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Elastic least-squares migration for quantitative reflection imaging of
fracture compliances

Shohei Minato1, Kees Wapenaar2, and Ranajit Ghose2

ABSTRACT

To quantitatively image fractures with high resolution,
we have developed an elastic least-squares migration (LSM)
algorithm coupled with linear-slip theory, which accurately ad-
dresses seismic wave interaction with thin structures. We derive
a linearized waveform inversion using the Born approximation
to the boundary integral equation for scattered waves, including
linear-slip interfaces for P-SV and SH wavefields. Numerical
modeling tests assuming a laboratory-scale fracture where a
20 cm long fracture is illuminated by waves with a 50 kHz
center frequency show that our LSM successfully estimates
fracture compliances. Furthermore, due to the presence of cou-
pling compliances at the fracture, the results using our LSM
show better images than those using the conventional LSM

estimating the Lamé constants. We also numerically illustrate
that our LSM can be successfully applied to dipole acoustic
borehole logging data with 3 kHz center frequency for sin-
gle-well reflection imaging of a 10 m long, dipping fracture em-
bedded in a random background. Finally, we apply LSM to
laboratory experimental data, measuring PP reflections from
a fluid-filled fracture. We confirm that the estimated fracture
compliances correspond well to those estimated by earlier am-
plitude variation with offset inversion. Furthermore, the LSM
resolves the spatially varying fracture compliances due to local
filling of water in the fracture. Because the linear-slip theory can
be applied to thin structures in a wide range of scales, high-
resolution imaging results and estimated fracture compliance
distributions will be crucial to further address small-scale prop-
erties at fractures, joints, and geologic faults.

INTRODUCTION

Fractures and faults are mechanical weaknesses in the subsurface.
They extend, propagate, and connect and interact with each other.
Large-scale geologic faults are generally associated with the accumu-
lation of tectonic displacements (Ben-Zion and Sammis, 2003).
Joints and geologic faults in low-porosity rocks and deformation
bands in highly porous rocks are fluid pathways or fluid barriers;
therefore, they control the subsurface mechanical and hydraulic prop-
erties (Aydin, 2000; Fossen et al., 2007). Due to the sensitivity of
seismic waves to mechanical properties, seismic fracture characteri-
zation has provided vital information of fractures in the upper crust
of the earth (e.g., Leary et al., 1990; Liu and Martinez, 2013).
Fractures, joints, and faults can be thought of as thin structures,

with their thicknesses being significantly smaller than their length

(e.g., Segall and Pollard, 1980). Seismic wave propagation across a
compliant zone that is thin with respect to the seismic wavelength
is often represented by the linear-slip theory (Schoenberg, 1980).
The theory assumes a thin compliant zone to be a zero-thickness,
nonwelded interface: seismic wave traction is continuous across
the interface, but seismic wave displacement is discontinuous. The
magnitude of the displacement discontinuity is controlled by the
traction vector and the fracture compliance tensor.
The fracture compliance tensor represents the small-scale proper-

ties at the thin compliant zone. The linear-slip theory can accurately
represent a wide variety of structures that are thin with respect to
the seismic wavelength, e.g., a fracture having rough surfaces, a thin
layer of a viscoelastic material, or a poroelastic material (Nagy,
1992; Worthington and Hudson, 2000; Barbosa et al., 2017). The
nonwelded interface model has been tested for thin structures in a
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wide range of scales, e.g., cracks in metals, fractures and joints in
rocks, and geologic faults (e.g., Rokhlin and Wang, 1991; Pyrak-
Nolte and Nolte, 1992; Worthington and Hudson, 2000; Li et al.,
2014a; Minato and Ghose, 2016a). Worthington (2007) and Hobday
and Worthington (2012) discuss the possibility that fracture com-
pliance increases with fracture size. Furthermore, anisotropy caused
by the fracture compliance tensor enables determination of the pre-
ferred orientation of a rough surface due to slickenside and stria-
tions (Bakulin et al., 2000b; Far et al., 2013), and the off-diagonal
components of a fracture compliance tensor are sensitive to the
shear-induced altered distribution of the contacts (Nakagawa et al.,
2000). Kame et al. (2014) discuss the relation between the linear-
slip theory and the change of the strength of faults using stick-slip
cycle experiments. Finally, the fracture compliances are relevant to
the bulk deformation of a fracture under static loading (Hobday and
Worthington, 2012).
Earlier studies of seismic fracture characterization assume that

the seismic wavelength is not capable of resolving the fine details
of individual fractures and that a low-frequency/long-wavelength
seismic wave only senses the cumulative effect of multiple fractures
whose spacing is much smaller than the seismic wavelength. In this
case, individual fractures are considered seismically invisible, but
multiple fractures effectively change the elastic properties of the
representative elementary volume into anisotropy (e.g., Crampin,
1984). The linear-slip theory is exploited to link the averaged frac-
ture compliance tensor of multiple fractures to seismic anisotropy
(e.g., Bakulin et al., 2000a).
Although the approach of seismic anisotropy based on an effective

medium assuming small fractures has been successful in character-
izing a fractured medium (Leary et al., 1990; Liu and Martinez, 2013,
among many others), large-scale fractures dominate the hydraulic and
mechanical properties of the entire subsurface (e.g., Aydin, 2000).
Furthermore, as noted in Segall and Pollard (1980), discontinuous
fault traces occur at all length scales. When the fracture length
and spacing are larger than or comparable to the seismic wavelength,
the effective medium approach shows large errors due to neglected
scattered waves (Yousef and Angus, 2016). In this vein, there is a
growing number of reports showing scattered waves, including re-
flected waves, due to thin compliant zones such as fractures, joints,
and geologic faults. For example, reflection imaging methods using
acoustic logging data have shown the potential to image fine-scale
structures including fractures (Hornby, 1989; Tang and Patterson,
2009). The recent developments of dipole acoustic logging have en-
abled imaging of fine structures up to 40 m away from the borehole
(Lee et al., 2019). Reshetnikov et al. (2010) use reflection events in
microseismic data at the San Andreas Fault zone and image a thin
fault layer intersecting the borehole and a fault inside the fractured
sandstone. Despite these imaging results, the characterization of elas-
tic properties of those thin compliant zones has not yet been possible
due to the lack of high-resolution characterization methodologies.
Several methods that do not rely on the effective medium ap-

proach have been proposed for characterizing large-scale fractures
using scattered waves. Willis et al. (2006) consider scattered waves
due to multiple fractures and estimate fracture orientations, exploit-
ing the azimuthal variation of a scattering index. Elastic complian-
ces of an individual fracture have been estimated through amplitude
variation with offset (AVO) inversion of primary reflections (Minato
and Ghose, 2016a; Peng et al., 2017; Minato et al., 2018) and using
data-driven wavefield reconstruction of scattered waves (Minato

and Ghose, 2014, 2016b). Cui et al. (2017) discuss the feasibility
of the AVO inversion with fracture compliances in the seismic fre-
quency range. Pourahmadian et al. (2017) also develop an inversion
approach to estimate the spatially varying fracture compliance using
a generalized linear sampling method. Characterization of fractures
intersecting a borehole also has been performed using transmitted
waves in acoustic logging data (Barbosa et al., 2019) and tube wave
scattering in vertical seismic profiling data (Hardin et al., 1987;
Minato et al., 2017).
The existing approaches discussed above involve a two-step

processing to estimate the fracture compliances: imaging the frac-
ture geometry followed by estimating the fracture compliances at
the known fracture geometry. In this study, we develop an alterna-
tive approach that handles multiple fractures with unknown geom-
etry embedded in a complex background medium. To this end, we
explore least-squares migration (LSM) of reflection data, with frac-
tures represented by the linear-slip theory.
Seismic migration methods, aimed at high-resolution imaging in

complex media, are formulated as a linearized waveform inversion
to estimate quantitative medium properties. Those properties are re-
flectivity (e.g., angle-dependent reflection coefficients) based on the
Kirchhoff approximation (Xu et al., 2001, 2011) or perturbation of
medium properties in the volume (e.g., Lamé constants and density)
based on the Born approximation (Tarantola, 1984). These migra-
tion/inversion methods can be implemented as ray-based asymp-
totic inversion (Bleistein, 1987) or as a general least-squares
problem (Tarantola, 1984). The latter approach can be implemented
by numerically solving a linear discrete inverse problem, which is
what we call LSM in this study. The LSM is known to be robust to
acquisition irregularities and incomplete data (Nemeth et al., 1999).
In the framework of migration/inversion mentioned above, quan-

