand the relationship between payments, research profile 

and experience of physicians  for the three healthcare companies.  

Healthcare Company ABC:  

The results, as seen in Table 4.5, show a positive significant h-index coefficient and negative significant  

h-index2 coefficient indicating that with every unit increase in the h-index, the payments made  to 

physicians increases until a point where the h-index is 48 after which the payments starts decreasing 

while keeping the experience variable constant. The coefficient corresponding to experience is positive 

and significant implying that with every additional year of experience, the payments go up by about USD 



   26 

16. Therefore the payment strategy used by healthcare company ABC is stated as, physicians with 

higher years of experience and higher h-index (up to the cut-off) are paid higher. 

Healthcare Company XYZ:  

From Table 4.5, we can see that the results from healthcare company XYZ also showed a similar pattern 

as that of healthcare company ABC with respect to h-index and experience variable.  The h-index 

variable peaks at 54 which is roughly the same as that for  healthcare company ABC. The coefficient 

corresponding to experience is positive and significant implying that with every additional year of 

experience, the payments go up by about USD 15. Therefore the payment strategy used by healthcare 

company  XYZ  is stated as, physicians with higher years of experience and higher h-index generally 

tend to receive higher payments.  

Healthcare Company LMN:  

On the contrary, the h-index was found to be linear for healthcare company LMN and the coefficients 

corresponding to both h-index and experience were observed to be positive and significant. Further the 

results indicate that with every unit increase in h-index, the corresponding investment on a physician is 

increased by USD 2.17  and similarly for every additional year of experience, the physicians were paid 

around USD 26 more. The payment strategy used by healthcare company LMN is stated as, physicians 

with higher years of experience and higher h-index are paid higher. 

Healthcare Company ABC 

  Coefficients t value P>t 

h-index 13.49 4.63 0.000 

h-index2 -0.14 -4.45 0.000 

Experience 15.95 3.57 0.000 

Constant 68.46 2.48 0.016 

R2 0.0085 F=9.67 P>F=0.000 

Healthcare Company XYZ 

  Coefficients t value P>t 

h-index 21.62 3.85 0.000 

h-index2 -0.20 -2.41 0.016 

Experience 15.35 2.71 0.014 

Constant 303.29 3.99 0.000 

R2 0.0121 F=9.40 P>F=0.000 

Healthcare Company LMN 

  Coefficients t value P>t 

h-index 2.17 4.48 0.000 

Experience 25.95 4.40 0.000 

Constant 20.76 2.34 0.017 

R2 0.0155 F=18.38 P>F=0.000 
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Table 4.5: Regression Results 

 

Overall, the three healthcare companies follow their own strategy to invest on their physicians which 

answers the RQ2. Among all the variables used to define the research profile of a physician, we 

conclude that two variables i.e h-index and years of experience are the most crucial variables.   

4.4 Return Analysis 

In this section, an attempt is made to understand the relationship between ROI generated to the 

healthcare company by the hospitals and investments made to the physicians affiliated to these 

hospitals, which answers RQ1. The relationship between ROI generated and investments is represented 

in Eq. (13). 

     

  𝑦1 = 𝛼0 + 𝛼1𝑦2  + 𝜖1                                                                                        (13) 

 

where, 𝑦1 is the ROI earned by the company 

𝑦2 is the payments made to physicians  

α’s represents the coefficients of explanatory variables in Eq. (13) 

 

In the above equation, investments made to physicians cannot be treated as a pure exogenous variable; 

unlike in other equations. Since these payments depends on the research profile and years of 

experience, which is inferred from Table 4.5. Thus we specify another regression models that explains 

the investment better and is represented in Eq. (14). As we can see Eq. (13) recursively depends on Eq. 

(14), these two equations together form a recursive regression model and hence should be jointly 

estimated. It can also be noted that if Eq. (13) is estimated by itself then the coefficients obtained would 

be biased and inefficient.  

 

                                        𝑦2 = 𝛽0 + 𝛽1𝑥1  + 𝛽2𝑥2  + 𝛽3𝑥3  +  𝜖2                                                      (14) 

  

Where, 𝑦2 is the payments made to the physicians 

𝑥1 is  h-index of the physician 

𝑥2 is a polynomial function of h-index (h-index2) 

𝑥3 is the years of research experience of a physician 

β represent the coefficients of explanatory  variables in Eq. (14) 

 

Table 4.6 demonstrates the results of the recursive regression model where, Eq. (13) corresponds to the 

return equation and Eq. (14) the investment equation. The results indicate that the investment made to 

physicians has no impact on the ROI generated to the company. The payment equation, i.e.,  Eq. (14)  

shows that the h-index has a quadratic relationship with payments made to the physicians,  i.e., with 

increase in h-index the payments also increases up to a certain level and beyond which it decreases with 
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the increase in h-index.  Experience also has a positive impact on the payments made to the 

physicians.  All the coefficients  in  Eq. (14)  are significant at 1% . 

 

 

 

 

 

Return Equation 

  co-efficient Z-value P>Z 

Payment -2014.61 -1.28 0.199 

Constant 3066199.00 5.71 0.000 

R2 0.0004 χ2=1.65 P>χ2=0.1993 

Payment Equation 

  co-efficient Z-value P>Z 

h-index 14.06 4.74 0.000 

h-index2 -0.14 -3.82 0.000 

Experience 13.79 2.17 0.030 

Constant 87.05 2.23 0.021 

R2 0.0084 χ2=30.04 P> χ2=0.000 

  Table 4.6: Recursive regression results 

 

4.5 Discussion 
 

In this chapter there were many key observations and conclusions that are useful for the remaining 

chapters. First, includes a discovery of a huge variation in investment made to physicians, which have 

been explained by two main research metrics, i.e., h-index and experience. The second conclusion made 

from return analysis shows that there is no strong direct relationship between investment made to 

physicians and ROI to healthcare company ABC.  The last observation includes the investment strategy 

that is established by healthcare company ABC is different from its two peer healthcare companies and 

answers the RQ2. Overall, we attempted to build a direct relationship between payments and ROI in this 

chapter and we also answered RQ1 by explaining the relationship between investment, ROI and the 

research profile of the physician in detail, by first performing an exploratory data analysis which is 

followed by an advanced regression analysis and finally terminates with results that assists in making the 

above conclusions.   

In the next chapter, we attempt on analysing our second type of relation, i.e. indirect relation by using 

network science to explain the complex and indirect relationship between payments made to the 

physicians by the healthcare company and the ROI to the healthcare company. We then compare if 

direct or indirect relationship can best explain the relationship between payments made by the 

physicians and the ROI received by the healthcare company, which will be presented in chapter 6.    
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5. NETWORK SPREADING PROCESS 

In this chapter, we attempt to address the indirect relation, explained in section 1.2, to explain the 

relationship between payments made to physicians by the healthcare company, the ROI to the 

healthcare company and the research profile in a physician citation network.  

We answer RQ1 by developing a network spreading process to model how influence diffuses through 

the physician citation network. In our spreading process the diffusion of influence is dependent on the 

topological property of the node.  

To measure the effectiveness of the influence diffusion, we use a metric termed Pearson's correlation 

coefficient  [48], which measures the relationship between the influence a healthcare company has on a 

physician and the ROI from the hospital that the physician is employed. We also use visuals to 

understand the relationship between influence and ROI. 

 

 

 

The organization of this chapter is as follows, section 5.1 discusses the spreading process to diffuse 

influence followed by section 5.2 where we developed three metrics based on degree, clustering 

coefficient and closeness centrality based topological properties. These properties determine the 

amount of influence that is diffused from one node to another during the spreading process in section 

5.1. Finally section 5.3 discusses the reason we choose these three topological properties  to develop 

the network topological  metrics. 

5.1 Spreading Process 

It is inferred from section 2.5.1, that the money invested can be represented as a form of influence. 

Here the investment made by the healthcare company to a set of physicians is considered as an 

influence the healthcare company has on these physicians. In this section, we propose a network 

spreading process that models how influence diffuses through a physician citation network. For the 

evaluation of the spreading process the association between the influence diffused at every node and 

the ROI from the hospital associated to that node is computed.  

To design the spreading process we use two attributes of a node, payment attribute represented as  𝑃𝑘  

and the topological property represented as  𝑆𝑘 of each node  𝑛𝑘 , which is explained in detail in section 

5.2.  

At t=0, the nodes that receive a payment from the healthcare company are assigned to the source node 

set, represented as Source =  {𝑛𝑠1, 𝑛𝑠2, … , 𝑛𝑠𝑝} , and are initialised with their respective  𝑃𝑘 values. All 

the remaining nodes in the network are initialised to 0 as they do not receive any payments from the 

What is the relationship between investments on physicians, ROI generated by the healthcare 

company and the research profile of a physician on whom the healthcare company invests? 
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healthcare company. This is represented in Eq. (15). We initiate the spreading process with the source 

nodes as these nodes have received influence from the healthcare company, inferred from section 2.5.1. 

𝑃𝑘(𝑡 = 0) =  {
𝑃𝑘                                𝑓𝑜𝑟 𝑆𝑜𝑢𝑟𝑐𝑒 𝑛𝑜𝑑𝑒𝑠  
0                          𝑓𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑎𝑖𝑛𝑔 𝑛𝑜𝑑𝑒𝑠

                                                              (15) 

Before initiating the spreading process, we first discuss the mechanism of the spreading process and the 

motivation behind these mechanisms.  

