

Delft University of Technology

Description grammars
A general notation
Stouffs, Rudi

DOI
10.1177/0265813516667300
Publication date
2016
Document Version
Accepted author manuscript
Published in
Environment and Planning B: Planning & Design

Citation (APA)
Stouffs, R. (2016). Description grammars: A general notation. Environment and Planning B: Planning &
Design, 45 (2018)(1), 106-123. https://doi.org/10.1177/0265813516667300

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1177/0265813516667300
https://doi.org/10.1177/0265813516667300

Description grammars: a general notation

Abstract

A description grammar, in conjunction with a shape grammar, serves to generate verbal

descriptions of designs, next to the spatial descriptions. These verbal descriptions can

also assist in guiding the generative process. This paper presents a general notation for

descriptions and description rules that accounts, extensively if not entirely, for many of

the applications of description grammars found in literature. Specifically, a review of

the notation with respect to these description schemes supports the explication of its

strengths and limitations and the identification of future work. A follow-up paper will

revisit selected applications of description grammars and demonstrate the applicability

of this general notation to these case studies.

Introduction

“Designers work with descriptive devices of many kinds. These may be spatial or

symbolic” (Stiny, 1991, p. 171). Descriptions may serve to compare designs to find

similarities and dissimilarities. Descriptions may also be generated. Shape grammars

have been used extensively for both. Shape grammars are a formal rewriting system for

producing languages of shapes (Stiny, 1980); they have been used, to name just a few,

by Stiny and Mitchell (1978) to generate Palladio’s villa ground plans as a partial

definition of the Palladian style, by Downing and Flemming (1981) to allow differences

between bungalows of Buffalo “to be explained as different geometric realizations of a

shared set of conventions,” and by Çağdaş (1996) to characterize formal compositional

aspects of traditional Turkish houses.

 2

When we describe architecture, we are interested in both the description of the specific

architectural object and its relation to other, similar architectural objects. Although

shape grammars have been extensively used for this purpose, shape descriptions of

architectural objects can be deficient. Stiny (1981, p. 257) noted that “main details of

the functional elements comprising designs in these languages are provided in the

informal, verbal descriptions of the shape [rewriting] rules used.” To address this

deficiency, Stiny proposed to augment a shape grammar with a description function in

order to construct the verbal descriptions of designs. He illustrated the application of a

description function with designs made up of blocks from Froebel's building gifts.

However, he indicated that the formal representation of descriptions, together with the

descriptions themselves, would “likely have to be worked out on a case-by-case basis”

(Stiny, 1981, p. 258).

About thirty-five years onwards, we can find more than a few applications in literature

of a description function, often denoted a description grammar, in conjunction with a

shape grammar, to qualify designs both spatially and descriptionally. While similarities

can be discerned, especially among researchers who worked closely together, a formal

representation of descriptions was still lacking until now. Moreover, few of these

applications include an implementation of the description function or grammar. Only

Duarte and Correia (2006) describe the implementation of a description grammar—

codifying the Portuguese housing design guidelines—and they specifically encode

(hard-code) the description rules in order to handle custom description structures. Later,

Duarte et al (2012, p. 84) identify the lack of a description grammar interpreter as one

of two reasons for adopting a different strategy considering an ontology to represent

urban program formulation rules and an ontology editor as the rule interpreter, the other

reason being the complexity of the urban formulation problem.

 3

This lack of a description grammar interpreter may hamper the development of sound

description grammars. Eloy (2012a) reflects on a grammar implementation for housing

rehabilitation. She acknowledges that the description rules were first developed in an

abbreviated form, which “proved to be insufficient in terms of implementing the

grammar in computer software since it does not have all the information required” (Eloy

2012a, p. 320). She subsequently defined a detailed description but, admitting to a

purely manual elaboration, she only elaborated a few sample rules and illustrated a few

derivational steps (Eloy, 2012b, p. 150). Similarly, Correia (2013)—while describing

the implementation of a shape grammar interpreter for Duarte’s (2001) Malaguiera

grammar—reflects on the difficulty of implementing the grammar’s description rules.

He indicates “many ambiguities and even some errors” and illustrates these with a few

examples (Correia, 2013, pp. 60-61).

Neither the availability of a formal representation, nor the availability of a description

grammar interpreter, will ensure a painless elaboration or a completely accurate

grammar. However, the constraints that a formal representation imposes, and the ability

to test the specification of description rules with a description grammar interpreter, can

yield a quicker and better understanding of the requirements for a consistent

representation and a robust rule set. Despite Stiny’s (1981) conjecture that a formal

representation of descriptions likely has to be worked out on a case-by-case basis, we

aim to demonstrate that a formal representation, with corresponding description

grammar interpreter, is able to account extensively, even if not entirely, for many of the

existing applications of description grammars and, thus, can serve the development of

new applications.

Recent work has yielded an extensive overview of applications of description grammars

(or functions) in literature (reference withheld), a formal notation for descriptions and

 4

description rules that builds upon this overview, and the implementation of this notation

in a description grammar interpreter (reference withheld). Absent is a thorough analysis

of the formal notation with respect to the breadth of applications of description

grammars and the variability in concepts, components and notations. Also lacking are

detailed studies—other than Stiny’s (1981) example illustrating the application of a

description function with designs made up of blocks from Froebel's building gifts

(reference withheld)—of how some of these applications found in literature can be

recast and redeveloped to make optimal use of the available notation and

implementation.

This paper exactly addresses this lacuna, focusing on qualifying the generality of the

notation and on addressing its limitations. Firstly, we briefly present the overview of

description schemes in literature as a foundation for subsequent analysis. Secondly, we

review the formal notation and explicate its strengths and limitations with respect to the

description schemes presented. Finally, we discuss any omissions. In a follow-up paper,

we will revisit these description schemes and demonstrate how they can be recast and

redeveloped to make use of the available notation and implementation. This is both

meant as an illustration and as a confirmation of the analysis results.

Description schemes

Stiny references his 1981 article in quite a few subsequent articles, however, most

references only touch upon the subject of shape descriptions, other than visual

descriptions, or, alternatively, extend on the subject of parallel descriptions, – and

grammars – a corollary of the description function. Only once does Stiny (2006) revisit

the topic with a new example, though he twice (Stiny, 1987, p. 182; March and Stiny,

 5

1985) alluded to a forthcoming paper that would treat description schemes in more

detail. However, including Stiny’s original paper, we can identify at least eighteen

distinct accounts of description schemes or their illustrations presented in about forty

publications. We’re omitting any description schemes that rely on (spatial) topological,

ontological or graph structures that require specific, non-textual representational

structures and, as such, cannot be easily accounted for by a textual notation.