titative medium properties are estimated differently. The algorithms
based on the Born approximation directly estimate the spatial dis-
tribution of medium properties defined in the volume, e.g., pertur-
bations in velocity/slowness (Lambaré et al., 1992; Plessix and
Mulder, 2004), or those in Lamé constants, density, and impedance
(Beydoun and Mendes, 1989; Jin et al., 1992; Operto et al., 2000).
On the other hand, angle-dependent reflection coefficients esti-
mated by methods based on the Kirchhoff approximation (Xu et al.,
2001, 2011) are properties defined at an interface between two dif-
ferent media. Therefore, to further elucidate the medium properties
in the volume, amplitude variation with offset/angle (AVO/AVA)
inversion is applied to the estimated reflection coefficients (Tura
et al., 1998). All of the conventional migration approaches men-
tioned above assume perfectly welded interfaces without fracture
compliances; the nonwelded interface with the fracture compliance
tensor has not been considered in migration/inversion.
In this study, we develop a new LSM for quantitatively imaging

thin compliance zones such as fractures using the linear-slip model.
The linearized equation is derived from the Born approximation us-
ing the elastic wave representation theorem including nonwelded
boundary conditions (Wapenaar, 2007). This, in combination with
a singular function (Bleistein, 1987; Bostock, 2002), enables us to
directly estimate the spatial distribution of the fracture compliance
tensor that is defined at an interface. Note that an approach using the
Kirchhoff approximation, instead of the Born approximation, is also
possible. In this case, we estimate angle- and frequency-dependent
reflection coefficients due to the fracture compliances, which will
provide input data for AVO/AVA inversion of fractures (Minato and
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Ghose, 2016a; Cui et al., 2017; Peng et al., 2017; Minato et al.,
2018). In this study, however, we restrict ourselves to the Born
approximation so that we directly estimate the spatial distribution
of fracture compliances without the two-step processing mentioned
earlier.
This paper is organized as follows. We first explain the boundary

conditions of the nonwelded interface model. Next, we introduce
the definition of the 2D problem considered in this study, i.e., wave
propagation in a 2D (x − z) plane in an isotropic medium where the
vector normal to a fracture surface is located in the same plane and
the values of the fracture compliance tensors associated to the y-axis
are negligible. In this case, we separately consider P-SV and SH
wavefields. We then formulate the new LSM as a linearized wave-
form inversion to estimate the fracture compliances using the Born
approximation. We discuss numerical modeling examples repre-
senting a horizontal fracture in laboratory-scale measurements to
show the quantitative nature of LSM and show the relation between
the new LSM and conventional LSM associated with a thin-layer
model of fractures. We also perform numerical experiments repre-
senting borehole acoustic logging measurements to characterize a
dipping fracture embedded in a random background medium. Finally,
we show the results of the application of the new LSM to data from
ultrasonic laboratory experiments with a fluid-filled fracture.

THEORY

Nonwelded interface model for thin structures

We consider that the seismic wavelength is much larger than the
aperture of a fracture and the characteristic wavelength of the con-
tact asperity distribution at the rough surface of the fracture. In this
case, the fracture can be represented by a compliant and nonwelded
interface, where a fracture-compliance tensor describes the magni-
tude of deformation at the interface. The linear-slip theory (Schoen-
berg, 1980) considers that the deformation at the interface (seismic-
induced displacement jump) linearly depends on the seismic traction
and the fracture compliance tensor:

0
@Δux

Δuy
Δuz

1
A ¼ η

0
@ τxz

τyz
τzz

1
A; (1)

where η is the fracture compliance tensor:

η ¼
0
@ ηxx ηxy ηxz

ηyx ηyy ηyz
ηzx ηzy ηzz

1
A: (2)

We assume here that the fracture surface is located in the x − y
plane. In equation 1, Δui is the discontinuity in the displacement in
the i direction across the fracture and τij is the stress field, where the
subscripts i and j can each stand for x, y, or z. The linear-slip theory
assumes the stress across the fracture to be continuous. In equa-
tion 2, each element of the fracture compliance tensor describes
the magnitude of the displacement discontinuity due to different
traction component. The simplest form of the fracture compliance
tensor is a diagonal matrix assuming rotational symmetry (Schoen-
berg, 1980). In this case, the fracture compliance tensor is written as

η ¼ diagðηT; ηT; ηNÞ; (3)

where diag indicates a diagonal matrix. In equation 3, ηT is the tan-
gential compliance and ηN is the normal compliance, respectively,
due to tangential stress and normal stress. Several theoretical mod-
els have been developed in the past to relate the fracture complian-
ces to small-scale heterogeneities at a fracture, e.g., a thin layer of
viscoelastic material (Schoenberg, 1980; Rokhlin and Wang, 1991),
a thin layer of poroelastic material (Nakagawa and Schoenberg,
2007; Barbosa et al., 2017), or statistical properties of contact asper-
ities (Worthington and Hudson, 2000). Importantly, any compliant
structure whose thickness is thin compared to the seismic wave-
length is appropriately represented by the nonwelded interface
model, e.g., fractures, joints, and faults.

Uncoupled P-SV and SH wavefields

In this study, we consider 2D wave propagation in the x − z
plane, assuming that variations in elastic constants and density
along the y-axis are negligible. Furthermore, a point source in the
x − z plane in the numerical modeling examples discussed in the
later sections corresponds to a line source along the y-axis. In this
case, the P-SV wave components (vx,vz,τxx,τzz,τxz) and SH-wave
components (vy,τxy,τyz) are mutually uncoupled when they are in-
dependent of each other in the constitutive equations (e.g., in the
case of isotropic background medium) and in the linear-slip boun-
dary condition (equation 1). The latter is the case when the fracture
compliance tensor (equation 2) has the following form:

ηh ¼
0
@ ηT1

0 ηC
0 ηT2

0

ηC 0 ηN

1
A; (4)

where ηC is the coupling compliance. The tangential fracture com-
pliances in two principal directions (ηT1

and ηT2
) may have different

values (Bakulin et al., 2000b; Far et al., 2013); subscript h indicates
a horizontal fracture. The coupling compliance ηC in equation 4
indicates the tangential deformation (Δux) due to normal stress (τzz)
or the normal deformation (Δuz) due to tangential stress (τxz); the
existence of the coupling compliance has earlier been shown in lab-
oratory experiments and by numerical calculation considering a
periodic crack model (Nakagawa et al., 2000). The zero off-diago-
nal components in equation 4 assume that variations in the small-
scale structures (e.g., periodic shape) at the fracture along the y-axis
are negligible.
Next, we show that P-SV and SH wavefields are uncoupled for a

dipping fracture in the x − z plane. We first consider the general
nonwelded-interface boundary condition (Wapenaar, 2007):

½Mu� ¼ −jωY < Mu >; (5)

where j ¼ ffiffiffiffiffiffi
−1

p
, ω is the angular frequency, u is the complete wave

vector, M is a matrix contracting u to the components involved in
the boundary condition (e.g., traction vector), Y is a matrix includ-
ing the boundary parameters (e.g., a fracture compliance tensor),
and ½·� and <·> represent the jump and average across the interface,
respectively. The explicit forms of the vectors and matrices in equa-
tion 5 depend on the dimensionality of the problem and the wave
modes. In a 3D elastodynamic wavefield, u is a 12 × 1 vector in-
cluding particle velocities and stresses,M is a 6 × 12 matrix, and Y
is a 6 × 6matrix (Wapenaar et al., 2004). In this case, equation 5 can
be written as

Imaging fracture compliances using LSM S329
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� ½v�
−½σn�

�
¼ −jωY

�
< v >

− < σn >

�
; (6)

where v is the particle velocity vector, σ is the Cauchy stress tensor,
and n ¼ ðnx; ny; nzÞ is a fracture-normal vector. The linear-slip
boundary condition for a horizontal fracture is derived from equa-
tion 6 by assuming n ¼ ð0; 0; 1Þ and the matrix Y as

Yh ¼
�
0 ηh
0 0

�
: (7)

Considering that a dipping fracture in the fracture-oriented coor-
dinate system satisfies the same boundary condition as a horizontal
fracture in the original coordinate system, we obtain the matrix Y
as a function of ηh for a dipping fracture with an arbitrary normal
vector n:

Y ¼
�
0 QTηhQ
0 0

�
; (8)

whereQ is the rotation matrix. Therefore, when a fracture is dipping

in the x − z plane, i.e., n ¼ ðnx; 0; nzÞ and Q ¼
� nz 0 −nx

0 1 0

nx 0 nz

�
,

then the P-SV- and SH-wave components are uncoupled in the
boundary condition (equation 6).

