<]
TUDelft

Delft University of Technology

BarterCast
Fully Distributed Sharing-Ratio Enforcement in BitTorrent

Meulpolder, Michel; Pouwelse, Johan; Epema, Dick; Sips, Henk

Publication date
2008

Citation (APA)
Meulpolder, M., Pouwelse, J., Epema, D., & Sips, H. (2008). BarterCast: Fully Distributed Sharing-Ratio
Enforcement in BitTorrent. Delft University of Technology.

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

Delft University of Technology
Parallel and Distributed Systems Report Series

BarterCast: Fully Distributed Sharing-Ratio
Enforcement in BitTorrent

Michel Meulpolder, Johan Pouwelse, Dick Epema, and Henk Sips
{M.Meulpolder, J.A.Pouwelse, D.H.J.Epema, H.J.Sips}@tudelft.nl

report number PDS-2008-002

%
TUDelft PDS===

ISSN 1387-2109

Published and produced by:

Parallel and Distributed Systems Section

Faculty of Information Technology and Systems Department of Technical Mathematics and Informatics
Delft University of Technology

Zuidplantsoen 4

2628 BZ Delft

The Netherlands

Information about Parallel and Distributed Systems Report Series:
reports@pds.twi.tudelft.nl

Information about Parallel and Distributed Systems Section:
http://pds.twi.tudelft.nl/

(© 2008 Parallel and Distributed Systems Section, Faculty of Information Technology and Systems, Depart-
ment of Technical Mathematics and Informatics, Delft University of Technology. All rights reserved. No
part of this series may be reproduced in any form or by any means without prior written permission of the
publisher.

M. Meulpolder et al.
BarterCast

Abstract

Peer-to-peer (P2P) file sharing systems rely on the sharing of resources by large fractions of partic-
ipants. Sharing-ratio enforcement provides a very strong incentive for peers to contribute, leading to a
higher performance for all peers in the system. One way of implementing this is by banning peers that do
not share enough, determined by their past behavior (i.e., reputation). Various reputation mechanisms
have been designed to facilitate this, but they are centralized or not feasible in practice. In this paper,
we present a secure, fully distributed mechanism for reputation management and its integration with
BitTorrent. The resulting system enforces a long-term balanced sharing-ratio for all peers in a BitTor-
rent file sharing network. In our system, up- and download statistics are spread among peers and used
to compute a subjective reputation for each peer. We apply the maxflow algorithm to limit the effect of
peers that spread false information. We present simulations that demonstrate the system’s accuracy and
effectiveness. The resulting system overcomes the long-standing problem of BitTorrent’s lack of seeding
incentives, without any need for centralized administration, authority, or technology.

M. Meulpolder et al.

BarterCast Contents
Contents
1 Introduction 4
2 The BarterCast protocol 5
2.1 Statistics exchange e 5
2.2 Local view of the network L 6
2.3 Reputation metric Lo 6
2.4 Spreading false information L oL oL 7
3 Reputation-based BitTorrent 7
3.1 BitTorrent Tit-for-Tat e e e 8
3.2 Reputation-based unchoking L. Lo 9
3.3 Short-term versus long-term behavior L oL Lo 9
4 Results 9
4.1 Simulation setup L e 9
4.2 BarterCast distributed reputation. L oo 10
4.3 Reputation-based BitTorrent L 10
5 Related work 11
6 Conclusions and future work 12

M. Meulpolder et al.

BarterCast

List of Figures

List of Figures

1

D

Snapshot of a network where both data and BarterCast messages have been exchanged. The
thickness of the data lines indicates the amount of data that has been transferred.
The reputation vs. the net contribution of apeer..
An illustration of three cases where peer B provides false (exaggerated) information to peer
A in an attempt to gain a high reputation. L
Accuracy of the reputation system; the difference between the objective and the subjective
rank for all peers (top) and a histogram of this difference (bottom). In the top plot peers are
sorted according to their objective rank. oo o
The average reputation over time for sharers and freeriders in a system with 25% freeriders. .
The relative speed of freeriders over time.
The average download speed of sharers and freeriders using normal BitTorrent and reputation-
based BitTorrent with different values of v and 25% freeriders.

