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Abstract
The theory of active contours is applied to microscopic images of cells. A model is developed
that approximates cell borders by dynamic curves. This model is based on gradient vector flow
(GVF), an external force that acts on the contours. Both active contours and the GVF force
field are defined as functions that minimize certain functionals. The corresponding Euler-Lagrange
equations are derived and analyzed theoretically. A number of auxiliary algorithms are designed to
aid the performance of the main snake algorithm, including a preprocessing algorithm, a method
for detecting cell centers and an algorithm that detects areas devoid of cells. Results of the snake
algorithm are presented, along with practical considerations regarding parameter choice. Finally,
statistical methods are applied to the results to demonstrate their usefulness.
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Machine Specifications
Throughout this thesis, real world computation times will be mentioned. As these times depend
on the machine on which the program is performed, it is important to mention the specifications of
the machine used. These can be used to predict how fast certain programs run on other machines.
The machine in question is a 64-bit machine running Ubuntu 16.04. Its CPU is a quad-core Intel
Core i5-4670k clocked at 3.40 GHz. Futhermore, the machine contains 16GB of DDR4 RAM.



1 | Introduction

In this thesis the theory of active contours, or snakes, is applied to microscopic images of potatoes.
These images come from the company HZPC1 based in Joure, the Netherlands. HZPC develops
breeds of potatoes for many purposes. For example, the potatoes used to make french fries should
have different properties from those used to make mashed potato. Properties of potatoes are closely
linked to its microscopic structure. For this reason, HZPC is working with the TU Delft in order
to develop a tool that analyzes microscopic images of potatoes.

The images in question contain a large number of cells. The aim is to approximate the cell bound-
aries using curves, or in practice a set of points. When this is achieved, a number of geometric
parameters can be extracted from every curve. These parameters can tell us something about the
properties of the potato. In particular the isoperimetric quotient, which will be defined in a later
chapter, and the diameter of a cell are valuable parameters. Since it is invariant under scaling,
images made with different magnification factors can still be compared to each other. The ulti-
mate goal is to use statistical analysis to determine to which class or type a given potato belongs,
based on its microscopic structure. We will focus more on building the ‘tool’ used to convert an
image to a collection of curves. However the last chapter contains some basic statistical analysis,
to demonstrate that there are in fact differences between images.

Previous attempts at approximating the cell boundaries had mixed succes. Methods that have
been tried are the watershed method, curve fitting and a more physical method involving point
charges. All methods had their own downsides, the most frequent problem was neglecting vague
cell boundaries. This resulted in the method regarding two (or more) cells as being one. Ac-
tive contours [1] are used to minimize the number of occurences of this phenomenon. They are
also quite flexible in use; parameters can be tuned to make curves less or more smooth, larger or
smaller, etcetera. The succes of active contours depends on the initial curves and the force field
used. Placing initial curves is a problem itself, as cells should be detected beforehand by some
other algorithm.

The force field we use is the gradient vector flow field, or GVF field [2]. It is constructed in such
a way that it remains smooth in regions that contain little data. Typically, these regions are the
cell interiors. The desired consequence of this behaviour is that curves that lie in these low-data
regions are nonetheless subject to a force. This means that initial curves can be placed further
away from the cell boundary, and still converge. The theory behind active contours and the GVF
field is presented in chapter 2.

Active contours and the GVF field are both formulated in a continuous framework. In particular,
a snake satisfies an ordinary differential equation, whereas the GVF field satisfies a partial differ-
ential equation. The relevant equations should be discretized in order for them to be applicable to
(discrete) images. The dimensions of the microscopic images can be quite large, so the computer
model should be optimized extensively, or else computation time will be unreasonable. This is
done by using sparse matrices and specialized solvers in the programming language Python.

Whenever an image provided by HZPC is used in a figure, its name is mentioned in the figure cap-
tion. These names all share the same structure, for example “312;US;2017;field32;T12;cortex.rep2”
is one possible image title. We differentiate different datasets by the first number, in this case 312.
We have access to about 50 datasets.

1https://www.hzpc.com/
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2 | Theory of Active Contours

A grayscale image I : Ω → [0, 1] is a function on a (usually rectangular) region Ω ∈ R
2 into the

interval [0, 1]. Its values represent the gray value in a point; 0 represents black and 1 represents
white. In practice an image is identified with a matrix. Each entry of this matrix represents the
value of a pixel. The dimensions of this matrix determines the size of the image; a matrix of size
n×m represents an image consisting of as many pixels.

A =




0.55 0.49 0.86 0.61 0.08 0.07
0.62 0.22 0.07 0.93 0.79 0.31
0.90 0.95 0.07 0.00 0.43 0.57
0.61 0.86 0.77 0.86 0.54 0.69
0.84 0.68 0.25 0.77 0.41 0.97
0.46 0.61 0.07 0.05 0.96 0.54




Figure 2.1: Image corresponding to the
matrix A. We usually say that A ‘is’
the image.

An active contour [1], also called snake, is a curve in Ω that gets pulled to features of interest
by image forces. These features are usually edges or lines. A snake is subject to two forces, an
internal and external force. The external force is derived from the image data, resulting in a force
field pointing towards features of interest. The external force is usually defined as the gradient of
an external energy function Eext. Common choices of Eext are −‖∇I‖2, −‖Gσ ∗ I‖

2, or simply I
or Gσ ∗ I. Here Gσ represents a Gaussian kernel with standard deviation σ. We will focus on a
different external force altogether, called gradient vector flow. It is introduced in section 2.2. The
internal forces of a curve are added to hold the curve together. It contains a first and second order
term, both controlled by different parameters. The first order term makes the snake act like an
elastic membrane, whereas the second order term makes it act like a thin plate. The second order
term keeps the snake from bending too much. In the case of biological cells, we expect the second
order term to be small compared to the first order term, because cell borders are more elastic than
rigid.

The aim of this project is to apply the theory of active contours to analyse cells in microscopic
images. Hence an extra property imposed on the snakes is that they must be closed. A consequence
is that the contour encloses a region. The area of this region is a statistical parameter examined
in section 5.3.

2.1 Snakes

A snake is a curve parameterized by a function x : [0, 1]→ Ω that minimizes the energy functional

E[x] =

∫ 1

0

1

2

(
α‖x′(s)‖2 + β‖x′′(s)‖2

)
+ Eext(x(s)) ds (2.1)
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Note that one curve can be parameterized by infinitely many functions. Nevertheless, we will
identify x with the curve it describes. We restrict x to be a four times continuously differentiable
closed curve. The parameters α and β control the first and second order terms, or the snake’s
tension and rigidity, respectively. The external energy Eext is derived from the image. Generally,
it takes smaller values at regions of interest, such as boundaries. That way, the gradient ∇Eext

points towards these regions.

The functional in (2.1) can be minimized by a greedy algorithm, which moves one point at a time.
This is however a very inefficient method. We derive the Euler-Lagrange equation corresponding
to E. This turns out to be a fourth order nonlinear ordinary differential equation, which can be
solved by making it dynamic.

Assume that E has a local minimum in x. Let v : [0, 1]→ Ω be some twice continuously differen-
tiable fixed curve. Write x(s) = (x(s), y(s)) and v(s) = (v(s), w(s)). Then for all small values of
ε > 0 we have E[x] ≤ E[x + εv]. Hence the function ϕ(ε) = E[x + εv] assumes its minimum at
ε = 0. From calculus we know ϕ′(0) = 0. First calculate its derivative:

ϕ′(ε) =

∫ 1

0

α(x′ + εv′) • v′ + β(x′′ + εv′′) • v′′ +∇Eext(x) • v ds. (2.2)

Substituting ε = 0 yields

ϕ′(0) =

∫ 1

0

α (x′
• v′) + β (x′′

• v′′) +∇Eext(x) • v ds = 0. (2.3)

By linearity of the integral, we can calculate each term individually. Using partial integration2 we
obtain:

∫ 1

0

x′
• v′ ds =

[
x′

• v
]1
s=0
−

∫ 1

0

x′′
• v ds

(∗1)
= −

∫ 1

0

x′′
• v ds, (2.4)

and
∫ 1

0

x′′
• v′′ ds =

[
x′′

• v′
]1
s=0
−

∫ 1

0

x′′′
• v′ ds

(∗2)
= −

∫ 1

0

x′′′
• v′ ds

= −
[
x′′′

• v
]1
s=0

+

∫ 1

0

x′′′′
• v ds

(∗3)
=

∫ 1

0

x′′′′
• v ds. (2.5)

For steps (∗1), (∗2) and (∗3) to be valid, we need to impose additional conditions on x and v.
These conditions are:

x′(0) = x′(1), x′′(0) = x′′(1), x′′′(0) = x′′′(1), v(0) = v(1), v′(0) = v′(1). (2.6)

It makes sense to let v belong to the same class of functions as x, by imposing periodic boundary
conditions on v′′ and v′′′. However, this is not a necessary step to obtain the following equation.
Substituting (2.4) and (2.5) into equation (2.3) yields

ϕ′(0) =

∫ 1

0

[
− αx′′ + βx′′′′ +∇Eext(x)

]
• v ds = 0. (2.7)

Note that equation (2.7) must hold for any v, from which it can be concluded that −αx′′+βx′′′′+
∇Eext(x) = 0. To summarize: in order for a curve x to minimize the energy functional found in
(2.1), it must satisfy the following ordinary differential equation:

αx′′ − βx′′′′ −∇Eext(x) = 0. (2.8)

This is called the Euler-Lagrange equation corresponding to the functional E. It should be noted
that a curve x satisfying (2.8) does not necessarily minimize E. The other way around is true.

2The reader can verify him- or herself that partial integration is in fact a valid technique when dealing with the
dot product.
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2.2 Gradient Vector Flow
Let f be a map derived from I such that it takes on larger values near features of interest. In
our cases we let f be large near cell boundaries. The exact definition is given in section 4.2. The
gradient vector flow [2] field is defined as the vector field u(x, y) = (u(x, y), v(x, y)) that minimizes
the functional

E [u] =

∫∫

Ω

µ
(
u2x + u2y + v2x + v2y

)
+ ‖∇f‖2‖u−∇f‖2 dΩ. (2.9)

Where ux denotes the partial derivative of u with respect to x. Furthermore, ∇f and µ > 0 are
given. This formulation comes from the principle of making the result smooth when there is no
data. In other words, if there is no image data in a particular region (constant value), then data at
the boundary of this region is used to make the resulting force field smooth. In particular, if ‖∇f‖
is small, the functional E is dominated by partial derivatives of u. This yields a smooth vector
field, as these partial derivatives should be small in order to minimize E . Moreover, if ‖∇f‖ is
large, the second term dominates E . In this case E is minimized by setting u = ∇f . The parameter
µ determines how strong the smoothing property of the GVF field is.

Finding the corresponding Euler-Lagrange equations is done in a similar manner as in section 2.1.
Assume E reaches its minimum at u. Let ν = (ξ, η) be a vector field on Ω. Define ϕ(ε) = E [u+εν]
for small values of ε > 0, then ϕ′(0) = 0. The derivative of ϕ is given by

ϕ′(ε) = 2

∫∫

Ω

µ
(
(ux + εξx)ξx + (uy + εξy)ξy + (vx + εηx)ηx + (vy + εηy)ηy

)

+ ‖∇f‖2
(
(u − fx + εξ)ξ + (v − fy + εη)η

)
dΩ. (2.10)

Substituting ε = 0 yields

ϕ′(0) = 2

∫∫

Ω

µ
(
uxξx + uyξy + vxηx + vyηy

)
+ ‖∇f‖2

(
(u− fx)ξ + (v − fy)η

)
dΩ

= 2

∫∫

Ω

µ
(
∇u •∇ξ +∇v •∇η

)
+ ‖∇f‖2(u−∇f) • ν dΩ. (2.11)

This integral can be simplified using Green’s first identity, which states:
∫∫

Ω

∇f •∇g dΩ =

∫

∂Ω

f(∇g • n) dΓ−

∫∫

Ω

f∇2g dΩ.

