
Online Surrogate Models for the Con-
strained Optimization of Interplanetary
Low-Thrust Trajectories
M.Sc. Thesis
Francisco A. Andrade Castanheira

D
el
ft
U
ni
ve

rs
ity

of
Te

ch
no

lo
gy

Online Surrogate Models for the
Constrained Optimization of
Interplanetary Low-Thrust

Trajectories
M.Sc. Thesis

by

Francisco A. Andrade Castanheira
to obtain the degree of

Master of Science

at the Astrodynamics and Space Missions Section,
Space Engineering Department, Faculty of Aerospace Engineering,

Delft University of Technology,
to be defended publicly on Friday, 23 September 2022 at 13:00

Student number: 5123562
Duration: 5 July 2021 – 23 September 2022
Thesis committee: Prof. Dr. Ir. P. N. A. M. Visser Committee chair

Ir. K. J. Cowan, MBA, Supervisor
Dr. S. Speretta, External examiner

Original Cover Image Taken From:
https://www.nasa.gov/sites/default/files/thumbnails/image/pia20919.jpg

(last accessed on 27 March 2021)

https://www.nasa.gov/sites/default/files/thumbnails/image/pia20919.jpg

Preface
Over a thousand sunsets, and over a thousand sunrises. That is how long it took. From arriving at

the land of rain, or the land of biking, or the land of biking in the rain, until delivering this manuscript
which marks the end of my academic journey. But the rain is not all that bad. It makes the warm comfort
of the house more enjoyable, and the sunny days more appreciated. And even though the rain and I
get along well by ourselves, I never felt alone. There are other people under the rain. Other people
with whom I shared the grey days, the blue days, and even the white days at times, when not even the
rain was brave enough to come out with the cold. To those people, I am very thankful:

Kevin Cowan, for accepting me under his wing, and guiding and motivating me through this thesis,
always open to explore new avenues whenever my volatile self decided to pursue something different.

Dominic Dirkx and Geoffrey Garrett for entertaining my way too ambitious ideas in the beginning
of this project, and helping me narrowing those ideas down to something that was doable, as well as
helping me start to understand where I wanted to take my professional life.

My friends, the ones I lived with, the ones I made in Delft, the ones I visited when coming to Portugal,
and the ones who suffered through Propagation andOptimization in Astrodynamics withme. it has been
an absolute pleasure.

My grandparents, and in special, my parents, Ana and Luciano. Thank you for giving me this
possibility despite how hard it may have felt. And thank you for everything else. Cannot forget about
Bruna and Mónica, my dogs, who never fail to lift up my spirits. Finally, a big thank you to Natasha, for
always accompanying me despite the rain and being my safe harbor when the storm is too strong.

I don’t know if the rain will keep on falling, or if the sun will come out and shine. But I am happy with
either, I know where to go, and good things will come.

Francisco Castanheira
Lisbon, July 2022

i

Abstract
The optimization of interplanetary, low­thrust trajectories is a computationally expensive aspect of

preliminary mission design. To reduce the computational burden associated with it, surrogate models
can be used as cheap approximations of the original fitness function. Training the surrogate models in
a fully online manner can be done to remove the need of having previously generated datasets, which
is another source of computational cost. The Sims­Flanagan transcription is used to model an Earth­
Mars transfer which is optimized through different optimization routines. The development of a C++
library with machine learning tooling was initiated, containing implementations for Generalized Regres­
sion Neural Networks (GRNNs) and Radial Basis Function Networks (RBFNs) that are used in global
and local surrogates, respectively, having their hyperparameters tuned through cross­validation. A
surrogate model was constructed using Differential Evolution (DE) operators and an uncertainty­based
infill criterion for the global search phase, and approximation of the derivative of the original fitness
function which is provided to SNOPT (Sparse Nonlinear Optimizer), in the local search phase. An ab­
lation study was performed to assess how each of the components of the surrogate model contribute
to the results. It was verified that neither the derivative information nor the local search as a whole led
to better results. The surrogate model was also outperformed by the standard optimization strategy
found in literature, Monotonic Basin Hopping (MBH). Two new surrogate models incorporating ideas of
this strategy were created, with one of them outperforming every other model that was tested. Despite
not having performed a full study of the computational effort due to the simulations having been run in a
server with a variable load, the new models present better results for similar amounts of fitness function
evaluations. A Wilcoxon rank­sum test was performed to assess whether the results have statistical
significance, leading to the conclusion that a surrogate model can be used to improve the optimization
of low­thrust trajectories modeled with the Sims­Flanagan transcription when inserted in a monotonic
basin hopping optimization scheme.

ii

Contents

Preface i

Abstract ii

List of Figures iv

List of Tables v

Nomenclature vi

1 Introduction 1
1.1 Research Objective and Question . 2
1.2 Outline of the Report . 2

2 Paper 3

3 Limitations on Run Time and Performance 29

4 Conclusions and Recommendations 32

A Complementary Information on the Chosen Methods 35
A.1 GRNN . 35
A.2 RBFN Derivatives . 36

A.2.1 First­Order Derivatives of the Gaussian Basis Function 36
A.2.2 Second­Order Derivatives . 36

A.3 Cross­Validation . 37
A.4 Latin Hypercube Sampling . 38
A.5 Monotonic Basin Hopping . 38
A.6 Wilcoxon Rank­Sum Test . 39
A.7 Plotting the Mean Constraint Violation and Mean Feasible Objective 40

B Verification 42
B.1 Radial Basis Functions . 42

B.1.1 Inputs . 42
B.1.2 Gaussian Basis Function. 42
B.1.3 Cubic Basis Function . 43

B.2 Generalized Regression Neural Network . 43
B.2.1 Fitting . 43
B.2.2 Evaluation. 44

B.3 Radial Basis Function Networks . 44
B.3.1 Fitting . 44
B.3.2 Evaluation. 45
B.3.3 Gradient. 46
B.3.4 Hessians . 46

B.4 Linear Scaler . 48
B.5 Latin Hypercube Sampling . 48
B.6 Dynamical Model, Monotonic Basin Hopping, and Differential Evolution Operators 50

C Validation 51
C.1 Dynamical Model . 51
C.2 Surrogate Functions . 51
C.3 Optimization Algorithms . 51

D tudat­learn 52

List of References 56

iii

List of Figures

2.1 Sims­Flanagan Model . 7
2.2 Flow Diagram of the Optimization Process . 15
2.3 Mean Constraint Violation during the Simulations . 19
2.4 Mean Objective of Feasible Individuals during the Simulations 20
2.5 Best Trajectories obtained with the Simulations . 23
2.6 GRNN Sorting Accuracy . 26
2.7 GRNN Mean Absolute Error . 26
2.8 RBFND Sorting Accuracy . 27
2.9 RBFND Mean Absolute Error . 27
2.10 RBFN Sorting Accuracy . 28
2.11 RBFN Mean Absolute Error . 28

3.1 Simulation Run Times . 31

A.1 Latin Hypercube Sampling . 38
A.2 Min­Heap . 40

B.1 Latin Hypercubes with Three Samples . 49
B.2 Latin Hypercubes with Five Samples . 49
B.3 Latin Hypercubes with Ten Samples . 49

D.1 Dataset Class Diagram . 52
D.2 Random Class Diagram . 52
D.3 Estimator Class Diagram . 53
D.4 Processing and Operator Class Diagrams . 54
D.5 Split and CrossValidation Class Diagrams . 55

iv

List of Tables

2.1 Unscaled Problem Bounds . 18
2.2 Simulation Parameters . 18
2.3 Statistical results for the simulations with 10 impulsive shots 21
2.4 Statistical results for the simulations with 20 impulsive shots 21
2.5 Statistical results for the simulations with 30 impulsive shots 22
2.6 State mismatch and Δ𝑉 for the best solution . 22

A.1 Training and validation set sizes . 37

B.1 Gaussian coefficients for both the nested and matrix implementations. 45
B.2 Cubic coefficients for both the nested and matrix implementations. 45

v

Nomenclature
Abbreviations and Acronyms

AAS American Astronautical Society

AIAA American Institute of Aeronautics and Astronautics

ANN Artificial Neural Network

AU Astronomical Unit

CPU Central Processing Unit

DE Differential Evolution

FE Function Evaluations

GRNN Generalized Regression Neural Network

LHS Latin Hypercube Sampling

MAE Mean Absolute Error

MBH Monotonic Basin Hopping

mjd2000 Modified Julian Date 2000

NLP Nonlinear Programming

RAM Random Access Memory

RBF Radial Basis Function

RBFN Radial Basis Function Network

RBFND Radial Basis Function Network with Derivatives

SA Simulated Annealing

SPICE Spacecraft, Planet, Instrument, “C­matrix”, Events

STD Standard Deviation

ToF Time of Flight

Tudat TU Delft Astrodynamics Toolbox

Symbols

𝐶𝑅 crossover ratio ­

𝐷 amount of dimensions ­

𝐸 expected value multiple units

𝑓 general function or fitness function multiple units

F scaling factor ­

𝑔 probability density function multiple units−1

vi

Nomenclature vii

𝑔0 standard gravity m s−2

𝐻 Hessian matrix multiple units

ℋ statistical hypothesis ­

𝐼sp spacecraft specific impulse s

𝑘 number of cross­validation folds ­

𝑙 RBFN basis function coefficient ­

𝐥 RBFN basis function coefficient vector ­

𝑚 spacecraft mass kg

𝑁 amount of ­

𝑝 RBFN polynomial coefficient ­

𝐩 RBFN polynomial coefficient vector ­

𝑃 population ­

𝑟1, 𝑟2, 𝑟3 random integers ­

𝑅 sum of the ranks in a population ­

𝐒 spacecraft state vector m, m s−1

𝑡 time s

𝑇 spacecraft thrust magnitude N

𝐮 mutant vector multiple units

𝑈 Wilcoxon rank­sum test statistic ­

𝑉 velocity magnitude m s−1

𝐕 velocity vector m s−1

viol constraint violation vector multiple units

𝐱 decision vector multiple units

𝐰 vector random variable multiple units

𝐖 observation of the random variable 𝐰 multiple units

𝑧 scalar random variable multiple units

𝑍 observation of the random variable 𝑧 multiple units

Δ𝑟 magnitude of the difference in spacecraft position m

Δ𝑣 magnitude of the difference in spacecraft velocity m s−1

𝚫𝐕 vector of the change in velocity m s−1

Δ𝑉 magnitude of the change in velocity m s−1

𝜇 gravitational parameter m3 s−2

∇ gradient multiple units

𝜙 basis function ­

Nomenclature viii

𝚽 distance matrix ­

𝜑 polar coordinate rad

𝜎 smoothing parameter ­

𝜏 throttle ­

𝜃 azimuthal coordinate rad

Common Subscripts

arr arrival

c center points

𝐶 cubic

C++ generated with tudat­learn

dep departure

𝐺 Gaussian

𝑖 index

𝐼 impulsive shots

in input

𝑗 index

𝑘 index

lb lower bound

matrix implementation with matrix multiplications

max maximum

mb match point from backward propagation

mf match point from forward propagation

nested implementation with nested for­loops

out output

𝑃 population individuals

python generated with python

s samples

ub upper bound

v validation samples

𝑥, 𝑦, 𝑧 Cartesian components

∞ orbit insertion

Common Superscripts

𝑇 transposition

­ infinitesimally before

+ infinitesimally after

̂ approximation

1
Introduction

Low­thrust propulsion systems have grown in popularity since their first use in 1998, during the Deep
Space 1 mission [1]. This is evidenced by their presence in other missions such as Hayabusa [2], Dawn
[3], and BepiColombo [4], as well as the upcoming DESTINY+ [5]. The rocket engines used for low­
thrust propulsion are attractive due to their efficiency in terms of propellant mass, as electric propulsion
systems can have a specific impulse of around 10 times that of a traditional chemical propulsion system.

However, in comparison to chemical propulsion, designing a low­thrust trajectory brings more chal­
lenges. In order to achieve the required Δ𝑉 for a certain trajectory, the spacecraft thrusters have to be
operated in an almost continuous fashion, due to the low magnitude of the thrust that they produce.
Three common approaches to the design of a low­thrust trajectory are shape­based, indirect, and di­
rect methods. Shape­based methods, such as hodographic­shaping [6] or exponential sinusoids [7],
revolve around assuming that the trajectory respects a certain shape that can be described in a fully
analytical manner, and guaranteeing that it respects a set of boundary conditions. Indirect methods
are based on optimal control theory, using calculus of variations to determine the inputs to a dynamical
system that optimize a certain performance index while satisfying designated constraints on the mo­
tion of said system [8]. Finally, direct methods take the low­thrust trajectory optimization problem and
parametrize it, using Nonlinear Programming (NLP) [9], to optimize one or more objective functions
subject to a set of constraints, through the adjustment of a set of variables.

This work was conducted using a direct method, in particular, the Sims­Flanagan model [10], which
is frequently used in literature [11–18] as a medium­fidelity approach. This model divides a low­thrust
trajectory leg in segments of equal duration, and approximates the low­thrust propulsion system through
the application of impulsive manoeuvres halfway through each segment. Orbital elements are com­
puted after each impulsive shot and the state of the spacecraft is propagated in the respective Keplerian
orbit. This transcription results in a nonlinear optimization problem which can be solved using a local
optimization algorithm, such as the Sparse Nonlinear Optimizer (SNOPT), provided that the algorithm
is given a good initial guess. Such initial guesses can be found by searching the decision space using
a metaheuristic with a global scope, such as an evolutionary algorithm or Monotonic Basin Hopping
(MBH), which is frequently used in literature in combination with the Sims­Flanagan transcription and
SNOPT.