List of Tables

M. Meulpolder et al.

BarterCast 1. Introduction

1 Introduction

File sharing systems are only successful when a significant amount of the users is willing to donate resources
and to give honest information about their content. Ever since the first significant file sharing systems
such as Napster and Kazaa, attempts have been made to keep track of the reputation of users in order to
provide sharing-ratio enforcement, i.e., ensuring that a peer uploads to the network a given fraction of what
it downloads from it. In the original Kazaa system, the client itself was responsible for broadcasting its own
reputation value. Not surprisingly, this was very soon exploited by the Kazaa Light client which by default
broadcasted a very high reputation value, thereby undermining the benefits of the reputation mechanism
that all could have enjoyed. More secure distributed mechanisms provide theoretically valid frameworks, but
are often not feasible in practice and none of these are successfully deployed. In today’s file sharing world,
networks have very large, dynamic user populations with asymmetry of interest, low rendez-vous probability
and high churn (i.e., lots of peer arrivals and departures in a short time) [?]. The well-known EigenTrust [?]
algorithm provides a globally consistent objective trust value for all peers in a network but is computationally
heavy and not suitable for networks with high churn. The currency-based MojoNation system was deployed
but failed to work in practice due to economic effects as described in [?]. Other alternatives such as [?, 7]
provide theoretical mechanisms that rely partly on centralized architecture.

With a lack of secure, practically feasible distributed mechanisms, many modern networks still rely on
centralized reputation management. Popular closed BitTorrent trackers such as www.TVTorrents.com and
former oink.cd require a minimum sharing-ratio (upload vs. download) for a user to stay in the system,
and ban users that upload content of low quality or spam. In such systems, users can create an account and
get a certain grace period (e.g., one month) in which they can download even though their sharing-ratio is
very low. They have to utilize this period to upload as much as possible. After the grace period a minimum
sharing-ratio is necessary to be able to download. Peers that do not meet the sharing-ratio requirements are
simply banned from the network without mercy.

When using these systems, it is clear on first sight that the performance, reliability, and content quality
are superior to systems without such rules. However, centralized management creates a central point of au-
thority which is vulnerable to both technical and human failure. It is our goal to provide fully distributed P2P
technology that provides the benefits and higher performance induced by sharing-ratio enforcement while
being decentralized and secure. We present our fully distributed mechanism for reputation management,
BARTERCAST, which is deployed in the open source file sharing network Tribler [?, ?]. In BarterCast, real-
time upload and download statistics are broadcasted to peers that are encountered with an epidemic protocol.
Peers compute each others reputation based on their local view of direct and indirect traffic information. The
spreading of false information is limited by applying the maxflow algorithm in computing indirect contribu-
tions of one peer to another peer. Furthermore, we present an adaptation of the BitTorrent protocol which
uses the reputation information provided by BarterCast to create fully distributed sharing-ratio enforcement
in BitTorrent transactions. By implementing an unchoking policy that also takes reputation into account,
the earlier mentioned effect of central sharing-ratio enforcement can effectively be reached without any cen-
tral component and free-riders are gradually banished from the system. The resulting approach overcomes
the long-standing problem in BitTorrent that there are no long-term incentives to seed.

We present the results of extensive simulations of our approach, based on real traces of the filelist.org
BitTorrent tracker. With this tracker it is possible to trace the behavior of unique peers over multiple sessions
and multiple swarms, which is impossible with public trackers such as mininova.org. We show that the
subjective, distributed reputation is consistent with the real behavior of peers and that the reputation
of freeriders gradually decreases when they do not seed their finished downloads. We show that even in
simulations of one week of activity, the download speed of freeriders has already decreased to a mere 50%
of that of the sharing peers, therefore giving them a strong incentive to seed. We analyze the strictness of
the policy as well as the effect of different fractions of freeriders, and conclude that our system successfully
generates the effect of sharing-ratio enforcement that until now has only been implemented with centralized
technology and authority.