Where n is the outward pointing normal to the boundary ∂Ω. Applying this to the first part of
the integral found in (2.11), we obtain:

∫∫

Ω

∇u •∇ξ +∇v •∇η dΩ =

∫

∂Ω

ξ(∇u • n) + η(∇v • n) dΓ−

∫∫

Ω

ξ∇2u+ η∇2v dΩ.

(∗)
= −

∫∫

Ω

(
∇2u
∇2v

)
• ν dΩ. (2.12)

In order for step (∗) to hold, we need either ν, or ∇u • n and ∇v • n to vanish on ∂Ω. We will
assume the latter, which will be used in section 3. Altogether, the integral in (2.11) becomes

ϕ′(0) = 2

∫∫

Ω

[
−µ

(
∇2u
∇2v

)
+ ‖∇f‖2(u−∇f)

]
• ν dΩ = 0. (2.13)

This equality must hold for every ν. Thus we conclude that u must satisfy the following equations
in order to minimize E :

µ∇2u− (f2x + f2y )(u− fx) = 0 (2.14a)

µ∇2v − (f2x + f2y )(v − fy) = 0 (2.14b)

We say that a curve x is a GVF snake corresponding to the GVF field u if it satisfies the equation

αx′′ − βx′′′′ + u(x) = 0. (2.15)

Note that this is similar to equation (2.8); the potential force −∇Eext is replaced by u.
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2.3 Analysis of Snake Equation

In order to solve equation (2.15), it is made dynamic, or time-dependent. That is, we treat x as
a function of s as well as t, i.e. x = x(s, t). The partial derivative of x with respect to t is set to
equal the left hand side of equation (2.15). Furthermore, a parameter γ is introduced to control
the effect of the GVF field compared to the internal forces:

∂x

∂t
= α

∂2x

∂s2
− β

∂4x

∂s4
+ γu(x). (2.16)

Note that the ratio between γ and α and β determines the effect of the external force in comparison
to the internal forces. However, the parameters α, β and γ all have an effect on the speed at which
the snake is transformed. This equation is called the dynamic snake equation. Whenever the
solution x stabilizes, its time derivative vanishes, resulting in a solution to (2.15). To formulate
a well-posed problem, boundary conditions and an initial condition are required. As mentioned
before, periodic boundary conditions are used. The initial curve is called x0, resulting in the
completely formulated problem





∂x

∂t
= α

∂2x

∂s2
− β

∂4x

∂s4
+ γu(x), s ∈ [0, 1], t > 0

∂kx

∂sk
(0, t) =

∂kx

∂sk
(1, t), t > 0, for k = 0, 1, 2, 3

x(s, 0) = x0(s), s ∈ [0, 1]

. (2.17)

2.3.1 No Force Field

First set γ = 0 in (2.17), the snake equation is then given by

∂x

∂t
= α

∂2x

∂s2
− β

∂4x

∂s4
, (2.18)

which is a linear parabolic partial differential equation with constant coefficients, and can be solved
by means of a series expansion. By using a Fourier series, the periodic boundary conditions are
automatically satisfied. Note that both components (x and y) of x satisfy the same equation, so
it suffices to solve the problem for one of the components, say x. We write x(s, t) = xt(s) and
x0(s) = (x0(s), y0(s)), for t > 0 let

x(s, t) =
∑

n∈Z

x̂t(n)e
2πins, where x̂t(n) =

∫ 1

0

xt(s)e
−2πins ds. (2.19)

Then indeed by the 1-periodicity of the functions s 7→ e2πins, all boundary conditions are satisfied.
The initial condition is also written as a Fourier series:

x0(s) =
∑

n∈Z

x̂0(n)e
2πins, where x̂0(n) =

∫ 1

0

x0(s)e
−2πins ds. (2.20)

If x0 and xt are assumed to be differentiable, then the series expansions above converge pointwise.
Note that xt should be a C4([0, 1]) function in order to satisfy (2.18), so it is differentiable. The
initial curve x0 can be chosen in such a way that it is differentiable. Substituting the series
expansion for x(s, t) into equation (2.18) yields

∑

n∈Z

∂x̂t
∂t

(n)e2πins = α
∑

n∈Z

(2πin)2x̂t(n)e
2πins − β

∑

n∈Z

(2πin)4x̂t(n)e
2πins

= −
∑

n∈Z

(
4π2n2α+ 16π4n4β

)
x̂t(n)e

2πins.

From which it follows that x̂t(n) should satisfy

∂x̂t
∂t

(n) = −
(
4π2n2α+ 16π4n4β

)
x̂t(n), for all n ∈ Z. (2.21)
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The solution is given by

x̂t(n) = c(n) exp
[
−
(
4π2n2α+ 16π4n4β

)
t
]
. (2.22)

By substituting t = 0 we find that c(n) = x̂0(n), and thus

x̂t(n) = x̂0(n) exp
[
−
(
4π2n2α+ 16π4n4β

)
t
]
. (2.23)

Note that for n = 0, the Fourier coefficient x̂t(0) is constant in time:

x̂t(0) = x̂0(0) =

∫ 1

0

x0(s) ds

The first component of the solution to (2.18) is then given by

x(s, t) =
∑

n∈Z

x̂0(n) exp
[
−
(
4π2n2α+ 16π4n4β

)
t
]
exp [2πins] . (2.24)

This series can also be written in terms of sines and cosines, yielding

x(s, t) = x̂0(0) +

∞∑

n=1

(an cos(2πns) + bn sin(2πns)) exp
[
−
(
4π2n2α+ 16π4n4β

)
t
]
, (2.25)

where

an = 2

∫ 1

0

x0(s) cos(2πns) ds, bn = 2

∫ 1

0

x0(s) sin(2πns) ds.

Given that y satisfies the same equation, the solution to (2.18) can be written as

x(s, t) =

∫ 1

0

x0(s) ds+

∞∑

n=1

(
an bn
cn dn

)(
cos(2πns)
sin(2πns)

)
exp

[
−
(
4π2n2α+ 16π4n4β

)
t
]
, (2.26)

where

an = 2

∫ 1

0

x0(s) cos(2πns) ds, bn = 2

∫ 1

0

x0(s) sin(2πns) ds,

cn = 2

∫ 1

0

y0(s) cos(2πns) ds, dn = 2

∫ 1

0

y0(s) sin(2πns) ds.

While (2.26) seems very similar to (2.25), the solution is now vector-valued. The obtained repre-
sentation of the solution given us some insight into its behaviour.

Example 2.1. Let x0 be a circle around a point p ∈ R
2:

x0(s) = p+

(
cos(2πs)
sin(2πs)

)
, s ∈ [0, 1].

Then by the orthogonality of sines and cosines, the solution simply becomes

x(s, t) = p+

(
cos(2πs)
sin(2πs)

)
exp

[
−
(
4π2α+ 16π4β

)
t
]
.

For t → ∞, the curve converges to the point p. This is a singularity, as a point is no longer a
curve. The rate of convergence depends on the size of α and β. The larger they are, the faster x

converges to p.
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2.3.2 Simple Force Field

Let γ 6= 0 in (2.17), and let u(x) = x. We then get the following snake equation

∂x

∂t
= α

∂2x

∂s2
− β

∂4x

∂s4
+ γx. (2.27)

This field points outward from the origin, its magnitude is proportional to the distance to the
origin. The GVF field inside a perfectly round cell around the origin will be somewhat similar
to this field, as it also has a greater magnitude near the cell border. While there may not be a
one-to-one correspondence between the field u(x) = x and the GVF field, examing the solution
(2.27) allows us make qualitative predictions on the behaviour of a curve subject to the GVF field.
The process of finding the solution is very similar to the one described in section 2.3.1. To avoid
repetition, these steps are skipped. The solution is given by

x(s, t) =

∫ 1

0

x0(s) ds+

∞∑

n=1

(
an bn
cn dn

)(
cos(2πns)
sin(2πns)

)
exp

[(
γ − 4π2n2α− 16π4n4β

)
t
]
, (2.28)

where again

an = 2

∫ 1

0

x0(s) cos(2πns) ds, bn = 2

∫ 1

0

x0(s) sin(2πns) ds,

cn = 2

∫ 1

0

y0(s) cos(2πns) ds, dn = 2

∫ 1

0

y0(s) sin(2πns) ds.

Example 2.2. Let x0 be a circle of radius 1 around the origin, then the solution to (2.27) is given
by

x(s, t) =

(
cos(2πs)
sin(2πs)

)
exp

[(
γ − 4π2α− 16π4β

)
t
]
.

By the orthogonality of sin(2πns) and cos(2πms), all coefficients bn and cn are indeed equal to
zero. The coefficients an and dn are equal to 1 whenever n = 1, and zero otherwise. The curve
can behave in three different ways. It can either shrink and converge to the origin, it can grow
exponentially, or it can remain stationary. The type of behaviour depends on the choice of α, β
and γ, see table 2.1.

Type of behaviour Condition

decay γ < 4π2α+ 16π4β

growth γ > 4π2α+ 16π4β

stationary γ = 4π2α+ 16π4β

Table 2.1: Different behaviours of solution.

In Figure 2.2 the effect of γ on the convergence speed is visualized. The parameters used are α = 1
and β = 0. The curve is plotted for t = 0, 0.05, 0.1, such that the deviation from the initial curve
can be seen. The vector field u(x) = γx is also plotted.
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Figure 2.2: Convergence speed for different values of γ.

More general, if x0 consists of a finite amount of modes around the origin, say

x0(s) =
k∑

n=1

(
an bn
cn dn

)(
cos(2πns)
sin(2πns)

)
,

then the solution is given by

x(s, t) =

k∑

n=1

(
an bn
cn dn

)(
cos(2πns)
sin(2πns)

)
exp

[(
γ − 4π2n2α− 16π4n4β

)
t
]
.

Which follows from the general solution presented in (2.28). Assume that α and β are fixed. If we
choose γ such that the first mode is stationary, i.e. γ = 4π2α+ 16π4β, then all higher modes will
decay. Indeed, for all n > 1 we have

γ = 4π2α+ 16π4β < 4π2n2α+ 16π4n4β.

This means that the curve converges to the first mode:

x(s, t)→

(
a1 b1
c1 d1

)(
cos(2πs)
cos(2πs)

)
as t→∞, for all s ∈ [0, 1].

Moreover, if we choose γ such that the highest mode is stationary, i.e. γ = 4π2k2α + 16π2k4β,
then all lower modes will grow exponentially. In this case the curve will diverge.

Example 2.3. Since the initial curves that are used in the model are squares, it makes sense to
examine the solution whenever the initial curve is a square. Such a square can be written as a
Fourier series, for example, a square around the origin with sides of length 2 is given by

SQ(s) =
8

π2

∞∑

n=0

(
1 (−1)n+1

1 (−1)n

)(
cos(2π(2n+ 1)s)
sin(2π(2n+ 1)s)

)
.

This can be verified by looking at both coordinate functions; they both represent the Fourier series
of a (shifted) traingle wave on [0, 1]. For practical purposes, we consider only a finite amount of
modes of the square:

SQk(s) =
8

π2

k∑

n=0

(
1 (−1)n+1

1 (−1)n

)(
cos(2π(2n+ 1)s)
sin(2π(2n+ 1)s)

)
.

We let α = 0.01, β = 0 and set γ = 4π2α. We expect the square to converge to a circle, because
all modes higher than 1 will decay. This is indeed the case, as one can see in Figure 2.3.

