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Characterizing Behavioral Differences of
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Vehicles at Signalized Intersections Based
on Waymo Open Dataset

Yiyun Wang1,2,3 , Haneen Farah3 , Rongjie Yu1,2, Shuhan Qiu1,2 ,
and Bart van Arem3

Abstract
Autonomous vehicles (AVs) are being introduced to the traffic system with the promise of improving current traffic status.
However, the empirical data also indicate contrary effects with estimated higher crash rate and change of crash patterns.
Therefore, it is necessary to investigate the driving behavior of AVs and human-driven vehicles (HDVs) in real mixed traffic.
Current studies have analyzed the driving behavior of AVs and HDVs, as well as behavioral adaptations of drivers of HDVs
based on empirical data. While they play an important role in traffic systems, signalized intersections have not been studied
sufficiently in this context. Therefore, this study aims to utilize the Waymo open dataset to characterize and quantify the
behavioral differences of AVs and HDVs at signalized intersections. Five parameters of driving behavior related to signalized
intersections were characterized according to five critical maneuver phases, which were identified by wavelet transform and
threshold-based method. Statistically significant differences in driving behavior between AVs and HDVs were found, from
three categorized situations: vehicle approaching the red light/queue, vehicle responding to the green light (as the first vehi-
cle), and vehicle responding to its preceding vehicle (in the queue). Further, behavioral adaptations of HDV drivers were
revealed in that they tended to keep closer to the stopped AVs in a queue and to react more strongly to AV start-up maneu-
vers when the traffic light turns to green.
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Autonomous vehicles (AVs) are being introduced to the
traffic system with the promise of improving traffic
safety and efficiency (1). As AVs are increasingly being
tested on public roads, however, the testing results show
that the performance of AVs is contrary to expectations.
It is estimated that AVs have a crash rate per million
miles traveled more than twice that of conventional
human-driven vehicles (HDVs) (9.1 versus 4.1) (2). The
distinctive driving style of AVs also brings about changes
in conventional crash pattern distributions. For example,
in data on AV-involved crashes from the California
Department of Motor Vehicles (CDMV), the rear-end
pattern predominates, with a value of 57.5%, compared
with 27.9% for HDVs. Moreover, most of the rear-end
crashes are AVs being rear-ended by HDVs, a phenom-
enon caused by complex interactions (3). Therefore, it is

very important to investigate the behavioral differences
of AVs and HDVs, and their interactions in real traffic.

In some recent studies, researchers utilized field
experiment data or real-world road-testing data to inves-
tigate the driving behavior of AVs and HDVs in mixed
traffic (4), such as the driving behavior properties (5, 6)
and human drivers’ behavioral adaptations (7–9).
However, these studies mainly focus on car-following
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scenarios instead of signalized intersections which play
vital roles in traffic safety and efficiency (10). It is indi-
cated that signalized intersections contribute to about
36% of traffic crashes (11). Despite the importance of
signalized intersections in traffic systems, only a few
studies, to the best of our knowledge, have characterized
and quantified the driving behavior of AVs and HDVs
at signalized intersections based on empirical data.

Therefore, this study utilized real-world empirical data
to investigate driving behavior of AVs and HDVs at the
approaches to signalized intersections. Behaviors were
characterized based on different maneuver phases, such
as approaching the intersection, responding to traffic
light, and starting up. The behavioral differences between
AVs and HDVs and the behavioral adaptations of driv-
ers of HDVs were analyzed. The obtained results could
provide insights for evaluation of implications of AVs,
such as microscopic simulation calibration. The main
contributions of this study are summarized as follows:

1. Utilizing real-world empirical dataset to charac-
terize signalized intersection-related driving beha-
viors of AVs and HDVs.

2. Revealing the behavioral differences between AVs
and HDVs based on different maneuver phases.

3. Finding the behavioral adaptations of HDVs
when interacting with AVs at the discharge of
queue.

Literature Review

This section first reviews the studies that investigate AV
and HDV driving behavior in mixed traffic with a real-
world dataset, then the key parameters adopted by the
literature to quantify signalized intersection-related beha-
viors are summarized.

Behavior Analyses Based on Real-World Dataset

As AV technology becomes available, studies using field
experiments and empirical public road-testing datasets
are increasing. For example, Mahdinia et al. (7) con-
ducted a field experiment to test human drivers’ behavior
when following an AV, and analyzed the speed profiles
of HDVs and AVs. They quantified the behavioral
changes of HDVs that are induced by the presence of
AVs, and found that HDVs have lower driving volatility
in mixed traffic. Similarly, Rahmati et al. (8) designed a
three-vehicle platoon scenario to identify the differences
between HDV–HDV and HDV–AV interactions in a
series of speed profiles determined by another HDV-
leading vehicle. They characterized the behavioral
changes of HDV based on a data-driven and a model-