However, the search over the whole decision space often involves a large computational cost, as­
sociated with the very large number of fitness function evaluations that need to be computed. Various
attempts at reducing this computational burden have been made, mostly through the approximation of
said fitness computations. Ampatzis and Izzo [19] use an Artificial Neural Network (ANN) alongside
the original trajectory model during the optimization process without degrading the quality of the final
trajectory. Li et al. [20] utilize ANNs to estimate optimal transfer costs of transfer times, fuel consump­
tion and total Δ𝑉 of low­thrust trajectories. More examples of using ANNs and other machine learning
algorithms can be found in literature [21–24]. However, many of these works involve the creation of a
dataset prior to the optimization process, which often involves a large computational effort.

Recent domain­agnostic literature [25–31] has focused on surrogate­assisted optimization as a way
to reduce the computational burden associated with expensive optimization processes. These surro­
gate models often comprise computationally cheap regression or interpolation functions that attempt to

1

1.1. Research Objective and Question 2

approximate the fitness function of the original problem. The approximations can then be used during
the optimization process to make a more informed decision on which decision vectors to evaluate with
the exact function. Moreover, it is common to do so in a fully online manner, that is, by not spend­
ing computational resources on generating datasets in advance and instead building a dataset out of
the fitness evaluations that nevertheless need to be computed during the optimization process. This
project follows the work of Wang et al. [27] in that it uses Generalized Regression Neural Networks
(GRNN) and Radial Basis Function Networks (RBFN) to build surrogate models for global and local
search phases, respectively. The GRNN was chosen as it can efficiently be fitted to large datasets and
can, in theory, converge to any underlying regression surface. Finally, the choice of the RBFN was due
to how well it scales for inputs of large dimensions, according to the study by Díaz­Manríquez et al.
[32], which is very much necessary with the Sims­Flanagan model, as decision spaces ranging from
around 30 to 90 dimensions were studied in the current work.

1.1. Research Objective and Question
Based on the knowledge gathered while scouring through literature, a research gap was identified.

As it was mentioned in the previous section, this gap mainly concerns the usage of online surrogate
models for trajectory optimization in the context of preliminary mission design, or lack thereof. In an
attempt to fill that gap, a research objective was delineated:

• To improve the optimization of interplanetary, low­thrust trajectories based on the Sims­Flanagan
transcription through the use of online surrogate models.

To guide the process of reaching the objective, a research question has been formulated:

• How can onlineGRNNandRBFN surrogates improve the optimization of interplanetary, low­thrust
trajectories based on the Sims­Flanagan model?

The main question sprouts a number of secondary questions that complement it and that make it
easier to gradually achieve the aforementioned objective:

• How can evolutionary and local optimization algorithms be used in combination with online sur­
rogates to perform constrained, single­objective, high­dimensional optimization of interplanetary,
low­thrust trajectories?

• Can a surrogate­assisted optimization approach lead to better results than the monotonic basin
hopping techniques used in literature?

• How does each component of a surrogate model contribute to the optimization of interplanetary,
low­thrust trajectories?

1.2. Outline of the Report
The remainder of this report is composed of three chapters and four appendices. Chapter 2 con­

tains the bulk and main findings of the research that was conducted in the form of a paper manuscript.
Limitations about some aspects of said research can be found in Chapter 3. Chapter 4 includes ex­
tended conclusions and recommendations for future work. Relevant information about the methods
that were used during the research process and that did not make the paper manuscript can be found
in Appendix A. Said appendix contains information on GRNNs, first­ and second­order derivatives of
the RBFNmodel, and small descriptions of cross­validation, latin hypercube sampling, monotonic basin
hopping, the Wilcoxon rank­sum test, and how some of the plots were generated. Appendices B and
C contain the verification and validation of the software tools and models that were used during this
project. Finally, Appendix D contains class diagrams of the tool that was developed for the project,
tudat­learn, which implements machine learning tooling, such as estimators, datasets, scalers,
and samplers.

2
Paper

The paper presented in the coming pages is written in the format specified for the Astrodynam­
ics Specialist Conference, hosted by the American Astronautical Society (AAS) and cohosted by the
American Institute of Aeronautics and Astronautics (AIAA).

3

(Preprint) AAS XX-XXX

ONLINE SURROGATE MODELS FOR THE CONSTRAINED
OPTIMIZATION OF INTERPLANETARY LOW-THRUST

TRAJECTORIES

Francisco Castanheira∗ and Kevin Cowan†

The optimization of interplanetary, low-thrust trajectories is a computationally
expensive aspect of preliminary mission design. To reduce the computational bur-
den associated with it, surrogate models can be used as cheap approximations of
the original fitness function. Training the surrogate models in a fully online manner
can be done to remove the need of having previously generated datasets, which is
another source of computational cost. The Sims-Flanagan transcription is used to
model an Earth-Mars transfer which is optimized through different optimization
routines. The development of a C++ library with machine learning tooling was
initiated, containing implementations for generalized regression neural networks
and radial basis function networks that are used in global and local surrogates,
respectively, having their hyperparameters tuned through cross-validation. Surro-
gate models were constructed with differential evolution operators and derivative
information. However, the best-performing model did not use a local search phase
and incorporated a surrogate in a monotonic basin hopping optimization strategy
which, by itself, is the most common approach in literature. A Wilcoxon rank-
sum test helped confirming that the aforementioned surrogate model performed
the best, having its median solution outperform the median solutions from every
other model by, at least, approximately 400 m s−1, in terms of total Δ𝑉 . Despite
not having conducted a full study of the computational effort due to the simula-
tions having been run in a server with a variable load, the best-performing model
presents the best results for similar amounts of fitness function evaluations. It was
concluded that a surrogate model can be used to improve the optimization of low-
thrust trajectories modeled with the Sims-Flanagan transcription when inserted in
a monotonic basin hopping optimization scheme.

INTRODUCTION

In recent years, low-thrust propulsion systems such as the ones that use electric propulsion have
increased in popularity, as evidenced by past and upcoming interplanetary missions.1–3 Having a
specific impulse of around 10 times that of a chemical propulsion system, electric propulsion can be
more efficient in terms of propellant m ass. However, as the name indicates, these propulsion systems
are only able to deliver low amounts of thrust, which results in the need for long thrusting times to
achieve high exhaust velocities. This leads to additional challenges when designing a trajectory.

When modelling a low-thrust trajectory, the parametrization introduced by Sims and Flanagan4,
hereinafter designated as the Sims-Flanagan model, is a common choice in literature for preliminary
mission design.5–8 Being a direct method, it poses an optimization problem that can be solved by
local optimization algorithms, one of them being the Sparse Nonlinear Optimizer (SNOPT), which

∗MSc Student, Faculty of Aerospace Engineering, Delft University of Technology, The Netherands
†Education fellow + Lecturer, Faculty of Aerospace Engineering, Delft University of Technology, The Netherands,
k.j.cowan@tudelft.nl

1

is recommended by Sims and Flanagan4 and widely used in literature. However, as the decision
space grows, these local methods tend to converge to suboptimal solutions or even not converge if
one fails to provide them with a good initial guess.

Being able to explore a large decision space is crucial in the context of preliminary mission design,
as multiple launch windows can be more easily examined and compared. When using the Sims-
Flanagan method, multiple global search strategies can be found in literature. Yam et al.5 compare
the performance of Differential Evolution (DE) and Simulated Annealing (SA) on an Earth-Mars
rendezvous mission, while Yam et al.6 also compare SA but with Monotonic Basin Hopping (MBH)
and multistart strategies. Both of these works use SNOPT as a local search algorithm at some
point in the optimization process. Ellison et al.7 point out that the MBH and SNOPT perform
the best, both in terms of the likelihood of finding a feasible solution and in terms of the likelihood
of converging to the optimal solution. Ulibarrena and Cowan8 also make use of MBH but employ
sequential least-squares programming in the local search phase.

Despite the Sims-Flanagan method resulting in computationally cheap fitness evaluations, that is,
the evaluation of the objective and constraint functions, getting it to converge requires the fitness
to be computed a large amount of times. When accounting for wanting to explore a large decision
space, the computational cost of the optimization process escalates rapidly. Recent domain-agnostic
literature has focused on surrogate-assisted optimization as a way to reduce the computational
burden associated with expensive optimization processes.9–13 These surrogate models often comprise
computationally cheap regression or interpolation functions that attempt to approximate the fitness
function of the original problem. Even though it is possible to use an existing dataset to train
the surrogate models with, in literature it is common to start with an empty dataset and add
more decision vectors and the respective objective and constraint values to it as the optimization
progresses, in an online fashion. This reduces the cost of creating an initial dataset and encourages
the use of surrogates that have fast training processes.

Lim et al.9 mention that the surrogate models have two major goals: first, to mitigate the curse
of uncertainty, and second, to benefit from the blessing of uncertainty. The former refers to the
negative consequences that are introduced by the approximation error associated with the chosen
models, while the latter alludes to the benefits achieved by smoothing rugged fitness landscapes to
prevent the search from getting stuck in local optima. To attain these goals, Wang et al.10 use
a Generalized Regression Neural Network (GRNN) to construct a global surrogate, and a Radial
Basis Function Network (RBFN) to construct a local surrogate. The GRNN is a regression model
which does not model the target function in an exact manner but gets as close as possible to the
training data on average, which aims to benefit from the blessing of uncertainty by smoothing out
the fitness landscape. Contrasting with the GRNN, the RBFN is an interpolation model and passes
through each instance of the training data, being able to approximate the fitness landscape more
accurately and alleviating the curse of uncertainty. As it will be seen, this paper adopts a very
similar approach.

The work of Wang et al.10 is particularly interesting due to the fact that it deals with surrogate-
assisted optimization of single-objective problems with inequality constraints, something that can be
applied to the Sims-Flanagan problem. It does so by employing a global search using DE mutation
and crossover operators on a global surrogate and a local search that performs local optimization
on a local surrogate. Miranda-Varela and Mezura-Montes11 performed a study on the performance
on different constraint-handling techniques when used to compare candidate solutions in surrogate-
assisted optimization of problems with equality and inequality constraints. Other interesting work,
albeit regarding unconstrained optimization includes the paper by Chen et al.,12 which employs a
local and a global surrogate alongside a DE algorithm to optimize high-dimensional problems with
decision spaces ranging from 20 to 100 dimensions. Finally, Liu et al.13 developed a novel surrogate-
assisted evolutionary algorithm with an uncertainty grouping based criterion to select which of the
candidate vectors generated by the surrogate model to evaluate with the exact function, providing
yet another tool for the optimization not to get stuck on local optima.

2

The goal of this work is to improve the preliminary design of interplanetary, low-thrust trajectories
by reducing the computational effort associated with their optimization, through the use of online
surrogate models. The key idea is to build a dataset of fitness evaluations during the optimization
process and using it to train estimators to predict the exact fitness values at a lower computational
cost. It should be noted that these exact fitness values correspond to evaluations of the fitness
function yielded by the Sims-Flanagan problem, which the surrogates attempt to approximate.
GRNN and RBFN surrogates are used for global and local searches, respectively, with the latter
being able to provide an estimate of the first-order derivatives of the original function, which can
be used by the local optimization algorithm, SNOPT. Naturally, the Sims-Flanagan model is used
to describe the low-thrust trajectories.

Various tools have been used leading up to this paper. The original astrodynamics models and
tooling have been taken from TU Delft Astrodynamics Toolbox∗ (Tudat) and later modified to the
existing needs. The same has been done with the DE algorithm, which was taken from pagmo,
a parallel global multiobjective framework for optimization, developed by the Advanced Concepts
Team of the European Space Agency.14 An MBH algorithm as well as the interface for SNOPT†

and the whole optimization framework were also taken from pagmo but used without modifications.
At last, development of a tool aimed at bringing machine learning tools and techniques to Tudat
was started. The tool was named tudat-learn‡, was written entirely in C++ with maintainability,
modularity, and scalability in mind, that, at the time of writing contains implementations of RBFNs,
GRNNs, datasets, cross-validation procedures, and other machine-learning related tools.

The remainder of this paper is structured as follows: First, the trajectory model used to represent
the low-thrust transfer is presented. Then, the surrogate model is introduced, followed by the
optimization approach. Finally, the results obtained during the optimization process are exposed
and examined, with conclusions being drawn.

TRAJECTORY MODEL

Even though there are various options when it comes to choosing a model for an interplanetary
low-thrust trajectory, the Sims-Flanagan model4 has been shown to be robust within the context of
preliminary mission design.7,15 An implementation of this model that is common in literature5,6

exists in Tudat and was used in this work, being presented below and illustrated in Figure 1. It
is also important to mention that ECLIPJ2000 was the reference frame used in this work, which is
centered in the Solar System barycenter and whose 𝑥𝑦-plane is aligned with the Earth mean ecliptic
and equinox of the epoch J2000.

The trajectory is divided into legs that begin and end with a control node, which are usually
associated with planets or small bodies, but can simply be free points in space. Low-thrust arcs
on each leg are modelled as sequences of impulsive manoeuvres, 𝚫𝐕𝑖, connected by conic section
arcs, where 𝑖 indicates the 𝑖th impulsive manoeuvre. Each leg is divided in 𝑁𝐼 segments of equal
duration, with the impulsive shots being applied halfway through the respective segment, time-wise.
The magnitude of the 𝚫𝐕𝑖 at each segment should not exceed a maximum magnitude, Δ𝑉max,𝑖,
which corresponds to the velocity change accumulated by the spacecraft when it is operated at full
thrust throughout that segment:

Δ𝑉max,𝑖 = 𝑇max
𝑚𝑖−1

𝑡arr − 𝑡dep
𝑁𝐼

, (1)

where 𝑇max denotes the maximum thrust of the low-thrust engine, and 𝑡dep and 𝑡arr denote the times
at departure from and arrival at the control nodes, respectively. Moreover, 𝑚𝑖−1 indicates the mass

∗https://github.com/tudat-team/tudat-bundle (last accessed on 10 May 2022)
†SNOPT was used with an academic license provided by the University of California, San Diego.
‡https://github.com/tudat-team/tudat-learn (last accessed on 10 May 2022)

3

Figure 1. Impulsive ΔV transcription of a low-thrust trajectory, accord-
ing to the Sims-Flanagan model.4

of the spacecraft after the (𝑖−1)th impulsive shot, with the initial mass being the mass at departure,
𝑚0 = 𝑚dep.