The mechanism of the spreading process determines what kind of nodes can influence another nodes in 

the network, and is as follows,  

             1. A node can influence another node in the network only once, for all nodes in the network. 

 The reason being the information/influence has already been transferred the first time a node 

 influences another node.  

2. Influence cannot flow from any node in the network to the Source nodes. The motivation 

being the source nodes have already  been influenced  by  the  healthcare  company  and  receive 

payments for the same.     

The basic principle behind the spreading process is, every eligible node will keep 𝜃 (defined as the 

spreading parameter) times the payment attribute and diffuse the remaining to its one-hop neighbours 

in proportion  to the topological property of the node. This value of  𝜃  lies between  0 and 1. 

Now, we mathematically deduce the spreading process for all t ≥ 1,   

At any given time t some number of nodes, in the physician citation network, participate in the 

spreading process. These nodes can either diffuse influence, receive influence or diffuse and receive 

influence at the same time. The nodes that diffuse influence at time t, are only the nodes that receive 

influence in it's previous time t-1. The nodes that only receive influence at time t, are the one-hop 

neighbours of the eligible nodes which received influence at time t-1 and are subject to the constraints 

mentioned in the mechanism above. The nodes that diffuse and receive influence, at the same time t, 

are the eligible nodes, which received influence at time  t-1, that diffuse influence to the one-hop 

neighbouring nodes subject to the constraints from the mechanism, and receive influence from other 

eligible nodes diffusing at time t. The computation of the payment attributes of these three nodes are 

represented in Eq. (16)   

 

𝑃𝑘(𝑡) =  

{
  
 

  
 𝜃 ∗ 𝑃𝑘(𝑡 − 1) + ∑ (1 − 𝜃) ∗ 𝑃𝑥(𝑡 − 1) ∗

𝑥 𝜖 𝑂{𝑘,𝑡}

(
𝑆𝑘

∑ 𝑆𝑦𝑦 𝜖 𝑉{𝑥,𝑡}

)         ∀  𝑛𝑜𝑑𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝑑𝑖𝑓𝑓𝑢𝑠𝑒 𝑎𝑛𝑑 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

𝑃𝑘(𝑡 − 1) + ∑ (1 − 𝜃) ∗ 𝑃𝑥(𝑡 − 1) ∗

𝑥 𝜖 𝑂{𝑘,𝑡}

(
𝑆𝑘

∑ 𝑆𝑦𝑦 𝜖 𝑉{𝑥,𝑡}

)                          ∀    𝑛𝑜𝑑𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝑜𝑛𝑙𝑦 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑠 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

𝜃 ∗ 𝑃𝑘(𝑡 − 1)                                                                                                         ∀    𝑛𝑜𝑑𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝑜𝑛𝑙𝑦 𝑑𝑖𝑓𝑓𝑢𝑠𝑒 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

   (16) 
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Where we denote set 𝑶{𝒌,𝒕}  as the set of all nodes from which 𝑛𝑘 receives influence at time t and for 

every element in  set 𝑶{𝒌,𝒕}  we denote set 𝑽{𝒙,𝒕} as a set of all nodes that influences its one hop 

neighbour at time t. Here,  𝜃 ∗ 𝑃𝑘(𝑡 − 1) represents the amount of influence remaining in the node  𝑛𝑘 

after diffusion at time t,  ∑ (1 − 𝜃) ∗ 𝑃𝑥(𝑡 − 1) ∗𝑥 𝜖 𝑂{𝑘,𝑡}
(

𝑆𝑘

∑ 𝑆𝑦𝑦 𝜖 𝑉{𝑥,𝑡}

)   represents the influence received 

from its one-hop neighbouring nodes at time t. The first equation of Eq. (16) is used to compute the Pk 

for all nodes that participate in diffusing influence and also receiving influence at the same time t.  

On the other hand, for nodes that only receive influence, 𝑃𝑘(𝑡 − 1) represents the amount of influence 

already present in the node and  ∑ (1 − 𝜃) ∗ 𝑃𝑥(𝑡 − 1) ∗𝑥 𝜖 𝑂{𝑘,𝑡}
(

𝑆𝑘

∑ 𝑆𝑦𝑦 𝜖 𝑉{𝑥,𝑡}

)   represents influence 

received from its one-hop neighbouring nodes at time t. It is to be noted that, the spreading process 

diffuses influence to its one-hop neighbours in proportion to the topological property of the node, 

represented as  𝑆, which is explained in detail in section 5.2. The reason behind using the topological 

property of the node is to capture various properties like distance, spectra and connections of the node 

[44], which unravel information like importance of the nodes, structure of the network etc.  

The other nodes that are not participating  at  time t are computed as, 

𝑃𝑘(𝑡) =  {
𝜃 ∗ 𝑃𝑘(𝑡 = 0)                               𝑓𝑜𝑟 𝑆𝑜𝑢𝑟𝑐𝑒 

𝑃𝑘(𝑡 − 1)                    𝑓𝑜𝑟 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑛𝑜𝑑𝑒𝑠
                                                             (17) 

This process is repeated for t ≥ 1 until 𝑃𝑘(𝑡) =  𝑃𝑘(𝑡 − 1), i.e no nodes in the physician citation network are 

influencing one another.  

Evaluation of the spreading process: At the end of the spreading process, every node in the network 

has some amount of influence stored in  𝑃𝑘  for node  𝑛𝑘. Nodes that belong to the same hospital are 

grouped together and their corresponding  𝑃𝑘 are aggregated, which is a representation of the total 

influence the healthcare company has on a hospital. The details for which are specified in Eq. (26) of 

section 6.1.  

From a business standpoint we assume that, if the hospital has been influenced by the healthcare 

company ABC, then the hospital purchases equipments from the healthcare company ABC, which in turn 

generates a ROI for the healthcare company ABC. For reference, this explanation was pictorially 

depicted in Figure 1.2. An evaluation metric termed Pearson correlation coefficient [46, 47, 48] is used 

to compute the relationship between the total influence the healthcare company has on hospitals and 

the ROI from the hospitals. The spreading process is calculated multiple times by varying the values of  

𝛼 , 𝜃 and topological property  𝑆,   which is explained in detail in section 5.2. 

We illustrate the spreading process with an example represented in Figure 5.1. Nodes A and B represent 

Source nodes and nodes C, D, E and F represent the remaining nodes. The topological measure used in 

this example is, degree centrality metric, computed from Eq. (19) where the scaling parameter 𝛼 = 1, 

and the spreading parameter, 𝜃 = 0.7. At t=0, the payment attribute of the source nodes, 𝑃𝐴  and  𝑃𝐵 
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are initialized with USD 1000 and USD 2000 respectively, as seen in Figure 5.1 (a). The payment 

attributes of all the nodes after initialization can be represented as, 

𝑃𝐴(0) = 1000; 𝑃𝐵(0) = 2000; 𝑃𝐶(0) = 0; 𝑃𝐷(0) = 0; 𝑃𝐸(0) = 0; 𝑃𝐹(0) = 0 

 

At t=1, node A diffuses its influence to node D and C, and node B diffuses its influence to nodes E in 

proportion to their topological values depicted inside the nodes, which is represented in Figure 5.1(b). 

The amount of influence a node receives is computed using Eq. (16) and Eq. (17). For example, node C 

receives influence from node A. Hence, set O = {A} and set V = {C, D}. We compute  SC(d)  and  SD(d)  

using Eq. (19). The following computations of Eq. (16) and Eq. (17) are:     

𝑁𝑜𝑑𝑒 𝐴:  𝑃𝐴(1) = 0.7 ∗ 1000 = 700 

𝑁𝑜𝑑𝑒 𝐵:  𝑃𝐵(1) = 0.7 ∗ 2000 = 1400  

𝑁𝑜𝑑𝑒 𝐶:  𝑃𝐶(1) = 0.7 ∗ 𝑃𝐶(0) +  0.3 ∗ 𝑃𝐴(0) (
𝑆𝐶(𝑑)

(𝑆𝐶(𝑑) + 𝑆𝐷(𝑑))
) = 0.7 ∗ 0 +  0.3 ∗ 1000(

0.41

(0.41 + 0.45)
) = 0 + 143 = 143 

𝑁𝑜𝑑𝑒 𝐷:  𝑃𝐷(1) = 0.7 ∗ 𝑃𝐷(0) +  0.3 ∗ 𝑃𝐴(0) (
𝑆𝐷(𝑑)

(𝑆𝐶(𝑑) + 𝑆𝐷(𝑑))
) = 0.7 ∗ 0 +  0.3 ∗ 1000(

0.45

(0.41 + 0.45)
) = 0 + 157 = 157 

𝑁𝑜𝑑𝑒 𝐸:  𝑃𝐸(1) = 0.7 ∗ 𝑃𝐸(0) +  0.3 ∗ 𝑃𝐵(0) (
𝑆𝐸(𝑑)

𝑆𝐸(𝑑)
) = 0.7 ∗ 0 +  0.3 ∗ 2000 (

0.54

0.54
) = 0 + 600 = 600 

𝑁𝑜𝑑𝑒 𝐹:  𝑃𝐹(1) = 𝑃𝐹(𝑡 − 1) =  𝑃𝐹(0) = 0 

Similarly, the payment attributes of the participating nodes can be calculated for remaining time t =2, 3 

and 4 and is terminated at t=4, since  𝑃𝑘(4) =  𝑃𝑘(3). 
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Figure 5.1 Example of influence spreading process (a) influence diffusion from source to remaining nodes 

at t=0; (b) diffusion of influence at t=1; (c) diffusion of influence at t=2; (d) diffusion of influence at t=3; 

(e) diffusion of influence at t=4  

t=0 t=1 

t=2 t=3 

  (a) (b) 

      (c)        (d) 

       (e) 

t=4 



   35 

5.2 Network Topological Metrics 
In the previous section we discussed the spreading process in detail, where we understood how 

influence can be diffused into a physician citation network.  

