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Layman’s Summary

Some mathematical formulas are more than just tools; they are like little puzzles that connect different
worlds. The Rogers-Ramanujan identities are two such formulas. First discovered over 100 years ago,
they have turned out to be incredibly deep and mysterious. Over time, they have appeared in many
unexpected places, including the solution of puzzles involving whole numbers, the understanding of
particle behavior in physics, and even in the study of symmetry and geometry.

This thesis explores four things. First, it explains the proof of the famous mathematician Ramanujan
for these identities. Second, it looks at how these formulas can be understood through the idea of
"partitions”, ways of breaking numbers into smaller parts. Third, it gives a historical overview of how
other mathematicians over the past century have tried to explain these identities in clever and creative
ways. Finally, it offers a new explanation for one of the formulas using visual and logical steps, following
the ideas of a modern mathematician named Igor Pak.

The goal of this work is to show that even a pair of formulas, written long ago, can still surprise us and
lead to new discoveries.






Abstract

The Rogers-Ramanujan identities are among the most remarkable results in the theory of integer par-
titions and g-series. Discovered independently by Rogers, Ramanujan, and Schur, these identities
have since appeared in a wide range of mathematical disciplines, including number theory, combina-
torics, representation theory, and statistical mechanics. Despite their concise form, the identities have
inspired dozens of proofs and interpretations, each revealing new layers of structure and insight.

This thesis investigates four core aspects of the Rogers-Ramanujan identities. First, it presents and
explains Ramanujan’s original analytic proof. Second, it explores the combinatorial interpretation of
the identities in terms of integer partitions. Third, the thesis provides a chronological overview of key
combinatorial bijective proofs, highlighting how these have evolved and deepened our understanding of
the identities. Lastly, it presents Igor Pak’s combinatorial proof of the first Rogers-Ramanujan identity.

By combining historical context with mathematical exposition, this work aims to clarify the richness of
the Rogers-Ramanujan identities and to contribute to the ongoing effort to understand them more fully.

Key words: Rogers-Ramanujan identities, integer partitions, g-series, combinatorics, bijective proofs






Introduction

The Rogers-Ramanujan identities are among the most celebrated and mysterious results in the the-
ory of integer partitions and g-series. First discovered by Leonard James Rogers in 1893 (Rogers,
1893) and later independently rediscovered by Srinivasa Ramanujan (Aiyangar, 2000) and Issai Schur,
these identities have since captivated generations of mathematicians. Despite their analytic origin, they
have proven remarkably deep, connecting seemingly unrelated fields such as representation theory
(Andrews, 1984b), group theory (Fulman, 1997), statistical mechanics (Baxter, 1990), modular forms
(Bringmann et al., 2007) and even knot theory (Armond and Dasbach, 2011).

The historical development of these identities is as fascinating as their mathematics. Rogers’ original
formulation in 1894 received little attention until Ramanujan, working in isolation in India, rediscovered
the identities sometime before 1913. Without proof, he included them in his first letter to Hardy. Hardy
and others initially failed to prove them, and they were published without proof in MacMahon’s Com-
binatory Analysis in 1916. It was only in 1917 that Ramanujan found a proof. Around the same time,
Ramanujan discovered Rogers’ earlier publication and expressed deep admiration for his work. Mean-
while, Schur, isolated from England due to World War |, also rediscovered and proved the identities
independently, introducing a combinatorial perspective still influential today (Sills, p. 54).

Since their rediscovery, the Rogers-Ramanujan identities have assumed a nearly legendary status in
mathematics. Hardy once remarked: “None of the proofs of [the Rogers-Ramanujan identities] can be
called ‘simple’ and ‘straightforward’ [...]; and no doubt it would be unreasonable to expect a really easy
proof” (Hardy, as cited in Boulet & Pak, 2006, p. 1). Even today, with dozens of distinct proofs, each
highlights different structural or combinatorial insights, and the depth and beauty of these identities
remain a source of inspiration and challenge.

The identities have also achieved relevance beyond pure mathematics. In 1980, Baxter discovered a
direct application of Rogers-Ramanujan type identities while solving the hard hexagon model in sta-
tistical mechanics, a breakthrough that sparked extensive interdisciplinary research (Baxter, 1990).
As Campbell notes, this result “opened up a new world of research in both theoretical physics and
partition-theoretic mathematics that is still evolving” (Campbell, 2024, p. 1).

It is no surprise, then, that entire volumes have been written in an attempt to introduce these identities.
Yet even these works acknowledge their limitations. One such introduction opens with the statement:
“Experts in the field will realize immediately upon picking up this volume that it cannot possibly be long
enough to adequately discuss the multitude of subjects arising from the Rogers-Ramanujan identities...
this volume is but an introduction [...] and an invitation to study further” (Sills, p. xvii).

This thesis aims to contribute to that ongoing invitation. It focuses on four main objectives:
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6 1. Introduction

1. To explain Ramanujan’s own analytic proof of the Rogers-Ramanujan identities.
2. To develop the combinatorial interpretation of the identities through the theory of integer partitions.

3. To provide a chronological overview of key combinatorial bijective proofs of these identities, map-
ping the development of ideas over time.

4. To present a combinatorial proof of the first Rogers-Ramanujan identity by Igor Pak.

The structure of this thesis is as follows. Chapter 2 offers the necessary background: the precise
statements of the identities, the notation used throughout, the various interpretations of the identities,
and the Jacobi Triple Product Identity with proof. Chapter 3 presents Ramanujan’s own proof and
explains the main steps. In Chapter 4, we explore the combinatorial meaning of the identities by defining
the relevant concepts in partition theory. Chapter 5 surveys the major bijective proofs in chronological
order, focusing on how each contributed new insights into the identities. Finally, in Chapter 6, Igor Pak’s
bijective proof of the first identity is presented. The thesis ends with a conclusion and discussion of
open questions and future directions.



An Introduction to the
Rogers-Ramanujan Identities

This chapter begins with the formal statement of the Rogers-Ramanujan identities and introduces the
necessary notation, including the g-Pochhammer symbol and Ramanujan’s theta function. It explores
several interpretations of the identities: analytically as g-series, in statistical mechanics via Baxter’s
hard hexagon model, in representation theory through affine Lie algebras, and in the theory of modular
forms. The chapter then presents the Jacobi Triple Product Identity, which underpins many proofs of
the Rogers-Ramanujan identities. To build up to this, the g-binomial theorem is proved, followed by
key corollaries. The chapter concludes with a proof of the Jacobi identity.

2.1. The Identities

The Rogers-Ramanujan identities form a pair of infinite g-series identities. Each equates a sum side,
composed of rational functions involving powers of g, with an infinite product. These identities hold for
complex values of g with |q| < 1, ensuring convergence of the infinite expressions.

Identity 2.1 (The first Rogers-Ramanujan identity). For |q| < 1, the first Rogers-Ramanujan identity is:

le

o ¢ i o ,
,;, A-A-¢>)(1—-q») 11la- ) (1 — g5k 4y

2.1)

Identity 2.2 (The second Rogers-Ramanujan identity). For |g| < 1, the second Rogers-Ramanujan
identity is:

n%+n

0 . i o )
nz:;) A-9A-q¢»)-1A—-q") B l:l (1 — q5%+2)(1 — g5k+3)’

(2.2)

To illustrate the structure of these identities, we expand the sum and product sides. The first Rogers-
Ramanujan Identity expanded is:

ql q4 q9 q16
Haotaoa-» T a-ou-pa-®» T a-oa-a-®a-¢m
1 1 1 1

TA—0-¢H 0-¢OH(1-¢°) (1-gDHd-g" (T-goA-q%
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The second Rogers-Ramanujan Identity expanded is:

qZ q6 q12 q20
o otaoa-p T a-ot-pa-®» Ta-oa-ma-oa-¢m
1 1 1 1

T0-H0-¢) U-q)0-¢® d-¢2A-¢3) dA-qgHdA-q®

2.2. Notation

Throughout this paper, we assume that |g| < 1 to ensure the convergence of all infinite series and
products.

A central object in this work is the g-Pochhammer symbol, also known as the g-shifted factorial. It is
defined as follows:

k-1

1_[(1 —aq)y k>0,

j=0

1 ifk = 0,
(@ @)k = &

1_[(1 —ag ) k<0,

j=1
H(l—aqj) if k = oo.
j=0

Using the g-Pochhammer symbol, the identities (2.1) and (2.2) can be rewritten in compact product
form as:

i L - 1 (23)
L (@GDn (@97)=(0%0%)e '
and the second,

o qn(n+1) 1

= } 2.4

nz; (@G Dn (4%4%)=(% %) @4
We also make use of the Ramanujan theta function, defined as:

f(a, b) i= Z an(n+1)/2bn(n—1)/2. (25)

n=—oo

This function plays a key role in the analytic study of g-series and modular forms and appears frequently
throughout the literature on the Rogers-Ramanujan identities.

2.3. Interpretations

2.3.1. Analytic: g-series

One of the most remarkable aspects of the Rogers-Ramanujan identities is their connection between
an infinite sum and an infinite product. This duality is rare and intriguing, especially in analytic number
theory.
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In analytic contexts, the Rogers-Ramanujan identities are typically expressed as:

(o8]

S 1
Z (q; q)n (1 — SR (1 — gBkta)’ (2.6)

and

© n(n+1) 1
Z(q 0. Lla—Fmma =y @D

The sum sides of these identities can be interpreted as basic hypergeometric series, while the product
sides are examples of Euler-type infinite products.

Rogers (and later others) discovered many series-product identities similar in form to the Rogers-
Ramanujan identities, and as such are referred to as “identities of the Rogers-Ramanujan type” (Sills,
2005). Ramanujan recorded several Rogers-Ramanujan type identities in his Lost Notebook (Andrews
and Berndt, 2005).

A breakthrough came during World War Il when Bailey developed a systematic method to link g-
hypergeometric series with Euler-type products in a pair of influential papers (Bailey, 1946)(Bailey,
1948). Bailey and Slater continued this work by classifying numerous single-sum Rogers-Ramanujan
type identities. However, it was Andrews who extended the theory significantly by introducing elegant
examples of multisum identities. His development of the Bailey chain method enabled the construction
of entire infinite families of Rogers-Ramanujan type identities (Andrews, 1984a).

Today, research continues into new Bailey pairs and generalizations of Bailey chains. Many new iden-
tities discovered in this framework are still derivable from Bailey’s original principles.

2.3.2. The Hard Hexagon Model

The Hard Hexagon Model is a prominent example of an exactly solvable model in statistical mechanics.
Introduced and solved by Rodney Baxter in 1980 (Baxter, 1990), it describes the behavior of particles
on a two-dimensional hexagonal lattice, subject to strict exclusion rules. What makes this model ex-
traordinary is its deep and unexpected connection to the Rogers-Ramanujan identities.

In solving the model, Baxter discovered that the partition function, an essential object in statistical
mechanics, can be expressed in terms of g-series that match the Rogers-Ramanujan identities. This
surprising appearance of combinatorial identities in a physical context provided a profound link between
enumerative combinatorics, g-series, and phase transitions in physical systems. Baxter’s work not only
earned him the 1980 Boltzmann Medal but also stimulated a vast body of research bridging physics
and pure mathematics.

How the Model Works

The hard hexagon model considers a triangular (hexagonally tiled) lattice, where each site can be
either occupied by a particle or left empty. The key constraint is a nearest-neighbor exclusion rule: no
two adjacent sites may both be occupied. This mimics the behavior of hard-core particles, such as
molecules that physically cannot overlap, as shown in Figure 2.1 The model introduces a parameter
called fugacity (denoted z), which controls the probability of particle placement.