After every impulsive shot, the mass of the spacecraft is propagated using Tsiolkovsky’s rocket
equation:16

𝑚𝑖+1 = 𝑚𝑖 exp (− Δ𝑉𝑖
𝑔0𝐼sp

), (2)

where 𝑔0 = 9.80665 m s−2 denotes the acceleration due to Earth’s gravity at sea level and 𝐼sp
corresponds to the specific impulse of the low-thrust engine.

These impulsive shots are applied within a duration assumed to be negligible and naturally cause
a change in the state of the spacecraft. Let 𝛕𝑖 denote the throttle vector of the 𝑖th impulsive shot,
with a magnitude 𝜏𝑖 between 0 and 1. Using the azimuthal and polar directions of the throttle, 𝜃𝑖
and 𝜑𝑖, respectively, the throttle vector in the Cartesian reference frame can be computed as shown
below:

𝛕𝑖 = 𝜏𝑖
⎛⎜
⎝

cos 𝜃𝑖 sin 𝜑𝑖
sin 𝜃𝑖 sin 𝜑𝑖

cos 𝜑𝑖

⎞⎟
⎠

, (3)

which can then be used to compute the Δ𝑉𝑖, which is used alongside the velocity before the impulsive
shot, 𝐕−

𝑖 to compute the velocity after it is applied, 𝐕+
𝑖 :

𝚫𝐕𝑖 = 𝑇max
𝑚𝑖−1

𝑡arr − 𝑡dep
𝑁𝐼

𝛕𝑖, 𝐕+
𝑖 = 𝐕−

𝑖 + 𝚫𝐕𝑖. (4)

With the expression on the left, it is possible to compute the changes in velocity associated with
every impulsive shot before any propagation, by interleaving the computation of said expression with
Equation (2). The former uses the mass of the spacecraft to compute a change in velocity, while the
latter uses that change to compute the new mass of the spacecraft.

4

In the context of preliminary mission design, it is common to evaluate the quality of a trajectory
by examining the amount of propellant it utilizes. Naturally, lower propellant quantities can lead
to greater science returns, for instance by making it possible for the spacecraft to carry more instru-
ments. Quantifying the propellant usage is often done with the final mass of the spacecraft or with
the total Δ𝑉 used for the trajectory, which is the approach taken in this work. To compute it, the
Δ𝑉𝑖 for each of the impulsive shots are added up, as done below:

Δ𝑉 =
𝑁𝐼

∑
𝑖=1

Δ𝑉𝑖 =
𝑁𝐼

∑
𝑖=1

𝑇max
𝑚𝑖−1

𝑡arr − 𝑡dep
𝑁𝐼

𝜏𝑖. (5)

At a single leg, the trajectory is propagated forwards from the departure control node and backwards
from the arrival control node, with half of the total impulsive shots being applied during each of those
half-legs. After the propagation, the half-legs should meet at the match point or the state mismatch
at the match point, shown below, should be less than a tolerance to have a feasible trajectory:

𝐒mf − 𝐒mb = [Δ𝑟𝑥, Δ𝑟𝑦, Δ𝑟𝑧, Δ𝑣𝑥, Δ𝑣𝑦, Δ𝑣𝑧] , (6)

with 𝐒mf and 𝐒mb corresponding to the spacecraft state vectors at the match point, originated by
the forwards and backwards propagations, respectively. Additionally, 𝑟 denotes the position of the
spacecraft, 𝑣 denotes its velocity, and the subscripts 𝑥, 𝑦, and 𝑧 indicate the corresponding Cartesian
component. It is also important to note that, in the backwards propagated half leg, the right-hand
side expression in Equation (4) has to be rearranged and 𝐕+

𝑖 is used to compute 𝐕−
𝑖 , as one is going

from an instant in time after the impulsive shot to the one before it happens.
In addition to using Sims-Flanagan as a model for the low-thrust trajectory, it is necessary to

describe the orbit insertion and rendezvous processes. The medium fidelity nature of Sims-Flanagan
is coherent with the assumption that the spheres of influence of the departure and arrival bodies are
negligible, as their size is small in comparison to the scale of interplanetary trajectories. Therefore,
the departure and arrival positions of the spacecraft are assumed to coincide with the center of mass
of the departure and arrival bodies, respectively. Regarding velocities, a rendezvous is required at
arrival and despite it being possible to make a small velocity correction when that happens, it was
decided to set the spacecraft to arrive at the body of choice with no difference in velocity to it, for
simplicity. However, the same does not happen in the departure, due to the orbit insertion process.
It is assumed that the burn time of the launch vehicle is short, resulting in the approximation of it
being applied as an impulsive shot in the departure position. Let the launch velocity be denoted by
𝑉∞, and its azimuthal and polar directions be denoted by 𝜃∞ and 𝜑∞, respectively. The velocity of
the spacecraft at departure, 𝐕dep, can be computed in the Cartesian reference frame through the
expressions that follow:

𝐕∞ = 𝑉∞
⎛⎜
⎝

cos 𝜃∞ sin 𝜑∞
sin 𝜃∞ sin 𝜑∞

cos 𝜑∞

⎞⎟
⎠

, 𝐕dep = 𝐕p + 𝐕∞, (7)

with 𝐕∞ being the vector of the launch velocity and 𝐕p the velocity of the planet at departure.

Modeling the Low-Thrust Leg as an Optimization Problem

The Sims-Flanagan method originates a single-objective, box-bounded optimization problem sub-
ject to six equality constraints. A concrete enunciation of the problem is presented below:

minimize
𝐱

Δ𝑉 (𝐱), (8)

subject to (𝐒mf(𝐱) − 𝐒mb(𝐱))𝑗 = 0, 𝑗 = 1, … , 6, (9)

𝐱lb ≤ 𝐱 ≤ 𝐱ub, (10)

5

where 𝑗 designates the different individual components of the state mismatch, 𝐱 denotes the decision
vector, and 𝐱lb and 𝐱ub correspond to its upper and lower bounds.

In this work, the decision vector and its bounds correspond to the following set of variables:

• the departure epoch, 𝑡dep,
• the time of flight, ToF,
• the orbit insertion velocity, 𝑉∞,
• the azimuthal direction of the orbit insertion velocity, 𝜃∞,
• the polar direction of the orbit insertion velocity, 𝜑∞,
• the throttle magnitudes at each segment, 𝜏𝑖,
• the azimuthal direction of the throttles at each segment, 𝜃𝑖,
• and the polar direction of the throttles at each segment, 𝜑𝑖,

which adds up to (5 + 3 × 𝑁𝐼) decision variables.
Various works in literature define the throttle vectors as 𝑥, 𝑦, and 𝑧 components that vary between

−1 and 1, highlighting the percentage of the maximum thrust applied in that specific direction.5–7

However, when multiple components approach a unit value for a particular impulsive shot, its norm
can be greater than one, which makes it larger than the Δ𝑉max,𝑖, from Equation (1). This results
in having to introduce 𝑁𝐼 inequality constraints on the norm of the throttle vectors, adding further
complexity to the optimization problem. This paper follows the approach taken by Ulibarrena and
Cowan,8 who prevent it by defining the throttle vectors as a magnitude and two directions, encoding
the limitation on the throttle magnitude in the bounds of the problem.

The Sims-Flanagan model is often paired with a nonlinear programming (NLP) problem solver,
with SNOPT being the most common choice in literature.5–7 When using SNOPT and a suitable
initial guess, the Sims-Flanagan model is fast and robust, being a common choice for a medium fi-
delity model. Among SNOPT’s various settings17, perhaps the most relevant is the ”Major feasibility
tolerance”, 𝜖, that dictates which solutions SNOPT considers to be feasible:

maximum
𝑗

viol𝑗
||𝐱|| ≤ 𝜖, (11)

where viol𝑗 is the violation of the 𝑗th constraint and ||𝐱|| the Euclidean norm of the decision vector.
In literature, various values can be found for 𝜖, Yam et al.5 use 10−6, Ellison et al.7 use 10−5, and
Ozimek et al.18 use 10−8 for a generalized version of the Sims-Flanagan model. Ellison et al.7 also
mention that the likelihood of SNOPT both finding a feasible solution and converging to the optimal
solution is best when the decision variables, objective function, and constraints are scaled to the
same order of magnitude. Following that directive, the decision variables are scaled between 0 and
1, the position mismatch is scaled with a characteristic length unit, which can be the Astronomical
Unit (AU) in the case of an Earth-Mars transfer, and the Δ𝑉 as well as the velocity mismatch are
scaled with a characteristic velocity unit, √𝜇/AU, where 𝜇 is the gravitational parameter of the
central body.

Finally, regarding the number of impulsive shots, Englander and Conway19 mention that the larger
values result in more realistic estimates but at a high computational cost, as SNOPT estimates
the gradient of the function it is optimizing, which grows quadratically with the dimension of the
problem. The authors mention that it is common to have at least 10 impulsive shots per revolution
about the central body.

SURROGATE MODELS

While there are many regression and interpolation functions that a surrogate can be built from,
this paper follows the work of Wang et al.10 in the use of GRNNs and RBFNs to construct global
and local surrogates, respectively.

6

Generalized Regression Neural Network

Proposed by Specht,20 the GRNN is a memory-based neural network that provides estimates
of continuous variables and can, in theory, converge to any underlying regression surface. The
GRNN is a one-pass learning algorithm, as opposed to other neural networks that commonly use
backpropagation, which results in a cheap approximation that is suitable for dealing with expensive
optimization problems. The properties of GRNNs are perfect to have it as the global surrogate,
smoothing out the fitness landscape and benefiting from the blessing of uncertainty. Let 𝑓 correspond
to the function being approximated, 𝐱 = {𝑥1 … 𝑥𝐷in

}𝑇 to a decision vector of dimension 𝐷in, and
𝐜𝑖 = {𝑐𝑖1 … 𝑐𝑖𝐷in

}𝑇 to the 𝑁c decision vectors or center points that the GRNN is fitted to, with
𝑖 = 1, … , 𝑁c. The GRNN computes the approximation of 𝑓 , ̂𝑓 , as follows:

̂𝑓(x) =
∑𝑁c

𝑖=1 𝑓(c𝑖) ⋅ exp (− ‖x−c𝑖‖2

2𝜎2)
∑𝑁c

𝑖=1 exp (− ‖x−c𝑖‖2

2𝜎2)
, (12)

where ‖ ⋅ ‖ denotes the standard Euclidean norm. Naturally, 𝑓 represents any of the objective or
constraint functions that are being approximated, and a separate approximation must be done for
each of those functions.

Radial Basis Function Network

The RBFN is an interpolation model that has been applied to different scientific and engineering
fields, and it was chosen to construct the local surrogates during the optimization process. The
study conducted by Díaz-Manríquez et al.21 compared the performance and efficiency of multiple
metamodeling techniques. The study concluded with RBFN being the most robust model, especially
as the number of input dimensions increased. Even though the study only examined problems up
to 50 dimensions, which can quickly fall short as the number of impulsive shots chosen for Sims-
Flanagan increases, it made the RBFN the most sensible choice.

Using the notation introduced for the GRNN, the RBFN approximates a function 𝑓 as follows:

̂𝑓(𝐱) =
𝑁s

∑
𝑖=1

𝑙𝑖𝜙(‖𝐱 − 𝐜𝐢‖) + 𝑝0 +
𝐷in
∑
𝑘=1

𝑝𝑘𝑥𝑘 (13)

where 𝜙 is a basis function that takes the Euclidean distance between the input vector and a
center point as its own input. Furthermore, 𝑙𝑖, 𝑝0, and 𝑝𝑘 are coefficients determined during the
training process, with the latter two being zero- and first-order polynomial coefficients, respectively.
Even though it is common to use RBFNs without polynomial coefficients, Flyer et al.22 state that
their presence tends to improve the accuracy of the approximation at domain boundaries and the
accuracy of derivative approximations through the whole domain. Similarly to the GRNN, Equation
(13) approximates a single objective or constraint. Therefore, a different set of l and 𝐩 coefficients
has to be computed for each objective and constraint. The coefficients can be obtained by solving
the linear system below:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

| 1 𝑐11 ⋯ 𝑐1𝐷in
𝚽 | ⋮ ⋮ ⋮ ⋮

| 1 𝑐𝑁c1 ⋯ 𝑐𝑁c𝐷in

− − − + − − − −
1 ⋯ 1 |

𝑐11 ⋯ 𝑐𝑁c1 | 0
⋮ ⋯ ⋮ |

𝑐1𝐷in
⋯ 𝑐𝑁𝑐𝐷in

|

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑙1
⋮

𝑙𝑁c

−
𝑝0
𝑝1
⋮

𝑝𝐷in

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑓(c1)
⋮

𝑓(c𝑁c
)

−
0
0
⋮
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (14)

7

where 𝟎(𝐷in+1)×(𝐷in+1) is a null matrix and 𝚽, the distance matrix, is computed as follows:

𝚽 =
⎡
⎢
⎢
⎣

𝜙(‖c1 − c1‖) 𝜙(‖c1 − c2‖) ⋯ 𝜙(‖c1 − c𝑁𝑐
‖)

𝜙(‖c2 − c1‖) 𝜙(‖c2 − c2‖) ⋯ 𝜙(‖c2 − c𝑁𝑐
‖)

⋮ ⋮ ⋱ ⋮
𝜙(‖c𝑁𝑐

− c1‖) 𝜙(‖c𝑁𝑐
− c2‖) ⋯ 𝜙(‖c𝑁𝑐

− c𝑁𝑐
‖)

⎤
⎥
⎥
⎦

. (15)

Multiple forms of basis functions can be used with RBFNs. In this paper, both the cubic form
𝜙𝐶(‖𝐱 − 𝐜𝑖‖) = ‖𝐱 − 𝐜𝑖‖3 and the Gaussian form 𝜙𝐺(‖𝐱 − 𝐜𝑖‖) = exp(−‖𝐱 − 𝐜𝑖‖2/(2𝜎2)) are used as
they are common in surrogate-assisted optimization literature.10,12,13

This model also has the advantage of there being the possibility to compute its derivatives an-
alytically, which can help approximate the derivatives of the original function, an aspect that is
particularly useful when the latter are not available. Various local solvers, such as SNOPT require
gradient information and can approximate the gradient of the function being optimized via finite
differentiation. However, if SNOPT is used to perform a local search on a surrogate model, it may
be beneficial to provide the analytical derivatives of said surrogate. Regarding the Sims-Flanagan
model, Ellison et al.7 derive analytical expressions for many entries of the problem gradient resulting
in improved performance. In this work, the analytical derivatives of the Sims-Flanagan model are
not used, but the ones of the RBFN surrogate models are provided to SNOPT when performing a
local search on the surrogate.