M. Meulpolder et al.
BarterCast 2. The BarterCast protocol

Vox |

Figure 1: Snapshot of a network where both data and BarterCast messages have been exchanged. The
thickness of the data lines indicates the amount of data that has been transferred.

——» datatransfer
<+----1> bartercast message

2 The BarterCast protocol

In this section we present the BarterCast protocol and the way it can be used in BitTorrent. The outline of
the protocol is as follows. First, up- and download statistics are spread in the network among peers. Second,
these statistics are used by a peer to create a local view of the data transfer in the network. Third, based
on this local view a peer computes the reputation of other peers it encounters. In the next section we will
use this reputation in the BitTorrent protocol to create incentives for peers to share. We will describe first
describe the BarterCast protocol in more detail.

2.1 Statistics exchange

In BarterCast, an epidemic protocol is used for peer discovery. Peers exchange lists of random peers and
taste buddies with all peers they encounter. This epidemic protocol is the same as in [?]. Peers that have
been discovered are from then on periodically polled to check their connectability and to exchange new
peerlists.

In addition, every peer keeps track of the amount of data it has exchanged with any other peer during
BitTorrent bartering sessions. These statistics are then periodically exchanged with all peers that are known
via the peer discovery protocol. This is done by exchanging a BarterCast message which contains a selection
of n peers and the amount of KBs up- and downloaded per peer. In Figure 1 a snapshot of an example
network is shown where some of the peers have exchanged data with BitTorrent and some have exchanged
BarterCast messages.

In this way, a peer accumulates two types of up- and download statistics: (1) statistics based on its own
bartering with other peers; (2) statistics received from a known peer, based on the bartering of this known
peer with a third party. It is important to note that a peer only spreads statistics of the first type to others.
For example, in Figure 1, peer 6 reports to others about the number of KBs it exchanged with 5, 9, and
10. It also knows (from peer 2’s BarterCast message) how much peer 2 uploaded to peer 5, but it will not
spread this information any further.

In the current implementation the number of peers in a message is limited to 10, being the top 10 peers
that have uploaded the most to the peer sending the message. We leave the analysis of the message size
and overhead to future work, but remark here that in our experiments and deployment the current message
overhead was negligible compared to the other data transfers between peers.

M. Meulpolder et al.

BarterCast 2.2 Local view of the network

2.2 Local view of the network

As a result of the message exchange, each peer accumulates its own direct information and the information
received from others. With this information, a peer builds a graph of all peers it knows, with pointed edges
that represent data transferred from one peer to another peer (such as in Figure 1). Note that not all peers
have to be (indirectly) connected with the peer itself.

Since there might be peers that lie or collude to report false information, any second-hand information can
not be trusted a-priori. In order to limit the effect of false information, we base our reputation mechanism
on the mazflow algorithm. The maxflow algorithm computes the maximum ‘flow’ between two nodes in a
graph over all possible paths. In our case, the graph consist of up- and download transfers between peers.
In this way, a peer will be very limited in exaggerating its own contribution in the network (see Section 2.4
for a more detailed discussion of this property).

In [?], the maxflow approach is discussed as an approach to prevent colluders in P2P networks, how-
ever, this paper does not discuss how to actually distribute the necessary information, how to provide a
solid reputation metric, and how to integrate the technique with an existing P2P protocol such as Bit-
Torrent. Moreover, this paper does not provide extensive simulation results based on an actual distributed
implementation and real network traces.

