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Abstract: This paper proposes a greedy stochastic optimization algorithm for the sensor set
decomposition used in the sensor fault monitoring of marine propulsion systems, based on
fault isolability criteria. These criteria are expressed mathematically in terms of the number
of unique columns in the theoretical fault signature matrices (FSMs) used during the sensor
fault isolation process. Due to the large scale and complexity of marine propulsion plants, the
diagnostic layer follows a distributed architecture with a combinatorial logic used for fault
isolation in two cyber levels; the local and global decision logic. As a result, the FSMs of both
levels are formulated as an integrated optimization problem. Each solution regarding the sensor
set decomposition is then used to generate the respective distributed monitoring architecture,
using semantic (qualitative) knowledge for the propulsion plant. Thus, the need for an analytical
model of the plant is removed. Moreover, based on the design of the distributed monitoring
architecture, the respective theoretical FSMs (quantitative) are automatically generated and
used for the evaluation of the objective function. Finally, simulation results are used to illustrate

the application of the greedy stochastic optimization algorithm and its efficiency.
Copyright © 2024 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

Safety is a prerequisite for the design of modern marine
vessels and a basic pillar for the development of future
autonomous ships [de Vos et al. (2021)]. A vessel can be
considered as a system of systems, each of which contains
many subsystems that support its operation. Marine sys-
tems are typically designed with specific fuel, actuation
and sensing capabilities. Their components are sourced
by different manufacturers, with various specifications and
in most cases their settings and configuration parameters
are under tight-lock. The most complex and safety-critical
vessel subsystem is the propulsion system.

To ensure onboard safety, novel and efficient diagnostic
systems must be developed for marine vessels. These sys-
tems usually rely on the existing sensor information to
make decisions. Since all onboard hardware sensor devices
are sourced from different manufacturers, a collaborative
framework between hardware sensors is required for diag-
nosis purposes. However, any given hardware sensor can
suffer from faults, an issue that has not been properly
addressed in maritime literature [Kougiatsos and Reppa
(2024)]. Most papers in literature [Wu et al. (2006)] ex-
plore the use of hardware redundancy to improve the

* This publication is part of the project READINESS with project
number TWM.BL.019.002 of the research programme ”Topsector
Water & Maritime: the Blue route” which is partly financed by the
Dutch Research Council (NWO).

efficiency of the monitoring system and recover from sensor
faults. However, this strategy leads to greater hardware
installation and maintenance costs. Instead, analytical re-
dundancy tools like virtual sensors could be considered
[Kougiatsos and Reppa (2022)]. In both cases, the optimal-
ity of the diagnosis approach’s design should be examined.

The optimisation of the fault diagnosis process is often
associated with the optimal choice of the sensor set decom-
position. The sensor set decomposition problem aims to
determine the optimal number and composition of sensor
subsets, stemming from the starting sensor set, in order
to enhance the isolation of multiple sensor faults [Reppa
et al. (2016)]. This is especially necessary in large networks
of cyber-physical interconnected systems, as in the case of
marine propulsion systems, where the isolation of multiple
sensor faults is really difficult or even infeasible with a
single monitoring module. The objective function in these
problems is based on nonlinear observer stability and fault
isolability objectives rather than cost. In addition, appli-
cations on centralised monitoring architectures are mostly
discussed in literature [Reppa et al. (2016)], which would
however result in high computational burden for large-
scale applications such as marine vessels.

In marine literature, the sensor set decomposition prob-
lem has not received much attention. Stoumpos and
Theotokatos (2022) propose a Unified Digital System for
diagnosis and health management of dual-fuel engines.
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Due to the inherent complexity of marine engine mod-
elling, the digital twin was realised using the tools, libraries
and functionalities of a commercial program. The sensors
were grouped in subsets according to the system decom-
position (e.g., Gas Valve Unit, Exhaust waste gate) and
the type of faults considered (e.g. sensor, actuator faults).
However, the optimality of this sensor set decomposition
was not discussed. Other papers [Wohlthan et al. (2021)],
deal with modelling complexity by using part of the com-
plete fuel engine model for diagnosis purposes and only a
limited selection of sensors. Due to the limited size of the
sensor set, the sensor set decomposition problem has not
been addressed either.