Elastic least-squares migration

For the quantitative reflection imaging that we propose in this
study, we consider a linearized waveform inversion using the fol-
lowing equation:

d ¼ Lm; (9)

where d is waveform data, m is the spatial distribution of material
properties (e.g., reflectivity or perturbation in elastic constants) that
produces scattered waves due to a source wavefield, and L is a Born
or Kirchhoff operator. In the case of the space-frequency domain, d
is a column vector with Nf × Ntr components, m is a column vector
withM × Np components, and L is an Nf Ntr ×MNp matrix, where Ntr

is the total number of traces, Nf is the total number of frequencies,M
is the total number of grid points in the imaging volume, and Np is
the number of inversion parameters. The LSM solves equation 9 for
m, considering m to be perturbations of material properties or re-
flectivity (Yang and Zhang, 2019). Equation 9 can be derived after
linearizing the full wavefield equation using the Born or Kirchhoff
approximation. The operator L contains the source wavefield and
Green’s functions between points of scattering and receiver
locations. In the next subsection, we specify equation 9 using
the linear-slip theory and the Born approximation applied to the
scattered wavefield.
In this study, we formulate equation 9 in the space-frequency do-

main and we solve equation 9 for the model parameter vector m
using the conjugate gradient least-squares (CGLS) method. Thus,
we define the imaging result of our proposed LSM as

mLSM ¼ L−gdo; (10)

where do is the observed data vector and L−g is the generalized
inverse (e.g., Menke, 1989) of the Born operator L, which is implic-

itly calculated by the CGLS method. We solve the system of equa-
tion 9 after constructing L. When the data and the imaging volume
are large, constructing the full matrix L and estimating L−g are pro-
hibitively expensive. In this case, an alternative approach can be
used to numerically implement L and its mathematical adjoint op-
erator using ray approximation (e.g., Lambaré et al., 1992), one-
way wave equation (e.g., Kühl and Sacchi, 2003), two-way wave
equation (e.g., Chen and Sacchi, 2017; Feng and Schuster, 2017), or
multisource migration technology (Tang and Biondi, 2009; Dai
et al., 2011; Huang and Schuster, 2012).
Note that the CGLS method iteratively updates the model param-

eter vector m from the initial value (m0 ¼ 0) to minimize the ob-
jective function EðmÞ ¼ 1

2
kdo − Lmk2. In this case, the gradient of

the objective function with respect to the model parameter evaluated
at the initial value can be written as (e.g., Plessix and Mulder, 2004)

∂Eðm0Þ
∂m

¼ −RðL†doÞ; (11)

where L† is the Hermitian transpose of L. The real part of L†do

(denoted by R) corresponds to the zero-lag crosscorrelation be-
tween the source and receiver wavefields; equation 11 is equivalent
to the classic crosscorrelation imaging condition (Claerbout, 1971).
Note that an evaluation of equation 11 does not involve inverting the
Born operator.

Born approximation to scattered waves due to
linear-slip interfaces

Appropriately deriving the Born operator L associated with the
linearized model parameter vector m is necessary for LSM. The
earlier studies of LSM consider imaging the perturbations in elastic
constants (Lamé constants λ and μ) and density (ρ) or the impedance
contrasts (Beydoun and Mendes, 1989; Jin et al., 1992). For this
purpose, the Born operator is derived from an integral representa-
tion of the scattered wavefield due to the perturbations in λ, μ, and ρ
(Wu and Aki, 1985). Contrary to these earlier studies, in this study,
we derive the Born operator L considering the fracture compliance
tensor. This new formulation is derived from the elastic wavefield
representation theorem including nonwelded interfaces (Wape-
naar, 2007).
From a convolution-type representation for Green’s functions in-

cluding nonwelded interfaces (Wapenaar, 2007), we obtain the fol-
lowing boundary integral representation of scattered seismic waves
in the space-frequency domain:

uðx0Þ − ūðx0Þ ¼ −
Z
∂Dint

Ḡðx0; xÞΔHbðxÞuðxÞd 2x; (12)

where u denotes the wave vector, G is the Green’s matrix, and ΔHb

is the fracture contrast function (Wapenaar, 2007). The variables
with a bar (·̄) indicate wavefields that are defined in an arbitrary
reference medium, and ∂Dint is the geometry of the nonwelded in-
terface (fracture). In the forward problem, the surface integral is
evaluated at a known fracture geometry. We assume in equation 12
that the reference medium has the same elastic constants distribu-
tion as the true medium; hence, the only difference between the
reference medium and the true medium is the fracture. The explicit
forms of the vectors and matrices in equation 12 depend on the di-
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mensionality of the problem and on the wave modes. In this study,
we consider a 2D problem, and we show the explicit forms of u, G,
andΔHb for the P-SV wavefield and the SHwavefield, respectively,
in Appendix A.
The Born approximation is defined as the first-order term of the

Neumann series expansion of equation 12 for u:

uSðx0Þ ¼ −
Z
∂Dint

Ḡðx0; xÞΔHbðxÞūðxÞdx; (13)

where the left side of the equation is the scattered wave, i.e., the
difference of the wave vector between the true and the reference
media. Note that we have changed the surface integral ð ∫ ∂Dint

d 2xÞ
to the contour integral ð ∫ ∂Dint

dxÞ because of the considered 2D
problem. When we define the reference medium such that it does
not contain fractures, the contrast function ΔHb is linear with re-
spect to the fracture compliances (ηT , ηN , and ηC) at the fracture
(see Appendix A).
We use equation 13 to formulate the linearized model (equation 9)

so that d contains the recorded reflected waves (particle velocities),
m contains the spatial distribution of the fracture compliances, and
L contains the operator including Green’s functions in the reference
medium, the source wavefield, and the fracture dip angle (see
Appendix A). To this end, we introduce a singular function (Bleis-
tein, 1987; Bostock, 2002) at the fracture geometry (∂Dint) in order
to recast the contour integral in equation 13 as a 2D volume integral:

uSðx0Þ ¼ −
Z
V
Ḡðx0; xÞδΣðxÞΔHbðxÞūðxÞd 2x; (14)

where V is a 2D volume and δΣðxÞ is the singular function with
support on the fracture geometry. The definition of the singular
function can be found in Appendix B. Furthermore, due to the band
limitation of the input reflection data, LSM estimates a band-limited
representation of δΣðxÞ scaled by the fracture compliances. In this
study, we compensate for the scaling effect due to band limitation of
the singular function by analyzing the output image of LSM (see
Appendix B for more details). Note that, for the 3D problem,
the 2D volume integral in equation 14 becomes a 3D volume in-
tegral with a singular function with support on the fracture surface.

NUMERICAL MODELING EXAMPLES OF
LEAST-SQUARES MIGRATION OF

FRACTURE COMPLIANCES

In this section, we show numerical modeling examples at two
different scales where fractures are imaged and characterized using
our proposed LSM. The first example considers simple laboratory-
scale measurements in which a single horizontal fracture is em-
bedded in a homogeneous medium. We assume that the nonwelded
interface model best describes the elastic reflections from a fracture,
and we estimate the fracture compliances using our proposed LSM.
We also test the conventional LSM formulated as perturbations in
the Lamé constants (Beydoun and Mendes, 1989; Jin et al., 1992),
which implies that we interpret the observed data by a thin-layer
model of fractures (e.g., Wu et al., 2005). We discuss the relation
between the estimated images using both formulations (linear-slip
and thin-layer models), and we explain the advantages of our pro-
posed LSM over the conventional approach. The second example

shows the potential of applying our proposed LSM to field-scale
measurements where dipole acoustic borehole logging data are used
to image a dipping fracture around a borehole embedded in a ran-
dom background medium.