For the actual maxflow computation, we use the popular Ford-Fulkerson algorithm [?]. It works by
repeatedly finding a path from a start node to a given end node over which there is a flow (e.g., data
transfer), until no remaining path with a flow is left. The complexity of the algorithm is bound by a given
limit of the path length. In our case, a peer can therefore compute the flow between any peer that it knows
and itself. Between two peers that are not directly or indirectly connected the flow is naturally zero; they
will therefore regard each other as neutral. Note that the network information a peer has is not necessarily
complete. However, the aim is to provide a subjective reputation value that approximates and represents
the real behavior of a peer. In our experiments we will show that despite the partial information, this
approximation is accurate enough to realize the desired sharing-ratio enforcement.

2.3 Reputation metric

The maxflow algorithm provides an indication of the upload and download of a peer to/from another peer.
In our fully distributed approach, we cannot use the sharing-ratio (upload : download) as a reputation value
like central trackers do, since with this metric a new peer cannot be distinguished from a ‘bad’ peer, i.e.,
both have a very small upload and therefore a small, positive reputation value. Central trackers cope with
this simply by granting a grace period in which the user is free to bootstrap its sharing-ratio. Since we do not
have central management, we need another way to distinguish good, bad, and neutral peers. We therefore
use (upload minus download) as a base, so that good peers have a positive value, bad peers have a negative
value, and neutral peers have a value around zero.

We compute the subjective reputation of peer j at peer ¢ using the values computed by on the maxflow-
algorithm [?]. We denote f;_,; as the maxflow from peer i to peer j. A constant v is used to scale the
relationship between the reputation value and the flow. The reputation R;(j) of peer j at peer i is then
computed as follows:
arctan(y(fj—i — fi—;))

/2

Positive values of R;(j) indicate that the upload flow from peer j to peer i is higher than the download
flow, i.e., peer j has contributed more to peer ¢ than what it has taken from it. Negative values in the same
way indicate the opposite. The resulting reputation value is scaled between -1 and 1 (See Figure 2). The
larger the flow of data, the higher the (absolute) value. As a result of the arctan function, the difference
between 0 and 100 MB is more significant than the difference between 1 GB and 1.1 GB.

Note that the resulting reputation is subjective, i.e., a peer can have a high reputation at one peer and
a low reputation at another. When a peer uploads a lot to many peers over time, its reputation will be

Ri(j) -

M. Meulpolder et al.

BarterCast 2.4 Spreading false information

IT—

reputation
S

net contribution of a peer

Figure 2: The reputation vs. the net contribution of a peer.

high with many peers in the network. We therefore have an ego-centric view of reputation without enforcing
global consistency. This resembles the subjective, social concept of reputation in the real world.

2.4 Spreading false information

As shown in the previous section, the reputation of a peer B in the eyes of another peer A is based on its
direct and indirect contribution to peer A. This contribution is computed using the maxflow algorithm over
all possible paths from B to A. Naturally, the maximum flow over each path in the network is bound by the
edge with the smallest flow. Since peer B sends messages containing his own direct contributions to others,
the peer can lie and exaggerate this contribution with the aim of getting a high reputation. However, due
to the application of the maxflow algorithm, such an exaggeration can only have a very limited effect. This
is due to the following:

1. If B exaggerates a direct upload to A, the lie has no effect since A itself knows exactly what it has
received from B.

2. If B exaggerates an upload to some peer C, which lies on a path to A, the maximum flow over this
path will still be bound by other values on this path. These values can not be spread by peer A.

3. If B would collude with other peers that report an exaggerated value to create a path to A with a high
flow, the maxflow is still bound by the actual contribution of the last peer to A. There, point (1) holds
again.

Figure 3 illustrates these three cases. Note that in case (3), the actual maxflow from B to A is 5, but the
information A has is as follows; it is claimed via bartercast that B uploaded 1000 to C' and C' uploaded 1000
to D, but since A only received 15 from D this will be the maxflow it computes. Even though this is slightly
higher than the real value in this case, the large exaggeration of 1000 has not nearly the effect desired by B
and C. Summarizing, a peer can only gain a high reputation at another peer if it actually uploads a lot to
this peer or to peers already having a high reputation with this peer.