The gradient ∇ ̂𝑓 of the function ̂𝑓 at the point 𝐱 is defined below:

∇ ̂𝑓(𝐱) = [𝜕 ̂𝑓
𝜕𝑥1

⋯ 𝜕 ̂𝑓
𝜕𝑥𝐷in

]
𝑇

, (16)

with each of the partial derivatives being given by

𝜕 ̂𝑓
𝜕𝑥𝑗

(𝐱) =
𝑁c

∑
𝑖=1

𝑙𝑖
𝜕𝜙
𝜕𝑥𝑗

(‖𝐱 − 𝐜𝑖‖) + 𝑝𝑗. (17)

Taking into account that

‖x − c𝑖‖ = [(𝑥1 − 𝑐𝑖1)2 + … + (𝑥𝐷 − 𝑐𝑖𝐷𝐼
)2]

1
2 , (18)

the first-order partial derivatives of the cubic and Gaussian basis functions can be computed as
follows:

𝜕𝜙𝐶
𝜕𝑥𝑗

(‖x − c𝑖‖) = 3 ⋅ (𝑥𝑗 − 𝑐𝑖𝑗) ⋅ ‖x − c𝑖‖. (19)

𝜕𝜙𝐺
𝜕𝑥𝑗

(‖x − c𝑖‖) = 𝜙𝐺(‖x − c𝑖‖) ⋅ [−(𝑥𝑗 − 𝑐𝑖𝑗)
𝜎2] , (20)

A derivation for equations (17), (19), and (20) can be found in Appendix A.

Some Observations on the Surrogate Models

As mentioned, the global surrogate will be constructed out of a GRNN, while the local surrogate
will comprise an RBFN. Each surrogate is composed of seven GRNNs or RBFNs, one which approx-
imates the objective and six that approximate each of the constraints. From here onwards, using
the terms GRNN model or RBFN model will refer to that set of seven separate approximations.
Furthermore, RBFND will be used to refer to an RBFN surrogate model in which the first-order
derivatives are implemented, and RBFN will indicate that said derivatives are not available in
the model and that the input vector is slightly different, which will be explained in the coming
paragraphs.

8

In terms of what constitutes the center points that the models are fitted to, RBFND is the
simplest. It uses the same variables as the optimization problem derived from the Sims-Flanagan
model and given to SNOPT: A decision vector consisting of departure epoch, time of flight, orbit
insertion velocity (magnitude and directions), and the throttle variables for each of the impulsive
shots, all scaled between 0 and 1, according to the problem bounds. Both RBFND and the other
surrogate models attempt to approximate the objective and constraint values scaled in the same
way as provided to SNOPT. It is common for many regression and interpolation algorithms to
perform best when the domain and the values they are trying to approximate all lie within the
same ranges. Here is no different, as both models depend on the Euclidean distance between some
center points and input decision vectors. Having variables within different ranges contributing to the
computation of an Euclidean distance can easily lead to one of them dominating that computation
due to differences in their orders of magnitude. That was verified in early simulations, where the
departure date, given as a Modified Julian Date 2000 (mjd2000) in seconds and the time of flight,
also given in seconds, were the main contributors to the Euclidean distance measured between any
two decision vectors.

The GRNN and RBFN models are built with center points that are different than the ones used
to train the RBFND model. Following the approach of Stubbig and Cowan23 , the departure epoch
and the orbit insertion velocity parameters are not used as input variables. Instead, the departure
epoch and the time of flight are used to query the departure and arrival state of the departure and
arrival bodies. Afterwards, the orbit insertion velocity is used to compute the departure state of
the spacecraft, according to Equation (7). Finally, the departure and arrival states are also scaled
between 0 and 1. The limits of this scaling procedure are computed by querying the departure and
arrival states within the departure and arrival windows, at an approximate rate of 365 × 104 queries
per year in those windows. The minimum (most negative) and maximum (most positive) values
for each of the state variables are stored, with the minimum and maximum possible orbit insertion
velocities being added to the respective state variables.

While it is important to reduce the size of the input vector as much as possible for the optimiza-
tion process to avoid redundant inputs, the same is not necessarily true for the surrogate model.
The surrogate model may benefit from having more physical information about the problem, i.e.,
departure and arrival states, while the optimization process cannot even perform searches directly on
these variables, as they are dependent on others. Within the field of machine learning, this process
of selecting and manipulating data into the right input variables, or features, is referred to as feature
engineering.

The reason for not applying these changes in the input vectors for the RBFND model is that
SNOPT requires the derivatives of the fitness vector with regard to each of the decision variables.
The RBFN model described in the previous paragraphs could approximate the derivatives of the
fitness vector with regard to the spacecraft’s departure and arrival states, but not with regard to
the departure epoch and the orbit insertion parameters, which is what SNOPT requires.

Hyperparameter Tuning

Hyperparameters are parameters of the estimator that are not directly learned during the training
or fitting process. In this paper, the hyperparameters that will be tuned are the choice of basis
function in the RBFN and RBFND models, the smoothing parameter 𝜎 if the Gaussian basis function
is chosen as well as the one in the GRNN model, and finally, the size of the training dataset to which
the RBFN and RBFND models are fitted. While the time it takes to construct a GRNN is a linear
function of the size of the training dataset, regarding the RBFN and RBFND models, it is a function
of the size of the training dataset cubed. Therefore, it is convenient to select an appropriate dataset
size that balances accuracy and efficiency.

In order to make an informed selection of the hyperparameters, a cross-validation routine was ran
for each of the three models. Datasets were generated by applying the description of the optimization

9

problem in Equations (8), (9), and (10) to an Earth-Mars rendezvous mission. Following the work of
Yam et al.,5 this paper runs the optimization with 10, 20, and 30 impulsive shots, with a dataset of
3000 instances being generated for each of those amounts, using Latin Hypercube Sampling (LHS).
The actual portion of the datasets that is used during cross-validation starts at 200 instances and
increases in increments of 100 up to the full 3000 instances. The size of the validation set is fixed
at 100, resulting in a 𝑘-fold cross validation where 𝑘 = (size of dataset/100). The reason for this
unconventional choice of a variable number of folds is due to one of the figures of merit chosen to
evaluate the models with. Taken from the work of Stubbig and Cowan23 , that figure of merit is the
sorting accuracy. The sorting accuracy is defined using a “Top 25 out of 100” measure, meaning that
it corresponds to the fraction of the 25 best validation instances that the model correctly predicts as
belonging to that group. This figure of merit is derived from the model’s application, which states
that in order to guide a population-based algorithm, it is more important for the surrogate model to
distinguish good from bad candidate solutions than to accurately predict the correct objective and
constraint values.

It is, however, necessary to define how different validation instances are compared. Taking into
account that a validation instance is a decision vector taken from the validation dataset and the re-
spective respective objective and constraint values, the best out of two instances is selected according
to the feasibility rules, enunciated below:

1. Any feasible solution is preferred over any infeasible one.
2. Among two feasible solutions, there is preference for the one with the best objective function

value.
3. Among two infeasible solutions, there is preference for the one yielding a smaller constraint

violation.
Equation (11) is used to decide whether or not a solution is feasible, and the maximum constraint
violation is used as the criterion to compare the amount of constraint violation between multiple
solutions.

Even though the main purpose of the surrogate models is to guide the optimization process towards
better optima, it was deemed important to have a measure of accuracy of said models. The chosen
measure is the Mean Absolute Error (MAE). For a validation set of size 𝑁v and a 𝐷out-dimensional
fitness vector, MAE is defined as follows:

MAE = 1
𝑁v

𝑁v

∑
𝑖=1

⎛⎜
⎝

1
𝐷out

𝐷out

∑
𝑗=1

∣𝑓𝑖𝑗 − ̂𝑓𝑖𝑗∣⎞⎟
⎠

(21)

where 𝑓𝑖𝑗 and ̂𝑓𝑖𝑗 correspond to the 𝑗th component of the exact and the approximated fitness vectors,
respectively, of the 𝑖th validation instance.

The cross-validation procedure was run for four values of 2𝜎2 (1, 2, 25, and 100) in addition to
the cubic basis function for the RBFN and RBFND models. The results can be found in Appendix
B. For the GRNN model, the choice is straightforward, with 2𝜎2 = 1

2 , as it is the value for which
the model presents the highest sorting accuracy and lowest MAE for most training dataset sizes,
as shown in Figures B.1 and B.2. With the RBFND model, a maximum size of 1500 samples was
chosen, as it is the number for which the sorting accuracy is maximum, with 30 impulsive shots, as
it can be seen in Figure B.3. In the same figure, it can be argued that 2𝜎2 = 2 either outperforms
or has the joint best performance for every amount of impulsive shots, resulting in its choice for the
RBFND model. The same value shows better performance in the RBFN model for 10 impulsive
shots, as shown in Figure B.5. However, for 20 and 30 impulsive shots, the cubic basis function was
chosen for this model, as it seems to have the best and joint best performance for 20 and 30 impulsive
shots, respectively, in terms of sorting accuracy. The mean absolute error for 20 and 30 impulsive
shots was not considered for the choice of hyperparameters due to most of the basis functions and
dataset sizes yielding similar error values, as shown in Figures B.4 and B.6.

10

OPTIMIZATION APPROACH

In this paper, both population-independent and population-based approaches are used, as the
former is usually found in research concerning the use of the Sims-Flanagan model, and the latter
is common within surrogate-assisted optimization literature.

Population-Independent Approach

To serve as a benchmark for the results, MBH will be used in conjunction with SNOPT, since
together they constitute one of, if not the most common and well-performing optimization strat-
egy in literature regarding the Sims-Flanagan Model.6,7,19 MBH, or Iterated Local Search,24 is a
metaheuristic algorithm that samples candidate decision vectors in a neighbourhood of the existing
decision vectors, instead of searching the whole decision space, for a faster convergence. This al-
gorithm starts with a randomly generated decision vector to which a perturbation is applied. The
perturbed decision vector is provided as an initial guess to SNOPT, which yields an optimized de-
cision vector. This optimized decision vector substitutes the original one if it has better fitness.
There is a counter which gets reset every time a decision vector with better fitness is found, and
incremented whenever the new decision vector is worse than the one who originated it. In case the
counter goes over a certain user-defined number, a new decision vector is independently sampled
from the decision space and the process keeps going as long as the maximum number of function
evaluations is not exceeded. Yam et al.6 set that limit at 500 iterations, and it is used in this work
as well. Furthermore, this work also uses the perturbations defined by the aforementioned authors,
which are described below:

1. For each decision variable 𝑥𝑖, and its lower and upper bounds 𝑥lb,𝑖 and 𝑥ub,𝑖, respectively, add
to 𝑥𝑖 a value uniformly chosen in the interval [−0.05(𝑥ub,𝑖 − 𝑥lb,𝑖), 0.05(𝑥ub,𝑖 − 𝑥lb,𝑖)].

2. With a probability of 10%, shift the departure epoch, either forwards, or backwards with equal
probability, by an amount of time corresponding to the synodic period between the arrival and
departure bodies.

To guarantee that the problem bounds are respected, the perturbations follow some rules. The first
perturbation can only increase or decrease the decision variables up to their upper or lower bounds,
respectively. The second perturbation has its direction chosen in a way such that the bounds are
never violated, being shifted forwards if the departure epoch is too close to its lower bound and
backwards if it is too close to the upper bound.

Population-Based Approach

The population-based approach taken in this paper is rather similar to the one taken in the work
of Wang et al.10 It comprises global and local search phases in which GRNN and RBFN-based
models, respectively, are constructed as surrogates at every iteration. A flow chart illustrating the
optimization process can be found in Figure 2. Said process starts with a population of size 𝑁𝑃 being
initialized, which is done by generating decision vectors using Latin Hypercube Sampling (LHS),
that are then provided as initial guesses to SNOPT for optimization. The optimized decision and
fitness vector pairs are stored both in the population and in the dataset, with the latter containing all
the of the distinct vector pairs yielded by SNOPT during the optimization process, when SNOPT is
used to optimize the Sims-Flanagan problem. It is important to mention that new instances are only
included in the dataset if they are not duplicates, which is assessed using fuzzy comparisons. Two
decision vectors, x1 and x2, consisting of double-precision floating-point numbers, are considered
approximately equal if:

‖x1 − x2‖ ≤ 10−12 ⋅ min(‖x1‖ , ‖x2‖). (22)

Finally, the number of Function Evaluations (FE) of the Sims-Flanagan problem, computed while
SNOPT runs, is saved and what remains of the optimization process keeps being executed while
that number stays below a maximum number of function evaluations FEmax.