In previous work [Kougiatsos and Reppa (2024)], the au-
thors proposed a distributed sensor fault diagnosis frame-
work for marine internal combustion engines and the di-
agnosis scheme was assessed using both detectability and
isolability performance metrics. However,the sensor set
decomposition in the distributed monitoring architecture
was not optimal and was related to the physical system de-
composition. In order to deal with the inherent modelling
complexity in marine propulsion systems, the design of a
semantic database of system and automation components
was also previously presented in [Kougiatsos et al. (2023)].

The objective of this paper is the design of an optimisation
algorithm for the sensor set decomposition to enhance
the fault isolability of sensor faults in marine propulsion
systems. The optimization criteria are mathematically de-
scribed by the number of unique columns in the theoretical
Fault Signature Matrices (FSMs) used for the isolation
of multiple sensor faults. This paper considers a marine
hybrid propulsion system, composed of a combination of
a marine internal combustion engine (mechanical power)
and an induction motor (electrical power). Due to the
large scale and complexity of marine propulsion installa-
tions, a distributed monitoring architecture is considered,
(see Section 2). The exchange of information between the
destributed monitorng agents mimics the interconnection
dynamics of the real system. For this reason, fault iso-
lation occurs in two levels; the local and global decision
logic. To automatically generate the various FSMs and
interconnections between the monitoring agents in the dis-
tributed monitoring architecture, a qualitative modelling
technique is employed based on semantic knowledge and
is presented in Section 3. The semantic database includes
information on the various considered hardware automa-
tion components (e.g., hardware sensors, controllers) and a
knowledge graph to visualise their connections. Analytical
redundancy considerations are also included in the seman-
tic description in the form of virtual sensors [Kougiatsos
and Reppa (2022)], used to construct more Analytical
Redundancy Relations (ARRs) and improve the isolability
of multiple faults. The integrated optimization problem
considering both isolation levels is then formulated in
Section 4 and a greedy stochastic optimisation algorithm is
proposed for its solution. The greedy optimiser is applied
in a marine propulsion case study in Section 5 while some
concluding remarks are provided in Section 6.

The main contribution of this research work is the op-
timisation of the sensor set decomposition for enhanced
isolability in multiple sensor fault scenarios affecting ma-
rine propulsion systems. Compared to the fault diagnosis
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Fig. 1. Marine hybrid propulsion system layout. The
system involves greatly heterogeneous dynamics and
a considerable number of interconnections, adding to
its complexity.

literature, this paper optimises the grouping of sensors in a
distributed scheme. In order to address the complexity in
modelling the marine propulsion system while still provid-
ing quantitative inputs for the optimiser (FSMs), the use of
a semantic database of components (qualitative informa-
tion) is proposed instead of analytical models. Finally, the
semantic database is enriched with the use of virtual aside
from the hardware sensors. The analytical redundancy
consideration in turn limits the required hardware as well
as its installation and maintenance costs.

2. DISTRIBUTED SENSOR FAULT DIAGNOSIS

In Fig. 1, an example layout of a marine hybrid propulsion
system is shown. Due to the large scale and complexity
of marine propulsion installations, the application of a
distributed monitoring architecture has already been pro-
posed in [Kougiatsos and Reppa (2024)]. In this setup,
monitoring agents M), I =1,... N are designed, each
consistin% of Ny modules M9, ¢ = 1,.--  N;. Every
agent M) monitors a set of sensors S, which is a subset
of the global set of sensors denoted by S. This section will
introduce the basics of the diagnosis process.

Distributed detection —Every monitoring module M9
obtains a decision based on one or more Analytical Redun-
dancy Relations (ARRs). The j-th ARR can be defined as:

(I,q) . (I,9) 1,
&1 e, (t) e BN, (1)
where el(/?q) signifies the residual and E(>9) denotes the

bounds of this residual, often noted as the thresholds.
The set of ARRs used by the module M9 are defined

as: £ = Ujeyumc‘fj(-l’q). where J(1:9) is an index set,
defined as J9) = {j: SN {51 € ST},

Each module’s decision on the occurrence of sensor faults,
in the case of permanent faults is defined as:

0, &5 is valid
DD () =3 2
®) {1, otherwise @

Sensor fault isolation ~ Sensor fault isolation relies on
a two-step combinatorial decision logic; the local and
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the global decision logic. In the local decision level, the
decisions D9 are collected into a binary decision vector
D) = DY pI2) ... DN representing the local
decision of the monitoring agent M. This vector is
compared to the columns of a binary fault signature matrix
(FSM) F() consisting of Ny rows and Ng, + 2 columns

— o8 _ 1

where N¢, , ’S(I)‘ denotes the cardinality

of the sensor subset S). The local decision vector D)
corresponding to the monitoring agent M) is consistent
with the i-th column of the binary fault signature matrix

FU)_ denoted as F) , Ny if and only if D9 =

qi >
Fq(I), Vq=1,---,Nj. The local diagnosis set of the agent

is then deﬁned as

q:17

= {FDFD =DpD, (3)

where F; D) s a consistency test between the i- th column
of the fault signature matrix F) denoted as F ) and the
local agent decision vector D).
In order to isolate the propagation of the sensor fault
effects, the global agent collects the decisions of the mon-
itoring agents M) denoted as:

) (1 (1) (1)
D(I)(t) - 0, ¢ 7.)3 (t) and fp"’ & Ds’(t) (4)
X 1, otherwise,

where fé”

the agent to the neighboring agents and f,(cl) corresponds
to the sensor faults propagated from the neighboring
agents to the local agent.

accounts for the sensor faults propagated from

A global agent G collects the decisions on the propagation
of sensor faults from the N local agents in a global
decision vector D (t) = [D{” (), DP (1), -, DV (1)]. A
comparison is then made with the columns of a global
binary sensor FSM F'X consisting of N rows and Ng = 2P —

1 columns where p < Zé\;l{p[}, pr is the length of f(I).

The local multiple sensor fault isolability becomes compli-
cated as the number of sensors in S!) increases. To handle
this complexity, the objective of this paper is to design an
optimisation algorithm for the decomposition of the sensor
set S'in SU, T = 1,---,N subsets and the automated
generation of the theoretical FSMs F(I)| FX and agents’
architecture (M), G) used in the distributed monitoring
of marine propulsion systems, based on fault isolability
criteria. In this paper we consider that each monitoring
module M9 [ =1,... N only uses one ARR, meaning
that ¢=1,---,|SD]|.

3. SEMANTIC MODELLING OF MARINE
PROPULSION SYSTEMS

In this work we propose the use of a qualitative method
to handle the complexity of the modelling of the hybrid
propulsion system shown in Fig. 1. In previous work
[Kougiatsos et al. (2023)], a semantic database of ves-
sel components was introduced. The semantic database
includes the components database where the semantic
information about the system components is stored and
the knowledge graph, a tool that helps visualize the con-
nections between the different hardware and cyber com-
ponents.

3.1 Components database (F)

All the physical (plant, hardware sensors, actuators) and
cyber (controllers, virtual sensors, monitoring agents)
components can be semantically described by means of
their type (e.g. sensor), their input (e.g. injected fuel) and
output (e.g. engine torque) as well as their units. New
components can be then easily appended in the database
through the operation of semantic annotation [Kougiatsos
et al. (2023)] while components can be also removed during
the vessel’s lifecycle. This process is done through the
actions of the system designers and/or involved manufac-
turers. The component database F used in this paper can
be analyzed as follows:

F=FyUFUF.UFUF.UF,UF,UF,, (5

where Fq, Fe, Fs, Fe, Fy, Fu denote the set of "actua-
tors”, ”controllers”, ”sensors”, ”state-estimators”, ”pre-
control functions” and ”post-control functions” respec-
tively, F, denotes the physical plant components set (e.g.
compressor, turbine, gearbox etc.).

Virtual sensors are in general multi-input multi-output
cyber entities, which can be used instead of extra hard-
ware sensors. The set of virtual sensors in the semantic
database F is denoted as JF,. Their design is usually based
on analytical model information of the plant. In particu-
lar, three types of virtual sensors have been derived for
Differential-Algebraic systems in [Kougiatsos and Reppa
(2022)]; dynamic, static and Set Inversion via Interval
Analysis (SIVIA)-based virtual sensors. The first type uses
measurements from its hardware sensor counterpart along-
side other hardware sensors, while the other two types do
not.