8



Figure 2.3: Solution to (2.27) using x0 = SQ25.

Setting γ equal to values higher than 4π2α but lower than 16π2α results in all modes vanishing
except for the first mode, which instead grows. In Figure 2.4 one can see that the higher modes
vanish rapidly, leaving a fast growing circle.

Figure 2.4: Divergence speed for different values of γ, using α = 0.1 and x0 = SQ25.

We conclude that the choice of γ is important in controlling the behaviour of a curve. While the
GVF is not such a simple force field as the one used in this section, we expect it to be similar to
the simple force field locally. In this case, the obtained criteria for γ can be taken into account
when tuning the parameters. While it can not be applied directly, we expect the criteria to give a
good estimate of the effective range of γ.
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3 | Discretization

In order to solve the dynamic snake equation (2.16), it is first discretized in space, and subsequently
discretized in time. Both discretizations are done in section 3.2. It is also necessary to compute
the GVF field numerically. This is done by discretizing equations (2.14a) and (2.14b), which is
described in section 3.3. It turns out that first defining a coordinate transformation yields insight
into the effect of the number of discretization points on the parameters α and β, as seen in section
3.1.

3.1 Coordinate Transformation

A curve is discretized by N points, such that each point xi(t) is an approximation of x(i/N, t) for
i = 0, . . . , N − 1. This curve can also be parameterized by a function x̃ : [0, N ]×R

+ → Ω defined
by x̃(s̃, t) = x̃(Ns, t) = x(s, t). Due to the coordinate transformation s̃ = Ns, the points xi(t)
now are approximations to x̃(i, t). Recall that x satisfies equation (2.16):

∂x

∂t
(s, t) = α

∂2x

∂s2
(s, t)− β

∂4x

∂s4
(s, t) + γu(x(s, t)). (3.1)

By the chain rule, we have

∂x̃

∂s̃
(s̃, t) =

∂

∂s̃
x (s̃/N, t) =

∂x

∂s
(s̃/N, t)

1

N
=

1

N

∂x

∂s
(s, t).

From which it follows that x̃ satisfies the partial differential equation

∂x̃

∂t
(s̃, t) = αN2 ∂

2x̃

∂s̃2
(s, t)− βN4 ∂

4x̃

∂s̃4
(s, t) + γu(x̃(s̃, t)). (3.2)

Intuitively, this makes sense. By introducing the coordinate transformation s̃ = Ns, one revolution
around the curve takes N times more ‘time’. Roughly speaking, the speed at which we move along
the curve is N times lower. Hence, the derivatives with respect to s̃ are N times smaller. To
counteract this, we need to multiply the second and fourth partial derivatives with the factors N2

and N4 respectively.

From now on we will drop the tildes, and write

∂x

∂t
= αN2 ∂

2x

∂s2
− βN4 ∂

4x

∂s4
+ γu(x) (3.3)

whenever it is clear that x is approximated by N points. Hence, for i = 0, . . . , N − 1; xi(t) is the
approximation to x(i, t). However, it turns out that keeping α and β fixed as N grows is more
intuitive. If we indeed fix α and β and let N grow, we are in fact keeping the distance between to
adjacent points constant. Increasing N means increasing the size of the curve, whereas increasing
α and/or β means decreasing the size of the curve as well as making it smoother. For this reason
we let α and β be independent of N . The dynamic snake equation for a snake consisting of N
points is again given by

∂x

∂t
= α

∂2x

∂s2
− β

∂4x

∂s4
+ γu(x). (3.4)

10



3.2 Discretization of Dynamic Snake Equation

We write xi(t) = (xi(t), yi(t)), and define the vectors X(t) and Y (t) containing the unknowns at
time t:

X(t) =




x0(t)
x1(t)

...
xN−1(t)


 , Y (t) =




y0(t)
y1(t)

...
yN−1(t)


 .

Then the second order partial derivative with respect to s is approximated by a central difference
quotient:

∂2xi

∂s2
≈ xi−1 − 2xi + xi+1 (3.5)

By the periodicity of x, subscripts can be interpreted ‘modulo N ’. For example x−1 = xN−1. Note
that it seems a ∆s2 is missing in the denominator3. However, by the coordinate transformation
defined in 3.1, we have ∆s = 1. The fourth order partial derivative with respect to s is also
approximated by a central different quotient:

∂4x

∂s4
≈ xi−2 − 4xi−1 + 6xi − 4xi+1 + xi+2 (3.6)

Define the N ×N matrices

D2 =




−2 1 1
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 1 −2



, D4 =




6 −4 1 1 −4
−4 6 −4 1 1
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1
1 1 −4 6 −4
−4 1 1 −4 6




.

(3.7)

Note that D2
2 = D4. This equality is expected, as applying the second derivative twice yields the

fourth derivative. Equation (3.4) is then approximated by the following linear system of ODE’s:





X ′(t) = (αD2 − βD4)X(t) + γU(X(t),Y (t))

Y ′(t) = (αD2 − βD4)Y (t) + γV (X(t),Y (t))
. (3.8)

Where Ui(X(t),Y (t)) = u(xi(t), yi(t)) and Vi(X(t),Y (t)) = v(xi(t), yi(t)). The semi-discrete
system in (3.8) can be solved by any time stepping method. For simplicity’s sake, the explicit
Euler method is chosen. Given some inititial curve (X(0),Y (0)) and time step ∆t > 0, the
method is given by:





X(t+∆t) = X(t) + ∆t
[
(αD2 − βD4)X(t) + γU(X(t),Y (t))

]

Y (t+∆t) = Y (t) + ∆t
[
(αD2 − βD4)Y (t) + γV (X(t),Y (t))

] . (3.9)

3.3 Computing the Gradient Vector Flow Field
In order to implement the discretization found in section 3.2, one needs to know the values of the
gradient vector flow field u = (u, v). This flow field satisfies equations (2.14a) and (2.14b). We will
derive the discrete system for the u-component. Using that u and v satisfy a very similar equation,

3See any book on numerical analysis.
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one can then immediately produce the discrete system for v.

Recall that it was assumed in section 2.2 that ∇u •n = ∇v •n = 0 on the boundaries. Hence, u is
the solution to the following boundary value problem:

{
µ∇2u− gu = −gfx, in Ω

∇u • n = 0, on ∂Ω
, where g = f2x + f2y . (3.10)

Assume that Ω is the domain of an image I consisting of n×m pixels. That is, there are n pixels
in the x-direction and m pixels in the y-direction. Let uij be the (unknown) value of u at pixel
(i, j) for i ∈ {0, . . . , n−1} and j ∈ {0, . . . ,m−1}, see Figure 3.1. The second derivatives of u with

0 1 2 3 4 5

0

1

2

· · · m− 1

...

n− 1

i

j

Ω

Figure 3.1: Locations of unknowns.

respect to x and y are approximated by a central difference. For a pixel (i, j) that is not adjacent
to a boundary, these approximations are given by

(
∂2u

∂x2

)

ij

≈ ui−1,j − 2uij + ui+1,j ,

(
∂2u

∂y2

)

ij

≈ ui,j−1 − 2uij + ui,j+1. (3.11)

If (i, j) is adjacent to a boundary, the Neumann boundary condition is used. For example, if i = 0,
we let u−1,j = u0,j in order to approximate the derivative normal to the boundary being 0. Define
the matrices

Lxx =




−1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −1



, Lyy =




−1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −1



, (3.12)

where Lxx is an n×n matrix and Lyy is m×m. Then for all i ∈ {0, . . . , n−1} and j ∈ {0, . . . ,m−1}
we have




(
∂2u
∂y2

)
i,0

...(
∂2u
∂y2

)
i,m−1


 ≈ Lyy




ui,0
...

ui,m−1


 ,




(
∂2u
∂x2

)
0,j

...(
∂2u
∂x2

)
n−1,j


 ≈ Lxx




u0,j
...

un−1,j


 . (3.13)

The discrete Laplacian L corresponding to the lexicographical order of unknowns4 is then given
by

L = Iy ⊗ Lxx + Lyy ⊗ Ix, where ⊗ denotes the Kronecker product, (3.14)

4The unknowns are ordered first in the x-direction and then in the y-direction, resulting in the unkown vector
û = (u0,0, . . . , un−1,0, u0,1, . . . , un−1,m−1)⊤.
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and Iy, Ix are the m×m and n× n identity matrices respectively. If A is an m× n matrix and B
is a p× q matrix, the Kronecker product is defined as the mp× nq block matrix

A⊗B =



a11B · · · a1nB

...
. . .

...
am1B · · · amnB


 .

Thus, L is an nm × nm matrix. Let gij be the value of g at pixel (i, j), then we can write
gij = (fx)

2
ij + (fy)

2
ij where (fx)ij and (fy)ij are the values of fx and fy at pixel (i, j) respectively.

Define Gj = diag (g0,j , . . . , gn−1,j) for j = 0, . . . ,m− 1 and let G be the nm× nm block matrix

G =



G0

. . .

Gm−1


 . (3.15)

The discretized systems corresponding to equations (2.14a) and (2.14b), taking into account the
boundary conditions, are given respectively by:

(µL−G)û = −Gfx (3.16a)

(µL−G)v̂ = −Gfy (3.16b)

Where û and v̂ are ordered lexicographically. The vectors fx and fy contain the values of fx and
fy at the pixels respectively. These values of fx and fy also need to be computed, as only f is
given. Central differences are used in pixels away from the border, whereas one-sided differences
are used in pixels adjacent to the border:

(fx)ij =





fi+1,j − fij , if i = 0

fij − fi−1,j , if i = n− 1
1
2 (fi+1,j − fi−1,j) , otherwise

, (3.17a)

(fy)ij =





fi,j+1 − fij , if j = 0

fij − fi,j−1, if j = m− 1
1
2 (fi,j+1 − fi,j−1) , otherwise

. (3.17b)

While it seems that the use of ‘=’ instead of ‘≈’ is abuse of notation, the function f is only defined
at the locations of the pixels. Hence, it doesn’t make sense to consider its ‘true’ partial derivatives.
The vectors fx and fy contain the elements given in (3.17a) and (3.17b) in lexicographical order.
Let F be the n×m matrix containing the values of f , such that Fij = fij :

F =




f0,0 f0,1 · · · f0,m−1

f1,0 f1,1 · · · f1,m−1

...
...

. . .
...

fn−1,0 fn−1,1 · · · fn−1,m−1


 . (3.18)

Then the n ×m matrices Fx and Fy, defined analogously to F but for fx and fy, can be written
as Fx = CxF and Fy = FC⊤

y . Here Cx is an n×n matrix and Cy is an m×m matrix, both of the
form




−1 1
− 1

2 0 1
2

. . .
. . .

. . .

− 1
2 0 1

2
−1 1



. (3.19)

Once Fx and Fy have been computed, the vectors fx and fy can be created by placing all columns
of Fx and Fy on top of each other. This is commonly denoted by fx = vec(Fx) and fy = vec(Fy).
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A note on Implementation

A practical problem that is encountered when implementing the linearized system is that the matrix
L will become large. Images with a size of 1000×1000 pixels are nothing out of the ordinary, but in
this case L will be a 106×106 matrix. Performance will likely suffer drastically if L is implemented
as a regular array. Using the fact that L contains many zeroes, it can be implemented as a sparse
matrix. In a sparse matrix, only the nonzero elements are stored. More details will follow in
section 4. Note that we can write Lxx and Lyy as a product of two simple (to initialize) matrices:
Lxx = −D⊤

x Dx and Lyy = −D⊤
y Dy, where

Dx =




−1 1
−1 1

. . .
. . .