In this section, we design three topological metrics, namely degree centrality metric, clustering 

coefficient metric and closeness centrality metric. These metrics are based on topological properties of 

the node, mentioned in section 2.1, and are used in the spreading process, previously mentioned in 

section 5.1, where the influence diffused to a node is proportional to its topological property. The 

reason behind using the topological property of the node is to capture various properties like distance, 

spectra and connections of the node [44], which unravel information like importance of the nodes, 

structure of the physician citation network etc. In the context of this thesis, it is used to capture the 

strength of research citations between physicians, number of physicians a physician is connected to, the 

structure of  research citations, etc.  Hence we state our objective as:   

The objective behind designing these network topological metrics is to diffuse influence to the nodes 

in proportion to the topological property of the node.  

Each of the metrics are built upon an assumption that imitates the behaviour of a physician in his/her 

physician citation network.  

5.2.1 Degree Centrality Metric (S(d)) 
Degree centrality of a node,  𝑑𝑘 , as defined in section 2.1,  is the total number of connections a node 

has  but does not indicate the importance or strength of the connection. In order to account for the 

importance of a node we use a weighted degree centrality metric,  𝑤𝑑𝑘 , computed as the sum of all the 

strengths of the neighbouring nodes in the network. In a physician citation network the strength is the 

number of articles he/she has co-authored with the neighbouring node. Using this property of a 

network, we make an assumption as follows, 

Assumption1: Nodes with high weighted degree receive higher influence compared to the nodes with 

lower weighted degree.  

The two features of the weighted degree centrality from Assumption1 are, the strength of the links and 

the number of nodes that can be varied for a node. This can be captured by computing the weighted 

degree of the nodes w.r.t. its neighbouring nodes and is represented as: 

 

𝑆𝑘(𝑑) =  
𝑤𝑑𝑘

∑ 𝑤𝑑𝑟r ϵ R
 ∀  𝑘  𝑖𝑛  𝑖                                                                             (18) 

where, 

𝑆𝑘(𝑑), is the weighted degree centrality metric of a node 𝑛𝑘  

𝑤𝑑𝑘  is the weighted degree of the node 𝑛𝑘 

𝑤𝑑𝑟  is the weighted degree of the neighbouring nodes of a given node  𝑛𝑘 

𝑖 is the set of nodes in a given network  

𝑅 is the set of all one-hop neighbours  for every node 𝑛𝑘 



   36 

 

To generalize this topological measure we introduce a scaling parameter 𝛼, which regulates the relative 

impact of the number of citations between physicians. The choice of α can be made both theoretically 

and empirically, but in this thesis we make use of the empirical approach which is calculated by 

maximizing the correlation, mentioned in Eq. (27), with an outcome variable. By varying the scaling 

parameter 𝛼  we identify the optimal value [24, 25] . 

The generalized weighted degree centrality metric  is defined as 

Sk
′ (𝑑) =  

wdk
α

∑ wdr
α

{r}
 ∀  𝑘 𝑖𝑛 𝑖                                                                                    (19) 

It was found that  Sk
′ (𝑑)  is more sensitive for lower values of  𝛼 , i.e.  𝛼  < 1 , compared to higher values 

of 𝛼.  

5.2.2 Clustering Coefficient Metric(S(cc)) 
In section 2.3.4, we discussed that clustering coefficient of the node, measures the ability of a node to 

form clusters. Nodes with high clustering coefficient diffuse influence much faster amongst nodes than, 

the nodes with a low clustering coefficient [37]. It is also noted that, Peres et al. mentions diffusion of 

information within the clusters, is much faster than diffusion of influence in a linear arrangement [38]. 

Thus we make the assumption  

Assumption2 : A node with higher clustering coefficient receives higher influence compared to the 

nodes that have a lower clustering coefficient.  

Limitation of the clustering coefficient metric is that, it cannot distinguish between physicians with a 

higher number of citations and physicians with a lower number of citations. In order to account for this, 

several weighted clustering coefficient metrics have been introduced in literature [19, 42] and we adopt 

this weighted clustering coefficient in our thesis.  

The weighted clustering coefficient for 𝑛𝑘 is 

𝑊𝐶𝐶𝑘 = 
2 ∑(𝑤𝑑𝑘  𝑤𝑑𝑜 𝑤𝑑𝑚)

1/3

𝑤𝑑𝑘(𝑤𝑑𝑘 − 1)
                                                                (20) 

Where, 𝑛𝑘  , 𝑛𝑜 𝑎𝑛𝑑 𝑛𝑚  are the three inter-connected nodes and  𝑤𝑑𝑘,   𝑤𝑑𝑜, 𝑎𝑛𝑑  𝑤𝑑𝑚  are the 

respective weighted degrees of the nodes. The normalized weighted clustering coefficient of the 

neighbouring nodes is defined as  

𝑆𝑘(𝑐𝑐) =  
𝑊𝐶𝐶𝑘

∑ 𝑊𝐶𝐶𝑟r ϵ R
   ∀  𝑘 𝑖𝑛 𝑖                                                                           (21) 

where, 

𝑆𝑘(𝑐𝑐), is the normalized weighted clustering coefficient metric of 𝑛𝑘  

𝑊𝐶𝐶𝑘 is the weighted clustering coefficient of  𝑛𝑘 
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𝑊𝐶𝐶𝑟 is the weighted clustering coefficient of the neighbouring nodes of a given node 𝑛𝑘 

𝑖  is the set of nodes in a given network  

𝑅 is the set of all  one-hop neighbours for every node 𝑛𝑘 

 

Similar to the degree centrality metric, we generalize the weighted clustering coefficient by introducing 

a scaling parameter α, which regulates the relative impact of the number of citations between 

physicians. The generalized weighted clustering coefficient is defined as 

Sk
′ (𝑐𝑐) =  

WCCk
α

∑ WCCr
α

r ϵ R
        ∀   𝑘  𝑖𝑛  𝑖                                                                       (22) 

 

5.2.3 Closeness Centrality Metric(S(c)) 
Revisiting the definition of closeness centrality of a node from section 2.2.2, which measures how close 

the source node is with respect to any node in the network. To incorporate information on the number 

of citations we compute the metric as 

 

   𝐶𝑘 =
1

∑ 𝑑(𝑚,𝑘)𝑚∈𝐺
                                                                                            (23) 

 

Where, 𝑛𝑚 and 𝑛𝑘 are two nodes in the network G and 𝑑(𝑚, 𝑘) is the distance (number of citations) 

between the two nodes. From the closeness property of the node we make an assumption: 

 

Assumption3: Nodes that are closer to the source nodes receive more influence than the nodes that 

are farther away. 

Using the computed closeness metric  𝐶𝑘 , we compute the relative closeness of the node w.r.t the 

neighbouring nodes, since this property was not factored in while computing  𝐶𝑘. Hence the closeness 

centrality metric is mathematically represented as:  

 

𝑆𝑘(𝑐) =  
𝐶𝑘

∑ 𝐶𝑟r ϵ R
 ∀ 𝑘 𝑖𝑛 𝑖                                                                              (24) 

where, 

𝑆𝑐(𝑘), is the weighted closeness centrality metric of a node 𝑛𝑘  

𝐶𝑘 is the closeness centrality of the node 𝑛𝑘  

𝐶𝑟 is the closeness centrality of the neighbouring nodes of node 𝑛𝑘 

𝑖 is the set of nodes in a given network  

𝑅 is the set of all one-hop neighbours for every node 𝑛𝑘 

 

This metric is generalized by introducing a scaling parameter 𝛼, which regulates the relative impact of 

the number of collaborations between physicians.  



   38 

The generalized closeness coefficient metric is defined as 

Sk
′ (𝑐) =  

Ck
α

∑ Cr
α

r ϵ R
 ∀ 𝑘 𝑖𝑛 𝑖                                                                               (25) 

 

5.3 Reasons for choosing these three topological measures 
In section 5.2 we designed three topological metrics based on topological properties, mentioned in 

section 2.1. As these metrics are built upon different assumptions that, we wanted to understand the 

empirical relationship between these three topological metrics. Hence, we computed the correlation 

coefficient between these metrics and it is represented in Table 5.1.  It can be noted that, the 

correlations between the topological metrics strongly depend on the network under study [46]. If the 

correlation between any two topological measures is low then, they are mutually exclusive to one 

another.  From Table 5.1, it can be seen that the three topological metrics are mutually exclusive to one 

another. 

 

 

 

 

Table 5.1: Correlation coefficient between metrics 

5.4 Discussion 

In this chapter, we proposed a network spreading process that is used to diffuse influence. The 

spreading process is evaluated to answer RQ1. We also introduced the scaling parameter 𝜶 and the 

spreading parameter 𝜽 to assist in the estimation of how much influence is diffused to the neighbouring 

nodes in the spreading process. We also propose that, the nodes diffuse influence in proportion to their 

topological property, for which, we proposed three generalized network topological metrics. We also 

proved that the topological measures are mutually exclusive to one another. 