As z increases, the system transitions from a disordered phase (low density, approximately uniform) to
an ordered phase (where particles prefer certain sublattices). This sharp transition at a critical value
z = z. is an example of a phase transition, a fundamental concept in physics.
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Figure 2.1: Particles on the triangular lattice. No two particles can be together or adjacent. Adjacent faces have been shaded to
show how they form hard (i.e., non-overlapping) hexagons.

Baxter’s Exact Solution and the Role of the Identities

Baxter solved the hard hexagon model exactly using the corner transfer matrix method, a powerful
technique from integrable systems. His solution involved computing several thermodynamic quantities:

The average particle density p, the free energy per site x, the density difference R = p; — p,, where p;
refers to occupation density on specific sub-lattices.

He showed that these quantities could be expressed using infinite products and g-series. For certain
regimes of fugacity, these expressions reduce to forms involving functions like:

1 1
G(x) = 17:1 (1 — x5n—4)(1 — xSn—l)' H(x) = 17:1 (1 — x5n—3)(1 — xSn—Z)’

which are precisely the functions appearing in the Rogers-Ramanujan identities.

Baxter’s solution revealed that deep combinatorial structures underlie physical systems. The fact that
the Rogers-Ramanujan identities, originally discovered in a purely mathematical context, govern the
behavior of a real physical model, illustrates their profound universality. Baxter’s book Exactly Solved
Models in Statistical Mechanics (Baxter, 1990), in which the solution is detailed, has become a classic,
cited thousands of times across physics and mathematics.

This connection not only enriches our understanding of the Rogers-Ramanujan identities but also ex-
emplifies the power of combinatorics and g-series methods in modeling real-world phenomena.

2.3.3. Other Interpretations

The Rogers-Ramanujan identities have found remarkable interpretations across various areas of math-
ematics and physics, far beyond their original analytic formulation.

One of the most striking developments occurred in the late 1970s, when Lepowsky, motivated by their
work in the representation theory of Lie algebras, encountered Andrews’ recent book The Theory of
Partitions (Andrews, 1984b).

Lepowsky, together with Wilson, succeeded in giving the first Lie-theoretic (more precisely, vertex
operator-theoretic) proofs of the identities. They showed that the sum sides of the two identities corre-
spond in a precise way to the characters of the two inequivalent level 3 standard modules for the affine
Kac-Moody Lie algebra Agl). This established a powerful bridge between partition identities and the
representation theory of infinite-dimensional Lie algebras.



2.4. The Jacobi Triple Product Identity 11

Encouraged by this breakthrough, they initiated further work on other affine Lie algebras. Their student,

Capparelli, undertook the more complex case ofA(l), which led to the discovery of new, deeper partition
identities in the same spirit as the Rogers-Ramanujan identities.

Beyond Lie theory, the product sides of the identities are closely related to modular forms. The infinite
products appearing in the identities can be interpreted as g-expansions of modular functions for con-
gruence subgroups. This modular interpretation situates the identities within the arithmetic geometry
of modular curves and the theory of theta functions. Setting g = e2™%, with Im(t) > 0, it turns out that

q"V/%°G(q) and q'/°H(q)

where G(q) and H(q) are the product sides of the first and second Rogers-Ramanujan, respectively,
are modular functions of 7. This connection has revealed that the Rogers-Ramanujan identities reflect
modular transformations in disguise.

Moreover, these identities appear in a variety of other mathematical contexts, such as knot theory
(Armond and Dasbach, 2011) and group theory (Fulman, 1997).

2.4. The Jacobi Triple Product Identity

Among the most celebrated results in the theory of g-series and theta functions is the Jacobi Triple
Product Identity. Discovered by Carl Gustav Jacob Jacobi, this identity reveals a remarkable equiva-
lence between an infinite sum and an infinite product. It states that:

Identity 2.3 (The Jacobi Triple Product Identity). If z € C\ {0}, then

o

Z ZTan2 — 1_[(1 _ an)(l + Zq2n—1)(1 + Z—1q2n—1).

n=-—oo n=1

This identity can be rewritten in such a way that we obtain the following:
Identity 2.4 (The Jacobi Triple Product Identity rewritten). If a,b € C \ {0}, then

f(a,b) = (—a; ab) (—b; ab)s (ab; ab) e,

where f(a, b) is the Ramanujan theta function (2.5).

This identity plays a fundamental role in the development of partition theory, modular forms, and the
theory of mock theta functions. Almost every known proof of the Rogers-Ramanujan identities depends
directly on the Jacobi Triple Product Identity or one of its generalizations (Soodak, 2018. Its ability to
transform g series into infinite product expressions is crucial for revealing the underlying structure of
these identities, making it an indispensable tool in their derivation and analysis.

This section is dedicated to proving the Jacobi Triple Product Identity. This proof will not only enhance
our understanding of this identity, but will also introduce calculation techniques that will be used more
in Sections 3 and beyond, such as calculations involving the g-Pochhammer symbol or infinite sums.

Firstly, the g-binomial theorem will be presented. Using different substitutions in this theorem, 3 corol-
laries will be obtained. These corollaries are essential tools for the proof of the Jacobi triple product
identity. Finally, we show that Identity 2.3 is equivalent to Identity 2.4.
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2.4.1. The g-binomial theorem

In this section, the g-binomial theorem will be proved.

Lemma 2.4.1 (The g-binomial theorem). If|t|,|q| < 1, we have the following resuilt,

i (@ Dy _ (@)er
L (a5 Dn' | GDw

Proof. Note that proving this lemma is equivalent to showing that

n

21— —ad) (1 - ag™1 ® 11—
1+Z(1 a)(1—aq) - (1—aq )t”— 1—atq

A-pU-¢)-A-qn  1l1-tm
First, define the function
Zr1- atq™
o= [T
n=0

Next, consider

(1-DF(@®) = (1 —t)]_[ 1_ ata”

Separating the first term of the product, we get

(1= OF () = 1 —(t)(l — at) 1-— atq —(1-ab) 1—[ 11__62261:.
n=1

Re-indexing the infinite product,

(1 - at) H T =(-ap 1_[ — (Sfilq))qq = (1 - at)F(tq).

Thus, the functional equation
(1 =0F(t) = (1 —at)F(tq)
holds.

Now, we will try to to write F(t) as a power series expansion. In other words, we try to find the values
of A, in the following expression:
F(t) = Z A tn,
n=0

Note that F(0) =1, s0 45 = 1.

Substituting the power series expansion in the functional equation, we find

-1 Z At = (1 - ab) Z A,(t)" = (1 — at) z A qntn,
n=0 n=0 =0

Expanding and comparing coefficients yields

[°9) oo (o] (o8]
Z Antn _ Z Antn+1 — Z Anqntn _ Z Anaqntn+1_
n=0 n=0 n=0 n=0



2.4. The Jacobi Triple Product Identity 13

Rearranging,

Z A, (1= qhyen = Z A, (1 — agmyen+t,
n=0 n=0

Note that the term n = 0 of the infinite sum on the left-hand side does not have a contribution. Shifting
the index on the right side to align powers of t,

D A1 =g = > Ay (1 - ag" e
n=1 n=1

Equating coefficients of t™ for n > 1 gives the recurrence
An(1—q™) = Ap1(1—aq"™),

with initial condition 4, = 1.

Solving this recurrence,

(1-aq™™") 4= aq" (1 - aq"?)
1-gv " A-qmHA-—g"Y)

Ap =An_

iy ﬁl—aqk-l @ Dn
ALl 1-¢ 7~ @on

Hence,

_ (q)nn
Fo = Z(qq)n

which concludes the proof. O

2.4.2. Corollaries

Corollary 2.4.2. This corollary is the special case of the q-binomial theorem with a = 0, resulting in
the identity

1
— (@ Dn (Do

Proof. The result follows immediately by setting a = 0 in Lemma 2.4.1. O

Corollary 2.4.3. The following two identities arise from specific substitutions in the q-binomial theorem:

(a)
© qum2
2 —
—24;497 ) oo S oN
( ) 42 (0% 9%)m
(b)
(q2m+2 . ) (_1)Tqr2+2rm+r

2. g2
o (@595,
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Proof. Starting from Lemma 2.4.1, replace a with % and t with bt,

(00

y A-PA-jo-Q-ja"h . rylophu”
1-9A-¢*)-(1-qM 1—btq"

Simplifying,

C (b—a)(b—aq)-(b—aq™™")  TT71-atq"
”; -0 -0 = 1115

Now, set b = 0 and a = —1:

e 1.q.q2...qn_1 e
= o= [Jasom
Za—opa-g@-a-qg° L]0

Since
nn—1)
1+2+3+---+(n—1)=T,
this becomes
%) n(n-1) %)
q 2
1+ =] o+ e,
n=1 (Q)n n=0
Hence,
0 nn-1) 0
q 2
Z tn = l—[u +tqM). 2.8)
—  (9)n _
n=0 n=0

Performing substitutions in (2.8) yields the two identities.

To obtain the first identity, replace q by g% and t by zq:

® ® Zmgm m?-m
1_[(1 + (zq)q*") = Z A
12 0 (a%5q%)m
Rewriting,
© qum2
(—24;4*) e = o
42 (@%9%)m

To obtain the second identity, replace q by g and t by —g?™*2:

® 2m+2)rqr(r—1)

1_[ (1-g*m*+2g?) = ;} Ca (G2 9%,

n=0
Simplifying,
(1 _ 2n+2m+2) _ (_l)rqrz—r+2mr+2r
K (@ a%) ’
n=0 r=0 ’ T

o 24 2rm+
(@%™*2;q%),, = (=D"q" ™ r_
~ (@59,

Corollary 2.4.4. This corollary is the special case of Lemma 2.4.2 resulting in the identity:

i (cqzy _ 1
4 (@%a))r (4775 4D)w
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Proof. The result follows by replacing g by g2 and then t by —qz~! in Lemma 2.4.2. O

2.4.3. Proof of the Jacobi Triple Product Identity

In this section, firstly, the proof of the Jacobi Triple Product Identity as shown in 2.3 will be presented.
Using Corollaries 2.4.2, 2.4.3, 2.4.4, and some calculations, we obtain the identity. Subsequently, we
will show that Identity 2.3 is equivalent to Identity 2.4.

Proof. Starting from Corollary 2.4.3a, we have

(00

it qum2
[Javar =3
£ (4% 4%)m

n=0
_ i Z"q™ (7% 4 o,
N CETO P
using the fact that the following is equal:
1 (@%50)e

@%50®m (0%
Note that (g>™*2; q%)., = 0 for m < 0, so we can extend the sum over all integers m:

oo

= 1
l_[(1+zq2n+1): — Z Zm q (q2m+2 2)00.
15 (0% 4%)o &

By Corollary 2.4.3b, we substitute the expansion of (g%™*2; q?):
b (_1)rqr2+2mr+r

2n+1) — m ,m?
n(qu )= (g% qz) Zmz 1 ~ (@59

)r r2+2mr+m? m+r qr 77T

(-1
O qz)oo Z z @%q*),

m=—0oo7r=

Rewrite the double sum by factoring terms and re-indexing:

C (—1)'z7q 2
1 +Zq2n+1 — Z q(m+r) ZmAT
H( )= (a% qz) —~ (@59, L

_ 1 o (—1)TzT g Z g g
(@% 9% @%q*)r

7=0 m=-—oo

In the last step, we re-indexed m.
By Corollary 2.4.4 the first sum simplifies to

b ( l)r -r r 1
(q? ,qz)r Tz 5w

Therefore,

[e] 1 1 [¢] ,

1+z 2n+1) — . m
H( ) @* 9w (92759 Z 1
n=0 m=-oo
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which can be rearranged to

Z qmzm = 1—[(1 +20°™"1) (4% 4% 00 (=275 4%) oo
n=0

m=—oo

Expressing the infinite products in standard form,

[00)

Z quZm — 1_[(1 + Zq2n+1)(1 _ q2n+2)(1 + Z—1q2n+1)’

m=—oo n=0

and re-indexing n - n — 1 gives

z qmzzm - 1_[(1 +Zq2n—1)(1 _ q2n)(1 +Z—1q2n—1),
n=1

m=—oo

which is the Jacobi Triple Product Identity as shown in Identity 2.3. O
We now prove the Jacobi Triple Product Identity, as shown in Identity 2.4, using Identity 2.3.
Proof. Recall Identity 2.3:

z qmzzm — 1_[(1 +zg* 1) (1 — g2V (1 + 2z~ 1g? D).
n=1

m=—oo

1 1
Substitute z = (ab™1)z and q = (ab)?z, into the identity:

> (@)™ (@ =

[e2)

[ T+ (@) @n))? ™)1 = ((@b) 221 + (@b 7)™ ((ab) 2+

n=1

Rewriting the left-hand side where f(a; b) is the Ramanujan theta function (2.5).

i ((ab))™ ((ab™)2)™ = i (ab)F (@b
i amTZ-mez-a%.b%

m=—

[o9]

m(m+1) m(m-1)
> oy

m=—co

f(a;b).