−1 1







n− 1

︸ ︷︷ ︸
n

, Dy =




−1 1
−1 1

. . .
. . .

−1 1







m− 1

︸ ︷︷ ︸
m

.

To see where these products come from, write ui−1,j−2uij+ui+1,j = (ui+1,j−uij)−(uij−ui−1,j).
In essence, the second order central difference formula is the difference of two first order central
differences, each approximating the first derivative between two pixels. Multiplying by Dx or Dy

gives the central differences between pixels, and subsequently multiplying by D⊤
x or D⊤

y yields
(minus) the difference of these differences.
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4 | Implementation

In this chapter we will describe the required steps to convert a microscopic image to a collection of
curves that can be used for statistical analysis. The model is displayed schematically in Figure 4.1,
along with the parameters needed at every point and the corresponding section. One starts with
the image. If this image is too big, it can be resized to a suitable size. This is done to somewhat
reduce the time it takes to find the GVF field. Although the image quality is lowered, we observe
that the results are still acceptable. In practice, the resizing step is only done for very large images,
those in the order of tens of megabytes.

The model is then split into two. In the left branch, the cell centers are detected and initial curves
are placed. Finding the cell centers is not a trivial task, the process is described in section 4.1.
In the right branch the GVF field is calculated. The image is first converted to another image
f by a simple preprocessing algorithm, given in section 4.2. Calculating the GVF field takes the
most amount of time out of all the steps. This is due to the fact that two very large systems of
linear equations (3.16a) and (3.16b) must be solved. In section 4.4 a number of different solvers
are compared. Finally, the two branches come together and the snake algorithm can be performed.
The snake algorithm simply iterates equation (3.9) a number of times for every curve.

In section 4.3 we pay some attention to areas of the image in which no cells are present. Since
they do not contain any cells, these areas might as well be omitted. We call this step cropping
and present a method of doing this while avoiding discarding valuable information. Note that this
step is performed after cell centers have been detected. The aim is to find wronly detected centers.
The preprocessing algorithm is also used in this step, accounting for the arrow pointing from the
preprocessing step to the cropping step.
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Figure 4.1: Schematic view of model.

4.1 Cell Center Detection
Cell centers are found by detecting local maxima in the image convolved with a Gaussian. By
convolving with a Gaussian kernel, the image is made smooth. Every cell has a more or less
constant interior. Smoothing the image turns these ‘plateaus’ into ‘hills’, roughly speaking. If
the smoothing parameter σ is chosen just right, every one of these hills (cells) has exactly one
maximum. This process can be seen in Figure 4.2. Finding local maxima can be done by a number
of standard algorithms that are generally very fast. The problem lies thus in finding the right value
for σ.

Figure 4.2: Finding cell centers by convolution with Gaussian with a good choice of σ.

We define the ‘best choice’ for σ to be the value σopt for which the number of local maxima found
in Gσopt

∗I is equal to the number of cells in I, where I is the original image. This definition seems
to only move the problem somewhere else. After all, how does one count the number of cells in I?
While the exact number of cells is very hard to count, it can be rather accurately approximated
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by algorithm 4.1. This algorithm first slightly smooths I using a Gaussian kernel with σ = σb.
Then for each row the mean of I is calculated, and the number of times the value of I crosses the
mean is counted. This corresponds to the number of times a boundary is crossed, so the number
of cells in this row is roughly half the number of counted ‘boundary crossings’. By doing this for
every row, the average number of cells in the x-direction can be calculated. Repeat this process
for every column to obtain the average number of cells in the y-direction. The product of these
two averages is the approximated amount of cells in I.

Algorithm 4.1 Approximate number of cells

Require: n×m image I, σb > 0
I∗ ← Gσb

∗ I ⊲ Convolution with Gaussian to smooth data
Sx, Sy ← 0
for i = 1, . . . , n do ⊲ First scan all rows

µ← 1
m

∑m
j=1 I

∗
ij ⊲ Mean of ith row

for j = 1, . . . ,m do
bj ← 0
if I∗ij < µ then bj ← 1
end if ⊲ Set to 1 if value is below mean

end for
c← 1

2

∑m−1
j=1 |bj+1 − bj | ⊲ Half times the number of ‘boundary crossings’

Sx ← Sx + c/n ⊲ Average number of cells in all rows
end for
for j = 1, . . . ,m do ⊲ Do same thing for every column

µ← 1
n

∑n
i=1 I

∗
ij

for i = 1, . . . , n do
bi ← 0
if I∗ij < µ then bi ← 1
end if

end for
c← 1

2

∑n−1
i=1 |bi+1 − bi|

Sy ← Sy + c/m ⊲ Average number of cells in all columns
end for
return SxSy ⊲ Product of average number of cells in both directions

The reason for first slightly smoothing I is to make the number of boundary crossings more
accurate. Values of I at cell boundaries can jump a lot, which can result in detecting too many
boundary crossings. By smoothing I, these jumps are dampened. We found that σb ∈ [1, 3] usually
yields good results. Note that the algorithmic complexity of algorithm 4.1 is O(nm). This means
that for large images it can be quite slow. This is easily fixed by not considering all rows and
columns, but only a small number of them. For example, say I has dimensions 100× 100. Instead
of looping over all 100 rows and columns, only take into account rows and columns 1, 11, 21, . . . , 91.
In this case a 10× speedup is achieved, not considering the time it takes to compute Gσb

∗ I.

To summarize, the smoothing parameter σopt used to find the cell centers, by finding the local
maxima in Gσopt

∗ I, is given by

σopt = argmin
σ>0

∣∣#LM (Gσ ∗ I)− S(I)
∣∣, (4.1)

where S(I) is the approximated number of cells in I obtained by algorithm 4.1, and #LM (Gσ ∗ I)
denotes the number of local maxima in Gσ ∗ I. Searching for σopt can be time consuming. Its
value also depends on the resolution of the image. If the image has a high resolution5, σopt will be
bigger. In Figure 4.3 the method is applied to an image with dimensions 1091× 1267. First S(I)
is calculated by considering 8 rows and columns. The approximated number of cells in this case is
S(I) = 1111. Then σopt is found using (4.1). In order to speed up this search, σ is incremented
by steps of 0.5. The resulting value is σopt = 6.0, which produces 1129 cell centers.

5By high resolution we mean more pixels per cell, not just more pixels.
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Figure 4.3: Cell center detection in larger image, using σopt = 6.0 as obtained by equation (4.1).

Note that no cell centers are detected at the image border, where a number of cells are cut off. This
is a result of the local maximum detection algorithm in conjunction with the applied Gaussian filter.
We deem this behaviour welcome. The method also works rather well on more ‘messy’ images,
where cell borders are less clear. In Figure 4.4 we have S(I) = 343 by considering 8 rows and
columns. This results in σopt = 4.5 producing 337 cell centers. Note that σ is again incremented
by steps of 0.5.

Figure 4.4: Cell center detection in image with dimensions 449× 704 containing vague cell bound-
aries.

As can be seen, not all cells have been detected. However, as a lot of cell boundaries are rather
vague, the result is acceptable. In both Figure 4.3 and 4.4 σb = 2.5 is used to slightly smooth the
image beforehand. Note that σb is the only input parameter of this algorithm. We examine the
effect it has on the approximated number of cells S(I), by computing S(I) for a number of values
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of σb in the range [0, 10]. We take into account 50 rows and 50 columns of a small section of a
microscopic image. The results can be seen in Figure 4.5.

Figure 4.5: Approximated number of cells S(I) as a function of the smoothing parameter σb,
computed for a section of image 1;US;2017;field1;T14;Pith.rep2.

About 95 cells are counted by hand. The purple band in Figure 4.5 ranges from 80 to 120 on
the vertical axis, representing an ‘acceptable’ number of cells. The corresponding values of σb are
roughly in the interval [1.5, 2.5]. Good values of σb depend on the image itself. If a lot of noise
is present, a slightly higher value of σb should be chosen. If σb is too small, multiple centers will
be detected in one cell. When the snake algorithm is applied to such a cell, the resulting snakes
corresponding to each center will be very similar. It is therefore possible to discard duplicate snakes
at the end. For this reason we propose that σb should never be too high. If it is too high, many
cells will not be detected, which can’t be fixed afterwards.

4.2 Preprocessing
Preprocessing is used to convert the original image I to the image f on which the GVF field is
calculated. The algorithm is rather simple, and is given in pseudocode in algorithm 4.2. Given
a ratio θ and smoothing parameter σp, the new image f is calculated by comparing the value of
every pixel to θµ. Here, µ is the mean of I. If a pixel has a higher value than θµ, it will be assigned
a new value of 1. Else, it will be assigned a new value of 0. The idea being that the cell boundaries
will have value of 0, whereas the interior of the cell will have a value of 1. After this process is
completed, a binary image is obtained containing only 1’s and 0’s. The final step is convolving
this binary image with a Gaussian with smoothing parameter σ = σp. This is done to make the
gradients smaller in the areas where values go from high to low.
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Algorithm 4.2 Preprocessing

Require: n×m image I, θ > 0, σp > 0
µ← 1

nm

∑n
i=1

∑m
j=1 Iij ⊲ Mean of image

for i = 1, . . . , n do
for j = 1, . . . ,m do

if Iij > θµ then
I ′ij ← 1

else
I ′ij ← 0

end if
end for

end for
f ← Gσp

∗ I ′ ⊲ Convolution with Gaussian to obtain smoother image
return f

The value of θ should not be too high, otherwise the resulting binary image will only contain
zeroes. We found that θ ∈ [0.7, 1.0] works well, but bear in mind that it is dependent on the image
and the desired result. Furthermore, σp should be small. The smoothing step is really only used
to soften the high gradients at cell borders, not to make the whole image smooth. The GVF field
itself will ‘fill in’ areas with little data, which are the cell interiors. All σp ≤ 1.5 seem to work quite
well. Figure 4.6 shows the result of algorithm 4.2 when applied to an image.

Figure 4.6: Result of preprocessing algorithm, using θ = 0.8 and σp = 1.2.

This algorithm is used to remove some of the distortion inside the cell interiors. The idea is that
the whole cell interior has a value of 1, such that the GVF field can work its magic on these
homogeneous regions.

4.3 Cropping

Sometimes it happens that cell centers are (wrongly) detected in regions where no cells are present.
We call these regions voids. See for example the upper right corner of Figure 5.7. The resulting
GVF snakes are often near-perfect circles, skewing the data. A way to prevent this from happening
is to crop the image such that it doesn’t contain any voids. Cropping the image to a new rectangular
image often means regions that do contain cells are also discarded, which we want to avoid. We
present a method that detects voids, such that wrongly detected cell centers in these regions can
be deleted.
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Figure 4.7: The areas shaded red are the detected voids in image
2;US;2017;field1;T9;cortex.rep1.

Voids are detected by finding connected regions in which the gradient of the image is small. That
is, for a n×m image I, a binary image B of equal dimensions is created as follows:

Bij =

{
1, if ‖∇Iij‖ ≤ τ

0, otherwise
, (4.2)

for some τ > 0. We are searching for so-called connected components of B, by means of a
connected-component labeling algorithm.

Definition 4.1. A connected component C of a binary matrix A is an equivalence class corre-
sponding to the relation

(i, j) ∼ (k, l) ⇐⇒ Aij = Akl = 1 and both entries are connected via

a ‘Manhattan-path’ consisting of only ones.

‘Manhattan-path’ is a path such that two adjacent entries are either vertical or horizontal neigh-
bours.