Laboratory-scale fracture imaging: Numerical tests

Model and data

We first present a numerical modeling example considering an
ultrasonic laboratory experiment to characterize a single horizontal
fracture (Figure 1a). A horizontal receiver array measures the re-
flected waves due to sources located at the same level as the receiver
array (e.g., Palmer et al., 1981). Note that this configuration is equiv-
alent to a vertical receiver array recording reflected waves from a
vertical fracture (e.g., Cheng and Sansalone, 1995). We consider a
2D problem and a fracture with coupling compliance. The fracture
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Figure 1. (a) Configuration of numerical modeling. (b) Fracture
compliances along the fracture. The tangential (ηT ), normal (ηN),
and coupling (ηC) compliances are shown. (c) Modeled shot gather
showing the SH wavefield. (d) Modeled shot gather for the P-SV
wavefield. (e) Calculated traveltimes of specular reflections. (f) Cal-
culated traveltimes of nonspecular reflections from the edges of the
fracture: PPd, diffracted P-wave due to the incident P-wave; PSd,
diffracted S-wave due to the incident P-wave; SPd, diffracted P-
wave due to the incident S-wave; and SSd, diffracted S-wave due
to the incident S-wave.
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compliances are, respectively, ηT1
¼ ηT2

¼ ηT ¼ 4.5 × 10−14 m∕Pa,
ηN ¼ 1.75 × 10−14 m∕Pa, and ηC ¼ 1.40 × 10−14 m∕Pa, and they
are tapered at the edges (Figure 1b). The values of ηT and ηN are
taken from laboratory experiments of the fracture compliances in
a fluid-filled sandstone (Lubbe et al., 2008). The coupling compli-
ance (ηC) is calculated assuming its relative magnitude (equation
5 in Nakagawa et al., 2000) to be 0.5. The elastic properties and
density of the background material are VP ¼ 6350 m∕s,
VS ¼ 3410 m∕s, and ρ ¼ 2500 kg∕m3, respectively.
We install two point sources located at the center and at the edge

of the receiver array (Figure 1a), considering uneven illumination of
the fracture from the sources. The observed wavefield at the receiver
array is calculated in the frequency-wavenumber domain (wdSDD,
Nakagawa et al., 2004), where we use a point-force source 2D
Green’s function representing incident waves. The source wavelet
is a Ricker wavelet with 50 kHz center frequency. The example of
the modeled shot gather (source x ¼ 0.15 m) is shown for SH
wavefield (Figure 1c) and P-SV wavefield (Figure 1d). We consider
a horizontal force source (fy) for the SH wavefield and a vertical
force source (fz) for the P-SV wavefield, respectively. Furthermore,
we add random noise to the modeled responses; the signal-to-noise
ratio (S/N) is 15 dB, where we define S/N as the ratio of the peak
amplitude and the standard deviation of noise. Furthermore, to iden-
tify reflection and scattering modes, we calculate the traveltimes of
the specular reflections (Figure 1e) and those of the nonspecular
reflections, assuming scattering at the fracture edges (Figure 1f).
The SH wavefield (Figure 1c) contains specular reflections (SS)

and nonspecular scattered waves (SSd) due to spatially varying
compliances at the fracture edges (Minato et al., 2018). The P-
SV wavefield (Figure 1d) shows converted waves (PS, SP, PSd,
SPd) as well as pure modes (PP, SS, PPd, SSd). The amplitudes
of the PS- and SP-waves show an asymmetric variation along
the receiver position (at approximately 0.10 ms in vx in Figure 1d).
At the zero-offset trace (receiver x ¼ 0.15 m), the event at 0.10 ms
is a PS-wave because of the absence of normally propagating shear
waves (S-waves) from the source due to the radiation pattern; we

observe nonzero PS reflection amplitude at normal incidence. The
nonzero PS reflection coefficient at normal incidence is due to the
presence of the coupling fracture compliance, where the tangential
displacement discontinuity is generated by the normal stress acting
on the rough fracture (Nakagawa et al., 2000).
In Appendix C, we show that the Born approximation accurately

predicts the wavefield in this configuration, i.e., the magnitude of
the fracture compliances and the center frequency. At high frequen-
cies, however, the discrepancy between the Born approximation and
the true response is large. See Appendix C for more details.

Imaging results

We apply the new LSM (equation 10) to SH wavefield (Figure 2).
The grid spacing in the imaging area is 2 mm. We calculate the free-
space Green’s functions in the 2D elastic homogeneous reference
medium (de Hoop, 1995) to construct the Born operator. Figure 2a
presents the initial gradient of the objective function without inver-
sion or the result of the classic crosscorrelation imaging condition
(equation 11). The amplitude of the initial gradient is normalized by
the maximum value. Figure 2b shows the result of the new LSM
solved by the CGLS method after 100 iterations (the convergence
of the residual is shown in Figure 2d). Note that the scaling effect
due to the band-limited singular function is compensated for in
the LSM image (Figure 2b) by analyzing the bandwidth of the out-
put image at a representative location in the imaged fracture (see
Appendix B for more details).
The final LSM result (Figure 2b) images the fracture with higher

resolution than the initial gradient without inversion (Figure 2a)
because, after the iteration, LSM removes the effect of the source
wavelet and compensates the illumination pattern due to uneven
distribution of sources (two sources are installed; see Figure 1a).
Furthermore, the final LSM image provides the quantitative prop-
erty of the fracture (fracture compliance). The location of the peak
amplitudes in Figure 2b successfully estimates the fracture geom-
etry, and the peak amplitudes at the fracture between x ¼ 0.10 m

and x ¼ 0.20 m show an average value of
4.43 × 10−14 m∕Pa with a standard deviation
of 0.57 × 10−14 m∕Pa. Therefore, LSM success-
fully estimates the tangential compliance
(4.5 × 10−14 m∕Pa; see Figure 1b). The final
data residual of LSM (the black solid line in Fig-
ure 2d) shows the effect of noise and the errors in
the Born approximation.
To illustrate a relation between linear slip and

thin-layer models for fracture imaging, the con-
ventional LSM formulated as perturbations in the
Lamé constants as model parameters (Beydoun
and Mendes, 1989; Jin et al., 1992) is applied
to the same data set (Figure 2c) where we esti-
mate the volumetric distribution of perturbation
in shear modulus (Δμ). Note that for a consistent
comparison with the new LSM, we use the same
theoretical Green’s functions as for our proposed
LSM in constructing the Born operator of the
conventional LSM, instead of using the ray-
approximated Green’s functions as proposed in
Beydoun and Mendes (1989). Conventional LSM
has a resolution similar to the new LSM. This cor-
responds to the fact that the linear-slip interface
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Figure 2. Imaging results for the SH wavefield: (a) initial gradient without inversion,
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the linear-slip theory. (d) Residuals at each CG iteration using our proposed LSM and
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model can represent a thin layer of isotropic material at normal inci-
dence in the long-wavelength assumption (e.g., Rokhlin and Wang,
1991; Nagy, 1992), i.e., ηT ¼ H∕μ0, where H is the layer thickness
and μ0 is the shear modulus of the thin layer. This indicates that we
can estimate tangential fracture compliance using conventional LSM
when we appropriately interpret the effective thickness of the imaged
fracture. Furthermore, the small difference in the final residual be-
tween our proposed and conventional LSM approaches (Figure 2d)
indicates that the linear-slip model and the thin-layer model can
explain almost equally well the reflections from the fractures (Wu
et al., 2005).
The new LSM applied to the P-SV wavefield estimates the frac-

ture compliance tensor: tangential (ηT ), normal (ηN), and coupling
(ηC) compliances (Figure 3a–3c, respectively). Due to the complex
wavefield including mode conversion and limited source illumina-
tion, the imaged fracture compliances show more noise and artifacts
than the result using SH wavefield. Nevertheless, the new LSM pro-
vides the fracture geometry much better than the conventional LSM
(Figure 3d and 3e) where the volumetric distribution of Δμ and Δλ
is estimated. Contrary to the result for the SH wavefield, here, the
large difference in the final residual between our proposed and the
conventional LSM (Figure 3f) indicates that the fracture is not rep-
resented by a thin isotropic layer. This is because the normal-inci-
dent compressional wave (P-wave) produces a converted S-wave
(see Figure 1d and the discussion in the previous subsection). A
possible approach to improve the resolution of conventional
LSM is to introduce effective anisotropy (Coates and Schoenberg,
1995) in a thin-layer model, which provides more degrees of free-
dom in fitting the observed data.
We show that our proposed LSM is successfully applied to nu-

merically modeled data with noise. The comparison between our
proposed and conventional LSM results shows that conventional
LSM assuming isotropic media fails to image the fracture when
the fracture contains nonzero coupling compliances, which indi-
cates that the new LSM is crucial for monitoring shear-induced cou-
pling changes at fractures. The results using SH wavefield show that

the conventional LSM also can be used to estimate tangential frac-
ture compliances. Note, however, that when fracture compliances
are of primary interest (see the “Introduction” section), our pro-
posed LSM is useful because it directly estimates the fracture com-
pliances and it does not require estimating the effective fracture
thickness using conventional LSM.

