Hybrid models for hydrological forecasting:
Integration of data-driven and conceptual modelling techniques

DISSERTATION

Submitted in fulfilment of the requirements of
the Board for Doctorates of Delft University of Technology
and of the Academic Board of the UNESCO-IHE
Institute for Water Education
for the Degree of DOCTOR
to be defended in public
on Friday 4" of September 2009 at 15:00 hours
in Delft, The Netherlands

by
Gerald Augusto CORZO PEREZ

born in Cicuta, Colombia.
Master of Science in Hydroinformatics
UNESCO-IHE Delft, the Netherlands



This dissertation has been approved by the supervisor:

Prof. dr. D.P. Solomatine

Members of the Awarding Committee:

Chairman

Prof. dr. A. Mynett

Prof. dr. D. P. Solomatine
Prof. dr. R. K. Price

Prof. dr. S. Uhlenbrook
Prof. dr. H. H. G. Savenije
Prof. dr. D. Rosbjerg

Dr. M. Werner

Prof. dr. N. van de Giesen

CRC Press/Balkema is an imprint of the Taylor & Francis Group, an informa

business

Rector Magnificus, TU Delft
Vice-Chairman, UNESCO-THE

TU Delft/UNESCO-IHE (supervisor)
TU Delft/UNESCO-IHE
UNESCO-IHE/VU Amsterdam

TU Delft

Technical University of Denmark
UNESCO-IHE, Deltares

TU Delft (reserve)

(©2009, Gerald Augusto Corzo Perez

All rights reserved. No part of this publication or the information contained
herein may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, by photocopying, recording or

otherwise, without written prior permission from the publisher.

Although care is taken to ensure the integrity and quality of this publication
and the information therein, no responsibility is assumed by the publishers nor
the author for any damage to property or persons as a result of operation or

use of this publication and/or the information contained herein.

Published by:
CRC Press/Balkema

PO Box 447, 2300 AK Leiden, The Netherlands
e-mail: Pub.NL(@©taylorandfrancis.com

WWW.Ccrcpress.com www.taylorandfrancis.co.uk www.balkema.nl

ISBN 978-0-415-56597-4 (TAYLOR & FRANCIS GROUP)



This thesis is dedicated to my mother Maria, father Fabio and my Daughter
Geraldine, for their endless love, encouragement and support






SUMMARY

Operational hydrological forecasting is based on extensive use of various types
of hydrological models. The most popular ones are conceptual models, followed
by more detailed process distributed models. Empirical (statistical) models are
used as well, and in the last decade they received more attention due to the
appearance of data-driven models which, in essence, are empirical models that
use the methods of machine learning (computational intelligence). A wide
choice of models presents a certain challenge for a practitioner, who will have
to select and integrate adequate models, and link them with the data sources.
Recently a number of studies addressed the problem of integrating different
modelling paradigms, and it has been shown that this approach leads to an
increased accuracy of forecasts, and that more studies are needed to develop
a consistent modelling framework and to test it in various situations. In this
research various ways of integrating models for simulation and forecast are
explored.

The increasing number of extreme and unexpected flood situations in recent
decades has led to a growing interest to more accurate flood forecasting systems.
These systems are necessary to provide warning against flooding preventing
loss of life and minimizing damage to both properties and livestock. On the
other hand, low flow forecasts are also important in the fields of water supply
management, industrial use of freshwater, optimization of reservoir operations,
navigation and other water-related issues. The aim of modellers is to increase
model accuracy, and extend the forecast lead time. Better weather forecasts
and more accurate data play here the leading role, but model improvements
and the integration of different models have a lot of potential as well.

The objectives of representing a hydrological phenomenon by a model and
the data availability determine the choice of modelling paradigm. In general,
models used for streamflow forecasting can be grouped into three classes: a)
physically-based (PBM) (often distributed) models based on a detailed repre-
sentation of the processes; b) conceptual models and their more sophisticated
version called process-based models (PRBM), including the so-called “semi-
distributed” versions, which are important to improve process basis of predic-
tions (land use and climate change scenarios); and c) empirical statistical or
data-driven models (DDM) based on historical data about the modelled pro-
cesses. PBMs are more commonly used for the interpretation of processes in
river basins. These models involve a high number of physical parameters that
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are determined on the basis of expert knowledge, field analysis and/or in com-
plex situation by automated calibration techniques. They are often used in
assessing flood situations where the information of the expert is combined with
the capacity of detailed models.

Often, however, there is not enough data to build PBMs, and for opera-
tional flow forecasting the detailed representation of a basin is not necessary.
Therefore, conceptualized methods like PRBMs and data oriented techniques
like DDMs are often preferred alternatives in real-time operational flow fore-
casting systems. The PRBM and DDM have a different basis: A PRBM’s
structure is based on simplified descriptions of the physical processes, whereas
a DDM normally represents the mapping from the set of input variables to the
output. It is commonly argued that the features of the PRBMs are missing
in the DDMs and vice versa. Due to the differences in these two paradigms
integrating such models is a challenging task.

Both DDMs and PRBMs are widely accepted and researched, and they
have properties useful for different types of problems. When making a decision
on which type of model is the most appropriate for a particular purpose, one
has to consider the possibility of integrating both modelling approaches. Often
models that combine different paradigms are called “hybrid”. In such a hybrid
approach the best features of both approaches should be preserved: physical
concepts of hydrological science in the PRBM and the power of encapsulating
the historical data in the DDM. In hybrid modelling the different sub-models
are typically responsible for modelling particular sub-processes, so partitioning
of the input space using different physical concepts and/or mathematical con-
structs, and the subsequent integration of model outputs is needed.

As a step forward in flow simulation and forecasting this dissertation explo-
res the use of integrated solutions with process-based and data-driven models.
For this purpose it is proposed to use a hybrid modelling framework, and base
it on the “principle of modular modelling”.

The main objective of this research is to investigate the possibilities and
different architectures of integrating hydrological knowledge and models with
data-driven models for the purpose of operational hydrological forecasting, and
to test them on different case studies. The models resulting from such inte-
gration are referred to as hybrid models. The following specific objectives were
formulated:

1. Explore the various architectures and develop a framework for hybrid
modelling combining data-driven and process-based hydrological models
in operational hydrological forecasting, especially in the flooding context.

2. Further explore, improve and test the principle of modular modelling al-
lowing for building data-driven and hybrid models.

3. Further explore, improve and test the procedures optimizing the structure
of data-driven models, including those that work as complementary and
error correction models.
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4. Evaluate the applicability of modular modelling schemes in other related
problems, like downscaling weather information for hydrological forecas-
ting.

This research introduces and develops hybrid modelling principles based
on modular models. A general classification of hybrid models and logical fra-
mework for hybrid modelling are developed. On the basis of the framework,
modular model concepts are developed and tested on a number of case studies.

Three main principles of modularization of models considered are: spatial,
temporal and processes-based. The main case study for the spatial analysis is
the Meuse river basin. The Dutch Ministry of Public Works (Rijkswaterstaat)
uses the hydrological modelling system “Hydrologiska Byrans Vattenbalansa-
vdelning” (IHMS-HBV). It represents 15 sub-basins, each modelled by indivi-
dual lumped conceptual model components, which are linked by a simplified
routing scheme. This model is a part of the operational flood forecasting sys-
tem that uses the Delft/FEWS platform developed at Deltares, and is linked to
real-time feeds of the regional weather forecasts provided by the Royal Dutch
Meteorological Institute (KNMI). In this research various ways of replacing
some of the conceptual hydrological sub-models by local data-driven models
(e.g. artificial neural networks, ANNs) are analysed. This is done on the basis
of the available information (local measured discharges), and on the study of
relative contribution of each sub-basin model to the overall model error. The
results of such “model hybridization” show multiple advantages not only in
terms of accuracy of the overall model, but also in the increase of the lead time
where spatial weather information plays an important role in the simulation of
low and high flow phenomena.

Experiments with temporal and process-based modular models are carried
out on different types of catchments in Asia and Europe. This experiments
show the advantages of combining specialized models built for different sub-
processes. It is also shown that for identifying such sub-processes it is more
effective to use hydrological concepts, expert judgement and knowledge, rather
than the automated data analysis and clustering techniques (which however
could be very useful as well). It is demonstrated how the global optimization
techniques help to generate optimal model structures. Furthermore, the pos-
sibilities of using modularization in multi-step ahead forecasting are presented
and compared to conventional ANN models.

An extensive sensitivity analysis of data-driven models (mainly, ANNSs) is
conducted in this study, along with the analysis of the dependence of different
data-driven models’ performance on different inputs and random initializations.
These experiments confirm that flow forecasting data-driven models which use
past values of discharge are dominated by autocorrelation, so that an accurate
knowledge of precipitation, for a certain lead times, is less important in overall
error assessments. In general, ANN models with the right choice of variables,
are not so much influenced by various random initializations of weights. With
the appropriate selection of variables, it appears that the correlation and aver-
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age mutual information (AMI) analysis give similar results on all the cases
tested in this thesis. Among all the data-driven modelling techniques tested,
ANNs had the best performance. Using an ensemble of differently initialized
ANNs leads to more accurate forecasts.

Parallel and complementary hybrid modelling architectures are show to im-
prove the performance of a forecast model beyond the ANN and process-based
models. Multiple combinations of ensembles and error corrector models are
tested. The use of committee models (e.g. ensembles) employing ANN and the
HBYV models for the Meuse river basin are shown to have almost the same per-
formance as a model with error corrector built with information from previous
errors and previous states of the model. In the Meuse case study the non-linear
error corrector is found to be better than the linear error correctors. The results
show that adding the error corrector improves the accuracy of the HBV for the
lead times which are higher than the concentration time. It appears from ex-
periments that a single ANN cannot produce accurate forecasts for lead times
higher than the characteristic lag (travel) time of the particular river. These
experiments are based on the assumption of perfect rainfall forecast, but can
be extended for real forecasts. In general, it is shown that the limitations of
the process-based models can be overcome by complementary error correcting
data-driven models.

Yet another case study relates to downscaling information from general cir-
culation models into meteorological information at watershed scale. The mo-
dular modelling approach (based on clustering samples and building separate
models for each of them) brings an improvement over conventional statistical
and data-driven models. A case study in Ethiopia and data from national
centre for environmental prediction (NCEP, from USA), are considered. The
results show an improvement in terms of overall accuracy for precipitation,
however, the results for temperature are less convincing. The latter can be
explained by the fact that temperature is a more periodic variable than preci-
pitation, and its relatively slow transition between low and high values makes
it less appropriate variable for driving modular models.

In general, this research presents a hybrid modelling framework where data-
driven and conceptual process-based models work in a coordinated fashion,
and their role and performance are optimized. Several principles of models
hybridization and modularization — spatial, temporal and processes-based —
are considered and explored on a number of case studies. Advantages and
disadvantages of various approaches for different lead times are evaluated and
discussed. In the framework of one of the case studies, the developed models are
incorporated as software components into operational hydrological forecasting
system for Meuse river basin, implemented on the Delft/FEWS platform. This
thesis contributes to hydrological flow forecasting and its findings, I hope, be
used in building more effective flood forecasting systems.

Gerald Corzo
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CHAPTER
ONE

INTRODUCTION

1.1 Background

Flood events are becoming more frequent and intense in many countries around
the world. One of the major concerns in the world is the recent increase of cata-
strophic flood situations. Many researches point out that in the coming decades
the situation may become worse due to the climate change (Palmer and Ris-
nen, 2002). Flood management knows various approaches for controlling floods
(to some extent) and for mitigating their consequences. There are structural
approaches that are expensive and not always possible. Solutions like refore-
station, proper urban planning and extension of flood plains, are often effective
but are long term and do not always guarantee considerable reduction of flood
damage. Due to the fact that in many situations it is practically impossible
to prevent floods, it is important to build models and systems that are able
to forecast hazardous situations with the highest possible accuracy. It is com-
mon that flood management includes flood warning system or flow forecasting
system providing assessments of the spatial range and duration of flooding.

Accurate forecasting of natural phenomena with extended lead times is
one of the challenges for practitioners. The river flow forecasting systems are
generally supported by hydrological and river models. The requirement in
terms of accuracy is always relative to the lead time required. For extended
lead times, the use of weather forecast information provides the information
for the conceptual models, but increases the models’ uncertainty. Operational
forecasting systems are not perfect, and often measurements of precipitation or
water levels are missing. Complex aid models are needed for filling missing data
and incorporating other available measured data through data-assimilation. All
these problems make the problem of operational hydrological forecasting quite
a challenging task.

The problem of flood management and improved forecasting is one of the
primary application areas of hydroinformatics (Abbott, 1993; Price, 2005; So-
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lomatine, 2005). Evolution of information and communication technologies in
the last decades has lead as a consequence to an increase in the number of
measurements. Therefore, nowadays, large amounts of data for various en-
vironmental variables have been collected. These are especially useful where
there is limited or no domain knowledge (on physics, chemistry, and biology
of the process) available. More and more hydroinformatics systems are linked
in real-time to the Numerical Weather Prediction models, allowing for direct
feeds of the precipitation and temperature forecasts into hydrological models.

Data availability opened up the possibilities of new modelling paradigms
that have been increasingly applied in hydrological modelling in the last de-
cades. One of such paradigms is the so-called data-driven modelling actively
researched in the framework of hydroinformatics. However, the advances in
computer sciences and computational intelligence, the main suppliers of tech-
nologies for this area, allow for building more accurate, optimized hybrid models
incorporating different modelling paradigms in a flow forecasting system.

This study belongs to the area of hydroinformatics, and is at the inter-
face between hydrological modelling and computational intelligence, and one
of its important application areas is flood management and forecasting. The
study has been conducted in the framework of the “Delft Cluster” research
programme of the Dutch Government (project “Safety Against Flooding”, and
was possible due to the financial support of this project.

In the following sections flood forecasting systems, process-based hydrologi-
cal models, and data-driven models will be characterized, and the possibilities
of building on their basis hybrid models will be shown.

1.2 Flood management and forecasting

Flood management is a comprehensive area that has received a lot of attention
from researchers and practitioners during the last decades. In particular, seve-
ral research efforts have been supported by the EU research funds, e.g., in the
MUSIC, FLOODRELIEF, FLOODsite, and a large number of other projects
where serious attention was given to development of effective methods and plat-
forms enhancing flood management. For this study it is important to position
operational hydrological forecasting within the set of possible flood manage-
ment measures, to characterize the operational flow forecasting process, and to
identify the place of new types of computer-based models in this process.

1.2.1 Flood management measures
In river flood management two classes of measures are distinguished.
Structural measures Construction of dams, weirs, barriers, dikes and other fa-

cilities are some of the most common structural solutions. These are not just
expensive but also often do not guarantee an effective solution.
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Non-structural measures These normally can be subdivided into two groups.
One is the application of environmental solutions like reforestation, proper
urban planning, flood plain management, etc. These solutions are long-term
and expensive and do not always guarantee a reduction of flood damage, or
shift it sometimes to another area. The second group is the implementation
of river flood warning systems. The mitigation of flood impact in this case is
based on the following premise: since the flood is impossible to prevent, it is
important to have a solution to provide advice and to mitigate the possible
consequences of the flood. Such a flood warning system is justified by the
usefulness of the hydrological flow forecast, and reflected in anticipating the
possible spatial ranges and temporal durations of floods.

In the context of river flood management, hydrological flow forecasting mo-
dels are the core of warning systems, and therefore they attract the attention
of managers and researchers. Advanced systems that have been deployed in
the last decade include GIS visualization, possibilities to generate inundation
maps, assess potential damages, connect in real-time to the various data sources
and numerical weather prediction models and issue warnings across multiple
communication platforms (Price, 2005; Werner, 2004; Werner et al., 2005), see
Figure 1.1.

Broadcast
Information

Hydrodynamic
Model

Hydrological
Model Topographic
and GIS
Model

Real Life
Measurements

Figure 1.1: Simplified scheme of interactions between models in a flood forecasting
system
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1.2.2 Operational flow forecasting

In general, flood and flow forecasting in operational systems are only differen-
tiated by the (water level) threshold indicating a flood situation. This flood
concept is relative and therefore the scope of this research will relate more
generally to “flow simulation” and “flow forecast”. The concepts of flow si-
mulation and forecasting are important for the interpretation and nature of
the work presented in this thesis. A flow simulation model is defined as a
model representing the hydrological processes in the basin, from the forcing
variables (e.g. precipitation, temperature and others) to the river discharge. A
flow forecasting model is defined as the model which receives weather forecast
information as input and calculates future values of flow, typically, of river
discharge.

Conventionally, flow forecasting in an operational system is performed using
process-based and /or conceptual models of river basins, and not fully physically-
based models. Conceptual models are generalizations of the system, that use or
process the main forcing variables in an flood event. In general, soil properties,
topographical information, and other complex spatial variables are managed
as global and/or constant. The simplification of the physical system makes
the conceptual models relatively easy to apply and allows for fast processing
in an understandable manner. At the same time the models cover the general
ongoing processes in the basin.

The use of more complicated spatially distributed models for multi-time-
step forecasts neither allow the accuracy of the conceptual models, nor have
the short processing time required for a fast response. Paradoxically, spatially
distributed physically based models and energy based models often appear to
be less accurate than conceptual models (Linde et al., 2007; Seibert, 1997).
Diermansen (2001) presented an analysis of spatial heterogeneity on the runoff
response of large and small river basins, and observed an increase in error with
the increase of the level of detail in a physically based model.

This study actively uses an important class of intermediate models, the so-
called semi-distributed conceptual models, as the most appropriate modelling
approach for meso-scale forecasting. The studies presented by Fenicia et al.
(2008) show that with simple semi-distributed flexible models, it is possible
to find an appropriate hydrological distribution and regionalization of hydro-
logical processes to better understand the river basin. Their approach allowed
the characterizing the basin, having a spatial distribution of lumped sub-basins
with an optimal regionalization of hydrological process.

Real-time hydrological forecasting systems are set up to work in a dynamic
environment. Typical interaction of data and models in a conventional flood
early warning system is presented in Figure 1.1, and Figure 1.2 presents the
time line of different processes. The information from the gauges is commonly
collected on a hourly or daily basis from different places in the region. Com-
monly this information is passed from the collecting organization database to
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an file transfer protocol (FTP) server. From the FTP server the information
is collected and stored in a local database for further access from different
data pre-processing and modelling software. This time 77 (Figure 1.2), is hig-
her when the system depends on the collection of measurement of many places
(e.g. short number of hours and could reach 1 day in extreme cases). Measured
data and weather forecast information are prepared. A number of pre-processes
are run in order to fill missing data, to interpolate regional information and to
validate its values (T%).

Weather forecasting model results come in intervals of 6, 12 or more hours;
intermediate values are calculated by weighting schemes or interpolation (73).
Ensemble weather forecasts are commonly supplied in a range of equally pro-
bable alternative rainfall vectors (e.g. 51 ensemble members, European Centre
for Medium-Range Weather Forecasts, ECWMF). Each ensemble of weather
information is produced for each grid point over the river basin. This implies
that large databases are required to manage all the weather forecast informa-
tion. The gauge measured data is used to update the model states in such a
way that the starting forecast should be perfect (7). The simulation of hy-
drological models, hydrodynamic models and error corrector models is done by
iteration, step by step, till the forecast horizon is reached (75). When all the
simulations are finished, a forecaster follows a procedure to generate a public
report or an active alarm, if required (7).

The time available to issue the warning depends on all these procedures.
The highest delays are typically 77, Ts and Tg, since T depends on a good
communication and management policy. T3 is the time used by the model, and
T is the time needed to issue the documents and broadcast the information.
In the case of the Meuse flow forecasting system considered in this thesis, 52
possible solutions of the model from 3 agencies are used to simulate scenarios
for a model that has 15 sub-basin models. The model (including several con-
nected conceptual hydrological models and a hydrodynamic river model) is run
several times in a day on a cluster of computers and the computational time is
relatively small. (Note that in real-time situations there could be delays in pro-
ducing and communicating the forecasts and warnings due to computational
and administrative barriers).

Weather and hydrological models form the basis of the flood forecast. These
models have to interact, so that one feeds the other. All models and data sour-
ces bring uncertainties, and the study of these uncertainties and their propaga-
tion through the model chain is nowadays an important issue (Candela et al.,
2003; Glemser and Klein, 2000). Commonly it is agued that the main source or
error and uncertainty is the weather forecast model (quantitative precipitation
forecast), and this prompts additional efforts aimed at capturing part of the
associated dynamics (Bartholmes and Todini, 2005; Tu et al., 2004).
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Figure 1.2: Chart of operational flow forecasting processes

1.3 Hydrological models

1.3.1 Classification

Hydrological models have been distinguished and classified on the basis of their
function and objectives, their structure, and their level of spatial disaggrega-
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tion. Since there are various ways to classify hydrological models, here it is
introduced the classification (more-or-less standard one) that is used in this
thesis.

Physically-based models (PBM): Are generic equations for flow at a point
with the model space discretized in accordance with the numerical so-
lution of the equation used (Price, 2009). In general terms, this models
represent the natural system using the basic mathematical representation
of the flow at a point; based on the conservation of mass, momentum and
energy. For river basin model representations, a physically-based model
in practice has to be also fully distributed (Refsgaard, 1997).

Conceptual models: Physically-base equations relating output to input
for the model discretized according to the identification of physical boun-
daries (Price, 2009). In general terms the concept have been described
in the past as models rising from simple verbal descriptions to equations
governing relationships or ‘natural laws’ that purport to describe rea-
lity (Refsgaard, 1997). However, nowadays this is refereed to a more
comprehensive type of models that attempt to simulate to a greater or
lesser extent, the most important perceived hydrological mechanisms of
the catchment response to rainfall, e.g. interception, evapotranspiration,
infiltration, and both groundwater and surface water flow routing, etc.,
using prescribed physical plausible empirical and heuristic mathemati-
cal relations. Although not “physically-based”, in the sense of using
pure physically-based equations, they are nonetheless “physically inspi-
red” (O’Connor, 2005).

Process based models (PRBM) are a relative new way to refer to con-
ceptual models that have a clear process structure (example: TAC and
TACP, Uhlenbrook et al., 2004). This is an intermediate model which oc-
cupies a position between the distributed physically-based model and the
hydrological lumped model. They are in contrast to the physically-based
models that are fully distributed and take account of spatial variations in
all variables and parameters. A PRBM can be a semi-distributed model
that takes into account spatial variation but as a integration of several
lumped small catchments.

Data-driven models (DDM): empirical models based on learning from
data, and associated with machine learning (computational intelligence)
algorithms. They are sometimes referred to as models that induce causal
relationships between sets of input and output time series data in the
form of a mathematical device, which in general is not related to the
physics of the real world (Solomatine and Price, 2004).

The most common way to represent the hydrology of a region, in terms of a

conceptual model, is through the use of a storage-based simulation. The stor-
ages (buckets) represent surface water storage and groundwater components
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and each component has one or more coefficients that are calibrated with a
fixed time step. There is no difference in time between the input(s) and out-
put(s) of these models (however, it can be also said that such a model makes
a one-step ahead forecast). The output at each time step is calculated mainly
with the state variables of the model. This memory or state variables include
the soil moisture states, and groundwater levels and others, at the previous
time step.

1.3.2 HBV process-based model

The THMS-HBV model, extensively used in this work, is a semi-distributed
conceptual rainfall-runoff model originally developed in a software product by
the Swedish Meteorological and Hydrological Institute (SMHI, Bergstrom and
Forsman, 1973, ,(Hydrological Bureau Waterbalance-section)). It is considered
to be semi-distributed due to the fact that a basin may be separated into a
number of sub-basins and each one of these is categorized according to eleva-
tion and vegetation. The soil moisture of the HBV modelling tool is based on
a modification of the bucket theory in that it assumes a statistical distribution
of the storage capacities in a basin. This assumption makes the tool indepen-
dent of scale as long as this distribution function is stable Lindstrom et al.
(1997). HBV is a process based model with conservation of mass and a general
formulation for evapotranspiration, snow component, soil moisture and other
important hydrological processes.

HBYV requires input data such as precipitation (on daily or shorter time
steps), daily or shorter air temperature (if snow is present), daily or monthly
estimates of evapotranspiration, daily runoff records for calibration and va-
lidation, and geographical information about the river basin. The principal
components of the model are precipitation, evapotranspiration, storage and
runoff. These components are related to each other in a given period of time
through the water balance equation given as:

P—FEs—AS/At=Q (1.1)

where:
P =precipitation (mm/day),
E 4 =actual evapotranspiration (mm/day),
Q@ =runoff (mm/day),
AS=change in basin storage (mm), per time step At (day)
Note: the equation holds true as long as no water passes the system boundaries
(e.g. groundwater flows from other basins).

The model has gradually been developed into a semi-distributed model.
Distribution of inputs in the model is guaranteed through the use of subbasins
(considered as primary hydrological similar units) in the schematisation. Fur-
ther distribution within a subbasin is possible in terms of the area-elevation
distribution and a crude classification of land use into forest, open area and
lake (Bergstrom and Forsman, 1973).
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Figure 1.3: HBV model schematization

The basic routines to be characterized cover snow accumulation and snow
melt routine, soil moisture accounting routine, runoff generating routine and
routing procedure Lindstrém et al. (1997).

Snow melt routine The standard snowmelt routine of the HBV model is a
degree-day approach, based on air temperature, with a water holding capa-
city of snow which delays runoff. Melt is further distributed according to the
temperature lapse rate and is modelled differently in forests and open areas. A
threshold temperature, 17T, is used to distinguish rainfall from snowfall.

Soil Moisture Accounting Routine. This routine is the main part controlling the
formation of runoff. It is principally the simulation of the water balance equa-
tion. The actual evapotranspiration is computed as a function of the soil moi-
sture conditions and the potential evapotranspiration (PET[mm/day]). When
the soil moisture exceeds the storage threshold (LP[-]), water evaporates at the
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Table 1.1: Main variables of the HBV model

Variable Description

SF Zone snowfall [mm/t%]

RF Zone rainfall [mm /t]

R Recharge [mm/t)

EA Actual evapotranspiration [mm/t]

EI Interception evaporation [mm/t]

IN Infiltration to soil [mm/t]

FC Maximum soil moisture content [mm)]
LP Limit for potential evapotranspiration -]
SM Soil Moisture [mm]

CFLUX Maximum capilarity flow[mm/t)

UZ Storage in upper response box [mm)]
PERC Maximum percolation rate [mm/t]

LZ Storage in lower response box [mm]
ALPHA Response box parameter -]

K Recession coefficient [t~ 1]

K Recession coefficient [t71]

K, Recession coefficient [t 1]

Qo Outflow from upper response box [mm/t)
Q1 Outflow from lower response box [mm/t]
Q Outflow from transformation function [mm/t)

% is a time unit, can be defined in hours or days

potential rate. At lower soil moisture values a linear relation between the ratio
AET/PET and soil moisture is used. Three parameters namely, 5 , LP, and
FC[mm] control the hydrological processes in this routine as shown in Equa-

tion 1.2 3 controls the contribution to the response function (AQ/ A p) for each

millimetre of rainfall or snowmelt.

2 (s’ o)

e LP is the soil moisture value above which evapotranspiration reaches its
potential value, usually given as a ratio.

e FC [mm] is the maximum soil moisture storage (Field capacity) in the
model. FC is a model parameter and not necessarily equal to measured
values of ‘field capacity’.

e IN[mm/t] is the maximum soil moisture storage in the model.

e R[mm/t] is the recharge.
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e SM [mm)] is the soil moisture storage in the model .

The Runoff Generation and Routing Routines. Once the water balance is establis-
hed for the snow and soil moisture accounting routines the response function
transforms the excess water into runoff and then into a hydrograph. This func-
tion consists of one upper non-linear reservoir, and one lower linear reservoir
and one transformation function. These reservoirs are the origin of the quick
and slow components of the hydrograph, respectively. The response function
is governed by five empirical parameters:

e Ki, K4 and a which are recession parameters
e PERC the percolation capacity of the soil
e MAXBAS which is the parameter of the transformation function which

represents the time base of the resulting hydrograph. The various hydro-
logical processes and the equations governing these processes are presented in
Figure 1.3.

Procedures for model calibration. Model calibration (parameter estimation) in-
volves the automatic and/or manual adjustment of model parameters to mi-
nimize the difference between observed and simulated values. The assessment
of the goodness of fit can be carried out using either subjective or objective
methods. In this study we also used external calibration tools based on more
sophisticated randomized search methods (e.g. Solomatine, 1999).

Performance criteria. Uncertain inputs, model structure and initial conditions
are inherent ingredients in modelling the hydrology of a region (Leavesley et al.,
2002). It is therefore a common practice to develop model performance or
validation criteria in order to test the integrity of the modelling exercise. To
assess the performance of the model for each test a standard set of criteria of
calibration and validation is normally used. The following are some of the most
widely used performance measures.

e The Coefficient of Efficiency, (COE, Nash and Sutcliffe, 1970, Equation
2.4)

e Joint plots of the simulated and observed hydrographs

e Normalized Root Mean Square Error (NRMSE, Equation 2.3)

For this thesis, these error measures and others are explained in chapter 2.
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1.4 Data-driven models

Data driven models are models based on computational intelligence algorithms
that are typically associated with learning from data. They are sometimes
referred to as models that induce causal relationships or patterns between sets
of input and output time series data in the form of a mathematical device, which
in general is not related to the physics of the real world simulation (Solomatine
and Price, 2004).

Application of computational intelligence algorithms, especially artificial
neural networks, to model hydrological behaviour has been actively explored
in recent years (ASCE, 2000a; See and Openshaw, 1999; Solomatine and Dulal,
2003). Most of the results show that such models often outperform in terms
of accuracy other conventional modelling techniques (Brath et al., 2002; Toth
and Brath, 2002; Toth et al., 2000). The well known problem of data driven
models with respect to extrapolation, educed in the training stage, seems to be
solved by the use of an additional physically based or conceptual model that
is, run on a number of events with a high return period and then the results
are used to train a DDM (Hettiarachchi et al., 2005). Additionally, data-driven
approaches have shown to be improved by using model combinations: techni-
ques like mixture of models and committee machines have open new modelling
alternatives to solve highly complex problems. Therefore, they should be seen
as an important alternative to be considered in forecasting hydrological flows,
at one or multiple time steps. However, many practitioners in operational
flow forecasting still have reservations about data-driven models and are more
comfortable with the more traditional conceptual models.

Ideas of integrating various types of models are becoming more and more
popular among researchers, and have gradually become known to practitioners
as well. This new area is promising because the use of computational intelligent
algorithms has been shown to extend the modelling capacities of conventional
models. It is one of the main objectives of this research to show the diffe-
rent options and results on the use of these two methodologies in one single
modelling process.

Hybrid models

Exploration of the use of data-driven models (statistical, and those using the
methods of computational intelligence) in forecasting environmental variables
provides evidence that, for many problems, they could be accurate estimators.
However, the knowledge representation in this type of model is not explicit,
and therefore normally not useful for obtaining information about the ongoing
processes for critical situations. They are based on the analysis of the ma-
thematical relationships between the variables describing the system, whose
behaviour is to be predicted. The data-driven models are also highly depen-
dent on the available data, and are commonly referred to as grey or black box
models. In important characteristic is that their accuracy results can be used
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as reference for hydrological problems (Lischeid and Uhlenbrook, 2003).

Conceptual hydrological and DDM modelling paradigms seem to have com-
plementary features for their joint use in hydrological modelling. However, a
general framework needs to be formulated. In this sense, a number of questions
are to be answered. What are the possible ways to integrate them? What is
the performance of an integrated (hybrid) model? What are the advantages
of integrated (hybrid) modelling approach?. The integration of these model-
ling techniques is not straightforward, and a way forward is undertaken in this
thesis.

The main subject of this thesis relates to the ways of integrating data-
driven models with hydrological knowledge and hydrological models for flow
forecasting. Hybrid modelling is a relatively new concept that emerges from
existing modelling techniques. For this purpose, hydrological flow modelling,
data-driven models and modular models, are reviewed and conceptualized. A

simplified mind map of models and ideas may help in such conceptualization
(Figure 1.4)

Data-driven
models

ANN -

Fuzzy Inference Systems —>
Genetic Programming ——>
Other data learning models —

Committee
Machines

Ensemble models
Mixture of experts ——p

Modular Models ——p

Hybrid models

Others
SWAT

—_
THMS-HBY —>

Process-based
Models

Top-Model R

IHDM —p
SHETRAN ——»

MIKE-SHE e Sugawara Model ——»
NAM - Model —*
Lumped >
Hydrological
yaro'og _ | Conceptual
Physical-based
! Models
models

Figure 1.4: Two branches, data-driven and physical-based modelling, leading to
hybrid models
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1.5 Obijectives of the research

The main objective of this research is to investigate the possibilities and diffe-
rent architectures of integrating hydrological knowledge and models with data-
driven models for the purpose of operational hydrological forecasting, and to
test them in different case studies. The models resulting from such integration
are referred to as hybrid models.

The specific objectives can be summarized as follows:

e Explore the various architectures and develop the framework of hybrid
modelling combining data-driven and process-based hydrological models
in operational hydrological forecasting, especially in the flooding context.

e Further explore, improve and test the principle of modular modelling al-
lowing for building data-driven and hybrid models.

e Further explore, improve and test procedures for optimizing the structure
of data-driven models, including those that work as complementary and
error correction models.

e Evaluate the applicability of modular modelling schemes in other related
problems, like downscaling weather information for hydrological forecas-
ting.

Key research questions

To reach the objectives, different research questions have to be formulated.
The main research question is formulated as follows.

How can the hybrid modelling approach be used in hydrological forecasting,
and what are the modelling architectures to be used for this purpose?

e How can hybrid and modular modelling architectures be classified?

e Are there gains in performance when hybrid models are used in typical
hydrological modelling tasks?

e What are the advantages of including data-driven models in a semi-
distributed process-based model of the large river basin (on an example
of the Meuse basin) in the context of operational forecasting?

e What are the advantages of particular architectures and the optimization
of data-driven, process-based, and hybrid and modular models (including
data-assimilation with error correctors and ensembles)?

e Can the modular modelling approach help in the statistical downscaling
of weather information into predicted precipitation values for use in hy-
drological models at the basin scale?
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1.6 Terminology

The terminology related to hydrological modelling and forecasting is relatively
well established, but one may also observe certain changes in terminology over
time, and certain preferences of various authors and schools. In computational
intelligence the terminology is perhaps less established, and there are many
similar methods that are called differently by different authors.

Committee machines (CM): This term has close meaning to modular mo-
dels, and the two are often interchangeable. A committee machine is a term
originally linked to the use of artificial neural networks. The concept of com-
mittee machines is not new and can be related to the work by Nilsson (1965);
the artificial neural network structure considered by him consisted of a layer
of elementary perceptrons followed by a vote-taking perceptron in the second
layer (Haykin, 1999). In the context of data-driven modelling, it is possible
to classify the CMs (Price et al., 1996; Solomatine, 2005) with respect to the
way the splitting is performed and how subsequently trained models are used
with new input data: only one of them, so-called model mixtures, statistically-
driven; or combination of all of them according to a ensemble averaging scheme
that may involve fuzzy logic.

Delft-FEWS: refers to a general integration tool for flood forecasting develo-
ped over several years at Delft Hydraulics in the Netherlands (now: Deltares).
The main philosophy underlying the software system is to provide an open
architecture, that permits the integration of arbitrary hydrological and river
routing models with meteorological data and numerical weather forecasts. In
its actual form Delft-FEWS constitutes a collection of platform-independent
software modules, linked to a central database. In this study the operational
hydrological forecasting system for the Meuse river basin based on the HBV
model and incorporated into Delft-FEWS was used.

Hydrological forecasting: This is the estimation, or calculation in advance,
of flow conditions based on the analysis of data and the use of models. A
hydrological conceptual model generates a forecast value that represent the
predicted value of the river discharge in the time step used in the calibration
of the model.

Hybrid models: these are composed of models originating from different pa-
radigms or sciences. In this research we will refer to the integration of computa-
tional intelligence (data-driven) and hydrological (physically-based) sciences.

IHMS-HBV or HBV: The Integrated Hydrological Modelling System, is a
semi-distributed conceptual rainfall-runoff model originally developed by the
Swedish Meteorological and Hydrological Institute (SMHI, or IHMS). There
are also other implementations of HBV.