11

Generate ?
t rial vectors with
DE/ rand/ 1/ bin

Dataset

Populat ion

FE < FEmax

i t er at i on
% 5 == 0

Create Init ial Populat ion
with LHS + SNOPT on

the Sims-Flanagan model

i t er at i on = 0
update FE

r and(0, 1) < 0. 5

j < NP and FE < FEmax

j = 0

Tr ue

Tr ue False

Generate ?
t rial vectors with

DE/ current -to-rand/ 1

Choose the most
uncertain t rial

vector

Choose the best
t rial vector

Evaluate the ?
t rial vectors on the

global surrogate

Local search with SNOPT on the
Sims-Flanagan model with the

chosen t rial vector as an init ial guess

Train global surrogate
with the whole

Dataset

Tr ue

New
individual

 bet ter than the
populat ion's j th

individual?

j = j + 1
update FE

False

Train local surrogate with the
mi n(dat aset . si ze() , 1500)

individuals with the least
Euclidean distance to the
populat ion's j th individual

j = 0

j < NP and FE < FEmax

Local search with SNOPT on the
local surrogate model with

populat ion's j th individual as an
init ial guess, generat ing a t rial

vector

Local search with SNOPT on the
Sims-Flanagan model with the
t rial vector as an init ial guess

j = j + 1
update FE Tr ue

False

Tr ue

False

Start

False

End

i t er at i on = i t er at i on + 1

Update
populat ion's
j th individual

Tr ue

Global Sear ch

Local Sear ch

Update Dataset if
not a duplicate

Figure 2. Flow diagram of the optimization process.

Each iteration of the optimization process starts with a global search phase. In that phase, a
GRNN model is trained with the whole dataset. Two operators from the algorithm proposed by
Storn and Price,25 differential evolution, are used to generate candidate vectors that can serve as
initial guesses for SNOPT. The first operator is denoted by “DE/rand/1/bin”, which corresponds
to a mutation using solely randomly selected individuals, followed by binary crossover. The second
operator, denoted by “DE/current-to-rand/1” simply consists of mutation but besides using ran-
domly selected individuals, the mutated decision vector must have information about the specific
individual it could replace in the population. Let 𝑃 = {𝐱1 … 𝐱𝑁𝑃

}𝑇 denote the population of size
𝑁𝑃 and 𝐱𝑖 = {𝑥𝑖1 … 𝑥𝑖𝐷in

}𝑇 a 𝐷in-dimensional decision vector of that population, a mutant vector
𝐮𝑖 = {𝑢𝑖1 … 𝑢𝑖𝐷in

}𝑇 can be computed according to the expressions below:
• DE/rand/1/bin

𝑢𝑖𝑗 = {𝑥𝑟1𝑗 + 𝐹 × (𝑥𝑟2𝑗 − 𝑥𝑟3𝑗), if 𝑟𝑎𝑛𝑑𝑖𝑗 ≤ 𝐶𝑅 or 𝑗 = 𝑗𝑟𝑎𝑛𝑑,
𝑥𝑖𝑗, otherwise, (23)

• DE/current-to-rand/1

𝑢𝑖𝑗 = 𝑥𝑖𝑗 + 𝐹 × (𝑥𝑟1𝑗 − 𝑥𝑖𝑗) + 𝐹 × (𝑥𝑟2𝑗 − 𝑥𝑟3𝑗), (24)

12

where 𝑖 = 1, … , 𝑁𝑃 and 𝑗 = 1, … , 𝐷in. Additionally, 𝑟1, 𝑟2, and 𝑟3 are three mutually different
integers uniformly generated from {1, … , 𝑁𝑃 }, 𝑟𝑎𝑛𝑑𝑖𝑗 is a random number uniformly drawn from the
interval [0, 1], and 𝑗𝑟𝑎𝑛𝑑 is an integer uniformly selected from {1, … , 𝐷in}. Finally, 𝐹 corresponds
to the scaling factor, and CR to the crossover ratio. Similarly to what happens with MBH, the
perturbations are limited to ensure that the decision variables stay within their respective bounds.

For each individual in the population, one of the two operators is chosen with equal probability
to generate 𝜆 trial vectors. If DE/rand/1/bin is chosen, the GRNN surrogate is used to evaluate the
𝜆 new trial vectors and the best candidate is selected according to the feasibility rules. However, if
DE/current-to-rand/1 is chosen, the most uncertain vector is chosen as the best candidate. Taking
the recommendation of Jin26 , the Euclidean distance can be used as a measure of uncertainty when
the surrogate model does not have an inherent way to compute it, which is the case with the GRNN
model. Therefore, the chosen vector will be the one whose minimum distance (measured in the
decision space) from all the vectors in the dataset is maximal (out of the 𝜆 trial vectors). The
most uncertain vector is chosen in an attempt to explore the decision space in regions that have not
been searched previously, where the surrogates are expected to have lower accuracy. After a new
individual is provided as an initial guess to SNOPT, the resulting fitness vector is compared to the
individual in the population that gave origin to the initial guess. If the new fitness is better, the
new individual takes the place of the old one in the population. In any case, the new decision vector
and respective fitness are added to the dataset.

Every five global searches, a local search is performed. Early test simulations showed that the
local search did not introduce many individuals in the population after the first five to ten iterations,
which may be due to the value set for the feasibility tolerance resulting in constraints that are
relatively easy to satisfy. Another set of early simulations with stricter feasibility tolerance values
had the local search contributing more throughout the optimization process. As such strictness was
not necessary, it was decided to reduce the frequency of the exploitation mechanism by performing a
local search every five global searches, with the latter, the exploration mechanism, happening more
often.

During the local search, for each of the 𝑁𝑃 individuals in the population, a separate RBFN-based
surrogate is built. The minimum between 1500 (from the hyperparameter tuning results) and the
total size of the dataset is chosen as the amount of training instances each local surrogate is built
with. Wang et al.10 compute the maximum as (𝐷in + 1)(𝐷in + 2)/2, but treat problems with, at
most, 𝐷in = 30. In this work, 𝐷in can go up to around 100, which would make training an RBFN-
based model on an amount of instances dictated by the previous expression extremely expensive.
As each of the population’s individuals will be provided as an initial guess for a local search on the
surrogate model, it is desired that the surrogate is as accurate as possible within a neighborhood of
the corresponding individual. Therefore, the dataset instances chosen to build each surrogate with,
are the ones whose decision vector is closest to the population’s individual being considered, in terms
of Euclidean distance. This, of course, from the point that the dataset starts having more than 1500
instances. After each of the surrogates is built, the corresponding individual is provided as an initial
guess for SNOPT to perform local optimization on that surrogate. If the RBFND model is being
used, SNOPT can make use of derivatives that are computed analytically. Afterwards, the decision
vector that results from local optimization on the surrogate model is provided as an initial guess to
SNOPT a second time, but for SNOPT to perform local optimization on the exact, Sims-Flanagan
model. Similarly to the global search phase, the resulting decision and fitness vector pair are added
to the dataset, and the population is updated if the new individual is better than the one that
originated it.

As previously mentioned, this paper uses a very similar optimization approach to the one taken
by Wang et al.,10 with the major differences being worth enumerating. In this work, the surrogates
attempt to only approximate the decision and respective fitness vector pairs that have been yielded
by SNOPT optimization, instead of any possible pair of vectors. In the global search, the Euclidean
distance between the decision vectors is used as a measure of uncertainty. The local search phase

13

also has differences, with the local optimization on the surrogate making use of the analytical
derivatives provided in the RBFND model, it not being done at every iteration, and the local
surrogate having a problem-independent upper bound on the amount of training instances, due
to the higher-dimensional decision spaces in this work. Finally, although equality and inequality
constraints can be treated in a similar way, this work deals with the former, whereas Wang et al.10

solve problems with the latter.

Ablation Study and Model Variants

In an attempt to understand how the different components of the surrogate model influence the
result of the optimization process, an ablation study was performed, where said components are
removed, one at a time, and the results are compared.

Two variants of a surrogate model using aspects taken from MBH were also built and evaluated
against the rest. The first variant removes the local surrogate and applies the MBH and synodic
perturbations in the global search phase, instead of the DE operators, always choosing to evaluate
the best predicted individual. The other variant, as long as the dataset has at least 125 instances,
also generates 𝜆 new individuals using the perturbations, evaluates them in a GRNN surrogate
trained on the entire dataset, and chooses the best one according to the feasibility rules to be
provided as an initial guess to SNOPT. This second variant uses the counter that keeps track of how
many iterations MBH goes through without improvements, and if it goes over the aforementioned
500 iterations, randomly generates a new individual from the entirety of the problem bounds. The
justification for these models will come from the results themselves, and it will be presented in the
coming section.

Below is a list with the description of each of the models with which simulations were run, and
their respective designation in the remainder of the paper, in bold:

• full: The optimization is run with global and local search phases, and with derivative infor-
mation, given by the RBFND model. Population-based.

• just_local: The optimization is ran without the global search phase. Population-based.
• just_global: The optimization is ran without the local search phase. Population-based.
• no_global_no_local: The optimization is ran without both the global and local surrogates,

essentially comprising DE operators and SNOPT. Population-based.
• no_derivatives_RBFND: The optimization is ran on the RBFND model, without deriva-

tive information. Population-based.
• no_derivatives_RBFN: The optimization is ran on the RBFN model, that does not have

derivative information, but has a more descriptive decision vector with the inclusion of the
departure and arrival states. Population-based.

• mbh: The optimization is ran with the regular MBH scheme. Not population-based.
• global_mbh_perturbation: The optimization is ran without the local search phase, and

with the perturbations used in MBH instead of the DE operators, in the global search phase.
Population-based.

• mbh_global_surrogate: The optimization is ran with a global surrogate in the regular
MBH scheme, with a counter for maximum iterations without improvement. Not population-
based.

EXPERIMENTAL STUDY

The Optimization Problem

In this work, an Earth-Mars rendezvous mission is considered, as it is an example problem already
present in literature.5,8 The bounds of the optimization problem can be found in Table 1, whereas the
parameters concerning the spacecraft, surrogate models, and optimization algorithms are presented
in Table 2. Many of these parameters are in accordance to the ones used in the works of Yam et
al.5 and Wang et al.10. Optimization runs are performed for 10, 20, and 30 impulsive shots, with

14

the maximum number of function evaluations of the Sims-Flanagan problem’s fitness being set at
80 × 106, 100 × 106, and 120 × 106, respectively. As it is expected for the complexity and difficulty
of the optimization problem to increase for larger decision vectors, the amount of allowed function
evaluations also increases with the number of impulsive shots, in an attempt to improve convergence.

Table 1. Unscaled problem bounds.

Decision Variable Unit Lower Bound Upper Bound

Departure epoch mjd2000 5478.5 (Jan. 1, 2015) 9131.5 (Jan. 1, 2025)
Time of Flight, ToF day 300 1000
Orbit insertion velocity, 𝑉∞ m s−1 0 3000
Azimuthal direction of 𝑉∞, 𝜃∞ rad 0 2𝜋
Polar direction of 𝑉∞, 𝜑∞ rad 0 𝜋
Throttle magnitudes, 𝜏𝑖 - 0 1
Azimuthal direction of 𝜏𝑖, 𝜃𝑖 rad −𝜋 𝜋
Polar direction of 𝜏𝑖, 𝜑𝑖 rad −𝜋 𝜋

Table 2. Spacecraft, surrogate, and optimization parameters

Parameter Value

Spacecraft Parameters

Initial mass 1500 kg
Specific impulse 3000 s
Thrust 0.135 N

Surrogate Parameters

GRNN 2𝜎2 1
2

RBFND basis function Gaussian, 2𝜎2 = 2
RBFN basis function (𝑁𝐼 = 10) Gaussian, 2𝜎2 = 2
RBFN basis function (𝑁𝐼 = 20, 30) Cubic
Amount of individuals generated with DE, 𝜆 100
Maximum training dataset size of local surrogate 1500

Population-Based Optimization Parameters

Population Size, 𝑁𝑃 80
Scaling factor for DE/rand/1/bin, 𝐹 0.8
Scaling factor for DE/current-to-rand/1, 𝐹 0.4
Crossover ratio, CR 0.4
SNOPT major feasibility tolerance 10−6

MBH-Based Optimization Parameters

Maximum iterations without improvement 500
Perturbation of the decision vector 0% to ±5% of the decision variable range
Synodic Perturbation Probability 10%
Earth-Mars Synodic Period 779.94 julian days

Simulation Setup

As mentioned in the previous section, alongside the main optimization run with GRNN and
RBFND surrogates, five other runs were conducted for an ablation study, as well as an MBH
run, as a way to provide means of comparison with the methods commonly used in literature.
Furthermore, two runs incorporating MBH and surrogate aspects together were conducted, in order
to do a preliminary analysis beyond the population-based surrogate-models. This led to a total

15

of nine optimization runs. A 95%-confidence Wilcoxon rank-sum test,27 which is commonly used
in surrogate-assisted optimization literature10,11,13 , was performed to evaluate the quality of the
results, with some statistical significance being provided by each of those runs being conducted with
20 different random seeds. The Wilcoxon rank-sum test was chosen since it evaluates whether two
sets of measurements are drawn from the same distribution without making any assumptions over
said distribution, which allows for useful comparisons between the different models. The optimization
runs were executed within Delft University of Technology’s Eudoxos server∗, with an Anaconda
environment being used to manage dependencies†, and tudat-learn being installed from source
from the develop branch as of 28 April 2022.