Now, let’s rewrite the right-hand side:

[ Ja+ @) @mnH?™ - (1 - (@)= - (1 + (@b™)3) 7 ((@h) )™ )
n=1

- 1_[(1 +a b (1 — a®LbMY(1 + (ab)™)
n=1

= (—a; ab)(—b; ab)(ab; ab)
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Combining these results, we conclude that:

f(a;b) = (—a;ab)o (—b; ab) . (ab; ab)e.
This completes the proof. O






Proof Ramanujan

In this chapter, we present the proof of the Rogers-Ramanujan identities (2.1) and (2.2), as discovered
by Ramanujan himself. This proof is copied in "An Invitation to the Rogers-Ramanujan Identities” (Sills,
2017). However, this proof contains some minor errors. We corrected these using insights from the
original proof (Aiyangar, 2000).

We begin by establishing a series of lemmas. The first four concern the Ramanujan theta function
and an auxiliary function G (z), which will be defined below. We then show that G(z) satisfies a certain
q-difference equation. Using this, we define a new function H(z), and derive two representations of it:
one using its definition, and one via its power series expansion. Evaluating H(z) at specific values of z
will lead us directly to the Rogers-Ramanujan identities.

3.1. The Product Forms via the Theta Function

Lemma 3.1.1. Let f(—q?% —q3) be the Ramanujan theta function, then the product side of the first
Rogers-Ramanujan identities can be rewritten as follows,

f-%-» T 1
@D Q (1 — g5k+1)(1 — g5k+4)’ (3.1)

Proof. Applying Jacobi’s triple product identity, (2.4),

f(a; b) = (—a; ab)y (—b; ab) (ab; ab) .

19
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Evaluating the left-hand side of Identity 3.1, we find:
fa%5-a%) _ (@%)x(0% 470 (% 0% w
(4 Doo (4 Do

ﬁ(l — ¢5k+2) 1_[(1 — g5k+3) ﬁ(l —¢5
— k=0 k=0 k=1
[ Ja-a

k=1

IE

(1-¢% (A - %) A - %)
1] 1-4"

b
1l
=P

IE

1
1l @a—g5H@ —g5k1)

k=1
[

1
- | 1 (1 _ q5k+1)(1 _ q5k+4)' 0

Ac=0
4) be the Ramanujan theta function, then the product side of the second

Lemma 3.1.2. Let f(—q;—
Rogers-Ramanujan identities can be rewritten as follows,

f(—q; - 1
W (1 q5k+2)(1 — q5k+3)" (3.2)

Proof. Similarly as the previous proof, for Identity 3.2, we have
fCa -0 _ (439005 9%)=(0% 9%
(CHIS (4 Do

[ee]

1_[(1 _ q5k+1) ﬁ(l _ q5k+4) ﬁ(l _ qsk
_ k=0 k=0 k=1
[[a-a
k=1

Vir (1 _ qSk—4-)(1 _ qSk—l)(l _ qSk)
11 (1-q%)

&
1l
fat

IE

1

L LA -ghHa-gh

o 1

- 11 (1 _ q5k+2)(1 _ q5k+3)'

bl

3.2. The Function G(z) and its Properties

For z € C, define the function
(-D)™z*"q (1 - 2q*™)(z; q)m
6(2) = 6(za) = Z Er T
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In this section, the following identities will be proved,

G =f(=q%—-¢*) and (1-q)G(@) = f(—=q;—q"*),

Furthermore, it will be shown that G (z) satisfies the g-difference equation as stated in Lemma 3.2.1.

Identity 3.1. The following is true:
G(1) = f(=q*%—q%).

Proof. Setting z = 1 in G(z) gives us the following equation:

G =1+ Z D)Mo - qu)%_
m=1 ) m

Using the fact that (1 — ¢?™) = (1 + ¢™)(1 — g™) we have,

m(5m—1)

G)=1+ ) (-D"g" = (L+q™.
m=1

Splitting (1 +q™) results into two infinite sums, and re-indexing m — —m the sum corresponding to g™,

gives us:
i m(5m—1) - m(5m—1)
G =1+ ) (D" =+ Y (D" .
m=1

m=—oo

Finally, combining the sums,

i m(5m—1)
G= Y D =
m=—co
Note that this infinite sum exactly equals f(—q?; —q3). O

Identity 3.2. The following is true:
(1-9)6(@) = f(-q¢;—q*).

Proof. Writing (1 — q)G(q) using the definition and splitting the m = 0-term, gives

(1= @6(@ =1=q+ ) (1= g2mhgnem)/z(—pm

m=1

Splitting (1 — ¢g?™*1), results in two infinite sums,

(1 _ q)G(q) =1- q + Z qm(5m+3)/2(_1)m -q Z qm(5m+7)/2(_1)m_

m=1 m=1
Re-indexing m - —m — 1 in the second infinite sum,

-2

(1 _ q)G(q) =1— q+ Z qm(5m+3)/2(_1)m + Z qm(5m+3)/2(_1)m,

m=1 m=—co

combining the infinite sums,

A-@6@= ) (~OmqnCmD2 = f(—q;—q") =

m=—oo
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Lemma 3.2.1. G(z) satisfies the following q-difference equation:

G(z) = (1 —2zq9)G(zq) + zq(1 — zq)(1 — zq*) G (zq?).

Proof. Note that proving the lemma is equivalent to proving the following,

G(2)

20 G(zq) = zq(1 — 24*)G(2q?).

Express G(zq) as:

g Dr

_ AN r %r(Sr—l) _ r+ly_ Tt
G(zq)—;( D" (z9)*q (1-zq* 1)(1—zq)(q;q)r

= 1 (z4; Q)r
— (_1)r22rqzr(57”+1) . qr(l _ Zq2r+1)_
Z; (1 —zq)(@ D)

Rewrite G(z) as:

[o9)

G(z) = Z(—l)TZZTq%T(5T+1) a (_Z’Z(ﬁ)(;";)r (11— 22q4r+2).

r=0
(The detailed computations are provided in the Appendix (A.1))
Divide G(z) by (1 — zq):

1

(1-2q)(@Q)r

Subtract G (zq), to obtain:

(o0

6@ G(2q) Z(—l)rzzrq%r(sm) _Gaar (A —-z%q**%) — q"(1 — zg*™*1))

(1-2zq) (1-z20) (@ 9)r

r=0

1
2q(1 = 24%) ) (~1)7(2g%)%"q=" V(1 - 2g77+7)
r=0

=zq(1 - 24*)G(2q?).

(The detailed computations are provided in the Appendix (A.2).)

3.3. The Function H(z) and the Power Series ldentity
Define
G(2)

H@) = H(q) = o

Then the g-difference equation for G(z) translates to:

Lemma 3.3.1. The q-difference equation for H(q) is

H(z) = H(zq) + zqH(2q?).

— Z(_l)TZquETGH'l) (za; @)y (1- qu4r+2).

(Zqz; Q)r
(1= zq») (@ D~

(3.3)
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Proof. Starting from the g-difference equation of G(z) as shown in Lemma 3.2.1 , and dividing it by
(zq; 9) », We have the following:

G _ A=2z9)6@q) Zq(l —2q)(1 — 24")G(24*)
(Z4; oo 4 Do (4 Dw

Simplifying,
G(z) _  G(zq) G(z9?)
= > + zq 3 .
G Dw  (24% Qe (20° Qoo
By definition, this is equivalent to

H(z) = H(zq) + zqH(2q?). O

Lemma 3.3.2. H(z) can be rewritten using a power series expansion as follows,

had ann2
H(z) = .
£ (43 @)n

Proof. Assume the power series expansion:

[ee]

H(z) = Z a,zm,

n=0
we seek the power series coefficients a,, of H(z).

[ee]

Recall that in power series, the following is true: 0° = 1. So in this case, we see that H(0) = ¥,,_, a,0"
only has a contribution if n = 0. Since
G(0)
HO0) = ———=1,
©0-g;9)
we know that a, = 1.
Using the recurrence from the functional equation:
H(z) = H(zq) + zqH (2q%)
Z Za q"z”+zq2anq z"
n=0 n=0 n=0
— Z anqnzn + Z anq2n+1zn+1
n=0 n=0
— Z anqnzn + Z an_qun—lzn

n=0 n=1

Comparing coefficients, for n > 1, gives the recurrence
ap = apq" + an_qun—l = (1-qYay = qzn_lan—l-
Solving recursively:
W an—l . an—l q2n—3 q(2n 1)+(2n—3)+- +1a _ q"z
R N (D N C R R (4 Dn RGN
since 2n—1)+ (2n—3) + -+ 1 = n?,
Thus,
had P n?
H(z) = 1 O

£ (43 @n
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3.4. Deriving the Rogers-Ramanujan Identities

Finally, we prove the Rogers-Ramanujan Identities as stated in (2.1) and (2.2).

Proof. Recall that, using the definition of H(z) from Equation (3.3) and Lemma 3.3.2, the function H(z)
can be expressed in two different forms:

@)  _ H(z) = Z z"q"
n=0

(29 oo (@ Dn

Evaluating at z = 1 and z = q yield the first identity,

2

o n .2 _ .3
Z q _H(1) = G(1)  f(=q% q)'
n=0

(@G Dn @G Do (@ Do

and the second identity:

iqn@l“): = S@_ __fCa=a) _ fa=g)
@D 1=9(0% Do (T Do

These are precisely the Rogers-Ramanujan identities. O



Combinatorial Interpretations

4.1. Definitions

In this section, we introduce the necessary terminology and structures used throughout this chapter
and later chapters. We begin by defining integer partitions, their graphical representations via Young
diagrams, and their conjugates. Building on this, we introduce Durfee rectangles and describe how
they divide partitions into structured subcomponents, denoted a, 8, and y, which are crucial in defining
the (2, m)-rank of a partition. We then formalize several important sets of partitions, including the
full set of partitions of an integer n, the subset of Rogers-Ramanujan partitions, and sets defined by
fixed rank values. Finally, we describe classes of partitions with specific constraints on their parts,
such as difference conditions or congruence relations modulo 5, which will play a central role in later
combinatorial interpretations of the Rogers-Ramanujan identities.

4.1.1. Partitions

Definition 4.1.1 (Integer Partition). A partition A of a positive integern is afinite sequence A = (11,4, ..., A¢(2))
of positive integers, where
/‘11 > 2.2 = 2 A[(l) > 0,

and

We define 11,2, ..., A4y as the parts of 4, and £(4) as the number of parts of A or the length of . By
convention, define 4; = 0 for all j > £(1). We denote by e(1) the smallest part, so e(1) = A,y).