Modular models (MM): A modular model is a model with a structured rep-
resentation of information in a particular domain. A modular model includes
the definitions of modules and links between them, the rules used to build such
model, and how to use it. In the context of data-driven modelling, a DDM (e.g.,
a neural network) is said to be modular if the computation performed by the
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network can be composed into two or more modules (subsystems) that operate
on distinct inputs without communicating with each other. The outputs of the
models are mediated by an integrated unit that is not permitted to feed infor-
mation back to the modules. In particular, the integrating unit both decides
how the outputs of the models should be combined to form the final output,
and determines what modules should learn which training patterns (Osherson
et al., 1990).

Physically-based models (PBM): Are generic equations for flow at a point
with the model space discretized in accordance with the numerical solution of
the equation used (Price, 2009).

Stmulation: This is the imitation of some real thing, state of affairs, or
process. The act of simulating something generally entails representing certain
key characteristics or behaviours of a selected physical or abstract system.

Training or Learning: A computer model or program is said to learn from
experiences E with respect to some class of task T and performance measure
P, if its performance at tasks in T, as measured by P, improves the experience
E (Mitchell, 1997). It is common to speak about training a data-driven model
on some past measured data (representing experience, Mitchell, 1998).

1.7 Outline

The thesis is outlined as follows (Figure 1.5):

e Chapter 1 introduces the context of the research, background and objec-
tives.

e Chapter 2 introduces a classification of hybrid models. This chapter also
covers the description of the different performance measures used in this
thesis.

e Chapter 3 covers the hybrid modelling methodology. These are presented
in three main schemes that are applied to different basins in subsequent
chapters.

e Chapter 4 describes the basic principles and existing problems of defining
the optimal structure and using the data-driven modelling techniques.
Different modelling algorithms are introduced and the procedures used
in chapter 5, 6, 7 and 8 are explained. The results of applying these
techniques on a case study are compared and discussed.

e Chapter 5 covers the implementation of case studies for the modular
modelling techniques presented in Chapter 3. This chapter focuses on the
analysis of the performance of different modular modelling architectures
presented in chapter 3, with applications to catchments in Italy, Nepal
and England. This chapter ends with a discussion of the advantages and
disadvantages of such methodology for operational flow forecasting.
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Chapter 6 presents an application of the developed hybrid modelling me-
thodology to the Meuse basin hydrological forecasting. Procedures allo-
wing for optimal spatial modularization and incorporation of data-driven
models into the semi-distributed IHMS-HBV model are presented.

Chapter 7 presents contrasting use of the parallel (ensembles) and serial
(data assimilation) architectures of hybrid and modular models. Re-
lationship between the forecasting horizon and the choice of modelling
architecture is analysed.

Chapter 8 introduces the application of modular models to downscaling
precipitation information from measurements GCM models into preci-
pitation values to be used in the hydrological models at basin scale. A
case study in Ethiopia is considered.

Chapter 9 presents conclusions and recommendations.

Appendix A explores the transformation from state-space mathematical
representation to an input-output mathematical formulation.

Appendix B describes the main data-driven models algorithms used in
this thesis.

Appendix C presents results from the hourly forecast in the MEUSE using
the Delft-FEWS system.
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CHAPTER
TWO

FRAMEWORK FOR HYBRID MODELING

The importance of exploring hybrid modelling paradigms for flow forecasting
is highlighted in Chapter 1. This chapter defines the theoretical framework for
hybrid modelling and modular models. The main principles of the framework
are based on the classification of the ways different modelling and knowledge
paradigms are merged. The concept of modularization of models, as the most
important concept for hybrid modelling, is defined and developed for its further
application in subsequent chapters.

The criteria used in performance analysis of the different models explored
in this thesis are presented.

2.1 Introduction

Both conceptual and data-driven models have their own advantages, disadvan-
tages and areas of application, so it may be suggested that their combination
in the form of hybrid models may bring certain gains. We cannot say that the
notion of hybrid modelling in hydrology is wide spread, but it has been men-
tioned in several publications in recent years (Abrahart and See, 2002; Anctil
and Tapé, 2004; Corzo and Solomatine, 2006a; de Vos and Rientjes, 2005; Solo-
matine and Price, 2004). Recent and relatively old studies attempt to combine
different modelling paradigms in hydrology.

A data-driven model is built on past data (measurements), and the struc-
ture of the model is fitted through training (calibration). On the other hand,
conceptual and process-based models are based on a consideration of hydro-
logical processes and include generalized parameters that assume a physical
simplification of the overall hydrological system. When these two paradigms
are combined one should think of fitting together a number of concepts and va-
riables that may relate to different areas of science; so a number of assumptions
and simplifications need to be made.

19
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Modelling the notion of a model state (reflecting the states of nature) plays
an important role in the development process. A conceptual tank model can
be mathematically represented using state-space mathematical representations
(Singh and Frevert, 2002). This is explored in appendix A). On the other hand,
data-driven models rarely have interpretable states, and work mainly as input-
output models. Such a concept is useful when analyzing the transformation
from one state to other. These formulations are important for understanding
the principles of the modelling process.

Even when several models belonging to one paradigm are combined, for
example, in an ensemble, there could be methodological problems to resolve.
This concerns the notion of model state, which, when several models with
the same states are combined, becomes undefined since the multiple model
states do not reflect the states of nature any more. When models of different
paradigms are combined in a hybrid model, the situation is even more confusing.
A modeller simply has to live with this “deviation from the theory”, being
compensated by the fact that the resulting model may become more accurate.

This chapter reviews the literature relating to hybrid modelling, explores
the ways in which hybrid models could be built, and suggests a possible clas-
sification of such models.

2.2 General considerations and assumptions

A hybrid model is a relatively new concept in hydrological forecasting. The-
refore, it would be right to try to classify the approaches for integrating the
different models. Classification of hybrid models can be based on a number
of criteria. In this work we have chosen to take into account the following
considerations and assumptions:

e The amount of domain (hydrological) knowledge used to build the mo-
del. The amount or degree of knowledge representation is an abstraction
that needs to be defined. There is a spectrum of possibilities, and for the
purpose of this thesis it is assumed that in the knowledge representation
there are two extremes (data-driven vs. process-based) leading to two
types of models respectively. Figure 2.1 illustrates the difference in “ra-
tio” of data and knowledge in two imaginary models, one being mainly
data-driven, and the other knowledge-driven or process based.Although
there is no clear measure of knowledge representation, the hypothetical
measure depicted here refers to the share of knowledge related to the
physical concepts over the total amount of knowledge.

e Many natural processes allow for partitioning into sub-processes which
can be modelled separately. Each model will then represent a specific
process, time regime or a particular geographical area (e.g. regional phe-
nomenon). These sub-models can be of any type, or they could be a
combination of models of different types.
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Figure 2.1: Hybridization view of physical knowledge to data-oriented modelling
approaches

e Models of various types can be run in parallel, thus forming ensembles.

2.3 Hybrid modelling framework

2.3.1 Classification of hybrid models

Based on the possible relationships of process-based and data-driven models,
it is suggested to consider the following three major classes of models (Table
2.1):

Class 1 (P2D)

This class includes data-driven models or their combinations, with the incor-
porated hydrological knowledge. The following presents some examples and
sub-classes of this class of models.

Modular Models: This concept is based on the idea “to divide and conquer”.
It may be expected, that by dividing the input space into less complex and
more homogenous sub-spaces, data-driven models will perform better (Osher-
son et al., 1990). In order to do this, physically-based concepts can be used
to identify the processes, states and seasonal transitions in the data, or some
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Table 2.1: Classes of hybrid models

Hybrid Class Hybrid model application

Class 1(P2D): Data-driven Modular models: separation of the input-
models with the incorporated space based on hydrological knowledge (re-
hydrological knowledge gimes, process or spatial phenomena).

Hybrid structure: modification of data-driven
model structures (use physical constrains) or
identification of process and regimes from out-
puts (e.g. baseflow, events, others)

Learning process: Modifying the training
process of the data-driven with physical

constrains.

Class 2 (D2P): Process Component model: Use data driven models to
models using data-driven solve complex processes in a physically-based
techniques, or with some model.
components replaced by
DDMs. Knowledge discovery: data classifiers to group

patterns of physical processes.

Class 3 (DPPS): Use of Ensemble: combine the results of both types

data-driven models in parallel of models
(e.g., ensembles) or

sequentially (e.g. data Data assimilation (series): Use the data-driven
assimilation) models to identify systematic errors and cor-
rect them.

partitioning (clustering) techniques can be employed. A number of studies in
this area have been conducted.

e One of the first examples of using modular models in hydrological fore-

casting was done by See and Openshaw (1999, 2000). Their methodology
was based on an input data split as a pre-process for neural network mo-
dels, and then they were integrated by a set of fuzzy rules. The input
used a self-organizing neural network to create a number of clusters. Such
cluster, were visually interpreted as parts of the hydrograph. Finally, out-
put rules were used to combine those clusters. A genetic algorithm was
used to find the best clusters. The potential of using this type of model
is highlighted for real time flow forecasting. However, the classification
performed by the self organizing map may not be adequate for low flow
phenomena.

A semi-blind separation based on wavelet analysis was used by Wang and
Ding (2003). This hybrid approach was tested on short and long term
time series of daily discharge and ground water level data respectively.
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Their results suggest that this approach could increase the forecast accu-
racy and prolong the lead time of the prediction. However, their input
separation results are hardly interpretable. The performance measure
used was the percentage of absolute errors falling in a certain region of
the time series.

Wang et al. (2006) built an autoregressive model of flow forecasting and
used the threshold separation of samples based on empirical formulations.
In this work they also present a cluster based and a periodic separation.
The best performance on multiple lead time steps was obtained by the
periodic neural network (based on fuzzy c-means clustering). However,
their analysis lack of validation and they did not include precipitation
data, which is the main forcing of extreme events.

Jain and Kumar (2007) performed hydrological time series forecasting
based on de-trending and de-seasonalising of time series; they used the
term hybrid neural network.

Many of the modelling approaches to build modular models mentioned

above did show improvements in model performance. Most of these methods
however, use automated methods to identify the sub-processes (regimes) and
typically do not explicitly use hydrological knowledge in the modularization
process.

There are examples of explicit use of hydrologic knowledge in building mo-

dular models:

e A modular model architecture was presented by Zhang and Govindaraju

(2000a,b), who explored the creation of rules for low, medium and high
flow conditions and the use of a soft classification method. This approach
was applied to a monthly prediction of discharge events. The approach
was tested on 180 samples only, and on this small data set the advanta-
ges of using modular neural networks compared with an overall singular
neural network were marginal.

Solomatine and Xue (2004) presented an approach to building modular
rainfall-runoff models where, based on expert judgement encapsulated in
simple rules, input data was partitioned into several subsets, and separate
ANN or M5 model tree models were built for each subset. Building sepa-
rate DDMs for various types of hydrometeorological conditions resulted
in an increased accuracy of the forecasts.

Solomatine and Siek (2006) developed a modification of the M5 model tree
algorithm (Mbflex) allowing an expert to control the process of building
modular piece-wise linear regression models.

Corzo and Solomatine (2007a,b) explored the use of empirical formu-
lations optimized for real time forecasting, which were compared with
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non-empirical (automatic data clustering) methods. The former showed
better accuracy and interpretability, although in multiple-time-steps fore-
cast both of the techniques (empirical and non-empirical) were accurate.
This approach is further explored further in this thesis by applying it to
hourly and daily hydrological rainfall runoff models.

Hybrid structure of a data-driven model: The representation of a data-driven mo-
del can be modified in such a way that some of the components are set up
taking into account some properties of the modelled hydrological process. For
example, as a solution for the phase shift error in forecasting, when antecedent
discharge values were the only inputs to forecast present discharge, a hybrid
model was proposed by Varoonchotikul (2003). The proposed method was
oriented to suppress the error of a ANN rainfall-runoff model based on the
First Difference Transfer Function (FDTF: Duband et al. (1993)). The FTDF
is developed from the unit hydrograph and provides an initial forecast of the
future discharge which is then used as another input to the ANN.

For the shift errors other approaches, based on a time window error measure
that is used to weight the objective function of a genetic algorithm optimization
method, have been explored (Abrahart et al., 2007; de Vos and Rientjes, 2005,
2007).

The work by See and Openshaw (2000) mentioned above could also be inter-
preted as a hybrid structure. The four different approaches used for integrating
conventional and data-driven based forecasting models provide a hybridized so-
lution to the continuous river level and flood prediction problem. Although, all
models were data-driven models, the best integrated solution was fuzzy system
based on expert hydrological knowledge.

Additional information included in the learning process: The accuracy of DDM can
be sometimes increased if additional domain knowledge (hydrological informa-
tion) or specially arranged data is included in the process of model learning;
however, few applications in hydrology can be found in the literature. Some
examples can be mentioned:

e A multiple hybrid modelling approach was made by Hu et al. (2005), using
explicit integration of hydrological prior knowledge into the learning pro-
cess of a neural network. The knowledge used was the degree of wetness,
which affects the runoff generated. The wetness of the catchment used
the antecedent index of precipitation as an indicator. This parameter was
included in the objective function, and a genetic algorithm was used for
its optimization. The results show that on six out of the seven conside-
red watersheds, the performance of the resulting model was higher than
that of the overall singular neural network. The high variability in the
performance of different models was demonstrated as well.

e In order to improve the extrapolation capacities of the neural networks for
the modelling of rainfall-runoff it is possible to include extreme events.
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This approach was made by Hettiarachchi et al. (2005), they used an
estimate of an extreme flood event as input in the training process. The
results show a good improvement on the extrapolation capacities.

Class 2 (D2P)

This class includes hydrological process models that either make use of the
data-driven (machine learning) techniques, or have some components replaced
by DDMs. The following presents some examples and sub-classes of this class
of models.

DDMs as component models:  Data-driven models are used to represent complex
processes in physically-based modelling. An application of this can be found in
the approach reported by Chen and Adams (2006), which is ideologically close
to what was always the plan for this study also for predictive modelling (see
Chapter 6), where data-driven models are used to replace some basin models
in semi-distributed models. Their approach explores spatial modularization
of conceptual hydrological models in combination with different data-driven
models. The work presented by Kamp and Savenije (2007) is another example
where DDM-based components are used to simplify the otherwise challenging
integration of hydrological models.

Knowledge discovery by DDMs: In spite of the fact that ANN models are of-
ten treated as black boxes, exploring their internal behaviour may change this
perception. Therefore some researchers try to discover the inherent hydrolo-
gical knowledge by analysing the internal structures and behaviour of ANN
models (Shamseldin et al., 2005; Sudheer, 2005; Sudheer et al., 2002; Wilby
et al., 2003). These approaches have been undertaken by exploring relations-
hips (correlation and regressions) between conceptual or process-based hydro-
logical model parameters and data-driven models. Some of their results have
shown that it is possible to identify hidden nodes (neurons) that in fact re-
present the low and high flow conditions. It is important to stress that after
knowledge is identified in the data-driven model, it is possible to modify the in-
ternal structure to fit the hydrological conceptualization (Kingston et al., 2006;
Sudheer and Jain, 2004). Kingston et al. (2006) presented a framework that
contemplated uncertainty associated with the ANN weight vectors. However,
few attempts have been made to analyse the results in terms of the physical
phenomena itself (Pan and Wang, 2005).

Aside of this, clustering of data to identify physical knowledge or to find new
patterns and physical concepts is a common approach to knowledge discovery
(data-mining). Lauzon et al. (2006) used clustering of rain gauges created by
Kohonen networks (Kohonen, 1982) to regionalize precipitation and improve
ANN models.
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Class 3 (DPPS)

Yet another way to look at the modelling set-up is to distinguish parallel and
serial (sequential) operation of models. By “parallel” we mean that two or more
models operate providing a solution for the same problem, and this architecture
is typically referred to as an ensemble. In the serial set-up, two schemes are
commonly used: (a) an “aid” model feeds information into another model
(e.g. to update its states), and (b) one model corrects the output of another
one (error-correcting schemes). In fact, in many operational flow forecasting
systems, based on hydrological models, the serial set-up is implemented in
the form of data assimilation for updating the model internal states and/or
correcting its outputs.

Ensembles: These are defined as the combination of several different models
responsible for the whole process under question. Commonly, in a forecast en-
semble a number of models are constructed and their outputs are integrated
(e.g. weighted averaged). Several authors presented and tested such an appro-
ach in hydrological forecasting. Abrahart and See (2002) performed a compre-
hensive study comparing six alternative methods to combine data-driven and
physically-based hydrological models. Georgakakos and Krzysztofowicz (2001)
analysed the advantages of multi-model ensembles where each model is a hy-
drological distributed model with the same structure but different parameters.
The hybrid approach done by See and Openshaw (2000), used a fuzzy rule-
based system and ARMA models in an ensemble using several averaging and
Bayesian methods. Xiong et al. (2001) used a nonlinear combination of the
forecasts of rainfall-runoff models using fuzzy logic.

For a hybrid ensemble concept different paradigms should be integrated,
namely data-driven and conceptual, process-based or physically based mo-
dels. A relatively recent practice explored in FLOODRELIEF project (http:
//projects.dhi.dk/floodrelief) (see, e.g., Butts et al., 2004b) is to follow
the success of ensemble modelling in meteorology and other applications, and
to use them in hydrological modelling as well, with the objective of reducing
the output variance (uncertainty). Ensembles are researched to assess the un-
certainty of individual members of the ensemble.

Some other examples of using hybrid ensemble schemes are presented below:

e Shamseldin and O’Connor (1999), introduced a combining scheme based
on a linear transfer function and a weighted average method. Soil Moi-
sture Accounting and Routing model (SMAR) and two data-driven mo-
dels (linear perturbation model-LPM and Linearly Varying (LV) variable
gain factor model) were integrated. The authors reported an improve-
ment in the performance of the operational flow forecasting.

e Georgakakos et al. (2004) demonstrated that even simple ensemble models
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provide improvement over single modelling techniques. These authors
used only simple and weighted averaging ensemble for physical based and
process based models. The results show that the ensembles perform bet-
ter than single models, and that both ensemble techniques have similar
performance. Many researches have been making similar conclusions and
reported minor differences in the performance of some ensemble techni-
ques (Young-Oh et al., 2006).

e During the last several years the ensemble-based approach was used
more and more to identify the uncertainty bounds of hydrological mo-
dels (Butts et al., 2004a; Carpenter and Georgakakos, 2004; Georgakakos
et al., 2004; Kim et al., 2006).

It is a common practice in complex problems to use an ensemble or a com-
bination of models that lead to a reduction in the error variance. Although
these techniques are commonly used, most of the research focuses only on one
modelling paradigm, without considering if a simple integration of data-driven
models or with a conceptual model may already lead to an increase in perfor-
mance. This situation becomes more important when not only a simulation
of a fixed time step is performed, but multiple-time-step forecasts are made.
Therefore, this hybrid concept is explored by comparing a conceptual model
with different combinations of models and with error corrector schemes. The
comparison of different parallel and series setup is presented in Chapter 7 of
this thesis.

Data assimilation: This is a model updating technique where the complemen-
tary models (DDM can be used as well) are used to identify systematic errors
and/or state variations, and then correct them. Data assimilation has been
extensively explored in different areas and from different perspectives. In ge-
neral, data assimilation procedures have been classified by the WMO based on
the variables that are modified in the feedback of the updating procedure.

e Different authors vary in quantifying the performance gains of different
data assimilation techniques (Babovic and Fuhrman, 2002; Broersen and
Weerts, 2005; Madsen and Skotner, 2005; Weerts and El Serafy, 2006).
Madsen et al. (2000) compared global linear autoregressive models with
artificial neural networks and genetic programming. Their results showed
that the ANN error corrector was similar in performance to the AR mo-
dels. However, the best performance is commonly obtained by the Ensem-
ble Kalman filter and artificial neural networks, with a small difference
between them. In chapter 7, a comparative analysis of the performance
between the original hydrological process based model, the data-driven
mode, and their comparison with a data assimilation technique is made.
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2.3.2 Relationships between model classes

On the basis of the presented classification, of the approaches to hybrid model-
ling, it is possible to make a diagram (Figure 2.2) with the interrelationships
between some of the methods and theories related to hybrid modelling and flow
forecasting.

In Figure 2.2 we see the two starting points indicating the ways of how the
different modelling paradigms can be organized. In this diagram data-driven
modelling combinations and hydrological modelling techniques are the basis
of the hybrid modelling. From the data-driven point of view ensembles and
models seem to be the logical approaches to contemplate the combinations of
modelling paradigms.

The arrows, starting from square 1 and 2, show the different possible in-
tegrations using single data-drive and hydrological models. In this context all
the classes presented in previous section could be developed with the different
modular and ensemble approaches presented.

2.4 Committee machines and modular models

The notion of a modular model (but not a hybrid one) is similar to the defi-
nition of a committee machine (Haykin 1999), see Figure 2.3. The committee
machine concept is broad and covers multiple machine learning approaches
like modular models, mixture of experts, ensembles and others. The modular
model approach has been shown to be useful in representing real-life situati-
ons, and/or addresses independent and local problems (Auda and Kamel, 1998;
Ronco and Gawthrop, 1995; Zhang and Govindaraju, 2000a).

CM is a term originally associated with artificial neural networks. The trai-
ning and operation of committee machines is illustrated in Figure 2.3. The
input data u, at time ¢, pass through a split unit (S, gate) which makes a selec-
tion or separation of the data. A model is built for each selected or separated
data stream (f;), which will be integrated in a final module (I). This module
is a unit that combines the values based on the separation or selection done in
the split unit. The training process of such a model, as in any computational
intelligent method, involves the feedback of the error through different models
and then to their parameters.

It is possible to classify the CMs with respect to the way the splitting is
performed (Solomatine, 2006):

e hard splitting followed by training multiple models, of which only one is
used to predict the output for a new input vector;

e hard splitting followed by training modular models whose outputs are
integrated by ”soft” weighting scheme (leading, for example, to ”fuzzy
committees”);

e statistically-driven soft splitting, used in mixtures and boosting schemes
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Figure 2.2: Hybrid flow forecasting models in a data-driven modelling framework

e no-split option leading to a collation of models; these are trained on the
whole training set and their outputs are integrated using a weighting

scheme where the model weights typically depend on model accuracy.

It can be seen that the approach taken in building committee machines
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Figure 2.3: General scheme of a committee machine model

follows the principle of modularity, so these notions are often used interchan-
gingly.

2.5 Measuring model performance

Models performance (typically associated with its accuracy, but sometimes also
with reliability) can be measured in many different ways, and in hydrology
a number of traditionally accepted measure are used. In hybrid modelling
of natural processes there could be situations not handled properly by the
traditional model performance measures accepted in hydrology. For example,
in data-driven models it is common to find unfeasible physical results, i.e.
negative values of the forecast, and this has to be handled by the performance
measures. Sometimes in overall measures of error, the improvement on peaks
accuracy may be hidden by high or continuous errors on low flow regions; so
the use of the average performance may be misleading.

In this section several model performance measures are described; most of
them are indeed widely used, like traditional statistical measures, and the use
of an absolute error formulations, but also forecasting probabilistic errors are
presented. The reason to use this or that error measure are discussed.

Error analysis techniques

Standard performance measures make overall assessments of the model per-
formance. Each one has its advantages and disadvantages for performance
assessment, and there is no universal agreement on what is the best measure
for the calibration of a flow model. Two types of measures can be found in the
different research of flow forecasting, one is based on standard statistical overall
measures and the second one is the probabilistic overall error measures used in
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operational forecasting. Therefore a selected number of these are discussed in
the following paragraph.

Statistical performance measure

A convention on the training of ANN models is the use of mean square error
(MSE). To reduce the influence of the squared error information in the mea-
sure, the root of MSE is most commonly used (RMSE m?/s, equation 2.1).
This measure punishes large deviation, found often at high flows (peak flows),
so when assessing the performance bias or shape may not be explicitly contem-
plated. This assessment could show that one model is better than other, but
may have inaccurate results for low measurement values (low flows).

RMSE — /252 (2.1)
n

n
SSE = Z (Qsim,t - Qobs,t)2 (22)
t=1

where Q.ps(m?/s) is the values of the observed discharge and Q;,, (m?/s)
is the estimated discharge from the model. Equation 2.1 is used to answer what
is the average magnitude of the forecast errors.

Sometimes it is important to compare two time series using a reference of
statistical properties of measurements. Therefore, here we use root relative
squared error (Witten and Frank, 2000), which compares the root square of
the mean of squared errors with the standard deviation of measurement. This
means that we can see if the average errors are outside of the standard deviation
of measurements. This measure is sometimes expressed as percentage, so a
value of 100% means that the RMSE is in the bound of the standard deviation.
If the errors are much higher than these bound values the root relative squared
error will be above 100%. In this sense the root relative error is a Normalized
Root Mean Square, term used in this thesis (NRMSE, equation 2.3).

SSE
n

NRMSE = ——
OQobs

where the og_, refers to the standard deviation of the observed discharge.

In hydrological sciences it is common to find what could be a variation of an
error measure. The coefficient of efficiency (CoE, equation 2.4) is a normalized
error measure that can be expressed as one minus n times the RMSE over
standard deviation. The measure can be negative for very bad models, and the
perfect model has CoE=1.

(2.3)

CoE =1 — VoSE (2.4)
1

\/tz (Qobs,t - C}obs,t)2
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Zn: Qobs,t
@obs = = (25)

n

Different authors point that this error measure needs to be complemented to
have a measure of how much is the volume of water overestimated or underesti-
mated. For this the relative volume error (Vg, Equation 2.6) is incorporated in
the calibration of some hydrological conceptual or process-based models (e.g.
R-Criterion used in the HBV model).

M=

(Qobs,t - Qsim,t)
Vg = = (2.6)

n
Z Qobs,t
t=1

The mentioned measures can be combined. For example, the developers of
the HBV model propose the following aggregated error to be minimized.

Rv :COE—UJ“/E‘ (2.7)

Where Rv is the Relative criterion based on Coefficient of Efficiency (Nash-
Sutcliffe Coefficient), and w is a weighting, generally taken as 0.1 (Lindstrom
et al., 1997).

Naive based error analysis The persistence index (PERS) focuses on the relati-
onship of the model performance and the performance of the naive (no-change)
model which assumes that the forecast at each time step is equal to the current
value (Kitanidis and Bras, 1980):

SSE
SSEnaive = Z (Qobs,t—i—L - Qobs,t)2 (29)
t=1

SSE,qive is a scaling factor based on the performance of the nalve model;
Qsim,t is the DDM forecast or a process-based model simulation of the next
time step, Qops,+ is the observed discharge at time ¢ where ¢t = 1,2,,n; L is the
lead time (L =1 for one day ahead forecast); and n is the number of steps for
which the model error is to be calculated. A value of PERS < 0 means that
the considered model is less worthy than the naive model (i.e. it is degrading
the provided information) while 0 <PERS < 1 indicates that the considered
model is better than the nave model (where the closer to 1 the better). Lauzon
et al. (2006) suggest using PERS in cases when the discharge forecast is made
on the basis of previous values.
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Relative error analysis

Absolute error measures provide an equal weighted measure of the errors, so
small error will have the same importance in the error formulation. The use of
a relative error (RE) as an additional error measure is justified by the following.
If RMSE or CoE are used, the same error value may be considered to be high
in the low flow season and relatively low for the high flow season. One solution
could be to weigh the error values differently for different seasons, but such an
approach will still depend on the objective identification of the low and high
flow regions. Another solution is to use RE, which automatically takes into
account the value of the measured variable, so that a value of RE corresponding
to large absolute errors in the case of low flows is large while it will be relatively
lower in the case of high flows (Figure 2.4).
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Figure 2.4: Relative errors found in the rainfall-runoff ANN model of the Bagmati
catchment in Nepal

In this study an overall RE (Equation 2.10) is used to identify the percen-
tage of samples belonging to one of three groups: “low relative error” with RE
less than 15%, “medium error” with RE between 15 and 35%, and “high er-
ror” with RE higher than 35%. The ranges were determined after experiments
with the two trial models. The low error value is expected to cover possible
measurement errors that could be around 20% (Beven, 2003).
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RE, = MlOO% (2.10)

Qobs,t

Forecast performance measures

Most of the previously mentioned statistical performance measures reveal in-
formation about the following characteristics of the generated forecast:

e Bias - the correspondence between the mean forecast and mean observa-
tion.

e Association - the strength of the linear relationship between the fore-
casts and observations (often analysed by the correlation analysis of the
outputs)

e Accuracy - the level of agreement between the forecast and the truth (as
represented by observations). The difference between the forecast and the
observation is the error. The lower the errors, the greater the accuracy.

However, in operational forecasting it is more common to look at critical
results that are defined by a threshold. In this sense in meteorological science
it is common to use a measure based on what is called a skill. The skill is a
relative measure of the accuracy of the forecast over some reference forecast.
This error measures can be seen as a probability of hitting or missing certain
target or threshold (Table 2.2). For this a contingency table is built on the
basis of the number of occurrences and non-occurrences.

Table 2.2: Contingency table

Observed
Yes No Total
Forecast Yes Hits (H7) False alarms (Fa) Forecast yes
No | Misses (Mi) Correct negatives (CoN) | Forecast no
Total Observed yes Observed no Total To

The total numbers of observed and forecast are classified as hits or missed
values, i.e. occurrence of an event, or non-occurrence. Forecast is perfect if
hits are found and there are no misses or false alarms.

To analyse the overall results it is important to know what fraction of the
forecasts is correct. This accuracy value will vary from 0 to 1, and can be
calculated as shown in Equation 2.11. This measure has a drawback, since it
is heavily influenced by the most common category, usually "no event” in the
case of rare precipitation events or floods.

Hi+ CoN

T (2.11)

Accuracy =
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The Bias can be calculated by determining the ratio of forecast yes (false
alarm and hits), compared to the observed yes (hits+misses), Equation 2.12.
This rate value varies from 0 to infinity, with a perfect forecast in 1. If BIAS<1
we have underforecast, and if BIAS>1 overforecast events. The bias does not
measure how well the forecast corresponds to the observations, if only measures
relative frequencies.

B Hi+ Fa
" Hi+ Mi

The most common measure is the probability of detecting (POD) an event
(Exceeding of a threshold, Table 2.2), which in flow forecasting is a flood,
Equation 2.13. For this the table should answer “What fraction of the observed
“yes” events were correctly forecast?” This measure has perfect forecast when
with a value of 1. However, as it can be seen, it is only sensitive to hits, and
ignores false alarms.

Bias (2.12)

Hi
- Hi+ Mi
The probability of detection needs to be combined with it opposite situation
of failure (Equation 2.14. The false alarm ratio “What fraction of the predicted
“yes” events actually did not occur?”. As the POD, the FAR goes from 0 to 1
and it is complementary in the sense that it ignores the misses.

POD (2.13)

Fa

FAR = ———
Hi+ Fa

(2.14)

2.6 Discussion and conclusions

Recently a number of modelling approaches, including hydrological conceptual
and data-driven models, have been explored. It raised the need to have better
methods for their integration. The importance of the awareness of modelling
approaches and available tools is becoming an issue for new researchers in
this area. This chapter introduced a classification of hybrid models, with the
objective to group and generalize methods for integration. The description of
each class is done by referring to example modelling approaches that fit into
the classification scheme presented.

The reviewed literature presents a number of successful examples of using
various modular and hybrid approaches. Although the reported efforts al-
ready show the advantages of these techniques in hydrological forecasting, we
hardly could find attempts to classify these approaches, and consider them in
a more-or-less general framework. Most of these techniques seem to be appea-
ring through interpretation of advantages (higher accuracy) over a benchmark
model, not from a perspective of comparing modelling paradigms.

A general framework of different modelling alternatives is presented to com-
plement the developed classification of hybrid models. The framework is the
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basis for different ways of integrating hydrological conceptual or process-based
models and data-driven models. It could be said that this framework can be
the starting point for assessing relevant and non-relevant modelling approa-
ches. Having an overall concept of different modelling approaches and their
possible interactions may help on the formulation of new optimal hybrid mo-
dels. However, the framework presented is not complete; it will certainly evolve
and grow.

The notions and methods related to committee machine and modular mo-
dels have been introduced and will serve as the basis for hybrid modelling in
this thesis. The novelty of the approaches presented in the following chap-
ters is the use of simple hydrological empirical data separation techniques that
challenges single-model approach, and automatic clustering algorithms. Other
ways to integrate models integrations will be evaluated and their advantages
in terms of knowledge representation will be discussed.



CHAPTER
THREE

OPTIMAL MODULARIZATION OF DATA-DRIVEN
MODELS

In the previous chapter, the modularization of data-driven models in the con-
text of hybrid modelling was introduced. Different modular models were re-
viewed and it was observed that often there is insufficient use of hydrological
knowledge in the modularization process. Therefore, in this chapter we explore
alternative methods for building modular models that are based on the expli-
cit use of hydrological knowledge (in particular, separate consideration of base-
and excess flow), and also use data partitioning algorithms. The developed mo-
delling techniques will be applied in Chapter 5, where they will be compared
with a single overall data-driven model, and with conceptual models. Applica-
tion of the principle of modularization to separate modelling of processes that
relate to different areas in space is considered here as well; it is further applied
in Chapter 6. There is also a possibility of multi-objective optimization of a
model involving various modularization schemes, and this will be mentioned
as well (however not explored). This chapter is to a large extent based on the
methodology published by Corzo and Solomatine (2007a,b) and Corzo et al.
(2009a).

3.1 Introduction

Traditionally, modellers were, and often still are, trying to build a general,
all-encompassing model of a studied natural phenomenon. Hydrological fore-
casting models that involve the use of data-driven techniques are not exceptions
in this sense: they tend to be developed on the basis of using a comprehensive
(global) model that covers all the processes in a basin (Abrahart and See, 2000,
2002; ASCE, 2000a,b; Dawson et al., 2002; Dibike and Abbott, 1999; Dibike
and Solomatine, 2001). Such models (very often these are artificial neural net-
works, ANN) do not encapsulate the knowledge that experts may have about

37
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the studied system, and in some cases suffer from low accuracy in extrapola-
tion. In many applications of data-driven models, the hydrological knowledge
is “ embedded ” in the model via the proper analysis of the input/output struc-
ture and choice of adequate input variables (Bowden et al., 2005a). However,
much more can be done to incorporate domain knowledge into these models,
as mentioned in Chapter 2.

One of the ways of doing this is to try to discover different physically inter-
pretable regimes of a modelled process (or sub-processes), and to build separate
specialized (“local”) models for each of them, either process (physically-based)
models, or data-driven ones. Such an approach is seen as one of the ways of
including hydrological knowledge and improving the model’s performance. In
order to combine the local models one may refer to the methods developed in
machine learning (Haykin, 1999; Kuncheva, 2004), and, possibly, to combine
them, like it is done in the so-called fuzzy committee approach (Solomatine,
2006; Solomatine and Corzo, 2006). In this latter paper we also presented one
possible classification of modular models.

Lately, a number of studies were reported where such an approach was un-
dertaken (often being named differently, however). Solomatine and Xue (2004)
applied an approach where separate ANN and M5 model-tree basin models
were built for various hydrological regimes (identified on the basis of hydrolo-
gical domain knowledge). Anctil and Tapé (2004) applied wavelet and Fourier
transforms to the identification of high and low flows based on their frequency
patterns. Some attempts have been made to find correlations between ANN
components and processes in a conceptual model (Wilby et al., 2003). Solo-
matine and Siek (2006) presented the Mbflex algorithm where a domain expert
(e.g., a hydrologist) is given more freedom in influencing the process of building
a machine learning model. Mitchell (1998) used a combination of ANNs for fo-
recasting daily streamflow: different networks were trained on the data subsets
determined by applying either a threshold discharge value, or clustering in the
space of inputs (several lagged discharges, but no rainfall data, however). Jain
and Srinivasulu (2006); Wang (2006) also applied decomposition of the flow
hydrograph by a certain threshold value and then built separate ANNs for low
and high flow regimes.

All the previous mentioned studies demonstrated the higher accuracy of the
modular models approach when compared to the models built to represent all
possible regimes of the modelled system (such models are referred to herein
as global models). However, in terms of contemplating the physical principles,
more can be done.

If we want to follow the idea of a modular approach, there is the possibility
to take a somewhat deeper view of the underlying sub-processes to be modelled
for accurate flow forecasting. In river basin modelling, a typical approach would
be to identify baseflow and the direct runoff (also called excess runoff or excess
flow). Such an approach was described by (Solomatine and Corzo, 2006), the
present study develops it further.