 

  

 
Degree Clustering Closeness 

Degree 1.0 
  Clustering -0.0130 1.0 

 Closeness 0.0029 0.2770 1.0 
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6. RESULTS 

The purpose of this chapter is to evaluate the modelling of influence in the spreading process to 

measure the relationship between nodal influence and the ROI of the healthcare company. Revisiting 

section 1.2, we proposed two relationships to measure the link between payments made by the 

healthcare company, the ROI of the healthcare company and the research profile of the physician. 

Regression technique is used to explain the direct relationship between payments, ROI and research 

profile of the physicians. Spreading process is proposed to explain the indirect relationship between 

payments and ROI in a physician citation network.  

We evaluate the modelling of influence from the spreading process by estimating the relationship 

between the nodal influence resulted from the spreading process and ROI of the healthcare company. 

For which, we use three different ways to evaluate the spreading process. 

 We use Pearson's Correlation Coefficient to estimate the linear relationship between nodal 

influence and ROI [49]. 

 We also use of Spearman's Rank Correlation to estimate the non linear relationship between 

ordinal values of nodal influence and ROI. 

 Visualize the distributions of payments, ROI and nodal influence, to compare and understand the 

relation between their distributions. 

 

The organization of this chapter is as follows: section 6.1 discusses the evaluation process where we use 

three ways to evaluate influence diffusion. This is followed by different experiments to evaluate the 

network spreading process in section 6.2. Section 6.3 discusses the results obtained from the 

experiments that were explained in section 6.2. Finally, section 6.4 discusses the time taken to influence 

physicians in a physician citation network. This chapter terminates, with a comparative study between 

the two relationships, i.e., direct and indirect relationship, mentioned in section 1.2 of this thesis to 

conclude best relationship between payments made by the healthcare company and the ROI to the 

healthcare company.         

6.1 Evaluation Process 

In this section, we elaborate on the evaluation process and the three different ways in which we 

evaluate the modelling of influence diffusion by the spreading process. Going back to section 5.1, we see 

that after the termination of the spreading process, every node in the network has a payment attribute 

(𝑃𝑘), which is greater than zero. Since, the ROI for the healthcare company is at the hospital level we 

group all the physicians belonging to the same hospital and aggregate their corresponding  𝑃𝑘 values. 

The set of physicians that belong to the same hospital is stored as an attribute of the hospital node, it is 

represented as  𝑈𝑏 for every hospital node  ℎ𝑏 . For every hospital node  ℎ𝑏, we also have another 

attribute, called influence at hospital level, represented as  𝐼𝑏 , which is the sum of all the payments 
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received by the physicians in the list  𝑈𝑏. These attributes of the network have been explained in 

detailed in section 3.7 of this thesis. Now, we compute the influence at a hospital level, from Eq. (26).  

𝐼𝑏 = ∑ 𝑃𝑢
𝑢 𝜖 𝑈

       ∀  ℎ𝑏 ∈ 𝐻                                                                           (26) 

where, 𝐼𝑏  represents  the  total  amount of investment  made by the healthcare company on a given 

hospital  ℎ𝑏 .  

At this stage, we have influence 𝐼𝑏 for every hospital ℎ𝑏 and we have the 𝑅𝑂𝐼𝑏 for every hospital ℎ𝑏. 

Using this data we visualize the distributions, see the relation using scatter plots, estimate Pearson's 

correlation coefficient and estimate Spearman's correlation coefficient, which is discussed in detail as 

follows.   

 

 Estimate the relationship between Influence and ROI at a hospital level, using Pearson 

correlation coefficient, r(I,ROI). The Pearson correlation co-efficient, r(I,ROI), is a measure of the 

strength and direction of the linear relationship between influence and ROI [46, 47, 48]. The 

range of r(I,ROI) if from +1 to -1 and the sign of r(I,ROI) indicates the direction of the correlation 

between influence and ROI. The closer the absolute value of r(I,ROI) to 1 the strong the 

correlation between the influence and ROI. We represent r(I,ROI) mathematically as,  

 

𝑟(𝐼, 𝑅𝑂𝐼) =  
∑ (𝐼𝑏 − 𝐼)̅(𝑅𝑂𝐼𝑏 − 𝑅𝑂𝐼̅̅ ̅̅ ̅)𝑏

√∑(𝐼𝑏 − 𝐼)̅
2√∑(𝑅𝑂𝐼𝑏 − 𝑅𝑂𝐼̅̅ ̅̅ ̅)2

                                             (27) 

 Where 𝐼  ̅ and 𝑅𝑂𝐼̅̅ ̅̅ ̅  are the mean values of the influence and 𝑅𝑂𝐼 and 𝐼 is the influence at the 

 hospital level. 

 Estimate the relationship between Influence and ROI at a hospital level, using Spearman Rank 

Correlation  𝜌(𝐼, 𝑅𝑂𝐼)  ) [10]4. This is a non parametric measure of non-linear dependency of 

two variables and is more suitable for ordinal or interval data. However we converted the 

absolute values into ranks and computed the non parametric measure using the following 

measure. We represent 𝜌(𝐼, 𝑅𝑂𝐼) mathematically as, 

 

𝜌(𝐼, 𝑅𝑂𝐼) =  
∑ (𝑅(𝐼𝑏) − 𝑅(𝐼)̅̅ ̅̅ ̅̅  )(𝑅(𝑅𝑂𝐼𝑏) − 𝑅(𝑅𝑂𝐼̅̅ ̅̅ ̅̅ ̅̅ ̅))𝑏

√∑(𝑅(𝐼𝑏) − 𝑅(𝐼̅̅̅̅̅))
2
√∑(𝑅(𝑅𝑂𝐼𝑏) − 𝑅(𝑅𝑂𝐼)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

2
                                          (28) 

 

Where  𝑅(𝐼𝑏)  and  𝑅(𝑅𝑂𝐼𝑏) are the ranks of Influence and ROI respectively and 𝑅(𝐼)̅̅ ̅̅ ̅̅  and  

𝑅(𝑅𝑂𝐼)̅̅ ̅̅ ̅̅ ̅̅ ̅̅   are the mean ranks of Influence and ROI respectively. 

 

                                                           
4 Kendall Concordance measure is another non parametric measure used to understand the association between 
any two variables, which again depends on the ranks. This measure has more similarity with spearman rank 
correlation coefficient and hence it was not considered here.   
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 Visually observe the distribution of Influence for different values of α and θ. Compare it to the 

distributions of ROI and payments. We also visually understand the relation between influence 

and ROI by the use of scatter plots. While visualizing the data, we also make sure that the data 

corresponding to payments, ROI, Influence, etc. are protected. We ensure this by applying one 

of the most prominent ways of encrypting data in visuals, i.e., by changing the scale of the axis 

of the graphs to ensure maximum protection of sensitive data. The act of protecting sensitive 

information comes from Art. 4, 9, 13, 14, 15 and 52 of the GDPR rulebook [50].  

 

   

6.2 Experiments Conducted 

In this section, we demonstrate the different experiments conducted to estimate the Pearson's 

correlation coefficient and Spearman's rank correlation, defined in section 6.1. The experiments are 

listed below.  

 To compute the Pearson's correlation coefficient and Spearman's rank correlation we perform 

experiments by using the below steps. 

1. As explained in section 5.1, we vary the spreading parameter  𝜃  between 0 (exclusive) 

and 1 (exclusive) with a step size of 0.1. It can be inferred that when  𝜃 = 1, all the 

payments remain with the source node and the remaining influence, i.e. (1 - 𝜃 )  = 0 

which indicates no diffusion takes place.  

2. We vary the scaling parameter  𝛼, which was introduced in section 5.2,  between 0 

(exclusive) and 2 in an interval of 0.1. It can be inferred that when 𝛼 = 0, any 

topological metric will be 1, since  𝑥0 = 1.  

3. For the three topological metrics, i.e, degree centrality metric, closeness centrality 

metric and clustering coefficient metric,  we vary the spreading and scaling parameters, 

i.e,  𝜃 and 𝛼, which generate multiple experiments/trails. We then compare these 

experiments with one another to obtain the optimum topological metric, spreading 

parameter (𝜃) and scaling parameter (𝛼). The values of 𝜃 and 𝛼 are obtained when the 

correlation between investment and ROI is maximum, i.e, when the relationship 

between investment and ROI is the strongest. The maximum correlation indicates the 

maximum explainablity of payments w.r.t ROI, which is the main aim of this thesis, 

which can be inferred from section 1.2.  

   

To illustrate an example of a single experiment let us consider  𝛼  as  0.5 and  𝜃  as  0.7, i.e. 

70% of the invested amount is kept within the node and the remaining 30% is diffused to 

the nodes in the network. Let us consider the degree centrality metric as a topological 

property in this experiment. These parameters are used into the spreading process and the 

resulting correlation between  𝐼 and 𝑅𝑂𝐼 was calculated to be 0.43, which indicates that the 

strength between ROI and I is 0.43, measured on a scale of -1 to 1. 
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 To visualize the distribution of Influence for different values of α and θ, we keep α constant and 

vary θ and vice versa. To visually understand the relationship between Influence and ROI we 

plot a scatter plot .  