3 Reputation-based BitTorrent

In this section we will discuss our application of the BarterCast reputation system to prevent freeriding in
BitTorrent. BitTorrent currently only implements a Tit-for-Tat policy which gives downloaders in a single
swarm an incentive to upload to each other. However, there is no incentive to continue sharing the file
after the download has finished. Ironically, it is even disadvantageous to share, since the consumed upload
bandwidth cannot be used to do Tit-for-Tat in other downloads, which makes these downloads slower.
BitTorrent therefore clearly suffers from the Tragedy of the Commons [?]. In our system however, freeriding
is slower than more altruistic behavior. We will first give a short overview of the BitTorrent Tit-for-Tat
policy, and after describe our adaptation of this policy to our reputation system.

M. Meulpolder et al.
BarterCast 3.1 BitTorrent Tit-for-Tat

M ()

B->A: 10 B->C: e
1000 1000

® ®

computed maxflow: 10 computed maxflow: 5

@)

10

B->C:
5
®
1000

15

®

computed maxflow: 15

E— actual data transfer

bartercast message

B claims he uploaded
1000 1000 to A

Figure 3: An illustration of three cases where peer B provides false (exaggerated) information to peer A in
an attempt to gain a high reputation.

3.1 BitTorrent Tit-for-Tat

The normal BitTorrent protocol maintains a limited number of simultaneous upload slots (usually 4-7 de-
pending on the implementation). Peers that do not yet have the complete file (leechers), assign their slots
to those peers that currently provide the highest upload rate in return, determined periodically. Peers that
have the complete file (seeders) assign their upload slots to those peers that have the fastest download rate.
Peers that get a slot are called unchoked, while the other peers are choked. Furthermore, there is one extra
slot for optimistic unchoking. This slot is assigned via a 30 seconds round-robin shift over all the interested
peers regardless of their upload rate. The protocol therefore creates a tit-for-tat data exchange based on the
short-term behavior of a peer (i.e., the bandwidth it provides in return). Due to optimistic unchoking, new
peers have a chance to obtain their first pieces of data and bootstrap the process.

M. Meulpolder et al.
BarterCast 3.2 Reputation-based unchoking

3.2 Reputation-based unchoking

We use a more advanced unchoking policy which not only rewards short-term tit-for-tat behavior but also
takes long-term reputation into account. The eventual effect of this should resemble the policy of TVTorrents-
like central trackers where peers can only download if they have uploaded enough. In our reputation-based
BitTorrent, peers only assign the upload slots to peers that have a reputation which is above a certain
threshold §. The threshold § has a value below zero, so that new peers entering the system (who start with
reputation zero at all other peers) and peers that upload as much as they download can participate normally.
The more negative the value of the threshold, the more peers can download without uploading. When a
peer keeps on downloading more than it uploads, its reputation at more and more peers will after a certain
moment sink below the threshold value. From then on, downloads will take more and more time. A peer
can easily prevent this from happening by seeding each file after it is downloaded until they have uploaded
at least the size of the file to others. In this way, the average reputation of the peer will stay around zero,
ensuring normal participation. If a peer wants to ‘save’ for the future, it can upload more than it downloads,
creating a reputation far above zero.

3.3 Short-term versus long-term behavior

Reputation-based BitTorrent has a very efficient balance between the effects of short-term behavior and
long-term reputation. On the one hand, the Tit-for-Tat performance of BitTorrent is guaranteed since peers
that provide a low return bandwidth are still choked even if they have a high reputation. On the other
hand, peers that have a low reputation but are improving their behavior by providing a high bandwidth can
participate normally as soon as they have uploaded enough. Therefore, neither Tit-for-Tat nor reputation
dominate the protocol.

4 Results

In this section we present the results of extensive trace-based simulations in which we analyze the effectiveness
and accuracy of our reputation system, and compare our reputation-based BitTorrent policy is compared
with traditional BitTorrent.