The main idea used here is to use specialized algorithms for the hydrograph
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analysis to separate baseflow from excess flow, form training data sets and build
local ANN-based models for each component. The focus is on optimization
of the model structures, and of the parameters of the data separation and
combination algorithms.

3.2 Methodology of modular modelling

The problem of hydrological modelling of a basin considered in this thesis is
characterized by precipitation and discharge measured at different moments
in time in the past (which can be seen as multivariate time series), and the
response of the river basin represented by the forecast of the discharge (flow)
hours or days ahead. This can be expressed as follows:

Qtyr = f(Rt, Re—1, Re—o... Re— 1, Qe Qi—n1) (3.1)

where Q7 is the discharge in m3/s, R is rainfall in mm and ¢ the actual
time where the forecast is made, the lags L for precipitation and M for discharge
are obtained through model optimization (these can be different for various
forecast horizons T ); f is the data-driven regression model, and T is the
forecast horizon (e.g. 1 day according to the available data).

A general structure of a modular model is shown in Figure 3.1, where each
specialized (local) model would represent one sub-process or regime. In com-
putational intelligence, the overall model is often called a committee machine
(Haykin, 1999).

Specialized
models
Allocation of Qs
inputs vectors » Modell ———
U I
7 Classifier Q,
Model2 | — >

» ModeIN | Qn

Figure 3.1: A modular model based on local specialized models
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A modular model, as any other DDM, undergoes the normal training, vali-
dation and testing (operation) stages. However, due to the existence of several
model components, a modular model also has an additional element — a clas-
sifier (Figure 3.1) that during operation (testing) would attribute data to one
or more models. T'wo phases of the process can be distinguished. First, the
classifier should be built (Figure 3.2) and trained, and second, it will be used
to allocate input vectors to models during operation (testing) phase. In dif-
ferent versions of modular models either all models are run (forming thus an
ensemble, or a committee), or only one of them. Depending on this, outputs of
the models are either combined (using some averaging or weighting scheme),
or only the output of the single activated model is used as the model output.

Specialized
models
cl : Label
Allocation of o ass
inputs
Data Label
separation » Class 2 »>
process
Label
» ClassN | —— o
»/  Classifier Z

Figure 3.2: A modular model based on local specialized models

As mentioned before, the main idea used for modularization considered in
this chapter is based on baseflow separation (Figure 3.3): instead of building
one model responsible for representing the water flow for all regimes, two models
are built. One model simulates the baseflow, and the other one simulates
the direct runoff or the total flow. These two models work sequentially or in
parallel.

A conventional engineering approach to find the baseflow is to generate and
hydrograph and make a geometrical division as presented in Figure 3.3. It can
be said that before time moment ¢, the hydrograph consists only of baseflow;
between t5 and t, the baseflow and direct runoff together form the the total
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Figure 3.3: Flow separation used to build local specialized models (ts = beginning of
storm, t, = beginning of recession).

flow; after that the flow reaches a baseflow condition again. Although this is a
quite old formulation, and it is well known that multiple flow components from
different soil layers and other phenomena compose this curve, the principle
is still universally valid. This can be interpreted in a more general way and
assumed that the water system has two states: the low flow state (baseflow),
and the high flow state.

Even though the baseflow formulation presented for the hydrograph analysis
is simple, the problem here is to find the moments when the flow regime changes
from low flow (baseflow only) to the regime where high flow (direct runoff +
baseflow) is present as well. The graphical formulation need to be encoded into
mathematical representations of the behaviour of the hydrograph. Also, in a
more general sense the detection of changes in state of a highly variable system
is still an ongoing issue in many areas (e.g. Valdés and Bonhjam-Carter, 2005).

There are various ways to partition the data into blocks to be used to train
different models. In this chapter, when considering the separate modelling of
low and high flow we will be using three ways of doing partitioning: 1) based
on clustering, 2) based on identification of sub-processes as a result of hydro-
logical analysis (referred to as “process-based”), and 3) based on separation of
the processes in time using a filtering algorithm (which, strictly speaking may
be seen as a simplified version of the process-based partitioning). We follow
the definitions of baseflow given by Hall and Anderson (2002) for time-based
separation, and by Chapman (2003, 1999) for process-based separation. Note
that there are also other interpretations of how to define the baseflow (Beven,
2003; Uhlenbrook et al., 2002).
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3.3 Modularization using clustering (MM1)

This modular scheme is based on the application of a clustering algorithm to
the vectors (instances) in the space of input variables. The modular models
are trained as shown in Figure 3.4. The clustering process returns the index of
the vectors (I) for each class (Cy). We used a k-means algorithm to identify
two clusters, and conducted a number of experiments to identify best distance
metric for the clustering scheme. In this thesis three different distance metrics
are tested: cityblock (the sum of the absolute differences), Euclidean, and
cosine (distance is one minus cosine of the included angle between points).

a[ B s

Error

Measured
discharges

Clustering G
Input vector | (€-9- K-means)

Error
Analysis

i 9e>
7c Ie > Model 2 (M2)
1 2 '

=I Time index vector |

Figure 3.4: Modular model with a classifier trained on the data from clustering by
k-means method

Training a classifier for data separation (LC-S): To use the resulting model, a learning
algorithm has to be applied to build a classifier that would classify the new
examples according to the clusters identified by the k-means algorithm. For
this purpose the following classification algorithms were explored:

e Fisher’s linear discriminant. It is a classical classification method (Duda,
1996) that projects high-dimensional data onto a line and performs classi-
fication in this one-dimensional space. The projection maximizes the dis-
tance between the means of the two classes while minimizing the variance
within each class. This defines the Fisher criterion, which is maximized
over all linear projections. Maximizing this criterion yields a closed form
solution that involves the inverse of a covariance-like matrix.

e Decision trees (DT) or regression trees (RT). The important feature of
these classifiers is that they can be easily interpreted by human experts
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since they are actually represented as sets of if-then-else rules. The al-
gorithm to build regression trees proposed by Breiman et al. (1984) is
a regression algorithm in which the input space is progressively partiti-
oned into subsets by hyperplanes z; = A (where z; is one of the model
inputs, and i and A are chosen by exhaustive search and criteria based
on maximisation of information at each split).

A leaf in such a regression tree is associated with an average output value
of the instances sorted down to it (zero-order model). In the considered
classification problem there are only two classes (labelled as “baseflow”
and “non-baseflow”) so data for training RT had to undergo transforma-
tion, and during the operation its output has to be converted to a class
label. RT appeared to be an accurate classifier.

e Probabilistic Neural Networks (PNN). The approach taken in this method
follows in general Bayesian theory, and uses Parzen Estimators (Parzen,
1962) to construct the prior probability density functions. Details can be
found in Specht (1990) and Duda (1996). Data to train PNN has to be
transformed in a way similar to the one described for RT above.
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Figure 3.5: K-means clustering results for the precipitation and discharge time series
from 1 Jan 1989 to 28 dec 1995 (Ourthe river basin, Belgium)
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Under certain assumptions or conditions, the use of a clustering technique
can be interpreted as an automatic identification of the ongoing regimes (Geva,
1999). There is no guarantee, of course, that a direct relationship between
clusters and identifiable hydrological regimes would be discovered (Figure 3.6).
The clustering methodology is just taken as a typical example of automatic
separation methods for modular models. Clustering-related experiments should
be seen as a demonstration of a possibility of such an approach.
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Figure 3.6: Fragment of the hourly hydrograph with a cluster-based separation (Sieve
case study)

Standard k—means algorithm (Spath, 1985) was used to find groups of
input vectors of discharge and precipitation. This algorithm is based on a two-
phase iterative process, which minimizes the sum of point-to-centroid distances,
summed over a number of clusters (k). At each iteration, points are assigned
to their nearest cluster centre (chosen randomly at the very first iteration),
followed by recalculation of cluster centres. The number of clusters has to be
chosen a priori.

There is a wide variety of distance metrics to be used and for the purpose
of this study the city-block (Manhattan) was selected. The errors of the mo-
dels built using several distance metrics were compared and Manhattan metric
appeared to result in the lowest error. The distance metric used to build the
cluster can be described as follows. Given an (mn) data matrix X, the various
distances between the vector z,. (r = row) and z, (s = col) are:
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n

drs = Z ‘JJT]‘ — $Sj| (32)

Jj=1

Note that a separate classifier for data splitting has to be built to serve
as a splitting unit during operation (Equation 3.2); its purpose is to attribute
new examples to an appropriate model. The training data for such a classifier
is constructed in the following way: the input data are the same as the input
data for models ANN model (M1) and (M2), and the output data are the class
labels corresponding to the identified clusters (Figure 3.2 and Figure 3.4).

The result of applying the described procedure is a model termed as MM1
consisting of:

a. ANN model 1 and ANN model 2 representing low flows and total flow
respectively, and trained separately on the data subsets corresponding to
the identified clusters;

b. Classification model for data separation during operation or testing (re-
ferred on Figure 3.4 as LC-S).

3.4 Modularization using sub-process identification (MM2)

Instead of grouping the input vectors, one may explicitly use hydrological do-
main knowledge to partition the data into groups that would be modelled se-
parately. The flow of water through the basin is heterogeneous, follows various
routes and, in hydrological analysis, and it is often right to talk about the ba-
seflow and the direct runoff (Hall, 1968; McCuen, 1998). Classical hydrograph
baseflow separation analysis is in fact a graphical semi-empirical technique that
splits the discharge values based on the measurement of discharge and preci-
pitation (Fig. 3.3). In it, the values ¢ and ¢, of flow during the multiple
storms are found, and the starting (¢5) and ending (¢;) of a storm phenomenon
are identified.

The traditional “constant slope” method (McCuen, 1998) is manual: the
beginning of the storm is identified as the point where the discharge is mini-
mum, and the end of the storm corresponds to an inflection point. These two
points are connected thus determining the sought baseflow area, and the slope
of this line is recorded. Recently a number of other, simpler, methods have
been introduced (Engel and Kyoung, 2005; Sloto and Cruise, 1996). However,
in the MM2 scheme the “constant slope” method is used as the main foun-
dation for building the separation algorithm. However, a modification that
allowed for an easier algorithmic implementation was used: instead of looking
for a hydrograph minimum, it is based only on the identified inflection points.
To connect to the point where the direct flow finishes, a linear interpolation
can be drawn from one inflection point to an inflection point at the end of the
storm period (instead of connecting the minimum to an inflection point). The
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resulting line was found to be almost the same as the one identified by the
traditional manual method (Figure 3.7).
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Figure 3.7: Baseflow separation results with the inflection points implementation

Algorithmic implementation The accurate determination of the inflection point
by analysing the time series derivative estimates requires analysis of the com-
plete event. Due to the high variability of data in a typical hydrological time
series, the implementation of this method is not straightforward since there are
too many inflection points even in short time intervals. One way to resolve
this is smoothing of the time series and then identifying the inflection points
by analysing the second derivatives. However, in our experiments such analysis
still result in finding many inflection points, and it is necessary to focus only
on those that correspond to the beginning and ending of an event.

To remove such “false” points, it was chosen to apply the method presented
by Sloto and Cruise (1996) (who, however, applied it to the minimum points
rather than to inflection ones). Their idea was to remove points that lie on the
hydrograph within the period of a storm event; however, to identify this period
is of course not a trivial problem. Fortunately, there are empirical methods
known to do this, and Sloto and Cruise used the method of Linsley et al.
(1982). The latter suggested that the average storm duration should be close
to two times the number N of days between the peak flow and the end of the
direct runoff. To assess N the following equation is used: N = AP, where A
is the basin area, and p varies depending on the basin characteristics. It was
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used p = 0.2 based on the recommendations found in (McCuen, 1998). This
approach is not very accurate, but appears to work well for the purpose of the
baseflow separation algorithm.

The time-based baseflow separation algorithm was implemented as follows:

1. Smoothen the data: This step is made to ease the identification of
inflection points. The moving average filter is used; the span n of the
filter can be changed according to the hydrological conditions of the case
study (i.e. concentration time):

Qs, = ! j (Qtyn +Qiyn—1+ ... +Qi—n) (3-3)

2n+1

where @); is original discharge; @), is the smoothed discharge; and n is
the filter span.

2. Find the inflection points: The inflection point is defined as the point
where the second derivative of the discharge is zero, as follows:

’Qs A*Qs A [AQ _0
o2 T A2 T At \ At )

(3.4)

3. Remove the “false” inflection points using the notion of the average
storm duration, as described above.

4. Separation. Finally, a (virtual) line is drawn between the inflection
points, which separates the baseflow from direct runoff and thus separates
the two regimes: one when only the baseflow is present and the other one
when the baseflow is accompanied by the direct runoff (thus constituting
the total flow). This line also graphically represents the switching rule
for the two predictive models. Algorithmically, a linear separation model
is used (Figure 3.8).

Lagged
precipitation

Input and discharge
data

Ic (M1)
Classifier Data
(Surrogate model) separation ANN Model 2
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Figure 3.8: MM2 modular scheme in operation
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The presented baseflow separation method needs the data corresponding
to the whole storm, and such data is available during training, so the
algorithm can be used to separate the data and train two separate models
which are referred to as M1 (ANN model 1) and M2 (ANN model 2).

5. Generate data for the LB-S model. Apply steps 1-3 to the historical
data and generate enough data for training (Figure 3.8).

6. Train LB-S model. Use the generated data to train the a surrogate
model (a machine learning model, e.g. ANN) that would predict the
location of inflection points in the operation phase of MM2.

Learning baseflow separation (LB-S) using a surrogate model. The method of base
flow separation requires the data set corresponding to the whole storm event.
Such data is available during training, so the two models can be trained as
described. However, during operation, the algorithm cannot be applied since it
is based on processing of the data characterizing the whole storm event. Hence,
a surrogate model replicating the baseflow separation algorithm (Figure 3.8)
is needed. The learning process follows the same principles presented in the
clustering modular model scheme (Figure 3.1 and 3.2), but in this case the data
classified are obtained from the presented semi-empirical baseflow separation
method.

The experimental results presented later in chapter 5 are based on the use
of the linear discriminate classifier. During validation and operation phase the
trained classifier LB-S identifies the inflection points used for attributing the
new examples to one of the two trained ANN models.

The result of applying the described procedure is the MM2 model consisting
of:

a. ANN model 1 (M1) and ANN model 2 (M2) trained separately to model
baseflow and direct flow;

b. Model LB-S that in the operation (or testing) phase identifies the inflec-
tion points used for data splitting.

3.5 Modularization using time-based partitioning (MM3)

The traditional baseflow separation methods mentioned above cannot be ef-
fectively used when separations are to be undertaken on a long continuous
record of streamflows, rather than just a few storm period hydrographs. This
has led to the development of a class of algorithms sometimes referred to as
“numerical”. Relatively recent research has applied flow separation filters that
consider one or two variables in recursive algorithms (Arnold and Allen, 1999;
Chapman, 2003). However, these authors define baseflow slightly differently,
assuming that even in the periods of low flow there are two components of flow
which can be interpreted as direct runoff and baseflow. The method used in this
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study is based on the baseflow recursive filter (Ekhardt, 2005). Ekhardt (2005)
compared many of the existing baseflow filtering algorithms and proposed the
following equation:

(1 = BFImax) aqgp(t—1) + (1 —a) BFlnaxQt
1 — aBFIax

qv, = (3.5)

where g, is the baseflow at time step ¢; ¢, _, is the baseflow at the previous
time step; @; is the measured total flow; BFI,,., is a constant that can be
interpreted as the maximum baseflow index; and a is a filtering coefficient, or
recession constant. The three coeflicients qp,, BF'I,,q, and a are unknown, and
there is no commonly accepted method to identify them. In principle, identi-
fication of coefficients is based on trial and error and sometimes it is possible
to use the recession curve coefficients. In this thesis the three mentioned coef-
ficients are found through an optimization process. The goal of optimization
is to find such coefficients that ensure the overall modular model has the best
performance (minimum error).

Modelling scheme based on time-based partitioning (Figure 3.9) The ultimate goal
is to predict the total flow Q41 at the next time step. The baseflow filter
(Equation 3.5) separates the flow into two components and they are fed as
inputs to the models. Both models have to be trained on the basis of the
measured data, and the model structure has to be optimized as well. The
optimization of MLP ANN had the objective to find as well the optimal number
of hidden nodes. During testing and operation phase the optimized baseflow
filter (Equation 3.5) is used to attribute the new examples to one of the two
trained ANN models.

Filter optimization The filter parameters qy5,, BF Iz and a are to be optimi-
zed. Note that during the optimization, in order to calculate the error (RMSE)
for every new parameter vector, two ANNs are to be trained, so the process
can be computationally expensive. To be able to evaluate a fair “trade oftf” in
the performance of the local specialized models and the overall model error, a
weighted objective function is used; it involves a weighted function with a high
weight for the overall model error and a low weight for the baseflow component
model error (errors were measured on the training subsets):

Er = wORMSE(Overall) + w1 RMSEp1 + weRMSE p 72 (36)

where M1 and M?2 refer to the specialized models of direct flow and base-
flow, respectively; and wi are the corresponding weights. The weights should
be subject to optimization as well. In the presented study they were however
selected on the basis of a (limited) number of experiments with the subsequent
visual inspection of the resulting hydrograph, and following the assumption
that our main objective is to forecast the flood situation. The resulting values
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Figure 3.9: Optimization of the process-based separation model (MMS3)

were 0.6, 0.3 and 0.1 respectively. The objective function (related to the model
error to be minimized) is calculated by the following procedure:

1. generate a random vector by, BF I,4., a, number of hidden nodes in each
ANN;

2. run equation (3.5) to perform the baseflow separation, generating two
different training sets;

3. train two different ANN models M1 and M2 of direct and baseflow res-
pectively;

4. calculate the overall error Ep using equation (3.6) (total flow is found as
the sum of the models outputs).

For global optimization various methods can be used, and since the objective
function is not known analytically the so-called direct optimization methods
should be used. This is a class of methods that do not use gradients explicitly;
for example all randomized search algorithms (like GA) can be attributed to
direct search methods; they are used in cases when the objective function is not
differentiable, stochastic, or discontinuous. Certain direct search algorithms use
some sort of gradient assessment (using finite-difference approximation) search
for a set of points around the current point, looking for one with the lower
value of objective function compared to the current point. Some trials and
errors were explored using direct search methods such as randomized search,
GA, adaptive cluster covering (ACCO, Solomatine (1999)), and Generalized
Pattern Search (GPS). In the present chapter GA and GPS are applied based
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Figure 3.10: The measured total flow (solid line) and the baseflow filter output (filled
area) (Sieve case study)

on the implementation provided in MATLAB (e.g. Genetic Algorithm and
Direct Search Toolbox).

In comparison with a popular GA, GPS is probably less known, so a brief
description of GPS follows. At each step, the algorithm searches for a set of
points, called a mesh, around the current point the point computed at the
previous step of the algorithm. The mesh is formed by adding the current
point to a scalar multiple of a set of vectors called a pattern. If the pattern
search algorithm finds a point in the mesh that improves the objective function
at the current point, the new point becomes the current point at the next step
of the algorithm. The GPS algorithm uses fixed direction vector to define the
mesh. The size of the mesh changes at each iteration. The update of the mesh
is based on the difference between the current point and the new point. For
further details the reader is referred to Xiaokun et al. (1991) and Abramson
et al. (2004).

3.6 Modularization using spatial-based partitioning

The principle of modularization can be also used to separate modelling of pro-
cesses that relate to different geographical locations or areas in space. Spatial
modelling have become quite common in the last decades, however, the use
of multiple models in a spatial ensemble is still not a common practice. This
approach will be considered not in relation to a data-driven model, but to a
process-based one, or a hybrid model. However, it is worth mentioning it in
this chapter (mainly devoted to data-driven models) for completeness.
Consider, for example, a hydrological model of a river basin consisting of
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Figure 3.11: Spatial models in operational forecasting environment

a number of local models of sub-basins. It may happen that some of these
sub-models need replacement since they are not accurate or because of some
other reason. In this study the possibilities of replacing some of the least ac-
curate of the (geographically) local models (modules) in a (semi-)distributed
process-based model are explored. Focus is on replacing the lumped conceptual
(sub-)models by the data-driven ones. The approach is based on selective repla-
cements that follow the main river path. The different sub-basin models from
upstream to downstream have different influence on the overall model accuracy
for the extreme and normal flow situations downstream, and by studying such
influence the decisions about the components considered for improvement or
replacement by other types of models can be made.

Selection of the model components to be replaced can be also based on
expert judgement or some simple rules (Figure 3.11). These rules can be based
on the known issues related to models used in a forecasting system, or the main
objective of forecasting in a particular case. For example, if the phenomena like
fast floods (which are driven by precipitation) are to be modelled, the process-
based models could be the first choice. On the other hand, floods driven by
slow increase in the discharge may be better modelled by data-driven models,
or models where some conceptual or even process-based components (models of
sub-basins) are replaced by data-driven models (such models may be referred
as hybrid). The details of the modularization using spatial-based partitioning
are presented in chapter 6; on the Meuse river basin.
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3.7 Optimal combination of modularization schemes

The different modularization schemes can be combined, to form an overall mo-
del, and there are various ways of doing this. Distributed and semi-distributed
models could have different structures and hence allow for multiple ways of im-
proving them through various types of modularization. Different flow regimes
can be identified separately per sub-basin, and then all models combined. It
would be reasonable to pose this process as an optimization problem, where
various desired aspects of the overall modelling effort would be taken into ac-
count. Such aspects can be formulated as objective functions to ensure, for
example:

e Obtain the best overall performance of the model in forecasting down-
stream discharge;

e Obtain the best performance of sub-models for particular regions of a
watershed;

e Obtain the best representation of particular types of flow, etc.

Some of the objective functions could be also re-formulated as constraints. An
appropriate setting for this would be a multi-objective optimization scheme
allowing for the detailed analysis of trade-offs.

3.8 Conclusions

In this chapter the main principles of building modular models based on the
explicit use of hydrological knowledge and using data partitioning algorithms
have been presented and explored. This was done by (a) employing clustering
algorithms, and (b) exploring the possibility of separating base- and excess flow
using two different approaches. On the basis of such data partitioning separate
models for each sub-process have been built. New algorithms and modelling
have been developed and tested. Applications of the modularization princi-
ple to separate modelling of processes that relate to different areas in space
have been considered here as well. The possibilities for overall optimization of
various modularization schemes combined have been highlighted as well.

This chapter provides the principles and algorithms to be employed in Chap-
ters 5 and 6 for particular case studies.






CHAPTER
FOUR

BUILDING DATA-DRIVEN HYDROLOGICAL
MODELS: DATA ISSUES

In Chapter 2 the conceptual framework for hybrid modelling has been pre-
sented. Data-driven modelling (DDM) constitutes an important part of this
framework, and deserves more detailed presentation. The main objective of this
chapter is to analyze the data-driven modelling process and the most important
factors typically considered when building such models. The machine learning
(computational intelligence) techniques used (artificial neural networks, Model
Trees and Support Vector Machines) are characterized here, but (briefly) ex-
plained in Appendix B. Part of results presented here has been worked out and
discussed in Elshorbagy et al. (2009a,b).

4.1 Introduction

Data-driven modelling is becoming a increasingly popular as a complementary
technology for modelling complex natural phenomena (Dawson et al., 2005;
Solomatine and Price, 2004). Most of these techniques use the advances in ma-
chine learning (ML) and computational intelligence (CI);practically all known
techniques have been tried in hydrological research. They have been researched
and to some extent accepted as an accurate alternative to physical based mo-
dels (ASCE (2000b); Solomatine (2005); Solomatine and Dulal (2003)). The
general form of the most widely used structure of a data-driven rainfall-runoff
model is presented in the previous chapter by Eq. 3.1.

It is important to provide some guidance to the practitioners that are sup-
posed to try the new models designed by researchers. It is impossible to have
the same results from every model used to model a particular natural phenome-
non, so some rational choice procedures based on the relevance of the measured
variables, model performance and other factors would be needed in the pro-
cess of selecting the model to be really used. In this chapter special attention

95
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is given to the choice of the input variables, data partitioning issues and the
corresponding variability in models performance. It is suggested that the pre-
sented procedures should become part of the overall modelling framework used
in operational forecasting.

To illustrate these, the Ourthe river basin (Belgium) is used as the case
study. The reason to use this example is that it is a part of the Meuse river
basin, which is major case study in the subsequent chapters.

+"1 The Netherlands
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Scale 1:500 000
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Figure 4.1: Localization of the Qurthe river basin

4.2 Case study (Ourthe river basin - Belgium)

The hydrological characteristics of the Ourthe river basin have been explored
widely in different publications (de Wit et al., 2007a; Tu et al., 2005). The
description of the whole Meuse basin will be presented in Chapter 6.

The Ourthe is the most important Meuse tributary in terms of flood fore-
casting. In its upper course the Ourthe consists of two branches: the Ourthe
Occidental and the Ourthe Oriental, uniting near Nisramont. After the conflu-
ence of the two there is a dam, and after the Ourthe flows roughly in north-west
direction. The most important tributaries of the river Ourthe are the Ambleve
and the Vesdre (Figure 4.1). Near Comblain-au-Pont the Ambléve joins the
Ourthe and near Angleur the Ourthe also receives the Vesdre. Counting from
the source of the Ourthe Occidental the Ourthe is approximately 175 km long.
It is located in the Ardennes Mountains in the Walloon region (Belgium).

Of all the Meuse sub-basins, the Ourthe has the largest area (3,626 km?
at Angleur). It is a typically Ardennes river, in a mountainous region, and



4.3 PROCEDURE OF DATA-DRIVEN MODELLING 57

therefore has great discharges rising fast. From a hydrologic point of view
the tributaries Ambleve and Vesdre are so impotant that in Chapter 6 they are
considered and modelled separately. The main reason for this can be attributed
to: (a) the discharges can be greater than that of many other Meuse tributaries,
and (b) the mouths of both tributaries are to be found near the mouth of the
Ourthe.

A complete and detailed information of this based in the context of flood
forecasting for the Meuse river basin can be found at de Wit et al. (2007a) and
Berger (1992).
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Figure 4.2: Hydrograph of the QOurthe river basin, from 3-Jan-1988 till 81-Dec-1998

Precipitation, temperature and discharge information was used in the ana-
lysis of this chapter. Data from 3-Jan-1988 till 31-Dec-1998 was used (4016
samples). Precipitation and temperature data were obtained from catchment
averages. These data is plot in Figure 4.2; the flood situations in the Meuse
around 1993 and 1995 have been highlighted with a circle.

4.3 Procedure of data-driven modelling

Data-driven (machine learning) models are typically built following a generally
accepted procedure (Mitchell, 1998; Pyle, 1999; Solomatine, 2005):

e Explore the problem and solution spaces (e.g. state the problem)
e What is the expected result, and how the result will be used?

e Select the input and output variables



a8

BUILDING DATA-DRIVEN HYDROLOGICAL MODELS: DATA ISSUES 4.3

Specify the appropriate modelling methods and choose the tools (e.g.
software and algorithms)

Prepare and analyze the data
Build (e.g. calibrate or train) the model
Test the model

Apply the model and evaluate the results.

In reality the process of modelling is not linear, but continuous with feed-
back loops. For example, the lack of particular data may lead to a change
of a modelling method selected. For these processes there are a set of “golden
rules”, here mentioned as a sort of a check list helping a modeller in the process
of model building based on Solomatine (2008):

1.
2.

10.

Clearly define the problem that the model will help to solve.

Specify the expected solution for the problem.

. Define how the solution delivered is going to be used in practice.

Learn the problem, collect the physics (domain knowledge) and under-
stand them.

Let the problem drive the modelling, including the tool selection, data
preparation, etc.

. Take the best tool for the job, not just a job you can do with the available

tool.

Define clearly assumptions (do not just assume, but discuss them with
the domain knowledge experts).

Refine the model iteratively (try different things until the model seems
as good as it is going to get).

. Make the model as simple as possible, but no simpler. In machine learning

(ML) it is referred to as the Minimum Description Length principle saying
that the best model is one that is the smallest length (including the in-
formation to specify both the form of the model and the values of the
parameters). More generally, this idea is widely known as the Occam’s
Razor principle formulated by William of Occam in 1320 in the follo-
wing form: shave off all the “unneeded philosophy of the explanation”
(Mitchell, 1998).

Define instability in the model (critical areas where small changes in
inputs lead to large change in output).
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Figure 4.3: Learning process of data-driven models (Solomatine (2005)

11. Define uncertainty in the model (critical areas and ranges in the data set
where the model produces low confidence predictions or insights).

The training process is the minimization of the difference between the mea-
sured and predicted results, through the update of model parameters. It would
appear that many researchers give a lot of attention to the generation of the
model used, and being more specific, the training process (Figure 4.3). Howe-
ver, the data-driven model is as good as the data used to build it, so the issues
of data preparation and optimal partitioning are as important, or perhaps even
more important.

4.4 Preparing data and building a model

Data-driven modelling assumes that data is split in a number of sub-sets to aid
the process of building and assessing the final performance of the model.

Training data set: Data used to update the internal parameters of the
models; it is analogous to calibration data set in process-based modelling.

Validation (cross-validation) data set: Data required for the evaluation of
the model performance after training. This data is unseen by the model, but
is used to tune either the model structure (e.g. node in a network), or to aid
the early stop of the adaptation process.

Testing (verification) data set: Data imitating the process of model opera-
tion. The performance assessment of a model, before it is used, requires data
that have not been used by the model, either explicitly or implicitly.

Models training on (even slightly) different data sets will have different
performance, so data has to be partitioning in a way leading to the optimal
model.
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Cross validation imitates the test set and is used during training to judge
the quality of the model at a particular phase of training. One of a popular ways
to perform cross-validation is to creating a number of different possible splits
of data into training and cross-validation subsets. Ten-fold cross validation is
one of the most commonly used techniques and is applied in most of the ANN
models developed in this thesis. In it, ten pairs of training — cross-validation
sets are created, by taking 9/10 of data for training, and the rest — for cross-
validation; ten different models are trained. If performance of all the models on
the cross-validation set is similar, it is an indication that the model building is
on the right track, and either the best model, or an ensemble of the ten models
is used. Note that this procedure does not guarantee the model optimality.

Four steps in model building can be distinguished (Figure 4.4).

Data driven modeling steps

Input variable Sampling . . Performance
B e O Modeling technique
(Selection) (data partitioning) measurement
Based on tranformations Selection of a training, Fuzzy inference systems Standard cumulative
(PCA, BoxCox, log base, validation and testing error measures
others) data sets (RMSE, MAE, others)

Artificial neural networks

Based on relationship of
input, output or Based on Based on Model trees
combination of both statistical domain
variables similarities knowledge
(correlation or mutual
information)

Probabilistic error
measures (e.g. Skill
score analysis)

Support vector

Based on

Rule based q
clustering

Time series frequency
domain errors (looking in
Instance based learning terms of time series
transformation or in other

variable domains)

Committee type of
models

i

Physical based analysis
(Physical
representations)

Figure 4.4: Steps in building a data-driven model

Step 1. Selection of input variables, data transformation

As it can be seen in Figure 4.4, the input variable selection can make use
of several methods. The most common technique is based on the correlation
analysis. Another method is using average mutual information. A more de-
tailed discussion on the procedures used here can be found in the publications
presented by Bowden et al. (2005a,b).
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One of the important steps in DDM is data transformation (pre-processing
and post processing of data) (Pyle, 1999). For some of the methods, like MLP
ANNs data transformation (normalization) is almost a must. Other methods
benefit from it because it leads to improved performance.

Step 2. Data partitioning

As mentioned before, to be able to judge the performance of the model it
is necessary to have unseen data. However, sometimes it is argued that this
could lead to a weaker model; since not all the information available was used
in training.

One may find enough publications where researches do not give attention
to validation their results; see the analysis of typical examples of this in (Solo-
matine and Ostfeld, 2008). Often an objective is to just demonstrate particular
cases of a modelling practice and not to generalize the model results. In this
chapter a comparison of the differences in performance for the training, valida-
tion and testing is made. It should also mentioned that the lack of attention
to testing is even more common in the use of physically based models where
all the data is used to calibrate a model and testing is practically ignored.

Step 3. Training the model

The third step shown in Figure 4.4 is the modelling process per se, which in
principle is an optimization process to choose the model parameters and the
structure to fit the model output to the measured (target) values. There are a
number of single and muti-objective optimization techniques available for such
purpose. Multiple criteria may lead to so-called multi-objective learning.

It is not possible to state that “one technique will always provide a better
solution than any other”. Some algorithms inherently contain the random
components that lead to a problem of non-reproducibility: for example, ANN
training is based on the initial randomization of weights. This problem is
addressed later in this chapter.

Step 4. Validation and testing

After the model is optimized, and, as such, probably selected after a number
of validation iterations, the model error on testing data can be used to asses
the resulting model performance. Additionally, such model characteristics as
uncertainty and robustness can be tested as well. Commonly, visual comparison
and a benchmark, or reference, model is used to asses the quality of the model.

From the cyclic representation of data-driven processes interactions presen-
ted in Figure 4.5, it is possible to see the interaction of the modelling steps,
and how they contribute to the other steps of the overall modelling process.
In the following sections more details on some issues considered important for
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the modelling process; necessary for having an idea of the possible performance
changes with different decision in each steps.

1. Input 4. Model performance
What if input includes no relevant variables ? What if we change the error
What if input variable is not interpretable ? measure?
What if we look a multiple

performance measured?

2. Sampling
What if samples change?
(Training, verification and test)

3. Model calibration
What if the random initial condition of the
model changes?

What a random optimization search method
is used?

Figure 4.5: Links between question that need to be answered when building a data-
driven model

4.5 The problem of input variables selection

Data-driven rainfall-runoff models are commonly formulated using the major
variables (precipitation, evapotranspiration, discharge, and sometimes tempe-
rature). The model normally uses their measurements to increase the available
information about the system. The notion of the lag (travel) time plays an
important role here. The general form of a typical data-driven rainfall-runoff
model (involving only effective rainfall and discharge) is presented in the pre-
vious chapter by Equation 3.1.

In DMM selection of input variables is of great importance, and this process
is quite different to the one normally used in process based modelling. Having
a large volume of measurements does not guarantee high accuracy of a model.
Even knowing what input variables are driving the output in physical terms is
not enough to build accurate models. In most cases it is necessary to identify
“when” and “to what extent” these inputs contributed to the model output.
Since in DDM the information about the modelled phenomena is not always
available, most methods rely on the statistical and information theory-based
methods to determine the appropriate input variables for data-driven models.

Normally, the input selection process starts with all the knowledge (data)
about the process that will be modelled, and later the selection space is nar-
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rowed based on the subsequent more detailed analysis. In contrast to process-
based modelling, DMM allows for inclusion of any variable (or their combina-
tion), even of those that are not necessarily forcing the phenomenon (discharge)
directly. For example, rainfall-runoff models may use the past discharges to
forecast the current or the future ones, however, they are not the actual imme-
diate trigger of flood situations.

To take into account the past information about the modelled phenomenon,
lagged variables may be used. In the context of hydrological forecasting, these
are precipitation and discharges. Two mostly widely applied analysis techni-
ques used to select the appropriate input variables and their lags are correlation
analysis and the average mutual information (AMI) analysis. The correlation
analysis reflects only linear relationships so when processes are highly non-
linear, AMI would be a better choice.

In the studies presented here, the lag between two time series (lag inside one
series) is defined as the number of time steps by which a time series is shifted
relative to a reference time (when cross-correlation is studied), or relative to the
corresponding time values of the same series (when auto-correlation is studied).
This procedure is shown in Figure 4.6. After the shift in time is done, a new
vector with past data is created.

The last component in it is the recorded value (taget) of discharge to be
forecasted (for the past it is known); the rest of variables are inputs. In this
process the records with no past information are removed. It is necessary to
make an assumption on the continuity of the time series, so it is assumed that
the vector has a number of past phenomena that covers more than the response
time of any precipitation phenomena. Figure 4.6 highlights the sample for Jan
7/1988 to become the first one in the data matrix: it has the previous 4 days
of precipitation in the analysis (till 3 Jan/1988).