based approach. The results indicated significant beha-
vioral changes of the HDV when it follows an AV com-
pared with when it follows an HDV. In addition, the
HDV driver feels more comfortable following the AV. In
similar experiments, Zhao et al. (9) experimented with
settings with differentiable or indifferentiable appearance
of AVs. It was found that with differentiable appearance
of AVs, HDVs exhibited behavioral changes, while no
significant changes were found in an indifferentiable AV
setting. This means that the behavioral changes of HDVs
depend on subjective trust in AV technologies rather
than their actual driving behavior. Only one study so far
has adopted a real-world public road-testing dataset to
characterize AV and HDV driving behavior in mixed
traffic. Utilizing the Waymo open dataset, Wen et al. (4)
extracted different vehicle pairs consisting of AV–HDV,
HDV–HDV, and AV–HDV to analyze their driving
behavior. They applied volatility, time headway, and
time-to-collision measures to quantify the driving beha-
vior, and employed cluster method to categorize HDV–
AV following driving styles. It was found that HDVs
exhibit less volatility in velocity and acceleration/
deceleration.

The above studies mainly investigated behavioral
adaptation or car-following styles of human drivers
when encountering AVs. There are also some studies that
directly investigated driving behavior of the adaptive
cruise control (ACC) system when interacting with
HDVs. For instance, Raju et al. (6) tested the real per-
formance of a commercial ACC system under different
desired speeds in a car-following situation, and found
that the system response times were not instantaneous
but were rather comparable to human response times. Li
et al. (5) characterized car-following behavior of ACC
vehicles based on empirical experiments, and explained
the behaviors underlying mechanisms, such as factors
influencing the response time, oscillation growth, and
overshoot.

The above studies have mostly focused on car-
following behaviors of AVs and HDVs, while limited
research was conducted on signalized intersection beha-
viors based on a real-world dataset. Sxentürk Berktasx and
Tanyel (12) utilized data on signalized intersections from
a field study, and analyzed HDV behavior characteris-
tics. For AVs, they applied driving characteristic para-
meters from the literature. They suggested a passenger
car equivalent value to define the effect of AVs at a sig-
nalized intersection without communication. The results
showed that AVs may significantly decrease intersection
capacity.

To conclude, although there are studies utilizing field
experiments or empirical datasets to investigate scenarios
involving ACC vehicles and AVs, we can conclude that
most of them focused on car-following behavior and few
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studies have focused on signalized intersections-related
behavior. Besides, these studies mainly investigated HDV
behavior, without analyzing AVs’ real behavior.

Signalized Intersection-Related Behaviors

Different from the car-following scenario, more para-
meters could be extracted to characterize signalized
intersection-related behavior in the presence of traffic
lights. In the literature, starting response time (to traffic
green light), acceleration and deceleration, headway, dis-
tance gap were usually analyzed.

Starting response time is defined as the time gap
between the start of the green light phase and the start of
the leading vehicle moving. For HDVs in Turkey,
Cxalisxkanelli and Tanyel (13) found a time gap of 1.48 s.
The values found in other studies include: 1.35 s (14), 1.0
to 2.5 s (15), 1 s (16), 0.9 s (17), and 1.76 s and 1.42 s for
through and left turning respectively (18). It is expected
that the response time of AVs could be reduced and thus
enhance the safety and efficiency of intersections.
However, AVs without communication with traffic sig-
nal infrastructure or other vehicles cannot achieve a
short response time (12). In the literature, the response
time for AVs was suggested to be around 0.6 s (19), and
the smallest default value in the AIMSUN program is
0.75 s (13). Abraham (20) employed 0 s of response time
for AVs and 0.8 s for HDVs.

Deceleration of vehicles approaching the intersection
characterizes how vehicles respond to the red light. Early
studies suggested the acceptable deceleration rate of
3.04m/s2 (21), with similar values of 2.95m/s2 and 2.9m/s2

(22), and 3.27m/s2 (23). In the literature, the upper and
lower values of deceleration rate of AVs are assumed to be
3.50m/s2 and 1.80m/s2 (12). In the AIMSUN program
(12), the average value of the deceleration is 1.55m/s2.

Acceleration of vehicles from the stop line or the
queue after the green light appears is important for deter-
mining the capacity of an intersection. For human driv-
ers, 1.5m/s2 (24), 1.45m/s2 (25), and 0.83 to 1.43m/s2

(26) were suggested in the literature. Niels et al. (19)
assumed the maximum acceleration rate for an AV to be
3.0m/s2. Sxentürk Berktasx and Tanyel (12) applied the
upper and lower acceleration values for AV as 1.40m/s2

and 0.75m/s2. The average value of acceleration adopted
in the AIMSUN program (12) is 1.62m/s2.