The partition A is represented graphically by its Young diagram [A] as illustrated in Figure 4.1. The
Young diagram of A consists of a total of n blocks in (1) left-justified rows, and the number of blocks
in the row i is equal to 4;.

Definition 4.1.2 (The conjugate partition). The conjugate partition A’ is obtained by reflecting [1] along
the main diagonal. Thus, by interchanging the rows and columns of the Young diagram of A (see Figure
4.1).

Mathematically, this means
A= (A, 0 25,

25
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where
M=#{j: 2>}

A A
Figure 4.1: Partition A = (5,5,4,1) and conjugate partition ' = (4,3,3,3,2)

Definition 4.1.3 (First m-Durfee rectangle). Let 1 = (44,4, ..., 4¢2)) be a partition and m be a non-
negative integer. The first m-Durfee rectangle is defined as the rectangle with height s,, (1), and width
Sm(A) —m, where

smD) =max{fneN|n—m<A,}.

Graphically, an m-Durfee rectangle is the rectangle of maximal area that fits in the upper left corner of
the Young diagram [A], such that its height minus its width equals m. Width 0 is allowed, but height 0
is not.

Definition 4.1.4 (Second m-Durfee rectangle). Let A = (44,1, ..., A¢2)) be a partition and m a nonneg-
ative integer. The second m-Durfee rectangle is defined as the rectangle with height t,, (1), and width
tm(1) —m, where

tm() =max{n €N |n—m<2A;_yn}-

Graphically, it is the rectangle of maximal area that fits in the diagram [1] below the first m-Durfee rectan-
gle, whose height minus its width is m. Thus, the firstm-Durfee rectangle of the partition (A, (z), -+, Ae(2))-
Width 0 is allowed, but height 0 is not.

Definition 4.1.5 (Partitions «, §, and y). Let 1 = (14, 4;, ..., A4(2)) be a partition and m a nonnegative
integer. Fori € {1, ...,s,, (1)}, define the partition a as,

a = (ay,ay, .., q, 1)) Wwherea; = 1; —sp(4) +m.
Forj e {1,..,s, (1)}, define the partition B as,
B = (B1, B2 ) Bt 1)) where B; = Aiis ) — tm(A) +m.
Fork e {1,..,2(0) — s,,(A) — t,, (L)}, define the partition y as,
Y = Y2 o Ye)—sm)-tmr))  WHere v = diis ay+t,m1)-

Graphically, a, B and y are the three partitions located to the right, in the middle of and below the first
and second m-Durfee rectangle, respectively (see Figures 4.2 and 4.3). If m > 0 and we have an
m-Durfee rectangle with width 0, as shown in Figure 3, then y must be the empty partition.

Definition 4.1.6 ((2,m)-rank). For a nonnegative integer m, we define the (2, m)-rank, r,,,(4), of a
partition A by the formula:
Tom(A) = B + &g (D) —tmD)-B1+1 — V1~

4.1.2. Sets of partitions

Definition 4.1.7 (Set of all partitions of n). Denote by B, the set of all partitions A of n.

B, ={1: Ais a partition of n}.
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!

L — Y1
1 L]

Figure 4.2: Partition 1 = (10,10,9,9,7,6,5,4,4,2,2,1,1,1), the first 0-Durfee rectangle of height s,(1) = 6, and the second
0-Durfee rectangle of height t, (1) = 3. Here the remaining partitions are @ = (4,4,3,3,1), 8 = (2,1,1),andy = (2,2,1,1,1).
In this case, the (2,0)-rank is 1, 5(1) = fy +a; —y1 =2+4—-5=1.

a

B
1 B

Figure 4.3: Partition 1 = (7, 6,4, 4, 3,3, 1), the first 2-Durfee rectangle of height s, (1) = 5 and width 3, and the second 2-Durfee
rectangle of height t, (1) = 2 and width 0. Here the remaining partitions are @ = (4,3,1,1), 8 = (3,1), and y which is empty. In
this case, we have (2,2)-rank r,,(1) = By +a; —y; =3+4-0=7.

Let p(n) = |B,| be the partition number of n.

Let P be the union of B, over all possible n:

p= U P,.
n=0

Finally, Define the generating function P(t) of the partition numbers p(n) by:

P(t) =1+ Z p(n)e™.
n=1

Remark. We define p(0) := 1. This definition is justified by considering the empty partition A = () as
the unique partition of 0, and the only partition of length zero. Hence, we can write P(t) as,

P(H) = ) p(m)e™
n=0

Further, we note that p(n) = 0 for all n < 0.

Definition 4.1.8 (Rogers-Ramanujan partitions). We say that 1 is a Rogers-Ramanujan patrtition if
e(1) < £(1). Denote by Q,, the set of all Rogers-Ramanujan patrtitions of n.

Qn={1€ep,: e <2N)}.
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e

A A
Figure 4.4: The Rogers-Ramanujan partition A = (7, 6, 5, 5), the first 0-Durfee rectangle of height s, (1) = 5 and width 5. Here

the remaining partitions are ¢ = (2, 1), and y which is empty. In this case, the rank and the second 0-Durfee are not defined.

Define q(n) = |Qnl-

Let Q be the union of Q,, over all possible n:

Q= Oon-
n=0

Finally, define Q(t) as follows:
Q@) =1+ ) qm)™
n=1

Remark. Note that the (2; 0)-rank is only defined for non-Rogers-Ramanujan partitions (e(1) > I(1))
because for Rogers-Ramanujan partitions the height of the first 0-Durfee rectangle will be e(1). How-
ever, as shown in Figure 4.4, the second 0-Durfee rectangle must have a height of 0, which is not
allowed. Furthermore, in this case B, is not defined. The (2; m)-rank is defined for all partitions for all
m > 0, since then an m-Durfee rectangle with height m and width 0 always exists. Again, see Figures
4.2 and 4.3 for examples.

Definition 4.1.9. (Partitions with rank) Let H,, ,, . be the set of partitions of n with (2, m)-rank r:

Hymy = {A ER: 1p,ud)= r}.

Define h(n,m,r) = |Hpmr|-

Define Hy, ., <» to be the set of partitions of n with (2, m)-rank smaller than r and H, ,,, -, to be the set
of partitions of n with (2, m)-rank greater than r :

Hn,m,sr = {’1 EPR;: rZ,m(A) < T},

Hymar = {/1 ER: 1Tpm@)= r}.

The following is apparent from the definition.
h(nm,<r)+h(n,m=r+1)=pn), form>0, (4.1)

and
h(n,0,<7r)+h(n,0,=27r+1)=pn)—qn), forallreZn=1. (4.2)

Definition 4.1.10 (Partition numbers with restrictions). Here are four different partition numbers with
certain restrictions on the parts of the patrtitions.

a) The number of partitions such that the parts differ by at least 2 is denoted as follows,

p(n | diff2) :=#{ A€P,: A — Ay 22forief{1,2,..,¢0) -1} }.

b) The number of partitions of n such that the parts differ by at least 2 and where the smallest part is
greater than or equal to 2 denoted as follows,

p(n | diff2, 22):=#{l€B: Ayay=2 and A — Ay =2fori€{1,2,..,6(0)—1} }.
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¢) The number of partitions where all the parts are of the form 1 mod 5 or 4 mod 5 denoted as follows,

p(n|1,4 mod5):=#{1€PB,: A =1or4 (mod5) fori€{l,2,..,£(1) —1}}.

d) The number of partitions where all the parts are of the form 2 mod 5 or 3 mod 5 denoted as follows,

p(n|2,3 mod5):=#{1€B,: A =2o0r3 (mod5) forie{l,2..,£(1) —1}}.

Remark. If there is only one part in the partition, then we say that all the parts differ by at least two.
For example,

@ eflePy:  Ayy=2 and A —Aq =2fori€{1,2,..,41) -1} }.

Example 4.1.11. To understand the restrictions in the Definition 4.1.10 better, let's analyze the partitions
of 6:

Let us examine if the partition (6) satisfies the following conditions:

 All parts differ by at least 2:

The partition consists of only one part, 6. Since there’s only one part, it trivially satisfies the
condition of having parts differ by at least 2.

» Smallest part > 2 and all parts differ by at least 2:

This partition satisfies the previous condition, and the smallest part is 6, which is greater than or
equal to 2, so it satisfies this condition.

* Parts 1, 4 mod 5:
6 =1 (mod 5), so it satisfies this condition.

* Parts 2, 3 mod 5:

6 =1 (mod 5), so this partition does not satisfy the condition, as 6 is neither congruent to 2 nor
3 modulo 5.

Let us examine if the partition (5,1) satisfies the following conditions:

* All parts differ by at least 2:

The difference between the parts is 5 — 1 = 4, which is greater than or equal to 2, so it satisfies
the condition.

» Smallest part = 2 and all parts differ by at least 2:
The smallest part is 1, which is less than 2, so it does not satisfy this condition.

* Parts 1, 4 mod 5:

5=0 (mod 5),and 1 =1 (mod 5). Since 5 is not congruent to 1 or 4 modulo 5, this partition
does not satisfy this condition.

» Parts 2, 3 mod 5:

5=0 (mod 5),and1 =1 (mod 5). Neither part is congruent to 2 or 3 modulo 5, so this partition
does not satisfy this condition either.

Let us examine if the partition (2, 2, 2) satisfies the following conditions:
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All parts differ by at least 2:

The difference between the parts is 2 — 2 = 0, which does not satisfy the condition that the
difference between parts must be at least 2.

» Smallest part > 2 and all parts differ by at least 2:
This partition does not satisfy the previous condition. So it also does not satisfy this condition.

* Parts 1, 4 mod 5:

4 = 4 (mod 5) and 2 = 2 (mod 5). Since 2 is not congruent to 1 or 4 modulo 5, it does not
satisfy this condition

* Parts 2, 3 mod 5:
2 =2 (mod 5). Since 2 is congruent to 2 modulo 5, it satisfies this condition.

As shown in Table 4.1, the partitions of 6 are categorized based on various conditions such as the
difference between parts, the smallest part, and congruence modulo 5.

Description Partitions # Partitions
6),(5,1),(4,2),(411),3,3),
All partitions of 6 3,2,1),(3,1,1),(2,2,2),(2,2,1,1), 11
2,1,1,1,1),(1,1,1,1,1,1)

Partitions with diff at least 2 (6),(51),(4,2) 3
Partitions with diff at least 2, smallest part = 2 (6),(4,2) 2
Parts 1,4 mod 5 (6),(4,1,1),(1,1,1,1,1,1) 3

Parts 2,3 mod 5 (3,3),(2,2,2) 2

Table 4.1: Partitions of 6 and their satisfaction with the given conditions: differences between parts, smallest part, and congruence
modulo 5.
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4.2. Rogers-Ramanujan Identities in terms of partitions

In this section, the Rogers-Ramanujan identities translated to partition theory will be stated. After that,
an explanation will be provided on how this translation works using generating functions.

The Rogers-Ramanujan identities are often interpreted in the language of partition theory. The first
identity can be expressed as the number of partitions of n such that the parts differ by at least 2 equals
the number of partitions of n where all the parts are of the form 1 mod 5 or 4 mod 5:

p(n|diff 2) =p(n|1,4 mod5).

Similarly, the second Rogers-Ramanujan identity becomes the number of partitions of n such that the
parts differ by at least 2 and where the smallest part is greater than or equal to 2, equals the number
of partitions of n where all the parts are of the form 2 mod 5 or 3 mod 5:

p(n|diff2, 22)=p(n|2,3 mod 5).