Borehole acoustic logging: Numerical tests

Model and data

The second numerical example shows field-scale fracture imag-
ing. We consider borehole acoustic logging experiments in order to
image and characterize fractures around a borehole. Single-well re-
flection imaging using acoustic logging data carefully removes di-
rect and borehole-coupled waves to isolate reflected waves (Li et al.,
2014b, 2017). In the context of single-well reflection imaging,
several imaging approaches have been tested, e.g., Kirchhoff depth
migration, prestack f-k migration, beamforming migration, and re-
verse-time migration (Hornby et al., 1989; Tang and Patterson,
2009; Li and Yue, 2015; Gong et al., 2018). We propose in this
subsection the use of the new LSM for high-resolution quantitative
imaging of the fractures around a borehole.
We consider a 2D plane that is formed by the borehole axis and

the normal vector of a fracture (the x − z plane in Figure 4a). The
dip angle of the fracture is 50° with respect to the x-axis, and the
fracture intersects the borehole. The geometry can be interpreted
also as a dipping borehole penetrating a subvertical fracture (Tang
and Patterson, 2009). Considering prior successful imaging of fine-
scale fractures using dipole acoustic logging (Lee et al., 2019), we
model dipole data, i.e., horizontal force and horizontal component
receiver. We separately consider P-SVand SH wavefields assuming
a 2D configuration. Furthermore, in this study, we ignore the pres-
ence of the borehole and model a point force source and the particle
displacement in an elastic medium where the borehole source and
the receiver would be located.
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proposed LSM and the conventional LSM.

Imaging fracture compliances using LSM S333

D
ow

nl
oa

de
d 

10
/1

5/
20

 to
 1

45
.9

4.
75

.8
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

s:
//l

ib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

19
-0

70
3.

1



We consider a 20 m deep and 10 m wide imaging area (Figure 4a).
We assume a random background medium where a random velocity
distribution is superposed on the constant P-wave velocity (4000 m/
s). The VP∕VS is fixed at 1.74, and we assume a constant density of
2500 kg∕m3. The autocorrelation function of the random distribution
follows a von Kármán function with Hurst number 1, correlation
length 0.1 m, and a variance of 10% with respect to the background
medium. The random background model is inspired by the work of
Tang et al. (2016), who investigate the elastic scattering in borehole
acoustic logging. The rotationally invariant fracture (i.e., no coupling
compliance) has the following parameters: ηT ¼ 1 × 10−11 m∕Pa
and ηN ¼ 1 × 10−12 m∕Pa. These compliances correspond to a
fluid-filled fracture where the normal fracture compliance ηN is
one order of magnitude smaller than the tangential compliance ηT
(Lubbe et al., 2008). The order of magnitude of the tangential fracture
compliance corresponds to the scale length of the fracture — to be a
few tens of meters, assuming a trend of increasing fracture compli-
ance with fracture size (Hobday and Worthington, 2012).
The P-SV and SH wavefields are separately modeled using a ro-

tated staggered-grid finite-difference time-domain (FDTD) method
(Saenger and Shapiro, 2002) where linear-slip interfaces are imple-
mented through calculating the effective elastic properties (Coates
and Schoenberg, 1995). We consider a realistic source and receiver

configuration for dipole acoustic measurements; the receiver array
consists of five receivers with minimum offset of 3 m and receiver
spacing of 0.15 m, and the tool moves along the borehole in steps of
0.5 m (e.g., Li et al., 2017). See Figure 4a for the source–receiver
configuration. The dominant frequency of the dipole measurements
is considered in the source wavelet; a Ricker wavelet with 3 kHz
center frequency is used.
Figure 4b and 4c shows, respectively, the examples of the mod-

eled SH and P-SV wavefields for the first receiver in the receiver
array with varying source depths (i.e., a common receiver gather).
Direct P- and S-waves have been suppressed in Figure 4b and 4c by
subtracting the response of the reference medium from the modeled
response. The reference medium is a homogeneous medium
without the fracture with the background P- and S-wave velocities
(VP ¼ 4000 m∕s and VS ¼ 2300 m∕s). Note that the reference
medium is also used in calculating the Green’s functions in our pro-
posed LSM. Figure 4d shows the traveltimes of direct waves (P and
S) and reflected waves (PP, SS, PS, and SP) calculated by using the
reference medium and the fracture geometry. Although we ignore
the borehole-coupled waves (Stoneley and flexural waves), the trav-
eltimes of these waves are also calculated from the low-frequency
approximation (White, 1983). Note that the flexural wave velocity
is close to the formation shear-wave velocity at low frequencies
in the fast formations, where VS is larger than the compressional
velocity of the borehole fluid (Tang and Patterson, 2010). At
sources shallower than 5 m and those deeper than 12 m, the re-
flected waves, especially the SS-waves, can be observed without
major interferences with the direct waves (Figure 4d). However,
suppressing the direct waves helps imaging the fracture close to
the borehole between 5 and 12 m in depth. Direct waves are not
perfectly suppressed in the data (see 2 ms and 0–6 m depth in Fig-
ure 4b and 4c) because of the random background velocity. The
vertical event at 2 ms between 6 and 12 m in depth in Figure 4b
and 4c is the transmitted wave across the fracture, and the dipping
events are the reflected waves. As expected from dipole measure-
ments, pure shear waves are dominant in the P-SV wavefield (SS),
but converted waves (PS- and SP-waves) also show large ampli-
tudes in the data where sources are located close to the fracture.

Imaging results

Our proposed LSM (equation 10) is applied to the SH wavefield
(Figure 5). The imaging area is discretized with a spatial sampling
interval of 0.05 m; we use frequencies in the range of 0–8 kHz. We
assume the source wavelet to be known: calibration of source wave-
lets can be performed using, for example, reference data with
known reflection coefficients (see the next section). Furthermore,
we assume the fracture dip angle to be known in constructing the
Born operator L of the SH and P-SV wavefields: the information
can be obtained from the borehole acoustic/optical televiewer and/
or conventional migration images. Note that the fracture dip angles
can be assigned at each imaging grid point.
The strong artifacts in the initial gradient without inversion or the

image with crosscorrelation imaging condition (equation 11)
around the borehole (around x ¼ 0 m in Figure 5a) are due to the
correlation of the remaining direct and transmitted waves with the
source wavefield. The artifacts are largely suppressed in the final
LSM image. The initial gradient does not provide quantitative in-
formation. In contrast, the new LSM minimizes the data misfit
taking into account scattered radiation pattern at a fracture. This
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Figure 4. (a) Configuration of borehole acoustic measurements.
The first and last source–receiver geometries and the background
velocity model are shown. The red line indicates the fracture. The
dotted line indicates the location of the borehole. (b) Numerically
modeled dipole data (SH wavefield) at the first receiver due to vary-
ing source depths. (c) Same as (b) but for P-SV wavefield. (d) Cal-
culated traveltimes of direct waves (P and S), the Stoneley wave
(St), and reflected waves from the fracture (PP, SS, PS, and SP).
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quantitative nature of LSM suppresses structures producing non-
physical reflections. The effective wavelength in the LSM image
is smaller than in the initial gradient (see the inset figures in Fig-
ure 5a and 5b), which provides a much higher resolution image.
Furthermore, the final LSM image shows quantitative values of
the fracture compliance (ηT ). The peak amplitudes of the imaged
ηT at the fracture between x ¼ −4 m and x ¼ −1 m show an
average value of 6.47 × 10−12 m∕Pa with a standard deviation
of 0.49 × 10−12 m∕Pa, which underestimates the true value
(1 × 10−11 m∕Pa). This is mainly because of the overestimation
of amplitudes of the Born approximation in this frequency range
(Appendix A).
For P-SV wavefield, the new LSM is applied to estimate ηT , as-

suming ηN to be zero. Similar to the SH wavefield, the initial gra-
dient using P-SV wavefield (Figure 5c) contains strong artifacts,
which are suppressed in the final LSM image (Figure 5d). Note that
the results for the P-SV wavefield (Figure 5c and 5d) show an X-
shaped image, indicating the ambiguity in the fracture location; due
to the source-receiver configuration, a fracture with the same dip
angle but opposite sign would generate the same reflections. This
ambiguity does not appear in the SH image (Figure 5a and 5b) be-
cause the Born operator L including information of the fracture dip
angle acts as a filter to suppress the artifacts. However, in the case of
P-SV wavefield, they are not effectively suppressed due to the lack
of a vertical component receiver. Note that these artifacts can be
effectively removed by separately processing upgoing and down-
going waves (e.g., Hornby, 1989).