Headway between vehicles at the discharge of a queue
was also calibrated. As is well known, the first vehicle in
the queue is always expected to respond the quickest
since it directly receives the traffic light signal. There will
be an increase in headway for the second vehicle and
decrease for the following vehicles. However, Cxalisxkanelli
(27) found that, in contrast with previous research, head-
way values did not decrease for the vehicles after the

second queueing position. Similarly, Cxalisxkanelli and
Tanyel (13) found the average headway values of queued
vehicles except the first one to be around 2.3 s.
Niroumand et al. (28) calibrated HDV headway time at
0.9 s under three levels of driving aggressiveness (aggres-
sive, normal, and cautious) for connected vehicles and
AVs to be 0.6 s, 0.9 s, and 1.5 s respectively. Parameters
such as distance of the vehicles when stationary were also
analyzed. Le Vine et al. (29) assumed a vehicle-to-vehicle
(V2V) communication environment and set the distance
gap of vehicles in the queue to 1.83m.

To conclude, studies have mainly conducted simula-
tions to evaluate the impacts of AVs on traffic at signa-
lized intersections, in which they usually adopt key
parameters referred from the literature or based on a
simple assumption. The selected values were inconsistent
through different studies, because of the lack of empiri-
cal analyses for signalized intersections.

Therefore, to fill the above gaps, this study aims to
characterize AV and HDV behavior at a signalized inter-
section based on an empirical road-testing dataset. The
remainder of this paper is organized as follows: the
research questions are presented in the following section.
In the Methodology section, the processing procedures of
Waymo open dataset, the methods to classify the critical
maneuver phases, characterize signalized intersection
driving behaviors and quantify key parameters are exhib-
ited. In the Results section, the behavioral analysis results
of AVs and HDVs are presented by three categorized
situations. In the Discussion section, comparison with lit-
erature, future work outlook, and limitations are pro-
vided. Finally, the conclusions are summarized in the
Conclusion section.

Research Questions

Following the above literature review and the identified
research gaps, the main research questions were defined
as follows:

RQ1: How do AV and HDV driving behaviors differ
when approaching signalized intersections with red
light on: (RQ1.1) as the first vehicle in the queue, and
(RQ1.2) as a vehicle in the queue?
RQ2: Are the AVs’ response times to the green light
comparable to those of HDVs?
RQ3: Will HDV drivers adapt their driving behavior
when they interact with AVs at signalized intersections
in comparison with how they interact with HDVs?

Methodology

This section illustrates the methods used to process the
data and quantify driving behaviors of vehicles at signa-
lized intersections.
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The Waymo Dataset

The data utilized in this study were processed from the
Waymo perception open dataset collected by Waymo
AVs in three cities in the U.S. (i.e., San Francisco and
Mountain View, CA, and Phoenix, AZ) and released in
2019 (30). The dataset contains 1,000 scenarios, with 10
HZ data collection frequency and about 20 s duration
for each scenario. The dataset includes high-resolution
lidar and camera data, recording vehicles’ type, size (i.e.,
length, width, and height), position (i.e., latitudinal and
longitudinal), and movement (i.e., velocity). Note that
the AVs do not have any communication with the infra-
structure and there is no possibility for driver take-over
or disengagement events (31, 32). More information can
be found at https://waymo.com/open/data/.

This study is based on the processed dataset con-
ducted by Hu et al. (33). In that work, the original data-
set was re-structured and transformed to tabular format
trajectory data, therefore, it is more user-friendly. The
outliers have also been removed, so the processed dataset
has higher data quality. The dataset and processing codes
can be downloaded from https://data.mendeley.com/
datasets/wfn2c3437n/2. The processed dataset contains
25 attributes, which are listed in table 2 of Hu et al. (33).

Data Processing

This subsection explains the process of selection of target
intersections. First, intersections were recognized as loca-
tions where there are turning AVs or HDVs. To judge if
a vehicle is turning, the angle between the beginning and
the end of its headings was calculated, and if it was
found to be larger than 0.9 � p

2
, the vehicle was recognized

as turning. The identified locations were then checked
manually through real-world camera video in case some
curve segments were misclassified as intersections.
Signalized intersections were then selected from all the
identified intersections. Finally, scenarios in which AVs
just pass during the green light without starting or stop-
ping maneuvers (i.e., green light phase) were excluded.
Furthermore, to obtain the time stamps of traffic lights
turning green, real-world camera videos were converted
into still images, and the frame in which the signal light
changed its color was identified.

Behavior Characterizing and Quantifying Method

Identification of critical maneuver phases. To characterize the
driving behavior, it is necessary to identify the time
stamps of critical maneuvers and classify maneuver
phases. Sharma et al. (34) identified six critical phases
for calibration in a general car-following model: accel-
eration, deceleration, following, free acceleration, cruis-
ing without a leader, and standstill. In this study we

identified five critical maneuver phases for the signalized
intersection. A typical speed profile is shown in Figure 1.
It consists of five phases:

I. Approaching the signalized intersection with a
stable speed (traffic signal is red and the driver
might yet have not decided to decelerate);

II. Decelerating to respond the traffic light or the
queue at the intersection (traffic signal is red);

III. Remain at a standstill at the stop line or within
the queue (traffic signal is red);

IV. Accelerating to leave the intersection (traffic sig-
nal turns to green);

V. Leaving the intersection with stable speed.

Based on these phases, five critical time stamps were
also identified: deceleration start time TDs, standstill start
time TSs, acceleration start time TAs, acceleration end
time TAe, and green light start time TGs.