Not all accounts offer the same level of detail in describing either a description scheme

or its illustration. Nevertheless, all are included to retain completeness. The eighteen

accounts can be classified according to their role in the grammatical design generation

process: as reflecting on the spatial elements and their composition, as expressing some

property, such as volume, cost or manufacturing plan, as a design brief and as a

generative guide (other than design brief).

Descriptions as reflections

Stiny (1981) proposes a description function in order to construct intended descriptions

of designs. His descriptions reflect on the spatial elements—made up of blocks from

Froebel's building gifts—that constitute the design and the way these are combined.

These descriptions are derived from the generation process and, as such, do not impose

any conditions on the respective shape descriptions. Furthermore, Stiny’s (1981)

functions are not explicitly dependent on the shape rules they reflect upon. Though they

collect coordinate pairs specifying boundary points of (linear) wall elements, the

relative coordinates of subsequent coordinate pairs are hardcoded in the functions,

considering a distance of one between adjacent boundary points.

Li (2001; also, 2004) applies a description function to the specification of a shape

grammar for (teaching) the architectural style of the Yingzao fashi (Chinese building

 6

manual from 1103). The descriptions that are generated are taken from the annotated

Yingzao fashi (Liang, 1983) and, similarly to Stiny (1981), the descriptions reflect on

the composition of spatial elements that constitute the design. Li considers various

descriptions (nine in total, specifying measures and descriptions of width, depth,

height), as well as drawings (seven, from plan diagram to plan, section and elevation),

in parallel.

Zamenopoulos (2012) considers the mathematical characterization of the organizational

complexity of intentionality and proposes a category theoretic account of the semantic

content of design intentionality, using descriptions of shape configurations to express

interpretations of languages of designs. Note that Zamenopoulos only exemplifies

descriptions, not the underlying description rules.

Descriptions as expressions

A few authors consider description functions in the context of spatial grammars applied

to mechanical engineering. These accounts invariable consider descriptions as

expressing some property, such as volume, cost or manufacturing plan.

Brown et al (1996; also, Brown and Cagan, 1997) consider a description function that

generates process plans for the manufacturing of objects with a turning tool. The objects

themselves are generated by a parametric attributed set grammar, but redefining the

grammar instead as a shape grammar (with constraint specifications) would not impact

the description function as such. Separately, Brown (1997) exemplifies volume

calculation as a description function for a grammar specifying a language of stepped

grooved shafts. In contrast to Stiny (1981), both description schemes consider

description rules that are explicitly dependent on the conjunctive shape rules. For

example, Brown’s (1997) description rules for volume calculation require the shape rule

 7

to provide values for the diameter and length of the section when adding a new section

to the shaft.

Agarwal (1999; also, Agarwal et al, 1999) considers a description function that yields

cost expressions or equations that can be evaluated to reveal the cost of a design as the

design develops through the generation process. While these expressions make explicit

reference to characteristics of the shape under rule application, such as its dimensions,

these are not evaluated during rule application. Instead, the cost expressions are

intended to be evaluated on the corresponding shape again and again, at any time during

the generation process, in order to assess the evolving cost. These cost assessments can

be used to gain insight into how design changes affect the cost and thus providing

feedback on the generation process itself; but it can also be used to guide the generation

process by cost preferences or constraints.

Descriptions as design brief

Duarte (2001; also, 2005a) considers a discursive grammar to incorporate a shape

grammar, a description grammar and a set of heuristics, at least from a technical

viewpoint. The use of heuristics is intended to constrain the rules that are applicable at

each step of the design generation. From an operational viewpoint, a discursive

grammar combines a programming grammar generating design briefs based on user and

site data and a designing grammar using the design brief(s) to generate designs in a

particular style. Both programming grammars and designing grammars utilize

description grammars, though only the designing grammar complements the description

grammar with a shape grammar. Duarte and colleagues apply discursive grammars to

the Portuguese housing program guidelines and evaluation system (PAHP) and the

houses designed by the architect Alvaro Siza at Malagueira (Duarte, 2001), to urban

 8

design (Beirão, 2012) and to housing rehabilitation (Eloy, 2102a; 2012b; also, Eloy and

Duarte, 2014). Duarte (2005b; also, 2001) presents a simplification of the Malagueira

designing grammar, with descriptions representing functional zones and their adjacency

relations.

Descriptions as generative guide

Many other accounts consider descriptions as generative guide, other than design briefs.

Knight (2003) proposes state descriptions to guide an optimization process. A

compound shape/description rule specifies a fitness function that computes the state

description from the shape under consideration. The actual shape is left unchanged in

the application of this rule. Only if the resulting state description is, e.g., 1, another

(compound) shape rule will consequently modify the shape. Knight (2003) proposes the

fitness function to encode an algorithm that directly accesses the actual shape under rule

application.

Liew (2004) proposes a number of ‘descriptors’ to guide the rule application process,

one of which—the Zone descriptor—considers an application of Knight’s (2003)

functions encoding algorithms. For example, a ‘void’ function checks whether a

specified area is void of all shapes, and an ‘exclude’ function checks whether a

specified area excludes shapes from a specified list of shapes. Liew (2004) also

considers a Rule-set descriptor, where the description specifies a set of rule labels such

that a rule only applies if the rule label is present in the current description.

Stiny (2006) presents description rules for Palladian villa plans that count the number of

rooms and assign plans to equivalence classes. He explores the use of such descriptions

to set goals to guide and control the design process. Ahmad (2009; also, Ahmad and

 9

Chase, 2006) proposes to augment a shape grammar with a style description scheme

based on the concept of semantic differential to map the style characteristics of shape

rules. While these style descriptions do not directly guide the generative process, they

do serve to guide the grammar transformation process for the purpose of stylistic

change.

Al-kazzaz (2011; also, Al-kazzaz et al, 2010) considers descriptions in shape grammars

for hybrid design, where the descriptions provide feedback on rule application based on

comparisons between the generated design and the antecedents in the corpus.