Note that by definition 4.1, an isolated ‘1’ is a connected component, as there is always a path
from an entry to itself. The matrix

A =




1 1 1 0 0 0 0
1 1 0 0 0 0 0
0 1 0 0 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1



,

has two connected components, a red and blue one. The connected components of B represent
regions of I in which the gradient ∇I is small. Typically, cell interiors and voids are such regions.
The main difference between cell interiors and voids is that voids are much larger. This is the
criterium for a connected component to be deemed a void.

Definition 4.2. A connected component C of B is called a void of I if |C| ≥ p · nm, for some
p ∈ [0, 1].
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In other words, C is a void if its area - the number of pixels it contains - is greater than some
fraction p of the total area of I. Searching for the connected components of B takes a long time in
practice. For this reason, we first make I significantly smaller by resizing it by a factor 1/η. Before
this is done, a minimum filter with size ω is applied to I to make cell boundaries more prominent.
Finally, the preprocessing algorithm from section 4.2 is applied to the resized image. In short:

I
Min. Filter
7−−−−−−−→ I ′

Resize
7−−−−→ I ′′

Preprocessing
7−−−−−−−−→ I ′′′. (4.3)

This proces is visualized in Figure 4.8. Note that I ′′ and I ′′′ have dimensions n/η × m/η. The
binary image B is then made for I ′′′. When the voids have been found according to definition 4.2,
they can be placed in a new n/η ×m/η matrix V , defined by

Vij =

{
1, if (i, j) ∈ C for some void C

0, otherwise
. (4.4)

V is then upscaled to match the dimensions of I by applying a Kronecker product with an η × η
matrix Eη containing only ones:

W = V ⊗ Eη. (4.5)

Every 1 in V is replaced by an η × η block of ones, resulting in a n ×m matrix W . Note that in
practice η will most likely not divide n and m. In fact, n and/or m may even be prime numbers.
For this reason, n/η and m/η are rounded to the nearest integer. This means that W will not be
exactly an n×m image. We therefore resize W to have exact the dimensions n×m.

Figure 4.8: The steps of (4.3) visualised for the image 2;US;2017;field1;T9;cortex.rep1. The
parameters used are m = 5, η = 10, (θ, σp) = (0.8, 0.5), τ = 0.1 and p = 0.01.

As with most numerical algorithms, a tradeoff is made between speed and accuracy. As η gets
larger, the dimensions of I ′′′ get smaller, resulting in a faster execution. However voids are given
in terms of big η× η blocks, which means the accuracy is lower. We find that choosing η such that
I ′′ roughly has dimensions 200× 200 yields good enough results. Depending on the image, it takes
about 1 to 2 seconds on a quad-core Linux machine6.

6See the full specifications of the machine used below the table of contents.
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Figure 4.9: Small section of image 2;US;2017;field1;T9;cortex.rep1 containing a large void.
The black dots are cell centers detected inside this void.

In Figure 4.9 a large void is present. The cell center detection algorithm detects some centers
inside this void, they are colored black. No GVF curves has been made for the black centers. Note
that there is one red center that should have been black. In some cases this happens due to small
dark spots in the image. We still find this to be an acceptable result, because in this case more
than 95% of wrongly detected cell centers have been colored black. A possible way to erase the
dark spots is to apply an open filter.

4.4 Solving GVF Systems

Recall the GVF systems (3.16a) and (3.16b):

(µL−G)û = −Gfx (3.16a)

(µL−G)v̂ = −Gfy (3.16b)

We examine the performance of a number of linear solvers. Note that the matrix µL−G is sparse,
but still very large. If the original image has dimensions n × m, then µL − G has dimensions
nm × nm, which can get very large. We compare the solvers CG, CGS, MINRES and BiCGSTAB. In
table 4.1 one can see the time it takes to solve both systems for a given image. The clear winner
in this case is MINRES. Also note that a higher value of µ results in a longer computation time.
This is expected, as a high µ means the effect of the diagonal matrix G is smaller. In this case the
systems (3.16a) and (3.16b) are more like a discrete Poisson equation.

CG CGS MINRES BiCGSTAB

µ = 0.1 20.7 27.0 16.8 24.4
µ = 0.2 22.3 30.9 19.0 27.0
µ = 0.4 25.5 35.7 21.9 32.6

Table 4.1: Performance in seconds of different solvers for image 1;US;2017;field1;T9;Pith.rep2

with dimensions 1632× 2112. The applied tolerance is 10−5.
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When solving a system Ax = b, all four solvers try to minimize the norm of the residual vector
r = Ax− b. The process is stopped whenever ‖r‖ is below some tolerance ε.
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5 | Results

In this chapter, we present some results obtained from the snake algorithm and apply a number
of statistical tests on these results. The snake algorithm is applied to images provided by HZPC.
The names of these images are quite cryptic. The only piece of information that can be extracted
is whether it is a microscopic image of the pith or the cortex of a potato. These are two different
regions of the potato. Pith being center of the potato, is also called the inner medulla. The cortex
is the region just below the skin.

5.1 GVF Field
In Figure 5.1 and 5.2 two different GVF fields are given for one cell. In Figure 5.1 the GVF
parameter is set to µ = 0.2 whereas in Figure 5.2 it is set to µ = 0.1. In the latter figure, the
magnitude of the field is much larger near the cell boundary, relative to the cell interior. This
is expected, as the GVF field u is closer to ∇f for lower values of µ. Indeed, in Figure 5.1 the
magnitude near the cell boundary is relatively closer to that in the cell interior.

Figure 5.1: GVF field and its (relative) magnitude using preprocessing parameters (θ, σp) =
(0.8, 1.2) and GVF parameter µ = 0.2.

Figure 5.2: GVF field and its (relative) magnitude using preprocessing parameters (θ, σp) =
(0.8, 1.2) and GVF parameter µ = 0.1.
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5.2 Snakes
We present some results of the algorithm applied to different images. In Figure 5.3 the evolution
in time of a single snake can be seen. Note that the initial curve is quite large. Every side of the
square contains 16 points, with one pixel between two adjacent points.

Figure 5.3: The evolution of a snake in time, subject to the GVF field. Parameters that are used
are shown in table 5.1.

In Figure 5.4 a number of snakes are developed. Note that a curve can leave the image. The GVF
field is extended beyond the image, such that it pushes snakes back towards the image border. The
further away a point is from the image, the stronger this pushback force will be.

Figure 5.4: The evolution of a number of snakes in time, subject to the GVF field, again using the
parameters found in table 5.1.

Table 5.1: Parameters used to generate Figures 5.3 and 5.4.

Init. GVF Snakes
σb µ θ σp N α β γ ∆t
3 0.2 0.8 1.2 64 4 0 250 0.01

In Figure 5.5 the result of the snake algorithm for a whole image is shown. The entire process
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takes about 1 to 2 minutes to complete. Note that there is almost no space between the curves.
This is an indication that the process is succesful, as there is also no space between two cells. In
Figure 5.6 a small section of the same image is shown. We consider the cells to be accurately
approximated by the GVF curves.

Figure 5.5: Result of snake algorithm applied to the image 1;US;2017;field1;T14;Pith.rep2,
using the parameters shown in table 5.2
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Figure 5.6: Small section of image 5.5, with and without GVF curves.

Table 5.2: Parameters used to generate Figures 5.5 and 5.6.

Init. GVF Snakes
σb µ θ σp N α β γ ∆t tend

3 0.2 0.8 1.2 64 4 0 250 0.04 6.0

Not every result is as good as in Figure 5.5. For example, in Figure 5.7 there is more space between
the curves. While certain parameters may be tuned to obtain better results, the biggest bottleneck
is the image quality: compare Figure 5.8 to 5.6.

Figure 5.7: Result of snake algorithm applied to the image 1;US;2017;field1;T15;Pith.rep,
using the parameters found in table 5.3
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Figure 5.8: Small section of image 5.7, with and without GVF curves.

Table 5.3: Parameters used to generate Figures 5.7 and 5.8.

Init. GVF Snakes
σb µ θ σp N α β γ ∆t tend

3 0.2 0.8 1.2 64 6 0 250 0.03 6.0

Note that all snakes so far have been generated using β = 0. We found that this choice yields good
results. If we set β > 0, the snakes become too regularized very quickly. Also the time step ∆t
should be made much smaller in order to avoid numerical instability of the explicit Euler method.

A favourable property of GVF snakes is that incomplete cell boundaries have little effect on the
result. For example, in Figure 5.9, the two middle cells are seperated by a very vague boundary.
Nonetheless, two cell centers are detected and the resulting GVF snakes are correct; they respect
the vague boundary.

Figure 5.9: GVF snakes in a small section of image 1;US;2017;field1;T19;Pith.rep1.

Table 5.4: Parameters used to generate Figure 5.9.

Init. GVF Snakes
σb µ θ σp N α β γ ∆t tend

4 0.2 0.8 1.2 84 10 0 250 0.01 5.0

Also note that the rightmost curve respects the vague upper boundary. A situation in which the
GVF snakes perform worse is when small granules are present. As can be seen in Figure 5.10,
curves are pulled towards the clusters of granules.
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Figure 5.10: GVF snakes in a small section of image 1;US;2017;field1;T9;Pith.rep2 containing
clusters of granules.

Table 5.5: Parameters used to generate Figure 5.10.

Init. GVF Snakes
σb µ θ σp N α β γ ∆t tend

6 0.2 0.8 1.2 64 6 0 150 0.01 5.0

If there are only a few of these granules present, their influence can be reduced by tweaking the
parameters slightly. In Figure 5.11 the size of the curves is increased, yielding acceptable results.
Note that the granule in the leftmost cell still affects the curve.

Figure 5.11: GVF snakes in a small section of image 2;US;2017;field1;T14;cortex.rep1 con-
taining granules.

Table 5.6: Parameters used to generate Figure 5.11.

Init. GVF Snakes
σb µ θ σp N α β γ ∆t tend

8 0.2 0.8 1.2 96 10 0 250 0.01 5.0

As a final remark, note that the values of σb are quite large in the previous simulations. This is
done to only detect cell centers in the cells we are interested in.

5.2.1 Degenerate Snakes

In some cases, the snake algorithm produces faulty curves. These degenerate snakes are often
squished against the image border or a cell boundary, enclosing only a very small area. Degenerate
snakes are not desirable when performing statistical analysis on the output of the snake algorithm,
as they can skew the data. In Figure 5.12, some degenerate snakes are shown.
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Figure 5.12: Small section of 2;US;2017;field1;T14;cortex.rep1, containing degenerate curves
that are marked red.

Fortunately, these faulty snakes can be easily detected. Define the isoperimetric ratio IPR and
isoperimetric quotient IPQ of a closed curve r by

IPR(r) =
ℓ(r)2

A(r)
, IPQ(r) =

4πA(r)

ℓ(r)2
, (5.1)

where ℓ(r) denotes the length of r, and A(r) denotes the area it encloses. A circle is a curve with
the smallest IPR; it is equal to 4π [3]. For this reason, the IPQ of any curve is in the range [0, 1].
Furthermore, the IPR and IPQ of a curve are invariant under scaling. We expect the IPR of a
degenerate curve to be large, as the area it encloses is small. Or equivalently, the IPQ is expected
to be small. We use this intuition to define a degenerate curve as follows:

Definition 5.1. A snake x is called degenerate if IPQ(x) ≤ 1
3 .

This is also the criterium used to find the faulty snakes in Figure 5.12. To put definition 5.1 into
context, consider a rectangle with sides of length 1 and a. Then the IPR of this rectangle, say Ra,
is given by

Ra =
(2a+ 2)2

a
= 4a+ 8 +

4

a
.

If a snake x is degenerate, then we have

IPR(x) =
4π

IPQ(x)
≥ 12π ≥ 37 = 4 · 7 + 9 ≥ 4 · 7 + 8 +

4

7
= R7.