To identify critical maneuver time stamps, the wavelet
transform (WT) algorithm and the threshold-based
method were adopted together (5, 35).

WT is a time-frequency decomposition tool and could
capture the local changes of the time-series data by identi-
fying the points with highest average wavelet energy (36).
Zheng et al. (37) utilized WT to identify the location of
bottlenecks, transient traffic, and traffic oscillations, and
Li et al. (35) applied it to recognize the critical maneuver
times of the oscillation speed profile. The Mexican hat
wavelet was found to be the most efficient (37), which is
adopted in this study. The formulation of the WT output
of the continuous signal (i.e., speed over time) v(t) is:

T (a, b)=v(a)

ð‘

�‘

v(t)c
t � b

a

� �
dt ð1Þ

c
t � b

a

� �
=

"
1� t � b

a

� �2
#

e�
t�b
2að Þ

2

ð2Þ

where a is the scale parameter which controls the dilation
and contraction of the wavelet, b determines the

Figure 1. Illustration of critical maneuver times.
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movement of the wavelet along the time. When a=1
and e=0, c(t) is the mother wavelet, and is the second
derivative of the Gaussian distribution function e�

t2

2 .
v(a) is the weighting function which is typically set to 1ffiffi

a
p

to ensure that wavelets at all scales have the same energy.
Therefore, the final formulation of the WT coefficient is:

T (a, b)=
1ffiffiffi
a
p
ð‘

�‘

v(t)

"
1� t � b

a

� �2
#

e�
t�b
2að Þ

2

dt ð3Þ

The average wavelet-based energy at b is calculated as:

Eb =
1

max(a)

ð‘

0

jT (a, b)j2da ð4Þ

An abrupt speed change over time will generate a
sharp increase in the temporal distribution of the energy
(35). Therefore, the significant speed alterations could be
identified by exploiting the energy distribution. Figure 2
gives an example of how the WT recognizes the abrupt
change of a speed profile.

Here, we applied WT to identify TDs and TAe, as they
are characterized by significant speed changes (37). a is
set to be 32 which was usually applied when the frequency
of the original signal is 0.1 s. b is set to be when the speed
profile has the lowest value (35, 37). Most speed profiles
of the vehicles’ trajectories do not have complete stages,
as shown in Figure 1, therefore, TDs and TAe are further
judged by the acceleration and the duration.

During the experiment, we found that if phase II,
phase III, and phase IV co-exist in one speed profile,
then the time interval between TSs and TAs could be too
short and the wavelet energy only has one extreme maxi-
mum value in phase III. Therefore, we identify them via
threshold-based algorithm. TSs and TAs are recognized
between TDs and TAe. Further, TSs/TAs satisfies both: (i)
speed threshold: the afterwards/beforehand speed is less
than 0.1m/s and continues for more than 1.5 s; and (ii)
the deceleration/acceleration rate beforehand/afterwards
threshold: the absolute value is over 0.25m/s2. Several
other values were tested and results best capturing the
TSs /TAs were obtained according to manual checks to
ensure the accuracy.

Queue Recognition Based on Trajectory Data. Since we want
to characterize the driving behavior of AVs and HDVs,
especially when they have interactions with each other,
only the queues that contained AVs were extracted. The
algorithm can be seen in Figure 3. Tq is the period when
the vehicle remains stationary, Vs is the speed threshold
to recognize Tq in case some vehicles do not absolutely
stop but maintain a very low speed. Here the value of Tq

is 2.5 s and Vs is 0.1m/s. dq is the distance threshold of
average local x (latitudinal) to judge whether the vehicle
is within the same queue as AV is; dq=1m is adopted.

Driving Behavior at Signalized Intersections

After applying WT and threshold-based method to
detect critical maneuver time stamps, and recognizing
the queue, five parameters were defined and calculated,
as further explained below.

Figure 2. Illustration of wavelet transform algorithm.

Figure 3. Illustration of queue recognition algorithm.
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� Deceleration approaching the red light/the queue:
The deceleration is calculated based on phase II
(Figure 1) from TDs to TSs. Two deceleration para-
meters are calculated: maximum deceleration and
average deceleration.

� Distance gap to the preceding vehicle (standstill
distance): This parameter refers to the distance
gap between two vehicles within the queue, during
phase III. It is the distance gap between the rear
end of the leading vehicle and the head of the fol-
lowing vehicle.