4.1 Simulation setup

We have built a trace-based simulator which incorporates all relevant aspects of BarterCast and BitTorrent.
We simulate the epidemic peer discovery, the BarterCast statistics exchange protocol, and the reputation
computation. Furthermore, we have implemented a BitTorrent simulator which simulates the protocol on
piece-level including unchoking, optimistic unchoking, and rarest-first piece-picking. We have combined all
processes in a trace-based simulation environment and have compared the performance and properties of
different appraoches based on real network data. In our simulations, we use real network traces from the
private BitTorrent tracker filelist.org, obtained in January 2006. The traces contain detailed behavior of
all peers that were active in the file-sharing network, including uptimes, downtimes, connectability, and file-
requests. For our simulations, we use traces of 100 peers active in 10 different swarms during one week. Since
we do not have information about the real up- and download bandwidths of the peers, we currently simulate
common ADSL users with a 3 MBps downlink and a 512 KBps uplink. We distinguish between freeriders
that immediately leave the swarm after finishing a download and sharers that share every downloaded file
for 10 hours. As these users have very limited uploading capacity, they are likely to economize on sharing,
and are therefore the most important target of sharing-ratio enforcement in current file-sharing systems.
The filesizes in the trace range from several tens of megabytes to about one to two gigabytes, representing
mostly audio-files and movies.

M. Meulpolder et al.
BarterCast 4.2 BarterCast distributed reputation

subjective rank minus objective rank mm—

100 T T T T
3
AT '
s oLl bl
£ o k.l || S T |I |” I||||,I|.“.|I,|““””I.,,||_||||I|”|.I..,.|I |"I"I'| i
E 50 i
-100 Il Il Il Il
0 20 40 60 80 100
peers
< 50
Q
40
(o]
2 30
s 20
e 10
2 o B B —
0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99
histogram

Figure 4: Accuracy of the reputation system; the difference between the objective and the subjective rank
for all peers (top) and a histogram of this difference (bottom). In the top plot peers are sorted according to
their objective rank.

4.2 BarterCast distributed reputation

As mentioned before, the reputation obtained by BarterCast is subjective due to its fully distributed nature.
It is not impossible that a peer has a high reputation at one peer, while it has a low reputation at another.
Given this subjectivity, our aim is that the reputation a peer on average has with other peers it encounters
realisticly reflects its real, objective up- and downloading behavior. In our simulations, we do know the real
behavior of peers as well as the subjective reputation that emerges in the system. We analyze the accuracy of
the subjective reputation as follows: (1) we compute the average subjective reputation of all peers and rank
the peers accordingly (subjective rank); (2) we compute the real (upload - download) for all peers and rank
them accordingly (objective rank); (3) we compare the difference between the subjective and objective rank
for each peer (rank difference). The smaller the rank difference, the more accurate the subjective reputation.

Figure 4 displays the rank difference for all peers, as well as a histogram. For 42% of the peers, the
difference between the subjective and objective rank is less than 10%. Overall, a large majority of the peers
(78%) has a difference less than 20%. In Figure 5, the average subjective rank of sharers and freeriders is
compared for a system with 25% freeriders. When time progresses, the average rank of the freeriders clearly
decreases, while the average rank of sharers increases. This is exactly the kind of effect we are aiming for
with the reputation system. These results are quite spectacular, given that the subjective reputation is based
on completely distributed information without any central component.