Before getting into the generating function for the restricted partitions stated above, we need to prove
a couple of lemmas beforehand.

Lemma 4.2.1 (Euler’s generating function for p(n)). Let P(q) be the generating function of partitions,
then

o [oe] 1
P@ =) pwa =] | 1= (4.3)
n=0 k=1

where p(n) denotes the number of partitions of n.

Proof. Consider the generating function of partitions:
P(q) = Z p(n)q" =1+ q+2q*+3q® +5q¢*+7q° + -, (4.4)
n=0

where p(n) is the partition number of n. Note that the exponent of g can be expressed in exactly p(n)
distinct ways. For any fixed n, rewrite the exponent of g in every possible partition of n exactly once,

P(q) =14+ ql + (qz + q1+1) + (q3 + q2+1 + q1+1+1) + (q4- + q3+1 + q2+1+1 + q2+2 + q1+1+1+1) + ...

Furthermore, we can use an alternative representation of all partitions, ensuring that each appears
exactly once as a power of q,

P(@=0@"+q¢*+q"" + "1+ )@+ +¢*?+ )@+ + B+ )@+ gt + ).
In this formulation, each term in the exponent of g describes the multiplicity of a given part size: the
first term, (q° + q* + q**1 + q'*1*1 + ...), indicates the number of ones in the partition, the second term
indicates the number of twos, and so on.

Now using the geometric series, we have the following,

P@=A4+q+q"" '+ + . .)A+¢*+¢*2+ .00+ +¢*+.)A+qg*+...) (4.5)

(1 1 1 1 "
_(1—Q)(l—q2)<1—q3><1—q“>"' (*.0)

=ﬁ1;k .
k=1 1
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Lemma 4.2.2. The number of partitions of n which have at most k parts equals the number of partitions
of n into parts with the largest part less than or equal to k:

#{ Partitions of n into at most k parts } = #{ Partitions of n into parts with largest part <k }.
(4.7)

Proof. Let A = (44,15, ..., A;) be a partition of n, and consider its conjugate partition A'. As Figure 4.5
shows, if 4 has at most k parts, then the largest part of 1’ is less than or equal to k. Since every partition
A has a well-defined conjugate 1A', we conclude that

#{ Partitions of n into at most k parts } < #{ Partitions of n into parts with largest part <k }.
(4.8)
Similarly, by considering the conjugate of ', namely (1)’ = A, we see that this process is reversible.
Therefore, we also have

#{ Partitions of n into at most k parts } > #{ Partitions of n into parts with largest part <k }.

(4.9)
11213 ‘ .........
12 - Pl F A
kq it
L ...... /1k 1
HE
A
Figure 4.5: Partition A = (14, 4,, ..., ;) and with its conjugate partition 2’ with labeled blocks.
Combining both inequalities, we conclude that the two sets are equinumerous. O

Lemma 4.2.3. For nq,n,, ..., n, integers, we have,

1
CA-p-¢®) - (1-gk)

ny+ny+-+ng —
q k

0snisn,<--<ng

Proof. Note that, per definition, the left-hand side of the lemma is the generating function of partitions
of n into at most k parts,
Ny+ng+e+ng

q

0snysny<---snp
Moreover, the generating function of partitions with the largest part < k can be defined as follows,

oo

Pae(@) = ) P

n=0

where p.; (n) denotes the number of partitions with the largest part < k. Moreover, similar to Lemma
4.2.1, this can be rewritten as,
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P@=@°+q*+q"" 1 +q"""* +.)@° +q* +q*2+.)@° +® + ¢®3 + ..) - (¢° + g¥ + gFtF ).

This results in the right-hand side of the lemma:

1
A-A-g»)-A-q%)

Since we know by Lemma 4.2.2 that
#{ Partitions of n into at most k parts } = #{ Partitions of n into parts with largest part <k },

the two corresponding generating function should be equal. This finishes the proof. O

4.2.1. Generating Functions

The following four lemmas illustrate how both Rogers-Ramanujan identities can be interpreted combi-
natorially in terms of integer partitions.

Lemma 4.2.4. The product side of the first Rogers-Ramanujan identity,

1
— g5k+1 — g5k+4)’
1 1A =g HA - g™

is the generating function of p(n | 1,4 mod 5).

Proof. If we restrict ourselves to using only numbers of the form 5m + 1, where m is a positive integer,
then we exclude factors corresponding to parts not congruent to 1 or 4 mod 5 from Equation (4.5).

For example, the number 2 is not of the required form, so the factor (1+q2%+q%*2?+...) must be reduced
to just (1), as all higher powers in this factor correspond to multiples of 2, which we now exclude.

Applying this process to all non-conforming terms yields the following expression:

Z p(n|1,4 mod 5)g" = (1 +q+q™* + @1 £ YA+ @2 + @22 + )1+ @ + 2 +,9(1+q* +..)

A )

1_[ (1 _ 5k+1)(1 _ 5k+4—)

Lemma 4.2.5. The product side of the second Rogers-Ramanujan identity,

1
13 (1 — q5k+2)(1 — q5k+3)’

is the generating function of p(n | 2,3 mod 5).
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Proof. This is the same procedure as in Lemma 4.2.4 we start with Equation (4.5) and remove all terms
that are not of the form 5m — 2 or 5m — 3, where m is a positive integer:

Z p(n]23 mod5)g"=1+qg+g" " +q "+ A+ a2 +q* 2+ .)A+ @+ P+ DA+ + D

() o)

l_[ (1 — 5k+2)(1 — 5k+3)

Lemma 4.2.6. The sum side of the first Rogers-Ramanujan identity,

n?

N q
T;) 1= =g 1—-q")

is the generating function of p(n | diff 2).

Proof. Let H(q) denote the generating function for all partitions in which the parts differ by at least 2,
p(n | diff 2). Note that

ght*%  where A; > Ai_1 +2

enumerates all partitions with exactly k parts satisfying this difference condition. Therefore, if we sum
over all k € N, we obtain a generating function for all partitions in which the parts differ by at least 2:

H(q) = Z Z ght A where A > Au_q +2
k>0 1A, <-<Ai

Now, define n; as follows:
nizlk_i+1—2-i+1.

We can rewrite 1;’s in terms of new variables n;’s as follows:

lk21 = lk=n1+1
Ak—l >3 = lk—l =n2+3
Ak—Z >5 = /‘lk—Z =Tl3+5

/1122k—1 = /11=nk+2k—1
0<n; <n, < <n.

So H(q) becomes:

H(q) = Z gratnz (135 (2Kk1)

ny+ny+-+ng+k?

= q

— qk2 Z gratnz et
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We used the factthat 1 + 3 + 5 + --- + (2k — 1) = k2. Now using Lemma 4.2.3, we have

q

”(")=;(l—q)(1—q2)---(1—qk)' .

Lemma 4.2.7. The sum side of the second Rogers-Ramanujan identity,

n?+n

N q
;) (I-)A =g (1=q")

is the generating function of p(n | diff 2, = 2).

Proof. Similar to the proof of Lemma 4.2.6, let H,(q) denote the generating function for all partitions in
which the parts differ by at least 2 and the smallest part is 2 or greater, p(n | diff 2, > 2). Note that

Z q21+m+lk where Ai = li—l +2

enumerates all partitions with exactly k parts satisfying this difference condition. Therefore, if we sum
over all k € N, we obtain a generating function for all partitions in which the parts differ by at least 2:

H,(q) = Z Z q’11+"'+)‘k where A; =1, +2.
k>0 1A <S4y

Now, define n; as follows:
Ny =Ag—iy1 — 210

We can rewrite 1;’s in terms of new variables n;’s as follows:
Ak >2 = Ak =nq + 2

/‘{k—l >4 = Ak—l =n, + 4
/‘lk—Z >6 = Ak_z =Ny +6

/1122’{ = /11=nk+2k
OSnlﬁnZS---Snk.

So H,(q) becomes:

Hy(q) = Z qnl+n2+"'+nk+(2+4+6+~~~+2k)

Ny+ny++np+kZ+k

=) gkC+D) Z gtz

k=0 0sn sn,s<---<ng

We used the factthat2+4+6+--4+2k=k+14+3+5+ -+ (2k—1) = k(k + 1). So the exponent
becomes ny + -+ + ny + k(k + 1). Now using Lemma 4.2.3, we have
gD
= _
W= G pa-@-a-a




36 4. Combinatorial Interpretations

Theorem 4.2.8. The Rogers-Ramanujan Identities imply that the following equalities hold:
p(n|diff2) =p(n| 1,4 mod 5), (4.10)

and
p(n|diff2, 22) =p(n|2,3 mod 5). (4.11)

Proof. Using the lemmas 4.2.6, 4.2.4, and the Rogers-Ramanujan Identities, we know that

0 . [ an
diff 2)q™ =
nZO”(”' 2 ,Z_O(l—q)(l—qZ)---(l—q")

= 1
- Q (1 _ q5k+1)(1 _ q5k+4)

Z p(n|1,4 mod 5)q"
n=0

is true. Since there are two power series, the coefficients must be the same (A.2.1). Thus,
p(n|diff2) =p(n|1,4 mod?5)
The proof of (4.11) is similar. O

4.2.2. Examples for the first identity

Example 4.2.9 (n = 5). First, we will show that the statement as stated in Theorem 4.2.8, is valid for
n = 5. The complete set of integer partitions of 5 is:

G), 41, 32, G1L1, (221, 21,11, (11,111

The partitions of 5 where each part differs from the next by at least 2 are:

G) &1

The partitions using only parts congruent to 1 or 4 mod 5 are:
“41, (1,1,1,11

So, in both cases, there are exactly 2 valid partitions. This confirms the combinatorial interpretation for
the first Rogers-Ramanujan identity for n = 5.

Example 4.2.10 (1 < n < 6). Continuing the procedure of the previous subsection for integers 1 <
n < 6, we get the following table.

nla, diff 2 1,4 mod?5

1] 1 1 1

211 2 1+1

311 3 1+1+1

4| 2 4,3+1 4,1+1+1+1

51 2 54+1 4+1,1+14+1+1+1

6| 3|65+1,4+2(64+1+1,1+1+1+1+1+1

Indeed, for1 <n < 6,p(n| 1,4 mod 5) = p(n | diff 2).



Bijective Combinatorial Proofs of the
Rogers-Ramanujan Identities

The Rogers-Ramanujan identities were first discovered by Rogers in 1894 and later independently by
Ramanujan and Schur around 1917. While Rogers’s original proof (and the 1919 Rogers-Ramanujan
joint proof) were analytic, Schur provided a combinatorial interpretation of the identities in 1917 (Hardy,
1940). However, finding a direct bijective proof, a one-to-one correspondence between the partition
sets as shown in Chapter 4, became a long-standing challenge in partition theory. For decades, proofs
of the Rogers-Ramanujan identities relied on generating functions or complex analytic techniques (often
invoking the Jacobi triple product), rather than purely combinatorial bijections Soodak, 2018. It was not
until the 1980s that the first explicit bijective proof emerged in the literature.

This chapter surveys the development of bijective combinatorial proofs of the Rogers-Ramanujan iden-
tities in chronological order, focusing exclusively on peer-reviewed contributions. We identify the first
bijective combinatorial proof and describe its method, then examine how later proofs evolved, noting
the types of bijections used, involutive constructions, direct explicit maps, recursive arguments, parti-
tion bijections via Ferrers diagrams or lattice path correspondences, etc., and what new insights each
approach offered.