� Starting response time to the green light: This
parameter refers to the time gap between the start
of the green light TGs and the moment the vehicle
starts to accelerate TAs.

� Acceleration from the stop line: The acceleration
is defined based on phase IV, from TAs to TAe.
Two acceleration parameters were calculated:
maximum acceleration and average acceleration.

� Reaction time to the preceding vehicle:
Distinguished from the response time, reaction
time is the time gap in which the ego vehicle
reacts to the preceding vehicle’s movement (38).
Here it refers to the time gap between two con-
secutive vehicles starting to accelerate, that is,
TAs

F–TAs
L, TAs

F is the acceleration start time of
the following vehicle and TAs

L is that of the
leading vehicle.

Results

Of the 1,000 scenarios in this study, 73.2% are intersec-
tion scenarios (732), and 66.12% of these intersections
are signalized (484). Within the signalized intersections,
301 are interesting scenarios, in which an AV has a stop-
ping or a starting maneuver. The results of the analyses
were categorized into three situations, the illustration of
each situation is presented in Figure 4, and the descrip-
tion of sample size is summarized in Table 1. For

reaction time in Situation 3, since the first vehicles were
excluded, the sample size is smaller than that for distance
gap.

Situation 1: vehicle approaching the red light
(Situation 1.1); vehicle approaching the queue
(Situation 1.2);
Situation 2: vehicle responding to the green light as
the first vehicle;
Situation 3: vehicle responding to its preceding vehicle
in a queue when the queue is dissipating.

Situation 1. Vehicle Approaching the Red Light and
Approaching the Queue

The analyses of this situation adopted data of vehicles’
dynamics from phase II (Figure 1). This situation
describes when and how a vehicle decelerates in response
to the red light or the queue present at the approach to
an intersection. The behavior is quantified from decelera-
tion approaching the red light/the queue using two

Figure 4. Illustration of different situations.

Table 1. Data Sample Size for Test Situations

Situation

Vehicle type

AV HDV

Situation 1.1 53 73
Situation 1.2 51 75
Situation 2 40 450

Vehicle pair

Situation 3 AV–HDV HDV–AV HDV–HDV

For distance gap 113 142 150
For reaction time 45 56 80

Note: AV = autonomous vehicle; HDV = human-driven vehicle.
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parameters: maximum deceleration and average decelera-
tion. The kernel density curves (Figure 5) of these two
parameters were plotted by R using the density function
of the ggplot2 package. The descriptive statistics and the
Kolmogorov-Smirnov (K-S) test results of behavioral dif-
ferences between AVs and HDVs are shown in Table 2.

K-S test results indicate that there are significant dif-
ferences in the approaching behavior of AVs and HDVs,
regardless of whether approaching the red light or the
queue. For approaching the red light (Situation 1.1), the

absolute mean values of maximum deceleration and
average deceleration for AVs (1.82m/s2 and 1.04m/s2)
are slightly smaller than those for HDVs (2.09m/s2 and
1.27m/s2). The standard deviations (SD) of these two
parameters are larger for AVs than for HDVs. For the
situation when vehicles are approaching the queue
(Situation 1.2), the absolute mean values of maximum
deceleration and average deceleration for AVs are
1.59m/s2 and 0.88m/s2 respectively, which are also
slightly smaller than those for HDVs (1.84m/s2 and

Figure 5. Distributions of deceleration driving behavior when approaching the red light (Situation 1.1) and the queue (Situation 1.2).

Table 2. Descriptive Statistics of Deceleration when Approaching Red Light (Situation 1.1) and Queue (Situation 1.2)

Vehicle type Mean SD P value for Kolmogorov–Smirnov test

Situation 1.1
Maximum deceleration (m/s2) AV 21.82 0.97

0.00013
HDV 22.09 0.80

Average deceleration (m/s2) AV 21.04 0.61
1.539e-05

HDV 21.27 0.43
Situation 1.2

Maximum deceleration (m/s2) AV 21.59 0.40
0.01567

HDV 21.84 0.57
Average deceleration (m/s2) AV 20.88 0.26

0.00208
HDV 21.10 0.34

Note: AV = autonomous vehicle; HDV = human-driven vehicle; SD = standard deviation.
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1.1m/s2). However, different from Situation 1.1, the
results for AVs have smaller SD than HDVs on the two
parameters.

K-S tests for the same type of vehicle under
Situation 1.1 and Situation 1.2 were conducted, as
shown in Table 3. The results indicate that whether
AVs are approaching the red light or the queue, the
maximum and average deceleration show no difference,
while for HDVs the approaching behaviors are signifi-
cantly different between these two situations.