Additionally, he considers a user guide specified as sets of antecedent labels. Muslimin

(2013) uses descriptions to investigate how meaning is embedded in the Passura’

carvings of the Toraja people in South Sulawesi, Indonesia. He exemplifies the

descriptions both as a result of the shape generation and as a guide to the shape

generation. Note that neither Al-kazzaz (2011) nor Muslimin (2013) offer any

explication of description rules, describing them only conceptually or as rule types.

Coutinho (2014) considers descriptions from Alberti’s De re aedificatoria to guide the

generation of Alberti’s column system. Finally, Stouffs and Tunçer (2015) consider a

description scheme to generate an instance of a historical architectural typology from an

ontological description thereof. Descriptions come in two forms, as an XML description

and as a set of ontological terms.

A formal notation

(reference withheld) presents a formal notation for descriptions and description rules

(Table 1). Here, we offer a synopsis of this notation and explicate its strengths and

limitations with respect to the description schemes presented above.

 10

Table 1: Formal notation for descriptions and the left-hand-side (lhs) and right-hand-

side (rhs) of description rules in Extended Backus-Naur-Form (EBNF), including

examples. The same non-terminals serve to define the production rules for a description,

an lhs, and an rhs. Only when necessary are alternative production rules defined for the

same non-terminal; these are then identified by adding the terms description, lhs, and

rhs, respectively, enclosed within angle brackets (‘<...>’), as a prefix to the respective

production rule.

description = description-entity | description-sequence .

description-entity = literal | top-level-tuple .

description-sequence = ‘#’ description-entity ‘#’ { description-entity ‘#’ } .

literal = keyword-literal | number | string .

keyword-literal = ‘e’ | ‘nil’ | ‘pi’ | ‘true’ | ‘false’.

number = [‘–’] digit-sequence [‘.’ digit-sequence] .

digit-sequence = digit { digit } .

digit = ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’ .

string = ‘“’ { string-character } ‘”’ .

string-character = any-character-except-quote | ‘\’ ‘“’ .

Example description-entity:

“centrally divided, double 1-rafter beam in front and back”

Example description-sequence:

#e#0#“nothing”#

top-level-tuple = tuple | unmarked-tuple .

tuple = ‘(’ tuple-entities ‘)’ | ‘<’ [tuple-entities] ‘>’ | ‘[’ [tuple-entities] ‘]’ .

 11

<description>tuple-entities = tuple-entity-sequence .

<lhs>tuple-entities = tuple-entity-sequence | tuple-expression .

<rhs>tuple-entities = tuple-entity-sequence | tuple-expression .

tuple-entity-sequence = tuple-entity ({ ‘,’ tuple-entity } | { ‘;’ tuple-entity }) .

<description>tuple-entity = literal | tuple .

<lhs>tuple-entity = numeric-expression | string-expression | tuple .

<rhs>tuple-entity = numeric-expression | string-expression | tuple | function-returns-

tuple .

unmarked-tuple = tuple-expression | tuple (tuple | keyword-literal) { tuple-entity } .

Example tuple:

(“l:”, 10, “c:”, (0, 0), “r:”, 0)

Example unmarked-tuple:

<" ", "O", "R0", "R1"> <"O", 1, 1, 1> <"R0", 1, 1, 0> <"R1", 1, 0, 1>

description-rule-side = description-rule-entity | description-rule-sequence .

<lhs>description-rule-entity = literal | parameter [‘?’ conditional] | string-expression |

top-level-tuple .

<rhs>description-rule-entity = numeric-expression | string-expression | function-returns-

tuple | tuple-expression .

description-rule-sequence = ‘#’ description-rule-entity ‘#’ { description-rule-entity ‘#’ }

.

parameter = identifier .

identifier = (letter | underscore) { (letter | underscore | digit) } .

letter = ‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’ | ‘G’ | ‘H’ | ‘I’ | ‘J’ | ‘K’ | ‘L’ | ‘M’ | ‘N’ | ‘O’ | ‘P’ |

 12

‘Q’ | ‘R’ | ‘S’ | ‘T’ | ‘U’ | ‘V’ | ‘W’ | ‘X’ | ‘Y’ | ‘Z’ | ‘a’ | ‘b’ | ‘c’ | ‘d’ | ‘e’ | ‘f’ | ‘g’ | ‘h’ |

‘i’ | ‘j’ | ‘k’ | ‘l’ | ‘m’ | ‘n’ | ‘o’ | ‘p’ | ‘q’ | ‘r’ | ‘s’ | ‘t’ | ‘u’ | ‘v’ | ‘w’ | ‘x’ | ‘y’ | ‘z’ .

underscore = ‘_’ .

Example <lhs>description-rule-entity:

<“Fixed”, var1> <var2, var3> remainder

Example description-rule-sequence:

#a1#a2#a3#a4#a5#a6#a7#a8#

conditional = enumeration | equation .

enumeration = ‘{’ (number-sequence | string-sequence) ‘}’ .

number-sequence = number { ‘,’ number } .

string-sequence = string { ‘,’ string } .

equation = comparator comparand .

comparator = ‘=’ | ‘<>’ | ‘<’ | ‘<=’ | ‘>’ | ‘>=’ .

comparand = number | ‘(’ numeric-expression ‘)’ | parameter | reference .

Example <lhs>description-rule-entity with enumeration:

yard?{nil, “default”}

Example <lhs>description-rule-entity with equation:

<nrooms?>2, rooms>

numeric-expression = term { addition-operator term } .

term = factor { multiplication-operator factor } .

factor = base { exponentiation-operator exponent } .

exponent = base .

base = keyword-literal | number | ‘(’ numeric-expression ‘)’ | function-returns-number |

 13

parameter | reference .

exponentiation-operator = ‘^’ .

multiplication-operator = ‘*’ | ‘/’ | ‘%’ .

addition-operator = ‘+’ | ‘–’ .

Example numeric-expression:

vol – pi^2 * radius * (length / 2)^2 + 4 / 3 * pi * (length / 2)^3

string-expression = string-expression-entity { ‘.’ string-expression-entity } .

<lhs>string-expression-entity = literal | parameter [‘?’ conditional] .

<rhs>string-expression-entity = base | string | function-returns-string .

Example <rhs>string-expression:

“with ”.(c + 1).“ columns”

Example <lhs>string-expression:

“with ”.c?=(be21 + be22).“ columns”

<lhs>tuple-expression = tuple-append | tuple-prepend .