Results

The results obtained during the simulations and a thorough analysis of said results are presented
in the coming pages. This includes the evolution of the populations over the course of the simulations
for the population-based models, the statistical results yielded by the Wilcoxon rank-sum test, and
the best solutions obtained among all of the optimization runs.

Figures 3 and 4 contain plots of the mean constraint violation and mean feasible objective, re-
spectively, of the population over the number of exact evaluations of the fitness function originated
by the Sims-Flanagan model. The mean constraint violation corresponds to the constraint violation
of each individual, computed according to Equation (11), averaged over the 80 individuals of the
population and afterwards, averaged over the 20 independent runs. The mean feasible objective or
mean objective of the feasible individuals corresponds to the average Δ𝑉 value of the individuals
in the population whose fitness vector does not have any of its constraints violated. Again, this is
averaged over the 20 independent runs.

0 2 4 6 8
Function Evaluations 1e7

10 7

10 6

10 5

10 4

10 3

10 2

10 1

M
ea

n
C

on
st

ra
in

t V
io

la
tio

n

Population - 10 Impulsive Shots

0.00 0.25 0.50 0.75 1.00
Function Evaluations 1e8

Population - 20 Impulsive Shots
full
just_global
just_local
no_global_no_local
no_derivatives_RBFND
no_derivatives_RBFN
global_mbh_perturbation

0.0 0.5 1.0
Function Evaluations 1e8

Population - 30 Impulsive Shots

Figure 3. Mean of the constraint violation of the individuals in the
population, over the simulation, for the different surrogate variants. Av-
eraged over the 20 random seeds.

∗4×Intel® Xeon™ E5-2683 v3 CPUs (Central Processing Unit) and around 260GB of RAM (Random Access
Memory). Ten single-threaded simulations were run at a time, in parallel, with less than 1% of the total memory
being used at all times.

†Tudat 2.9.0, pagmo 2.16.1, and pagmo_plugins_nonfree 0.22 to manage SNOPT 7.6.

16

In Figure 3, it can be seen that the average constraint violation value of the individuals in the
population is monotonically non-increasing, which happens since new individuals are only introduced
to the population if their constraint violation value is less than or equal to the one of the individual
whose place they would be taking. The same cannot be said about Figure 4, where the plotted
curves are not necessarily monotonic. The increase in the mean of the objective function or total
Δ𝑉 of the feasible individuals can happen when not every individual in the population is feasible
and a new feasible individual is found, whose Δ𝑉 value is larger than the current mean.

0 2 4 6 8
Function Evaluations 1e7

4000

4500

5000

5500

6000

M
ea

n
V

of
 F

ea
si

bl
e

In
di

vi
du

al
s

(m
/s

)

Population - 10 Impulsive Shots

0.00 0.25 0.50 0.75 1.00
Function Evaluations 1e8

Population - 20 Impulsive Shots
full
just_global
just_local
no_global_no_local
no_derivatives_RBFND
no_derivatives_RBFN
global_mbh_perturbation

0.0 0.5 1.0
Function Evaluations 1e8

Population - 30 Impulsive Shots

Figure 4. Mean of the objective function of the feasible individuals in
the population, over the simulation, for the different surrogate variants.
Averaged over the 20 random seeds.

Regarding the performance of the surrogate models, from Figure 4, it can be seen that none of the
models that use DE operators (the first six) for their perturbations clearly has a better performance
over the others, except maybe for the just_global model, when there are only 10 impulsive shots.
It is also evident that just_local is the worst performing model, meaning that, when the global
search is removed, the local search alone is likely unable to explore a large enough portion of the
search space, resulting in a slower convergence. There is even a point to be made against having
a local search at all. It may be the case that SNOPT, as a local optimization algorithm, performs
enough of a local search that the challenge lies in tuning the global search phase.

In Figures 3 and 4, the values are also plotted for the global_mbh_perturbation model, which
is an attempt at improvement by completely removing the local search and having the perturbations
used in the mbh model instead of the DE operators in the global search phase. The choice of the
MBH perturbation comes from the results in Tables 3, 4, 5, which will be explained and examined
shortly. It is clear that, while the mean constraint violation for this model is larger than the others’,
meaning that there are fewer feasible individuals in the population, the mean objective value of
said individuals is always the lowest for both 10 and 20 impulsive shots, and also almost always the
lowest for the majority of the duration of the simulations with 30 impulsive shots.

Even though these figures provide a good way to visualize the evolution of the population through
the optimization process, it is extremely important to evaluate every solution that was generated to
correctly compare all the models, preferably with a statistical method. This is necessary since in the
current setup for population-based optimization, an individual is only introduced in the population

17

if it is better than the individual that generated it, even if it is better than other individuals in the
population. Furthermore, since some of the said models are not population-based, it is not possible
to visualize how they perform using metrics that are dependent on the existence of a population.

Table 3. Statistical results for the simulations with 10 impulsive shots.

Simulation Best (m s−1) Median (m s−1) STD (m s−1) Count

full 2621.9 4739.0 1859.2 5363
just_local 2622.4 5423.6 (+) 1798.1 3862
just_global 2619.5 4534.9 (−) 1825.8 5662
no_global_no_local 2618.7 4926.0 (+) 1856.9 5224
no_derivatives_RBFND 2622.0 4712.9 (=) 1845.6 5384
no_derivatives_RBFN 2625.8 4628.4 (−) 1850.0 5548
mbh 2619.8 4118.1 (−) 1975.7 5474
global_mbh_perturbation 2619.2 3835.5 (−) 1700.9 6301
mbh_global_surrogate 2619.0 3007.8 (−) 1441.7 7564

(+): significant difference favoring the full surrogate model; (−): significant difference favoring the model being
compared against full; (=): no significant difference between the two models being compared.

The 95%-confidence Wilcoxon rank-sum test was applied using the same approach as the one
taken by Miranda-Varela and Mezura-Montes11, with the full surrogate model being taken as the
base algorithm for the test. The variants are compared against the base algorithm, with the required
Δ𝑉 of all the solutions, that is, the feasible individuals, obtained through the 20 independent runs
being collected and serving as the basis of comparison. The Wilcoxon rank-sum test tests the null
hypothesis that two sets of measurements are drawn from the same distribution, with the alternative
hypothesis being that the values in one of the samples are more likely to be larger than the values
in the other sample. Tables 3, 4, and 5 contain the statistical results obtained for the runs with 10,
20, and 30 impulsive shots, respectively. Those tables contain, for each of the models, over the 20
independent runs, the Δ𝑉 of the best solution, the median Δ𝑉 and its standard deviation among
all the solutions that were found, as well as the amount of solutions that were found. For each
of those quantities, the best value is identified in bold. Finally, (+), (−), and (=) identifiers are
used to represent the result of the Wilcoxon rank-sum test. (+) indicates that there is a significant
difference favoring the base algorithm with respect to the variant it is being compared with, (−)
indicates that there is also a significant difference but that it favors the variant, and (=) indicates
that there is no significant difference between the algorithms that are being compared.

Table 4. Statistical results for the simulations with 20 impulsive shots.

Simulation Best (m s−1) Median (m s−1) STD (m s−1) Count

full 2627.4 4402.0 1719.4 3216
just_local 2627.7 5206.0 (+) 1766.5 2114
just_global 2635.4 4360.5 (=) 1723.9 3480
no_global_no_local 2631.1 4654.8 (+) 1773.5 3279
no_derivatives_RBFND 2643.7 4390.3 (=) 1766.0 3299
no_derivatives_RBFN 2626.1 4391.0 (=) 1766.8 3349
mbh 2622.0 3913.9 (−) 1963.3 3270
global_mbh_perturbation 2622.2 3761.1 (−) 1482.0 4559
mbh_global_surrogate 2621.4 3012.4 (−) 1195.7 6434

(+): significant difference favoring the full surrogate model; (−): significant difference favoring the model being
compared against full; (=): no significant difference between the two models being compared.

From the tables, it can be seen that between the full surrogate, the other variants from the
ablation study, and the mbh model, the latter always has the statistically best results, with the

18

median of its solutions being the lowest for every amount of impulsive shots. This is what led to
experimenting with the global_mbh_perturbation and the mbh_global_surrogate models,
as these would incorporate aspects of MBH with surrogate models. It is also important to reiterate
that mbh and mbh_global_surrogate are not present in Figures 3 and 4 since they are not
population based methods.

While the graphical performance of the global_mbh_perturbation model has already been
evaluated, the results of Tables 3, 4, and 5, show that it is statistically better than the original
mbh model, and than all the surrogate models that use DE operators. However, the model that
displays the absolute best performance is the one denoted by mbh_global_surrogate. Except
for the best solution for 10 impulsive shots, this model presents the best results for every figure
of merit presented in the tables. Notable examples include the approximately 50 m s−1 difference
from its best solution to the best solution of any of the other models, in Table 5, or the difference
of at least 700 to 800 m s−1 in the median solutions with regard to the other models, evidenced by
Tables 3 and 4. This is particularly impressive taking into account that it also yields the largest
amount of solutions, that is, individuals with feasible fitness vectors. It is also interesting that the
standard deviation of the solutions yielded by the mbh_global_surrogate model is lower from
all the models, evidencing less disparity between said solutions.

Table 5. Statistical results for the simulations with 30 impulsive shots.

Simulation Best (m s−1) Median (m s−1) STD (m s−1) Count

full 2750.0 4490.0 1231.6 3697
just_local 2762.6 5019.8 (+) 1177.7 1112
just_global 2768.2 4477.8 (=) 1227.6 4299
no_global_no_local 2742.6 4665.6 (+) 1232.1 3571
no_derivatives_RBFND 2752.2 4523.6 (=) 1257.5 3709
no_derivatives_RBFN 2728.5 4488.0 (=) 1244.0 3601
mbh 2752.7 3885.6 (−) 1253.8 3827
global_mbh_perturbation 2744.5 3665.4 (−) 1226.6 6484
mbh_global_surrogate 2698.1 3237.8 (−) 978.2 7700

(+): significant difference favoring the full surrogate model; (−): significant difference favoring the model being
compared against full; (=): no significant difference between the two models being compared.

Table 6. Δ𝑉 and state mismatch of the best solutions found by the
mbh_global_surrogate model, for 10, 20, and 30 impulsive shots.

Impulses Δ𝑉 (m s−1) Δ𝑟𝑥 (m) Δ𝑟𝑦 (m) Δ𝑟𝑧 (m) Δ𝑣𝑥 (m s−1) Δ𝑣𝑦 (m s−1) Δ𝑣𝑧 (m s−1)

10 2619.0 113170 76147 130.61 3.9727×10−2 2.9667×10−2 1.6138 ×10−3

20 2621.4 5201.4 467890 1.3248 7.1386×10−2 8.8710×10−4 2.9243×10−3

30 2698.1 9424.1 60321 1431.1 8.3776×10−3 3.2251×10−5 6.6059×10−4

Table 6 contains the fitness vectors of the best trajectories found by the full surrogate model, and
Figure 5 depicts those trajectories. The three trajectories utilise the maximum magnitude for the
orbit insertion velocity, 3000 m s−1, resulting in a total Δ𝑉 slightly over the 5600 m s−1 mark, which
corresponds to the approximate Δ𝑉 value of a Hohmann transfer between Earth and Mars. Being
slightly over the most Δ𝑉 -efficient transfer between these two bodies makes it evident that the best
trajectory found by the full surrogate is a cheap trajectory.

CONCLUSION

The development of tudat-learn, a library with machine-learning tooling was started, and said
library was used alongside Tudat, pagmo, and SNOPT to perform surrogate-assisted surrogate op-

19

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
x (AU)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y
(A

U
)

Trajectory - 10 Impulsive Shots

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
x (AU)

Trajectory - 20 Impulsive Shots

Trajectory
V

Sun
Earth

Mars
Match Point

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
x (AU)

Trajectory - 30 Impulsive Shots

Figure 5. Feasible trajectories with the lowest Δ𝑉 found by the
mbh_global_surrogate model.

timization of low-thrust, interplanetary trajectories modeled by the Sims-Flanagan transcription in
an Earth-Mars transfer. GRNN and RBFN surrogates were employed in global and local searches,
respectively, with the former using DE operators for the perturbations of the existing individuals
and the latter providing an approximation of the derivatives of the problem being optimized. The
hyperparameters of the surrogate models were tuned through k-fold cross-validation. Each of the
optimization runs was done with 20 different random seeds, for 10, 20, and 30 impulsive shots.
An ablation study evaluated the contribution of the different components of the surrogate model,
concluding that the local surrogate, with or without derivative information, did not improve the
optimization results. The MBH approach that is standard in literature outperformed the surrogates
that were using DE operators, so two new surrogate models without DE operators were created. The
model that used a regular MBH optimization scheme with a global surrogate to select which deci-
sion vector to evaluate next was the best performing model, verified by a 95%-confidence Wilcoxon
rank-sum test. The median of the solutions yielded by this model was, at least, 400 m s−1 lower than
the ones yielded by other models. The best solutions of each model were very similar, except for the
case with 30 impulsive shots, in which the aforementioned best-performing model had around a 50
m s−1 advantage.

It is concluded that the inclusion of an online global surrogate alongside MBH and SNOPT can
improve the optimization of interplanetary low-thrust trajectories modelled by the Sims-Flanagan
transcription. However, it is also concluded that local surrogates or global surrogates in a DE
framework should not be utilized to optimize such trajectories. Further investigation on the use of
surrogate models alongside MBH, SNOPT, and the Sims-Flanagan model, as well as a thorough
study on balancing the computational effort are recommended as directions for future work.