Situation 2. Vehicle Responding to the Green Light (as
the First Vehicle)

This situation describes when a vehicle in the first place
in a queue, that is, stationary at the stop line, will
respond to the traffic light changing from red to green,
and how it accelerates from the stop line (i.e., phase IV).
The parameters employed for this situation are: (i)

response time to the green light, (ii) acceleration from
the stop line (maximum acceleration and average accel-
eration). The distributions and descriptive statistics of
the three parameters can be seen in Figure 6 and Table
4. The maximum and average accelerations of AVs and
HDVs do not show significant differences, with values
around 2.2m/s2 and 1.1m/s2. The starting response time
to the green light has significant differences among the
AVs and HDVs, however, as indicated by the K-S test
results. The mean starting response time of AVs is about
1 s, which is longer than HDVs with 0.70 s. The SD of
the starting response time of AVs (0.96m/s2) is less than
that of HDVs (1.18m/s2).

Situation 3. Vehicle Responding to Preceding Vehicle (in
the Queue)

This situation happens when the traffic light changes
from red to green and the vehicle is in the queue (i.e., not

Table 3. Kolmogorov–Smirnov Test Results for Deceleration Between Approaching the Red Light (Situation 1.1) and Approaching the
Queue (Situation 1.2)

Vehicle type Deceleration behavior P value for Kolmogorov–Smirnov test

Autonomous vehicle Maximum deceleration (m/s2) 0.5631
Average deceleration (m/s2) 0.2282

Human-driven vehicle Maximum deceleration (m/s2) 0.0379
Average deceleration (m/s2) 0.0116

Figure 6. Distributions of driving behavior when responding to the green light as the first vehicle (Situation 2).

Table 4. Descriptive Statistics of Driving Behavior When Responding to the Green Light as the First Vehicle (Situation 2)

Situation 2 Vehicle type Mean (s) SD (s) P value for Kolmogorov–Smirnov test

Starting response time (s) AV 1.01 0.96
3.729e-5

HDV 0.70 1.18
Maximum acceleration (m/s2) AV 2.02 0.65

0.0738
HDV 2.33 0.71

Average acceleration (m/s2) AV 1.09 0.43
0.11

HDV 1.23 0.38

Note: AV = autonomous vehicle; HDV = human-driven vehicle; SD = standard deviation.

Wang et al 331



the first vehicle in the queue). In this situation we analyze
how the vehicle responds to the queue-discharging start
of its preceding vehicle. The parameters applied in this
situation are: (i) distance gap to the preceding vehicle
(standstill distance) (Figure 7) and (ii) reaction time to
preceding vehicle when green light appears (Figure 8).
The descriptive statistics can be seen in Table 5.

With regard to the distance gap with the preceding
vehicle when stopped at the intersection, significant dif-
ferences were found among the three vehicle pairs: AV–
HDV, HDV–HDV, and HDV–AV (where the former
object is the following vehicle, i.e., Follower–Leader).
The results indicate that AVs maintain the largest dis-
tance gap from the vehicle in front, with a mean of

Figure 7. Distributions of distance gap for different response pairs (Situation 3).

Figure 8. Distributions of reaction time for different response pairs (Situation 3).

Table 5. Descriptive Statistics of Driving Behavior when Responding to the Preceding Vehicle (Situation 3)

Situation 3 Vehicle type Mean SD P value for Kolmogorov–Smirnov test

Distance gap to preceding vehicle (m) AV–HDV 5.20 1.21 AV–HDV HDV–HDV: ¡2.2e-16
HDV–AV 1.73 1.52 HDV–HDV HDV–AV: 1.17e-11

HDV–HDV 2.77 1.14 AV–HDV HDV–AV: ¡2.2e-16
Reaction time to preceding vehicle (s) AV–HDV 1.82 0.93 AV–HDV HDV–HDV: 1.262e-5

HDV–AV 0.49 0.99 HDV–HDV HDV–AV: 0.01
HDV–HDV 1.04 1.19 AV–HDV HDV–AV: 3.712e-10

Note: AV = autonomous vehicle; HDV = human-driven vehicle; SD = standard deviation.
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5.20m and standard deviation of 1.21m. HDVs exhibit
different behaviors according to the type of leader vehi-
cle. HDVs maintained a smaller distance gap with an
AV (with a mean of 1.73m and SD of 1.52m) compared
with a HDV (with a mean of 2.77m and SD of 1.14m).

As for the reaction time to the preceding vehicle start-
ing to move, HDVs also react differently depending on
whether the preceding vehicle is an AV or HDV. HDVs
react to an AV with a mean of 0.49 s, which is about half
that for another HDV at 1.04 s. The reaction times of
AVs are the longest at 1.82 s.

Discussion

According to the analysis results for AV and HDV driv-
ing behavior parameters in three situations (vehicle
approaching the red light/queue, vehicle responding to
the green light as the first vehicle, and vehicle responding
to the preceding vehicle in a queue), the quantified values
are compared with relevant findings from the literature.
Further, insightful findings are inferred in this section:

(i) The mean maximum deceleration of AVs when
approaching the red light and the queue was found
to be 1.82m/s2 and 1.59m/s2 respectively, which
matches, and is slightly smaller than, those
reported in the literature, which suggested a value
of 1.80m/s2 (12). For HDVs, the mean maximum
deceleration values are 2.09m/s2 and 1.84m/s2,
which is higher than the suggested value. It is
noticeable that the mean maximum deceleration of
HDVs when approaching the queue is significantly
less than when approaching the red light, meaning
they are more cautious in case they collide with
the preceding vehicle.