So the IPR of x is higher than that of a rectangle with sides of length 1 and 7. We there-
fore assume that x is not the boundary of any cell. In practice, a snake is given by a set of
points. Its length and area will have to be approximated. Assume a snake x is given by N
points (x0, y0), . . . , (xN−1, yN−1). Then the length is calculated by summing the lengths of all line
segments between to consecutive points:

ℓ(x) =

N∑

i=1

√
(xi − xi−1)2 + (yi − yi−1)2. (5.2)

The area enclosed by x can be calculated using the the shoelace-formula[4]:

A(x) =
1

2

∣∣∣∣∣
N∑

i=1

(xi−1yi − xiyi−1)

∣∣∣∣∣ . (5.3)

In the equations above the periodicity of x is used, so xN = x0 and yN = y0.
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5.3 Statistics
In this section we provide some examples of statistical tests that can be performed on the output
of the snake algorithm. No conclusions are drawn from any of these tests; the aim is simply to
show that a number of different geometric parameters can be extracted from the snakes. We focus
on the isoperimetric quotient, which is already introduced in section 5.2.1, and the diameter of a
snake. The diameter of a cell is the longest straight line that can be placed inside the cell. The
orientation of the diameter in particular is given some attention.

5.3.1 Isoperimetric Quotient

Assume that for some image the snake algorithm yields K snakes. For a snake x ∈ {x1, . . . ,xK},
its length ℓ(x) and the area it encloses A(x) can be calculated using (5.2) and (5.3) respectively.
By calculating the IPQ we can check wether x is degenerate by definition 5.1. If it is, discard the
snake. Repeating this process for all snakes, this leaves us with K ′ ≤ K nondegenerate snakes.
In Figure 5.13 the relation between length, area and IPQ of all snakes in a particular image are
presented.

Figure 5.13: Scatterplots of area against length (upper plot), isoperimetric quotient against length
(bottom left) and isoperimetric quotient against area (bottom right), based on the results of the
snake algorithm applied to image 451;US;2017;field46;T17;Pith.rep1. Length and area are
given in terms of pixels. The parameters used are given in table 5.7.

Table 5.7: Parameters used to generate Figure 5.13.

Init. GVF Snakes
σb µ θ σp N α β γ ∆t tend

1.5 0.2 0.8 1.2 64 4 0 250 0.04 6.0

Note that there are no snakes with an IPQ of less than 1/3, which is the result of discarding
degenerate snakes. The dashed line in the upper plot represents the parabola A = ℓ2/4π. By the
isoperimetric inequality, no points can be located above this line. The points inside the two red
ellipses correspond to snakes with high IPQ’s. In this case, these snakes are located in a region of
the image where no cells are present. Here, the effect of the GVF field is minimal, so the snakes
turn into near perfect circles. These type of snakes are characterized by a high IPQ and small
area and length. Nevertheless, they are hard to detect afterwards, as there may be some actual
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cells with these characteristics. The solution to this problem is to prohibit cell centers from being
detected in regions without cells.

5.3.2 Diameter

Another interesting statistic of the cells is the diameter, which has a length and (almost always)
an orientation. The orientation in particular can yield insight in the way cells are placed in the
analyzed cross section. In Figure 5.14 the diameters of the cells are plotted. Note that in the lower
right corner the general orientation seems to be nearly vertical, whereas in the upper right corner
the it is more or less horizontal.

Figure 5.14: Diameters of GVF snakes in image 1;US;2017;field1;T14;Pith.rep2. The average
length of all diameters is 47.0 pixels.

This leads us to the matter of finding these diameters. The initial idea was to fit an ellipse to every
cell, and let the major axis of this ellipse be the diameter. However, the fitted ellipses were often
quite bad, producing even worse diameters. Therefore, this method wass discarded. The alternative
method is much simpler. Given a snake x as a list of N points (x0, y0), . . . , (xN−1, yN−1), the
diameter d is defined to be the length of the longest edge connecting two of these points:

d = max
i 6=j
‖(xi, yi)− (xj , yj)‖. (5.4)

Which implies that N(N − 1) lengths have to be checked for every cell. However, assuming the
cell has a nearly convex shape, only points on the opposite side of the cell have to be checked. For
example, if we start checking in point (x0, y0), we need not calculate the distance to the points
(x1, y1), (xN−1, yN−1) etc, for it is assumed these points are close to (x0, y0). Only N/2 points on
the opposite side of (x0, y0) are checked. To avoid calculating the length of lots of edges multiple
times, only half the points are checked. This reduces the number of lengths that have to be checked
to N2/4. In algorithm 5.1 the procedure is given in pseudocode.
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Algorithm 5.1 Find diameter

Require: Snake x consisting of N points (x0, y0), . . . , (xN−1, yN−1)
d← 0 ⊲ Diameter length
e← {0, 0} ⊲ Edge corresponding to diameter
for i = 0, . . . , N/2 do ⊲ Check half of all points

for j = i+N/4, . . . , i+ 3 ·N/4 do ⊲ Half of the points opposite to point i
j ← j mod N ⊲ Use periodicity of snake
dij ← ‖(xi, yi)− (xj , yj)‖
if dij > d then

d← dij
e← {i, j}

end if
end for

end for
return d, e

The orientation of a diameter can be expressed in terms of its angle with respect to the x-axis.
Note that in image processing the x-axis points downwards, and the y-axis points to the right. We
define the orientation θ of a diameter d connecting two points xi and xj to be the angle obtained
from turning anti-clockwise from the positive x-direction to the segment. This is illustrated in
Figure 5.15. Since d is an undirected line segment, we can let θ ∈ [0, π). Given that yj ≥ yi, θ can
then be calculated as follows,

θ = arccos
xj − xi
‖xj − xi‖

. (5.5)

x

y

xi

xj

θ

d

Figure 5.15: Orientation of diameter between points xi and xj .

This allows us to examine the orientation of the diameters of all snakes in an image. In Figure
5.16 this is done using the diameters of Figure 5.14. The data is presented as a histogram on a
circle. The size of a bar in a given direction corresponds to the number of diameters that have
that direction. Note that the data is π-periodic; bars on opposite sides of the circle have the same
size. Because θ ∈ [0, π), the left half of the circle can be left out. We include it for the sake of
presentation.
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Figure 5.16: Histogram showing the orienta-
tions of the diameters of GVF snakes in image
1;US;2017;field1;T14;Pith.rep2.

Figure 5.17: Scatterplot
showing the length of a diam-
eter against its orientation.

It can be seen that the diameters in Figure 5.14 have a ‘vertical bias’; more diameters are orientated
rougly vertical than horizontal. However, there is not clear correlation between the orientation and
length of a diameter, as can be seen in Figure 5.17. We found that in some images, different areas
have a different median direction. In Figure 5.18, two different regions are highlighted. The
diameters in the green region are orientated vertically, whereas the diameters in the blue region
are oriented more or less horizontally.

Figure 5.18: Diameters of GVF snakes in image 1;US;2017;field1;T14;Pith.rep1.

These claims are supported by Figures 5.19 and 5.20, where histograms showing the orientation of
diameters in both regions are presented. In the green region, a peak at about θ = π/6 is present.
This means that a lot of diameters have roughly this orientation. In the blue region we can see
peaks around θ = π/2, meaning that a lot of diameters are roughly horizontal.
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Figure 5.19: Orientations of diameters in green
part of Figure 5.18.

Figure 5.20: Orientations of diameters in blue
part of Figure 5.18.

We expect diameters with peak orientation to be slightly longer than other diameters in a given
region. This can be seen in Figures 5.21 and 5.22, where the lengths corresponding to peak
orientations are indeed slightly above average. The differences are very small however.

Figure 5.21: Scatterplot showing length
of a diameter in green part of Figure
5.18 against its orientation.

Figure 5.22: Scatterplot showing length
of a diameter in blue part of Figure 5.18
against its orientation.

Furthermore, if the reader slightly squints at Figures 5.14 and 5.18, some kind of ‘flow’ can be seen.
While it is beyond the scope of this report, further research can be done in creating an algorithm
to find these flows.
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5.4 Clustering

The snake algorithm was applied to about 1200 images7, using the parameters in table 5.7. Note
that these parameters might not have been the best choice for certain images. However, finding
a good set of parameters for each of the 1200 images by hand would have taken too much time.
Based on these simulations, we wish to seperate the images into a number of different classes.
This is called clustering. The set of all images is separated into two disjoint sets, one containing
microscopic images of the pith, and the other containing microscopic images of the cortex. For
every image, the length and area is calculated for every GVF snake, and degenerate curves are
discarded. Then the mean of the length and area of all non-degenerate curves can be calculated.
Say that the output of the snake algorithm applied to an image I is a set of K ′ non-degenerate
curves {x1, . . . ,xK′}. Then the mean of the lenghts and areas are given by respectively

µℓ =
1

K ′

K′∑

k=1

ℓ(xk), µA =
1

K ′

K′∑

k=1

A(xk). (5.6)

Every image now produces a vector (µℓ, µA). These vectors are shown in the left plot of Figure
5.23. There is a clear linear relation between µA and µℓ. The same thing can be done for the
standard deviations. They are calculated as follows:

σℓ =

√√√√ 1

K ′

K′∑

k=1

(ℓ(xk)− µℓ)2, σA =

√√√√ 1

K ′

K′∑

k=1

(A(xk)− µA)2. (5.7)

The vectors (σℓ, σA) are shown in the right plot of Figure 5.23. Note that there is again a clear
correlation. Based on these means and standard deviations, the images can be clustered.

Figure 5.23: Scatterplots showing the points (µℓ, µA) and (σℓ, σA) for every image, seperated into
pith and cortex.

The numbers µℓ, µA, σℓ and σA can only be compared with each other if the magnification level of
the microscope used to make the corresponding images is the same for both images. It is assumed
that this is indeed the case. We assume that two potatoes of the same species have a somewhat
similar cell structure. In this case we also expect that the statistics µℓ, µA, σℓ and σA are close
to each other. If it is known that all potatoes belong to one of k species, a clustering algorithm
can be applied to the set of 4-dimensional vectors (µℓ, µA, σℓ, σA). Every cluster then represents
a species. The k-means method [5] is well known clustering algorithm that aims to partition n
vectors into k sets, such that the within-cluster sum of squares is minimized. In Figures 5.24 and
5.25 the pith and cortex images are separated into 3 clusters, using the k-means method. The
initial positions of the centroids are chosen at random. Note that the data points are actually

7The total computation time was roughly 15 hours.
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elements of 4-dimensional space. Both figures shows two projections of the data, onto the (µℓ, µA)
plane and (σℓ, σA) plane. This is the reason why some clusters seem to overlap.

Figure 5.24: Pith images separated into 3 clusters. The big dots represent the centroids of a cluster.

Figure 5.25: Cortex images separated into 3 clusters. The big dots represent the centroids of a
cluster.

The clusters produced by the k-means method seem to be rather arbitrary. This might be due to
the fact that a lot of information about the curves is lost when calculating means and standard
deviations. This problem is avoided by using spectral clustering [6], which makes use of the
eigenvalues of a similarity matrix. Let S1, . . . , SP be datapoints. In our case the datapoints are
sets that contain lengths and areas of all GVF curves in one image, i.e.