6.3 Discussion of results from the experiments conducted  

In this section we discuss all the results of the experiments obtained from the experiments performed 

from section 6.2. We first jointly explain the results obtained for Pearson's correlation coefficient and  

Spearman's rank correlation. Then we move on to the discussion on the distributions of Influence and 

ROI and the relation between Influence and ROI using scatter plots. 

First, the behaviour of the three topological metrics are captured in Figure 6.1a, 6.1b and 6.1c 

respectively. The X and Z axis represent varying  𝛼  and  𝜃  values and the Y axis corresponds to the 

Pearson's correlation coefficient computed for a combination of values on the X and Z axis. Figure 6.1a, 

demonstrates the  spreading process using the degree centrality metric,  𝑆′(𝑑)  where, it can be 

observed that when  𝛼  takes the value  0.5 and  𝜃  takes the value 0.7, a maximum correlation was 

attained  at  0.432. 

Similarly, Figure 6.1b demonstrates the spreading process using clustering coefficient metric as the 

topological property,  𝑆′(𝑐𝑐) , where it is observed that when  𝛼  takes the value 0.5 and  𝜃 takes the 

value 0.7, a maximum correlation attained was 0.482, which is slightly higher than the correlation  from  

Figure 6.1a. 

Figure 6.1c demonstrates the spreading process using closeness centrality metric as the topological 

property,  𝑆′(𝑐)  where two peaks can be noted when 𝛼 = 0.5 𝑎𝑛𝑑 𝛼 = 0.7  when the parameter  𝜃 

takes the value 0.7. These two peaks have their correlation at 0.55 and 0.38 respectively. However, the 

second peak has a lower correlation compared to the other two topological properties (in Figure 6.1a 

and 6.1b) due to which we do not consider the result of the second peak further.  

Overall, from Figures 6.1a, 6.1b and 6.1c we can conclude that all the experiments conducted attain a 

maximum correlation when the spreading parameter  𝜃  is 0.7, i.e., when the nodes in the network keep 

majority (70%) of the investment with the source nodes and diffuses the remaining 30% of the 

investment to the remaining nodes in the network to attain a maximum explanation of ROI through 

investments made. 

From figures 6.1a, 6.1b and 6.1c we can see that all the three topological metrics follow a pattern, 

where they all peak with a maximum correlation when the scaling parameter 𝛼 is at 0.5. This means that 

at  𝛼 = 0.5, a maximum explainablity of relationship strength is attained between payments and ROI. 

We can also interpret the physical meaning of α =0.5 as alpha increases in a concave parabolic function 

when  𝑃𝑘 increases linearly. 

From Table 5.1, we see that the three topological metrics are not correlated with each other, i.e. we can 

say that they are independent of each other, exhibiting different properties of the network. But from 

Figure 6.1a, 6.1b and 6.1c we can see that the closeness centrality metric attains the highest Pearson's 
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correlation coefficient compared to clustering coefficient metric and degree centrality metric. On the 

other hand, it can also be inferred that even though degree centrality metric has a relatively lower 

strength of relationship between payments and ROI, it cannot be ignored, since it represents important 

properties like strength of links and number of links. Overall, all the three metrics show a similar pattern 

in correlation when we vary  𝛼  and  𝜃 parameters, which implies that all the three network topological 

metrics behave the same with a slight variation in correlation.  

   

Figure 6.1a: Pearson's correlation coefficient  for varying 𝛼 𝑎𝑛𝑑 𝜃 when the topological metric used is 

degree centrality metric 

 

   

Figure 6.1b: Pearson's correlation coefficient  for varying 𝛼 𝑎𝑛𝑑 𝜃 when clustering coefficient metric is 

used. 
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Figure 6.1c: Pearson's correlation coefficient for varying 𝛼 𝑎𝑛𝑑 𝜃 when closeness centrality  metric is 

used 

 

The second correlation measure used is the Spearman's rank correlation. The behaviour of the three 

topological metrics are captured in Figure 6.2a, 6.2b and 6.2c respectively. The X and Z axis represent 

varying  𝛼  and  𝜃  values and the Y axis corresponds to Spearman's rank correlation. It can be seen in 

Figure 6.2, that there is a similar pattern of Spearman's correlation coefficient, when α and θ were 

varied, compared to that of Pearson's correlation coefficient, in Figure 6.1. It can be noted that the 

parameters α and θ were also found to have highest Spearman's rank correlation at α=0.5 and θ=0.7. 

The highest Spearman's rank correlation was also observed with the closeness centrality metric. We 

conclude that the overall magnitude of correlation was marginally lower than of Pearson's correlation 

coefficient. Hence, we will proceed with Pearson's correlation coefficient for further analysis.    
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Figure 6.2 (a): Spearman's rank correlation for varying 𝛼 𝑎𝑛𝑑 𝜃 when the topological metric used is 

degree centrality metric 

 

   

Figure 6.2 (b): Spearman's rank correlation for varying 𝛼 𝑎𝑛𝑑 𝜃 when the topological metric used is 

clustering coefficient metic 
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Figure 6.2 (c): Spearman's rank correlation for varying 𝛼 𝑎𝑛𝑑 𝜃 when the topological metric used is 

closeness centrality metric 

 

From the Spearman's rank correlation and Pearson's correlation coefficient we concluded that 

maximum correlation was attained using closeness centrality metric and when α=0.5, θ=0.7. Hence we 

visualise influence using these parameters. Figure 6.3a and 6.3b shows the scatter plot between 

payments  vs. ROI and Influence (closeness centrality metric, α=0.5, θ=0.7) vs. ROI. In Figure 6.3a we see 

no linear relationship between payments and ROI whereas in Figure 6.3b we see a comparatively 

stronger linear relationship between Influence and ROI.  

To understand the relation in scatter plot better, we look into the distributions of each of the variables 

used in Figure 6.3, i.e., influence, ROI and Payments in Figure 6.4. Figure 6.4a shows, the distribution of 

influence for different values of θ, given the value of α=0.5. It can be seen that there is a lower variation 

in distribution of  θ=0.5 compared to θ=0.7 or θ=0.8. This indicates that when θ=0.5, most nodes have a 

smaller range of influence.  Similarly, Figure 6.4b shows, the distribution of influence for different values 

of α, given the value of  θ=0.7, where the variation in influence is smaller for lower values of α. This 

indicates that for lower values of α, most nodes have a smaller influence range.  Overall, all the 

distributions look similar, implying that payments, ROI and Influence follow a very similar, positively 

skewed distribution.   
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                                               (a)                                                                                         (b) 

Figure 6.3 (a) Scatter plot between payments and ROI; (b) Scatter plot between influence after spreading 
process (closeness centrality metric, α=0.5, θ=0.7) 

      

         (a)                               (b)

      

        (c)       (d) 
Figure 6.4 (a) Distribution of influence for different θ values when α=0.5, closeness centrality metric; (b) 
Distribution of influence for different α values when θ=0.7, Closeness centrality metric; (c) Distribution of 
Payments; (d) Distribution of ROI 
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6.4 Time required to influence the physician citation network 

The number of nodes influenced at time  𝑡  is represented in Figure 6.5, where the x-axis represents the 

time 𝑡 of the spreading process and y-axis represents the number of nodes influenced during the 

spreading process. Figure 6.5 (a) represents the time taken by the spreading process for three  

topological metrics, as explained in section 5.2, when 𝛼 = 0.5  𝑎𝑛𝑑  𝜃 = 0.7. On the other hand, figure 

6.5 (b) represents the time taken by the spreading process for the same three topological metrics with 

different parameters, i.e. 𝛼 = 2  and  𝜃 = 0.5. The reason behind the choice of parameters comes from 

the maximum Pearson's correlation coefficient and minimum Pearson's correlation coefficient obtained 

from the experiments conducted in section 6.3. Finally, Figure 6.5 (c) represents the average behaviour 

of nodes influenced across a time 𝑡, by varying  𝛼  and  𝜃 . The average performance is computed by 

averaging all the values of  𝛼  and  𝜃  for every timestamp  𝑡, across the three topological properties. The 

reason behind this averaging is to represent the adequate behaviour of the three topological metrics. 

It can be seen from Figure 6.5 (a) that more number of nodes are influenced for the closeness centrality 

metric compared to the other two topological metrics, by  𝑡 = 4. This indicates that with closeness 

centrality metric, the spreading process diffuses influence to more number of nodes, which can be 

interpreted as, information spread within the physician citation network is faster with closeness 

centrality metric than the degree centrality metric and clustering coefficient metric.  

From Figure 6.5 (a) and Figure 6.5 (b) we can observe that the spreading process converges at t=8 and 

t=16 respectively. It can be inferred that the parameter values, i.e. 𝛼 𝑎𝑛𝑑 𝜃, not only contribute to 

estimating the strength of the relationship between the payments and ROI, but also contribute to the 

performance of the spreading process. 

Overall, from Figure 6.5, we conclude that closeness centrality metric influences more nodes in a short 

interval of time compared to degree centrality metric which takes more time to influence all the nodes. 