<rhs>tuple-expression = tuple-addition | tuple-extension .

tuple-append = { tuple-entity } parameter (‘*’ | ‘+’) tuple-entity { tuple-entity } [

tuple-expression] .

tuple-prepend = [tuple-expression] { tuple-entity } tuple-entity parameter (‘*’ | ‘+’) {

tuple-entity } .

tuple-addition = [parameter] ‘+’ basic-tuple-argument .

tuple-extension = { tuple-entity } parameter { tuple-entity } [tuple-expression] .

Example tuple-prepend:

 14

h1 h2 H*

Example tuple-extension:

a1 last(a1) + (0, 1)

Example tuple-addition:

bedrooms + <1, [(“couple”, 0), (“double”, 0), (“single”, 1)]>

function = function-returns-number | function-returns-string | function-returns-tuple .

function-returns-number = numeric-function | length-function | string-function-untyped |

tuple-function-untyped .

numeric-function = (‘sqrt’ | ‘sin’ | ‘cos’ | ‘tan’) ‘(’ numeric-expression ‘)’ .

length-function = ‘length’ ‘(’ (string-argument | tuple-argument) ‘)’ .

<lhs>string-argument = string | function-returns-string | parameter | reference .

<rhs>string-argument = string-expression .

function-returns-string = string-function-returns-string | string-function-untyped | tuple-

function-untyped .

string-function-returns-string = (‘left’ | ‘right’) ‘(’ string-argument ‘,’ numeric-

expression ‘)’ .

string-function-untyped = ‘eval’ ‘(’ string-argument ‘)’ .

tuple-function-untyped = (‘first’ | ‘last’ | ‘min’ | ‘max’) ‘(’ tuple-argument ‘)’ .

<lhs>tuple-argument = basic-tuple-argument .

<rhs>tuple-argument = basic-tuple-argument | tuple-expression .

basic-tuple-argument = tuple | function-returns-tuple | parameter | reference .

function-returns-tuple = tuple-function-returns-tuple | string-function-untyped | tuple-

function-untyped .

tuple-function-returns-tuple = (‘unique’ | ‘segments’ | ‘pairwise’ | ‘loops’) ‘(’ tuple-

 15

argument ‘)’ | ‘adjacencies’ ‘(’ tuple-argument ‘,’ tuple-argument ‘)’ .

Example function-returns-number:

length(“room”)

Example function-returns-tuple:

adjacencies(a4, a5 a6)

reference = reference-to-lhs | reference-to-rhs .

reference-to-lhs = [‘lhs.’] reference-designator ‘.’ (‘value’ | parameter | property) [‘:’

filter] .

reference-to-rhs = ‘rhs.’ reference-designator ‘.’ property [‘:’ filter] .

reference-designator = identifier .

property = identifier .

filter = reference-designator ‘.’ property filter-operator (number | vector | string) .

filter-operator = ‘=’ | ‘<>’ | ‘<=’ | ‘>=’ .

vector = [rational] ‘(’ rational ‘,’ rational ‘,’ rational ‘)’ .

rational = [‘–’] digit-sequence [‘/’ digit-sequence] .

Example reference-to-lhs:

indices.value

Example reference-to-rhs:

rhs.sections.radius:labels.label=“S”

Descriptions

While most description schemes consider multiple descriptions handled in parallel (e.g.,

Li, 2001; Duarte, 2001), Stiny (1981) considers descriptions containing multiple

sections separated by the ‘#’ symbol. Thus, a description is formally specified either as

 16

a single description entity, that is, a literal or a tuple, or as a sequence of description

entities separated and enclosed by the ‘#’ symbol. A literal may be a number, a (double

quoted) string or a literal identifier. The latter include e, nil, pi, true and false. E and nil

are equivalent, both define an ‘empty’ entity, that is, zero, an empty string, or an empty

tuple; e is used by Stiny (1981), nil by Duarte (2001). Note that Li (2001), Duarte

(2001; 2005b), Beirão (2012) and Eloy (2012a) also adopt the symbol 'Ø' for an empty

tuple. We suggest the use of e or nil instead. The literal pi represents the number ‘π’.

The literals true and false represent 1 and 0, respectively, in conformity with Duarte

(2001).

Numbers

Numbers are non-controversial. Stiny (1981; 2006), Li (2001) and Beirão (2012)

consider descriptions expressed as integers, e.g., for counting. Brown (1997), Duarte

(2001), Al-kazzaz (2011) and Beirão (2012) consider descriptions expressed as real or

floating-point numbers, specifying area, volume or cost values, among others. Many

authors consider numbers as part of tuples.

Strings

Strings are slightly more contentious. Li (2001) considers triples of alphanumeric

descriptions specifying the disposition of beams. Each part is constructed through

concatenation and replacement of smaller alphanumeric (or numeric) entities. Similarly,

Stouffs and Tunçer (2015) consider an alphanumeric description—expressed in XML—

built up through concatenation and replacement. Many other description schemes

consider alphanumeric terms, however, these are fixed terms—though a description rule

may replace one term by another—that are never combined through concatenation, only

collected in tuples. Duarte (2001) considers names of people; Brown et al (1996)

consider labels for description entities to improve readability; Duarte (2001; 2005b),

 17

Ahmad (2009), Al-kazzaz (2011), Beirão (2012), Eloy (2012a) and Stouffs and Tunçer

(2015) all consider enumerations of terms, for example, denoting functions, spaces,

qualifications, rule labels, or ontological terms.

Only Stouffs and Tunçer (2015) use (double) quotes to identify alphanumeric

description entities. Li (2001) omits any quotes, as well as enclosing brackets and

separation marks for the triples, allowing the description to be read either as a single

statement or as a triple of strings. While we appreciate such informality from a human’s

point of view, double quotes are required to identify strings for machine-readability. We

anticipate that this explicit notation can always be parsed and presented in a more

human readable form. While strictly speaking, enumerated terms do not require quotes

to be recognized as such, since all enumerations found are grammar-specific in nature—

with exception of true and false—we require all terms to be quoted, eliminating the

need to predefine any enumerations. We reserve unquoted terms for literal identifiers,

parameters, references and function designators (see later).

Tuples

A tuple is a sequence (or list) of description entities. Tuples can be nested. Most

description schemes adopt tuples; for example, Stiny (1981) considers, among others,

coordinate pairs and tuples of coordinate pairs; Li (2001) considers tuples of integers

and triples of strings; Duarte (2005) implies the use of a single tuple structure,

combining a number of different entity types, where a general description contains a

number of instances of this tuple structure; Brown et al (1996), on the other hand,

considers the use of a single tuple with fixed length at the top level, where each entity in

the tuple expands into a tuple of arbitrary length and, possibly, a nested tuple of tuples.