LABORATORY EXPERIMENT

Data

In this section, we have applied our newly proposed LSM to lab-
oratory experimental data. The laboratory experiments were per-
formed in order to measure PP reflections from a horizontal fracture
(Minato et al., 2018). An artificial fracture was created by installing
spacers of 100 μm thickness between two aluminum blocks (Fig-
ure 6a). Vertical-component reflection responses were measured for
three different fracture conditions: the dry fracture (i.e., the fracture
is filled with air), the homogeneously wet fracture (i.e., the fracture
is filled with water), and the heterogeneously wet fracture (i.e., the
fracture is partly filled with water and partly with air). For each
fracture condition, the location of source and receiver (piezoelectric
transducers) was fixed so that the coupling condition between the
surface of the sample and the transducers did not vary during the
measurements. In total, 21 shot gathers were acquired; each shot
gather contained on average 20 traces (Figure 6b). The observed
PP reflections were isolated by time-windowing the data (Figure 6c).
The measured response showed a center frequency of 700 kHz
(Figure 6d). A more detailed measurement procedure has been
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Figure 5. Imaging results using the SH wavefield in dipole acoustic
logging data: (a) initial gradient without inversion and (b) our
proposed LSM. (c and d) Same as (a) and (b) but using the
P-SV wavefield.
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presented in Minato et al. (2018). In this study, we assumed 2D
wave propagation. Therefore, all observed data were scaled byffiffi
t

p
in order to account for the difference in geometric spreading

between 3D and 2D wave propagation.
We first check the accuracy of the Born approximation in the

configuration of the laboratory experiments; we numerically model
the vertical-component, zero-offset reflection response due to a ver-
tical force source and a horizontal fracture located at the same depth
as in the laboratory experiments (Figure 7). The input fracture com-
pliances are ηT ¼ 1 × 10−12 m∕Pa and ηN ¼ 10 × 10−14 m∕Pa, re-
spectively, considering a water-filled fracture without contact
asperities and the results of an earlier AVO inversion using the same
experimental data (Minato et al., 2018). Because of the large com-
pliance values and the high center frequency, the Born approxima-
tion in this configuration is accurate only for very low-frequency
components (lower than 200 kHz, Figure 7). Because high-resolu-
tion imaging requires large bandwidth and the S/N is high around
the center frequency of the measured responses, we use the fre-
quency components between 50 and 500 kHz for our proposed
LSM.

Data calibration

To apply our proposed LSM, we estimate the source wavelets.
Similar to previous AVO inversion (Minato and Ghose, 2016a;
Minato et al., 2018), we use the dry fracture response in order
to estimate the wavelets.
We first calculate the theoretical dry fracture responses as fol-

lows. The dry fracture responses are considered to be free-surface
reflections because the fracture does not contain contact asperities
(Minato and Ghose, 2016a). We calculate the free-surface reflec-
tions in a homogeneous half-space using the Kirchhoff approxima-
tion. Once we have calculated the theoretical PP reflection
responses at the receiver positions, we introduce the additional
effect of the free-surface boundary at the receiver; this is achieved
by multiplying the calculated particle velocities by a factor of two,
assuming normal-incidence reflections.

Next, we estimate the source wavelets by deconvolving the mea-
sured dry responses with the theoretical responses. We estimate the
source wavelet at each trace (i.e., for each source-receiver pair) as-
suming that (1) for each source-receiver pair the source wavelet re-
mains the same for different fracture conditions (dry and wet) due to
the invariant coupling condition during the measurements, and
(2) the source wavelets at each trace effectively account for complex
source directivity at the transducers. The implementation of inde-
pendent source wavelets at each source-receiver pair is straightfor-
ward in the Born operator L in LSM (equations 9 and 14).

Imaging results

We apply our proposed LSM (equation 10) on a data set repre-
senting a homogeneously wet fracture, assuming a 2D P-SV wave-
field. The imaging area around the fracture (0.3 m × 0.05 m) is
discretized with a spatial sampling interval of 0.5 mm. We image
the normal fracture compliance ηN using only vertical component
records. To this end, the tangential compliance is assumed
(1 × 10−12 m∕Pa) at the known fracture geometry, and the contribu-
tion of the tangential compliance in the vertical component records
is subtracted from the measured data, assuming the Born approxi-
mation (equation 13 with ΔHb including only ηT ). Finally, we for-
mulate equation 9, where d consists of the measured data and m is
the spatial distribution of ηN . The Born operator L is calculated us-
ing free-space Green’s functions and the estimated source wavelets.
As discussed earlier, we use the frequency components between

50 and 500 kHz to obtain the result of LSM (Figure 8a). The final
LSM image (Figure 8a) shows more improved resolution than the
initial gradient (Figure 8b). The initial gradient shows strong oscil-
lations around the fracture due to the crosscorrelation of band-pass-
filtered data using a boxcar function; the LSM removes the effect of
the source wavelet and suppresses artifacts that produce nonphysi-
cal reflections.
Next, we quantitatively check the estimated fracture complian-

ces. Figure 8c shows the estimated compliance of the homo-
geneously wet fracture along the fracture. The filled circles in
Figure 8c show the fracture compliance obtained by AVO inversion,
using the same data set (Minato et al., 2018). The estimated fracture
compliances using both approaches are similar. The LSM estimates
smaller compliances than AVO inversion. Due to the overestimation
of the amplitudes in the Born approximation (see Figure 7), LSM
underestimates the fracture compliances.
Finally, our proposed LSM is applied to the heterogeneously wet

fracture responses (Figure 9). The procedure to construct the Born
operator and to subtract the contribution of the tangential compli-
ance is the same as for the homogeneously wet fracture. As
discussed earlier, the dry fracture responses are free-surface reflec-
tions, which correspond to responses due to infinitely large fracture
compliances (Schoenberg, 1980). In this case, the Born approxima-
tion is not accurate to estimate the fracture compliances at the dry
part of the fracture. Therefore, in Figure 9, the scaling effect due to
the band-limited singular function is estimated at a representative
location in the wet region. The result of LSM (Figure 9) clearly
shows the difference between the wet region (x = 0–0.15 m) and
the dry region (x = 0.15–0.30 m) along the fracture. The dry region
of the fracture shows the magnitude of positive amplitudes similar
to the negative amplitudes across the fracture (e.g., see the variation
of the amplitudes at x ¼ 0.2 m in Figure 9): the asymmetric ampli-
tude variation across the fracture is not represented by the band-lim-
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Figure 7. Frequency spectrum of the numerically modeled reflec-
tion response, representing the laboratory geometry and the fracture
compliances. The total response and the Born approximation are
shown.
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ited singular function with a unit spectrum between the minimum
and maximum wavenumbers (equation B-2). This indicates that we
cannot interpret the results at the dry region of the fracture as the
singular function (equation B-2) scaled by the fracture compliance.
In other words, the Born approximation fails to represent the dry
part of the fracture as a nonwelded interface due to infinitely large
compliances. We conclude that our proposed LSM successfully
estimates the compliances of the wet fracture and also correctly
detects the spatial variation in fracture compliances.