5.1. Early Combinatorial Work (1917-1970): MacMahon and Schur

During the early 20th century, the Rogers-Ramanujan identities were known but lacked a direct combi-
natorial proof. They were therefore stated without proof in the second volume of MacMahon’s Combi-
natory analysis in 1916. Shortly thereafter, Schur independently rediscovered the Rogers-Ramanujan
identities in 1917 and published the first combinatorial proof. Schur’s proof, written in German, did
not construct a bijection explicitly, but it established the partition interpretation of the identities and
proved the equality of the two partition counting functions combinatorially. In particular, Schur showed
that the number of partitions of n into parts differing by at least 2 equals the number of partitions of
n into parts = 1 or 4 (mod 5), as stated in Chapter 4, thereby giving a combinatorial meaning to the
Rogers-Ramanujan identities. (Hardy, 1940)

Following Schur’s work, interest in combinatorial proofs of partition identities grew. Sylvester, Franklin,
and others developed constructive methods for simpler partition identities in the late 19th century
(Pak, 2002). However, for the Rogers-Ramanujan identities, no simple bijection was known for many
decades. Mathematicians like Watson, Jackson, and later Slater and Gordon focused on analytic or
generating function generalizations, rather than direct bijections. By the 1970s, the quest for a “con-
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structive” proof of Rogers-Ramanujan had become a central problem in partition theory. As the combi-
natorial theory of partitions entered a “golden age” in the 1960s-70s with Andrews and others proving
many identities by combinatorial means, the Rogers-Ramanujan identities remained a notable holdout
without a known bijective proof. This set the stage for a breakthrough in the 1980s.

5.2. The First Bijective Proof: Garsia and Milne (1981)

A major milestone was achieved in 1981 when Garsia and Milne published the first explicit bijective
proof of the Rogers-Ramanujan identities (Garsia and Milne, 1981). Garsia and Milne’s work, entitled
“A Rogers-Ramanujan Bijection,” introduced a powerful general method called the involution principle to
construct complicated bijections systematically. The involution principle is a combinatorial mechanism
that takes two involutions (self-inverse mappings) on a common set and, under certain conditions,
uses them to produce a bijection between the two sets of fixed points of those involutions. In their 51-
page paper, Garsia and Milne carefully crafted a sequence of involutions and intermediate bijections
(combining ideas from earlier involutions by Vahlen, Sylvester, and Schur) to ultimately establish a one-
to-one correspondence between partitions counted by the Rogers-Ramanujan generating function’s
product side and those counted by its series side. This involutive bijection was the first of its kind for
the Rogers-Ramanujan identities.

While groundbreaking, the Garsia-Milne bijective proof is notoriously complex (Soodak, 2018). The
construction is not a simple “natural” mapping but rather a carefully engineered algorithm that applies
involutions iteratively to redistribute partition parts according to certain rules. In essence, their proof
mechanically translated an inclusion-exclusion argument into a combinatorial mapping. One involution
in their construction was derived from the Jacobi triple product identity, which means the bijection
implicitly uses analytic input. Nevertheless, the Garsia-Milne result was a triumph: it proved, for the
first time, that a direct combinatorial bijection exists between the two classes of partitions in the Rogers-
Ramanujan identities. This provided a new level of insight by not only confirming the numerical equality
of the two sides, but actually pairing each partition on one side with a unique partition on the other.

The significance of Garsia and Milne’s work was widely recognized. It demonstrated the power of
the involution principle as a general combinatorial proof technique and spurred further research into
bijections for Rogers-Ramanujan-type identities. However, combinatorialists also found the resulting
bijection somewhat unsatisfying in terms of simplicity or transparency. The authors showed that one
can mechanically construct bijections, but from a traditional point of view, the solution was indirect
and hard to follow. As Pak later observed, the Garsia-Milne involution-method bijections were “not
simpler than the analytic proofs” and did not immediately suggest new combinatorial interpretations
or refinements beyond the identities themselves. In other words, the first bijective proof solved the
problem in principle but left open the quest for a more elegant or natural bijection.

5.3. Subsequent Bijective Proofs and Improvements (1982-1989)

Following Garsia and Milne’s pioneering work, other mathematicians quickly sought to simplify and
extend combinatorial proofs of the Rogers-Ramanujan identities. In 1982, Bressoud and Zeilberger
published what they called “A short Rogers-Ramanujan bijection” (Bressoud and Zeilberger, 1982),
providing a much more concise bijective proof. Bressoud and Zeilberger’s bijection, spanning only a
few pages, still relied on the Garsia-Milne involution principle and the Jacobi triple product as a in-
gredient, but through clever use of involutions they managed to streamline the mapping considerably.
This involutive bijection was of the same general character as Garsia-Milne’s (and in fact was directly
inspired by the latter), but it was less complex and more transparent in its execution. The shorter proof
by Bressoud and Zeilberger demonstrated that the involution-based approach could be made more effi-
cient. While the Bressoud-Zeilberger bijection was still not “simple” in an absolute sense, it represented
a significant improvement in clarity and brevity over Garsia and Milne’s original construction.
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Around the same time, Andrews was interested in removing the remaining analytic crutches from the
combinatorial proofs. Andrews posed the question of whether one could prove the Rogers-Ramanujan
identities without invoking the Jacobi triple product (or any heavy analytic identity) at all, as that seemed
to be the last vestige of non-combinatorial reasoning in these proofs. Zeilberger famously highlighted
this challenge during a 1985 combinatorics colloquium, asking if a Rogers-Ramanujan proof could
be found that avoids Jacobi’s triple product entirely. In 1987, Andrews published a paper titled “The
Rogers-Ramanujan identities without Jacobi’s triple product,” in which he presented new proofs of the
identities not relying on the classical triple product lemma (Andrews, 1987). Andrews’s approach was
still not a direct bijection; it used a combinatorial generating function argument and a replacement for
the Jacobi product. The importance of Andrews’s 1987 work is that it paved the way for more purely
combinatorial approaches, eliminating one major analytic tool, suggesting that a completely bijective
proof might be within reach with more ingenuity. Andrews himself noted that removing Jacobi’s identity
was a step toward a truly direct combinatorial proof free of the involution principle’s complexity. In
the end, even Andrews’s proof had to invoke a generalized product lemma, so the quest for a “pure”
bijection continued (Soodak, 2018). Nevertheless, this effort reflected the community’s drive to simplify
the reasoning and seek a more natural explanation for the Rogers-Ramanujan partition identities.

The late 1980s saw further developments. In 1989, Bressoud and Zeilberger again collaborated to pro-
duce generalized Rogers-Ramanujan bijections (Bressoud and Zeilberger, 1989). In this paper, they
extended the involution principle methods to construct bijections for the Andrews-Gordon identities, a
family of partition identities that generalize the Rogers-Ramanujan identities to higher moduli and more
parameters. This work showed that the techniques pioneered for Rogers-Ramanujan could be sys-
tematically applied to an infinite hierarchy of partition identities. The bijections in the generalized case
were even more intricate, but they provided combinatorial insight into how the Rogers-Ramanujan phe-
nomenon extends beyond modulus 5. In essence, the 1989 extensions clarified the partition structure
behind the identities: they identified how to pair off partitions with difference conditions to partitions
with higher-order congruence conditions using a network of involutions and bijections. These results
also reinforced a key insight: although one could construct such bijections algorithmically, the result-
ing maps were often too complicated to yield a “natural” combinatorial story. As Joichi and Stanton
remarked around that time, “the emphasis should be placed on combinatorially important proofs rather
than just a proof” (Pak, 2002). In other words, by the end of the 1980s, combinatorialists had succeeded
in proving the Rogers-Ramanujan identities bijectively and even generalizing them, but the next goal
was to find better proofs: ones that are more elegant, transparent, or insightful.

5.4. New Perspectives in the 2000s: Direct Bijections and Struc-
tural Insights

The turn of the 21st century brought a renewed examination of Rogers-Ramanujan bijections, motivated
by the desire for greater elegance and understanding. Pak, in particular, emerged as a central figure
advocating for simpler bijective proofs. In a 2005 seminar talk, Pak pointed out that “a number of
important partition identities (such as the Rogers-Ramanujan identities) do not seem to have a ‘nice’
bijective proof” and that finding such a proof remained an important open challenge. This sentiment
echoed the general feeling in the combinatorics community: despite having technical bijections, the
Rogers-Ramanujan identities were still lacking a conceptually natural bijection that one could describe
without heavy machinery.

Pak not only surveyed the state of the art, but also contributed new ideas. Together with Boulet, Pak
devised a fresh combinatorial proof of the Rogers-Ramanujan identities in 2005-2006 that attempted
to minimize algebraic manipulation and make the bijections more direct (Boulet and Pak, 2006). The
Boulet-Pak proof splits the first Rogers-Ramanujan identity into two symmetry statements about par-
titions and then proves each symmetry by an explicit bijection on partitions. They introduced a new
statistic related to Dyson’s partition rank and showed that this statistic exhibits two involutive symme-
tries. By composing the involutions associated with these symmetries, Boulet and Pak obtained a direct
bijection between the two sides of the first Rogers-Ramanujan identity. In contrast to Garsia-Milne, their
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approach did not construct the bijection via a global inclusion-exclusion argument, but rather built it from
two simpler bijections that were more “elementary and approachable”. The proof still used the Jacobi
triple product at an initial step to set up the partition equations, but the heavy lifting in the combinatorial
part was done by tangible combinatorial maps on partition diagrams. This was a novel blend of an-
alytic and combinatorial reasoning: essentially, they reduced the Rogers-Ramanujan identities to two
simpler combinatorial identities and then proved those bijectively. The Boulet-Pak bijection provided
new insight by clarifying how certain partition statistics can naturally partition the set of all Rogers-
Ramanujan partitions into symmetric classes. Many researchers viewed this as a step toward a more
“natural” proof, even if Hardy’s century-old comment that no proof of Rogers-Ramanujan is truly simple
remained apt (Hardy, 1940).

In addition to new proofs, modern work has placed the Rogers-Ramanujan identities in a broader com-
binatorial context. Connections to lattice path interpretations have been explored, wherein partitions
with difference conditions are represented as lattice paths in a plane region and mapped to other lat-
tice paths representing the modulus conditions. For example, some recent papers construct bijections
between certain lattice path ensembles and Rogers-Ramanujan-type partitions to give combinatorial
proofs of generalized identities (Hao and Shi, 2025; Marwah and Goyal, 2024). These approaches
often use recursive or induction-based bijections: one inductively “builds” a bijection for partitions of n
by extending a bijection for partitions of smaller integers, carefully adding or removing parts or steps in
a path. Such recursive bijections can sometimes simplify the combinatorial interpretation, although for
Rogers-Ramanujan itself the direct involution-based proofs still dominate the literature.

Despite all these advances, it remains generally accepted that no trivially simple bijection for the
Rogers-Ramanujan identities is known. The existing bijective proofs are celebrated for solving the
problem and illuminating various aspects of partition structure, but they are also seen as technically
intricate. As Pak noted in 2008, the Rogers-Ramanujan identities still lack a “nice” bijection, and finding
one stands as a benchmark test for combinatorial ingenuity. This ongoing quest reflects the high value
placed on truly insightful bijective proofs in the field of combinatorics.



Combinatorial Proof

In this chapter, we present the combinatorial proof of Cilanne Boulet and Igor Pak for the first Rogers-
Ramanujan identity (Boulet and Pak, 2006). We begin with a reformulation of the identity due to Schur
and demonstrate how it is equivalent to the first Rogers-Ramanujan identity. Next, we derive a generat-
ing function for Rogers-Ramanujan partitions and study two symmetry theorems about these partitions.
Finally, we use these results to carry out an algebraic argument involving generating functions, leading
to Schur’s identity and thus a combinatorial proof of the first Rogers-Ramanujan identity.