3.2 Knowledge Graph (G)

The knowledge graph of the plant is a graph of the system
formed using the available knowledge about its operation
(semantic description of vessel components). In [Kougiat-
sos et al. (2023)], an automated knowledge graph algo-
rithm has been proposed. This results in the knowledge
graph of the plant hereby denoted as G = {V, E, Y } where
V' denotes the vertices of the graph (database compo-
nents), E denotes the edges between the vertices of the
database (connections constructed by the knowledge graph
tool using the available semantic information) and Y de-
notes the qualitative information carried by each edge (e.g.
"fuel’ is used as a connection between the fuel tank and the
fuel pump). The system interconnections included in the
knowledge graph can be used to automatically configure
the cyber connections between the monitoring agents in
the distributed monitoring architecture.

4. DIAGNOSTIC SYSTEM DESIGNER MODULE

As previously discussed in Section 2, the design of the
diagnosis cyberlayer depends on the decomposmon of sen-
sors in subsets SU), I =1,--- | N and their assignment to
monitoring agents M(I ). In this work, the physical system
and its associated sensor set will be decomposed based
on the maximisation of the ability to isolate sensor faults.
This property can be expressed using the local F) and
global F'X theoretical fault signature matrices. The chal-
lenging part of the distributed architecture is the decision
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Fig. 2. The greedy stochastic optimiser determines the composition of sensor sets SU), I = 1,--- , N that maximises the

isolability targets, as those can be expressed using the theoretical fault signature matrices (F(!), FX). The inputs
to the greedy stochastic algorithm in each different step are shown with dashed lines. The process described in this
figure is implemented as a functionality of the semantic database. As such, the semantic information for hardware
(Fs), virtual sensors (F,) and controllers (F.) can be used. In addition, the knowledge graph G is available.

complexity introduced by the combinatorial decision logic.
The fault signature of two faults might be the same in
one FSM but different in another one, so these two faults
can be isolated from one another. Moreover, sensor faults
can be propagated between different local agents through
their interconnections and multiple decisions are needed
to exclude the possibility of certain fault combinations
occurring. Thus, a different formulation of the sensor set
decomposition problem is required to handle the challenges
of the distributed monitoring architecture and will be
presented next. The diagnostic system designer module
presented in this Section is implemented as an additional
utility of the semantic database. As a result, this tool
can benefit from the semantic information (see Section 3)
regarding the hardware sensors (Fy), the virtual sensors
(Fv), the controllers (F.) and the knowledge graph (G) in
order to automatically generate sensor set decompositions
and the respective distributed monitoring architectures.
The process of decomposing the original sensor set into
subsets occurs offline.

4.1 Optimisation of sensor monitoring decomposition

The optimisation problem for the sensor fault diagnosis
process, in a distributed monitoring architecture, can be
expressed as follows:

max p <<I>(F(”)) +p (F(X)> (6)
st. SO NS =g v+, (7)
up, st cs, (8)

N < Npao )

Sr CUN_ 8D, (10)

where the notation p(A) signifies the rank of matrix A
and @ : F) — F° is a mapping transforming the local
fault signature matrices to one equivalent sensor fault
signature matrix with the total number of rows and the

total number of columns of all local matrices F(!). The
objective function (6) aims to mathematically express
the sensor fault isolability property of the (under design)
distributed monitoring architecture in terms of the number
of unique columns (or rank) of the matrices F(I), FX,
Constraint (7) signifies that each sensor can be assigned
to only one monitoring agent, though its measurement may
be transmitted between other agents as well. Constraint
(8) is used so that sensors may not be used if they make
no difference in the diagnosis process but they are selected
from a limited pool of available hardware sensors. To
implement the above constraints, the optimizer uses the
available semantic information for hardware sensors (Fy)
as shown in Figure 2.

Moreover, constraint (9) aims to limit the size of the
design space by keeping the number of created agents
N bounded by a parameter N,,,,. In order to construct
residuals in the graphs, the hardware sensor vertices (F*)
belonging to the selected S0, T = 1,--- , N need to be
combined with similar ”virtual sensor” vertices (F) (e.g.
if the shaft speed sensor is chosen, the virtual sensor for
shaft speed needs to be coupled). Since virtual sensors
require certain inputs from hardware sensors (F;) and
controllers (F.) to be functional, constraint (10) aims
to impose the selection of these hardware sensors in the
designed division of sensors. The set of virtual sensor
requirements Sg C Fs can be defined as the semantic
inputs of the virtual sensors and is also used to determine
the interconnections between the monitoring agents M)
based on the knowledge graph G. Thus, the distributed
monitoring architecture is automatically constructed, as
shown in Figure 2. Finally, using the information about
the interconnections between the agents M), G and
considering that each monitoring module M9 only
employs one ARR (i.e. the number of modules of each
agent I € [I,N]are g =1,---,|SU)|), the local and global
FSMs F(,| FX are also automatically generated.
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4.2 Greedy stochastic optimisation algorithm