DISCUSSION

Frequency, accuracy, and resolution of LSM

We numerically show that the Born approximation of scattered
waves due to linear-slip interfaces is generally accurate at low
frequencies (Appendix C and Figure 7). Considering that LSM es-
timates the band-limited singular function (the Dirac delta function)
scaled by the fracture compliances, large-bandwidth data including
high frequencies are necessary to obtain higher resolution images.

However, including higher-frequency components leads to an
underestimation of the fracture compliances. This is because the
Born approximation overpredicts the amplitudes, as discussed in
the numerical modeling example. Therefore, there is a trade-off be-
tween the accuracy of the estimated compliance and the imaging
resolution. Numerically checking the accuracy of the Born approxi-
mation at different frequencies is recommended to determine the
frequency components to be used for LSM.

Feasibility of LSM using dipole acoustic logging

In the “Numerical modeling” section, we show the application of
our proposed LSM to the dipole acoustic measurements with a num-
ber of assumptions. First of all, we separately consider P-SVand SH
wavefields, assuming wave propagation in the plane formed by the
borehole axis and the normal vector of the fracture. Therefore, data
acquisition requires the knowledge of the azimuth angle of the tar-
get fracture. However, when the azimuth angle of the fracture is not
known, the rotation of the cross-dipole data (Lee et al., 2019) will be
able to provide the input data for our proposed LSM and the azi-
muth angle of the target fracture.
Next, in the numerical modeling, we ignore the presence of the

fluid-filled borehole. In this vein, the Born approximation for per-
turbations in Lamé constants in the borehole environment ignoring
the borehole effect has been investigated previously (Geerits et al.,
2013). However, a theoretical study shows that the fluid-filled bore-
hole affects the radiation pattern at the source and the reception pat-
tern at the receiver, especially at high frequencies (Tang et al.,
2014). Angle- and frequency-dependent effects of the fluid-filled
borehole on the source radiation and receiver reception pattern
can be implemented in the linearized equation 9 when the angle
of the incident wave from the source and the angle of the scattered
waves at the receiver can be appropriately calculated.

Complex geology

In the numerical modeling examples, we show that our proposed
LSM is successfully applied to data with noise in simple configu-
rations: reflection data due to a single horizontal fracture embedded
in a homogeneous medium contaminated by random noise (see the
“Laboratory-scale fracture imaging: Numerical tests” subsection)
and data due to a single dipping fracture contaminated by scattered
waves generated by a random background velocity field (see the
“Borehole acoustic logging: Numerical tests” subsection). Imaging
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multiple fractures is possible without any modification because our
proposed LSM estimates the spatial distribution of the fracture com-
pliances (equation 14). In the boundary integral equation (Wapenaar,
2007), fractures may intersect each other. In this case, however,
fracture compliances at the intersection may not be uniquely esti-
mated using LSM because of the ambiguity regarding the fracture
normal vector.
We use free-space Green’s functions in a homogeneous medium

to calculate wave propagation in a background medium. However,
any other approach that can handle a more complex background
model (e.g., smooth velocity variation and/or a layered earth model)
can be used, e.g., using ray approximation, the one-way wave equa-
tion, or the finite-difference method (e.g., Operto et al., 2000; Kühl
and Sacchi, 2003; Dai et al., 2010). When data contain reflections
from welded interfaces (geologic layer boundaries) and nonwelded
interfaces (fractures), there are two options: (1) explicitly incorpo-
rating welded interfaces in the background velocity model and
inverting only for the fracture compliances, or (2) simultaneously
inverting for perturbations in elastic constants and fracture compli-
ances. The former option requires prior knowledge of geologic layer
boundaries (e.g., from standard sonic logging in the case of single-
well reflection imaging). The latter requires modification of the
Born operator (equation 13) to include scattering due to the pertur-
bation in the Lamé constants and density with respect to the back-
ground, which is represented by an additional volume integral
(Beydoun and Mendes, 1989; Wapenaar, 2007).

Dip angle of a fracture

We assume that the dip angle of the fracture is known in the Born
operator. The dip angles are assigned at each imaging grid point.
The information of dip angles can be obtained from borehole im-
ages and/or standard migration images. Alternatively, it is possible
to include dip angles or a vector normal to the fracture (nx and nz) in
the inversion parameters of LSM. In this case, however, LSM es-
timates the indirect parameters that couple the fracture compliances
and the normal vector (see the components of the contrast function
ΔHb in equation A-12). Note that, in this case, at least two addi-
tional unknown parameters are involved in the inversion, which is
computationally more expensive.

CONCLUSION

In this study, we propose a new elastic LSMmethod for thin com-
pliant zones (fractures, joints, and faults) in order to estimate the
fracture compliance tensor with high resolution. We derive the Born
approximation in order to linearize the scattered wavefield with re-
spect to the fracture compliances. We consider a 2D wave propa-
gation problem, i.e., P-SV and SH wavefields.
We show two numerical examples of the new LSM: laboratory-

scale fracture imaging and field-scale fracture imaging using bore-
hole acoustic logging data. The LSM generally provides images
with higher resolution than the initial gradient or the image with
the classic crosscorrelation imaging condition. Furthermore, an
anisotropic fracture with nonzero coupling compliance is imaged
much better by the new LSM than by the conventional LSM in
which perturbation of the Lamé constants is estimated. This indi-
cates that the new LSM is essential in accurate imaging of rough
fractures, where shear-induced coupling changes are monitored.
The dipole acoustic input data are modeled considering a random

background medium. The results show the potential of the new
LSM to provide quantitative imaging of fracture compliances of
a dipping fracture embedded in a complex background medium.
Finally, we apply the new LSM to a laboratory experimental data

set. The estimated compliance values are similar to those obtained by
AVO inversion. The compliance values are, however, underestimated
because at higher frequencies the Born approximation overpredicts
the amplitudes. The LSM image detects a spatially varying fracture
condition resulting from the partial inclusion of water in the fracture.
The linear-slip theory and the fracture compliance tensor describe

the interaction between the seismic waves and the compliant zones
with an effective thickness that is much smaller than the seismic
wavelength. Quantitatively imaging the fracture compliance tensor
is, therefore, crucial to further address the small-scale properties at
fractures, joints, and geologic faults.
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APPENDIX A

LINEAR-SLIP BOUNDARY CONDITION AND
REPRESENTATION THEOREM IN A 2D PROBLEM

The P-SV wavefield

We explicitly formulate the vectors and matrices necessary to de-
fine the linear-slip boundary condition (equation 5) and the boun-
dary integral representation (equations 12 and 13) for the 2D P-SV
wavefield.
The wave vector u is

u ¼

0
BBB@

vx
vz
−τxx
−τzz
−τxz

1
CCCA: (A-1)

Similar to the 3D problem (see the main text), Y (a 5 × 5 matrix)
in equation 5 can be written for a linear-slip interface with an ar-
bitrary dip angle using the fracture compliance tensor of a horizon-
tal fracture ηh. We obtain an equation with the same form as
equation 8, but ηh is defined as

ηh ¼
�
ηT1

ηC
ηC ηN

�
; (A-2)

andQ ¼
� nz −nx
nx nz

�
. For completeness, a 4 × 5matrixM in equa-

tion 5 is defined as
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M ¼

0
BB@

1 0 0 0 0

0 1 0 0 0

0 0 nx 0 nz
0 0 0 nz nx

1
CCA: (A-3)

The Green’s matrix G consists of the Green’s functions in the
P-SV wavefield, defined as

G ¼

0
BBBB@

Gv;f
x;x Gv;f

x;z Gv;h
x;xx Gv;h

x;zz Gv;h
x;xz

Gv;f
z;x Gv;f

z;z Gv;h
z;xx Gv;h

z;zz Gv;h
z;xz

Gτ;f
xx;x Gτ;f

xx;z Gτ;h
xx;xx Gτ;h

xx;zz Gτ;h
xx;xz

Gτ;f
zz;x Gτ;f

zz;z Gτ;h
zz;xx Gτ;h

zz;zz Gτ;h
zz;xz

Gτ;f
xz;x Gτ;f

xz;z Gτ;h
xz;xx Gτ;h

xz;zz Gτ;h
xz;xz

1
CCCCA; (A-4)

where the superscripts of the Green’s functions represent the type of
the observed wavefield (e.g., particle velocity [v] or stress [τ]) and
the type of source (e.g., force [f] or deformation rate [h]) and the
subscripts represent the different components. Please see Wapenaar
(2007) for more details on the notation in the case of an acoustic
wavefield, and see Wapenaar and Fokkema (2004) for more details
on the definitions of the source types in the case of an elastody-
namic wavefield.
The contrast function ΔHb in the boundary integral representa-

tion (equation 12) can be derived from equation 56 in Wapenaar
(2007) using M (equation A-3), Y (equation 8 but using ηh and
Q defined in this subsection), K ¼ diagð1; 1;−1;−1;−1Þ, and

N ¼
�

0 I
−I 0

�
. Finally, we obtain

ΔHb ¼ jω

0
BBB@

0 0 0 0 0

0 0 0 0 0

0 0

0 0 MT
1Q

TΔηhQM1

0 0

1
CCCA; (A-5)

where

M1 ¼
�
nx 0 nz
0 nz nx

�
; (A-6)

and

Δηh ¼
�
ΔηT1

ΔηC
ΔηC ΔηN

�
: (A-7)

The symbol Δ in equation A-7 denotes the difference in the frac-
ture compliances between the reference medium and the actual
medium. When the reference medium does not contain fractures
(the fracture compliances are 0), Δηh is equivalent to ηh.