Si =

{(
ℓi1
Ai

1

)
, . . . ,

(
ℓiKi

Ai
Ki

)}
, (5.8)

where ℓik and Ai
k denote the length and area of curve k in image i, and Ki is the total number

of non-degenerate GVF curves in image i. Note that the GVF curves are not inherently ordered,
but they can be numbered from 1 to Ki. The similarity matrix A is then a symmetric P × P
matrix such that Aij ≥ 0 represents a measure of similarity between Si and Sj . We will discuss
the similarity function later. Given A, its laplacian matrix L is given by

L = I −D−1/2AD−1/2, (5.9)
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where D is a diagonal matrix with

Dii =

P∑

j=1

Aij . (5.10)

Computing D−1/2 can be done by raising every diagonal element of D to the power −1/2. The
eigenvector v corresponding to the second smallest eigenvalue λ2 of L is used to partition the data
into a number of clusters. For example, the k-means method can be applied to v to partition
v into k clusters. Every entry vi corresponds to a datapoint Si, so the data has been clustered
implicitly. In essence, spectral clustering reduces the P datapoints to a P -dimensional vector, on
which conventional clustering techniques can be applied.

The similarity between two sets Si and Sj is a number that respresents how similar the two sets
are, let ψ(Si, Sj) be that number. ψ should satisfy three properties:

ψ(Si, Sj) = ψ(Sj , Si), ψ(Si, Sj) ≥ 0, and ψ(Si, Sj) = 0 ⇐⇒ Si = Sj . (5.11)

We propose two different similarity functions,

ψ1(Si, Sj) =
1

|Si|+ |Sj |


∑

a∈Si

min
b∈Sj

‖a− b‖+
∑

b∈Sj

min
a∈Si

‖a− b‖


 , (5.12a)

ψ2(Si, Sj) =
1

2|Si|

∑

a∈Si

min
b∈Sj

‖a− b‖+
1

2|Sj |

∑

b∈Sj

min
a∈Si

‖a− b‖. (5.12b)

Where ‖ · ‖ can be any norm on R
2. For simplicity, we let ‖ · ‖ be the Euclidian norm. Both

functions come from the same principle. If Si is similar to Sj , then for every point a ∈ Si, we
expect there to be a point b ∈ Sj close to a. In this case, all distances minb∈Sj

‖a − b‖ will be
small, so ψ1 and ψ2 will both be small. However, if Si is not similar to Sj , then at least a number
of these distances will be large. It can be immediatly seen that ψ1 and ψ2 satisfy the first two
properties of (5.11). The third property is also satisfied. Assume Si = Sj , then for every point,
the minimum distance to a point in the other set is the distance to itself. Now assume Si 6= Sj ,
and WLOG8 assume there is a point a ∈ Si such that a 6∈ Sj . Then minb∈Sj

‖a − b‖ 6= 0, so
ψ1(Si, Sj), ψ2(Si, Sj) 6= 0.

The difference between the two similarity functions lies in the way they treat sets of different sizes.
If |Si| = |Sj |, then ψ1(Si, Sj) = ψ2(Si, Sj). Note that ψ2 gives both sets the same ‘weight’. Even
if Si contains only one element a, the minimum distance from a to Sj is just as important as the
average minimum distance of all elements of Sj to a. On the other hand, ψ1 gives the larger set
more weight.

Computing ψ1 or ψ2 is very computationally intensive. If all P = 1200 datasets are taken into
account, we would need to calculate P (P −1)/2 ≈ 720000 similarities. By extrapolation, we found
that this would take roughly 17 hours on a quad-core Linux machine. We test the method on the
dataset 382, containing 11 cortex images. We separate this dataset into 2 clusters, using both ψ1

and ψ2 as similarity functions. The resulting P -dimensional eigenvector v is separated by the sign
of its entries. If vi > 0, then image i belongs to cluster 1. Otherwise it belongs to cluster 0. See
Table 5.8 for the results.

8Without Loss Of Generality; it could be that Si ⊆ Sj , in this case such a point a would be in Sj .
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Table 5.8: Results of spectral clustering method using different similarity functions.

Image name Cluster (ψ1) Cluster (ψ2)
382;US;2017;field39;T4;cortex.rep2 1 1
382;US;2017;field39;T19;cortex.rep2 0 1
382;US;2017;field39;T9;cortex.rep1 1 1
382;US;2017;field39;T12;cortex.rep2 1 0
382;US;2017;field39;T20;cortex.rep1 0 0
382;US;2017;field39;T4;cortex.rep1 0 1
382;US;2017;field39;T12;cortex.rep1 0 0
382;US;2017;field39;T19;cortex.rep1 1 0
382;US;2017;field39;T9;cortex.rep2 0 0
382;US;2017;field39;T20;cortex.rep2 0 1
382;US;2017;field39;T19;cortex.rep3 1 1

Note that both functions yield rather different results. Computing time for both functions is about
5 seconds, which is quite bad for such a small collection of images. We propose a new similarity
function based on the empirical cumulative distribution function. Split a dataset Si as in (5.8)
into two sets ℓi and Ai:

ℓi =
{
ℓi1, . . . , ℓ

i
Ki

}
, Ai =

{
Ai

1, . . . , A
i
Ki

}
. (5.13)

Let F i
ℓ and F i

A be the empirical cumulative distribution functions (ecdf) of the sets ℓi and Ai

respectively. Define the functions

∆ij
ℓ (t) =

∣∣∣F i
ℓ (t)− F

j
ℓ (t)

∣∣∣ , ∆ij
A(t) =

∣∣∣F i
A(t)− F

j
A(t)

∣∣∣ (5.14)

to be the absolute difference between the two empirical distributions corresponding to the length
and area. If Si and Sj are similar, then the functions ∆ij

ℓ and ∆ij
A will be close to zero. Define

Iijℓ =

∫ ∞

0

∆ij
ℓ (t) dt, IijA =

∫ ∞

0

∆ij
A(t) dt. (5.15)

Finally, the similarity function ψ3 is defined as

ψ3(Si, Sj) =
∥∥∥
(
4πIijℓ , I

ij
A

)∥∥∥ , (5.16)

where ‖ · ‖ again denotes the Euclidian norm. The integral Iijℓ is multiplied by 4π in order to make
the effect of the length stronger. As one can see in Figure 5.23, the area enclosed by a snake is
significantly larger than its length. As a result, the interval on which ∆ij

A is non-zero is much bigger

than that of ∆ij
ℓ , which in turn implies that IijA will be much bigger than Iijℓ . Multiplying by 4π

is done to counteract this effect. One immediate advantage of ψ3 over ψ1 and ψ2 is the reduced
computation time. Applying it to the dataset 382 only takes 0.03 seconds. By extrapolation,
applying spectral clustering using ψ3 to all images would take only 6 minutes. See Table 5.9 for
the resulting partition.

Table 5.9: Results of spectral clustering method using ψ3.

Image name Cluster (ψ3)
382;US;2017;field39;T4;cortex.rep2 0
382;US;2017;field39;T19;cortex.rep2 1
382;US;2017;field39;T9;cortex.rep1 0
382;US;2017;field39;T12;cortex.rep2 1
382;US;2017;field39;T20;cortex.rep1 0
382;US;2017;field39;T4;cortex.rep1 0
382;US;2017;field39;T12;cortex.rep1 0
382;US;2017;field39;T19;cortex.rep1 0
382;US;2017;field39;T9;cortex.rep2 1
382;US;2017;field39;T20;cortex.rep2 1
382;US;2017;field39;T19;cortex.rep3 0
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Since we have no information on the actual species a potato belongs to, results from the clustering
algorithms can’t be checked. While it is rather dissatisfying, the aim of this section is to show that
results produced by the snake algorithm can be used for purposes like clustering.
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6 | Summary

The aim of this project was to develop a tool to analyze microscopic images of cells. The desired
output of this tool was a set of curves that represent the cell boundaries. The theory of active
contours, or snakes, is used to achieve this. In particular the gradient vector flow (GVF) method
was utilised. GVF snakes possess a number of favourable characteristics. Most notably, the force
field can capture a snake from a long range. Thus, initial curves can be quite large. Furthermore,
because of its smoothing properties, GVF snakes deal well with missing or vague cell boundaries.
A drawback of GVF snakes is that they can be affected by small granules inside the cells. These
granules distort the GVF force field, resulting in snakes getting pulled towards them. The snake
algorithm relies on a number of parameters. Although a general set of parameters can be utilised
for all images within the provided collection, for optimal results these parameters could tuned for
every image individually. However, the quality of the resulting curves will depend on the quality
of the image itself.

A number of auxiliary algorithms have also been developed. Most important is the cell center
detection method. This method is vital to the succes of the snake algorithm, as the locations
of cells have to be known before initial curves can be placed. A preprocessing algorithm was
implemented in order to remove some of the noise in the image. Lastly, we noticed that some
images contained empty regions. To prohibit cell centers from being placed in these regions, a
cropping algorithm was implemented.

The results from the snake algorithm can be used to perform statistical analyses. For example, the
length of the curves and the area they enclose can vary from image to image. The diameters can
be used to determine the orientation of cells in (parts of) the image. The statistics can be used to
cluster images into sets, representing different species. Two different clustering methods have been
applied to sets of lengths and areas, to show this is indeed possible.

Further work can be done in using a variable number of points to represents the curves. At
present, every curve consists of the same (fixed) amount of points. However, as some cells are
larger than others, we would prefer the number of points to be variable. The amount of points can
be determined beforehand for every curve, as a function of the GVF parameters and for example the
area of the cell (if it can be calculated). Another possibility is to add points during the algorithm.
For example, if the internal forces are keeping a curve from moving in the direction of the GVF
field, another point can be added to relax the internal force.
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A | Python Code

The most important programs are presented. All scripts are written in Python 2.7, and make use
of open-source libraries such as numpy, matplotlib, scipy and skimage.

A.1 snake.py
This script contains the snake algorithm. Given a set of parameters and an image, the output is a
list GVFcurves containing all GVF curves. A curve is given as an N × 2 numpy array, where the
first column contains all x-coordinates and the second column contains all y-coordinates.

import numpy as np

import matplotlib.pyplot as plt

import scipy.sparse as sp

import scipy.sparse.linalg as spla

from scipy import ndimage

from skimage import color , io , transform

from skimage.feature import peak_local_max

# ============================== Parameters ==============================

num_points = 64 # should be multiple of 4

alpha = 6 # 2nd order coefficient

beta = 0 # 4th order coefficient

gamma = 250 # force field strength

dt = 0.03 # time step

t_end = 6.0 # simulation end time

theta = 0.8 # GVF preprocessing parameters

sigma = 1.2

mu = 0.2 # GVF parameter

resize = False

size = 2400 # rescale if image is high -res

b_sig = 3 # cell detection parameters

min_sig = 5

max_sig = 20

# ============================= Image choice =============================

impath = ’/path/to/image.jpg’

im = color.rgb2gray(io.imread(impath))

imshape_x , imshape_y = im.shape

if resize:

new_x , new_y = size , int(float(imshape_y)/imshape_x*size)

im = transform.resize(im, (new_x , new_y)) # rescale

# ======================= Approximate Number of Cells ====================

num_lines = 8 # number of rows and columns used to compute S(I)

im_gauss = ndimage.gaussian_filter(im, sigma=b_sig)

avg_x_cells , avg_y_cells = 0, 0

for i in range(num_lines):

n = i*imshape_x/num_lines

m = i*imshape_y/num_lines

line_x = im_gauss[n,:]

line_y = im_gauss[:,m]

line_x_mean = line_x.mean()

line_y_mean = line_y.mean()

boundary_x = (line_x <line_x_mean)

boundary_y = (line_y <line_y_mean)

switch_x = abs(np.diff(boundary_x))
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switch_y = abs(np.diff(boundary_y))

count_x = switch_x.sum()*0.5

count_y= switch_y.sum()*0.5

avg_x_cells += count_x/num_lines

avg_y_cells += count_y/num_lines

num_cells_scan = avg_x_cells*avg_y_cells

# ======================== Find Center Coordinates =======================

resolution = 0.5

sig_range = np.array ([ min_sig+resolution*k for k in range(int((max_sig -min_sig)/

resolution)+1)])

diff = np.infty

coordinates = np.array ([])

for i in range(len(sig_range)):

sigma_i = sig_range[i]

im_gauss = ndimage.gaussian_filter(im, sigma=sigma_i)

new_coordinates = peak_local_max(im_gauss)

num_peaks = new_coordinates.shape [0]

new_diff = abs(num_cells_scan - num_peaks)

if new_diff > diff:

break

diff = new_diff

coordinates = new_coordinates

sig_opt = sig_range[i-1]

center_coords = coordinates

# ====================== Place initial Curves ============================

N = num_points /4

r = N + 1

dxrange = range(-r+1, r, 2)

dyrange = range(-r+3, r-2, 2)

initial_curves = []

for point in center_coords:

i, j = point [0], point [1]

curve = []

dy = -r+1

for dx in dxrange:

curve.append(np.array ([i+dx, j+dy]))

dx = r-1

for dy in dyrange:

curve.append(np.array ([i+dx, j+dy]))

dy = r-1

for dx in dxrange [-1::-1]:

curve.append(np.array ([i+dx, j+dy]))

dx = -r+1

for dy in dyrange [-1::-1]:

curve.append(np.array ([i+dx, j+dy]))

initial_curves.append(np.array(curve))