To better understand the deceleration process, the
two-dimensional kernel density distributions were
plotted as shown in Figure 9. The deceleration, speed,
and distance to the stop position during the decelera-
tion stage are extracted from each vehicle trajectory
with 1 s intervals. Several findings were obtained: (i)
AVs begin deceleration from a longer distance com-
pared to HDVs, indicating that AVs tend to start the
deceleration maneuver earlier, when they are farther
away from the intersection than HDVs. This phenom-
enon can sometimes be observed in human drivers too,
when they aim to avoid coming to a complete stop at
an intersection. (ii) AVs enhibit lower deceleration at a
short distance from the stop position compared to
HDVs. This means that when the vehicle is close to the
red light/queue, an AV can maintain a relatively stable
and lower deceleration. Compared to AVs’ mild driving
strategy, HDVs exhibit higher deceleration when close

to the position where the vehicle is about to stop. AVs’
mild strategy may be considering safety (39), comfort
(40), and fuel consumption reduction (41). It might also
benefit from the accurate judgment on the stopping dis-
tance and the speed detected from AV’s high-resolution
lidar and camera sensors. (iii) Furthermore, the distri-
butions of HDVs are more dispersed compared to AVs,
indicating greater heterogeneity among HDVs. For
example, the drivers of HDVs might have different
driving styles, with some being more cautious and oth-
ers being more risk-taking.

(ii) During the acceleration phase (phase IV), the aver-
age acceleration for AVs is around 1.09m/s2, which
is within the range specified in the literature (26).
The maximum acceleration is about 2.02m/s2,
which is lower than the value assumed for AVs in
Niels et al. (19) (3.0m/s2), but higher than the upper
acceleration for AV in Sxentürk Berktasx and Tanyel
(12) (1.4m/s2). The starting response time to green
light of HDVs is 0.70 s, which is slightly shorter
than Clement et al. (17) and Abraham (20), which
reported values between 0.8 and 0.9 s. Contrary to
the much shorter response time expected in the liter-
ature (19, 13, 20), it is 1.01 s for AVs which is com-
parable to or slightly longer than HDVs (6). In
addition, some HDVs have a response time that is
shorter than 0 s, meaning that they anticipate the
green light and tend to react before the light turns
green. This is not the case for AVs.

In addition, the 2D kernel density distributions were
plotted in Figure 10 to better understand the acceleration
process. The samples were extracted in the same way as

Figure 9. Deceleration and distance to the stop position two-
dimensional (2D) kernel density distributions.

Wang et al 333



for deceleration. It is worth mentioning that possible dis-
turbances were excluded, including situations where the
vehicle is waiting for a gap to turn, or is influenced by
merging vehicles from the other approaches. Several find-
ings are inferred from Figure 10: (i) AVs have higher
acceleration at lower speeds, when the vehicles begin to
accelerate from stationary. This indicates that HDVs can
accelerate smoothly at the beginning, while for AVs,
higher acceleration occurs at lower speeds. AVs’ abrupt
and unstable acceleration at the start might lead to dis-
comfort for passengers. (ii) Furthermore, the speed distri-
bution of HDVs extends further to the right than that of
AVs, meaning that within the maximum frame of each
accelerating scenario, HDVs can driver farther than AVs.
This could be explained by the higher acceleration of
HDVs afterwards.

(iii) AVs tend to keep a relatively large distance gap
to the preceding vehicle when stationary. This
could be explained by the conservative driving
strategy applied by AVs. It is also found that
HDVs maintained a smaller distance gap with an
AV than with another HDV. Similar results were
indicated in the literature (4, 7, 8). One possible
reason might be AVs’ early and long-distance
deceleration, making HDV drivers feel safer when
following an AV and thus reducing the standstill
distance gap from the AV. On the other hand, it
could be explained by the psychological factors of
human drivers. As the appearance of Waymo cars
is obviously different from ordinary vehicles,
when approaching an AV, human drivers can
recognize it and are curious about it. Thus, they
tend to stay closer to the stopped AVs for better
observation (42). This indicates a potential nega-
tive behavioral adaptation.

(iv) Compared with the reaction times to the front
vehicle’s movement at the discharge of the queue
(Figure 8), the starting response time to the green

light (Figure 6) was found to be smaller for both
HDVs and AVs. It might be that drivers/vehicles
respond more quickly and directly when they
observe the traffic light color change stimulus
than when they need to comprehensively judge
the movement of vehicles in front.