To avoid confusion between the partition number of Rogers-Ramanujan partitions, q(n), and the vari-

able q used in the Rogers-Ramanujan identities, we will replace the variable q in the identities with ¢
throughout this chapter. Accordingly, we also assume in this chapter that |t]| < 1.

6.1. Schur’s identity

Theorem 6.1.1. Proving Schur’s identity is equivalent to proving the first Rogers-Ramanujan identity,
where Schur’s identity is the following:

oo kz oo 1 o )
1+; (1—-0t)(1 —t2)(1—tK) = Bmmzm(—n gmEm-1)/2

Proof. Recall the Jacobi triple product identity, as described in Identity 2.3:

oo o

k(k+1) . = . > .
Y oskge =] Ja+a] [a+atan] Ja-a.
i=1 j=0 i=1

k=—o0

We substitute z = —t~2 and q = t>. The left-hand side becomes:

> k(k+1) > k(5k+1) > m(sm—-1)
YR s = Y Dk s = ) DT

k=—c0 k=—o00 m=—oo

Where m = —k.
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Now consider the right-hand side of the Jacobi identity:

[ee]

A+-t2¢)H | @+ D)) | |a - ).
[ Ll

i=1 Ji

This simplifies to:

1_[(1 _5i-2) g(l _ 5i+2) L_l[(l 50,

i=1

Re-indexing these products using i —» i + 1, and writing as one infinite product, becomes the following,
1_[(1 _ t5i+2)(1 _ t5i+3)(1 _ t5i+5)_
i=0
Now multiply numerator and denominator by
1_[(1 _ t5i+1)(1 _ t5i+4)
i=0

so that the product becomes:

(o8]

(1 _ t5i+1)(1 _ t5i+4)
1_[(1 _ t5i+2)(1 _ t5i+3)(1 _ t5i+5) .

i=F

~.

i=0 lo‘o[ (1 _ t5j+1)(1 _ t5j+4)
j=0
Simplifying this expression,
[[a-
i=1
1_[(1 _ t5j+1)(1 _ t5j+4)
j=0

By equating the left- and right-hand sides of the Jacobi triple product identity and dividing both sides

by 1_[(1 —tY), we find:
i=1

= 1 - m(m-1) i 1
11 (1 —t™+1) (1 — t7+%) = mzw(—l) t 2 1:1[ rtl) (6.1)

If Schur’s identity,

d tkz © 1 ©
= _— _1\ymsm(5m-1)/
1+;(1—t)(1_t2)...(1_tk) _B(l_ti)mzm( 1)memeGm-1/2,

is proven and we rewrite the right hand side using 6.1, we have proven the first Rogers-Ramanujan
Identity 2.6. O
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6.2. Symmetries

Lemma 6.2.1. The generating function of Rogers-Ramanujan partitions can be written as:

tk?

ew=1 +; A-Dd-t5) - 1-15

Proof. Similar to the proof of Lemma 4.2.6, let Q(t) denote the generating function for all Rogers-
Ramanujan partitions, q(n). Note that

Z tht -+l where e(1) < £(A)

enumerates all partitions with exactly k parts satisfying this condition. Therefore, if we sum over all
k € N, we obtain a generating function for all partitions satisfying the Rogers-Ramanujan condition
e() <€)

0t) = Z Z tht+he where A > Auq + 2
k>0 152, =<2

Now, define n; as follows:
Ny = Ag—i+1 — K

We can rewrite 4;’s in terms of new variables n;’s as follows:

Aka =4 lk=n1+k
Ak—l >k = Ak—l =n2+k
Ak—Z >k = /1k—2 =n3+k

/112]( =4 11=le+k
OSTLlSnZS“'Snk

So Q(t) becomes:

QM) = ttng+ongH(ktktkt-+k)

— tn1+nz+"'+k2

— tkz Z Nz et

Now using Lemma 4.2.3, we have

tk?

Q(t)=;(1—t)(1—t2)---(1—tk) -

Now, we will prove two theorems that are the main ingredients of the proof.

Theorem 6.2.2. Let H,,,, be the set of partitions of n with (2, m)-rank r, and let h(n,m,r) = |Hy |-
Then,
h(n,0,r) = h(n,0,—r)

forr € Z.
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To prove the first symmetry, we present an involution ¢ on P \ Q which preserves the size of partitions
as well as their 0-Durfee rectangles, but changes the sign of the rank:

@ : Hn,O,r - Hn,O,—r-

Let A be a partition with two 0-Durfee rectangles and partitions «a, 8, and y to the right of, in the middle
of, and below the 0-Durfee rectangles. This map ¢ will preserve the 0-Durfee rectangles of 1 whose
sizes are denoted by

s=5y(1) and t=ty(A).

We will describe the action of ¢ as A —s A by first mapping (a,ﬁ,y) to a 5-tuple of partitions (u, 7, 7, p, 0),
and subsequently mapping that 5-tuple to a different triple (&, 8,7) which goes to the right of, in the
middle of, and below the 0-Durfee rectangles in A'.

The mapping from the partitions (a, 8, y) to the partitions (u, 7, 7, p, 0), is as follows:

1. Letu = B.

2. Remove the following parts from « : As—t—p+j for1 < j <t. Let v be the partition comprising of
parts removed from a, and & be the partition comprising the parts which were not removed.

3. For1<j<t,let
k; = max{k <s-—t | y}f —k Zns_t_kﬂ},

and let p be the partition with parts p; = k; and o be the partition with parts ; = y]f —k;.
The mapping from the partitions (4, 7,7, p, @) to the partitions (&, 8,7), is as follows:

1. Let ' = v + u be the sum of partitions, defined to have parts )?j' =vj + y;.
2. Let @ = o U 7 be the union of partitions, defined as a union of parts in ¢ and 7.

3. Letg =p.

Figure 4 shows an example of ¢ and the relation between these two steps.

Remark. The key to understanding the map ¢ is the definition of k;. By considering k = 0, we see that
k; is defined for all 1 < j < t. Moreover, one can check that k; is the unique integer k which satisfies

Ts—t—k+1 = V]{ —k ST ¢ (6.2)

(We do not consider the upper bound for k = s — t.) This characterization of k; can also be taken as
its definition. Equation (6.2) is used repeatedly in our proof of the next lemma.

Lemma 6.2.3. The map ¢ defined above is an involution.
Proof. We divide the proof into five parts, showing that:

1. pis a partition,
o is a partition,
1= ¢(1) is a partition,
@? is the identity map

r50(1) = =150 (2).

o > w b
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- .

Figure 6.1: An example of the first symmetry involution ¢ : 1 = 4, where 1 € Hp o and ie Hpo_r,forn=71andr = 1. The
maps are defined by the following rules:
B=u a=vum y =oc+p,
B=p, a=muo, P =u+w
Also, .
A=(10,10,9,9,7,6,5,4,4,2,2,1,1,1), A=(10,9,9,7,6,6,5,4,3,3,3,2,2,1,1).
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(1) Let’s first verify that p is a partition.

We consider the bounds (6.2) for indices j and j + 1. Assuming k; < k;,,, we have
T[S—t—kj+1 + k} < T[S—t—kj+1 + kj+1 < ‘VJE+1 < y]’ < T[S—t—kj + k}

Rewriting,
!
Ts—t—kj+1 S Vjp1 — k; < Ms—t—k;j-

Uniqueness therefore implies that k; = k;,,. Hence, k; > k; + 1. Thus, p is a partition.

(2) Now check that o is a partition. Suppose k; > k;,q, thens —t —k; + 1 < s —t — k;,; must be true.
Since m is a partition, we have,

Ms—t—kjyq < Ms—t—kj+1-
By (6.2), for j and j + 1, we have,
Yi — ki 2 ¥j41 — ki
If kj = k;,1, then we simply need to recall that y’ is a partition to see that

Vi — ki Z¥j1 — kjs

Thus, o is a partition.

(3) Since u, v, are clearly partitions by definition, and we just estableshed that p and ¢ are partitions
as well, it follows that &, §, 7 are also partitions. Furthermore, by their definitions, we see that y, v and
o have at most t parts, m has at most s — t, and p has at most t parts each of which is less than or
equal to s — t. This implies that & has at most s parts, £ has at most ¢ parts each of which is less than
orequal to s — t, and 7' has parts at most ¢.

So, a, B,y fit to the right, in the middle of, and below 0-Durfee rectangles of size s and t and so ¢(1) is
a partition. This confirms that ¢(A) results in a valid partition.

(4) We apply ¢ twice to a non-Rogers-Ramanujan partition A where «, 8,y appear to the right of, in the
middle of, and below two 0-Durfee rectangles. As usual let y, v, , p, o be the partitions occuring in the
intermediate stage of the first application of ¢ to A and let &, 8,7 be the partitions to the right of, in the

AAAAA

occurring in the intermediate stage of the second application of ¢ and let ax, Bx,y* be the partitions to
the right of, in the middle of and below the 0-Durfee rectangles of p2(1) = ¢(A).

We need to establish several key facts. Observe that ji = # = p. Also, from Equation (6.2) we have:

nS—t—kj+1 < y], - kj = 0-} < T[S—f—kj'
Because ¢ is a partition, it follows that c%s_t_kjﬂ = g;. On the other hand, since ; = p; = k;, the map
¢ removes the parts ds_t_kjﬂ =g; from a@. Thus, V = o and & = m.

Define

~

kj=max{f<Ss—tly;—kzns_t_,;ﬂ}.

By the remark, we know that k} as defined above is the unique integer k which satisfies:

Tt f41=Vj — k<mg_; g

On the other hand, recall that )?j' = uj+v;and ; = ;. This implies )7j' —pBj = v;. Also, by the definition
of v, we have v; = As—t—p+j- Therefore, by the definition of =, we have:

AT
Ms_t-pi+1 S As—¢—pivj = V; =Vj — Bj STs_¢_p;.
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Since 7t = m, by the uniqueness in, we have I%j = B; = ;. This implies that p = pand 6 = v.

Finally, the second step of our bijection gives a* =vUr =a,8 =u=8,and (y*) =p+o=y'. This
implies that ¢? is the identity map.

(5) Using the results from (4), we have:

1200 =P1+ as_t_p 41 +v1 =MtV —py— o0y

On the other hand,
r0) =Pt ag_lpg — Vi =p1+or—u — v
We conclude that r, o (1) = =13, (A). O

Theorem 6.2.4. Let H,,,, be the set of partitions of n with (2, m)-rank r, and let h(n,m,r) = |Hy |-
Then the following is true:

h(nnm<-r)=h(n—r—-2m—2,m+2,> —r)

form,r > 0 and form =0andr = 0.

To prove the second symmetry, we present a bijection i, ,.:

1pm,r : Hn,m,s—r - Hn—r—Zm—Z,m+2,2—r-

This map will only be defined for m,r > 0 and for m = 0 and r > 0, and in both of these cases the first
and second m-Durfee rectangles of a partition 1 € H,, ,, ., have non-zero width. For m = 0, (2, 0)-rank
is only defined for partitions in P\ Q which by definition have two 0-Durfee rectangles of non-zero width.
Form > 0, since we have r > 0, a partition A € H,, ,, ., must have

Tom(A) = B + Qs ()=t =gy +1 — V1 < —7 < 0.

This forces y]f > 0 and so both m-Durfee rectangles must have non-zero width.

We describe the action of i = 1, - by giving the sizes of the Durfee rectangles of 1= YD) =9p(D)
ang the partitions &, 8,7 which go to the right of, in the middle of, and below those Durfee rectangles

in A.
1. If 2 has two m-Durfee rectangles of height
s:=s,(1) and t:=t,Q),
then A has two (m + 2)-Durfee rectangles of height

s' =Sy =s+1 and t =ty =t+1

2. Let
k, = max{k <s—tlyy—-r—k= as_t_k+1}.

Obtain & from a by adding a new part of size y; — r — ky, 8 from B by adding a new part of size
ki, and y from y by removing its first column.