A heuristic search algorithm that can be used to solve the
optimisation problem formulated in (6)-(10) is a greedy
algorithm. This type of heuristic has been already used
with success for a similar problem in [Jung et al. (2020)],
proving a suitable candidate for our problem. However,
the main issue associated with greedy algorithms is that
they are deterministic and the solution greatly depends on
the initial conditions of the search. As a result, the solution
provided by the algorithm may be far from the global opti-
mum. In order to mitigate this risk, in this research work, a
greedy stochastic algorithm is used instead. The algorithm
tunes the number of sensor subsets SU) (C S C F,) and
their hardware sensor composition, thus generating differ-
ent distributed monitoring architectures. The local and the
global FSMs, F() and FX, are then derived and used for
the calculation of the objective function in (6). The algo-
rithm is repeated until convergence, as indicated in Fig. 2.
In order to represent the search space of all possible sensor
divisions in a structured manner, a lattice representation
is used. In every run of the algorithm, each monitoring
agent is first assigned randomly a branch of the lattice tree,
satisfying the constraints (7)-(10), similar to [Jung et al.
(2020)]. The monitoring agents then sequentially make
decisions on whether to drop, add, exchange a hardware
sensor with another agent or do nothing. The objective of
each agent at its decision step is the maximisation of the
objective function in (6), considering the decisions of the
previous agents and supposing that the following agents
will opt to maintain their sensor sets as is [Konda et al.
(2022)]. In order to assess the gains of the different options,
5 random removals, additions and exchanges of sensors are
considered. The execution of the algorithm stops when all
monitoring agents opt to maintain their sensor set division.
The main improvements of our algorithm compared to the
relevant literature [Jung et al. (2020)] are (a) its suitability
for highly complex systems by combining quantitative and
qualitative tools; and (b) the consideration of distributed
monitoring architectures and associated challenges.

5. SIMULATION RESULTS

In this section we apply the diagnostic system designer
module to a hybrid marine propulsion system, such as
the one shown in Figure 1. In total, 12 hardware sensors
and 13 virtual sensors are available. For brevity purposes
the sensors will be referred to using their IDs in the
Semantic Database, shown in Table 1. In order to assess
the optimal number of monitoring agents, the greedy
stochastic algorithm is executed for N € {1,2,3,4,5}. The
optimal sensor set division per each number of agents IV
is defined as the one with the maximum cost value defined
in (6) after running the algorithm 30 times.

Table 1. Sensor IDs as vertices in the semantic

database
1D Sensor ID Sensor
18 Fuel injection 24 Turbine temperature
19 Cylinder pressure 25 Compressor pressure
20 Cylinder temperature 26 | Compressor temperature
21 Engine torque 27 | Intercooler temperature
22 Exh. manifold pressure 28 Shaft speed
23 | Exh. manifold temperature | 29 Motor torque

17

= = = = =
[N} w IS v o
L L . L |

Maximum value of cost function

s
=
L

10 T T T T T
1 2 3 4 5

N [Number of agents]

Fig. 3. Depiction of optimal solution costs (shown in the y
axis) per each value of N. The data points are shown
with a blue x marker.