(v) The reaction time of AVs is the longest, as
expected. This could be explained by AVs’ driving
strategy that requires the AV to keep certain dis-
tance from the preceding vehicle (39), therefore, it
is likely to respond more slowly on purpose.
HDVs react differently to AVs and HDVs. The
reaction time of human drivers is shortened to
half when they respond to AVs compared with
HDVs. This might be because the delayed
response of AVs arouses the impatience emotion
of human drivers, especially when they are obser-
ving vehicles already moving in other adjacent
queues. This matches the AV-involved crash pat-
tern of the CDMV data, where most of the
crashes were AVs being rear-ended when starting
to move at an intersection (3).

Furthermore, the analyses from AV crash and disen-
gagement reports (such as CDMV reported crashes in
which often Waymo AVs are involved) from the other lit-
erature can be linked to the findings of this study. Some
findings are concluded. (i) Most AV-involved crashes
occur at intersections, and rear-end crashes are the pre-
dominant collision type, accounting for 57.5% of AV-
involved crashes. The percentages of rear-end and side-
swipe patterns are obviously higher compared with nor-
mal (HDV) crashes (3). (ii) From the speed information
preceding the occurrence of AV-involved crashes, in the
majority of these crashes the AV is stationary or traveling
at low speed (3, 43). (iii) Similar ratios of rear-end crashes
occur right after the AV starts moving (21%) or deceler-
ating (19%) (44).

These findings indicate that most AV-involved
crashes that happened at an intersection were caused
by the complex interactions between AVs and the fol-
lowing vehicles (3). When related to the micro-driving
behaviors observed from this study, AV behaviors dur-
ing the decelerating and accelerating process could be
concerned. (i) Observing the red light or queueing vehi-
cles in front of it, an AV decelerates earlier and from a
longer distance than the average HDV to maintain a
safe distance from its preceding vehicles. The following
vehicles might not expect the early deceleration of the
front vehicle, however. (ii) When the traffic light sud-
denly turns from green to yellow, or when the leading
vehicles suddenly brake, AVs tend to brake much
harder to maintain the safe distance gap, which may
not give the following vehicles enough time to take
appropriate actions. (iii) AVs usually have a longer

Figure 10. Acceleration speed two-dimensional kernel density
distributions.
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reaction time to the preceding vehicle within the queue
starting to move. When the surrounding vehicles start
to move, the AV remains still, which might cause impa-
tience and overtaking attempts by the human drivers of
following vehicles. It is worth indicating that there
could be a possible linkage but there is no evidence of a
causal or correlated relationship between them.

Conclusion

With the increase of AVs in the current transportation
system, potential risks have been revealed by road-testing
reports. Most studies have estimated that AVs have a
crash rate per million miles traveled much higher than
that of the conventional HDVs, and with different crash
pattern distributions. Therefore, it is very important to
evaluate the real implication of AVs on the traffic sys-
tem. Current studies which utilized real-world empirical
data mainly investigated the driving behavior of AVs
and HDVs in car-following scenarios. While having a
vital role in traffic systems which influences both the
safety and efficiency of traffic, signalized intersections
have obtained less attention.

Therefore, this study utilized the real-world empirical
Waymo open dataset to characterize and quantify the
behavior of AVs and HDVs at the approaches to signa-
lized intersections. Five critical maneuver phases and cor-
responding critical maneuver time stamps were identified
by WT and threshold-based method. The queues in front
of the intersection were also recognized. Five parameters
were applied to quantify the signalized intersection-
related behavior, and the analysis results were presented
in three situations: vehicle approaching red light or
queue, vehicle responding to green light (as the first vehi-
cle), and vehicle responding to its preceding vehicle (in
the queue). The results indicate statistically significant
differences in driving behavior between AVs and HDVs
at signalized intersections, as well as behavioral adapta-
tions of HDVs when interacting with AVs.

These findings can provide insights for improving
AV’s control algorithm, and also aid in the evaluation of
AVs’ impacts. For instance, the driving behavior models
of AVs and HDVs in the simulation platform concerning
the signalized intersection should be calibrated to over-
come the contradictory evaluation results obtained by
the literature based on different assumptions. Along with
the insightful analysis results of this study, there are sev-
eral limitations and outlook for future work. The sample
size of the applied dataset is small. We expect more data
to be available in the future, and more precise analyses
can be conducted. For example, analyzing reaction time
according to vehicles with different queue orders, classi-
fying the scenarios by different road infrastructure,
weather, and volume level. Besides, alterations of driving

behavior in a V2X environment, that is, with connectiv-
ity to other vehicles and infrastructure, could be inves-
tigated and compared. In addition, future research
could adopt datasets from different countries and com-
pare the varying driving behavior of different AVs and
HDVs among different cultures or traffic regulations.
Furthermore, our future work will apply and imple-
ment the analysis results of this study to calibrate simu-
lation models, and evaluate the impacts of AVs on
traffic safety and efficiency.
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