The SH wavefield

In case of a 2D SH wavefield, the wave vector u is

u ¼
0
@ vy

−τxy
−τyz

1
A: (A-8)

The fracture compliance tensor becomes a scalar, ηT2
(see equa-

tion 4). The linear-slip boundary condition is represented by equa-
tion 5 using M and Y defined as

M ¼
�
1 0 0

0 nx nz

�
(A-9)

and

Y ¼
�
0 ηT2

0 0

�
: (A-10)

The Green’s matrix is

G ¼
0
@ Gv;f

y;y Gv;h
y;xy Gv;h

y;yz

Gτ;f
xy;y Gτ;h

xy;xy Gτ;h
xy;yz

Gτ;f
yz;y Gτ;h

yz;xy Gτ;h
yz;yz

1
A: (A-11)

Similar to the P-SV wavefield, the contrast function ΔHb in
the boundary integral representation (equation 12) can be derived
from equation 56 in Wapenaar (2007) using M (equation A-9), Y

(equation A-10), K ¼ diagð1;−1;−1Þ, and N ¼
�

0 1

−1 0

�
. Fi-

nally, we obtain

ΔHb ¼ jω

0
@ 0 0 0

0 n2xΔηT2
nxnzΔηT2

0 nxnzΔηT2
n2zΔηT2

1
A; (A-12)

where ΔηT2
denotes the difference in the tangential fracture com-

pliance between the reference medium and the actual medium.
When the reference medium does not contain fractures, ΔηT2

is ηT2
.

APPENDIX B

COMPENSATION OF THE SCALING EFFECT DUE
TO THE BAND-LIMITED SINGULAR FUNCTION

In this study, LSM estimates the band-limited singular function
scaled by the fracture compliances (equation 14). The output image
of LSM, therefore, includes the scaling effect of the band-limited
singular function; we compensate for it by estimating the bandwidth
of the output image.
We consider that the fracture geometry ∂Dint is described para-

metrically in terms of one parameter s, i.e., x ¼ xðsÞ and z ¼ zðsÞ.
In this case, the singular function δΣ in equation 14 has the follow-
ing property:

Z
V

δΣðx; zÞfðx; zÞdxdz ¼
Z
∂Dint

f½xðsÞ; zðsÞ�ds; (B-1)

where fðx; zÞ is a test function. For brevity, in this appendix, we
consider a horizontal fracture located at z ¼ 0. In this case,
δΣðx; zÞ ¼ δðzÞ, where δðzÞ is the Dirac delta function. We assume
that the band-limited Dirac delta function ~δðzÞ in the result of LSM
is approximated by a unit spectrum in the wavenumber domain par-
ametrized by the maximum wavenumber (Lk) and the minimum
wavenumber (lk):
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~δðzÞ ¼ Lk

π

sinðLkzÞ
Lkz

−
lk
π

sinðlkzÞ
lkz

: (B-2)

Once we have estimated Lk and lk, the output image of LSM is
scaled so that the maximum amplitude of ~δðzÞ becomes 1.
In this study, we estimate Lk and lk of the output image of LSM

as follows: (1) we first solve the linearized inversion (LSM) and
obtain mðx; zÞ, where we replace the vector representation of the
model parameter m in equation 9 by its spatial distribution
mðx; zÞ; (2) we extract a 1D amplitude distribution of m normal
to the fracture (in the case of a horizontal fracture, we extract
mðx0; zÞ, where x0 is a fixed lateral position); and (3) we estimate
Lk and lk either in the wavenumber domain by reading the mini-
mum and maximum wavenumbers or in the space domain by fitting
mðx0; zÞ using equation B-2. In this study, we use the latter ap-
proach for estimating Lk and lk. To this end, we first normalize
the amplitude of mðx0; zÞ, and we search for Lk and lk that best
fit mðx0; zÞ using equation B-2 whose amplitudes are also normal-
ized. Figure B-1a shows an example of the estimation of Lk and lk
for the numerical example of Figure 2b. As expected from equa-
tion B-2, the estimated amplitude distributionmð0.15; zÞ is symmet-
ric around the fracture location (z ¼ 0.172 m). The best-fit curve
(the black line in Figure B-1a) is obtained by using Lk ¼ 543.50

(rad) and lk ¼ 40.84 (rad), respectively. The Fourier spectrum
(Figure B-1b) shows that we successfully estimate Lk and lk.
The output image of LSM is then scaled by ðLk∕π − lk∕πÞ−1,
and we obtain the result shown in Figure 2b. Note that for a dipping

fracture, we evaluate the spatial distribution of mðx; zÞ along the
perpendicular direction of the imaged fracture.

APPENDIX C

ACCURACY OF THE BORN APPROXIMATION
IN NUMERICAL EXAMPLES

In this appendix, we show the accuracy of the Born approxima-
tion (equation 13) in the configurations of the “Numerical model-
ing” section.
We first consider the numerical modeling of laboratory-scale

measurements (Figure 1a), where we model zero-offset reflection
responses. Figure C-1 shows a comparison between the Born-ap-
proximated response (“Born”) and the true response (“Total”).
The true response is calculated using the wavenumber-domain
method (Nakagawa et al., 2004). Figure C-1a–C-1c shows the fre-
quency spectra of the modeled Green’s functions for SH wavefield
(vy) and P-SV wavefield (vz and vx). Figure C-1d–C-1f shows the
time-domain waveforms after the convolution of a Ricker wavelet
(50 kHz center frequency) with the modeled Green’s functions. For
this particular model, the Born approximation is accurate at low
frequencies (lower than 200 kHz). At higher frequencies, the Born
approximation overpredicts the amplitudes.
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Figure C-1. Born-approximated response (Born) and true response
(Total) for zero-offset record in the configuration of Figure 1a.
(a–c) Modeled Green’s functions for SH wavefield (vy) and P-
SV wavefield (vz and vx). (d–f) Time-domain responses of (a)–(c)
after convolution of the Ricker wavelet with a 50 kHz center
frequency.
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Next, we consider the configuration in the dipole acoustic mea-
surements (Figure 4a). For simplicity, we assume a homogeneous
background medium with the average P- and S-wave velocities of
the random model (Figure 4a), and we calculate zero-offset reflec-
tion responses due to a horizontal fracture located at a 5 m distance
from the source and receiver. The dipole sources are modeled
as point force sources parallel to the fracture. Similar to
Figure C-1, Figure C-2a and C-2b shows the frequency spectra
of modeled Green’s functions, and Figure C-2c and C-2d shows
the time-domain waveforms after the convolution of a Ricker wave-
let (3 kHz center frequency) with the modeled Green’s functions.
Contrary to Figure C-1a–C-1c, the frequencies at which the Born
approximation is accurate for this configuration are very low (lower
than 3 kHz, Figure C-2a and C-2b). This is because the order of
magnitude of fracture compliances in the field-scale fracture
(ηT ¼ 1 × 10−11 m∕Pa, ηN ¼ 1 × 10−12 m∕Pa) is larger than
that of the laboratory-scale fracture (ηT ¼ 4.5 × 10−14 m∕Pa,
ηN ¼ 1.75 × 10−14 m∕Pa, ηC ¼ 1.40 × 10−14 m∕Pa).
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