REFERENCES
[1] M. D. Rayman, P. A. Chadbourne, J. S. Culwell, and S. N. Williams, “Mission design for deep

space 1: A low-thrust technology validation mission,” Acta Astronautica, Vol. 45, No. 4, 1999,
pp. 381–388. Third IAA International Conference on Low-Cost Planetary Missions.

[2] M. D. Rayman, T. C. Fraschetti, C. A. Raymond, and C. T. Russell, “Dawn: A mission
in development for exploration of main belt asteroids Vesta and Ceres,” Acta Astronautica,
Vol. 58, No. 11, 2006, pp. 605–616.

[3] O. Çelik, D. A. Dei Tos, T. Yamamoto, N. Ozaki, Y. Kawakatsu, and C. H. Yam, “Multiple-
Target Low-Thrust Interplanetary Trajectory of DESTINY+,” Journal of Spacecraft and Rock-
ets, 2021, pp. 1–18.

[4] J. Sims and S. Flanagan, “Preliminary design of low-thrust interplanetary missions,”
AAS/AIAA Astrodynamics Specialist Conference, AAS paper 99-338, Girdwood, Alaska, Au-
gust 1999.

20

[5] C. H. Yam, F. Biscani, and D. Izzo, “Global optimization of low-thrust trajectories via impulsive
Delta-V transcription,” 27th International Symposium on Space Technology and Science, 2009.

[6] C. H. Yam, D. D. Lorenzo, and D. Izzo, “Low-thrust trajectory design as a constrained global
optimization problem,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal
of Aerospace Engineering, Vol. 225, No. 11, 2011, pp. 1243–1251.

[7] D. H. Ellison, J. A. Englander, and B. A. Conway, “Robust Global Optimization of Low-Thrust,
Multiple-Flyby Trajectories,” AAS/AIAA Astrodynamics Specialist Conference, Hilton Head,
SC, 2013.

[8] V. S. Ulibarrena and K. Cowan, “Low-thrust interplanetary trajectory optimization using pre-
trained artificial neural network surrogates.,” AAS/AIAA Astrodynamics Specialist Conference,
AAS Preprint, 2021.

[9] D. Lim, Y. Jin, Y.-S. Ong, and B. Sendhoff, “Generalizing surrogate-assisted evolutionary
computation,” IEEE Transactions on Evolutionary Computation, Vol. 14, No. 3, 2009, pp. 329–
355.

[10] Y. Wang, D.-Q. Yin, S. Yang, and G. Sun, “Global and local surrogate-assisted differential
evolution for expensive constrained optimization problems with inequality constraints,” IEEE
transactions on cybernetics, Vol. 49, No. 5, 2018, pp. 1642–1656.

[11] M.-E. Miranda-Varela and E. Mezura-Montes, “Constraint-handling techniques in surrogate-
assisted evolutionary optimization. An empirical study,” Applied Soft Computing, Vol. 73, 2018,
pp. 215–229.

[12] G. Chen, Y. Li, K. Zhang, X. Xue, J. Wang, Q. Luo, C. Yao, and J. Yao, “Efficient hier-
archical surrogate-assisted differential evolution for high-dimensional expensive optimization,”
Information Sciences, Vol. 542, 2021, pp. 228–246.

[13] Q. Liu, X. Wu, Q. Lin, J. Ji, and K.-C. Wong, “A novel surrogate-assisted evolutionary algo-
rithm with an uncertainty grouping based infill criterion,” Swarm and Evolutionary Computa-
tion, Vol. 60, 2021, p. 100787.

[14] F. Biscani and D. Izzo, “A parallel global multiobjective framework for optimization: pagmo,”
Journal of Open Source Software, Vol. 5, No. 53, 2020, p. 2338, 10.21105/joss.02338.

[15] J. A. Sims, P. A. Finlayson, E. A. Rinderle, M. A. Vavrina, and T. D. Kowalkowski, “Im-
plementation of a Low-Thrust Trajectory Optimization Algorithm for Preliminary Design,”
AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Citeseer, 2006.

[16] K. F. Wakker, “Fundamentals of astrodynamics,” 2015.
[17] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP algorithm for large-scale con-

strained optimization,” SIAM review, Vol. 47, No. 1, 2005, pp. 99–131.
[18] M. T. Ozimek, J. F. Riley, and J. Arrieta, “The Low-Thrust Interplanetary Explorer: A

Medium-Fidelity Algorithm For Multi-Gravity Assist Low-Thrust Trajectory Optimization,”
AAS Space Flight Mechanics Conference, No. AAS, 2019, pp. 19–348.

[19] J. A. Englander and B. A. Conway, “Automated solution of the low-thrust interplanetary tra-
jectory problem,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 1, 2017, pp. 15–27.

[20] D. F. Specht, “A general regression neural network,” IEEE transactions on neural networks,
Vol. 2, No. 6, 1991, pp. 568–576.

[21] A. Díaz-Manríquez, G. Toscano, and C. A. C. Coello, “Comparison of metamodeling techniques
in evolutionary algorithms,” Soft Computing, Vol. 21, No. 19, 2017, pp. 5647–5663.

[22] N. Flyer, B. Fornberg, V. Bayona, and G. A. Barnett, “On the role of polynomials in RBF-FD
approximations: I. Interpolation and accuracy,” Journal of Computational Physics, Vol. 321,
2016, pp. 21–38.

[23] L. Stubbig and K. Cowan, “Improving the evolutionary optimization of interplanetary low-
thrust trajectories using a neural network surrogate model - AAS 20-658 - Preprint,” 08 2021.

[24] H. R. Lourenço, O. C. Martin, and T. Stützle, “Iterated local search,” Handbook of metaheuris-
tics, pp. 320–353, Springer, 2003.

[25] R. Storn and K. Price, “Differential evolution–a simple and efficient heuristic for global opti-
mization over continuous spaces,” Journal of global optimization, Vol. 11, No. 4, 1997, pp. 341–
359.

[26] Y. Jin, “Surrogate-assisted evolutionary computation: Recent advances and future challenges,”
Swarm and Evolutionary Computation, Vol. 1, No. 2, 2011, pp. 61–70.

[27] F. Wilcoxon, “Individual comparisons by ranking methods,” Breakthroughs in statistics,
pp. 196–202, Springer, 1992.

21

APPENDIX A: RBFN DERIVATIVE DERIVATION

Equation (17) is derived as follows:

𝜕 ̂𝑓
𝜕𝑥𝑗

(𝐱) = 𝜕
𝜕𝑥𝑗

⎛⎜
⎝

𝑁s

∑
𝑖=1

𝑙𝑖𝜙(‖𝐱 − 𝐜𝐢‖) + 𝑝0 +
𝐷in
∑
𝑘=1

𝑝𝑘𝑥𝑘⎞⎟
⎠

=
𝑁s

∑
𝑖=1

[𝜕𝑙𝑖
𝜕𝑥𝑗

𝜙(‖𝐱 − 𝐜𝐢‖) + 𝑙𝑖
𝜕𝜙
𝜕𝑥𝑗

(‖𝐱 − 𝐜𝐢‖)] + 𝜕𝑝0
𝜕𝑥𝑗

+
𝐷in
∑
𝑘=1

[𝜕𝑝𝑘
𝜕𝑥𝑗

𝑥𝑘 + 𝑝𝑘
𝜕𝑥𝑘
𝜕𝑥𝑗

]

=
𝑁c

∑
𝑖=1

𝑙𝑖
𝜕𝜙
𝜕𝑥𝑗

(‖𝐱 − 𝐜𝑖‖) + 𝑝𝑗. (25)

The partial derivatives of the cubic basis function, in Equation (19), are derived below:

𝜕𝜙𝐶
𝜕𝑥𝑗

(‖x − c𝑖‖) = 𝜕
𝜕𝑥𝑗

(‖x − c𝑖‖3)

= 𝜕
𝜕𝑥𝑗

([(𝑥1 − 𝑐𝑖1)2 + … + (𝑥𝐷 − 𝑐𝑖𝐷𝐼
)2]

3
2)

= 3
2 ⋅ 2 ⋅ (𝑥𝑗 − 𝑐𝑖𝑗) [(𝑥1 − 𝑐𝑖1)2 + … + (𝑥𝐷 − 𝑐𝑖𝐷𝐼

)2]
3
2 −1

= 3 ⋅ (𝑥𝑗 − 𝑐𝑖𝑗) ⋅ ‖x − c𝑖‖. (26)

The partial derivatives of the squared distance between the input vector and a specific center
point are derived below:

𝜕
𝜕𝑥𝑗

(‖x − c𝑖‖2) = 𝜕
𝜕𝑥𝑗

((𝑥1 − 𝑐𝑖1)2 + … + (𝑥𝐷 − 𝑐𝑖𝐷𝐼
)2)

= 2 ⋅ (𝑥𝑗 − 𝑐𝑖𝑗), (27)

which, in turn, aids in the derivation of Equation (20):

𝜕𝜙𝐺
𝜕𝑥𝑗

(‖x − c𝑖‖) = 𝜕
𝜕𝑥𝑗

exp (−‖𝐱 − 𝐜𝑖‖2

2𝜎2)

= exp (−‖𝐱 − 𝐜𝑖‖2

2𝜎2) ⋅ 𝜕
𝜕𝑥𝑗

[−‖𝐱 − 𝐜𝑖‖2

2𝜎2]

= 𝜙𝐺(‖x − c𝑖‖) ⋅ [−2 ⋅ (𝑥𝑗 − 𝑐𝑖𝑗)
2𝜎2]

= 𝜙𝐺(‖x − c𝑖‖) ⋅ [−(𝑥𝑗 − 𝑐𝑖𝑗)
𝜎2] .

22

APPENDIX B: HYPERPARAMETER TUNING RESULTS

0 1000 2000 3000
Training Samples

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

S
or

ti
n

g
A

cc
u

ra
cy

GRNN - 10 Impulsive Shots

0 1000 2000 3000
Training Samples

GRNN - 20 Impulsive Shots

2σ2 = 1
2

2σ2 = 2

2σ2 = 25

2σ2 = 100

0 1000 2000 3000
Training Samples

GRNN - 30 Impulsive Shots

Figure B.1. Sorting accuracy of the GRNN model obtained with cross-
validation for the different impulsive shot amounts, 2𝜎2 values, and train-
ing dataset sizes.

0 1000 2000 3000
Training Samples

1.6× 10−1

1.8× 10−1

2× 10−1

2.2× 10−1

2.4× 10−1

2.6× 10−1

2.8× 10−1

M
ea

n
A

b
so

lu
te

E
rr

or

GRNN - 10 Impulsive Shots

0 1000 2000 3000
Training Samples

GRNN - 20 Impulsive Shots

2σ2 = 1
2

2σ2 = 2

2σ2 = 25

2σ2 = 100

0 1000 2000 3000
Training Samples

GRNN - 30 Impulsive Shots

Figure B.2. Mean absolute error of the GRNN model obtained with
cross-validation for the different impulsive shot amounts, 2𝜎2 values, and
training dataset sizes.

23

0 1000 2000 3000
Training Samples

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

S
or

ti
n

g
A

cc
u

ra
cy

RBFND - 10 Impulsive Shots

0 1000 2000 3000
Training Samples

RBFND - 20 Impulsive Shots

Gaussian, 2σ2 = 1
2

Gaussian, 2σ2 = 2

Gaussian, 2σ2 = 25

Gaussian, 2σ2 = 100

Cubic

0 1000 2000 3000
Training Samples

RBFND - 30 Impulsive Shots

Figure B.3. Sorting accuracy of the RBFND model obtained with cross-
validation for the different impulsive shot amounts, basis functions, and
training dataset sizes.

0 1000 2000 3000
Training Samples

100

101

M
ea

n
A

b
so

lu
te

E
rr

or

RBFND - 10 Impulsive Shots

0 1000 2000 3000
Training Samples

RBFND - 20 Impulsive Shots

Gaussian, 2σ2 = 1
2

Gaussian, 2σ2 = 2

Gaussian, 2σ2 = 25

Gaussian, 2σ2 = 100

Cubic

0 1000 2000 3000
Training Samples

RBFND - 30 Impulsive Shots

Figure B.4. Mean absolute error of the RBFND model obtained with
cross-validation for the different impulsive shot amounts, basis functions,
and training dataset sizes.

24

0 1000 2000 3000
Training Samples

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

S
or

ti
n

g
A

cc
u

ra
cy

RBFN - 10 Impulsive Shots

0 1000 2000 3000
Training Samples

RBFN - 20 Impulsive Shots

Gaussian, 2σ2 = 1
2

Gaussian, 2σ2 = 2

Gaussian, 2σ2 = 25

Gaussian, 2σ2 = 100

Cubic

0 1000 2000 3000
Training Samples

RBFN - 30 Impulsive Shots

Figure B.5. Sorting accuracy of the RBFN model obtained with cross-
validation for the different impulsive shot amounts, basis functions, and
training dataset sizes.

0 1000 2000 3000
Training Samples

100

101

102

M
ea

n
A

b
so

lu
te

E
rr

or

RBFN - 10 Impulsive Shots

0 1000 2000 3000
Training Samples

RBFN - 20 Impulsive Shots

Gaussian, 2σ2 = 1
2

Gaussian, 2σ2 = 2

Gaussian, 2σ2 = 25

Gaussian, 2σ2 = 100

Cubic

0 1000 2000 3000
Training Samples

RBFN - 30 Impulsive Shots

Figure B.6. Mean absolute error of the RBFN model obtained with
cross-validation for the different impulsive shot amounts, basis functions,
and training dataset sizes.