 18

There exists a large variety in how description schemes present tuples; yet, there are

also many similarities. They variably use parentheses, angle brackets and square

brackets as enclosing brackets to identify tuples, and commas or semicolons to separate

elements within a tuple. Sometimes, enclosing brackets are omitted altogether, but only

at the top level of a nested tuple structure, and, in a few cases, separation marks are

omitted as well, leaving only spaces to separate the elements.

In contrast to strings, that potentially may contain any kind of characters and tokens, it

is possible to accommodate all these notational variations for tuples and to consider

disambiguation rules where and when necessary. For example, a minus sign separating

two numerical entities is interpreted as a subtraction, instead of as a unary negation

within a tuple of (at least two) numbers, with separation marks omitted. As another

example, a parenthesized expression of a single description entity is interpreted simply

as this entity, instead of as a tuple. A tuple of length one (or zero) is only recognized as

such if it is enclosed within angle or square brackets, a practice all authors adopt.

Left-hand-side of a description rule

Any description can form the left-hand-side (lhs) of a description rule – either a single

description entity, that is, a literal or a tuple, or a sequence of description entities

separated and enclosed by the ‘#’ symbol. Additionally, a parameter or a string

expression can be a substitute for a literal or serve as entities within a tuple.

Parameters

A parameter is a variable term; it is matched to a literal or a tuple in a description under

rule application. If the parameter forms part of a string expression, this literal can be any

part of a literal string (see ‘string expressions’). If the parameter forms part of a tuple, it

matches a specific element of the tuple, unless it is signified by a kleene star (‘*’) or a

 19

kleene plus (‘+’), in which case it can match any subsequence of elements of the tuple,

respectively, including or excluding an empty subsequence.

Authors commonly adopt a convention to identify parameters from other alphanumeric

components. For instance, Li (2001) uses single, lowercase letters, possibly with a

superscript number, in italics to denote parameters, e.g., a1; Duarte (2001) distinguishes

parameters from enumerated terms using single, uppercase letters (possibly followed by

a number), e.g., F1. Since we require strings (including enumerated terms) to be double

quoted, any identifier other than literal identifiers, function designators and reference

designators—all of which are known ahead of time—is assumed to denote a parameter.

Some description schemes consider description tuples of variable length, containing any

number of elements. These elements typically adhere to the same structure, i.e., they are

all numbers, all strings, or all tuples of the same length and with corresponding element

types. Different from fixed-length tuples, elements from variable-length tuples cannot

be matched to individual parameters without the use of an additional construct—such as

the kleene star or kleen plus signifiers—, as the length of the tuple may not be known in

advance. For example, Stiny (1981) considers variable-length tuples of coordinate pairs,

and rules (denoted functions) that identify—though not explicate—the last coordinate

pair from the tuple (see ‘functions’). Eloy (2012a) considers a variable-length tuple

but—informally—identifies only the individual elements of concern in the lhs of the

description rules. An alternative and better approach would be to consider the tuple

instead as a set of description instances, each element specifying a single instance. The

ordering of the elements/instances is then no longer important.

Brown et al (1996) suggest a notation borrowed from logic programming (using the

separator ‘|’), in order to distinguish the first element or elements from the remainder of

 20

the tuple. Additionally, they consider a function to reverse a tuple, applied in the right-

hand-side of a description rule, so as to allow the subsequent distinguishing of the last

element or elements of the original tuple. The only disadvantage of this notation is that

it emphasizes the prepending of elements over the appending of elements. Since the

kleene star signifier avoids this asymmetry, we ignore Brown et al’s (1996) suggestion.

Conditionals

Li (2001), Duarte (2001), Beirão (2012) and Eloy (2012a) all consider conditional

specifications that constrain rule application and cannot simply be captured in an

explication of the lhs of the rule. For instance, a description rule may apply in a number

of different cases that correspond to different values for a single description entity.

Short of specifying different rules corresponding the different values, which could work

in the case of an enumeration but would fail in the case of a real numeric interval,

conditional specifications may allow a parameter to be constrained beyond a single

value. For example, Duarte (2001), Beirão (2012) and Eloy (2012a) present numerous

examples where parameters can take a limited set of values. Li (2001) and Eloy (2012a)

both consider numerical conditions constraining one numeric value in function of

another numeric value, or values, all part of the same description. Brown et al (1996)

also consider rule variants that include conditional specifications; however, these can

easily be captured in a further explication of the lhs of the rule.

Any parameter may be specified a conditional that constrains the possible values of this

parameter. This conditional may be either enumerative or equational. An enumerative

conditional explicates a finite set of possible values—either all numbers or all strings—,

for instance, an enumeration of terms. An equational conditional specifies a numeric

equality or inequality on the parameter, in the form of a conditional operator (‘=’, ‘<>’,

‘<’, ‘<=’, ‘>’ or ‘>=’) and operand. The operand must be either a number or a numerical

 21

expression operating on numbers, parameters—previously defined—, functions and/or

references. Functions and references are addressed later.

We opt to integrate conditionals within the description, rather than specifying them

separately. The conditional expressions are also restricted in form; a parameter value is

simply compared with a single value, a set of values, or a range of (numeric) values.

These comparison values must be either literal values or computable as literal values;

that is, any parameters within a conditional expression must have been previously

matched—where matching occurs from left to right in the lhs of the description rule.

These restrictions seem to concur largely with examples of conditional specifications

adopted within example description schemes, even if the conditional must be

reformulated and formatted according to the required notation. In a subsequent paper,

we will revisit some of the eighteen descriptions schemes for a more detailed

assessment (forthcoming).

String expressions

A string expression enables the identification of substrings in the matching process. A

string expression is a concatenation of literals and parameters (with or without

conditional). A parameter can match any substring, conditioned by the literal

components (and the conditional, if present). A concatenation of two parameters,

without a literal separating the two parameters, is not possible, unless the first parameter

has an enumerative conditional.

Only Li (2001) and Stouffs and Tunçer (2015) consider string expressions. Besides

omitting quotes, Li also omits any explicit concatenation operator. However, the use of

an explicit concatenation operator (‘.’) is necessary in order to distinguish string

concatenations from tuples of strings.