Figure 5 shows an example of the bijection ¥ = 1,,, ,, and the relation between these two steps.
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Sy Vs
: Y [
¥ TS
i — kl
) A X
T

Figure 6.2: An example of the second symmetry bijection Y, : 1 = A, where 1 € Hpm<—r Ae Hy' myz s form =0,
r=2,n=92andn' =n-r-2m-2=88. Herery (1) =2+2-9=-5<-2, rz_z(i): 3+4—-6=1=2-2,where

A=(14,10,9,9,8,7,7,5,4,3,3,2,2,2,2,2,1,1,1),
A=(13,10,9,8,8,7,6,6,5,4,3,2,2,1,1,1,1,1).
Also,

s=7 s' =s+1=8 s"=s"-m-2=6¢,

t=3, t'=4 t"=2 y{=9 k=3, yi-1—-k; =4
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Remark. As in the earlier Remark, by considering k = B,, we see that k; is defined and indeed we
have k, = B;. Moreover, it follows from its definition that k;, is the unique k such that

As—t—k+1 = Vi —1r—k < as_¢-
If k = s — t we do not consider the upper bound.

Lemma 6.2.5. The map v, , defined above is a bijection.

Proof. Our proof has four parts:

1. We prove that A = Y (A) is a partition,
2. We prove that the size of 1 isn —r — 2m — 2,
3. We prove that 15 42 (1) = -,

4. We present the inverse map y 1.

(1) Note that 1 is a partition since A has m-Durfee rectangles of non-zero width, A may have (m + 2)-
Durfee rectangles of width s — 1 and t — 1. Furthermore, the partitions & and £ have parts of size at
most s —t and t + 1, respectively, while the partitions [? and y have parts of size atmosts—tandt—1,
respectively. This means that they fit to the right of, in the middle of, and below the two (m + 2)-Durfee
rectangles of A.

(2) To prove that the above construction gives a partition A of n — r — 2m — 2, note that the sum of
the sizes of the rows added to a and g is r less than the size of the column. removed from y, and
that both the first and second (m + 2)-Durfee rectangles of 1 have size m + 1 less than the size of the
corresponding m-Durfee rectangle of 1.

(?) By Remark 6.2, the part we inserted into B will be the largest part of the resulting partition, i.e.,
B1 = k1. By equation ??, we have:

!
As—t-ky+1 S V1 — 7 — ki < Qg -

Therefore, we must have:

ds’—t’—[31+1 = sty +1 = VJ{ —r—k.
Indeed, we have chosen k; in the unique way so that the rows we insert into « and g are ay_,i_p 44
and 3, respectively.

Having determined a_,/_p ,, and p, allows us to bound the (2,m + 2)-rank of 4:

A

Tomi2(A) = ds’—t’—ii’1+1 th—Vi=vi—-r—kit+ki -y <,

where the last inequality follows since y; is the size of the second column of y, whereas y] is the size
of the first column of y.

(4) The above characterization of k, also shows us that to recover «, 8, and y from &, 3, and 7, we
remove part &g _.,_z ., from &, remove part p; from f, and add a column of height Qgr_y1_p 41 +hy+r
to y. Since we can also easily recover the sizes of the previous m-Durfee rectangles, we conclude that
1 is a bijection between the desired sets. O
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6.3. The algebraic part

Let us continue to prove Schur’s identity. For every j = 0 let
a; = h(n — jr = 2jm = j(5j = 1)/2,m + 2j,< —r = ),
and
b; = h(n—jr —2jm—j(5j — 1)/2,m + 2j,> —r — j + 1).
Note that by definition the following is true:
h(n,m, < —r) =ay = b;.
By Theorem 6.2.2, we see that a; = b;,,. So using the fact that a; — b;,; = 0, we have,
h(n,m,< —r) = by + (aqy — by) — (a, —b3) + (azg — by) — ...,
or equivalently,
h(nm,<—-r) = (b +a,) — (b, +ay) + (b3 +az) — (by +ay) + ...
By Theorem 6.2.4, a; + b; = p(n — jr — 2jm — j(5j — 1)/2), for all r, j > 0 holds. Applying this, gives,
hinm<-r)y=pn—r—-2m-2)—-pn—-2r—4m—-9)+pn—-3r—6m—21) — ...

= > (= jr = 2jm = (5] — 1)/2).
=1

In terms of the generating functions, we have:

Hp r (£) = z h(n,m, < —1)t",
n=1

this gives for m,r > 0 and form =0 and r > 0:

Her(®) = Y ) (<17 p(n = jr = 2jm = j(5] = 1)/2)t™
n=1j=1
Re-indexingn -» n = jr + 2jm + j(5j — 1) /2 gives,
Hm Sr(t) — Z (_1)}'—1p(n)tn+jr+2jm+j(5j—1)/2
n=—jr—-2jm-j(5j-1)/2+1 j=1

Z p(n)e" Z(_1)j—1tjr+2jm+j(5j—1)/z_
n=1 j=1

J

Using Lemma 4.2.1, we see that

oo 1 00 ' ' . B
Hp < () = 1—[ m Z(_1)1—1t1r+21m+1(51—1)/2_
n=1 j=1

In particular, we have:

= 1 - . . .
Ho<o(t) = 1_[ a-m Z(—1)1—1t1(51—1)/2’
n=1 j=1
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and
Hy o 1 (£) = 1_[ _r Z(_l)j—ltj(wﬂ)/z
0,=—-1 (1 _ tn) ' .
n=1 j=1

From the first symmetry equation and (4.2) we have:
Hy<o(t) + Ho<-1(t) = Ho<o(t) + Ho21(t) = P(t) — Q(0).

We conclude:

[ee]

-1 < . J(5j+1)
e S
t”) . 4

th?

n(l—tn) 1+};(1—t)(1—t2)--~(1—t") ’

n=

which implies Schur’s identity and completes the proof of the first Rogers-Ramanujan identity.






Conclusion

The Rogers-Ramanujan identities are a well-known and intriguing subject in the theory of integer par-
titions and g-series. Since their initial appearance in Rogers’ 1894 paper and their later rediscoveries
by Ramanujan and Schur, they have attracted sustained interest due to their surprising connections
across various areas of mathematics, including combinatorics, number theory, statistical mechanics,
representation theory, and more. This thesis set out to explore both their historical and mathematical
depth by focusing on four central aspects: Ramanujan’s original analytic proof, the combinatorial in-
terpretation via integer partitions, a chronological overview of bijective combinatorial proofs, and the
combinatorial proof of Igor Pak of the first identity.

In explaining Ramanujan’s own proof, we gained insight into the analytical elegance and technical
complexity involved. The subsequent development of a combinatorial framework allowed for a more
intuitive grasp of the identities through partition theory, revealing the structural beauty underlying the
series-product equivalences. Furthermore, the historical overview of bijective combinatorial proofs
served to highlight how the mathematical community has continually sought, and continues to seek,
more natural, elegant, and insightful explanations for these identities. Finally, by reworking the second
identity in a Pak-style bijective manner, this thesis attempted to fill a small but meaningful gap in the
literature, offering a fresh perspective on a classical problem.

The continued fascination with the Rogers-Ramanujan identities is not merely a reflection of their aes-
thetic appeal, but of their uncanny ability to resurface in areas far removed from their original context.
Whether in the classification of Lie algebras, the behavior of physical models in statistical mechanics, or
the structure of modular forms, these identities remain an active source of inquiry and inspiration. This
suggests that, rather than being a solved or closed chapter of mathematics, the Rogers-Ramanujan
identities may still hold secrets yet to be discovered, awaiting new minds and new methods to reveal
them.

In that spirit, this thesis does not aim to conclude the discussion, but rather to extend the invitation

echoed by Sills and others: to study further, and to be drawn into the rich and still-unfolding story of the
Rogers-Ramanujan identities.
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Discussion

While much progress has been made in understanding the Rogers-Ramanujan identities, several im-
portant questions remain open. First, Pak’s bijective proof of the first identity offers a compelling and
intuitive approach, but a comparable, purely combinatorial proof for the second identity remains elusive.
Developing such a proof could fill a gap in the literature.

Second, the many bijections developed over the past century, each with its own style and insight, lack
a unified visual or structural framework. Creating a coherent way to visualize these bijections, perhaps
through diagrams, videos, or interactive models, may offer new understanding and reveal connections
previously unnoticed.

Finally, the central challenge persists: to find a truly simple and natural explanation for the combinatorial
interpretation of the Rogers-Ramanujan identities. Such an explanation, if discovered, would not only
deepen our insight into these identities but also serve as a powerful tool in the broader study of partition
theory and g-series.
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Appendix

A.1. Calculations

We can rewrite G(z) as:

@z Dr

@, ¢~

1
Gz) =1+ Z(—nrzzrqzr(s“n :
r=1

1 Z;
T S
r=1

A -2)(@ D~
N : GO
=1- Z(_l)rzz(r+1)q2(T+1)(5(r+1) 1) |
= A-2@)r
N 1 (Z Drs1
+ Z(_l)‘rZqu 2T(5T+1) .
= A-2)(¢Dr

N : (% Dra
=1-2z%2q%— Z(_l)rZquzr(SrH) . - Z2gtT+2
& (A =2)(@ D

= 1 (%, Qr+1
+ Z(_l)rZqu 2T(5T+1) L tirer
4 -2 D

This results in the following:

[ee]

G(z) = Z(_l)rzyq%r(wwl)% (1 — 22qT+2), (A1)

r=0
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A. Appendix

G(z)

Calculation ————
(1-zq)

G(2)
(1—2zq)

Finally, we have,

- G(zq) = zq(1 — 24*)G(zq?):

(o)

—G(zq) = Z(_l)rzzrqir(swl)ﬂ (11— qu4r+2) —-q"(1— zqzr“))

& (1 =zq)(¢; Dr

N 1 (zq; O
— (_1)r22rqzr(5r+1) (11— qr + Zq3r+1(1 _ qu+1))
; (1 =zq)(@: Dr

< 1 (24; Q)r
— -1 rZZT 21"(51”+1) (1=qg"
ZO( e a @, T

N 1 (2q; q)r
+ Z _1)TZ2rq2T(5T+1)—Zq3r+1 1—zq'+t
2, A-z0@a, 0 ¢ )

_ _Z(_Drzzml)q;(r+1)(5(r+1)+1) 4 Dr+1

= A =zq)(q; D~

- 1 (24; Dr+1
+ Z(_l)rZZTq ST (5r+7) zq
i A —zq)(@ -

¢ 1 9 Drs1
- _ —1) z2r gz TG+ . 52 ,2T+3
2, e T

r=0

= 1 (2q; @)r+1
+Z —1)T z27 S T(57+7) z
2OV @,

c 1 (24; Q41
— —1) z2r gz TG 70 — 72273
;( T @, T

N E (2q% Q)r
=(1- Zqz) Z(_l)rZquzr(5r+7)—(Zq _ ‘qu2r+3)
T (1 —2¢*)(q; D~

(Zq2; Dr

1
— A2 A\ 2\2r 57 (5r=1) rq _ 2742y __ N\ 0 IT
zq(1—2zq )Tzo( D"(zq")7 q2 A2 T D@ o

G(2)

-z~ G(zq) = zq(1 — 29*)G(2q?).

A.2. Power Series

Theorem A.2.1. Let G(q) and H(q) be power series,

[ee)

G(g) = ) ama™

n=0

(A.2)
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H(@) = ) b()q".
n=0
If the power series equals each other for all |q| < R for some R > 0,

G(q) = H(q),

then we know that a,, = b,, for all nonnegative integers n.
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