The results of the greedy stochastic optimisation algorithm
are shown in Figure 3. In each run, the algorithm starts
from a random sensor division with length equal to the
number of monitoring agents. The blue points in Figure 3
then correspond to the maximum value of cost, meaning
the maximum number of unique columns in the FSMs
achieved by the integrated optimisation problem combin-
ing both isolation levels in (6), obtained for all the runs in a
specified value of N. As observed, the centralised (N = 1)
and distributed with two monitoring agents (N = 2) con-
figurations result in the same maximum cost value. This is
due to the high inter-connectivity of the physical system
(marine hybrid propulsion system), which in the case of the
two-agent configuration results in the monitoring agents
being fully connected (the matrix F'X has only one unique
column). The cost value significantly increases when con-
sidering the N = 3 agent configuration while smaller
increases are seen when N = 4 or N = 5. The maximum
cost is encountered in the 5-agent distributed configura-
tion. For this specific data point the optimal sensor di-
visions are the following: S = {19, 20, 21, 23, 25, 27, 29},
S@ = {18,28},8G) = {24}, S™ = {22} and S©®) = {26}.
The virtual sensors are realised in the monitoring agent
that their hardware sensor counterpart has been assigned
to. Suppose that we want to visualise the optimal sensor
set decomposition for N = 5 by extrapolating it as a
decomposition of the physical plant shown in Figure 1
in multiple systems; the result is shown in Figure 4. As
observed from Figure 4, some systems are overlapping
(2M, 26 =@ %)) due to their hardware sensors being
assigned to multiple non-overlapping sensor sets. Finally,
the resulting local FSM for the first monitoring agent M (1)
can be seen in Table 2 while the global FSM FX is given in
Table 3. In each matrix, every different column represents
the theoretical signature of a fault on the sensor ID given in
the header of the column. For brevity purposes, only single
fault columns are shown. By using virtual sensors, the
sensitivity of the resulting analytical redundancy relations
is the same both for local and propagated sensor faults.
As a result, no ambiguity is taken into consideration in
the FSMs, as opposed to [Kougiatsos and Reppa (2024)].
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Table 2. Part of the Sensor Fault signature
matrix F(1) of M)

18 [ 19 [ 20 [ 21 | 22 [ 23 [ 24 | 25 | 26 | 27 | 29
DT o[ 1lofolofololo|lo]o]|o
e 10 | 1 1 lololo]o] o] 1 1 1
E T o[ 1lo|1]lo]olofol]1 1 1
ey 1o | 1 1 1 1o 1 1] 0] 1 1 1
e T olo|lo|lo]fo 1 1 1 o] o] o
e ol o] o]o]o]o o] oo 1 0
DT 1 olofol1]ololo]lof]ol]a1

Table 3. Part of the Global Fault signature
matrix of FX for a 5 agent distributed con-

figuration
18 [ 10 [ 20 | 21 | 22 [ 23 | 24 | 25 | 26 | 27 | 29
MO T o[ 1]ololo[1]1]ol]1]1]1
MO T 1 [ 111111 1]1]1]1
MB T o[ 11 1]lol1]1lo]1]1]1
MO T o[ 1]lofo|l1]o]olo]1 1|1
MG |1 1 ool o 1 1 1 1 1 1

Based on the above results, a larger number N of decom-
positions of the sensor set Sin S, I =1,.-- , N with an
equally large amount of monitoring agents M) seems to
result in more isolable columns in the FSMs, at the cost
of greater communication needed between the monitoring
agents. Based on the automatically generated FSMs shown
in Tables 2 and 3, we can see a large number of unique
fault signatures. In particular, 9 out 11 unique columns
are observed in Table 2 and 5 out of 11 in Table 3
considering the single faults case. Nonetheless, based on
the global FSM in Table 3, the monitoring agents are
very interconnected with 4 out of 11 faults affecting
all 5 monitoring agents, 6 out of 11 faults affecting at
least three agents and at all cases of faults (11 out of
11) affecting at least two monitoring agents. Moreover,
although the sensor sets are not overlapping by design (due
to constraint (7)), if we choose to decompose the system

based on the sensor set division, the resulting systems
might be overlapping, as shown in Figure 4.

6. CONCLUSION

In this paper, a distributed diagnostic system designer
module was developed for the sensor set decomposition
problem encountered in the distributed monitoring of ma-
rine hybrid propulsion architectures. Due to its inherent
modelling complexity, the propulsion system was modelled
using a qualitative approach, based on semantic infor-
mation about its components and a knowledge graph to
visualise their interconnections. The problem was then
expressed in sensor fault isolability terms and a greedy
stochastic optimiser was proposed for its solution. The
obtained results from the case study indicated the ef-
ficiency of the algorithm, provided valuable insights on
the optimal sensor set decomposition and highlighted the
feature of automatically constructing the binary FSMs
(quantitative) using the semantics (qualitative) modelling
method.
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