 22

Right-hand-side of a description rule

Any description can form the right-hand-side (rhs) of a description rule. Additionally,

an rhs can include parameters (without signifiers and conditionals), references,

numerical expressions, string expressions, tuple expressions and functions. Parameters

have been addressed previously; when used in the rhs of a description rule, the same

parameter must also occur in the lhs of the same description rule and the parameter

value will be the literal(s) matched to the parameter during rule application. We will

address references as last.

Numerical expressions

A numerical expression can operate on literal identifiers, numbers, numerical functions,

parameters and references. Stiny (1981; 2006), Li (2001) and Beirão (2012) consider

operations of addition, subtraction and/or multiplication, on integers. Brown (1997),

Duarte (2001), Al-kazzaz (2011) and Beirão (2012) consider mathematical operations

on real or floating-point numbers, including division and exponentiation. We consider

the operators plus (‘+’), minus (‘–’), times (‘*’), divided-by (‘/’), modulo (‘%’) and to-

the-power-of (‘^’), with the usual operator precedence rules applying, and the use of

parentheses to override these rules where necessary. Other operations are considered in

the form of numerical functions, including square root (sqrt), sine, cosine and tangent.

String expressions

String expressions in the rhs of a description rule can include, other than literals and

parameters (excluding signifiers and conditionals), references, numerical expressions

(when enclosed in parentheses) and functions returning either numbers or strings. The

result is the concatenation of all components upon their evaluation into literal numbers

or strings. Li (2001) omits parentheses around numerical expressions, as well as the

 23

concatenation operator. We require parentheses for the sake of readability, to visually

collect the numerical expression as a single component within the concatenation. The

use of parentheses is not required in the case of a single number, even if it is a floating-

point number. Though both use the same symbol (‘.’), a floating-point number takes

precedence over a concatenation of numbers.

Tuple expressions

Common operators on tuples are append and prepend. For example, Stiny (1981)

considers an append operation on tuples, simply using a space to separate the tuple and

the element to be added. Brown et al (1996) consider an operation to prepend one or

more elements to a tuple, using a shorthand notation borrowed from logic programming.

We adopt Stiny’s notation and extend it to the operations of prepend and join as well. In

order to distinguish these operations from simply omitting the separation marks within a

tuple, like most authors, we require a structural similarity between, on the one hand, the

tuple from the entity to be appended or prepended and, on the other hand, the entities

within the larger tuple. For example, a number and a tuple of numbers will yield a tuple

of numbers with the single number prepended (or appended, depending on the order). If

the single entity is itself a tuple and the other tuple is a nested tuple, then the single

entity will be prepended or appended to the nested tuple only if it has the same structure

as the first element of the nested tuple. If both operands are nested tuples, and the

elements of both tuples have the same structure, then a join operation will be assumed,

combining the elements from both tuples in a new, single tuple. If no structural

similarity can be determined, than the expression will instead be interpreted as

specifying a tuple while omitting enclosing brackets and separator.

 24

Duarte (2001) additionally proposes the addition of tuples that have the same structure.

Adding two tuples adds the respective entities: if both entities are numbers they are

summed; if both entities are strings (or enumerated terms in the case of Duarte (2001))

they must be identical; if both entities are tuples and have the same structure, then

addition is applied recursively. Exceptionally, the first tuple may be omitted if the

operation is at the top level of the rhs of the description rule (as exemplified by Duarte

(2001)). In this case, the first operand of the addition operation is considered to be the

literal tuple resulting from the matching of the lhs.

Functions

Functions can operate on numbers, strings and tuples, or a combination thereof, and

return any one of these three entity types. Besides the numerical functions sqrt, sin, cos

and tan, taking a single number as argument and returning a number, other predefined

functions operate on strings and tuples. Functions operating on strings include

determining the length of a string, and determining a left and right substring. The length

of the substring is specified as an additional argument.

The functions operating on tuples are inspired by Stiny (1981). Though he does not

explicate these as functions, he considers retrieving the last coordinate pair from a list,

determining the number of distinct coordinate pairs in a tuple, retrieving the distinct

number of adjacent coordinate pairs in a tuple, retrieving loops of coordinate pairs in a

tuple, etc. These are generalized to functions determining the length of a tuple,

retrieving the first or last element of a tuple, retrieving a tuple of only unique elements,

a tuple of pairs (segments) such that the ith pair is made up of the ith and (i+1)th

elements of the operand tuple, a tuple of tuples identifying the loops in the operand

tuple, and a tuple of tuples representing an adjacencies matrix. The latter function takes

two arguments, a tuple of ‘enclosures’ and a tuple of ‘connecting’ elements.

 25

Duarte (2001) defines two grammar-specific functions, one that updates a tuple of

‘current spaces’ with user-prompted data about the solar orientation of the dwelling,

another that allows the user to reset the relative weights of qualities and then normalizes

their sum to one hundred. Brown et al (1996) define five functions, three of which are

actually specified as description rules, though not (necessarily) operating on the same or

similar description. These three are grammar-specific, the other two functions are more

generally applicable: one function reverses a tuple, the other returns the maximum value

from among the elements of the tuple. Knight (2003) and Liew (2004) propose

functions encoding algorithms that operate on the shape under the conjunctive shape

rule application.

Extending the collection of predefined functions is straightforward, e.g., with a function

to reverse a tuple. User-defined functions can be specified as class methods, where the

class is added to the implementation and the names of the class and method are

provided to the function’s definition. Then, the description grammar interpreter can

automatically retrieve and apply the function to the given arguments, using

computational reflection. User-defined functions that operate on the shape under the

conjunctive shape rule application can be similarly defined, encoding the name of the

grammar or drawing into the method to allow the method to retrieve the specified shape.

References

References are similar to parameters; they are also variable terms. However, whereas

parameters must be defined within the lhs of the same description rule, references refer

to parameters and values from other, parallel description rules. For example, Li (2001)

considers nine parallel descriptions, specifying measures and descriptions of width,

depth, height, and corresponding rule sets. A compound rule combines a number of

description rules operating on different descriptions, thus, taken from different rule sets.

 26

Within a compound rule, the rhs of a description rule may reference the current value of

another description. Taking an example from Li (2001), one description counts the

number of rafters, another description describes the disposition of the beams and

includes the resulting number of rafters. Duarte (2001) similarly considers the rhs of a

description rule to reference specific parameters within other, parallel descriptions.