To understand why the closeness centrality metric performs better than the other two metrics, we look 

into the distributions of the three topological metrics in Figure 6.5. From section 5.2, it can be recalled 

that all these metrics are normalized and their values lie between 0 and 1. If they are closer to 1, it 

means that the topological property has a higher centrality or clustering tendency, i.e., higher potential 

for information to spread. From  Figure 6.6 (c), the distribution of closeness centrality metric shows that 

there are more number of nodes with a higher closeness centrality value compared to the distribution of 

the degree centrality metric, from Figure 6.6 (a). The higher values of closeness centrality metric provide 

an explanation of why the closeness centrality metric diffuses influence to more number of nodes in a 

shorter time interval. 
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   (a)             (b) 

 

(c) 

Figure 6.5: Number of nodes influenced over time; (a) number of nodes influenced with the best 
performing parameters; (b) number of nodes influenced with the worst performing parameters; (c) 
number of nodes influenced based on the average performance over parameters.  
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   (a)             (b) 

 

(c) 

Figure 6.6: Distributions of topological properties before the spreading process; (a) Distribution of degree 
centrality metric; (b) Distribution of clustering coefficient metric; (c) Distribution of closeness centrality 
metric.  

6.5 Comparative study between Direct and Indirect 

relationships 

In this thesis, two types of relations, direct and indirect, were solved as mentioned in section 1.2. The 

direct relationship between ROI, payments and the research profile of a physician is addressed through 

a regression technique. The metric used to measure this relationship is  𝑅2 (coefficient of variation). The 

 𝑅2  in the regression technique is used to find the relationship between payments and ROI , which is 

explained in detail in section 4.5, and was found to be 0.0004. To make the direct relation  comparable 

with the indirect relation, we compute 𝑟 (Pearson's correlation coefficient), which is the square root of  

𝑅2. Hence,  𝑟 =  0.02. 

To address the indirect relationship, we designed a spreading process to diffuse influence through a 

physician citation network/physician citation network. The purpose of using the spreading process is to 

capture the complex indirect relationship which regression technique failed to capture. For which, 

multiple experiments were performed by varying the topological properties and parameters to estimate 
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the relationship between payments and ROI in a physician citation network. The metric used to capture 

this relationship is Pearson's correlation coefficient, which is also represented as  𝑟  was estimated to be 

0.55 for the spreading process using the parameters = 0.5  𝑎𝑛𝑑  𝜃 = 0.7 , as seen in Figure 6.1. 

To compare direct relationship with indirect relationship between payments made to the physicians and 

ROI earned by the healthcare company, we use the evaluation metric, 𝑟, correlation coefficient. The 

difference in relationship strength can also be seen in Figure 6.3 (a) and Figure 6.3 (b), between 

payments and ROI for the direct and indirect relationships respectively. From the above two paragraphs, 

we conclude that the indirect relationship could explain the relationship between payments and ROI 

96.36% more than the direct relationship. Hence, it is important for the healthcare company to promote 

more collaborations amongst physicians in the physician citation network. We also state that the 

spreading process designed captured the complex indirect relationship between payments and ROI.  

6.6 Discussion 

In this chapter we discussed about the experiments that we conducted to measure the indirect 

relationship between investment and the return on investment from the healthcare company, in three 

different ways, thereby answering the RQ1 using a network spreading process. We also made important 

conclusions from the experiments conducted in section 6.3, where we found the optimal topological 

property is closeness centrality metric  with optimal parameters  𝛼 = 0.5  𝑎𝑛𝑑  𝜃 = 0.7  for the 

physician citation network used. These optimal parameters can be used on any physician citation 

network in the future, since the network is a scale free network. The parameter 𝜃 = 0.7, indicates that 

when a physician keeps 70% of his/her payment with himself/herself and uses the remaining 30% of the 

payment to influence his/her neighbours we see maximum influence. The parameter 𝛼 = 0.5, indicates 

a scaling factor of the topological property. It can be inferred that the influence diffused follows a 

concave parabola when the payment is linear.    

Overall we can state that we saw a significant 96.36% increase in the explainablity of the relationship 

between payments and ROI, which confirms that our influence diffusion model using a spreading 

process is a very good model. We concluded the chapter by performing a comparative study between 

the direct and indirect relationships used to solve the RQ1 of this thesis.   

 

 

 

 

  



   52 

7. PAYMENT REDISTRIBUTION  
In this chapter we propose two redistribution methods, to understand if there is a change in the 

distribution of nodal influence before and after the redistribution of payments amongst the physicians 

in a physician citation network. The aim of redistribution is to explore if there are other ways of 

investments made to physicians. We also aim to understand how different are these distributions from 

the distribution of the original payments made to physicians. By understanding the properties of 

payments and influence we propose different ways of investments to the healthcare company ABC.   

From Chapter 6, we know that maximum correlation between nodal influence and ROI was achieved 

when α=0.5, θ=0.7 and using closeness centrality metric. In this chapter, we use the same parameters, 

by making an assumption that the results obtained are true. Using this assumption, we propose two 

redistribution methods and understand their property of return, to answer RQ3.    

 

RQ3: What is the effect of redistribution methods on the relationship between investment and its 

return? 

  

Two redistribution methods are proposed, first method, we redistribute payments amongst physicians 

who have already received an investment from the healthcare company, based on the closeness 

centrality metric. In the second method, we redistribute payments to nodes who have or have not 

received payments from the healthcare company in the past, based on their closeness centrality metric.  

The redistributed payments are then used as Source nodes to diffuse influence using the spreading 

process, mentioned in section 5.1. At the end of the spreading process, every node in the network 

contains some amount of nodal influence. The variation in distribution of the nodal influence after 

redistribution is compared with the variation in the original investment distribution. We also compute 

the Pearson correlation coefficient between the nodal influence before redistribution and the nodal 

influence after redistribution of payments, when the influence is generated from the spreading process 

with parameters α=0.5, θ=0.7 and using closeness centrality metric. We drop out the Spearman's rank 

correlation, since we concluded that Pearson's correlation coefficient and Spearman's rank correlation 

follow the exact same pattern, but produces marginally lower scores compared to Pearson, which is 

explained in Chapter 6.  

This chapter is organized as follows, in section 7.1 we discuss the method of redistribution of the 

payments and how it is useful for the healthcare company. This is followed by section 7.2 which 

illustrates the design, analysis and outcomes of the first method and section 7.3 demonstrates the 

design, analysis and outcomes of the second method. In section 7.4, we compare the two methods and 

provide a recommendation to the healthcare company.  
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7.1 Methods to redistribute payments 

We elucidate the redistribution of investments in a physician citation network as a method of assigning  

payments to different set of physicians in the network, based on their closeness centrality metric. For 

which, we propose two different methods to illustrate the possibilities of redistribution of investment. 

 Redistribution of payments amongst the Source nodes in the network. 

In this redistribution method, we rank all the Source nodes based on their closeness centrality 

metric. The payment attributes of these Source nodes are updated with the highest payments 

made by the healthcare company, based on their ranks, i.e., the source node with the highest 

rank receives the highest payment.   

 

 Redistribution of payments amongst all the nodes in a physician citation network. 

In this method, we rank all the nodes in the physician citation network, i.e., Source and the 

remaining nodes in the network, based on their closeness centrality metric. The payments made 

by the healthcare company are also ranked. In this redistribution method, the highest payments 

are assigned to the nodes that have the highest topological property. This implies that only 3620 

nodes in the network will receive payments since the healthcare company has only made 3620 

payments in the past, and we can only redistribute the already existing payments.  

 

These two methods are discussed and analyzed in the following sections. 

7.2 Redistribution of payments amongst the source nodes 

As mentioned in section 7.1, the payments are redistributed amongst the source nodes based on their 

closeness centrality metric, which is mentioned in section 5.2.3. The purpose of this redistribution is to 

understand the properties of nodal influence before and after the redistribution of investments, by 

analyzing their respective distributions. To address this purpose, we perform the redistribution of 

payments amongst source nodes and evaluate the redistribution by understanding the relationship 

between payments before and after redistribution, influence before and after redistribution, ROI and 

influence after redistribution. These relationships can be understood with the help of scatter plots, 

distributions and Pearson correlation coefficient. The redistribution method is performed in the 

following steps: 

 The source nodes are ranked based on their closeness centrality metric, since the healthcare 

company ABC wants a recommendation on the best performing topological property. 

 Applying the redistribution method, the payment attribute of the source nodes with the highest 

rank are reinitialized with the highest payments made by the healthcare company. 

 We initiate the spreading process with reinitialized payment attributes and with the best 

performing metric, i.e., closeness centrality metric and the best performing parameters  𝛼 = 0.5  

and  𝜃 = 0.7, as mentioned  in  section 6.3.  
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 After the completion of the spreading process, as an evaluation step, we attempt to understand 

three relationships using scatter plots, distributions and Pearson correlation coefficient as 

discussed below. 

1. We find the relationship between original payments made to physicians and the 

payments after redistribution and before the spreading process is completed. Figure 

7.1a shows the scatter plot between original payments and payments after 

redistribution, from which we see a strong relationship between the two variables. 

Figure 7.1b shows the distribution of payments which is a positively skewed distribution 

with a long tail and is heterogeneous in nature. To understand this relationship, we 

cannot use Pearson correlation coefficient because original payments and payments 

after redistribution are not two independent variables.    