Precipitation Discharge

03-Jan-1888" 7.1 2378
04-Jan-1988° 59 7.1 42.06
05-Jar-1888" 36 59 - 71 51597
05-Jar-18688" 4.8 36 59 - 7.1 58.24
'07-Jan- 1958 1.2 45 36 5.9 - 7.1 59.79
‘05-Jar-1588" 0.1 12 4.5 3b 59 5776
09-Jar-1888" 05 04 1.2 48 3B 5222
"10-Jar-1888' 5.3 05 0.1 1.2 458 46.12
"1-Jan-1988' 1] 53 0.5 0.1 1.2 41.93

0 53 s 0.

o 5.3 05

1] 53

Figure 4.6: Building the data matrixz based on the lagged variables
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Identification of the delay can be based on the analysis of the physical
process at question, on the analysis of relatedness of the lagged input variable
to the output, or on both. For example, for the case studies presented in this
chapter the 10 days lag is used: it can be shown that the precipitation observed
earlier than 10 days does not have significant relation on the current and future
flows.

Note however, that since the average precipitation is considered, it is often
not enough to include only one or two lagged variables into the model. Pre-
cipitation events taking place close to the discharge measurement point would
lead to an increase of discharge with a lag which could be much smaller than
the average one, and events far from this point would have larger lag.

4.5.1 Inputs selection based on correlation analysis

The correlation coefficient is commonly used to determine mathematical linear
relations between the two samples of random variables, or time series; in case
of building a rainfall-runoff model the variables are lagged precipitation and
discharges (Equation 4.1):

Doy = nZ?ﬂ TiYi — Z?:l T Z?:1 Yi (4.1)
VY a2 — (S ) e v — (D, )

Where z; and y; are samples of the precipitation and discharge respectively,
n is the number of sample available in the time series. Z and 7 are the sample
means, and is the correlation coefficient. If x and y are lagged discharged and
actual discharge, it is said that is an auto-correlation analysis (Figure 4.7).

The problem is to determine the lag time leading to high correlation. Since
the correlation coefficient can be misleading if not enough data is used, or
there could be events with the different correlation structure, it could be use-
ful to employ two other analysis techniques: (a) to analyse the variation of
the correlation coefficient with different sizes of data sets, and (b) to perform
the correlation analysis separately for certain events, for example, with the
discharge in a particular range.

Analysis of correlation for data sets of varying size

It is indeed a concern that the correlation between precipitation phenomena
and discharge may change considerably with the size of the available data set.
To find out the influence of the amount of data on correlation, we calculate
the cross-correlation values between actual or lagged precipitation and actual
discharge for different sizes of the data set. The size of the data set starts
from one record corresponding to the first date available, and then progres-
sively adding one record (one day) and calculating the correlation. This can
be interpreted as a time window size of n samples. The size of the window is
iteratively increased by adding the next day to the calculation. This procedure
is continued until the whole data set is included.
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Figure 4.8: Correlation of the lagged precipitation (8 days) and discharge for diffe-
rent window sizes

The variation of the correlation due to the changes in the amount of data,
with different time windows is shown in Figure 4.8. The window sizes taken
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started from 2 samples till 4014 samples. The upper part of the figure shows
from left to right the correlation obtained with a window of the size of the
number of samples mentioned in the x axis. It is possible to see that the corre-
lation between the precipitation and discharge stops changing after the window
becomes wider than 300 days. Accordingly, the response of the catchment (cor-
relation between precipitation and discharge), can be said to be characterized
well with at least 1 year of data.

300 Sam ples//

\

X:3871

Correlation

045

Lag (days)

Window size (days)

Figure 4.9: Correlation for different window size and for different lags of the preci-
pitation time series

For the comprehensive analysis of multiple lags, 3D visualization is presen-
ted in Figure 4.9. The value of correlation shown is plotted with a variable
lagged (from 0 to 20). From this view all the lagged time series have similar
shape to that in Figure 4.8, with the same threshold of 300 samples (encircled
region on Figure 4.9). An interesting and encouraging fact is that the plots
have the common peak of the correlation coefficient for the lag of 3 days.

Analysis of correlation for different rainfall-runoff events

The physics of the rainfall-runoff process is such that precipitation events of
different magnitude and location have different response times. Correlation
analysis allows for studying this effect since the corresponding correlation coef-
ficients will have different values for different events. Analysis of this pheno-
menon is important for determining lags and building accurate DDMs.

Figure 4.10, shows the correlation between the lagged precipitation (10
steps) and the actual discharge, for its ranges above a variable threshold (y
axis). Zero represents the use of all the data available. This results shows that
the correlation is similar for events that included discharge under 180m3/s;
a 3 days peak correlation. For events with discharges above 180m3/s, there
is no clear dominating correlation coefficient; some of these values show high
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Figure 4.10: Correlation for different threshold and different lags

correlation at 2 or even 1 day. This is expected since high flows in this basin
are mainly driven by intense precipitation with different fast flows.

Since the number of events that have high discharge is quite small, it is im-
portant to quantify the response times. Figure 4.11 presents the precipitation
lags corresponding to the maximum correlation with discharge and the corres-
ponding number of samples used. It is possible to see that on the threshold
180m3 /s the amount of samples is almost 30.

4.5.2 Selection based on Average Mutual Information (AMI)

Average mutual information has shown to be very useful in selecting inputs for
data-driven models (Abebe and Price, 2003; Bowden et al., 2005a,b; Solomatine
and Dulal, 2003).

The AMI between the two measurements z; and y; drawn from sets X and
Y is defined by:

Ixy = Z Pxy (i, y;) logy {M} (4.2)
/]

where Pxy (x;,y;) is the joint probability density for measurements X and



68 BUILDING DATA-DRIVEN HYDROLOGICAL MODELS: DATA ISSUES 4.5

15 6,000
4,000
2,000
1000
10F i I \ 1500 &
_ I — e
[72]
g | I 5
< I S
= S
3 Bt
5k ) | b £
—— \ -
Y R R R I \
\ -10
1 1 1 1 1 } ;
0 50 100 150 200 250 300

Threshold

Figure 4.11: Precipitation lags corresponding to the mazimum correlation with di-
scharge and the number of samples used.

Y resulting in values x and y, Px (x;) and Py (y;) are the individual probability
densities for the measurements of z; and g;. If the measurements of a value
from X resulting in x; is completely independent of the measurement of a
value from Y resulting in y; then the average mutual information Ixy is zero.
For the considered hydrological modelling problem X would typically stand for
discharge, and Y the lagged precipitation.

Analysis on the basis of AMI seems to be quite straightforward, but AMI
is sensitive to the selection of the bin size, and was found to be different for
different flow events. The analysis of these aspects is presented below.

AMI sensitivity to the bin size

In this analysis probability distributions of observations are generated based on
the bins with the sizes varying from 1 to 50 (so every time bin size is different).
AMI for discharge and the lagged precipitation was calculated for different lag
times varying from 1 to 20. Figure 4.12 presents the results.

Although AMI changes with the bin size change, its peak value always
correspond to the same lag value. The AMI value is not measurable on a
fixed scale and therefore it does not matter which peak points to lag to choose
(Abebe and Price, 2003). The results are consistent in shape and AMI peaks
point to almost the same lag values as the plots of the correlation coefficients
do.

Bin size of 10 shows the first peak of the AMI at the lag of 3 days. If a bin
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Figure 4.12: AMI for different bin sizes and lags

of 30 is used, the AMI value for 3 days is almost the same as for 4 days. In such
cases it could be wise to consider for inclusion into the model the precipitation
variables with the lag 3 and 4.

Correlation and Average Mutual Information
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0 2 4 6 8 10 12 14 16 18 20
Time Lag

Figure 4.13: AMI calculated for a bin size of 30
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AMI for different flow events

The procedure to form events is the same as used in correlation analysis. AMI
was calculated for the data subsets with the discharges above a certain thres-
hold, varying from 10 to 300m m?3/s.

>10

0 I I i 1 I

5
Lag (days)

(a) AMI for threshold from 10-100

AMI

Threshold (x10) 0 0

Lag (days)

(b) Ranges from 0-300 thresholds

Figure 4.14: AMI results for precipitaot be different tion and discharge (10 days
lags)
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Figure 4.14a and 4.14b, show that the AMI is a more sensitive measure than
the correlation coefficient. AMI is higher for the events with discharge between
10 and 100. Shape of the AMI plots with different lags is similar. Above 100
m?3/s the AMI does not allow for choosing the lag: in some cases the peaks
correspond to one hour or two hour lag. Since most high flows typically result
from the high intensity precipitation, this finding indicates that it is risky to
rely only upon the average lag of 3 or 4 days found when full data set is used
to calculate AMI.

4.6 Influence of data partitioning on model performance

Partitioning the data into training, validation and testing sets should typically
result in sets which are “statistically similar”. In practice, however, partitioning
procedures may be influenced by the amount of the available data and the
specifics of the problem. For example, lack of data forces some modellers to
omit the cross-validation set. Due to the specifics of hydrological modelling it
is often required that all the three (or two) data sets are contiguous, that is
samples are sequential in time, so that the output would be represented as an
interpretable hydrograph (Solomatine, 2005).

From purely statistical point of view it is recommended to have similar
properties (mean, max, min and standard deviation), on the training, validation
and testing sets. Although this procedure does not guarantee that the model
will be trained on the optimally constructed subsets (like it is done, e.g., by
Bowden et al. (2005a) with the help of GA optimization) but in practice this
approach is often used, and is good enough for most practical purposes. The
procedure adopted in this chapter follows two steps.

1. Generate 100 different groups of randomly generated training, cross-
validation and tests sets,

2. Choose the group in which the three mentioned sets are statistically simi-
lar to a maximum extent using some appropriate measure of similarity.

For training, validation and testing 50, 16 and 34 percent of the available
data (4016 records) are used, respectively. The discharge measure is used as
the split variable. To compare the statistical characteristics of the three data
sets it is necessary to asses the absolute difference in terms of a combination of
statistical measures. Therefore, the three following measures were evaluated.

RADS,, = Otr — Gva (4.4)
O¢r

RADS, = Otr — Ote (4.5)
Otr

RADM,, = Htr = Hva (4.6)
Hir
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RADM,, = ”“‘t_“t (4.7)

Mtr

Where, RADS,, is the relative absolute difference between the standard de-
viation of the training and validation data set. RADSy; is the relative absolute
difference between the standard deviation of the training and testing data set.
RADMy,, is the relative absolute difference between the mean of the training
and validation data set. RADMj;, is the relative absolute difference between
the mean of the training and testing data set.

The different measures are compared in a plot with the 100 random splits
(Figure 4.15). The figure shows the four relative absolute difference measures,
of the 100 generated groups of the three sets (training, verification and testing).
Since there is no unique or perfect data sampling that will contain identical
statistical properties for all the three data sets required, multiple solutions to
this can be plotted in a Pareto front in 4 dimensions (Shamseldin and O’Connor,
2001). However, here a simple visual analysis of the 100 splits in each dimension
of the problem is undertaken. The criterion was to find the partitions for which
the values of the four criteria would not be too much different (say, would not
differ more than 10 %), This process was used to select the 12 groups from the
Figure 4.15. The groups selected where ‘1°; ‘15°, ‘21’ ‘44’, ‘54’, ‘56’, ‘60’, ‘67,
‘867, ‘97, ‘91’, ‘H’. The last group (H) of samples was constructed of the selected
continuous samples of the hydrograph (e.g. training from January 3 of 1988 till
13 July 1993, validation and testing the remaining period till December 1998).

4.7 Influence of ANN weight initialization on model perfor-
mance

Training of data-driven models involves the adaptation of weights or parameters
in such a way that the model fits the measured data. In case of using MLP
ANNS, this process starts with some initial state of the weight or parameters,
and often random initialization is used. Different initial weights may lead to
models with different performance. To explore this performance variance due
to various initializations, 20 ANN rainfall-runoff models are set-up. In this
process two situations of models are considered, rainfall-runoff model with the
past discharges, and without them (denoted as RRQ and RR respectively) .

4.7.1 Models not using past discharges as inputs (RR)

Tables 4.1, 4.2 and 4.3 show the performance of 20 ANN models generated
for the Ourthe river basin when the input vector does not include the past
discharge. These models used the actual and previous precipitation from the
past 4 days as input, and the target considered was the discharge one day
ahead. The models where set up with the same number of hidden nodes (4)
but with the different initial random weights. All were trained with neither
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Figure 4.15: Statistical characteristics of the 100 generated training, validation and

testing sets

optimizing the nodes, nor having feedback from the validation or testing set.
The artificial neural network optimization algorithm used was the Levenberg-
Marquardt (Mor, 1977) for the mean square error minimization. All the models
were trained using 200 epochs and the learning rate of 0.1. These values were
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determined after multiple trials.

Table 4.1: Training performance of 20 ANNs trained with different initial conditions
(RR)

RMSE NRMSE CoE Correlation  PERS MARE MAE

Mean 22.51 74.05 0.45 0.64 0.18 1.67 15.37
Min 21.25 69.91 0.001 -0.24 -0.49 1.59 14.81
Max 30.4 100 0.51 0.72 0.27 2.24 19.15
Std 2.2 7.23 0.12 0.21 0.18 0.16 1.05

Std/Mean | 9.76% 9.76% 27.09%  33.13% 103.02%  9.38% 6.81%

From Table 4.1 it can be seen that the results are significantly different.
In training the results the RMSE and NRMSE show that the bound of the
standard deviation is 9.76% of the mean error value. Correlation coefficient,
Nash Sutcliffe coefficient(CoE) and PERS indicate the low model performance.
The PERS (index of persistence) shows a higher ratio between the standard
deviation and mean value, indicating the high variance in terms of performance.
From the Nash-Sutcliffe and correlation coefficients, it is possible to see directly
that even the best network model in the training process has low accuracy.
The RMSE measure has the low ratio between the standard deviation and the
mean, being an error measure that is less sensitive to different random initial
conditions. The maximum variation that may be expected in the random
initialization can be considered to be the 10%. Therefore, in the experiment
presented here this threshold is used to determine if a model may be better
than another due to a chance.

Table 4.2: Validation performance results of 20 ANN trained with different initial
conditions (RR)

RMSE NRMSE CoE Correlation ~ PERS MARE MAE
Mean 26.91 90.61 0.17 0.47 -0.33 1.83 16.63
Min 23.34 78.6 -0.07 -0.1 -0.71 1.71 15.74
Max 30.7 103.36 0.38 0.62 0.01 2.35 18.73
Std 2.2 7.42 0.14 0.15 0.22 0.15 .65
Std/Mean | 8.19% 8.19% 7.805%  32% -66.93%  7.97% 3.91%

From Tables 4.2 and 4.3 we can see the low differences between the means
of different types errors on the validation and testing data sets. The results
show that differences in the mean for RMSE and other variables are very small,
however, the standard deviation of RMSE, NRMSE and PERS is twice as high.
So, general conclusion is that the ANN models of RR type have quite a low
performance.
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Table 4.3: Testing performance results of 20 ANN trained with different initial
conditions (RR)

RMSE NRMSE CoE Correlation  PERS MARE MAE

Mean 26.78 91.38 0.16 0.45 -0.43 1.74 16
Min 25.04 85.43 -0.001 0 -0.72 1.64 15.36
Max 29.33 100.07 0.27 0.53 -0.25 2.29 18.41
Std 1.2 4.08 0.075 0.11 0.13 0.16 0.67
Std/Mean | 0.0447  0.0447 0.4625 0.2483 -0.2972  0.091 0.0416

4.7.2 Models using past discharges as inputs (RRQ)

Tables 4.4, 4.5 and 4.6 shows the performance of 20 ANN models generated for
the Ourthe river basin. The input vector for these models included the current
and the past precipitation for 3 days, and the past discharge for 3 days. The
output of the models was discharge one day ahead. The other characteristics
of the experiments were the same as for RR models covered in the previous
sub-section.

Table 4.4: Training performance of 20 ANNSs trained with different initial conditions
(RRQ)

RMSE NRMSE CoE Correlation PERS MARE MAE
Mean 4.11 13.53 0.98 0.99 0.97 0.12 1.89
Min 3.45 11.36 0.94 0.97 0.91 0.09 1.59
Max 7.54 24.79 0.99 0.99 0.98 0.33 3.8
Std 1 3.3 0.01 0.01 0.02 0.06 0.56
Std/Mean | 0.2436  0.2436 0.012  0.0061 0.0181  0.5291 0.2938

From Table 4.4 and one can see that the performance is considerably higher
than that of RR ANN models that do not use past discharges as input. This
can be explained by the fact that the system does not change significantly from
one time step to the next, so the auto-correlation information of the discharge
have high impact on the result. The RMSE and NRMSE have high variability.
Since the model is more accurate, the ratio between the standard deviation of
the measures and the mean is higher; this is a consequence of the lower mean
error and variability. With the 20 models generated, the standard deviation of
RMSE was only 1 m3/s.

For the verification and testing it would appear that in testing the error is
more variable than in training; difference is 48% for RMSE, 5% for correlation
and 18% for PERS (Table 4.6). Based on this, it is confirmed that a conclusive
comparison of a model and the random initialization can not be bound clearly
to this ratio or relative ranges mentioned.

The difference in performance between the training and validation and tes-
ting is high. This result can be attributed to either lack of generalization in the
ANN models, or to overfitting. The overfitting is less probable since the number
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Table 4.5: Validation performance results of 20 ANN trained with different initial
conditions (RRQ)

RMSE NRMSE CoE Correlation PERS MARE MAE
Mean 9.35 31.49 0.88  0.94 0.81 0.15 2.5
Min 5.53 18.61 0.63  0.85 0.41 0.11 2.03
Max 17.95 60.43 0.97  0.98 0.94 0.35 3.81
Std 4.54 15.27 0.11  0.05 0.18 0.06 0.48
Mean/Std | 0.48 0.48 0.13  0.05 0.23 0.43 0.19

Table 4.6: Testing performance results of 20 ANN trained with different initial
conditions (RRQ)

RMSE NRMSE CoE Correlation PERS MARE MAE
Mean 8.03 27.38 0.91  0.96 0.85 0.12 2.22
Min 4.55 15.53 0.66 0.83 0.41 0.09 1.81
Max 17.21 58.74 0.98  0.99 0.96 0.32 3.75
Std 3.63 12.4 0.09 0.04 0.15 0.06 0.51
Mean/Std | 0.45 0.45 0.1 0.05 0.18 0.48 0.23

of samples and epochs is reasonably high and fits with empirical formulations
(Wang, 2006).

The variation in performance due to the differences in the weights initiali-
zation is relatively low if compared to that due to the input variable selection
(From an RMSE of 26.78 to a value of 8.03 and from CoE of 0.16 to 0.91 in
the testing set).

4.8 Various measures of model error

The model error can be measured using measures. In this thesis the error
analysis is meant to answer two questions: 1) what is a good or acceptable
model? 2) which model outperforms the other ones?. The information obtained
from overall error measurements may be subjective. If it is used to compare
different models it may not be clear since measures are highly relative as we
saw in the previous section. In case of RRQ, CoE has a very small standard
deviation (0.09). Therefore, if this measure is used alone, any of the 20 ANN
models could be selected.

Commonly most modelling techniques use in calibration (training) only
one single objective function. However, other measures, often based on expert
judgement, are used to evaluate the model as well. However, one would think
on the idea of including the entire possible objectives in one single model (multi-
objective), but the final criteria on what to select will depend on a number of
models in multiple dimensions. Although the multi-objectives approaches are
being explored as well, the concepts contemplated in this thesis are based on
single objective models.
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To make a decision of selecting a model one may consider multiple error
measures. Table 4.7 shows the lowest and highest performance measures of the
best ANNs of type RRQ (on validation data). The correlation coefficient and
the PERS seem to be less sensitive to the random initialization in the ANN
models; in this sense no clear selection can be done. However, we can see the
PERS and Nash-Sutcliffe coefficient have values high enough for accepting any
of the models. If we extend the analysis to measures like the RMSE, MAE and
NRMSE, the set of models to select from can be reduced to only models 5 and
7.

Table 4.7: Validation performance results of the best ANN RRQ trained with diffe-
rent initial weights

Network No. | RMSE NRMSE CoE  Correlation PERS MARE MAE
2 6.04 20.33 0.96 0.98 0.93 0.11 2.09
3 12.55 42.24 0.82 0.91 0.71 0.11 2.52
4 5.53 18.61 0.97 0.98 0.94 0.11 2.03
5 5.76 19.38 0.96 0.98 0.94 0.11 2.11
7 5.54 18.64 0.97 0.98 0.94 0.13 2.23
9 5.66 19.06 0.96 0.98 0.94 0.11 2.11
10 5.87 19.77 0.96 0.98 0.94 0.11 2.18
14 6.36 21.41 0.95 0.98 0.93 0.11 2.2
18 5.86 19.73 0.96 0.98 0.94 0.11 2.14
20 6.08 20.48 0.96 0.98 0.93 0.13 2.3

Note, that ANN training algorithms use gradient descent techniques based
on the fixed objective function being the mean square error (equivalent to
RMSE). In this work we use also NRMSE, along with the correlation coefficient,
complemented by the visual inspection of the resulting hydrograph.

Another important issue to take into account is that it seems that due to
the random weight initialization, with an RRQ type of model, the performance
of an individual model could be around 40% worse than the mean. Further
statistical analysis of the probability distribution shows that 56% of the models
have RMSE around + 10% of the mode of the samples. From the probability
density function we can see the best fit obtained (log normal distribution is
used 4.16a).

4.9 Comparing the various types of models

The variability of the performance of different data-driven types of models is
considered here. Data-driven models have shown to be an accurate alternative
for building rainfall-runoff models but it is impossible to recommend one model
type that will be best in all cases. In this section performances of several models
are compared: MLP ANNs (ASCE (2000a)), model trees (Solomatine and Dulal
(2003); Witten and Frank (2000)), instance based learning (Solomatine et al.)
and support vector machines (Bray and Han (2004); Cortes and Vapnik (1995)).
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Figure 4.16: ANN RMSE probability distribution

These modelling techniques are briefly presented in the Appendix B. All models
were built with the same input variables using the 12 data sets sampled in the
section on data partitioning. The optimization of the model structure was
performed as follows:

e Artificial Neural Network: MLP networks are trained by the Levenberg-
Marquardt algorithm (Mor, 1977). For this a learning rate (0.1) with 200
epochs are used. The transfer function for the hidden nodes is a sigmoid,
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for the output a linear transfer function is used. Data is normalized to the
[0, 1] interval. A sigmoid transfer function is used in hidden nodes and a
linear transfer in the output node. The structure of the neural network is
mainly optimized by finding the right number of hidden nodes. For this
purpose, 30 neural networks with the number of nodes varying from 1 to
30 were built. The selection of the best network was based on its error on
the validation set, and the final performance was assessed with the test
set.

e Instance based learning (k-nearest neighbours method): The number of
neighbours used was determined by exhaustive optimization. From 1 to
50 neighbours where analyzed, and the minimum error in the validation
was used to make the selection of the model.

e Model trees (piece-wise linear regression models, M5’ (M5P) alogrithm):
The main method for tuning the performance and improving the gene-
ralization in a model tree is pruning. In this case, the algorithm used is
based on Witten and Frank (2000), which uses the minimum number of
instances per leaf. A higher this number is, the less leaves are created.
Models were built with the number of instances per leaf ranging from 3
to 30. The decision on the best model performance was based on the
model error on validation set.

e Support vector machine: The optimization of the support vector was
based on the two criteria. One was the kernel function, and three of them
were tested: linear, polynomial, and radial-basis functions (RBF). The
second criteria for the optimization are the parameters C and Gamma,
which are found through a grid search process with logarithmic steps.

Figure 4.17 shows the RMSE validation results of 6 data-driven models using
12 data sets. The ANN model had the lowest error on almost all validation data-
sets. The SVM models with the linear kernel follow the ANN in performance.
They are followed by the instance based learning and the M5P model tree
algorithms which have very similar performance. SVM with the RBF function
kernel, and especially with the polynomial kernel are not performing well.

For the testing data set, it would appear that the performance of the ANN
models is even better. The other models deteriorate a little, it is the case of the
SVM with linear kernel, which is on par with model trees and instance based
learning.

The computational time used in the optimization of the instance-based and
the model tree is the lowest (25 to 45 minutes), and the SVM training and
optimization needed most of the time (6 to 8 hours), and ANN model was
in this respect average with 2 hours needed. These considerations could be
important for the efficiency of research, but not for the decision about which
model to finally choose to be used in operation: the training and optimization
times are indeed quite low for all models. It is important to highlight that the



80 BUILDING DATA-DRIVEN HYDROLOGICAL MODELS: DATA ISSUES 4.10

30.00

25.00

20.00

@SVYM_Paly
OSVM_RBF
M mMS5P

Ol _Based
OSVM_Linear
BEANN

15.00

RMSE (m*3/s)

10.00

5.00

Data set no.

Figure 4.17: Validation errors of six types of models trained on 12 different training
sets

actual HBV conceptual model with expert calibration reaches an RMSE value
of 6.26 and a CoE of 0.91.

4.10 Discussion and conclusions

Important procedures related to data partitioning and the variability of data-
driven models have been discussed and explored on an example of building a
rainfall-runoff model. The sensitivity of the inputs due to data availability and
with respect to different types of flow events was analyzed. Six different model
types were evaluated with 12 different data-sets.

The following are some of the conclusions drawn from the experiments in
this chapter.

The input selection process (including the selection of lags) using correla-
tion and average mutual information brings similar results. Correlation ana-
lysis allows for a clearer picture of the dominant lags, while the AMI provides
an interval of the lags to use. The correlation has the disadvantage that is
highly sensitive to the available data. The tests performed in this chapter are
suggested to be used for exploring such sensitivity.

The precipitation information as input to rainfall-runoff models oriented at
forecasting may not be sufficient, and may require the use of past discharge(s)
as inputs to the model. It is known from experience of different researches that
the difference in performance of using as only input lagged discharge is quite
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Figure 4.18: Testing errors of siz types of models trained on 12 different training
sets

similar to the one of using lagged precipitation with the lagged discharge.

To study the influence of weights initialization on the ANN model per-
formance, 20 ANN models were trained based on different initial vectors of
weights. Most of their RMSE errors were found to be close to the mode (around
10% lower or higher than the mean). There were a number of models that went
out of the bounds of the standard deviation of RMSE. We can conclude that
the variability of the ANN models performance due to the differences in the
weights initialization needs to be always considered. For this reason the pro-
cedure of optimizing network model structures and the 10 fold cross validation
is used in the following chapters. The maximum RMSE error is less that the
differences in performance of the models with different structures (using diffe-
rent input variables). In further chapters the value of 10% will be used as a
reference to compare with other models, although the proposed value is less
than the one found in the experiments described in this chapter, we expect
to obtain a representative value when the results of structure optimization (30
ANN runs) and 10 fold cross validation provide the best ANN.

From these results, it has been concluded that the ANN model would be the
best one for building data-driven models. The procedures used in this chapter
will be used for all the data-driven models developed in this thesis.






CHAPTER
FIVE

TIME AND PROCESS BASED MODULARIZATION
IN LUMPED RAINFALL-RUNOFF MODELLING

Chapters 2 and 3 introduced the concept of modularization, and Chapter 4 has
shown the different data-driven modelling process. This chapter explores the
application of the modular models presented in Chapter 3.

Attempts to improve data-driven forecasting models relate, to a large ex-
tent, to the recognized problems of their physical interpretation. The present
chapter deals with the problem of incorporating hydrological knowledge into
the modelling process through the use of a modular architecture that takes into
account the existence of various flow regimes. Three different data partitioning
schemes are employed: automatic classification based on clustering, tempo-
ral segmentation of the hydrograph based on an adapted baseflow separation
technique, and an optimized baseflow separation filter. This chapter discusses
the results obtained on the application of the mentioned models to three case
studies (Corzo and Solomatine, 2007a).

5.1 Introduction

Modular modelling procedures contemplate partitioning of data to represent a
specific part of a problem. In this sense the problem to be solved needs to be
divided in smaller units that will be represented by independent models. This
approach has the disadvantage that the separation of a process in a hydrological
system is sometimes not possible. In studying the rainfall-runoff relationship,
the processes are analyzed as events, and normally measured information from
forcing variables and stream flow are available(Price, 2000). Hydrology of most
processes is quite well understood and modelled by various types of models. In
this sense the formulations used for modular modelling include the traditional
formulations encapsulated in hydrological models.

In this chapter the application of the schemes presented in Chapter 3 are

83
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applied to three case studies using lumped conceptual hydrological models.
The modular models used here are:

e MM1 (Section 3.1, Figure 3.3): Modularization is based on clustering.
Two clusters are identified within the training data set and an ANN
model is built for each cluster. On the basis of clustered data, a classifier
is trained, and it is used in operation to attribute data to a particular
model.

e MM2 (Section 3.2, Figure 3.4): Modularization is based on the sub-
process identification which is done by the hydrograph (graphical) ana-
lysis of baseflow. Two ANN models are built: the model of baseflow, and
the model of the total runoff. In operation the hydrograph analysis is
replicated by a classifier (Model tree).

e MM3 (Section 3.3, Figure 3.5): Modularization uses time-based parti-
tioning of flow into two components (which corresponds to some sub-
processes which are however not identified explicitly), an ANN model
that forecasts both parts of the flow (baseflow and direct runoff) are
trained.

For comparison, a data-driven single model has been also developed on the
basis of the whole data set; referred to as global (GM), Chapter 4. An MLP
ANN was used, and, for the sake of preserving the consistency between the
models all models have the same structure.

5.2 Catchment descriptions

Three basins, Bagmati in Nepal (B1), Sieve in Italy (B2) (Brath et al., 2002;
Solomatine and Dulal, 2003), and Brue in the UK (B3) (Moore, 2002) were
considered as case studies (Table 5.1 and Figure 5.1, 5.2, 5.3). The size, loca-
tion and other characteristics of the basins are significantly different, and this
allowed for validating the presented modelling approach under different spatial
and temporal forecasting conditions. The detailed hydro-geological description
of these three basins can be found in the papers mentioned above.

Figure 5.1 shows the hydrograph of the Bagmati basin in Nepal; the basin
response time is approximately one day. As it can be seen the low flow periods
have regular flows under 60m?/s. However, during the rainy season this could
turn into flood situation with the flows above 2500 m?/s.

The hydrograph presented in Figure 5.2 for the Sieve basin, shows a clear
difference in response for dry and wet events. The response time of the basin
is around six hours.

Figure 5.3 show a fast response of a small basin. The response time of this
basin is quite variable; however, correlation analysis shows 10 hours in average.
The basin does seem to have a highly different response to precipitation in
winter than in summer.
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Table 5.1: General hydrological characteristics of the three basins.

Basin name B1 (Bagmati) B2 (Sieve) B3 (Brue)
Topography Mixed Mountain Gently slopes
River length (km) 170 56 20
Basin Area (km?) 3500 836 135.2
Daily data set from 01/01/88 01/12/59 01/09/93
To 01/12/95 01,/02/60 30/08/95
Training start 01/01/88 13/12/59 19:00  01/09/93 00:00
Training end 22/06/93 28/02/60 19:00  01/08/94 00:00
Number of samples Training 28/02/60 19:00  01/08/94 00:00
Verification start 23/06/93 01/12/59 07:00  01/09/94 00:00
Verification end 31/12/95 13/12/59 18:00  01/08/95 00:00
Location Nepal Italy England
Time step 1 day 1h 1h
Hydrograph Bagmati basin (January/1988 to june/1993) - Training
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Figure 5.1: Hydrograph built from daily time series of the Bagmati catchment from
January/1988 to June/1993

5.3 Input variable selection

The choice of input variables for global and modular ANN models was based
on correlation and mutual information analysis between the input and output
variables, as described in Chapter 4. The variables chosen for the artificial
neural network (ANN) models are shown in Table 5.2.

Figures 5.4a and 5.4b, present the autocorrelation and cross-correlation re-
sults for the Sieve river basin. The autocorrelation till 6 hours is still higher
than the maximum cross correlation. On the other hand, the peak both of
the maximum correlation and the mutual information is observed at 6 hours.
Along with this analysis several models with different combinations of varia-
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Figure 5.2: Hydrograph built from hourly time series of the Sieve catchment from
Decembre/1959 to Febraury/1960
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Figure 5.3: Hydrograph built from hourly time series of the Brue basin from Sep-
tember/1993 to August/199.

bles have been run as well. As was already mentioned in Chapter 4, all models
that did not include discharges as inputs had low performance. In Chapter 4
it was shown that the difference in average performance for models with and
without past precipitation is very small for one time step, however, for accurate
forecasting in flood situations precipitation has to be included as input. This
procedure was common in all case studies and was the basis for the input selec-
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Figure 5.4: Autocorrelation of lagged discharge and cross-correlation with precipita-
tion time series for the Sieve river basin

tion (Table 5.2). The other basins were evaluated using the same procedures
to select inputs. For extended forecast horizons only basins B2 and B3 were
considered. The model handling baseflow did not include precipitation as an
input.

5.4 Comparison to benchmark models

A number of conceptual hydrological models were used as benchmark models.
The best conceptual model from the results obtained by Shrestha and Soloma-
tine (2008); Shrestha (2003); Solomatine and Dulal (2003); Solomatine et al.,
were used for each basin. Table 5.3 presents the results of several models built



ot

88 TIME AND PROCESS BASED MODULARIZATION 5.

Table 5.2: Inputs variables used for ANN forecast models

Basin name

Forecast Bagmati (B1) Sieve (B2) Brue (B3)
Qty1= f(Pt,Py—1,Pt_2, f(Pt,Py_3, F(Pt—10,Pt—9,
Qt—1,Qt) Qt-3,Qt—2,Qt—1,Qt) Qt—1,Qt—2,Qt—3,Q¢)

Qty2= f(Pt—_g,Pt_9,Pt_7,P;_¢,
Qt—1,Qt—2,Qt—3,Q¢)

Qt43= F(Pt,Py—3,Qt—3,Q¢) F(Pt—6,
Qt—3,Qt—2,Qt—3,Q¢)

Qty6= F(P,Qt) F(Pt_3,

Qt—3,Qt—2,Qt—3,Q¢t)

for each of the basins mentioned. In the models for basin B1 (Bagmati) only
the forcing variables (e.g. precipitation, temperature and other) were used
as inputs, and the set of input variables was built following the exhaustive
performance-based optimization process. In the other basins mentioned the
data-driven models did include discharge input. The range of time series data
used for verification is the same as the one used in this thesis. For basin Bl
the best conceptual model had RMSE of 132m3/s. At basin B2 there was not
enough information available to build the model; temperature was not available
and therefore the models had a very low performance. For basin B3 the HBV
model had an average RMSE of 0.97 m3/s. These values will be used further
as a reference for comparison.

5.5 Modelling process

The basic structure of the ANN models was the same for all catchments: a
three-layer MLP, with a tangent transfer function in the hidden layer and a
linear transfer function in the output layer. The statistical parameters and
distribution of the training and test data set were verified. The training was
performed using the Levenberg-Marquardt algorithm; termination was based
on reaching the maximum number of epochs (150) or the change in mean square
error dropping below 0.0001.

For the initial clustering in MM1 we used the k-means algorithm. Classi-
fiers in splitting models for MM1 and MM2 used RBF ANN and the Fisher
discriminant method, respectively. These were selected based on their perfor-
mance. Regression trees were also tested to serve as classifiers but they were
less accurate.

For the ANN MLP and RBF models, the MATLAB Neural Network toolbox
was used. The Fisher discriminant algorithm was based on the MATLAB
Statistical Toolbox. Optimization of the MM3 model was based on the Genetic
and Direct Search Toolbox developed for MATLAB. A Pentium 4 3.2 GHz PC
was used.