While both Li (2001) and Duarte (2001) simply specify the parameter in question, we

include a designator for the parallel description grammar to precede the parameter or,

alternatively, the term value to reference the entire value.

Brown et al (1996), Brown (1997) and Agarwal (1999) consider explicit references to

shapes and shape rules. For example, Brown’s (1997) description rules for volume

calculation require the conjunctive shape rule to provide values for the diameter and

length properties of the section when adding a new section to the shaft. In this case, the

reference specifies the drawing or shape type, and property. Additionally, the specific

shape may be distinguished by providing a filter, e.g., the value of a label the shape may

have assigned. Furthermore, if the shape is a product of the conjunctive shape rule, or

its property value may be affected by the shape rule, the reference may be specified to

refer to the rhs of the shape rule.

Agarwal’s (1999) cost equations also make explicit reference to characteristics of the

shape under rule application, such as its dimensions, however, these are not evaluated

during rule application. Nevertheless, in order to provide feedback on how design

changes affect the cost during the generation process, the cost equations must be able to

be evaluated on the corresponding shape at any time. To achieve such delayed

evaluation, the cost equations may be constructed as strings, and an eval method may

interpret the string as a numeric expression with references to the current shape.

 27

Sets

Brown et al (1996), Duarte (2005b), Al-kazzaz (2011) and Stouffs and Tunçer (2015)

consider sets of instances of descriptions. The use of a set, rather than a tuple, allows for

the identification, alteration and removal of instances of descriptions without having to

be concerned with the size of the tuple or the ordering of the elements in the tuple. For

example, Eloy (2012a) uses a variable-length tuple but identifies only the individual

elements of concern in the lhs of the description rules. A set representation is

undoubtedly more appropriate here. Duarte (2001) considers tables as fixed

descriptions, containing dimensional and cost information. Here too, each table can be

represented as a set, of tuples, where each tuple specifies the various table indices and

the corresponding cell value.

Considering instances of descriptions as members of a set is straightforward. Similar to

a shape being represented as a collection of maximal elements, a description form is

represented as a collection of individual descriptions or instances. Where a parametric

shape rule in the form of a → b applies to a shape s, under a parametric assignment g

and a transformation f, if f(g(a)) ≤ s, yielding the shape s’ = s – f(g(a)) + f(g(b)), a

parametric description rule A → B, with A and B sets of parametric description entities,

applies to a set S if g(A) ⊆ S and yields the set S’ = (S / g(A)) ∪ g(B). Instead, when

descriptions are not considered as sets, this degenerates to a description rule a → b

applying to a description d, under a parametric assignment g, only if g(a) = d, yielding

the description d’ = g(b). That is, description rules commonly do not apply under a part

relationship but require the entire—single—description to be matched, parametrically,

by the left-hand-side of the rule and specify the complete replacement of the description

 28

according to the parametric assignment of the right-hand-side of the rule. Fortunately,

both behaviours rely upon the same mechanism.

Discussion

Some of the differences between the formal notation reviewed above and each of the

eighteen description schemes this notation is based upon are mainly cosmetic in nature,

e.g., the need to quote strings and enumerated terms, to use an explicit concatenation

operator, and to specify a description designator in a reference. Even the way

conditionals are integrated into the description is broadly of a cosmetic nature. We

could even consider a more informal presentation or visualization of descriptions and

description rules, though not for the—unambiguous—specification thereof.

Some other differences are due to convention, for example, considering the use of a

kleene star and kleene plus signifier to collect a sub-tuple of elements instead of Brown

et al’s (1996) notation borrowed from logic programming.

However, there is also at least one omission in the formal notation. Li (2001), Duarte

(2001; 2005), Beirão (2012) and Eloy (2012a) allow rules to request or necessitate user

input. Specifically, Li (2001) and Beirão (2012) identify a series of variables for input

by the user, the input for which can be provided beforehand or, if missing, upon rule

application. In the case of Duarte (2001; 2005) and Eloy (2012a), however, this input is

often required upon rule application, because the same rule might apply more than once,

each time with a possibly different input value, or values. The formal notation does not

yet include the ability to signify a parameter for user input. The implementation could

be envisioned to provide a default interface for requesting and storing user input, while

 29

allowing for the application developer to overwrite the default interface with an

application-specific interface.

Not all the differences are readily specifiable, for example the adopted notation for

conditionals may not support all variations in conditionals found in literature. Without

further examination, it is hard to predict how well (or badly) this notation for

conditionals performs in light of the various description schemes. For this reason, and to

identify other dissimilarities that may have remained unnoticed, we need to revisit some

or all of the description schemes in literature and attempt to recast and redevelop these

descriptions and rules according to the formal notation and its implementation. For

example, (reference withheld) has done so for Stiny’s (1981) description scheme. One

obvious alteration in this example is the explicit use of functions to retrieve the last

coordinate pair of a tuple, determine the number of distinct coordinate pairs in a tuple,

etc. Less obvious, is the need to explicate the initial coordinate pair as a tuple of this

coordinate pair and the empty entity e, because, otherwise, extracting the last element of

the tuple would yield a single coordinate rather than the coordinate pair. Stiny (1981),

instead, relegates the extraction of the last coordinate pair to the explanation provided

with the rule.

Revisiting the other description schemes is the subject of another paper (forthcoming).

This follow-up paper will revisit selected applications of description grammars and

demonstrate the applicability of this general notation to these case studies. It is both

meant as an illustration and as a confirmation of the strengths and limitations reviewed

here.

We have developed an implementation of a description grammar interpreter, adhering to

the formal notation presented above, in the context of a sortal grammar interpreter.

 30

Sortal grammars (reference withheld) are a formalism (or rather, a class of formalisms)

for design grammars, extending on shape grammars. Sortal grammars utilize sortal

structures (reference withheld) as representational structures, benefiting from the fact

that every component sort specifies a partial order relationship on its individuals and

forms, defining both the matching operation and the arithmetic operations for rule

application. The sortal grammars framework supports parallel descriptions and the

association of descriptions to shapes, the latter in support of Beirão (2012).

Conclusion

We reviewed a formal notation for descriptions and description rules and explicated its

strengths and limitations with respect to eighteen description schemes found in

literature. Revisiting the description schemes with respect to this notation is the subject

of a follow-up paper (forthcoming).