# ======================== GVF preprocessing ===========================

mean = np.mean(im)

newim = np.zeros(im.shape)

for i in range(im.shape [0]):

for j in range(im.shape [1]):

if im[i,j] > theta*mean:

newim[i,j] = 1

f = -ndimage.gaussian_filter(newim , sigma=sigma)

# ====================== GVF field calculation =========================

def C(n):

mat = np.zeros ((n,n))

mat[0,0] = -1

mat[n-1,n-1] = 1

mat += np.diag ([1]+[0.5 for k in range(n-2)], 1)

mat += np.diag ([ -0.5 for k in range(n-2)]+[-1], -1)

return mat
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Cx, CyT = C(imshape_x), C(imshape_y).transpose ()

Fx, Fy = np.dot(Cx , f), np.dot(f, CyT)

fx, fy = Fx.transpose ().ravel (), Fy.transpose ().ravel ()

gdiag = fx**2 + fy**2

G = sp.diags ([gdiag], [0])

Ix = sp.eye(imshape_x)

Iy = sp.eye(imshape_y)

Dx = sp.diags([-np.ones(imshape_x -1), np.ones(imshape_x -1)], [0,1], shape =(

imshape_x -1, imshape_x))

Dy = sp.diags([-np.ones(imshape_y -1), np.ones(imshape_y -1)], [0,1], shape =(

imshape_y -1, imshape_y))

Lxx = -Dx.transpose ().dot(Dx)

Lyy = -Dy.transpose ().dot(Dy)

L = sp.kron(Iy , Lxx , format=’csr’) + sp.kron(Lyy , Ix , format=’csr’)

A = mu*L - G

bx = -gdiag*fx

by = -gdiag*fy

u = spla.minres(A, bx, tol=1e-5)[0]

v = spla.minres(A, by, tol=1e-5)[0]

u = u.reshape ((-1, imshape_x)).transpose ()

v = v.reshape ((-1, imshape_x)).transpose ()

# ========================= GVF functions ============================

push = 0.1 # strength of force pushing back to image

def U(X, Y):

Xr, Yr = np.round(X).astype(int), np.round(Y).astype(int)

ulist = np.zeros (4*N)

for i in range (4*N):

if Xr[i]<0:

ulist[i] = push*abs(Xr[i])

elif Xr[i]>= imshape_x:

ulist[i] = -push*abs(Xr[i]-imshape_x -1)

elif Yr[i]<0 or Yr[i]>= imshape_y:

ulist[i] = 0

else:

ulist[i] = u[Xr[i], Yr[i]]

return ulist

def V(X, Y):

Xr, Yr = np.round(X).astype(int), np.round(Y).astype(int)

vlist = np.zeros (4*N)

for i in range (4*N):

if Yr[i]<0:

vlist[i] = push*abs(Yr[i])

elif Yr[i]>= imshape_y:

vlist[i] = -push*abs(Yr[i]-imshape_y -1)

elif Xr[i]<0 or Xr[i]>= imshape_x:

vlist[i]=0

else:

vlist[i] = v[Xr[i], Yr[i]]

return vlist

# ========================= Solving for GVF curves =======================

num_it = int(t_end/dt)

GVFcurves = []

num_curves = len(initial_curves)

def create_D2(size):

diag = [-2 for k in range(size)]

subdiag = [1 for k in range(size -1)]

mat = np.diag(subdiag ,-1) + np.diag(diag ,0) + np.diag(subdiag ,1)

mat[(0,-1) ,(-1,0)] = 1

return mat

A = create_D2 (4*N)

B = A.dot(A)

M = alpha*A - beta*B
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for curve in initial_curves:

X, Y = curve [:,0], curve [:,1]

it = 0

while it <num_it:

X = X + dt*(M.dot(X) + gamma*U(X,Y))

Y = Y + dt*(M.dot(Y) + gamma*V(X,Y))

it += 1

X = np.round(X)

Y = np.round(Y)

newcurve = np.array ([X,Y]).transpose ()

GVFcurves.append(newcurve)

A.2 cropping.py
This script contains a function void that determines the locations of voids as defined in section
4.3. The output is a binary image of the same dimensions as the input image. The most important
parameter is size, as it determines the size of the downscaled image. The larger this number, the
more accurate the voids become.

import numpy as np

from scipy import ndimage

from skimage import color , io , transform

# ======================= Parameters =====================

size = 200 # size of downsized image

tau = 0.1 # threshold for small gradient

p = 0.01 # area percentage

fsize = 5 # minimum filter size

theta = 0.8 # preprocessing theta

sigma = 0.5 # preprocessing sigma

# ========================= Image ========================

def C(n):

mat = np.zeros ((n,n))

mat[0,0] = -1

mat[n-1,n-1] = 1

mat += np.diag ([1]+[0.5 for k in range(n-2)], 1)

mat += np.diag ([ -0.5 for k in range(n-2)]+[-1], -1)

return mat

def void(orig_im , size =200, tau=0.1, p=0.01, fsize=5, theta =0.8, sigma =0.5):

imshape_x , imshape_y = orig_im.shape

im = ndimage.filters.minimum_filter(orig_im , size=fsize)

eta = int(float(imshape_x)/size)

new_x , new_y = int (1./ eta*imshape_x), int (1./ eta*imshape_y)

im_small = transform.resize(im, (new_x , new_y))

# ====================== Preprocessing =====================

mean = np.mean(im_small)

newim = np.zeros(im_small.shape)

for i in range(new_x):

for j in range(new_y):

if im_small[i,j] > theta*mean:

newim[i,j] = 1

f = -ndimage.gaussian_filter(newim , sigma=sigma)

# ======================== Gradient ========================

Cx, CyT = C(new_x), C(new_y).transpose ()

Fx, Fy = np.dot(Cx , f), np.dot(f, CyT)

G = np.sqrt(Fx**2+Fy**2)

B = (G<tau) # binary image

# ========================= Labels =========================

labelled_arr , num_reg = ndimage.measurements.label(B, structure=np.array

([[0,1,0],[1,1,1] ,[0,1 ,0]]))

void = np.zeros ((new_x , new_y))

for num in range(1, num_reg +1):

if (labelled_arr ==num).sum() > p*new_x*new_y:

void += (labelled_arr ==num)
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big_void = np.kron(void , np.ones((eta , eta)))

big_void_corrected = np.ceil(transform.resize(big_void , im.shape)).astype(int)

# make shape equal to image

return big_void_corrected

if __name__ == "__main__":

impath = ’/path/to/image.jpg’

orig_im = color.rgb2gray(io.imread(impath))

voids = void(orig_im)

A.3 analysis.py
We present some functions that can be used to calculate different statistics.

import numpy as np

from math import sqrt

def length(X, Y):

""" Compute length of curve."""

l = 0

N = len(X)

for i in range(N):

l += sqrt((X[i-1]-X[i])**2+(Y[i-1]-Y[i])**2)

return l

def area(X, Y):

""" Compute area enclosed by curve using the Shoelace Formula."""

A = 0

N = len(X)

for i in range(N):

A += (X[i]+X[i-1])*(Y[i]-Y[i-1])

A = 0.5* abs(A)

return A

def IPQ(l, A):

""" Given the length and area , compute Isoperimetric Quotient."""

return 4*np.pi*A/l**2

def diameter(X, Y):

""" Compute the diameter of a curve and its orientation."""

N = len(X)

d = 0

edge = (0,0)

for i in range(N/2+1):

Xi, Yi = X[i], Y[i]

for j in range(i+N/4, i+3*N/4+1):

j = j%N

dist = np.linalg.norm([Xi -X[j], Yi -Y[j]])

if dist > d:

d = dist

edge = (i,j)

i, j = edge

if y[j] >= y[i]:

theta = np.arccos ((x[j]-x[i])/np.linalg.norm([x[i]-x[j],y[i]-y[j]]))

else:

theta = np.arccos ((x[i]-x[j])/np.linalg.norm([x[i]-x[j],y[i]-y[j]]))

return d, theta

if __name__ == "__main__":

GVFcurves = ... # list containing numpy arrays of shape (N,2)

representing curves

for curve in GVFcurves:

X = curve [:,0]

Y = curve [:,1]

l = length(X ,Y)

A = area(X, Y)

d, theta = diameter(X, Y)
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A.4 spectral_clustering.py
This script partitions the datasets in the list collection into a number of clusters, using spectral
clustering.

import numpy as np

from scipy.cluster.vq import kmeans2

def psi1(A, B):

lA = A[:,0] # lengths in A

AA = A[:,1] # areas in A

lB = B[:,0] # lengths in B

AB = B[:,1] # areas in B

res = 0

for elt in A:

res += (np.sqrt((elt[0]-lB)**2+( elt[1]-AB)**2)).min()

for elt in B:

res += (np.sqrt((elt[0]-lA)**2+( elt[1]-AA)**2)).min()

return 1.0/(A.shape [0]+B.shape [0])*res

def psi2(A, B):

lA = A[:,0]

AA = A[:,1]

lB = B[:,0]

AB = B[:,1]

res = 0

for elt in A:

res += (np.sqrt((elt[0]-lB)**2+( elt[1]-AB)**2)).min()

res = 0.5* res/A.shape [0]

for elt in B:

res += (np.sqrt((elt[0]-lA)**2+( elt[1]-AA)**2)).min()

res = 0.5* res/B.shape [0]

return res

if __name__ == "__main__":

collection = [...] # collection of datasets

names = [...] # names of images corresponding to datasets

P = len(collection)

A = np.zeros ((P,P)) # similarity matrix

similarity_func = psi1 # choice of similarity function

for i in range(P):

for j in range(i+1,P):

A[i,j] = similarity_func(collection[i],collection[j])

A[j,i] = A[i,j]

d = np.sum(A, axis =1)

Dinvsq = np.diag (1./np.sqrt(d)) # D^( -1/2)

L = np.eye(P) - np.dot(Dinvsq , np.dot(A, Dinvsq)) # Laplacian matrix

lambdas , vectors = np.linalg.eig(L)

lambda_2 = np.sort(lambdas)[1] # second smallest

eigenvalue

i = np.argmin(abs(lambdas -lambda_2))

v = vectors[i] # corresponding

eigenvector

k = 3

points = [np.percentile(v, 0.5*(i/float(k)+(i+1)/float(k))*100) for i in range(

k)] # initial location of centroids in k-means method

centroids , labels = kmeans2(v, points , minit=’matrix ’)

# returns label for each image

for i in range(P):

print labels[i], names[i]
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