Each of the modular models had different number of hidden nodes according
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Table 5.3: Conceptual and data-driven models performance in terms of
RMSE (m?/s)

Basin name B1 (Bagmati) B2 (Sieve) B3 (Brue)
ANN model 163.14 3.612% , 12.55° | x?
21.55¢

Tank model 179.15 x? x4

HBV Model x4 x? 0.97

Nam model 132.81 x¢ x4

ADM 177.01 x4 x4

Model Tree (M5P) 153.58 5.17%,11.35 , 19.40¢  0.45°

“forecast 1 hour
bforecast 3 hours
“forecast 6 hours
dx not available or the period of testing was different.

to the catchment and modular scheme used. The inputs for the modular models
were the same as in the global model; however, in the MM3 the baseflow
component by definition should not include the precipitation as input. Analysis
of the convergence of the MLP training in different trials showed that 150
iterations were sufficient in all cases. For optimization of the MM3 scheme,
two algorithms, GA and Pattern Search (Abramson et al., 2004) were used in
all experiments. It appeared, however, that the GA was too slow, especially for
basins B2 and B3 where it did not show any sign of convergence even after 24
hours of computation. The experience with the GA cannot be characterized as
positive; however, this could be attributed to the details of its implementation
in MATLAB and, probably, not enough effort invested in tuning its parameters.
In the end all the results in all cases reported were achieved by the Pattern
Search. The different modular modelling techniques were evaluated based on
the different performance criteria presented in Chapter 2.
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Table 5.4: ANN model structures and training parameter for 1 step forecast.
(F =Forecast horizon)

Basin name | Bl (Bagmati) B2 (Sieve) B3 (Brue)
Network 5—4—1F=1d 6-5—-1F=1h 6—-14—-1F=1h
structure 4-5-1F=3h 8-8-1F=2h

2-5—-1F=6h 5—-27—1F=3h
(nodes)

4—-24—-1F =6h

5.6 Results and discussion

The performance measures of the three modular models schemes used are com-
pared in Tables 5.5 and 5.6; all model forecasts are for one time step ahead.
This analysis is important since the conceptual models also make a simulation
for one step ahead.

The calculated RMSE in the three case studies show variable performance
(Table 3). Modular models are in general better than global models but show
variable performance. In the case of the more complex basin Bl, with the
largest area and largest forecast horizon, modular models improve on global
models in relative terms more than for other basins. The mountainous region
and the size make it a highly nonlinear system, and this implies that there is
probably a large influence of baseflow components in the forecast streamflow
and, consequently, higher importance of modelling it by a specialized model.
The highest performance is shown by the MM3 model (RMSE lower than that
of the global ANN by almost 24%). Although, MM2 performance measures
does not seem to show a significant improvement with respect to all the error
measures, it is possible to see that its error is consistently lower than that of
the GM. With respect to the physical based models all the models clearly have
better performance that the conceptual hydrological models for one time step
forecast.

Table 5.5: Performance in verification of the different modular models and global
models for each basin (1 time step forecast).

RMSE CoE
GM MM1 MM?2 MM3 Naive GM MM1 MM?2 MM3
Bl | 134.41 113.79 116.74 98.55 153.54 0.66 0.77 0.74 0.8

B2 3.71 5.84 3.41 3.07 6.73 0.9942  0.9855 0.9957  0.996
B3 0.11 0.15 0.11 0.11 0.25 0.9988 0.9959 0.9975 0.9976

Basins B2 and B3 are small in size with a relatively fast response. In general,
it can be said that these catchments were modelled with high accuracy by both
global and modular models. High accuracy makes it difficult to compare the
models using CoE which is very close to 1 (Table 5.5). Nevertheless, it is clear
that the use of hydrological knowledge in flow separation gives good results for
these basins as well. The MM3 models show the largest reduction in RMSE
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Table 5.6: PERS indezf of different modular models and global models for each basin
(1 time step forecast).

PERS
GM | MM1 | MM2 | MM3

Bl | 0.23 | 0.47 0.41 0.51
B2 | 0.69 | 0.24 0.78 0.79
B3 | 0.78 | 0.64 0.78 0.79

compared with the global model in B2; however, there is no clear conclusion
for B3.

The results show that the error of the modular and the global models are
less than that of the naive model. The naive model is the simplest solution and
could be interpreted as a measure of the simplest form of linearity in the time
series. All other models include the precipitation as an input variable (which
the naive model does not), so it is not surprising that they have better perfor-
mance. It is also worth noting that the relatedness (measured by correlation)
between the precipitation and the future values of discharge is variable and our
experiments (not presented here) show that it depends on the different seasons
(since under different flow conditions soil moisture and the time lags are also
different). This prompts the idea of using different modular model structures
for different seasons, and combining them in an overall model —which can be
undertake in future research.

In terms of the coefficient of persistence (PERS, Table 5.6), the results are
consistent with the RMSE and CoE. In terms of PERS, MM3 outperforms
all other models in all three case studies. The PERS index for the MM3 is
near or above 0.5, showing a significant increase in performance over the naive
predictor.

Using more than one error metric in the analysis makes it possible to better
evaluate the performance of models for various hydrological regimes. In this
study RE (Equation 2.10) is used to identify the percentage of samples belon-
ging to one of the three groups: “low relative error” with RE less than 15%,
“medium relative error” with RE between 15 and 35%, and “high relative er-
ror” with RE higher than 35%. The ranges were determined after experiments
with the two trial models. The low error value is expected to cover possible
measurement errors that could be around 20% (Beven, 2003). The percentages
of samples in the three different relative error (RE) groups are shown in Figure
5.5. RMSE of MM2 for Bl is less than that of the GM, but at the same time
there are fewer samples with low RE than for the GM. This seems contradic-
tory, but the RMSE squares the absolute error so the high flow samples with
low RE may have high absolute error, which, being squared, will contribute
considerably to the total RMSE. At the same time, since their RE is low, they
would be attributed to the “low relative error” group which would contain a
large number of such examples. This is what happened with the samples pre-
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Figure 5.5: Relative errors classifid in groups of low (< 15%), medium (15% <
RE < 35%) and high (> 35%)

dicted by GM for which the “low RE” group appeared to be larger than for
MM2.

For basin B2 there is an increase in the low relative error percentages for
models MM2 and MM3 (Figure 5.5b). This is consistent with the NRMSE
measure. In this case the MM2 model shows a more precise and accurate
result having 99% of the sample with a low RE.

Figure 5.7 shows a fragment of a hydrograph generated by MM3 for B2
using test data. This model has been optimized, so that BF I, is 0.25 and
the recession coefficient a is 0.96. Indeed, for the fast response basins, values of
this order are expected: the BFI should be small, and the recession coefficient
should be high due to the relatively high slope in the recessions.

In contrast to B2, the B1 catchment in Nepal, which is large, has a consi-
derable groundwater storage. This basin has a BF'I,,4, of 0.95 and coefficient
a of 0.23. Note that BFI,,q, as defined by Ekhardt (2005) (Equation 3.5) is
the maximum value of the baseflow index (BFT) which is defined as the total
volume of baseflow divided by the total volume of runoff for a period of time
(Wahl and Wahl, 1995). A value of 0.23 therefore does not mean that the
volume of baseflow is 23% of the total volume.
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Figure 5.6: Difference between measured and simulated, with highlighted relative
errors for the global model (GM) and the modular model (MM) of the Bagmati river
basin (B1)

In general, the modular model MM3 outperforms the global model; this can
also be illustrated graphically as in Figure 5.7a and 5.7b with a typical fragment
of the hydrograph. Figure 5.7a shows that the baseflow for this catchment does
not have a high contribution. This may actually explain why the accuracy of
the modular model (where baseflow is modelled separately in this case) is not
much higher than that of the global one. Another reason, of course, is that the
GM is already very accurate.

An interesting question to ask is why the MM3 algorithm results in a better
performance than that of MM1 and MM2. One may conclude that this can be
attributed to the fact that Ekhardts filter is a better device to identify the ba-
seflow, so the MM3 model is therefore better than the other models. However,
the better performance of MM3 may also be a result of other factors, so that the
further analysis is required. A more general question is whether the flow com-
ponents identified by the separation algorithms really do correspond to diffe-
rent sub-processes (which we tried to model separately), or do these algorithms
produce “baseflow” while not necessarily representing a clearly identifiable sub-
process? One may argue, however, that accurate separation of sub-processes
corresponding to base and excess flow (which are currently defined in a quite
approximate fashion, and differently by different authors) is simply not possi-
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Figure 5.7: Hydrograph section of the Sieve basin (B2)

ble in principle. However, answering these interesting questions is beyond the
scope of this work.
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Figure 5.8: GA optimization results, MM3 model, Bagmati case study (Variables:
1=BFImaz, 2=a, 3=Bfo, 4=N1, 5=N2)

Optimization

MM3 model optimization was performed using GA which was set up using the
parameters shown in Table 5.7a. The convergence of the GA can be seen on
Figure 5.8. One can see that GA converged relative fast to a quite low model
error but was running for quite many iterations since at each of them a certain
improvement was still observed. The total optimization time for the Bagmati
case was around 3 hours (Pentium 4 processor running at 3.2 GHz was used).

The Generalized Patter Search (GPS) parameters are presented in Table
5.7b. GPS-based optimization was much faster than that by GA and for Bag-
mati case took around 10 minutes More accurate comparisons between these
two and other direct search algorithms in the considered class of optimization
problems are yet to be performed.

Models performance for different forecast horizons

The comparative analysis of models with respect to their performance for dif-
ferent forecast horizons was done for basin B2 (Sieve, Italy) and B3 (Brue,
England). Figure 5.9 indicates that difference in performance between all mo-
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Table 5.7

(a) Genetic algorithm Optimization

parameters (b) Generalized pattern search parameters
Elite Count 4 Tolerance Mesh: 0.000001
Crossover Fraction 0.3 Tolerance Function: 0.000001
Population size 20 Tolerance Bind: 0.001
Generations 50 Maximum Iterations: 500
Initial population Random Maximum number of | 10000
Selection Function Stochastic function Evaluations:
Uniform Mesh Contraction: 0.5
Cross over function | Scattered Mesh Expansion: 2
Mutation Function | Gaussian Initial Mesh Size: 1
Mutation Function | Adapt Initial Penalty: 10
Feasible Penalty Factor: 100
Poll Method: GPS  positive
basis 2N
Polling Order: Consecutive

dular models and GM’s accuracy becomes higher with the increase in model
complexity. This points to the potential of using modular modelling in situ-
ations when forecasting (and modelling as a whole) becomes a difficult task,
for example in critical flooding situations when higher forecasting horizons are
desirable. It is also important to notice that the mentioned system complexity
does not relate to the seasonality in the time series, an aspect that is still to
be analyzed and addressed.

Two important remarks can be made in comparison with the performance
of previous models like M5 prime and the conceptual models mentioned as
benchmarks. It would appear that the accuracy of all the data-driven models is
better than the conceptual models mentioned. On the other hand, for extended
lead times, the hydrological conceptual models with an accurate input may have
a better performance than the data-driven ones. It is worth stressing again that
the modular models presented here perform better than the benchmark global
models mentioned at the beginning of this section (Corzo and Solomatine,
2006a,b, 2005; Corzo et al., 2007; Solomatine and Dulal, 2003).

5.7 Conclusions

In this study the modular modelling approach to build hydrological forecasting
MLP ANN models was used. Accordingly, instead of training a single (global)
data-driven model on the whole data set, the training set is partitioned into
several subsets, and a number of local models, each responsible for a region of
the input space, are built. Three different partitioning schemes were employed:
based on the clustering, on a traditional baseflow separation method (which
was however updated to allow for algorithmic implementation), and on using
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Figure 5.9: Comparison of the models performance for different forecast horizons

the optimal hydrological process filter (which was optimized by the GA and
Generalized Pattern Search, with the higher performance of the latter).

The use of hydrological (domain) knowledge incorporated in the algorithms
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for separation of the base flow proved to be effective. Since such algorithms
cannot be directly used in operation (they require the future values of flow),
they have to be replicated by surrogate classifier models, and it was shown
that this approach can be successfully implemented. Several classifiers used in
this role were compared in accuracy but the difference appeared to be marginal
(linear classifier was, however, the best). Partitioning the data by clustering in
the input space has lead to less accurate models, if compared to those based on
the knowledge-based partitioning (flow separation). However, clustering-based
partitioning is simple, is not sensitive to the algorithm’s parameters and can
be used as a complementary tool.

The use of domain knowledge in the modelling framework presented proved
to be beneficial. Even the traditional semi-empirical flow separation algorithms,
such as constant slope algorithm, can add to the accuracy of data-driven hy-
drological models. Partitioning the data by clustering gave good results only
in some of the basins. Such partitioning is simple, but does not directly relate
to hydrological regimes and is highly sensitive to the distance measure used in
clustering.

There are several research issues that are to be addressed (and which are
already being addressed in the ongoing research): the proper “soft” combi-
nation of the modelling modules especially at the transition point from one
regime to another; complementing hydrological knowledge by the routines for
automatic identification of regimes (for example, using the apparatus of hidden
Markov models); modularization of data-driven hydrological models (following,
for example, an approach outlined by Solomatine 2006; Solomatine and Corzo
2006); and combining data-driven and physically-based models.

In general, it can be concluded that the modular approach for hydrologic
forecasting, especially the one involving the domain knowledge, is useful. Use
of such knowledge in partitioning the data and building local specialized ANN
models and optimizing the overall model structure ensure accurate representa-
tion of the sub-processes constituting a complex natural phenomenon.



CHAPTER
SIX

SPATTAL-BASED HYBRID MODULAR
MODELLING, WITH APPLICATION TO THE
MEUSE RIVER BASIN

The previous chapters of this thesis have shown that using the concept of
hybrid and modular modelling leads to more accurate models. The concepts
presented in Chapter 5 showed that, in a lumped model, the temporal and
process modularization have an added value in terms of accuracy and richness
of the embedded information about the forecasted situation.

In Chapters 2 and 3 the possibility of building models based on spatial
modularity has been mentioned, and classified as class D2P (data-driven to
process-based). This chapter explores such possibility in detail, on an example
of a semi-distributed hydrological model of a meso-scale catchment (Meuse
river basin).

6.1 Introduction

It is common practice to use semi-distributed conceptual models in operational
forecasting for meso-scale catchments. These models are based on the principle
of mass conservation and simplified forms of energy conservation. Conceptual
models, however, may not represent all sub-basins with the same accuracy.
Inaccurate precipitation data and the need for its averaging for the lumped
models may seriously influence the accuracy of modelling. Due to the limited
representation of the full rainfall-runoff process, the complexity of the model
integration and the identification of the lumped parameters, the proponents of
fully distributed detailed models argue that there are many situations when
the accuracy of conceptual models is not sufficient. However, the simplicity
of these models and the high processing speed is an advantage for real time
operational systems and often makes such models the first choice.

99
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Precipitation forecasts are normally available for low resolution grids which
are close to the size of the modelled sub-basins. It has been shown that there
are situations when such models are more accurate than the fully spatially dis-
tributed physically based and energy based models (Linde et al., 2007; Seibert,
1997).

Diermansen (2001) presented an analysis of spatial heterogeneity in the
runoff response of large and small river basins, and an increase of error is
observed with the increase of the level of detail in the physically based mo-
del. An alternative to fully-distributed models is the class of intermediate mo-
dels, the so-called semi-distributed conceptual models, as the most appropriate
modelling approach for meso-scale operational forecasting. In this research
the THMS-HBV model (Lindstrom et al., 1997) belonging to this class is used
(http://www.smhi.se). In this chapter it will be called simply HBV, and will
refer to the initial hydrological model formulation used as a hydrological proto-
type module in the flood early warning system for the rivers Rhine and Meuse.

Ashagrie et al. (2006) presented a long term analysis for the effects of climate
change and land use change on the Meuse river basin using the HBV model.
This analysis showed that the agreement between the observed and measured
discharge is generally good, in particular flood volumes and the highest peak are
simulated well. However, there are some problems with the medium flow (shape
and peak values), and a systematic deviation for certain observed periods (i.e.
1930-1960) was also observed. de Wit et al. (2007b) explored the impact of
climate change on low-flows. They found high accuracy for the monthly aver-
age discharge and for the highest (January) and lowest discharge (August),
but there was an overestimation and underestimation observed in spring and
autumn, respectively. Many performance calibration techniques with different
types of models have been used for the Meuse. Booij (2005) presented the
manual calibration and validation of the HBV based on expert tuning of model
parameters. The problems mentioned above still remain unresolved and under
investigation by a number of authors.

As has been already discussed, an alternative approach to flow forecasting
is using data-driven models (DDM). Traditionally, modellers build a general
model that covers all the processes of the natural phenomenon studied (overall
model). In many applications of data-driven models, the hydrological know-
ledge is “supplied” to the model via a proper analysis of the input/output
structure and the choice of the adequate input variables. These models are less
sensitive to precipitation and temperature information in hydrological systems
where high autocorrelation is found in streamflows. Therefore, in operational
systems where missing data is an issue, such DDMs can replace the local sub-
basin models. Additionally, a complex distributed water system requires local
model evaluations and integration of models. So an alternative is to build an
overall DDM for the whole basin, and for semi-distributed hydrological model-
ling a combination of hydrological process-based and data-driven models can
be used. Additionally, the routing model integrating sub-basin models can be
replaced by a DDM as well. These two approaches are explored in this chapter.
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While our study of using modular models of the Meuse basin has been
in progress, Chen and Adams (2006) presented the description of sub-basin
models and their routing through the use of an ANN-based integration model.
The basin area was around 8500 km?2, with a division into three sub-basins
based mainly on the river network system. The calibration process included
two stages: first, the whole catchment was considered (no sub-basin discharge
information was available), and, second, with the use of output discharges
from the basins to the outlet. This approach is similar to the one tested in the
present chapter, but we considered a more complex basin, compared the model
with the ANN routing integrator with a full basin hybrid model involving ANN
submodels, and performed additional analysis of the variations of the models
seasonal performance.

The objectives of this chapter are: (i) to analyse the performance of DDMs
in their role as sub-basin replacements, in terms of local and overall flow si-
mulation errors; (ii) to explore different data-driven methods as alternative
methods for the integration or replacement of sub-basins; iii) draw conclusions
about the applicability of the hybrid process-based and data-driven models in
operational flow forecasting.

The outline of this chapter can be seen in Figure 6.1. Section 2 describes
the hydrological characteristics of the hydrological semi-distribtued model of
the Meuse river basin and its validation information. Section 3 describes the
methodology of the 2 schemes. Sections 4 and 5 cover the application results
of scheme 1 and 2 respectively. Section 6 discusses the results of both schemes.
Section 7 presents the conclusion of the different experiment results.

6.2 HBV-M model for Meuse river basin

The conceptual hydrological model HBV was developed in the early 1970s
(Bergstrom and Forsman, 1973) and its versions have been applied to many
catchments around the world (Lindstrém et al., 1997). HBV describes the
most important runoff generating processes with simple and robust procedu-
res. In the snow routine, snow accumulation and melt are determined using
a degree temperature-index method. The soil routine divides the forcing by
rainfall and meltwater, into runoff generation and soil storage for later evapo-
ration. The runoff generation routine consists of one upper non-linear reservoir
representing fast and intermediate runoff components, and one lower linear re-
servoir representing base flow. Runoff routing processes are simulated using a
simplified Muskingum approach and/or a triangular equilateral transfer func-
tion (Ponce et al., 1996).

HBYV is a semi-distributed model and the river basin can be subdivided into
sub-basins (HBV-S). This model simulates the rainfall-runoff processes for each
sub-basin separately with a daily or hourly time step. Each sub-basin is divi-
ded into homogenous elevations which are then divided into vegetation zones.
Further details about the HBV model can be found in Lindstrom et al. (1997)
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Figure 6.1: Outline of Chapter 6

and Fogelberg et al. (2004).

The HBV-S sub-basin models are linked by a Muskingum-Cunge equation.
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This routing equation is conventionally applied to river reaches where the dis-
tance between the outlets of the basins is significant. The Equation 6.1 was
used in this study.

Qn+1 = Colni1 + C1l, + C2Qp (6.1)
K, — 0.5At
Co = (K — K, + O.5At> (6:2)

K, +0.5At
G = (K — K.+ O.5At> (6:3)

K — K, —0.5At
C2 = (K — K, + 0.5At> (6.4)

where, K is a storage factor with units of time, and At is the time interval
considered in the simulation. The value of x represents the position on the river
channel in meters. I, and I,,4; are the input to the channel at the beginning
and the end of the period At, respectively.

Diermansen (2001) presented an analysis of spatial heterogeneity in the
runoff response of large and small river basins, and an increase of error is
observed with a high increase of the level of spatial details in the model. An al-
ternative to fully-distributed models is the class of intermediate models, the
so-called semi-distributed conceptual models, as the most appropriate mo-
delling approach for meso-scale operational forecasting. In this research the
THMS-HBV model (Lindstrém et al., 1997) belonging to this class is used
(http://www.smhi.se). In this study it will be called simply HBV, and will
refer to the initial hydrological model formulation used as a hydrological proto-
type module in the flood early warning system for the rivers Rhine and Meuse.

Ashagrie et al. (2006) presented a long term analysis for the effects of climate
change and land use change on the Meuse river basin using the HBV model.
This analysis showed that the agreement between the observed and measured
discharge is generally good, in particular flood volumes and the highest peak are
simulated well. However, there are some problems with the medium flow (shape
and peak values), and a systematic deviation for certain observed periods (i.e.
1930-1960) was also observed. de Wit et al. (2007b) explored the impact of
climate change on low-flows. They found high accuracy for the monthly aver-
age discharge and for the highest (January) and lowest discharge (August),
but there was an overestimation and underestimation observed in spring and
autumn, respectively. Many performance calibration techniques with different
types of models have been used for the Meuse. Booij (2005) presented the
manual calibration and validation of the HBV based on expert tuning of model
parameters. The problems mentioned above still remain unresolved and under
investigation by a number of authors.
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6.2.1 Characterisation of the Meuse River basin

The Meuse River originates in France, flows through Belgium and The Nether-
lands, and finally drains into the North Sea (Figure 6.2 ). The river basin has
an area of about 33,000 km? and covers parts of France, Luxembourg, Bel-
gium, Germany and The Netherlands. The length of the river from its source
in France to the North Sea at the Hollands Diep (an estuary of the Rhine
and Meuse rivers) is about 900 km. Major tributaries of the Meuse are the
Chiers, Semois, Lesse, Sambre, Ourthe, Amblve, Vesdre and Roer. The hy-
drological model of the Meuse basin upstream of Borgharen is subdivided into
15 sub-basins, covering an area of 21.000 km? (Figure 6.2). For more detailed
information about catchment geological and hydrological properties see Berger
(1992), de Wit (2009) and de Wit et al. (2007a).

In general terms the land use in the basin is made up of 34% arable land,
20% pasture, 35% forest and 9% built up areas (source: CORINE). Tu et al.
(2005) found the coverage of forest and agricultural land relatively stable over
the last ten years, but the forest type and management practices have changed
significantly. In addition to this it seems that intensification and upscaling of
agricultural practices and urbanization are the most important land changes
in the last century.

Station No. Location

1 Lorrained Sud

2 Chiers

3 Stenay

4 Chooz

5 Semois

6 Viroin

74 Meuse Chooz-Namur
8 Lesse

9 Sambre

10 Ourthe

11 Ambléve

12 Vesdre

13 Mehaigne

14 Meuse namur-Borgaharen
15 Jeker

Figure 6.2: The Meuse river basin and the sub-basins upstream of Borgharen

As far as the hydrologic properties are concerned the Meuse can roughly be
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Figure 6.3: Meuse basin hydrological properties

split into three parts (Berger, 1992):

1. The upper reaches (Meuse Lorraine), from the Meuse source to the mouth

of the Chiers. Here the catchment is lengthy and narrow, the gradient is
small and the major bed is wide. Because of that the discharge up to the
mouth of the Chiers has a comparatively calm course.

. The central reaches of the Meuse (Meuse Ardennaise), leading from the

Chiers to the Dutch border near Eijsden. In that section the main tri-
butaries are Viroin, Semois, Lesse, Sambre and Ourthe. Here the Meuse
transects rocky stone, resulting in a narrow river and a steep slope. The
poor permeability of the catchment and the steep slope of the Meuse and
most of the tributaries contribute to a fast discharge of the precipitation.
The contribution of the area to flood waves is great, the contribution to
low flows is small.

. The lower reaches of the Meuse, corresponding to the Dutch section of the

river. The lower reaches themselves may again be split into the stretches
from Eijsden to Maasbracht and from Maasbracht to the mouth. In the
former part the slope is still relatively high. For the greater part the
river has no weirs here. In the section the Meuse has no dikes. For
those reasons the stretch above Maasbracht is occasionally reckoned as
part of the Meuse Ardennaise, which in that case flows from Sedan to
Maasbracht. It may be remarked that the stretch that forms the border
with Belgium is called the Grensmaas (Border Meuse) in the Netherlands,
and Gemeenschappelijke Maas (Common Meuse) in Flanders.

6.2.2 Data validation

The validation of the data sets presented in this chapter are based on the results
obtained from different researches (Ashagrie et al., 2006; Booij, 2002; de Wit
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et al., 2007b; Leander and Buishand, 2007; van Deursen, 2004). The overall
water balance error obtained in the validation was + 5%. Ashagrie et al. (2006)
concluded that the average correlation of the HBV predictions and measured
data is around 0.9, and the Nash-Sutcliffe efficiency is 0.93.

Hereafter HBV-M (HBV-Meuse) refers to the instantiation of the HBV
rainfall-runoff model for the whole of the Meuse basin. The calibration and va-
lidation data sets used in HBV modelling were constructed in such a way that
the observed and simulated discharges in both data sets in terms of flow volu-
mes, and the number of flood peaks and the overall shape of the hydrographs
are similar. However, initially no specific low-flow indices are used neither for
calibration nor validation. Therefore in this study the results of the hydrologi-
cal simulation of the Meuse discharges done by de Wit et al. (2007b) are used.
In their study, the model was specifically validated against low-flow indices
derived for the period 1968 to 1998.

Complementary information on data validation can be found in the research
done by de Wit et al. (2007a). Their work presents the complete and detailed
description of the hydrological data used for the model development.

6.3 Methodology

In this study two hybrid modelling schemes were tested. In the first one, some
HBV-S (sub-basin) models were replaced by data-driven model representati-
ons. The second scheme is based on the replacement of the Muskingum-Cunge
flow routing model by an ANN model integrating the outputs of the sub-basin
models.

6.3.1 HBV-M model setup

The HBV-M model simulates the rainfall-runoff processes for each sub-basin
separately. The sub-basins are interconnected within the model schematization
and HBV-M simulates the discharge at the outfall 6.4. The schematisation and
parameter optimization is derived from the approach proposed by van Deursen
(2004).

The Meuse basin model has been calibrated and validated using daily tem-
perature (T) and precipitation (P) for 17 locations interpolated from measure-
ment stations, the calculated potential evapotranspiration (E,.) per subbasin,
and the discharge (Q) at Borgharen. The interpolation of the different locations
was performed using Kriging (Stein, 1999).

HBV-M has been run on a daily basis using daily temperature, precipita-
tion, potential evapotranspiration and discharge data for the period 1968-1984
(calibration) and 1985-1998 (validation) by Booij (2002, 2005) and fine-tuned
(with more detailed data) by van Deursen (2004).

The model results in this study have been evaluated against the observed
discharge records using (a) the volume errors (mm/yr), (b) the coefficient of
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Figure 6.4: Schematisation of the lag time considered between basins

efficiency (CoE) for the gauging stations along the Meuse and the outlets of
sub-basins and the root mean squared error (RMSE, Eq. 2.1); (¢) the nor-
malised RMSE (NRMSE, Eq. 2.3) (for comparing the sub-basin models with
considerably different flows).

6.3.2 Scheme 1: Sub-basin model replacement
HBV-S sub-basin models

The objective of the further analysis is to determine the average error contri-
butions of the different sub-basin models (referred to as HBV-S) to the total
error of HBV-M, and hence to identify the candidate sub-basin models that
would need improvement or replacement. In this modelling exercise the river
basin behaviour during different seasons and flow regimes will be also taken
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Figure 6.5: Location of the river gauge stations available for the model replacement

into account.

Sub-basin error contribution

The relative error contribution from a particular HBV-S (sub-basin) model
is calculated as follows. First, the HBV-M model is run and its RMSE at
the outlet is calculated. Then, according to a given replacement scenario a
number of input measured discharges are fed into the HBV-M. These measured
discharges were available only for some basins, and are the ones used for the
different HBV-S model replacements scenarios. The HBV-M model is run once
for each scenario. The resulting RMSE for each scenario is compared to the
RMSE of the standard HBV-M. This gives the possibility of identifying the
overall error variation due to the sub-basin model simulation. Such an error
contribution is calculated for the different flow conditions (e.g., dry and wet
seasons).

The replacement of the sub-basin models is performed in sequence: starts
with the Lorraine Sud in the direction downstream towards Borgharen, then
one more sub-basin model is replaced, then yet another one, until all selected
sub-models are replaced (ending at Borgharen). It is important to stress that
the independent replacements of sub-basins will not allow for seeing the accu-
mulative error reduction, which is necessary to have an overall idea of the total
error of accumulative areas. Two important assumption are made to be able to
visualize the error contribution. First, is that the compensation of errors when
adding the basin is minimal in comparison to the error of the basin contribu-
tion. The second assumption is based on the additive linear error propagation
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Table 6.1: Data available for the Meuse tributaries (catchment area until Borgharen)

Sub-basin  Location of measurement tributary/river % Area®  Available data

Subbas 1 St. Mihiel - Meuse 12.1 1969-2005
Subbas 2 Carignan - Chiers 10.5 1966-2005
Subbas 3 Stenay - Meuse 6.5 1982-2005
Subbas 4 Chooz - Meuse 10.7 1969-2005
Subbas 5 Membre Semois 5.9 1968-2005
Subbas 6 Treignes Viroin 2.5 1974-2005
Subbas 7 Maas Chooz Namur 5.4 -

Subbas 8 Gendron Lesse 6.2 1968-2005
Subbas 9 Sambre 13.1 -

Subbas 10 Tarbeux - Ourthe 7.6 1988-2005
Subbas 11 ~ Martinrive - Ambleve 5 1974-2005
Subbas 12 Chaudfontaine - Versdre 3.3 1992-2005
Subbas 13 Moha - Mehaigne 1.7 1969-2000
Subbas 14  Maas Namur Borgharen 7.4 -

Subbas 15  Jeker 2.2 -

“Catchment area until Borgharen

along the river basin. Assuming non-linear error propagation may lead to com-
plications of interpreting the contributions since there are temporal dynamics
that affect the non-linearity.

Data-driven sub-basin models

After the error contribution of the HBV-S models are identified, data-driven
models (DDM) can be built for each of the sub-basin models under considera-
tion. Various data-driven techniques are compared to select the representative
and accurate DDM.

As candidates for data-driven modelling, several statistical and computa-
tional intelligence techniques were tested: ANNS, linear autoregressive models
and M5 model trees. Their performances were compared to that of the existing
HBV-M model. Apart from that, an attempt was made to recalibrate a num-
ber of local HBV models; however, the overall performance obtained was lower
than that after the calibration of HBV-M as a whole, and these experiments are
not presented here. A detailed reference of the algorithms used can be found
in Haykin (1999) and Witten and Frank (2000)

In the case study, before identifying the relative error contribution of various
sub-basin models, several types of the DDMs were compared for the 8 of 15
sub-basins. This made it possible to judge if DDMs are useful as HBV-S
replacements.

Each data-driven rainfall-runoff model for the sub-basins uses precipitation
and measured discharge as inputs, and the response discharge of the basin is
generated for the moment 7 time steps ahead. The general DDM forecast for-
mulation can be represented as follows (it is the same formulation as introduced
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Chapter 3):

Qirr = f(Py, Pe—1, Pi—2.. P, Q¢.....Qi— 1) (6.5)

where the optimal lags L for precipitation(P) and M for discharge (Q)
are obtained through model optimization (these can be different for various
forecast horizons T, in our case AMI and correlation results are used); f is
the data-driven regression model, and T is the forecast horizon (e.g. 1 day).
In this research several data-driven models are tested; including linear regres-
sion model (LR, (Kachroo and Liang, 1992)), artificial neural networks (ANN,
(Dawson et al., 2005) and M5 model trees (MT, (Solomatine and Dulal, 2003)).

Neural network are all trained using the same random seed, with Levenberg-
Marquardt algorithm. The learning rate was set to 0.1, one hidden layer with
sigmoid function, and one linear transfer function in the output layer are com-
mon properties of the models. The ANN models have been optimized using a
cross-validation set for determining the number of hidden nodes.

Building M5 model trees followed the procedure presented by Witten and
Frank (2000). The size of the trees is controlled by fixing of the minimum
number of instances in linear regression models at leaves (e.g. four).

6.3.3 Scheme 2: Integration of sub-basin models

HBV Sub-basin 1

Snow/rain routine;
Evapotranspiration and soil routine:
Response function and routing

HBV Sub-basm 2

Snow/rain routine;
Evapotranspiration and soil routine:
Response function and routing

HBV Sub-basin 3

Snow/rain routme;
Evapotranspiration and soil routine:
Response function and routing

HBV Sub-basin 15

Snow/rain routine;
Evapotranspiration and soil routine;
Response function and routing

Figure 6.6: Diagram of the ANN as replacement for the routing model, (Chen and
Adams, 2006)

Routing is a common way to integrate sub-basin models of a meso-scale
catchment. However, river routing models include hydrodynamic conditions
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that require a large number of physical measurements. The accuracy is de-
termined by the availability and the quality of these measurements and of the
models. Since the cost of the measurements is high, often simplified routing
equations are used. In HBV the sub-basin models use simple transfer functions
that represent the routing process. However, to link HBV-S sub-basin models
the Muskingham-Cunge equation (albeit simplified as well) is used. The rou-
ting equation is applied to river reaches where the distance between the outlets
of the basins is significant.

The main idea of the Scheme 2 is the replacement of the traditional runoff
routing by a more accurate non-linear function (data-driven model, Figure 6.6).
In this chapter we have chosen for the multi-layer perceptron ANN (ANN-MLP)
due to its widely known robustness and accuracy. The output discharges from
the fifteen HBV-S sub-basin models are lagged and used as input to this model.
The lags are determined using the correlation and average mutual information
analysis involving different sub-basin flows and the final outflow at Borgharen.
The ANN-MLP model has the following input-output structure:

t+T _ 1 1 1 2 2 N
QBO'I‘gha’r‘en - f(Qtfl% ) Qt71%7 ) Qtfl}w ) Qtflfa ceey Qtfl?wa ) Qtflﬁ\\’/[) (66)

where the upper-index T represents forecast horizon, IV is the total number
of sub-basins, and [ the lag at each sub-basin i. M is the number of lags taken
per sub-basin ¢. All basins in the model are lagged with respect to the current
flow at Borgharen.

6.4 Application of Scheme 1:
data-driven models for sub-basin representation

6.4.1 Inputs selection and data preparation for DDMs

Each data set is split into a training set (70%; some data is used for cross
validation as well) and a verification (30%) set. This procedure is performed
in a way that ensures that the training data contains the maximum and mi-
nimum values of each variable to reduce the possible extrapolation problems.
Additionally, the statistical similarity of each set was verified by comparing its
probability density function.

The first step in developing data-driven models for the Meuse sub-basins was
to identify the most appropriate inputs for predicting future discharges. Two
approaches were used to select the appropriate input variables and their lags:
correlation analysis and the average mutual information (AMI), as it was done,
for example, by Solomatine and Dulal (2003) (Equation 4.2 and 4.3). A lag is
defined as the number of time steps by which a time series is shifted relative
to itself (when autocorrelated), or relative to the corresponding time values
of another time series (when cross-correlated). The correlation coefficient and
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Correlation and Average Mutual Information
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Figure 6.7: Average mutual information for between lagged precipitation and di-
scharge for sub-basins Ourthe (a) and Lorraine Sud (b)

AMI were calculated for 10 lag values (Chapter 4). The variables compared
were discharge, precipitation and evapotranspiration.

Based on a similar analysis to the one presented in the Figure 6.7, the
following model structure was adopted for eight basins:

Qt :f(Pt7Pt717Pt727Pt737Qt71) (67)

The models were built for: Semois, Viroin, Lesse, Ourthe, Ambleve, Vesdre,
Mehaigne, Chiers, Meuse Source; see their locations on Figure 6.2. The data
used to build each sub-basin model (except Vesdre) covered the period from
1989 to 1995 for the training set and the period from 1996 to 1998 for testing.
Due to the availability of data, for Versdre the data set used for training and
testing covers the period from 1992 to 1996 and from 1997 to 1998, respectively.
Stenay and Chooz (Sub-basin 3 and 4), have input from other three and one
sub-basin flow (confluence sub-basins), and therefore not represented stricktly
as catchment nor contemplated in this analysis. These two sub-basins are
defined for the overall integrated HBV simulation and not for local model
representation.