2. After the spreading process is completed, we find the relationship between nodal 

influence before the redistribution of payments made to physicians and the nodal 

influence generated after the redistribution, with the optimum parameters, as 

mentioned in the third bullet point. Figure 7.1c shows the distribution of nodal influence 

before and after redistribution, and when the spreading process is completed. We infer 

that both the distributions are heterogeneous in nature, and are positively skewed with 

a long tail. Figure 7.1d shows a scatter plot where we see a strong relationship between 

the two variables only in the third quadrant. Similar to the previous evaluation, we do 

not use Pearson correlation coefficient because influence is a single variable. 

3. We find the relationship between ROI and influence obtained after redistribution, after 

the spreading process. To evaluate this proposal we would have to put the proposal into 

action to measure the ROI for the following year, which is not possible. Hence, we make 

an assumption that, the healthcare company ABC received the same ROI the following 

year. Given the assumption is true, we compute the aggregated influence at the hospital 

level from Eq.(26) since ROI is at the hospital level. We then compute the Pearson 

correlation coefficient to estimate the relationship between ROI and influence after 

redistribution, which was found to be 0.587. We observe that, this correlation is slightly 

higher than the correlation obtained before redistribution of influence using the same 

spreading parameters. Figure 7.1e shows the scatter plot between ROI and aggregated 

influence after redistribution, from which we see strong correlation only in the third 

quadrant and higher values of return are independent of influence.           
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             (a)      (b) 

 

   (c)       (d) 

    

             (e) 

Figure 7.1: (a) Distribution of original payments; (b) Scatter plot between original payments and 
payments after redistribution; (c) Distribution of influence before and after the redistribution of 
influence; (d) Scatter plot between influence before and after redistribution; (e)Scatter plot between 
aggregated influence after the redistribution strategy and ROI; 
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To investigate the impact of the proposed method further, we divided the payments into 3 sections as 

shown in the below table. 

 

Number of physicians receiving 
higher than their original payments 

1748 (57%) 

Number  of physicians receiving 
lower than their original payments 

965 (32%) 

Number of physicians receiving the 
same payments as before 

347 (11%) 

Table 7.1 Distribution of physicians receiving higher or lower payments 

 

As we can see from the above table that more than 57% of physicians receive higher than their original 

payments and 32% of physicians receive lower than their original payments. It is indeed uncertain, by 

how much percentage higher or lower the redistributed payments are, compared to the original 

payments. This deviation in payments is represented in percentages and is demonstrated in Figure 7.2.  

In Figure 7.2, the blue line represents payments that are higher than the original payments. It can be 

noted that more than 1400 physicians of the 1748 physicians receive an increment of up to 10% of the 

original payments. Similarly, the red line in Figure 7.2 represents payments that are lower than the 

original payments. It can be noted that over 700 physicians of the 965 physicians receive a decrement of 

up to 10% of the original payments. 

 

  

Figure 7.2: Percentage increase or decrease in the investments made to physicians using the 

redistribution method 
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It can also be noted that the  𝑥% increase is w.r.t to the payments and from Table 3.1, we can take note 

that there is a wide variation in payments.  Hence it is irrational to recommend the healthcare company 

to increase payments to all physicians by  𝑥%. So we divide the payments along the median set with a 

percentage threshold of 10%, which is obtained from a business knowledge/input.  

Table 7.2 represents two contingency tables, where the table with variables displayed in blue represent 

payments that correspond to the blue line in Figure 7.2 and the table with variables displayed in red 

represent payments that correspond to the red line in Figure 7.2. 

 

 Below 10% Above 10% 

Investment below median 1096 267 

Investment above median  320 65 

 Below  10% Above 10% 

Investment below median  567 73 

Investment above median 147 78 

Table 7.2 Contingency tables for higher and lower payments 

 

It is observed from Table 7.2 that majority of the increased and decreased payments lie below the 

median, which indeed confirms the low amount of increments or decrements in the payments required 

to improve the relationship between ROI and recommended payments made to physicians.    

7.3 Redistribution of payments amongst all nodes  

As mentioned in section 7.1, the payments are redistributed amongst all the nodes in the physician 

citation network, based on its closeness centrality metric, which is mentioned in section 5.2.3. The 

purpose of this redistribution is to understand the properties of nodal influence before and after the 

redistribution of investments, by analyzing their respective distributions. To address this purpose, we 

perform the redistribution of payments amongst all nodes and evaluate the redistribution by 

understanding the relationship between payments before and after redistribution, influence before and 

after redistribution, ROI and influence after redistribution. These relationships can be understood with 

the help of scatter plots, distributions and Pearson Correlation Coefficient. The redistribution method is 

performed in the following steps: 

 All the nodes are ranked based on their closeness centrality metric, since the healthcare 

company ABC wants a recommendation on the best performing topological property. 

 Applying the redistribution method, the payment attributes, of only the nodes with the highest 

ranks are reinitialized with the highest payments made by the healthcare company. We initiate 

the spreading process with the reinitialized payment attributes and using the best performing 

metric, i.e. closeness centrality metric and the best performing parameters  𝛼 = 0.5  and  𝜃 =

0.7, as mentioned  in  section 6.3. This implies that only 3620 nodes in the network will receive 
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payments since the healthcare company only made 3620 payments in the past, and we can only 

redistribute the already existing payments. 

 After the completion of the spreading process, as an evaluation step, we attempt to understand 

three relationships using scatter plots, distributions and Pearson correlation coefficient as 

discussed below. 

1. We find the relationship between original payments made to physicians and the 

payments after redistribution and before the spreading process. Figure 7.3a shows 

the scatter plot between original payments and payments after redistribution, from 

which we see a strong relationship between the two variables. Figure 7.3b shows the 

distribution of payments which is a positively skewed distribution with a long tail. 

The variation in distribution shows the heterogeneous nature of payments. To 

understand this relationship, we cannot use Pearson correlation coefficient because 

the original payments and payments after redistribution are not two independent 

variables.    

2. After the spreading process is completed, we find the relationship between nodal 

influence before the redistribution of payments made to physicians and the nodal 

influence generated after the redistribution, with the optimum parameters, as 

mentioned in the second bullet point. Figure 7.3c shows the distribution of nodal 

influence before and after redistribution, when the spreading process is completed. 

We infer that both the distributions are heterogeneous in nature, and are positively 

skewed with a long tail. Figure 7.3d shows a scatter plot where we see a strong 

relationship between the two variables only in the third quadrant. Similar to the 

previous evaluation, we do not use Pearson correlation coefficient because influence 

is a single variable. 

3. We find the relationship between ROI and influence obtained after redistribution, 

when the spreading process is completed. To evaluate this proposal we would have 

to put the proposal into action to measure the ROI for the following year, which is 

not possible. Hence, we make an assumption that, the healthcare company ABC 

receives the same ROI the following year. Given the assumption is true, we compute 

the aggregated influence at the hospital level from Eq.(26) since ROI is at the 

hospital level. We then compute the Pearson correlation coefficient to estimate the 

relationship between ROI and influence after redistribution, which was found to be 

0.679. We observe that, this correlation is slightly higher than the correlation 

obtained before redistribution of influence using the same spreading parameters. 

Figure 7.3e shows the scatter plot between ROI and aggregated influence after 

redistribution, from which we see strong correlation only in the third quadrant and 

higher values of return are independent of influence.           
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                   (a)                                          (b) 

  
    (c)      (d) 

    
              (e) 

Figure 7.3: (a) Distribution of original payments; (b) Scatter plot between original payments and 
payments after redistribution; (c) Distribution of influence before and after the redistribution of 
influence; (d) Scatter plot between influence before and after redistribution; (e) Scatter plot between 
aggregated influence after the redistribution strategy and ROI; 
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To investigate the impact of the proposed method, we divided the payments into three sections as 

shown in Table 7.3.  

Number of physicians receiving 
higher than their original 
payments 

 
1882(61.5%) 

 

Number  of physicians receiving 
lower than their original 
payments 

869(28.4%) 

Number of physicians receiving 
the same payments as before 

309(10%) 

Table 7.3 Distribution of physicians receiving higher or lower payments 

As we can see from the above table that more than 61% of physicians receive higher than their original 

payments and 28% of physicians receive lower than their original payments. It is indeed uncertain by 

how much percentage higher or lower the redistributed investments are compared to the original 

investments. This deviation in payments is represented in percentages and is demonstrated in Figure 

7.3.  

In Figure 7.3, the blue line represents payments that are higher than the original payments. It can be 

noted that more than 1500 physicians of the 1882 physicians receive an increment of up to 10% of the 

original payments. Similarly, the red line in Figure 7.3, represents payments that are lower than the 

original payments. It can be noted that over 660 physicians of the 869 physicians receive a decrement of 

up to 10% of the original payments. 

Another interesting insight is that 294 physicians who received investments due to this redistribution 

method haven't received any payments by the healthcare company ABC before. It can be recommended 

that these physicians can be approached for future collaborations.  

 

Figure 7.4: Percentage increase or decrease in the investments made to physicians using second method 
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Similar to the reason mentioned in section 7.2, we divided the investments along its median amount and 

percentage threshold by 10% from business knowledge.  

Table 7.4 represents two contingency tables, where the table with variables displayed in blue represent 

payments that correspond to the blue line in Figure 7.3 and the table with variables displayed in red 

represent payments that correspond to the red line in Figure 7.3. 

 

 Below 10% Above 10% 

Investment below median 1168 312 

Investment above median  375 27 

 Below  10% Above 10% 

Investment below median  428 232 

Investment above median 177 32 

Table 7.4 Contingency table for higher and lower payments 

It is observed from the above table that majority of increased and decreased payments lie below the 

median, which indeed confirms the low amount of increments or decrements in the payments required 

to improve the relationship between ROI and recommended payments made to physicians.    