References

Agarwal M, 1999, Supporting Automated Design Generation: Function Based Shape

Grammars and Insightful Optimization PhD thesis, Department of Mechanical

Engineering, Carnegie Mellon University, Pittsburgh, PA

Agarwal M, Cagan J, Constantine K G, 1999, “Influencing generative design through

continuous evaluation: associating costs with the coffeemaker shape grammar”

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 13(4) 253–

275

 31

Ahmad S, 2009, A framework for strategic style change using goal driven grammar

transformations PhD thesis, Department of Architecture, University of Strathclyde,

Glasgow, UK

Ahmad S, Chase S, 2006, “Grammar representations to facilitate style innovation: with

an example from mobile phone design”, in Communicating Space(s) Eds V Bourdakis,

D Charitos (eCAADe, Brussels) pp 320–323

Al-kazzaz D A A, 2011, Shape grammars for hybrid component-based design PhD

thesis, Department of Architecture, University of Strathclyde, Glasgow, UK

Al-kazzaz D, Bridges A, Chase S, 2010, “Shape grammars for innovative hybrid

typological design”, in Future Cities Eds G Schmitt, L Hovestadt, L Van Gool, F

Bosché, R Burkhard, S Coleman, J Halatsch, M Hansmeyer, S Konsorski-Lang, A

Kunze, M Sehmi-Luck (eCAADe, Brussels) pp 187–195

Beirão J N, 2012, CItyMaker: Designing Grammars for Urban Design PhD thesis,

Faculty of Architecture, Delft University of Technology

Brown K, 1997, “Grammatical design” IEEE Expert 12(2) 27–33

Brown K N, Cagan J, 1997, “Optimized process planning by generative simulated

annealing” Artificial Intelligence for Engineering Design, Analysis and Manufacturing

11 219–235

Brown K N, McMahon C A, Sims Williams J H, 1996, “Describing process plans as the

formal semantics of a language of shape” Artificial Intelligence in Engineering 10(2)

153–169

 32

Çağdaş G, 1996, “A shape grammar: the language of traditional Turkish houses”

Environment and Planning B: Planning and Design 23(4) 443–464

Correia R C, 2013, “DESIGNA - a shape grammar interpreter”, MSc thesis, Instituto

Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

Coutinho P F, 2014, Gramática da Forma da Sistematização da Coluna de Alberti

volume 1 and 2, PhD thesis, Department of Architecture, Universidade de Coimbra,

Coimbra, Portugal

Downing F, Flemming U, 1981, “The bungalows of Buffalo” Environment and

Planning B: Planning and Design 8(3) 269–293

Duarte J P, 2001, Customizing Mass Housing: A Discursive Grammar for Siza's

Malagueira Houses PhD thesis, Department of Architecture, MIT

Duarte J P, 2005a, “A discursive grammar for customizing mass housing: the case of

Siza’s houses at Malagueira” Automation in Construction 14(2) 265–275

Duarte J P, 2005b, “Towards the mass customization of housing: the grammar of Siza's

houses at Malagueira” Environment and Planning B: Planning and Design 32(3) 347–

380

Duarte J P, Correia R, 2006, “Implementing a description grammar: generating housing

briefs online” Construction Innovation: Information, Process, Management 6(4) 203–

216

Duarte J P, Beirão J N, Montenegro N, Gil J, 2012, “City induction: a model for

formulating, generating, and evaluating urban designs”, in Digital Urban Modeling and

 33

Simulation Eds S Müller Arisona, G Aschwanden, J Halatsch, P Wonka (Springer,

Berlin) pp 73–98

Eloy S, 2012a, A transformation grammar-based methodology for housing

rehabilitation: meeting contemporary functional and ICT requirements PhD thesis,

Instituto Superior Técnico, TU Lisbon, Lisbon, Portugal.

Eloy S, 2012b, A transformation grammar-based methodology for housing

rehabilitation: meeting contemporary functional and ICT requirements: dwellings

characterization and transformation rules PhD thesis appendix, Instituto Superior

Técnico, TU Lisbon, Lisbon, Portugal.

Eloy S, Duarte J P, 2014, “A transformation grammar-based methodology for housing

rehabilitation”, in Design Computing and Cognition ’12 Ed J S Gero (Springer,

Dordrecht) pp 301-320

Knight T, 2003, “Computing with emergence” Environment and Planning B: Planning

and Design 30(1) 125–155

Li A I, 2001, A shape grammar for teaching the architectural style of the Yingzao fashi

PhD thesis, Department of Architecture, MIT

Li A I, 2004, “Styles, grammars, authors, and users”, in Design Computing and

Cognition ’04 Eds J S Gero (Kluwer Academic, Dordrecht) pp 197-215

Liang S, 1983, Yingzaofashi zhushi, (Zhongguo jianzhu gongye, Beijing)

Liew H, 2004, SGML: A Meta-Language for Shape Grammar PhD thesis, Department

of Architecture, MIT

 34

March L, Stiny G, 1985, “Spatial systems in architecture and design: some history and

logic” Environment and Planning B: Planning and Design 12(1) 31–53.

Muslimin R, 2013, “Decoding Passura’ – representing the indigenous visual messages

underlying traditional icons with descriptive grammar”, in Open Systems Eds R Stouffs,

P Janssen, S Roudavski, B Tunçer (CAADRIA, Hong Kong) pp 781–790

Stiny G, 1980, “Introduction to shape and shape grammars” Environment and Planning

B: Planning and Design 7(3) 343–351

Stiny G, 1981, “A note on the description of designs” Environment and Planning B:

Planning and Design 8(3) 257–267

Stiny G, 1987, “Composition counts: A + E = AE” Environment and Planning B:

Planning and Design 14(2) 167–182

Stiny G, 1991, “The algebras of design” Research in Engineering Design 2(3) 171–181

Stiny G, 2006, Shape: Talking about Seeing and Doing (MIT, Cambridge, MA)

Stiny G, Mitchell W J, 1978, “The Palladian grammar” Environment and Planning B:

Planning and Design 5(1) 5–18

Stouffs R, Tunçer B, 2015, “Typological descriptions as generative guides for historical

architecture” Nexus Network Journal 17(3)

Zamenopoulos T, 2012, “A complexity theory of design intentionality” Artificial

Intelligence for Engineering Design, Analysis and Manufacturing 26(1) 63–83

forthcoming, “Description grammars: precedents revisited” submitted to Environment

and Planning B: Planning and Design