6.4.2 Data-driven sub-basin models

The performance of the HBV-S models was compared with that of several data-
driven models (LR, M5P, ANN) (Figure 6.8); NRMSE was used as the error
measure.

Both MLP and M5P data-driven models outperform the HBV-S models.
Only for the Lesse, Ourthe, Ambleve, and Vesdre HBV-S model error is re-
latively low, but even then it is not comparable with that of the data-driven
models. According to Berger (1992), Ourthe sub-basin together with Vesdre
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Figure 6.8: Comparison of model performance for each sub-basin, expressed in
NRMSE of streamflow (Calculated for verification period)

and Ambleve are the most important tributaries for flood forecasting, relating
area percentage and response time. HBV-M results for Semois, Viroin, and
Mehaigne show high NRMSE. The error graphs show that the M5P and ANN
models outperform the HBV model for all the considered sub-basins.

However, this does not mean that DDM is unconditionally superior to the
conceptual modelling approach. The conceptual model aims to represent the
processes of the modelled phenomena (albeit roughly), and the DDM is based
on the analysis of historical data. Since the conceptual model only uses the
forcing information (precipitation, temperature, etc), weather forecast infor-
mation can be effectively used for the longer lead times. Other variables like
measured discharges are incorporated in operational systems through the use
of external post-processes like data assimilation.

The ANN-MLP model outperforms HBV in more cases than M5P does
and therefore is selected for the replacement experiments. The results show
that DDMs can serve as accurate replacement models for sub-basins. However,
when more and more sub-basin models are replaced, there will be less and less
hydrological knowledge (encapsulated in process models) left. In addition, for
the extended forecast scenarios the weather information is highly important.
Therefore an analysis of the overall performance of the model under different
replacements is made below. Since there is a large number of possible scenarios
of replacing various numbers of models, it is necessary to analyze the river
basin behaviour and the relative quality of the individual HBV-S sub-basin
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models with respect to the overall basin measurements given by the discharge
at Borgharen.

6.4.3 Analysis of HBV-S simulation errors

The changes in the overall model performance (RMSE) on the verification
data set as a result of various replacements with measured discharge data are
shown in Figure 6.9 and Table 6.2.

Table 6.2: RMSE error contribution to the HBV overall simulation

Sub-basin Relative RMSE Area Area Observed-Simulated
reduction (HBV-M)  (km?) (%)  (%Volume Difference)

Mehaigne 0.87 346 1.65 1.04

Ambleve 1.44 1 050 5.00 1.72

Ourthe 1.89 1597 7.60 2.26

Lesse 2.36 1311 6.24 2.81

Viroin 1.08 526 2.50 1.29

Semois 1.35 1235 5.88 1.61

Chiers 3.79 2 207 10.51 4.53

Lorraine Sud 3.23 2 540 12.10 3.86

Others 67.82 10 188  48.51 80.89

Total HBV error 83.84 21 000 100 100

The replacement order can be followed by reading Figure 6.9 from top to
bottom. From the total RMSE of 83.84, Chiers has the largest relative error
contribution of 4.53% (10.5% of the total area), followed by Lorraine Sud and
Lesse sub-basins with an error contribution of 3.86% (12.10% of the total area)
and 2.81% respectively. Chiers is the second largest sub-basin of the Meuse and
it is known that it commonly influences floods generated by its slow response,
Lorraine Sud is also a slow responding basin. Vesdre, Ambleve, Viroin and
Ourthe basins closer to the outlet are the most accurate in the HBV-M model
and are the ones directly responsible for floods.

Hydrological data is available for 52% of the basin area; only 20% of the
total errors seem to be attributed to this area. The rest of the error contribution
can be associated with the other variables in the system, the modelling capacity
of the HBV, as well as the different uncertainties in modelling of the basin. It
would also be interesting to identify the error contribution of the Sambre, the
largest sub-basin, but this was not carried out due to data unavailability. In
Figure 6.9, the RMSE contributions obtained by each sub-basin replacement
are associated with the measured discharge values.

Since it is well known that seasonality influences this river basin, the error
contributions of the HBV-S models in summer (May October) and winter
(November April) seasons are calculated in terms of the percentage of error
with respect to the total HBV-M error; see Figure 6.9. The results in Figure
6.9 show that there is a homogeneous error contribution from Chiers in both
seasons. The model for Lorraine Sud basin has a higher error contribution for
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summer and a small overall contribution in the winter. Clearly the calibration
of the model is well suited for summer conditions where the slow response of
the catchment is important for the average discharge in these periods. This
is congruent with the size (2540 km?), which represents approximately 10% of
the considered area.

=HBV-1

85.0 Winter half-year Summer half-year
83.8 =Repl-1
830
815 = Repl-2 100% - 100% T p—m | Nohan
80.0 796 —Repl-3 B Mehaigne /] B Mehaigne
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Figure 6.9: Reduction in RMSE of the HBV-M due to accumulative replacements
of the sub-basin models and seasonal performance

In terms of flood forecasting at Borgharen the most sensitive basins for the
HBV-M model distribution are Ourthe, Vesdre and Ambleve. The analysis
shows that the Ourthe and Ambleve stream flows do not influence the model
in the summer period, but together make a significant contribution to the error
generated in the winter season. The contributions of the Mehaigne and Viroin
sub-basins do not depend on the season: they have a small and similar error
percentage for both seasons.

6.4.4 Replacements of sub-basin models by ANNs

There are numerous replacement scenarios and these should be identified based
not only on the previous error analysis, but also taking into account the river
basin behaviour during the different seasons and the different flow regimes. The
total number of possible replacement scenarios (combinations of the sub-basin
models with the data availability) is too high and it is not feasible to analyze
them all. The experiments to replace a sub-basin model were carried out using
only 8 scenarios as shown in Table 6.3.

The scenarios reflect mainly the fact that sub-basins with slow and fast
flow responses contribute to different components of the resulting streamflow
(mainly low and high flows, respectively). Characterisation of the eight scena-
rios (R1R8) is as follows:

e R1: The sub-basin (Chiers) with the largest error contribution, and a
slow runoff response.
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Table 6.3: Replacement scenarios and the effect of their imple-

mentation.
Short  Replacement PAR* ADC?® RMSE RMSE ANNSS
Name (%) (%) Reduction Reduction (%)
(ANN-S) ‘MD

R1 Chiers 11 10 3.84 4.53 0.85

R2 Chiers, Semois, 19 22 6.17 7.42 0.83
Viroin

R3 Ourthe and 13 15 2.25 3.98 0.57
Ambleve

R4 Ourthe, Am- 19 21 4.21 6.79 0.62
bleve, Lesse

R5 Ourthe Am- 18 25 3.73 5.58 0.67
bleve, Semois

R6 Semois, Chiers, 24 28 7.52 8.39 0.9
Lesse

R7 Ourthe, Am- 35 41 8.62 12.92 0.67

bleve, Semois,
Lesse, Chiers

RS

Lorraine Sud, 28 28 9.47 9.99 0.95
Chiers, Semois

“Percentage of area replaced of the total basin (PAR)

bAverage discharge contribution in relation to the total average
discharge (ADC'). The total average discharge is calculated using the
average annual discharge from 1970 to 2000 (280.1 m?/s).

“Measured data(M D)

R2: Three sub-basins which include the Meuse tributaries upstream of
Chooz. These are the highest elevation areas with relatively low slope
and slow response during flood situations.

R3: The two fast responding sub-basins that have high contributions
during floods (Berger 1992).

R4: The same sub-basins as in R3, but together with the slow response
Lesse sub-basin whose model has a high error in summer and a low error

in winter.

R5: The same sub-basins as in R3, but together with the slow responding
Semois whose model has a high error in summer and low error in winter.

R6: Combination of slow and fast responding sub-basins.

R7: Combinations of slow and fast responding sub-basins, but with a
larger area covering 35% of the basin.

R8: Slow responding sub-basins with a large total area.



6.4

APPLICATION OF SCHEME 1

117

— St. Mihiel —HBV Subbas1

Q (cumecs)
g

20

= Carignan-Chiers — HBV Subbas2

Q (cumecs)

1iotrtga7

(a) Sub-basin 1 (St. Mihiel - Loraine Sud)

400 — Stenay-Meuse — HBV subbas3

Q (cumecs)
N m

01/03/1997
01/05/1997
01/07/1997

01/09/1997
01/01/1998
01/03/1998
01/05/1998
01/07/1998
01/09/1998
01/11/1998

a
&
g

(c) Sub-basin 3 (Stenay-Meuse)

(b) Sub-basin 2 (Chiers)

~— Chooz-Meuse — HBV Subbas4

Q (cumecs)

(d) Sub-basin 4 (Chooz-Meuse)

Figure 6.10: Hydrograph of sub-basin models with important contribution to the
overall model
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Table 6.3 presents the HBV-M model performance changes as a consequence
of the different ANN-S replacement strategies. The following statements de-
scribe the interpretation of some of the results:

The effectiveness of the models replacements can be evaluated by analysing
the changes in the overall HBV-M RMSE. The last column presents the percen-
tages of the maximum reduction possible in case of implementing a particular
replacement scenario.

Comparing sub-basins with similar area and similar discharge we can see
where the replacement of models was more successful. For example. R1 and
R3 have similar percentage of area (11 and 13 respectively), also similar aver-
age discharge contribution (10 and 15 respectively). However, the R1 (ANN-S)
model gives a RMSE reduction (85%), which is higher than that for the scena-
rios R3, corresponding to larger areas and higher average discharge. This is an
indicator that low flows play a significant role in the overall process, and also
reflects the weakness of the HBV-S models currently used in simulating low
flows. Other similar case can be seen when R7 replaced a bigger area (35%)
than R8 (28%), however, the efficiency for the latter replacement is significantly
higher (95%). In terms of discharge, R8 has a smaller average discharge and
therefore less contribution. For the scenarios R6 and R8 results show a similar
error reduction after the replacement. They have approximately the same aver-
age discharge percentage contribution to the basin and a similar area, however,
their seasonal error contribution is different (Figure 6.9).

The influence of changing Ourthe and Ambleve for Lorraine Sud shows that
most of the errors arise in the low flow modelling. The Lorraine Sud (location
of the Meuse source) is the most distant basin with relatively mild slope, and
therefore its contribution to flash flood (fast flow and runoff) is minimal. This
is consistent with the results of de Wit et al. (2007b), who showed that the peak
discharges of Vesdre and Ourthe basins are larger than those of Chooz. The
results point to a partial explanation based on the differences in precipitation
depths of the region and on the difference in hydro-geological conditions. On
the other hand, the basins Ourthe and Ambleve (central part) are closer to the
outlet and their individual performances are more sensitive for short time lags
and fast phenomena.

The results of simulations for the verification period (last three years) are
evaluated by calculating the RMSE and Coeff of efficiency (Figure 6.12). A
typical section of the hydrograph is extracted in Figure 6.11. The shape of the
hydrograph with ANN-S replacement is mainly driven by the overall hydrolo-
gical model. Tt is possible to see that after the replacement R8 the flows (under
600 m3/s) are closer to the observed discharge. For flows above 600 m?/s
the HBV-M is hardly affected due to the low influence of the replaced basins
during the peak flow events (Figure 6.11). This shows that the replacement
affects mainly the low flow simulation periods.

If one analyses only the reduction in the overall RMSE, then the replacement
scenario R8 would result in the model that can be recommended to be used
instead of the HBV-M.
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Figure 6.12: Error reduction with different combinations of replacement (evaluated

at Borgharen)

6.5 Application of Scheme 2: integrating sub-basin models

by ANN

To build a neural network model for routing, preprocessing and input varia-
ble identification is required. For this the AMI and cross-correlation analysis
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Figure 6.13: Scatter plots of target (measured) and ANN model for training and
verification period

were carried out to identify the relation (time lag) between the local sub-basins
discharge calculated by the HBV model and the measured discharge at Borg-
haren. For most of the sub-basins the maximum value of AMI related to
the observed discharge at Borgharen is a time lag of 1 day. Exceptions are
sub-basins 9 (Sambre), 10 (Ourthe), 13 (Mehaigne), and 15 (Jeker) since the
corresponding AMI is at maximum for lags less than 1 day. These results are in
agreement with recent research (de Wit et al., 2007a), where it was found that
the travel time between the measuring stations of the Sambre and Mehaigne,
Ourthe and Jeker to Borgharen is less than half a day. More precise time lags
can be obtained with hourly data. The average travel time of the flow between
the Semois measuring station (sub-basin 5) and Borgharen is 1 day (Berger,
1992). The training data set used was from 01-01-1967 to 30-12-1988 (8035
samples) and for verification (3652) from 31-12-1988 to 31-12-1998.

The results of the model can be visualized by correlation graphs. High
correlations are found between the observed and simulated discharge both for
training and verification sets (Figure 6.13).

Figure 6.14 shows the observed and simulated discharges at Borgharen from
December 2 1990 (record 700) to June 20,1991 . On average the integrated
HBV-ANN model outperforms the original HBV-M model. The recession curve
of the hydrograph is clearly closer to the measured curve and what was viewed
as the systematic error in the recession curve of the HBV-M model is now
corrected. An interesting phenomenon can be observed close to the measured
peak: the measurement value goes up and down before it reaches its maximum
value. This peak change in the hydrograph is reproduced by the ANN routing
model with a relatively small underestimation.

For a 3 years error analysis the HBV-ANN gives RMSE of 58.66 m?/s. An
extended error analysis of nine years verification period shows that the RMSE



6.5 APPLICATION OF SCHEME 2 121

Time serles of discharge target and predicted
(RMSE=53.3711) ANN Routing
2000 T T T T T

e Target
= = = HBV-ANN

15001 Bl O

1000}

Discharge (m¥s)

500

o i i i I i
700 720 740 760 780 800 820 840 860 880 800
Time step (days)

400

300

200

100

measured_imuated 0,

-100|-

Error (@

-200

_300 . . . . : . L .
2-Dec-90 10-Jan-91 30-Jan-91 19-feb-01 11-Mar-9131-Mar-91 20-Apr-g1 10-May-9130-May-919-Jun-19920-Jun-91
Time step (days)

Figure 6.14: Hydrograph of the original HBV-M and HBV-ANN integrated models

for the HBV-M and HBV-ANN are 86 m?/s and 55 m?/s respectively which is
a 36% improvement (Table 6.4). The coefficient of efficiency is also improved
from 0.918 for the HBV-M to 0.967 for HBV-ANN model. For both winter and
summer seasons it is clear that the use of ANN for integrating the sub-basin
models improves the accuracy.

Table 6.4: Comparison between the HBV-M model and the integrated HBV-ANN
model

Hydrological year Winter Summer
(Nov-Oct) (Nov.-April) (May-October)
Model HBV-1 HBV-ANN HBV-1 HBV-ANN HBV-1 HBV-ANN
RMSE(m3/s) ‘ 85.65 54,51 100.02 64.26 71.66 45.56
NRMSE | 0.286 0,182 0.273 0.175 0.484 0.308

Integrating Scheme 1 and 2

The ANN-MLP routing model integrates the results of the sub-basin models
and generates the value of discharge at the outlet (Borgharen). By doing so,
the ANN routing is already correcting the regional behaviour of each sub-basin
model, so the ANN-MLP routing acts as an error corrector. Therefore, the use
of another sub-basin model (e.g. R8 scenario in Table 6.3), with different error
performance, as input of the ANN-routing model does not add new knowledge



122 SPATIAL-BASED HYBRID MODELLING 6.6

into the model, but only increases the error. The replacement R8 into the
ANN-MLP (scheme) had almost the same performance as the original HBV
without any replacement (RMSE 82.91, see Fig. 6.15).
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Figure 6.15: Hydrograph comparison for the HBV-ANN with and without RS repla-
cement

6.6 Discussion

In this section the results for each scheme are discussed and compared.

6.6.1 Scheme 1

The results show that replacing some of the conceptual sub-basin models with
data-driven models clearly improves the overall model performance. Doing so
the low flow errors related to some of the sub-basins can be reduced without any
deterioration in the high flow performance. The operational forecasting system
using process-based models requires variables like precipitation and tempera-
ture for each simulation forecast, however, with ANN models only previous
measured discharge is needed. Therefore, this approach may bring operational
advantages on the locations where weather forecast information may not be
available.
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The choice of the best combination of HBV and ANN components depends
on various factors and is, in fact, a multi-criteria problem. One may also think
of rules (taking into account for example the season, data availability, location)
that decision maker would use to select the final model.

The use of Scheme 1 may well be suited for simulation, but comparative tests
with data-assimilation and data-driven approaches of the whole basin may be
needed to determine whether the use of data-assimilation in operational system
is more accurate or suitable than a simple ANN model of a basin. This analysis
will be conducted in further studies.

Note that the extended forecast made by DDMs need the previous simu-
lation discharges. Three important implications have to be mentioned here.
First, the use of previous simulation discharge iteratively decreases the quality
of the forecast. Second, if we assume that the measured information is a perfect
forecast, the HBV average performance will not decrease for the higher forecast
horizons. The third consequence is that the DDM is not representing the basin
behaviour and instead is acting more as an autoregressive model.

The data-driven model, which tends to generate high weight values for in-
put from previous discharges in its structure, underestimate the use of other
variables that are poorly correlated with the output. In this sense data-driven
models (DDM) can simulate the flow quite accurately (only on average, howe-
ver, and not in the beginning of a high precipitation event) even without the
use of the variables that really drive the phenomena (precipitation and tempe-
rature).

6.6.2 Scheme 2

Applying the integrating ANN model (Scheme 2) leads to a more accurate
calculation of the overall river discharge, if compared to both Scheme 1 and to
the simplified routing scheme employed in the HBV-M model. Our results in
this experiment are in agreement with the work by Chen and Adams (2006)
where an ANN model was used to integrate the three basin models (Xinanjiang
model, Tank model, and Soil Moisture Accounting model).

The use of physical conceptual and data-driven models in operation should
consider the dynamics of the basin. The dynamics of the Meuse basin has
hardly changed during the last decade (Tu et al., 2005), so the combination of
models seems to be reliable under relatively long periods of time (e.g. 3 to 5
years as the validation period of the models presented).

It should be noted that the experiments presented in this chapter are ba-
sed on daily data and are aimed at improving the HBV-M hydrological model.
In subsequent studies it is planned to explore the usefulness of the approaches
above under a more detailed and complex framework (daily forecast with hourly
data and precipitation forecast information). The challenge in extending these
concepts to hourly-based models relates not only to the non-linearity and dyna-
mics, but also to the influence of human interventions at weirs, sluices, canals,
power plants, etc. These aspects are not included in the HBV-M model and are
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part of the motivation to use data-driven techniques, and, possibly, rule-based
techniques allowing for multiple regimes of model operation.

6.7 Conclusions

One of the challenges of flow simulation is to increase the models accuracy.
This chapter explored the use of data-driven models, e.g. artificial neural net-
works (ANN) to improve the flow simulation accuracy of a semi-distributed
process based model. The IHMS-HBV model of the Meuse river basin is used
in this research. Two schemes are tested in the modelling process: The first
one explores replacement of sub-basin models by data-driven models. Error
contributions to the overall flow simulation due to the use of ANNs for sub-
basins are evaluated. The second scheme is based on the replacement of the
Muskingum-Cunge routing model, which integrates multiple sub-basin models,
by an ANN. The results showed the following: (1) after a step-wise spatial
replacement of sub-basin conceptual models by ANNSs it is possible to increase
the accuracy of the overall basin model; (2) there are seasons where low and
high flow conditions are better represented by ANNs; and (3) the improvement
in terms of RMSE obtained by using of ANNs is greater than using sub-basin
replacements. It can be concluded that the presented two schemes based on
the analysis of seasonal and spatial weakness of the process based models can
improve performance of the process based models in the context of operational
flow forecasting.

As one of the following steps, it is planned to move from daily to hourly
data, and from the one-step ahead forecasts to the models that forecast the flow
several time steps (hours) ahead. In this case the set of inputs of DDMs may
not include the previous values of flow (since they cannot be measured), and
their performance may deteriorate if compared to the conceptual models that
do not need the discharge as input and are fed with the precipitation forecast
only. A possible answer could be in using the architecture of DDM that would
use estimates of flow, or to use an ensemble of conceptual and data-driven
models.

There is also a problem of limited and inaccurate data for most of the sub-
basins, and this affects the performance of operational systems. A possible
way to alleviate this, is to use autoregressive models which are not sensitive to
the precipitation, temperature and evapotranspiration. As shown in appendix
C, on an extended hourly forecast analysis of the Meuse river system (Meuse
Delft-FEWS), it is possible to see how DDM models have better performance,
on different regions of the semi-distributed system, for a significant high number
of time steps. Yet another issue is the estimation of the models uncertainty
associated with the inaccuracies in data and model structures. It is planned to
explore all these issues and possibilities in further studies.



CHAPTER
SEVEN

HYBRID PARALLEL AND SEQUENTIAL MODELS

Complementary models that work in parallel with the operational flow forecas-
ting model and aim at reducing its error are becoming more and more popular
during the last decade. One of such approaches uses a parallel architecture
(model ensembles, i.e. several models running in parallel); the disadvantage is
that it becomes difficult to speak about the “model state space”. Another way
of combining models is a sequential combination of models like it is done in a
data-assimilation process that updates model states (or only its outputs). Con-
trasting these approaches as “parallel” and “sequential”, and comparing their
performance may be useful for selecting the model architecture for operational
forecasting.

As mentioned earlier, the conceptual or process based models seem to be
inaccurate in simulation for the fixed lead time. However, in hindcasting (using
measured information in forecast time), such models would be very accurate
for extended forecast horizons. In this Chapter the use of single global mo-
dels, models operating in parallel (ensembles) and in sequence (leading to data
assimilation by error correction) are applied to the Meuse rived basin for the
multi-time step forecasting.

7.1 Introduction

In operational flow forecasting the information available from river gauges is
typically assimilated into conceptual hydrological, but the assimilation proce-
dure is outside of the model itself. Data assimilation can be done by updating
internal model states or by a model that corrects the output errors. Both appro-
aches are independent from the hydrological conceptualization of the process
and do only base their corrections in optimal statistical updating strategies or
error corrector models. The updating of model states is a common data assimi-
lation approaches, however, in models using combinations of several conceptual
models, the process becomes quite complex. Error corrector procedures have

125
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been explored in various publications (e.g., Broersen and Weerts 2005; Butts
et al. 2002; Madsen and Skotner 2005) and nowadays are made part of most
operational forecasting systems. These studies explored mainly the correction
of the output based only on past errors. By using autoregressive (AR) linear
and non-linear error corrector models they show the significant improvement
of the hydrological conceptual model accuracy. At the same time most studies
show that the difference in the performance between linear and non-linear error
corrector techniques is not significant. Also, the relatively low effectiveness of
such procedures for extended lead times was observed.

It is important to mention an important difference between hydrological
conceptual (process-based) and most of the data-driven models used for flow
forecasting. Typically conceptual hydrological models use forcing variables
like precipitation and temperature to calculate runoff, and do not use past
information about discharge. On the other hand, data-driven models often
rely on the past measurements of discharge which are highly correlated with
the output (see Chapter 4).

This chapter presents a comparative study of some of the mentioned ty-
pes of models, with external variables (e.g. previous measurement and model
results), in order to assess what are the advantages and disadvantages of va-
rious techniques for real time operational forecasting. The study is based on
the daily forecasts performed by the existing HBV hydrological model of the
Meuse river basin in the French and Belgium area (Chapter 6). Artificial neu-
ral networks (ANN), and linear regression models were used for output error
correction. Two hybrid model composed of ANN and HBV models, linear and
non-linear combinations, are presented. The results of the different models are
evaluated with respect to the average daily discharge for one and multiple time
steps ahead.

This chapter is divided in 5 sections. Section 2 presents the different me-
thodologies used and setup of models applied to the Meuse river basin. Section
3 discusses forecasting considerations in the application of the different mo-
dels. Chapter 4 presents the results and discussion of the different models
performance. Conclusions are drawn in Section 5.

7.2 Metodology and models setup

The modelling approaches considered in this chapter are grouped in three:
single forecasting models(ANN and HBV-M), error correctors (EC), and com-
mittee models (CM).

7.2.1 Meuse river basin data and HBV model

The HBV-M model setup described in section 6 is the basis for the different
parallel and sequential models presented in this study. The location and de-
scription of the area used is described in Chapter 6. Temperature (at 15 sub-
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basin centroids), precipitation (at 15 sub-centroids) and discharge from 1968
to 1998 were used for this chapter. Data was partitioned: 70% of continuous
samples were used for training and 30% for validation. The sub-basin centroids
are calculated as is mentioned by Ashagrie et al. (2006) for each one of the 15
sub-basins presented in Chapter 6. Since the characteristic response time in
this river basin is approximately one day, most forecasts will be analyzed first
for a one day forecast, and then for an extended forecast till 11 days. The
hydrograph of the river basin is shown in Figure 7.1. Equation 7.2 shows the
input used for the HBV-M models.

Qusv;, = f(Pi,, Evap;,, T1,|5); (7.1)

Qupvs, = f(Quswi,, QuBva, s s QHBV:5, ) (7.2)

Precipitation (mm)

Discharge (m°/s)

Time (Days)

Figure 7.1: Daily Meuse river basin hydrograph

7.2.2 ANN model setup

To setup the ANN MLP model, a number of experiments considering different
correlated and with high average mutual information were tested; following
the procedure described in Chapter 4. The correlations found between the
precipitation data and discharge at the outlet of the river basin (Borgharen),
in the different basins showed that three closest sub-basins (Vesdre, Ambleve
and Ourthe) had the maximum lag at 2 days, and all other sub-basins 3 days.
This is consistent with the hydrological research done by Berger (1992). From
the correlations between temperature and discharge the maximum value found
was 0.15, which is not representative.
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QANN(Q)t = f(th,l ) szfza tha) (7-3)

QANN(Q+P)¢ = f(Qm1,71 ) th72a thfsa Pltfga ey P5f,73 ) P61,727 ceey P15t,2)
(7.4)
Where Q.,, is the discharge measured at time t, for longer lead time steps
an iterative approach is used; for past values of of time ¢t (¢ — 1, — 2 or t — 3)

the Qm, becomes QAnN(Q), OF QANN(Q+P),-

In terms of average mutual information (AMI, Chapter 4), the analysis of
precipitation lags versus discharge has the first peak (measure of maximum
information) at the same time as the correlation analysis. Based on these re-
sults, the input variables for the three schemes were tested. These preliminary
schemes were developed with only discharge (ANN (Q), 1), discharge and pre-
cipitation (ANN (Q+P), 2). The common input in the mentioned experiments
was the use of discharge with 1, 2 and 3 days lag. The number of nodes was
determined by exhaustive model optimization, varying the number of nodes
from 1 to 30, and selecting the best performance on a cross-validation data set
(10% of the training samples). The results confirm the high influence of the
correlated input variables on the model performance. In the remaining part of
this study the single ANN will be referred as ANN (Q) and ANN (Q+P) in
Equation .

7.3 Data assimilation (error correction)

Data assimilation methods are quite developed, and were classified by the
WMO (1992) based on the variables that are modified in the feedback. There
are four options used to assimilate real time data (Figure 7.2).

Measured
discharge data

(real time)
Option Option Option Option
1 2 3 4

Correct
outputs

Update
states

Update
parameters

Correct
inputs

Input data Model states Model paramters v F‘Orecast
discharge

Model structure

Figure 7.2: Approaches for data-assimilation models in forecasting models; based on
WMO (1992)
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—_

. Updating of input variables: the input variables are corrected based on
the idea that noise in the measurement, interpolation, and other sources
of errors are commonly present in the forecasting system.

2. Updating states: since the states are highly sensitive variables for the
outcome of the model, this method uses the measured output of the model
to update these variables. However, this approach explicitly modifies the
assumption of the basin representation since the water balance on the
conceptual (tank) model is modified

3. Update of model parameters: it is believed that the model could be dyna-
mic and therefore requires correction on long term forecasts. This is not
common since in task of operational forecasting the model is assumed to
be stationary and hardly changes for a long period of time.

4. Update of output discharge : This method is used mostly since it does
not require modifying the internal process in the hydrological model.
The implementation is simple and most practitioners use simple linear
regression models for that.

Actual time lead time
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Figure 7.3: Forecasting scheme using HBV process model with an output error cor-
rector model

Various authors report different results when the performances of different
data-assimilation techniques are analyzed (Babovic and Fuhrman, 2002; Broer-
sen and Weerts, 2005; Madsen et al., 2000). Madsen et al. (2000) compared
global linear autoregressive models with artificial neural networks and genetic
programming. Their results showed that the ANN error corrector was simi-
lar to the AR models. However, the best performance is commonly obtained
by the Ensemble Kalman filter and an ANN, with a small difference between
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them. Based on this, our research will focus on the use of ANN as potentially
effective nonl-linear error corrector model (EC-ANN, Figure 7.3). The error
information is obtained for each time step (Equation 7.5) .To have a reference
model, a single linear error corrector regression model is considered as well
(EC-LM).

Em, = (Qupv, — Qm,) (7.5)

EC; = f(Emtfl’Emt727Emt73) (7'6)

Where E,,, is the actual error of the HBV model (time t), for longer lead
time steps an iterative approach is used; for past values of of time ¢ (¢ —1,¢ —2
or t — 3) the E,,, becomes Qsnn (), OF QANN(Q+P);-

To setup the error corrector model the correlation analysis is done. The
autocorrelation of the HBV model errors is presented in Figure 7.4. There is
autocorrelation of the error results till a lag of 2 or maximum 3 days, after
this period, it may not provide important information for the autoregressive
error corrector models. The equations used for the error corrector models are
presented in Equations 7.1, 7.2, 7.5 and 7.6. Commonly the use of 7.6 is used
in most error corrector models, however, in this thesis the exogenous(x) inputs
are used as well.
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Figure 7.4: Autocorrelation function of the HBV model of the Meuse river basin
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7.4 Committee and ensemble models

The ensemble of models is relatively new approach in rainfall runoff modelling;
such approach is sometimes called ESP (ensemble of streamflow prediction).
In this study we explore the combination of conceptual hydrological model
(HBV) and ANN models. The elaboration of the models followed the analysis
described for ANN models in Chapter 4. Two models are developed for the
integration of HBV and ANN; a linear regression model and a non-linear ANN
model.

FORECAST 1 FORECAST 2 FORECAST 3
Precipitation & HBV model
@ B
ANN integrator | Qt+1 | ANN integrator Qv | ANN integrator Qus
model model model
/ Measured
[/ preptaton /-y ANNenestep | |
/ st ischarte Qirz
Foracast HBV model Qi1
precipitation & Snulaton
temperature

simulation
temperature

Forecast
/ precipitation & /| HBVmodel

Figure 7.5: Forecasting scheme of a committee model using ANN to integrate HBV
and ANN

A hybrid parallel scheme (committee machine) of HBV and ANN model
(CM-ANN), for three time steps forecasts is shown in Figure 7.5. The model
in the first time steps combines the ANN and HBV model results, but for time
steps two and three, the last combined forecast, and last HBV forecast are used
as input to the new ANN model combination.

CM; = f(QuBvs,, QANN,) (7.7)

The Equation 7.7 in continuous forecast uses the value of C'M; instead of
Qann, to obtain CM; ;. The function f in the experiments used here are
ANN (CM-ANN) and LM (CM-LM), which are built up on the same number
of training samples.

7.5 Forecasting scenario

In operational forecasting the hydrological model simulations are fed with pre-
cipitation forecasts to allow for extending the lead time. For the comparative
analysis of the models, it is important to standardize the performance of the
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hydrological conceptual model in order to see the usefulness of the error cor-
rection schemes. To achieve this, the performance of the HBV model with the
verification data set (unseen in calibration) is used as reference for any forecast.
This can be interpreted as an assumption that precipitation forecast is perfect
(measured in hindcast analysis).

The influence of precipitation in the HBV model of the Meuse river basin has
been explored by Hidayat (2007). This work explored the influence of including
random noise of different levels to the three of the sub-basin of the HBV Meuse
model. This three basins have in average 20% of discharge contribution to
Borgharen (outlet of the basin). With the noise, the HBV showed an increase
of the overall RMSE error up to 4%. On the other hand, the ANN models
with the same noise presented only 0.5% of increase on its RMSE error. The
sensitivity to precipitation input errors in the conceptual model is considerable
higher than in the ANN model. Therefore, the results obtained here, assuming
the hydrological conceptual model performance as reference, is susceptible to
change in a range of + 20% difference.

From the DDMs perspective, to be able to extend the forecast into different
lead times it is possible to iterate the model using its previous results or to
create an independent model. In the other hand, they are set up based on
mathematical correlations and expert knowledge of the forcing variables of
the real world system. The ANN developed as single overall forecast models
incorporate its own previous forecast discharge as input for each new forecast
as mentioned above.

To determine the performance of the different modelling approaches it is
required the use of different error metrics. In the assessment of the overall
model ability the forecast error measures described in Chapter 2 are used.

7.6 Results and discussion

7.6.1 Single forecast results

The modelling approaches have been tested for one time step and on multi-
ple time steps forecasts, from 1 to 11. The performance results of the basic
reference models using one day ahead (approximately lag time of the basin)
without data assimilation are presented in Table 7.1. It is clear that the pro-
cess model has the lowest performance but it is important to highlight that it
is the model that represents the runoff based only on the model actual internal
state and the rainfall. The ANN trained with only Q seems to have better per-
formance than the one which takes into account the precipitation; this results
can be attributed to the high autocorrelation found in the discharge(decreasing
from 0.97 at 1 day and 0.86 at 3 days).

Additionally, the exhaustive optimization procedure was used to determine
the confidence interval of this ANN model RMSE results due to random initi-
alization. For this the result of generated 30 ANN models were analyzed using
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Figure 7.6: Simulation results and error graph from HBV and ANN models for the
year 1993

Table 7.1: Performance of the HBV and ANN models for the testing period 1 day
ahead.

HBV ANN(Q) ANN(Q+P)
RMSE(m3/s) | 79.8064 555674  55.8426
CoE 0.9121 0.9364 0.9358
Cor 0.9573 0.968 0.9677
NRMSE 29.6555 252165  25.3414
MAE 50.1943  29.3466 _ 30.1339
PERS 03354 0.2042 0.1963
SSE 72117000 3501500 3536300

the Students t-test. The null hypothesis tested was the assumption of sampled
data from a random normal distribution with mean 58.85. This hypothesis
was analyzed against the alternative that the mean is not 58.85. The result of
the test indicated a failure to reject the null hypothesis at the 5% significance
level. The standard deviation of the process was an RMSE 3.95. This gave a
confidence interval, of the RMSE obtained in the ANN model 58.05 + 3.95.
ANN models generated having RMSE above this intervals are rare. Based on
this, using precipitation does not make a significant difference in performance
compared to the average ANN model (Table 7.1); however, the error correction
and committee models do. Note that this analysis concerns the mean error me-
trics (RMSE), and this could be misleading when particular (extreme) events
are considered in which knowledge of precipitation could be a decisive factor
for an accurate forecast.
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Figure 7.7: Simulation results and error graph from HBV and ANN models for the
year 1995

Figure 7.6 shows the clear match between the time series shape of the HBV
model and the measured runoff. No evident trend can be seen in the error
graph, however, a clear bias (underestimation of the discharge) is seen on most
low flows. It can be observed that the performance of the HBV and ANN
models, in the plotted events, are not good in three sections of the hydrograph.
The graph represents the beginning of the year 1993 and shows high complexity
in the peak situations of this period, and all other errors can be seen on high flow
for both models (above 260 m3/s). A more detailed analysis shows that most of
the ANN model errors are related with the steep changes of the hydrograph. On
slow increasing phenomenas the problems appear only on the peaks or abrupt
changes. These problems were also observed in other critical years (Figure 7.7).

Although high correlation makes the ANN model to give more weight to the
discharge values than to the precipitation input, the different error measures
show that there is no performance reduction using the precipitation for one
time step. Comparing these models with the combined modelling approaches
(Table 7.2), we can see that the he Nash Coeflicient (CoE) of these models
shows no clear difference between error corrector and the committee models;
however, its their RMSE is better than the ANN and HBV models. In this
sense there is no significant difference between the committee model with the
linear and non-linear model combinations. Comparing the best models, of EC
we can see that the best performance is achieved by the non-linear integration
of models using Exogenous variables (HBV model results, past measures or
corrected model results). In the CM model results no clear difference can be
seen, and since the rainfall and runoff are considered non-linear in the multiple
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time step analysis, we will consider only the CM-ANN for extended lead times.