7.4 Comparison of the two methods 

From section 7.2 and 7.3 we summarize that, the two proposed methods have a heterogeneous 

distribution of payments, ROI and influences generated by the two methods before and after the 

redistributions.  

In section 7.2 we suggest the first redistribution method, where we propose investments made to 

physicians which are different from the original investments done in the past. On the other hand in 

section 7.3 we suggest another method where we not only propose investments to physicians which are 

different from the original investments but also recommend physicians,  on  whom  future  investments  

can  be  made. 

Figure 7.5 (a) shows a scatter plot, from which we see a difference in influence scatter in the two 

different redistribution methods. We infer that the two relationships differ from each other in influence 

diffusion. Figure 7.5 (b) shows the distribution of nodal influence of the two redistribution methods and 

the distribution of influence before the redistribution. It can be observed that the distributions 

corresponding to the two redistribution methods have lower variance compared to the distribution of 

the distribution of influence before redistribution. This makes the nature of influence after 

redistribution less heterogeneous compared to the influence before redistribution.   

In addition, the correlation computed from second method is 5.4 percentage points more than that of 

the first method. Hence, we can conclude that the redistribution of the second method is more useful 

than the redistribution of the first method and we recommend  the  same  to  the  healthcare  company.   
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                                (a) 

           

      (b)        

Figure 7.5:(a) Difference in scatter plot between influence after first and second redistribution with the 
influence generated before redistribution with parameters, closeness centrality metric, α=0.5, θ=0.7; (b) 
Distribution of influence generated from the spreading process (closeness centrality metric, α=0.5, θ=0.7) 
(blue), distribution of influence after the first redistribution method from section 7.2 (orange) and 
influence after the second redistribution method from section 7.3 (green) 
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7.5 Discussion 

In this chapter, to answer RQ3, we proposed two redistribution methods to understand if the properties 

of nodal influence before and after the redistribution of investments are the same or different, by 

analyzing their respective distributions. We also compared the two redistribution methods in section 7.4 

and observed the difference between the two methods.   
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8. CONCLUSIONS, FUTURE WORK and 

LIMITATIONS 
This chapter highlights the key findings from this thesis. It also explains major limitations and challenges 

that were overcome to complete this thesis. 

8.1 Conclusions 

We successfully addressed the problem statement, mentioned in section 1.2, by developing a regression 

model and influence diffusion model for the direct and indirect relationship respectively. For which we 

came up with three research questions to answer the problem statement.  

The first research question (RQ1) is to estimate the relationship between investments made to 

physicians, return on investment and the research profile of the physician. This has been successfully 

achieved and concluded in section 4.3 and section 6.3 by using two different models to explain the 

direct and indirect relationship. 

In the direct relationship, we used regression analysis to estimate the relationship between investment, 

research profile and ROI for the direct influence scenario, as seen in section 1.2. We discovered that 

there is no direct relationship between payments, ROI and the research profile of the physician.  

In the indirect relationship, we proposed a network spreading process to estimate the indirect 

relationship, as seen in section 1.2, between investment, research collaboration and ROI generated to 

the healthcare company. A comparative study between the models for direct and indirect relationship 

was performed and it was found that the model for indirect relationship explains the relationship 

between payments and ROI  96.3% more than the model for direct relationship.  

The second research question (RQ2) is to identify the payment strategies of the three healthcare 

companies. To answer this question we made use of a regression analysis to decode the underlying 

payment method used by these companies. We discovered that, healthcare company ABC, XYZ and LMN 

have their own payment strategies with varying influx points of h-index. We also discovered that the 

three healthcare companies invest on physicians based on the physician's years of experience.  

To answer the third research question (RQ3) we propose two alternative payment redistribution 

methods in order to understand how the payment redistribution method affects the properties of the 

resultant nodal influence and their relationship between investment and nodal influence. Our findings 

may inspire the healthcare companies to design their future investments made to physicians. We also 

suggest potential physicians, who previously did not receive payments, and are currently contributing to 

the research as they have strong research collaborations with the physicians who are already receiving 

payments from the healthcare company.  
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Last but not the least, our methodologies exemplified in this thesis, such as the regression technique 
and influence diffusion modelling on a physician citation network to perform deep analysis can be 
widely applied to other systems to explain the direct and indirect relationship between payments and 
return at a hospital level and in general, between input and output.  

8.2 Future Work 

In this thesis, we designed a network spreading process to model influence diffusion through a physician 

citation network. This serves as a baseline model, to understand the effectiveness of the network. 

However there are numerous possibilities that are worth studying in the future and here are a few to 

mention. 

 The physician citation network has been restricted to healthcare company ABC in this thesis. It 

can be extended by adding physicians who are being paid by other peer healthcare companies. 

This provides room to multiple comparative research and business problems that can be 

answered by analyzing the network spreading process. One such research problem is, clusters 

of the dominant healthcare company can be identified, from which the choice of the physicians 

on whom the company invests or divest in the future could be decided. In short, the network 

spreading process can be used as a payment validation tool. 

 The physician citation network used in this thesis carries minimal and crucial information. 

Adding more information into nodes in the network, like categorizing the physicians based on 

their field of work, investment etc or adding more useful and independent research metrics 

that help explain the relationship between the investment and profile of physicians better is 

another future study.  

 In this thesis, the θ parameter, introduced in chapter 5, is kept constant across the physicians, 

which is not a true imitation of the real world scenario. Hence, in future we aim to develop 

dynamic θ values to spread the influence to physicians based on different criteria like 

performance, strength, etc. 

 

8.3 Limitations 

Following are some limitations that were overcome in different phases of this thesis:  

 Multiple anomalies exist in missing data. Combining data from three different sources has a lot 

of missing values, dummy values and duplicates. Hence during the data cleaning process a lot of 

data points were eliminated. 

 Scopus has a restriction limit for data scraping and the process is highly time consuming. 

 Lack of return on investment data for all companies, limits the research abilities.  

 Lack of return on investment data for hospitals leads to a confusion if they are actual missing 

values or the healthcare company made an investment and did not procure a return on 

investment. This is an important drawback since it has a major impact on the company's 

investment.   
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APPENDIX 

A1. Model Specification including the assumptions made on 

the  error/random variable and Estimation technique of 

parameters 

Basic regression model in its linear form is specified as  𝑦𝑖 = 𝛼 +  𝛽 𝑥𝑖 + 𝜖𝑖, where yi is the dependent 

variable, variation in which is explained by an explanatory variable xi and 𝜖𝑖 is the disturbance term as 

the specification is not deterministic in nature. 

Since the disturbance term is unobservable, assumptions made about ε are termed as basic assumptions 

of regression. These assumptions are  

(i) E(εi)=0 (Zero mean); 

(ii) var(εi)= σ2(homoscedastic errors) where σ2 is the variation in the dependent variable for a given value 

of x;  

(iii) E(εi,εj)=0for all i ≠ j (no autocorrelation); 

(iv) E(xi,εi)=0 (non stochastic x);  

(v) εi are normally distributed for all values of i.  

The objective of least squares is to choose �̂� 𝑎𝑛𝑑 �̂�′𝑠 as estimates of α and β’s so that error sum of 

squares is minimized. i.e., 𝑄 = ∑ (𝑦𝑖
𝑛
𝑖=1 − �̂� − �̂�𝑥𝑖)

2 attains minima.  

The estimates �̂� =  ∑
𝑥𝑖𝑦𝑖

𝑥𝑖
2

𝑛
𝑖=1  and �̂� =  �̅� − �̂��̅� obtained through the method of least squares are best 

linear unbiased estimates.  

In the multiple regression framework the error sums of squares minimized is = ∑ (𝑦𝑖
𝑛
𝑖=1 − �̂� − 𝛽1̂𝑥1 −

⋯− 𝛽�̂�𝑥𝑘)
2 . In matrix notation, the parameter estimates are �̂� = (𝑋′𝑋)−1(𝑋′𝑌) , where �̂�  is a vector 

of parameters. Here as stated above the vector of parameters  �̂�  satisfy requiredproperties of being 

unbiased, consistent and efficient. 

Since ε values are independently normally distributed with mean zero and variance σ2, the y values are 

also independent normally distributed with mean �̂�and variance σ2. Further  �̂� , which is a linear 

function of yfollows the distribution of y. Hence the distribution of �̂� is normal with E(�̂�) = β and var(�̂�) 

= (𝑋′𝑋)−1𝜎2 i.e., �̂�~N(β, (𝑋′𝑋)−1𝜎2). Since the distribution of�̂�  is known, statistical inference on the 

estimated coefficient is done through t-test,  
�̂�𝑖

𝑠𝑒(�̂�𝑖)
 , which helps to check if the variable attached to the 

coefficient has any influence in explaining the variation in y. 
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 Further,𝑅2 = 
𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑠𝑢𝑚𝑠 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚𝑠 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒
 , indicates the amount of variation explained by the set of 

explanatory variables i.e., it would give a measure of goodness of fit. Value of R2 lies between zero and 

one. Higher the value better is the strength of the equation. For example if R2 is say, 0.96 can be 

interpreted as that 96% of the variation in the dependent variable is explained by the explanatory 

variables included in the linear model. 
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