4.3 Reputation-based BitTorrent

We have performed extensive experiments to evaluate the our reputation-based BitTorrent policy. From
Figure 5, discussed above, it is clear that the reputation of freeriders gradually decreases during the week.
The effect of this decreasing reputation on the actual average download speed of the freeriders is displayed in
Figure 6. The values in the plots denote the relative speed of the freeriders (i.e., the speed of the freeriders
divided by the speed of the sharers). It is interesting to note that the speed of the freeriders at the first days
is higher than that of the sharers. This is due to our earlier observations that freeriders have more upload
bandwidth available for Tit-for-Tat, and therefore a higher download speed than the sharers. However, in
our system this advantage of freeriders quickly vanishes when their reputation catches up and their speed
becomes slower than that of the sharers. Finally, in Figure 7 the actual download speeds for various values
of v are displayed for both freeriders and sharers. The larger «, the stronger the difference between the
freeriders and sharers becomes. It can be observed as well that the download speed of the sharers gradually

10

M. Meulpolder et al.
BarterCast 5. Related work

0.4

sharers
freeriders --------

0.3

0.2

0.1

-0.1

average reputation
o

-0.2

-0.3

-0.4
0 1 2 3 4 5 6 7

time (days)

Figure 5: The average reputation over time for sharers and freeriders in a system with 25% freeriders.

2
25°I/o freeridersI
50% freeriders -------
75% freeriders --------
15

relative freerider download speed

time (days)

Figure 6: The relative speed of freeriders over time.

goes down when the policy becomes stricter. This is because when the freeriders are less successful in getting
pieces their contribution in Tit-for-Tat also becomes less, which effects the sharers as well. On first sight,
this seems as if the policy bites in its own tail. However, it is important to remember that the aim of
sharing-ratio enforcement is to increase the performance by eventually having more sharers in the system.
The ‘punishment’ of freeriders visible in Figure 7 will hopefully turn them into sharers, which increases the
performance for every peer in the system.

5 Related work

A lot of mostly theoretical research exists into reputation, trust, and BitTorrent. First of all, in [?] the
original tit-for-tat policy of BitTorrent is presented. In [?], a partially centralized reputation mechanism
is presented which relies on authorized agents to keep track of the reputation. EigenTrust [?] is a well-
known algorithm for globally consistent trust management, but is computationally heavy and not feasible
for practical systems with high churn. In [?, 7, 7], token-based schemes are discussed that use centralized
agents for administration of the tokens. In [?], an overview of important characteristics of large-scale modern
day P2P networks is given, and the designs of several techniques are presented. However, the paper does not

11

M. Meulpolder et al.

BarterCast 6. Conclusions and future work
400 T . T
sharers []

350 |- freeriders
300 | E
[a) i
X 250 i - g
kel i i
3 o &
2 200 F | o g
n [[
o B [|
8 150 i] | b
© [[| | |]
> e [[P
®© | b] - b 9

100 | & o | | 7

50 |- o . o | B

0 iR g B B

normal 108 107 1074
gamma

Figure 7: The average download speed of sharers and freeriders using normal BitTorrent and reputation-
based BitTorrent with different values of v and 25% freeriders.

discuss how to obtain the information in a distributed way, how to cope with newcomers, and how to apply
these techniques to a specific peer-to-peer protocol like BitTorrent.

6 Conclusions and future work

We have presented a secure, fully distributed reputation system called BARTERCAST. Apart from a few
unsuccessful initiatives this is the first deployed fully distributed reputation protocol that is both practically
feasible and limits lying and collusion. We have presented a BitTorrent policy which makes use of these
long-term reputation statistics by enforcing peers to contribute as much as what they download in the long
term. We thereby overcome the problem of BitTorrent’s lack of seeding incentives. The effect of this fully
distributed sharing-ratio enforcement is comparable to that of central BitTorrent trackers like TVTorrents,
where enforcement leads to large numbers of seeders and therefore a very high performance. In our system
however, no centralized administration, authority, or technology is necessary. We have presented extensive
simulations which show that the distributed subjective reputation successfully approximates the objective
reputation of peers, that freeriders have a decreasing reputation in the system, and that reputation-based
BitTorrent successfully ‘punishes’ freeriders as a motivation for them to become sharers. BarterCast has
recently been deployed in the open source file sharing network Tribler [?, ?]. Deployment results and further
analysis based on real user data will be discussed in further work.

12