Table 7.2: Performance of the CM and EC model types (1 day forecast).

CM-LM  CM-ANN EC-LM  EC-ANN EC-ANN-AR
RMSE 35.1913  35.2059 39.7591  31.3608 37.9378
CoE 0.9745 0.9745 0.9632 0.9797 0.9665
Cor 0.9873 0.9876 0.9816 0.9898 0.9832
NRMSE | 15.9698 15.9765 19.171 14.2316 18.2927
MAE 20.9488 19.9325 23.1965 18.323 22.105
PERS 0.6808 0.6805 0.414 0.7465 0.4664
SSE 1404400 1405500 1797400 1115300 1636500

The performance results for one time step ahead shows the clear limitation
of the HBV model in accuracy at simulating one time step compared with the
neural networks and the integrated models (EC or CM). This is expected since
it does not include the measured discharge at the previous time step, which has
an important auto-correlation. However, the hydrograph generated by HBV
model in general represents the rainfall runoff trend very well, specially for the
most critical situations. Figure 7.6 and Figure 7.7 show the HBV and ANN
models results, for the floods in 1993 and 1995, respectively.
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Figure 7.8: Percentage of correct forecasts, POD, FAR and bias for the ANN(Q),
ANN(Q+P), EC-ANN and HBV
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Figure 7.9: Percentage of correct forecasts, POD, FAR and bias for the ANN(Q),
ANN(Q+P) and EC-ANN

Error corrector models were set up with different combinations of input
variables in order to use as much information as possible: the HBV model past
results, past error, past precipitation, and past internal states were used. All
these experiments are set up following the average mutual information (AMI)
and correlation analysis leading to the relevant input selection, as mentioned
by Bowden et al. (2005a). The results show that the past errors in the HBV
model are the most important variable, and, as it was expected, without them
the models did not have acceptable performance. Further, the most accurate
ANN model setup included 3 lags of the measured error, the 3 lagged measured
discharges and the data from the 15 precipitation stations. It seems that for
the first time step the performance of the committees is lower than that of
autoregressive linear or non-linear (ANN) error corrector-based models (Table
7.2).

Figure 7.8 presents the skill scores error measures for different thresholds
(for one day ahead prediction). One can see clearly how the performance of
HBV model varies and has minimum in a low flow region; from 40 to 200
m?3/s. In contrast to DDMs, which exhibit the high probability of detecting
this low flow (95%). Figure 7.9 shows an extended evaluation of the forecasting
capabilities for extended thresholds only for the ANN(Q), ANN(Q+P) and
the EC-ANN. We can see that although the EC has the highest accuracy,
the ANN(Q+P) has less bias. On one time step, it would appear that the
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precipitation brings an important information to the bias in the high flows.
This is the only forecast score that seems to show an advantage in the use of
discharge in the forecasting ANN model that uses precipitation. If the forecast
precipitation information is not accurate, this affects the performance of the
HBYV conceptual model and does not influence significantly the ANN models.
In previous studies (Hidayat, 2007), the error of the conceptual model in the
Meuse river basin may increase by at least 20% while the ANN might reach
only 0.5%. This studies were based on the inclusion of a proportional inclusion
of random noise to the measured precipitation on three basins.

7.6.2 Results on multi step forecast
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Figure 7.10: Comparison of various models’ performance in multiple time steps
forecast

The results of extended forecast to multiple time steps ahead is shown in
Figure 7.10. As is can be seen the errors increase significantly after the second
time step in the ANN model. Under the assumption of perfect precipitation and
temperature forecasts, HBV model would always have the same performance.
In this case the HBV model is better than ANNs and CM-ANN model after
the second time step. However, the error corrector seems to reach even 7 days
forecast. The EC-ANN-AR seems to have less accuracy than the EC-ANN
that uses exogenous variables like the HBV model results and HBV previous
corrected model.

The ANN(Q) has less accuracy than the ANN(Q+P) after the second time
step. High flows that dominate the errors on extended lead times are probably
influenced by the precipitation information. In addition to this, it can be men-
tioned that including precipitation as part of the input helps on the correction
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of the timing errors commonly present in ANN forecasting models (Abrahart
et al., 2007), which was also observed partially in our results.
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Figure 7.11: Comparison of various models’ performance in high flows for multiple
time steps forecast

Figure 7.11 shows the different skill score measure for the ANN(Q+P).
We can see that POD scores are critical in almost all forecast (1 to 11 days)
for values around the mean value of the river discharge (250 m?/s). Above
100m3/s the Bias, POD and FAR show that almost all forecast have variable
performance, and therefore 10 days forecast could have better forecast than 9
days, or any combination of forecasts.

7.7 Conclusions

This chapter presented two contrasting approaches in hybrid modelling: pa-
rallel architecture (ensembles with linear and non-linear combining schemes),
and the sequential one with the error correctors applied to the main model
forecasts. This was done in order to assess the performance, advantages and
disadvantages of these techniques for multiple time steps ahead forecasting.
The performance of ANN models under one and multiple time steps is quite
different, and therefore it was important to explore the influence of other inputs
on the ANN performance. As expected, the forecast results deteriorate when
lead times are increased. In fact the ANN models do only have one maximum
2 days lead time forecast better than the HBV conceptual model. The error
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corrector models outperform single ANN models. For short time steps hybrid
approaches of ANN and HBV model corrected by the non-linear error corrector
show to be the most accurate. This hybrid approach also does not have high
error variability between different time steps as it is the case for all other
models.

Inputs fed into the models contain information that in operational real-
life situations may not be available. In this sense it is expected that under
inaccurate precipitation and temperature forecasts the hybrid schemes or even
single ANN models will be more robust than single error corrected conceptual
hydrological models like the HBV; this however needs more research.

ANN models for forecasting may be misleading since it appears that the
ANN model outperforms the process-based hydrological model in the first time
steps (simulation time), however, in extended lead time this will not repre-
sent the same difference in accuracy. This lead time is highly relative to the
performance of the precipitation forecast information used by the conceptual
hydrological model.

The implications of these results in operational systems require an extended
analysis of all the different error contributions in the model. Such analysis has
been performed for one time step forecasts (Corzo et al., 2009a), throwing some
light on how the sub-basins contribute to the overall flow and how the data-
driven models can interact. Further studies would be needed to analyse the
sensitivity of the model to the quality of the weather forecast, to the errors in
the routing model, and to the other spatially distributed variables.






CHAPTER
EIGHT

MODULAR MODELS BASED ON CLUSTERING:
APPLICATION TO PRECIPITATION
DOWNSCALING FROM GENERAL CIRCULATION
MODELS

It has been shown in the previous chapters that the application of modular
models in the context of rainfall-runoff forecast modelling leads to increase in
accuracy. This chapter explores the use of the modular approach technique in
yet another area related to forecasting downscaling of information from Ge-
neral circulation models (GCM) and/or numerical weather prediction models
(NWP). The use of a version of modular approach, fuzzy committee model (So-
lomatine, 2006; Solomatine and Price, 2004) is used along with the automatic
clustering techniques, and compared with statistical downscaling models and
single neural network models. This chapter is mainly based on the publication
presented by Corzo et al. (2009b)

8.1 Introduction

Global Circulation Models and downscaling

In the last decades multiple Global Circulation Models (GCM), able to simulate
the interactions among the atmosphere, oceans and surface, have been develo-
ped. to assist in the analysis of probable future weather scenarios (Wilby and
Wigley, 1997; Wilby et al., 1998). They are used for studying the dynamics of
the weather and climate system and the projections of future climate (Hough-
ton, 1996). GCMs demonstrated significant skills (accuracy) at the large scales
and they incorporate a large portion of the complexity of the global system,
but they are unable to represent local sub-grid scale features and dynamics
(Wigley and Raper, 1992; Wilby and Wigley, 1997).

141
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Many limitations related to data-assimilation, quality of models and com-
putational problems still do not allow for building models with grid sizes small
enough to be able to forecast the weather variable at catchment (hydrological
units) scale for the whole earth. A solution is to use so-called downscaling:
mapping the variables (precipitation, temperature) predicted by GCMs and
attributed with the large grid cells, to smaller cells or certain points of interest
(often, existing gauges), from which the information could be fed to regional
hydrological models. In this regard, there are two main challenges.

The first challenge relates to the number of output variables that result
from the climate model (e.g. 26), which needs to be combined and downscaled
in order to have an adequate model representation of the few variables required
in the hydrological model (e.g., P, Et, T). The second challenge is linked to the
uncertainty in the results of GCMs, linked with different quite hypothetical
scenarios of population growth and overall gas emissions (Khan et al., 2006).
For the former problem, downscaling of precipitation and temperature variables
have been explored using standard statistical and computational intelligence
models. It has been argued that the statistical models fail in capturing the
seasonality (Masoud et al., 2008).

This problem is quite well known in computational intelligence where ar-
tificial neural network (ANN) models may not perform well when increased
seasonal complexity is observed. Some researches show that the performance
of the data-driven models like ANN is better than that of traditional statistical
approaches (Liu et al., 2008; Yonas and Coulibaly, 2006). Nevertheless, some
special cases in the past showed the failure of ANN in seasonal or problems
with the changing regime: e.g., Wilby et al. (1998) found that ANN models
perform poorly due to failures under specific conditions (e.g. wet days).

8.2 Fuzzy committee

In our studies presented in Chapter 3 and 5, we found that the modular model-
ling approach commonly achieve equal or better performance than single overall
data-driven models. In this chapter a modular model belonging to class MM1,
presented in Chapter 3, is applied to the problem of downscaling information
form GCM models. One of the limitations in the use of multiple (modular) mo-
dels is possible incompatibility at the boundary between the input sub-spaces
handled by different models this contradicts the typically continuous character
of physical phenomenon that is characterized by a single state vector (see Ap-
pendix A. One of the ways to soften this problem is to use the so called fuzzy
committee (Solomatine, 2006; Solomatine and Price, 2004) that smoothens the
transition between the models. This approach was applied to modular concep-
tual hydrological models (Fenicia et al., 2007), and now is used in this chapter
as well.

This study presents the use of a modular and committee modelling as a
compelementary technology in statistical downscaling. The fuzzy committee
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machine model (FZCM) presented in this research can be seen also as version
of the modular model MM1 presented in an analysis of flow condition based on
clustering techniques in Chapter 3.

8.3 Case study: Beles River Basin, Ethiopia

Data from GCM

Ethlopia

Legend M8 1827 B

Kily ters
] Gilgel Beles ome
I Upper Main Beles

Figure 8.1: Tana and Beles Basin Map (SMEC, 2008)

Reanalysis data of the National centre for environmental prediction, (NCEP,
USA), and the measurements of a precipitation gauge inside the Beles basin
(Ethiopia) have been used. Re-analysis data are fine resolution grid data which
combine observations with simulated data from numerical models, through data
assimilation (more on this see IPCC-TGCIA, Barrow et al. 2000). The NCEP
data was re-grid to conform the grid system of scenario HadCM3 (Canadian Cli-
mate Change Scenarios Network, CCCSN). NCEP re-analysis II predictor data
files were downloaded from the Canadian Institute for climate studies (CICS)
website, although the reanalysis data is provided by the NOAA/OAR/ESRL
PSD, Boulder, Colorado, USA. The atmospheric part of the model has a grid
of 2.50 latitude by 3.75 longitude (i.e. gives a resolution of approximately
300km). The predictor variables available for this study are shown in Table
8.1. All predictors, with the exception of wind direction, have been normalized
with respect to the 1961-1990 mean and standard deviation. The data used in
this study covers predictor variables from 1961 till 2001.
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Table 8.1: List of 26 predictor variables derived from African window for the grid on
the study area. p5 and p8 stands for the location at 500 hpa and 850 hpa respectively

Variable | Predictor | Description Variable | Predictor | Description
No. Variable No. Variable
1 Mslpaf Mean sea level | 14 p500af 500 hpa geopo-
pressure tential height
2 p5- faf Surface air flow | 15 p850af 850 hpa geopo-
strength tential height
3 p5- uaf Surface zonal ve- | 16 p- faf Airflow strength
locity
4 p5- vaf Surface meridio- | 17 p- thaf Wind direction
nal velocity
5 p5- zaf Surface vorticity 18 p- uaf Zonal velocity
6 pbthaf Surface wind di- | 19 p- vaf Meridional velo-
rection city
7 pbzhaf Surface diver- | 20 p- zaf Vorticity
gence
8 p8- faf Geostatic air | 21 p- zhaf Divergence
flow velocity
9 p8- uaf Zonal velocity 22 r500af Relative  humi-
dity
10 P8_ vaf Meridional velo- | 23 r850af Relative  humi-
city dity
11 P8_ zaf Voriticity 24 rhumaf Near surface re-
lative humidity
12 p8thaf Wind direction 25 shumaf Surface specific
humidity
13 p8zhaf Divergence 26 tempaf Tempreature at
2 m

8.4 Beles River Basin

The Beles basin is one of the major sub-basins of upper Blue Nile. The main
stem of the Beles River originates on the face of the escarpment across the
divide to the west of the south-western portion of Lake Tana. It then flows
on in a westerly direction and enters into the Blue Nile just before it crosses
the Ethiopia-Sudan frontier. It is the only major right bank tributary of Blue
Nile. The Beles basin covers an area of about 14,000 km? and geographically
it extends from 10° 56’ to 12° N latitude and 35° 12’ to 37° E longitude.

The basin has two gauged sub-catchments, Main Beles and Giligile Beles
that have a size of 3474 km? and 675 km? respectively. In particular the main
focus of this study is the gauged part of the basin called Upper Beles sub-
basin. Figure 8.1 shows its location on the Blue Nile basin map, along with the
other two basins Tana and Beles basins (Upper main Beles and Gilgile Beles
sub-basins). The measurements from the station located at Pawe are used in
this study. The NCEP re-analysis data is adapted from measured information
for the period between 1987 and 2001, and therefore is used as the source of
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information for building the models described in this study. Period from 1987
to 1996 is used for training and from 1997 till 2001 for validation.

8.5 Methodology

In order to select the most representative variables for the modelling process,
correlation analysis and average mutual information (AMI) analysis using all
the 26 variables were performed. Figure 8.2 shows on the x-axis the variable
number from Table 8.1, and on the y-axis (a) the maximum cross correlation
found and cross correlation at no lag, (b) the maximum AMI and (c) the lags
for which the maximum AMI or cross correlation were found. Cross-correlation
and AMI analyses give similar results. It appears that the use of lagged infor-
mation for the models, in order to increase the performance, not only has no
clear physical interpretation, but also in terms of cross correlation and AMI is
not really significant. This can be seen in the Figure 8.2(c), where the most
representative variables according to AMI and correlation values are above 5
days, which is quite far from a reasonable value for a physical phenomena
relation.
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Figure 8.2: AMI and correlation values obtained from the variables presented in Ta-
ble 8.1 Blue colour corresponds to average mutual information and green to correlation
coefficient values

The three types of models were built:
e single overall ANN model;
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e modular models based on cluster analysis (in nomenclature of Chapter 3,
MM1);

e fuzzy committee model (FZCM).

A short description of the models is presented below.

8.5.1 ANN model setup

For downscaling of the weather information, it is reasonable to use a time-lagged
feed forward neural network (TLFN) (Yonas and Coulibaly, 2006). However,
the weather models are setup in grids that are hardly autocorrelated, and the
dynamics of the cell can not be clearly related with previous situations in a
daily time step analysis. Although, as it can be seen in the Figure 8.2 , there
is an increase in the correlation with some time steps, this is not significant.
Since the purpose of this analysis is to compare data-driven models dealing with
relatively clear physical variables, no lags are used in the process. If the use of
lags is desirable the correlation and AMI analyses described in Chapter 4 can
be used for their identification (Bowden et al., 2005a; Corzo and Solomatine,
2007b; Luk et al., 2000)

For the different ANNs elaborated in this study a number of common fea-
tures were defined. The first one is the neural network training process (cali-
bration), which was performed using the Levenberg-Marquardt algorithm. The
parameters of training were: the learning rate of 0.1, momentum term of 0.01,
with 150 epochs. The number of epochs was defined after a visualization of
the error performance in higher number of trials with different epochs. The
networks are defined to have only one hidden layer, with multiple nodes (opti-
mized) with sigmoid functions on it. The output layer as well contains a sigmoid
function. The intention of it is to avoid negative values which will be limited
the normalization (0.1-0.9), giving some extrapolation capacity to the network
(Hettiarachchi et al., 2005). All inputs are normalized before being input to
the network. The number of hidden nodes in the hidden layer was optimized
and appeared to be different for different modules of the modular model. This
is explained by the fact that the models represent different processes.

8.5.2 Committee and modular models

Weather variables are characterized by variability and complex interactions
which are quite difficult for data-driven models to capture. For examples, in
Figure 8.3 the positive divergence seems to lead to precipitation, but at the
same time some isolated negative and positive patterns are present in situation
where no precipitation is measured. This shows the high complexity in identi-
fying the proper variables for downscaling models, as well as the possible need
to separate situations with and without precipitation. In the considered case
study, a simplified approached using k-means clustering has been applied.
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Figure 8.3: Comparison of the results of the fuzzy clustering for the first 500 samples.

Clustering input vectors (MM1)

This modular scheme presented as MM1 in Chapter 3 is used. To identify
the clusters the k-means algorithm (Hartigan and Wong, 1979) with two and
three clusters was tested. After the visual analysis of the clusters found, the
number of cluster to be used was set to 2, which corresponds to the wet and dry
environmental conditions. The best distance metric (Euclidean distance) for
the clustering scheme was evaluated by a visual inspection, through an iterative
process.

Learning classifier (LC-S)

Learning the cluster pattern is required in order to allow the new data to be
classified into one of the clusters (for operation purposes). The algorithm has to
be applied to build a classifier that would classify the new examples according
to the cluster identified by the k-means algorithm. For this purpose we tested
the three classification algorithms mentioned in Chapter 3 and the regression
tree algorithm was chosen for its accuracy. During testing and operation phase
the trained classifier attributes the new examples to one of the two trained
ANN models.

8.5.3 Fuzzy committee machine

For combining models, the fuzzy committee approach has been used (Solo-
matine, 2006). As mentioned in Chapter 2, committee machine models are
a generalization of the modular models and other separation and integration
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techniques in computational science. In the method used, the model combiner
uses fuzzy membership of the samples used as inputs to the models. This is
done in order to achieve an improvement in the transition between models. The
most common approach is to use a fuzzy clustering technique, in this study we
used fuzzy c-means clustering (Pal and Bezdek, 1995). All the samples in the
input belong to a cluster with some degree of membership. To make the split
a threshold has to be defined. One option to do this is presented in Figure 8.4,
where a membership degree can be assigned to an input vector or sample based
on a percentage of half of the Euclidean distance between cluster centres.

4  Membership function for Membership function for
regime 1 + + regime 2

]
" Width (W) =% half
distance between cluster

-

Figure 8.4: General representation of two membership functions for a transition of
regimes

The main purpose of the fuzzy membership is to improve samples where
it is not clear to which cluster (model) they should belong due to the relative
similar distance to two or more clusters. Using modular models with a fuzzy
inference model (Abraham, 2001; Pal and Bezdek, 1995) allows for weighting
the results of each modular model according to the degree of belonging of the
input vector to one of another cluster.

To create a membership function the fuzzy c-means clustering technique
was used. As is shown in Figure 8.5, the training process is based on samples
classified to a group after applying a threshold of the degree of membership
found. The fuzzy inference model used in this study is trained to find the
weights that complement the result required in training to obtain the target
for each cluster. The weight was defined only on the boundary above 90% of half
of the distance between cluster centers. For points belonging to such region
equation 8.1 was assumed. Based on this the weight for that region can be
defined as the relationship between the rainfall and the modular model results,
determined in the fuzzy c-means clustering and reproduced by a surrogate ANN
model.

MM, - Wi+ MM, -Ws =R (81)
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Figure 8.5: Fuzzy committee model training scheme

where W o represent the weight for cluster one and two respectively. re-
presents the modular model results for each cluster, and R is the rainfall; only
used when the distance to the cluster is above the 90% of half of the distance
between centers (Figure 8.6).
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Figure 8.6: Fuzzy committee model in operation

8.6 Results

Several models were compared in terms of their RMSE and correlation coef-
ficient (Table 8.2). The ANN models built on full data sets used (a) the 26
variables with no lag and (b) less variables due to the principal component
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analysis (PCA) transformation. The results show that the performance of this
transformation allows for obtaining better results than the SDSM model and
Time lag feed forward neural network (TLFN). These models were elaborated
following a 10 fold cross validation with the training data and selecting the
best model for the validation.

Table 8.2: Comparison of committee and non-committee model performance

ANN ANN MM FCM TLFN SDSM
(26 Var) (PCA) (No PCA) (No PCA)
Correlation coeffi- 0.389 0.393 0.42 0.42 0.4 0.39
cient (CC)
RMSE ‘ 10.01 9.96 9.86 9.85 10.3 10.1

Modular models outperform ANN models with PCA transformation in
terms of RMSE and correlation coefficient. The modular model was set up
based on k-means clustering using Euclidean distance. The results of this clus-
tering uses average mutual information to select the input variables for each
one of the modular models. The variables plotted in Figure 8.7 are the ones
identified with the maximum mutual information between the precipitation and
the different predictors (from left to right, 10 Meridional velocity at 850 hpa,
12 wind direction at 850 hpa, 13 Divergence at 850 hpa, 19 Meridional velocity,
20 vorticity, 21 Divergence).
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Figure 8.7: Scatter plots of variables more correlated in the cluster selected for MM1.

The cluster of variables show a clear separation between the data on wind
direction (row and column 2 on figure 8.7 ) compared with all the other va-
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riables. However, for the other input dimensions there is no clear pattern to
separate the phenomena and therefore is no clear difference in their grouping
or classification.
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Figure 8.8: Comparison of the results of the fuzzy clustering for the first 500 samples.

The FZCM model results show that there is no significant transition regions,
and that could be the reason why the performance of FZCM is so similar to
that of the MM. For the fuzzy clustering the degree of membership of the two
clusters obtained by using fuzzy c-means clustering are plotted in figure 8.8
. These clusters are created with Euclidean distance and using all the input
variables available (no rainfall is considered). It is possible to see that the
degree of membership for the precipitation is much higher for cluster 2 than
for cluster one (for all the precipitation phenomena). However, for regions
where almost no precipitation is present, cluster one has no clear or visual
pattern. In this sense the transition between phenomena seems to be quite
sharp. Other experiments where carried out using the rainfall variable to have
a first split of data, but as it can bee seen in the Figure 8.8 rainfall with lower
values that 1 or 2 are present along all the different seasons.

To analyze more the common region in the combination of the modular
models a probability density function related to model verification was plotted
(Figure 8.9 ). The full modular model (Ensemble of MM) results and each
one of its clusters (denoted as P MM1 and P MM2) do not reproduce values
above 12 mm. Also the modular model 1 is trained on samples that follow
almost linear distribution with the low values (0-2.5 mm), and for the modular
model 1 a mixed region for low and high values a nonlinear distribution with a
clear asymptotic behaviour towards 12 mm. It appears that the separation is
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still not perfect and that the model that represents critical situations is quite
limited. This problem is present in most of the other models as well, and seems
one of the reasons of the complexity in downscaling precipitation.

09Y¥WF—F-————F-————F-———-—d-—-—-—-—Ad--—-——Ad-———J-————l-=- - - —-l- - - ——T—=—=———

0.9995
0.999

0.995
099

SOC o AT

S __LL_a1_Y

0.95
0.9

Probability
=]
o

[} |
I I
] I
[} I
I |
] I
1 1 1 I
1 1 1 I
0.1 —+ 4--——d4- " 4—-———— - —— - —1- - - — |- = —-——-
1 I 1 1 I
005 L e e e |
1 I 1 1 I
1 I 1 1 I [e} Verification
a0 JZICIIIICIDICIIDIIIIOIIIIOIII] o Ensemoleotm ]
N i N 1 N P uM
0.001 e ——_———___—,_,——————"———s + P MM2
0.0005 B e e it ettt Al At ===—- ===
I I I I I I I
0.0001 S Sttt fesliestiestiesiies Bttt Bnstiestiesiiestion Resliestiestiestion bnitiestition |- == - - |—— ==~
10 15 20 25 30 35 40 45 50

Figure 8.9: Comparison of probability density function for the modular models and
its ensemble.

8.7 Conclusions

This chapter presented the comparison of using time lag neural networks (TLFN),
artificial neural networks, modular models and fuzzy committee models. These
experiments are conducted for exploring the performance of these models in
downscaling GCM data to gauge precipitation data in the Beles basin in Ethio-
pia. The experiments were set up to compare the use of inputs without trans-
formation in a modular model approach, and using lagged and not lagged input
variables. The results show a clear improvement in the use of a PCA trans-
formation over processing with input lags using maximum sensitivity (TLFN)
and ANN using no lagged variables and input reduction based on AMI and
correlation analyses. It appears that concentrating efforts on splitting input
information is less significant than transforming input variables. However, more
effort research needs to be done in order to evaluate MM with pre-processing
information.
For the considered case, the fuzzy committee models did not add significant
improvement over the modular model since no clear transitions between the
clusters where identified. The modular models and fuzzy committee models
have, however, higher performance than the one overall model covering the
whole phenomena.

Based on the analysis of the probability distribution functions of the modu-
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lar models and the measured data, it is possible to see that there are still regions
where the data attributed to modular models were not split well, and further
improvements with physical knowledge and expert rules may help. Also the use
of fuzzy committee models to combine the specialized models requires better
optimization of the shape of transitions areas in the input variables domain.






CHAPTER
NINE

CONCLUSIONS AND RECOMMENDATIONS

This study deals with defining and exploring the principles and methods of
hybrid modelling applied to the problem of hydrological forecasting. Hybrid
modelling involves two or more modelling paradigms, and the two paradigms
considered were hydrological process-based modelling, and data-driven model-
ling. They were combined using the principles of modularization, as well as
parallel and complementary modelling. It has been shown how these two mo-
delling paradigms form hybrid models, and can interact and complement each
other in flow forecasting. In the framework of the major case study, the devel-
oped models were tested as software components into the operational hydrolo-
gical forecasting system for the Meuse river basin, based on the Delft/FEWS
platform and the HBV model.

The following sections address particular important parts and concepts of
the study.

9.1 Hybrid modelling

Three ways of integrating the process-based approach to hydrological modelling
(and in general, hydrological information) with the data-driven approach to mo-
delling were identified: a) incorporation of the process-based information into
data-driven models (P2D); b) incorporation of the data-driven techniques into
process-based models (D2P); and c) parallel and serial architectures (DPPS).
These ways of building hybrid models can also be interpreted as the general
classes of hybrid models, on this basis a general hybrid modelling framework
and specific architectures were suggested. A number of publications related to
each of these classes have been reviewed and certain knowledge gaps identi-
fied. In building hybrid models, the principle of modularity (i.e. identifying
the sub-processes and building for them separate models, possibly belonging
to different paradigms) was found to be important and productive.

155
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9.2 Modular modelling

Three main considered principles of models modularization are: temporal,
processes-based, and spatial.

Experiments with temporal and process-based modularization were carried
out on different types of catchments (Bagmati in Nepal, Sieve in Italy, and
Brue in the UK). For this, the P2D approach to building hybrid models (incor-
poration of hydrological concepts into data-driven models) was employed. It
was described and developed in Chapters 3, and tested in Chapter 5. Instead
of training a global data-driven model on the whole data set, the training set is
partitioned into several subsets, and a number of local models, each responsible
for a region of the input space, were built. This principle was tested on a pro-
blem of modelling flow, separating the base- and excess flow. Three different
partitioning schemes were employed; based: on clustering, on a traditional ba-
seflow separation method (which was however updated and improved to allow
for algorithmic implementation), and on using the hydrological process filter
(which was optimized by the genetic algorithm GA and Global Pattern Search,
with the higher performance of the latter).

The use of domain knowledge incorporated in the algorithms for separation
of the base flow proved to be effective. Since most of such algorithms cannot
be directly used in operation (since they require the future values of flow), they
have to be replicated by surrogate classifier models, and it was shown that this
approach can be successfully implemented. Several classifiers used in this role
were compared in accuracy but the difference appeared to be marginal (The
linear classifier was, however, the best). Partitioning the data by clustering in
the input space leads to less accurate models when compared to those based
on knowledge-based partitioning (flow separation). However, clustering-based
partitioning is simple, is not sensitive to the algorithm parameters and can be
used as a complementary tool.

The ensemble combination of the modular models in a fuzzy committee
machine (where the areas of the inputs space covered by different models were
only partly overlapping) was considered as well. It showed that such an ap-
proach will not always be necessary since in many problems there is no ”soft”
transition between regimes characterized by the data clusters (this was confir-
med in the downscaling case study as well). Appropriate optimization of the
fuzzy committees used may lead to better results. In general, it can be con-
cluded that the modular approach for hydrological forecasting, especially the
one involving the domain knowledge in partitioning the data and in building
local specialized ANN models. The optimized overall model structure ensu-
res accurate representation of the sub-processes constituting a complex natural
phenomenon. Still more research on the possible uncertainty introduced by the
hybrid approach needs to be done.

The principle of spatial modularization was developed and tested in Chapter
6. The main case study was the process-based semi-distributed rainfall-runoff
(HBV) model of the Meuse river basin. The separate models were built for
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different spatial subsystems (sub-regions). Spatial modularity was tested with
the two schemes of introducing data-driven model components into a semi-
distributed process based rainfall-runoff model (they belong to D2P class of
models). The first scheme explored the replacement of HBV sub-basin models
by ANN-MLP models using several scenarios. The results show that this ap-
proach improves the discharge simulation both in terms of reducing the RMSE
and increasing the model efficiency. The improvement was mainly observed for
the summer periods for low flows. The second scheme used the replacement
of the routing model (combining the individual sub-basin models) by an ANN,
and lead to higher gains in terms of the overall model accuracy than the first
scheme. Nevertheless, it is important to stress that this latter scheme does
not only reproduce the flow, but also the noise in the system. Therefore, the
second scheme (model) should not be seen as a more accurate river routing mo-
del, but more a combination of models that may act as error corrector as well.
In general, it can be concluded that both spatial combination schemes have a
clear potential in improving the accuracy of the considered class of hydrological
models.

Recommendations: A natural next step for the Meuse case study, would
be to move from daily to hourly data, and from one-step ahead forecasts to
models that forecast the flow several time steps (hours) ahead.

To address the problem of limited and inaccurate data for most of the sub-
basins, which affects the models performance, it would be reasonable to use
autoregressive models which are not sensitive to the precipitation, temperature
and evapotranspiration.

Further improvements in model accuracy could be expected on the route of
the models towards “optimal hybridization”, when the processes to be model-
led would be optimally partitioned in terms of the hydrological concepts, time
and space, and the best modelling paradigm would be chosen for each of the
sub-models. A number of issues are still to be resolved: including the choice
of adequate criteria of optimality, the balance between expert knowledge and
optimization algorithms, the inclusion of spatially distributed weather forecasts
into models, and the detailed analysis of the influence of various sources of un-
certainty, mainly associated with lack of data and inadequate model structures.

9.3 Downscaling with modular models

Statistical (data-driven) downscaling, due to the identified seasonal effects, was
considered to be an area where the modular approach could be useful. For a
case study in Ethiopia, the modular approach lead to an increase accuracy in
downscaling the precipitation in comparison to the “single-model” approach,
both data-driven and statistical. However, in downscaling the temperature
the effect of modularization was marginal. The latter can be explained by
the fact that the temperature is a more periodic variable than precipitation,
and its relatively slow transition between low and high values makes it a less



ot

158 CONCLUSIONS AND RECOMMENDATIONS 9.

appropriate variable for driving modular models. For the considered case study,
the use of fuzzy committees for better integration of sub-models did not bring
improvement over the “clear-cut” modular models.

Recommendations: For data-driven downscaling, it is recommended to ex-
plicitly include more knowledge about the physical processes, thus increasing
the hybridization of models. This concerns both the single-model and the
modular approaches. The ways such knowledge can be represented and incor-
porated have to be investigated.

9.4 Parallel and serial modelling architectures

Along with the P2D and D2P approaches to building hybrid models, the paral-
lel and serial (DPPS) approaches in hybrid modelling were identified as well.
The parallel architecture is associated with ensembles formed with linear and
non-linear combining schemes, and the serial (sequential) architecture — with
complementary error correctors applied to the main model forecasts.

The multiple combinations of ensembles and error corrector models were
tested. The committee models, employing ANN and the HBV models for the
Meuse river basin, have similar performance as a model with an ANN error
corrector with short lead times. In the Meuse case study the non-linear error
corrector was found to be better than the linear error correctors. The results
show that adding the error corrector improves the accuracy of the HBV for
the lead times which are even higher than the concentration time. It appeared
from experiments that a single ANN cannot produce accurate forecasts for
lead times higher than the characteristic lag (travel) time of the particular
river. These experiments were based on the assumption of perfect rainfall
forecast (hindcasting), but can be extended for real forecasts. It general, it
was shown that the limitations of the process-based models can be overcome
by complementary error correcting data-driven models.

Recommendations: Since in the considered case study ideal forecasts were
used, it is recommended to study the sensitivity of the models to the accuracy
of the precipitation and temperature forecasts. It may be expected that the
hybrid schemes or even single ANN models will be more robust than single
error corrected conceptual hydrological models like the HBV, but to justify
this more research is needed.

It would be also advisable to investigate the possibility of building adaptive
serial hybrid models (error correctors), allowing for switching between different
regimes (so that error correctors would be modular themselves), and to test
these on various case studies.

9.5 Data-driven modelling

Although the use of data-driven models for flow forecasting has been extensi-
vely studied (ASCE, 2000a; Solomatine and Ostfeld, 2008), there are a number
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of issues that are recognized in many studies, but still receive relatively little
attention: a) the problem of optimal selection of model variables; b) the pro-
blem of the optimal splitting of data into training, cross-validation and test
sets; ¢) the sensitivity of ANNs to the random initialization of the weights;
d) the relative effectiveness of using ensembles of differently initialized ANNs.
All these issues were investigated in this thesis, and adequate procedures have
been suggested. The sensitivity of the inputs due to data availability and with
respect to different types of flow events was analyzed. Six different model ty-
pes were evaluated with 12 differently generated data sets. Most experiments
concerned the Ourthe river basin in Belgium (part of the Meuse river basin).
The following could be concluded.

The variability of the ANN models performance due to the differences in the
weights initialization needs to be always taken into account. However, in the
considered case study, ANN models with the optimized set of the input-output
variables are not influenced much by the different (random) initializations of
their weights. The procedure of optimizing network model structures and the 10
fold cross validation was found to be useful and was used in other experiments
in this study.

The correlation and AMI analyses give similar results in terms of choosing
the best set of input variables.

Partitioning of data ensuring statistical similarity of training, cross-validation
and test data sets is an important step in the process of building the data-driven
models. The methodology presented in this study, namely a combination of sta-
tistical analysis and visual inspection; a simpler alternative to the fully optimal
approach, but appeared to be effective. However, this method can be improved
and further developed in a multi-objective optimization framework.

One of the issues considered was the use of the past discharge as one of
the inputs. The use of discharge as input in the model obviously improves the
average accuracy of a DDM due to its high autocorrelation with the output
compared to that of precipitation. For a single one step forecast the precipita-
tion input does not significantly reduce the mean model error over a long period
of time, and for multi-time step forecast such an effect is relatively small.

However, considering only averaged indicators of model error, like RMSE,
could be misleading. Different error measures were compared, and in cases
where there is high autocorrelation, measures like the coefficient of efficiency
are not useful for model performance comparison. Combination of error mea-
sures like RMSE, MAE and the time series performance index (e.g PERS) is
a preferred option. Of course, precipitation is the driving variable during the
start of extreme events and flash floods, and should be included as input. More
over, one of the most common problems in iterative forecasting is the timing
error in the forecast results, which can be reduced with the inclusion of the
precipitation.

When the data-driven model is set up with the past discharges as inputs, the
model becomes driven mainly by autocorrelation rather than by the simulation
of the real ongoing process. Such model structure is different from that of a
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conceptual model, but there are also advantages in this: namely, the possibility
to capture stochastic information implicitly in the measured data and the high
accuracy obtained.

Among all the data-driven modelling techniques tested the ANN model had
the best performance. Using an ensemble of differently initialized models leads
to more accurate forecasts.

Recommendations: It appears that the performance of a DDM and the
process-based model relates to the response time of the system (i.e. the lag
time known from the physical description of the system). It is suggested 1) to
explore how the implicit water accumulation capability of a sub-basin may help
in building more accurate DDMs; 2) to develop and test on large basins like
Meuse the distributed architectures of DDM — that would include precipitation
measurements or forecasts attributed to different locations.

9.6 Conclusion in brief

This research presents a hybrid modelling framework where data-driven and
conceptual process-based models work in a coordinated fashion, and their role
and performance are optimized. Several principles of model hybridization and
modularization — spatial, temporal and processes-based — are considered and
explored on a number of real case studies. Advantages and disadvantages of
various approaches for different lead times are evaluated and discussed. In the
framework of one of the case studies, the developed models were incorporated
as software components into operational hydrological forecasting system for
Meuse river basin, implemented on the Delft/FEWS platform. This thesis
contributes to hydrological flow forecasting and its findings, we hope, could be
used in building more effective flood forecasting systems.
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APPENDIX
A

STATE-SPACE TO INPUT-OUTPUT
TRANSFORMATION

A.1 State-space and input-output models

From the data-driven point of view systems work only with observed input-
output data pairs, and do not contemplate explicitly important unobservable
variables like internal states, z(t), which are not commonly available, or cannot
be measured as much as it is needed (e.g. in space and time). These internal
state variables incorporate dynamics of the process, which together with the

state transition matrix defines the underlying dynamics of the process (figure
Al).

teT u(¢) = P — Precipitation
u(z) © Ao =h[z(0)ud)] =) ()
=0 =24 | Ds:rﬁrge
e[ )] <2 22(0)e(0)] l roaus smgrare
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“(eeD e+ 1) = AL 2o+ s +1)] e +1) il
=¥ | 4

Figure A.1: Graphical representation of the transition in time of a state space model,
the right side represents a hypothetical transition of states based on tanks.

From the data-driven point of view systems work only with observed input-
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output data pairs, and do not contemplate explicitly important unobservable
variables like internal states, z(t), which are not commonly available, or cannot
be measured as much as it is needed (e.g. in space and time). These internal
state variables incorporate dynamics of the process, which together with the
state transition matrix defines the underlying dynamics of the process.

The equation A.1 and A.2 show a typical representation of state-space mo-
del, which is in fact is the discrete-time time-invariant non-linear dynamic state
representation.

z2(t+1) = glz(t), u(t)] (A.1)

y(t) = hlz(t), u(t)] (A.2)

where t € T is time (a set of integers), z(t) € Z, the system state of
dimension I, u(t) € U , the input of the dimension r, y(t) € Y, the output of
dimension m; g : ZzU — Z |, the one step ahead state transition function,
and h : ZzU — Y, the final input-state-output transfer function.

The state transition matrix ® can be formed by a repeated application of
the state equation g[e] in equations A.1 and A.2. If we define u* = {u(t + k +
1), u(t+k)...,u(0)} € U*, for k > 0, then 2(t+k) = ®[2(0), u(t+k—1),...,u(0)],
where ®[z(0),u(t + k — 1),...u(0)],where ® : ZzU* — Z. From A.1 and A.2

we have

y(t+ k) = h[®[z(0),u(t + k —1),...,u(0)], u(t + k)] (A.3)

It has been shown by Leontaritis and Billings (1985), that if the system (eq.
A.2) can be described by a state-space equation in infinite dimensional space
and when the system is close to its equilibrium point it can be approximated
by a linear system. For a single-input-single-output (SISO) system, it can be
represented in a recursive input-output form as

y(t) = fly(t = 1), ..yt —ny), u(t — 1), ..., u(t — ny,), w] + e(t) (A4)

For f[e] some nonlinear mapping; ny and nu are positive integers repre-
senting the lags in the system observable inputs/outputs. In practice, y(t) is
subject to noise observations or model mismatch through the noise term e(t)
(usually assumed as uncorrelated Gaussian sequence with variance 2).

If this is approximated by a linear system:

ytlw)=—ary(t—1).. —an,y(t—ny) + (A.5)
biu(t —1) 4 ..+ byu(t —ny,) =XT (H)w (A.6)
Where w = [—ah o= Qpy b1, bnu]T € R", (n = ny+nu), is an unknown

parameter vectorand x (t) = [y (t — 1), ...,y (t —ny),u(t —1),...,u(t —ny) cw]”
is a known input/output observation vector or a set of system repressors. So
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Figure A.2: Graphical representation of the auto-regressive mathematical model
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Figure A.3: Graphical representation of a modular model situation, where due to a
change of state-space, significant output is obtained

the system will become represented only by a linear function that represents
the mapping of input-output (fig A.2).

The modular model approach can be visualized as a composite situation
were it is assumed that the mapping function g[e], will generate z(t) states in
regions with different dominant process. In figure A.2 the state could change
from a region z1(t) € Z1 to 2zo(t + 1) € Z2, where Z1,Z2 € Z. When these
regions have completely different dominant processes the natural representation
of a overall model is difficult (fig A.3a,A.3b). This means y can be better
represented by creating models for both states y; € Y1 and y, € Y2, where
Y1,Y2€Y.

Since each model represents an independent formulation of a state-space,
the above transformation can be generalized for both models. However, the
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transition zone presented in the bottom of the figure(A.3b), shows that if the
output of the process is highly sensitive to a change in the states, it would be
required a fuzzy transition to link both states in the model, as well to link both
results in the input-output model.
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DATA-DRIVEN MODELS

The general procedure for developing artificial neural networks (ANN), model
tree (MT), support vector machines (SVM) and other data-driven models was
already mentioned in Chapter 4, however, the details of their structure were
not mentioned. The proposed of this appendix is to cover the principles of
some of their formulations.

B.1 Artificial Neural Networks (Multi-layer perceptron)

Input node Hidden node
(neuron) (neuron)

Output node
(neuron)

Input layer Hidden layer Output layer

Figure B.1: Basic diagram of ANN multi-layer perceptron

The ANN’s can be considered an evolution of the regression models. They
are essentially mathematical models defining a function f : X — Y. Each type
of ANN model corresponds to a class of such functions. The ANN model most
used in this thesis was the multi-layer perceptron, explained hereafter.
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Figure B.2: Schematic diagram of node j (bottom), Price, 2006

The inputs of a vector U = (uq, ..., U4, ..., 4, ) and the corresponding weights
leading to the node form a weight vector A = (a1, ...,a;,...,a,). The hidden
node output z, of node j, is obtained by adding all the products and a bias
term:

n

Zj = 2121 Qi T4 + Qoj (Bl)

This linear combination is affected by a non-linear function g. A log function
is used to obtain non-linear soft-combination of the results in each node. The
solution of a sigmoid function, like the one in Equation B.2 is sensitive the
parameter 8. The figure of the transfer functions with different values of 3 are
shown in figure B.3. At the end it is important to take into account a bias term
that will displace the function and help the fit.

1

C14eP?

The transfer function can be also useful as a way to have some extrapolation
capacity. The function never reaches the extremes and therefore it leaves a
range for unknown ranges of inputs. Some authors add to this and reduce
the range of the function by making normalization between 0.1 and 0.9 and
therefore it is increase the difference between the limits of the function and the
inputs.

The final output is based on the product of the different hidden nodes
outputs multiplied by the connection weights (B) to the final output nodes. In
the case of rainfall-runoff models this output is only one (discharge).

9(2) (B-2)

Yann = »_ Bg(Z) + Bo (B.3)

The challenge in this ANN model representation is normally the identifi-
cation of the right weights that will make the function fit the measurement
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Figure B.3: Different behaviors of the sigmoid function with different values of 3

values. This has been analyzed by many researchers and therefore different
approaches can be found. The most commonly applied is the gradient descent
method since its procedure is clearly interpreted with the climbing of a moun-
tain. However, recently simplified methods that approaches the same type of
solution in a faster way are being used (i.e. Levenberg Marquadt). This choice
is simple a matter of experimental trial and error, and for complex phenomenon
it is recommended the gradient descent method (GDM) or other global opti-
mization methods like genetic algorithms (Tsymbal et al., 2005) or adaptive
clustering (Solomatine, 1999, ACCO).

To obtain the mentioned weights of the ANN model an objective function
need to be defined. The mean square error (Equation B.4) is well known due
to its properties in giving higher error weight to the high difference between
observed and measured. A solution to this function can be approached by
minimizing the MSE.

MSE = —SSE, (B.4)
n
SSE = Z (yann — ) (B.5)

The ANN weight identification is called training. This starts by replacing
yann in the equation B.5 from equation B.3, and equalizing it to zero.

0= Z Z BQ(Z) + By — Ymeasured)2 (B6)

The equation B.6 is optimized knowing a number of data samples that
are normally measurement from a real life problem. The unknowns in the
problem are normally only the weights of the system. The other terms of the
function are defined by other processes that help to structure the ANN model
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(cross validation for nodes identification or validating fit of the optimization
procedure).

B.2 Model Trees (M5P)

Following a modular approach to modeling, a data-driven model should be
comprised of several sub-models. To train them, the training set may be split
into subsets corresponding to a particular sub-process to be modeled, and then
each module (Figure B.4) is trained on these non-intersecting subsets(actually,
these subsets can be intersecting leading to some versions of ensemble models,
but this option is not considered here). When a new input vector is presented, it
is first classified to one of the regions (corresponding to the subsets) for which
the modules were trained, and then only one module is run to produce the
prediction. A class of such methods employing consecutive progressive splits;
is typically referred to as trees; examples are: decision trees, regression trees
(Breiman et al., 1984), MARS (Friedman, 1991), M5 model trees (Quinlan,
1996).

Since for each data instance (input vector) only one local model is used for
prediction, there is a problem of compatibility at the boundary between the
regions for which the modules are responsible: for the two neighboring input
vectors the predicted outputs could be very different. A solution could be in
updating the local models to make them compatible at the boundaries, like
it is done in M5 model tree algorithm through smoothing. Wang and Witten
(1997) presented M5 algorithm based on the original M5 algorithm but able to
deal with enumerated attributes, to treat missing values and using a different
splitting termination condition. Several advantages of using the model tree are
that it is a non black-box model, understandable, easy to use and to learn,
fast in training, robust when dealing with missing data, able to handle large
number of features and able to tackle tasks with very high dimensionality. The
main procedure of building M5 model trees is as follows:

1. Building the initial tree An approach used in M5 trees is to minimize
the intra-subset variation in the output values down each branch. In
each node, the standard deviation of the output values for the instances
reaching a node is taken as a measure of the error of this node and
calculating the expected reduction in error as a result of testing each
attribute and possible split values. Such split attribute together with
the split value that maximize the expected error reduction are chosen for
each node. The standard deviation reduction (SDR) is calculated by

| T3]
T

SDR = sd(T) = Y "= x sd(T;) (B.7)

where T is the set of instances that reach the node and T4, Tb, are the sets
that result from splitting the node according to the chosen attribute. The
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Training Data
Set

New instance

NI E———"

Figure B.4: Training M5 model trees and their operation. al..a3 are data partiti-
oning rules; M1...M5 are multiple linear regression models, (Solomatine and Dulal,
2003)

splitting process will terminate if the output values of all the instances
that reach the node vary only slightly, or only a few instances remain.

2. Pruning The pruning procedure based on subtree replacement is used
in M5 model trees to avoid overfitting. It makes use of an estimate of the
expected error that will be experienced at each node for test data. First,
the absolute difference between the predicted value and the actual class
value is averaged for each of the training instances that reach that node.
This average will underestimate the expected error for unseen cases, of
course and to compensate, it is multiplied by the factor

ntvxpf (B.8)
n—u

where n is the number of training instances that reach that node, v is the
number of parameters in the model that represents the class value at that
node, and pf is pruning factor. The resulting linear model is simplified

by dropping terms to minimize the estimated error calculated using the
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above multiplication factor, which may be enough to offset the inevitable
increase in average error over the training instances. Terms are dropped
one by one, greedily, so long as the error estimate decreases. Once a
linear model is in place for each interior node, the tree is pruned back
from the leaves, as long as the expected estimated error decreases.

3. Smoothing A smoothing process is used to compensate for the sharp
discontinuities that will inevitably occur between adjacent linear models
at the leaves of the pruned trees. This is a particular problem for models
constructed from a small number of training instances. Smoothing can be
accomplished by producing linear models for each internal node, as well
as for the leaves, during the time the trees is built. Once the leaf model
has been used to obtain the raw predicted value for a test instance, that
value will be filtered along the path back to the root, smoothing it at
each node by combining it with the value predicted by the linear model
for that node. An appropriate smoothing formulation is

,_np+kq

L (B-9)
where p’ is the prediction passed up to the next higher node; p is the
prediction passed to this node from below; ¢ is the value predicted by
the model at this node; n is the number of training instances that reach
the node below; k is constant (in WEKA software we used default value
is 15). Smoothing has most effect on a case when the models along the
path predict very different values and when some models were constructed
from few training instances.

B.3 Support Vector Machines

Support Vector Machines (SVM) is a well known algorithm in machine learning
for classification problems. It has been adapted to regression problems showing
highly accurate results. Its algorithm aims at minimizing a bound on the
generalization error of a model, rather than minimizing the mean square error
over the data set. The SVM approach treats the input data as two set of vectors
in an n-dimensional space, an SVM will construct a separating hyperplane in
that space. The hyperplane should maximize the margin between the two
data sets. In this paper, the basic ideas underling SVM are reviewed and the
potential of this method for regression (modelling) problems.

Given a training set of model simulations and measurements pairs (z;, y;),{ =
1,..,0 € R and y € {1, —1}l, the support vector machines(SVM) (Boser,
Guyon, and Vapnik 1992; Cortes and Vapnik 1995) require the solution of the
following optimization problem:
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1
17
1runén U w + C;& (B.10)
, subject to
yi(w" o(z:) +b) 21— & (B.11)
£=>0 (B.12)

In this equation x; is a vector that is mapped into a higher dimensional
space by a function ¢. Then SVM finds a linear separating hyperplane with
the maximal margin in this higher dimensional space. C' > 0 is the penalty
parameter of the error term. Furthermore, K (z;,z;) = é(z;)T ¢(x;) is called
the kernel function. For the scope of this research some experiments have been
done with the following kernels.

Linear :

K(xi,x;) = xl 2, (B.13)

Polynomial:
K(zi,25) = (yaFa; +r)%~y >0 (B.14)

Radial basin function:

K(z;,2;) = exp(—lwi=esl?)7>0 (B.15)
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HOURLY FORECAST IN THE MEUSE
(DELFT-FEWS INTEGRATION)

As shown in Chapter 6, some of the daily models in the Meuse can be replaced
by data-driven models with increasing performance. The travel time of the
river is one day, therefore hourly resolution is required in operational forecast.
For this an adjusted and integrated HBV models is used to generate the hourly
forecast (van Deursen 2004). This model includes a more complete routing
scheme, and an autoregressive error corrector model. To be able to manage
all the model interactions and the comprehensive data-base, the Delft-FEWS
environment is used. The the FEWS environment is defined with operation
rules solving operational problems with the highest performance. These rules
apply on missing data, interpolation and extrapolation of grid and weather
station information.

C.1 Methodology

To evaluate the performance of an ANN model in the operational system, it
is important to evaluate the forecast performance of the HBV and the routing
(SOBEK) model. Three components of the operational system are analyzed:

e Scenario 1: The RMSE of the routing model for the hourly forecast is
calculated. The average error obtained is assumed to be the minimum
error contribution of this model, to the forecast. This process is done for
the overall river basin (Figure C.la).

e Scenario 2: The analysis of the accuracy of the HBV model using measu-
red information on an hourly basis. The same as in the routing model, the
RMSE is used as reference of the minimum error obtained in the subse-
quent forecasts. This procedure is done for the river gauge measurements

187
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Measured Routing
river gauges (SOBEK)

Hydrograph
analysis

(a) Scheme of routing model error analysis (scenario 1)

Precipitation _ HBV Routing Hydrograph
gauges o model (SOBEK) analysis

(b) Scheme of HBV and routing model analysis (scenario 2)

Precipitation
gauges
Forecast error
analysis
Weather
forecast

(c) Scheme analysis of the difference between
forecasted precipitation and measured gauges
(scenario 3)

Figure C.1

at Borgharen (overall Meuse) and for the Chooz sub-basin (farest region
in the Meuse model).

e Scenario 3: The analysis of the difference between the measured preci-
pitation gauges and the interpolated precipitation forecast.

Note that all the models used in the scenarios include the an ARMA error
corrector model (Broersen, 1998), in addition the process-based model (HBV) is
combined with an updating procedure to correct the states before each forecast
is made. The implication of this is that the starting point of the HBV model
results for each forecast is the same as the measured one.

Forecasting model setup

The sub-basin models used for the forecasting vary from the concept given in
Chapter 6 only on the way the basins are grouped. The sub-basin grouped
can be seen in Figures C.2; C.3, C4, C.5, C.6 and C.7. This basins have
high difference in size and on their seasonal overall discharge contribution. All
other information like precipitation measurements and regional hydrological
parameters remain the same. Hourly measured data from the river gauges
were the basis for grouping the different basins upstream the measurement
point.
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Hourly measured information from years 2006 and 2007 were used to run
different scenarios (Figure C.1). The measured information fed to the model
has a number of pre-processes defined in the structure of the forecast modu-
les. The FEWS system is based on XML structure, so a workflow file, was
used. The interpolation and routines for filling data, using linear spatial and
temporal formulation were used. The weather forecast information is fed into
the system with different intervals of 6,12 and 24 hours, depending on the
weather agency that generated the information. The HIRLAM and DWD-LM
(Germany) weather forecast information were used for the scenario 3.

he-en:Famenne

® st Guentin

Figure C.3: Region upstream of the gauging station at Gendron

C.2 Neural network model (ANN)

The ANN model used for this experiment was a focused time-delay neural
network (FTDNN). This is part of a general class of dynamic networks, called
focused networks, in which the dynamics appear only at the input layer of a
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Figure C.6: Region upstream of the gauging station at Martinrive

static multilayer feed-forward network. Figure C.8 shows the two layer setup
used to build the model.

This neural network concept has the same process as an ANN MLP network
when the ANN work only with autoregressive parameters. In this case, the
number of lags taken into account was 24 hours for both models developed here
(Chooz and the overall Meuse basin at Borgharen). The lags were determined
by the autocorrelation of the measured discharge in two years, at both locations.

The total number of hours measured started from November 2005 to Decem-
ber 2007 are 25236. However, the hydrological model had a warming period,
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Figure C.7: Region upstream of the gauging station at Choudfountaine

Inputs Layer 1 Layer 2

Figure C.8: Focused time-delay neural network (Mathworks, 2008)

which was contemplated to be 3012 sample (125 days). The data was split
into a training data set of 1.6 years (14016) samples, and verification with the
remaining data (e.g. 0.937 years, 8208 samples).

C.3 Results

Scenario 1 and 2 Results of scenario 1 and 2 are shown in Figure C.9, where
they are projected in hindcasting (Forecasting assuming the measured values
of the input for the models are available, sometimes called perfect precipitation
forecast). In the hindcast situation, we could say that we assume perfect pre-
cipitation forecast, therefore a constant RMSE line was drawn in Figure C.9.
The scenario 1, routing model, the RMSE is 57.23 and for the HBV+SOBEK
model is 119. The difference between this two models can be assumed to be
contribution from the river basin conception model. In other words, the HBV
only carried with less than 50% of the total forecast error at the first time step.
The line shown in Figure C.9, shows the forecast performance of the ANN mo-
del in terms of RMSE. As we can see, in the first 7 hours the ANN model is less
accurate than the routing model with measured inputs (hindcasting). On the
other hand, the ANN reaches the accuracy of the HBV+SOBEK model at 31
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hours, which is much more than the travel time of the basin. This result shows
that a high increase in the performance can be obtained with ANN model, with
only past discharge information.

119 - HBV
Q)
E
w
2 57- SBK
x measured
(+AR)

Lead time (hours)

Figure C.9: Comparison of forecasts made with ANN model, routing model (SO-
BEK) and the integrated HBV-SOBEK model (Overall Meuse)

To extend the analysis, the same analysis was extended to the Chooz region,
upper Meuse. In this case, the results are shown without routing component,
the HBV only includes the autoregressive error corrector model.

HBV Simulation |

RMSE (m3/s)

Lead time (hours)

Figure C.10: Comparison of forecasts made with ANN model and the integrated
HBV-SOBEK model (Chooz)

The Figure C.10 show that the hourly model upstream Chooz with an
ANN model autoregressive model could reach 30 hours of forecast lead time
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with better results than the HBV (RMSE=56 m?3/s).

Scenario 3 An important component in the operational system is the weather
forecast information, which is commonly mentioned as the most inaccurate
variable in the system. The difference between measured information and the
forecast interpolated for the DWD-LM and the HIRLAM for sub-basin one
(Lorraine Sud) are presented in Figures C.11, C.12 and C.13. The x axis
correspond to the day the forecast was mode, starting 1 of January 2007. The
y axis of these figures correspond at the number of hours forecast each day (73
hours). The ranges of precipitation (mm, color) where grouped in 3, as it can
bee seen in the right hand side of each figure. The error graph was divided
in four ranges due to the inclusion of overestimation and underestimation of
precipitation.

Forecast (hours)

50 100 150 200 250 300 350 400

Figure C.11: Error of interpolated forecast precipitation in hindcasting (gauges me-
asurements) for Lorraine Sud

On Figure C.12 and C.11 there is no clear indication that the forecast is
always worst when the lead time is increasing. On the other hand, in Figure
C.13, we can see that most of the error is present in summer (sample 200,
around June). This topic was consulted by experts and it seems that this is
quite common due to the difficulty to forecast small clouds of rain.
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Figure C.12: Errors of interpolated precipitation forecast using HIRLAM for Lor-
raine Sud

Figure C.13: Error of interpolated precipitation forecast using DWD-LM for Lor-
raine Sud
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SAMENVATTING

Operationeel hydrologisch voorspellen is gebaseerd op uitgebreid gebruik van
verschillende typen hydrologische modellen. Het populairst zijn conceptuele
modellen, gevolgd door de meer gedetailleerde proces gedistribueerde model-
len. Empirische (statistische) modellen worden ook gebruikt, en in het afge-
lopen decennium heeft deze laatste categorie steeds meer aandacht gekregen
vanwege het opkomen van door data aangestuurde modellen. Dit zijn in es-
sentie empirische modellen die gebruik maken van de methoden van machine
learning (Computational Intelligence). Een brede keuze aan modellen biedt
een bepaalde uitdaging aan een modelleur: deze zal passende modellen moe-
ten selecteren en integreren, en ze vervolgens koppelen aan de gegevensbronnen.
Onlangs zijn een aantal studies ingegaan op het probleem om verschillende mo-
delleringsparadigma’s te integreren, en het is gebleken dat deze benadering tot
een verhoogde nauwkeurigheid van voorspellingen leidt. Meer studies zijn nodig
om een consistent modelleringskader te ontwikkelen en dit te testen in diverse
situaties. In dit onderzoek worden diverse manieren onderzocht om modellen
voor simulatie en voorspelling te integreren. Het stijgende aantal extreme en
onverwachte overstromingen in de afgelopen decennia heeft geleid tot een groei-
ende belangstelling voor nauwkeuriger voorspellings systemen voor hoogwater.
Deze systemen zijn noodzakelijk om te waarschuwen tegen overstromingen en
daarmee het verlies van levens te voorkomen en schade aan eigendommen en vee
te minimaliseren. Daarnaast zijn prognoses van juist lage afvoeren ook belang-
rijk voor watervoorziening, industrieel gebruik van zoet water, optimalisatie van
het functioneren van reservoirs en andere watergerelateerde kwesties. Het doel
van de modelleurs is het vergroten van de nauwkeurigheid van de modellen, en
de voorspellingstermijn te vergroten. Betere weersvoorspellingen en meer accu-
rate gegevens spelen hierin een hoofdrol, maar ook verbeteringen in modellen
en de integratie van verschillende modellen hebben veel potentieel. De keuze
voor een bepaald modelleringsparadigma wordt bepaald door de doelstellingen
van het modelleren van een hydrologisch verschijnsel, en de beschikbaarheid
van gegevens. In het algemeen kunnen de modellen die worden gebruikt voor
afvoervoorspellingen worden ondergebracht in drie categorieén: a) fysisch ge-
baseerde modellen (Physically Based Models - PBMs) (vaak gedistribueerd)
gebaseerd op de gedetailleerde weergave van de processen; b) conceptuele mo-
dellen en hun meer geavanceerde versie, ook wel proces-gebaseerde modellen
(Process Based Models - PRBMs) genoemd, inclusief de zogenaamde “semi-
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gedistribueerde” versies; en ¢) empirisch statistische of gegevensgestuurde mo-
dellen (Data Driven Models - DDMs), gebaseerd op de historische gegevens van
de gemodelleerde processen. Fysisch-gebaseerde modellen (PBMs) worden in
het algemeen gebruikt voor de interpretatie van processen in stroomgebieden.
Deze modellen maken gebruik van een groot aantal fysische parameters die op
basis van deskundige kennis, veldanalyse, en/of, in complexe situaties, geauto-
matiseerde calibratietechnieken worden bepaald. PBMs worden vaak gebruikt
bij de beoordeling van van overstromingssituaties waar de informatie van de
deskundige met de capaciteit van gedetailleerde modellen wordt gecombineerd.
Vaak zijn er echter niet genoeg gegevens om PBMs te bouwen, en is voor opera-
tionele afvoervoorspellingen een gedetailleerde weergave van een stroomgebied
ook niet nodig. Dat is waarom voor ‘real time’ (operationele) afvoervoorspel-
lingssystemen vaak de voorkeur wordt gegeven aan conceptuele methoden zoals
PRBMs en gegevensgeoriénteerde technieken zoals DDMs.

De PRBMs en DDMs hebben een verschillende basis: bij PRBMs is de
structuur gebaseerd op de vereenvoudigde beschrijving van de fysische pro-
cessen, terwijl DDMs gewoonlijk de set van input-variabelen ten opzichte van
output-variabelen weergeven. Er wordt vaak opgewezen dat eigenschappen van
de PRBMs ontbreken in de DDMs en vice versa. Door de verschillen in deze
twee paradigmas is het integreren van dergelijke modellen een uitdaging. Zo-
wel DDMs als PRBMs zijn algemeen geaccepteerd en onderzocht, en hebben
nuttige eigenschappen voor verschillende typen problemen. Bij het maken van
de beslissing welk type model het meest geschikt is voor een bepaald doel,
moet men de mogelijkheid overwegen om beide modelleringsbenaderingen te
integreren. Modellen die verschillende paradigma’s combineren worden vaak
“hybride” genoemd. Bij een dergelijke hybride aanpak moeten de beste ei-
genschappen van beide benaderingen worden gehandhaafd: fysische concepten
van de hydrologische wetenschap in PRBM en de kracht van het inkapselen
van historische gegevens in DDM. Bij hybride modellen zijn de verschillende
sub-modellen meestal verantwoordelijk voor het modelleren van bepaalde deel-
processen, waardoor het scheiden van de input-ruimte, gebruikmakend van ver-
schillende fysische concepten en/of wiskundige constructies, en vervolgens de
integratie van de output nodig is. Als een stap voorwaarts in afvoersimulatie
en -voorspelling verkent dit proefschrift het gebruik van geintegreerde oplos-
singen met proces-gebaseerde en gegevensgestuurde modellen. Hiertoe wordt
voorgesteld een kader voor hybride modellering te gebruiken, en dat te baseren
op het beginsel van modulair (lokaal) modelleren.

De belangrijkste doelstelling van dit onderzoek was te onderzoeken 1) wat
de mogelijkheden en de verschillende architecturen zijn voor de integratie van
hydrologische kennis en modellen met gegevensgestuurde modellen, voor ope-
rationele hydrologische voorspellingen, en 2) om deze te testen op verschillende
case-studies. De modellen die uit een dergelijke integratie voortkomen staan
bekend als hybride modellen. De volgende specifieke doelstellingen zijn gefor-
muleerd:
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1. Verkennen van de verschillende architecturen en de ontwikkeling van een
kader voor hybride modellen die gegevensgestuurde en proces-gebaseerde
hydrologische modellen combineren, in operationele hydrologische voor-
spellingen, en specifiek in de context van overstromingsrisico’s.

2. Verder verkennen, verbeteren en testen van modulair modelleren voor de
bouw van gegevensgestuurde en hybride modellen.

3. Verder verkennen, verbeteren en testen van de procedures voor optimali-
seren van de structuur van gegevensgestuurde modellen, met inbegrip van
de modellen die bedoeld zijn als aanvullings- en/of correctiemodellen.

4. Evalueer de toepasbaarheid van modulaire modellering voor andere ver-
wante problemen, zoals het neerschalen van weersinformatie voor hydro-
logische voorspellingen.

Dit onderzoek introduceert en ontwikkelt hybride modelleringsprincipes, ge-
baseerd op modulaire modellen. Algemene classificatie van hybride modellen
en een logisch kader van hybride modellen zijn in dit onderzoek ontwikkeld
en op basis van dit kader zijn modulaire modelleringsconcepten ontwikkeld en
getest op een aantal case-studies. Drie belangrijke principes van modulari-
satie van de gebruikte modellen zijn: ruimte, tijd en proces-gebaseerd. De
belangrijkste case-studie voor de ruimtelijke analyse is het Maas stroomgebied.
Rijkswaterstaat gebruikt het hydrologische modelleringssysteem Hydrologiska
Byarns Vattenbalansavdelning (IHMS-HBV). Het Maas stroomgebied verte-
genwoordigt 15 deelstroomgebieden, elk gemodelleerd door individuele, geclus-
terde, conceptuele model componenten, die zijn gekoppeld door middel van een
versimpeld ‘routing scheme’. Dit model is deel van het operationele hoogwa-
tervoorspellingssysteem dat wordt gebruikt in het door Deltares ontwikkelde
Delft/FEWS platform. De modellen in dit systeem worden real-time gevoed
met regionale weersvoorspellingen waarin wordt voorzien door het Koninklijk
Nederlands Meteorologisch Instituut (KNMI). In dit onderzoek zijn verschil-
lende manieren voor vervanging van conceptuele hydrologische sub-modellen
door lokale, op data gebaseerde, modellen (ANNs) geanalyseerd. Dit is ge-
daan op basis van beschikbare informatie (lokaal gemeten afvoeren), en op een
studie van de relatieve bijdrage aan de totale modelfout van elk sub-model
van een deelstroomgebied. Het resultaat van een dergelijke model-hybridisatie
heeft meerdere voordelen, niet alleen in nauwkeurigheid van het algehele model,
maar ook in de vergroting van de voorspellingstermijn. Hier speelt ruimtelijke
weersinformatie een belangrijke rol in lage en hoge afvoerverschijnselen.

Experimenten met op tijd en proces-gebaseerde modellen zijn uitgevoerd
in verschillende typen stroomgebieden in Azié en Europa. De experimenten
laten de voordelen zien van het combineren van gespecialiseerde modellen die
gebouwd zijn voor verschillende deelprocessen. Het wordt ook aangetoond dat
voor de identificatie van zulke deelprocessen het effectiever is om gebruik te
maken van hydrologische concepten en beoordeling en kennis van experts, dan
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van geautomatiseerde data analyse en cluster technieken (die overigens ook erg
nuttig kunnen zijn). Het wordt aangetoond hoe globale optimalisatietechnie-
ken helpen om optimale modelstructuren te genereren. Daarnaast worden de
mogelijkheden voor het gebruik van modularisatie in voorspellingen voor meer-
dere tijdstappen vooruit gepresenteerd, en vergeleken met conventionele ANN
modellen.

Een uitgebreide gevoeligheidsanalyse van hoofdzakelijk op data gebaseerde
ANN modellen is uitgevoerd in dit onderzoek, samen met de analyse van af-
hankelijkheid van verschillende gegevensgestuurde modellen van verschillende
inputs en steekproefsgewijze initialisaties. Deze experimenten bevestigen dat
afvoervoorspellende gegevensgestuurde modellen die voorgaande afvoerwaar-
den gebruiken, gedomineerd worden door autocorrelatie, waardoor de nauw-
keurige kennis van neerslag voor bepaalde waarschuwingstijden minder belang-
rijk is in de algemene fouten analyse. In het algemeen worden ANN modellen
met juist gekozen variabelen niet erg beinvloed door verschillende willekeurige
initialisaties van gewicht. Met de juiste selectie van variabelen lijkt het zo
te zijn dat de correlatie en “Averga mutual information” (AMI) analyse ver-
gelijkbare resultaten geeft voor alle case-studies in deze dissertatie. Van alle
gegevensgestuurde modellen die zijn getest, leverden de ANNs de beste pres-
taties. Wanneer een ensemble van ANNs wordt gebruikt die op verschillende
manieren zijn geinitialiseerd, leidt dit tot nauwkeuriger voorspellingen.

Parallelle en aanvullende hybride modelarchitecturen toonden betere pres-
taties van het voorspellingsmodel dan de ANN en proces-gebaseerde modellen.
Meerdere combinaties van ensembles en foutcorrectie modellen zijn getest. Het
gebruik van ‘committee’ (complementaire) modellen die ANN en HBV model-
len toepassen voor het Maas stroomgebied laten bijna dezelfde prestaties zien
als een model met een foutcorrectie dat gebouwd is met de informatie van
voorgaande fouten en voorspellingen van het model. In de Maas case-studie
is de non-lineaire foutcorrectie significant beter dan de lineaire foutcorrectie.
De resultaten laten zien dat het toevoegen van de foutcorrectie de nauwkeu-
righeid van HBV verbetert, voor waarschuwingstijden die groter zijn dan de
concentratietijd. Het bleek uit experimenten dat een enkele ANN geen nauw-
keurige voorspellingen kan doen voor termijnen groter dan de specifieke con-
centratietijd van de desbetreffende rivier. Deze experimenten gaan uit van
een perfecte neerslagvoorspelling, maar kunnen uitgebreid worden naar echte
voorspellingen. Over het algemeen werd aangetoond dat de beperkingen van
proces-gebaseerde modellen kunnen worden overwonnen door additionele, fout
corrigerende, gegevensgestuurde modellen.

Een andere case-studie bestudeert de neerschaling van informatie van Ge-
neral Circulation Models (globale meteorologische modellen) naar meteorolo-
gische informatie op stroomgebiedsniveau. De modulaire modelleringsaanpak
(gebaseerd op het clusteren van data en het bouwen van aparte modellen voor
elk cluster) brengt verbetering ten opzichte van conventionele statistische en
gegevensgestuurde modellen. Dit word ondersteund door een case-studie in
Ethiopie en data van NCEP uit de VS. De resultaten laten verbetering zien in
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de algehele nauwkeurigheid van de gemodelleerde neerslag, maar de resultaten
voor temperatuur zijn minder overtuigend. Dit laatste kan worden uitgelegd
door het feit dat temperatuur een meer periodieke variabele is dan neerslag,
en de relatief langzame transitie tussen hoge en lage waarden maakt het een
minder passende variabele voor gebruik in modulaire modellen. Samengevat,
presenteert dit onderzoek een kader voor hybride modellering, waarin gegevens-
gestuurde en conceptuele, proces-gebaseerde modellen op een gecordineerde
manier samenwerken en waarin hun rol en prestaties geoptimaliseerd zijn. Ver-
scheidene principes van model hybridisatie en modularisatie (ruimtelijk, in de
tijd en proces-gebaseerd) zijn in beschouwing genomen en onderzocht in een
aantal case-studies. Voor- en nadelen van verschillende benaderingen voor ver-
schillende waarschuwingstijden zijn geévalueerd en bediscussieerd. Voor de
Maas case-studie zijn de ontwikkelde modellen bijgesloten als software compo-
nenten in het operationele hydrologische voorspellingssysteem voor het Maas
stroomgebied en geimplementeerd op het Delft/FEWS Platform.

Deze dissertatie draagt bij aan hydrologische afvoervoorspelling en de re-
sultaten kunnen, hopen we, gebruikt worden bij de bouw van effectievere
hoogwater-voorspellingssystemen.

Gerald A. Corzo Perez
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