25

3
Limitations on Run Time and

Performance
The software that was used has some limitations that influence the run time and performance of the

algorithms that were used. They will be listed below:

• Parabolic orbits:
As mentioned in the paper, the implementation of the Sims­Flanagan model was taken from
Tudat. That includes a Keplerian propagator that, at the time of writing, does not have support for
parabolic orbits. This is a problem during the optimization runs, as orbital parameters of parabolic
orbits are found multiple times, raising exceptions. When that happens during the generation of
the initial population, a new individual is sampled from within the problem bounds until a parabolic
orbit is not found during propagation. However, when it happens during a global or local search,
that individual is ignored and not considered to be introduced in the population. Naturally, this
may result in not finding solutions to the problem that could have been better than the ones that
were obtained.

• SNOPT querying dates outside of problem boundaries:
The positions of the celestial bodies are queried from SPICE (Spacecraft, Planet, Instrument,
“C­matrix”, Events) kernels [33] through Tudat. A pagmo::problem wrapping Tudat’s imple­
mentation of the Sims­Flanagan model is provided to SNOPT for optimization. Even though this
problem includes the problem bounds, multiple times during the optimization runs, exceptions
are thrown when SNOPT is running due to the positions of the relevant celestial bodies being
queried at a date not covered by the kernel. Note that the kernel covered the entire problem
bounds, and these queries were not only outside of those bounds, but also outside of the bounds
of the kernel itself. Even though what causes this phenomenon was not investigated, the first
guess goes to the fact that SNOPT estimates the Hessian matrix of the problem through finite
differencing, which may lead to it needing to query the function outside of problem bounds to get
its derivatives at a point within said bounds. These exceptions were handled in the same way as
the ones thrown due to the occurrence of parabolic orbits, in addition to resetting the kernels, an
action required to keep on using them without restarting the run.

• Cluster load makes it hard to perform a fair analysis on the computational effort:
The simulations were run on Delft University of Technology’s Eudoxos server, which is concur­
rently used by multiple students, having a volatile load. When the load is high, the duration of
the simulations can be longer, and it can shorter when the load is low. Since the load varies
and cannot be predicted, the duration of the simulations which was recorded is of little mean­
ing. Figure 3.1 contains the run times for every simulation. As an example of this issue with the
cluster load, one can see that the simulation with the mbh_global_surrogate model often takes
much less time to run than the one with the mbh model, which is essentially the same as the

29

30

mbh_global_surrogate model, but without the surrogate operations, which should translate to
a lower computational effort and lower run time for the mbh model.
Despite this issue, it is still possible to do a basic comparison of the performance of the different
models by making the assumption that the time spent in computing the fitness function yielded by
the Sims­Flanagan optimization problem is what dominates the total run time of the simulations.
Under this assumption, the different models can be compared for the same amount of fitness
function evaluations, as it was done in the paper.

31

fu
ll

ju
st

_g
lo

ba
l

ju
st

_lo
ca

l
no

_g
lo

ba
l_n

o_
lo

ca
l

no
_d

er
iv

at
iv

es
_R

BF
ND

no
_d

er
iv

at
iv

es
_R

BF
N

gl
ob

al
_m

bh
_p

er
tu

rb
at

io
n

m
bh

m
bh

_g
lo

ba
l_s

ur
ro

ga
te

10
 Im

pu
lsi

ve
 S

ho
ts

fu
ll

ju
st

_g
lo

ba
l

ju
st

_lo
ca

l
no

_g
lo

ba
l_n

o_
lo

ca
l

no
_d

er
iv

at
iv

es
_R

BF
ND

no
_d

er
iv

at
iv

es
_R

BF
N

gl
ob

al
_m

bh
_p

er
tu

rb
at

io
n

m
bh

m
bh

_g
lo

ba
l_s

ur
ro

ga
te

Model

20
 Im

pu
lsi

ve
 S

ho
ts

2
4

6
8

10
12

14
16

Ru
n

Ti
m

e
(h

r)

fu
ll

ju
st

_g
lo

ba
l

ju
st

_lo
ca

l
no

_g
lo

ba
l_n

o_
lo

ca
l

no
_d

er
iv

at
iv

es
_R

BF
ND

no
_d

er
iv

at
iv

es
_R

BF
N

gl
ob

al
_m

bh
_p

er
tu

rb
at

io
n

m
bh

m
bh

_g
lo

ba
l_s

ur
ro

ga
te

30
 Im

pu
lsi

ve
 S

ho
ts

Fi
gu

re
3.
1:

R
un

tim
es

of
th
e
op

tim
iz
at
io
n
ro
ut
in
es

w
ith

di
ffe

re
nt

m
od

el
s
fo
r1

0,
20

,a
nd

30
im

pu
ls
iv
e
sh

ot
s.

Ea
ch

do
tr
ep

re
se

nt
s
a
di
ffe

re
nt

ra
nd

om
se

ed
.

4
Conclusions and Recommendations

In this chapter, detailed answers to the research questions are presented as the conclusions of the
study, accompanied by recommendations for future work directions.

• How can onlineGRNNandRBFN surrogates improve the optimization of interplanetary, low­thrust
trajectories based on the Sims­Flanagan model?
In this work, GRNN and RBFN functions were only used to build global and local surrogates,
respectively. While the global surrogates seemed to improve the results of the optimization, the
same can not be said of the local surrogates. It is believed that the local surrogates are not benefi­
cial to the optimization process due to SNOPT inherently searching the decision space in a region
close to the initial guess that it gets as an input. This searching aspect associated with SNOPT
may make the local surrogate redundant, worsening the performance of the models that use said
local surrogate. Therefore, it is inferred that, with trajectories modelled by the Sims­Flanagan
transcription, it is beneficial to use GRNNs in global surrogates, but that to beat the performance
of MBH, which is the method that often yields the best results in literature, the surrogates should
be included in that optimization strategy.

• How can evolutionary and local optimization algorithms be used in combination with online sur­
rogates to perform constrained, single­objective, high­dimensional optimization of interplanetary,
low­thrust trajectories?
The results make it clear that it is possible to use different kinds of surrogates to perform optimiza­
tion of interplanetary, low­thrust trajectories in an evolutionary, population­based setting. These
surrogates can be global, local, they can provide derivative information or not do it at all, and
they can also work with various input sets, and various input dimensions. All of these surrogate
models were able to produce solutions that respected the constraints imposed in the optimization
problem.

• Can a surrogate­assisted optimization approach lead to better results than the monotonic basin
hopping techniques used in literature?
In terms of the best possible solution, both the MBH and the surrogate models were able to
reach very similar results. However, it is different in terms of the overall quality of the solutions,
which was evaluated by comparing the median solution of the different models as well as their
distribution, with a Wilcoxon rank­sum test. This test evidenced that the quality of the solutions
found by the standard MBH approach was higher than the one of the solutions yielded by the
surrogate models employing DE operators as perturbations. However, it was possible to beat
the MBH approach by employing the perturbation that is used there in two different ways: First,
by having it serve as the perturbation in a population­based setting, taking the place of the DE
operators; and second, with even better results, by employing a global surrogate in the standard
MBH approach, just to choose which decision vector is provided to SNOPT as an initial guess.

• How does each component of a surrogate model contribute to the optimization of interplanetary,
low­thrust trajectories?

32

33

Regarding the choice of basis function and hyperparameters, a careful approach is advised. In
case of the GRNN, too large 2𝜎2 values lead to the model having the same prediction with every
input. Low enough values lead to divisions by zero, which is also not desirable. In case one
chooses the Gaussian basis function in the RBFN, the 2𝜎2 values also need to be within a certain
range, to keep the distance matrix values from simply being ones or zeros, respectively, for too
large or too little 2𝜎2 values. The cubic basis function is a good choice if less hyparameter tuning
is desired. Both GRNN and RBFN highly benefit from or even require normalizing the input
variables and having the output variables in the same range for a good performance.
As it has been previously mentioned, the local surrogate did not bring many benefits to the op­
timization process. Additionally, there was no significant difference when removing the deriva­
tive information. It is concluded that in the current optimization scheme, SNOPT is enough for
exploitation, and a local search phase is not necessary. Regarding exploration, the global sur­
rogate does its job well, contributing to the good quality of the solutions, especially when a good
perturbation is chosen. The global surrogate, being constructed out of a GRNN, has another
advantage over the local surrogate, as it can be trained with the whole dataset without a great
increase in computational effort, which scales linear with its size. Oppositely, the fitting time for an
RBFN scales with the size of the dataset cubed, making it impractical to go over certain amounts,
depending on the use­case.

It is considered that the goal of improving the optimization of interplanetary, low­thrust trajectories
based on the Sims­Flanagan transcription through the use of online surrogate models was successfully
achieved with this work. However, it does raise some questions that can be taken as starting points for
future work:

• As shown by the results, the surrogate model incorporated in the MBH approach was the one
that led to the best results. Since most of the duration of this research project was occupied
with examining surrogate models using differential evolution operators, it would be interesting
to have a more detailed analysis on surrogate models working alongside MBH, experimenting
with models extended from the ones developed here, such as incorporating a local search in the
process. Furthermore, it would be beneficial to expand from the single Earth­Mars transfer to
a multiple leg mission with gravity assists and deep space manoeuvres with multiple levels of
surrogate­assisted optimization, such as inner loops to optimize the thrust profiles of each leg
and outer loops that focus on the general mission parameters. This would bring more value to
mission planning as the objective is often to maximize its the scientific return, by visiting multiple
bodies in the solar system.

• In this work, the surrogate models were only used to try to approximate fitness vectors from the
respective decision vector. Furthermore, they were only trained with decision and fitness vector
pairs that were yielded by SNOPT after it was ran for local optimization. Perhaps, it is possible
to successfully use the surrogate models in a different way, such as to approximate the decision
vector that SNOPT would output from another decision vector that would have been provided to
it as an initial guess. If done successfully, it would reduce a large part of the computational effort,
as it would not be necessary to run SNOPT as often during the optimization process.

• Although a statistical analysis was done on the results, it would be interesting to have an analysis
focused on visualization, from a data analytics perspective. As an example, visualizing how the
solutions found by each surrogate model are distributed over the decision space, for different
optimization problems may result in it being easier to choose a particular model for a particular
problem, based on the information extracted from the data.

• As it was mentioned in the limitations, this study does not assess the change in computational
effort introduced by the surrogate models due to the simulations being ran in a server with vari­
able load. In addition to that, the run time is also highly dependent on the implementation, with
it being possible for two different implementations having their run times multiple orders of mag­
nitude apart. After settling on particular implementations of the surrogate models, optimization
algorithms, and astrodynamics models, a thorough analysis of the run time should be done to
verify if, for the same computational effort, it is possible to obtain better solutions with surrogate­
assisted optimization. Naturally, it is important for the environment in which the simulations are

34

run to be the similar across all runs. This includes monitoring some aspects during the process
to assure that they lie within an acceptable range. Such aspects include the computational load
(system only working on simulations, without other concurrent tasks) and the temperature of the
room that the system is in. A run time and space complexity analysis should also be performed,
as a means of comparison that is independent on the hardware, being solely derived from the
implementation.

A
Complementary Information on the

Chosen Methods

A.1. GRNN
Proposed by Specht [34], the GRNN is a memory­based neural network that provides estimates of

continuous variables and can, in theory, converge to any underlying regression surface. GRNNs are
one­pass learning algorithm, as opposed to other neural networks that commonly use backpropagation,
which results in a cheap approximation that is suitable for dealing with expensive optimization problems.
The properties of a GRNN are perfect to have it as the global surrogate, smoothing out the fitness
landscape and benefiting from the blessing of uncertainty. Assuming that 𝑔(𝐰, 𝑧) is the known joint
continuous probability density function of a vector random variable, 𝐰, and a scalar random variable,
𝑧. Let 𝐖 correspond to a particular measured value of the random variable 𝐰, the regression of 𝑧 on
𝐖 is given by

𝐸[𝑧|𝐖] = ∫+∞−∞ 𝑧𝑔(𝐖, 𝑧)𝑑𝑧
∫+∞−∞ 𝑔(𝐖, 𝑧)𝑑𝑧

. (A.1)

When the density 𝑔(𝐰, 𝑧) is not known, it can be estimated from a sample of observations of 𝐰
and 𝑧, 𝐖𝑖 and 𝑍𝑖, respectively. Let 𝑁s be the number of samples, 𝐷in the dimension of 𝐰, and 𝜎 a
user­defined smoothing parameter, the estimation of the joint probability density function, 𝑔(𝐖, 𝑍), can
be done by the nonparametric estimators proposed by Parzen [35]:

𝑔(𝐖, 𝑍) = 1
2𝜋(𝐷in+1)/2 ⋅ 𝜎(𝐷in+1)

⋅ 1𝑁s

𝑁s
∑
𝑖=1

exp [(𝐖 −𝐖𝑖)𝑇 ⋅ (𝐖 −𝐖𝑖)
2𝜎2] exp [(𝑍 − 𝑍𝑖)

2

2𝜎2] . (A.2)

By combining Equations (A.1) and (A.2), the estimation of 𝑍, 𝑍, for a particular𝐖 can be computed
as follows:

𝑍(𝐖) =
∑𝑁s𝑖=1 𝑍𝑖 exp(−

‖𝐖−𝐖𝑖‖
2

2𝜎2)

∑𝑁s𝑖=1 exp(−
‖𝐖−𝐖𝑖‖

2

2𝜎2)
, (A.3)

where ‖ ⋅ ‖ denotes the standard Euclidean norm. Therefore, a set of decision vectors 𝐱𝑖 and their
corresponding Δ𝑉𝑖 can be used to approximate the Δ𝑉 associated with a certain decision vector 𝐱
through the equation above in the form of Δ̂𝑉(𝐱). Naturally, any of the constraints can be approximated
in place of the total change in velocity.

35

A.2. RBFN Derivatives 36

A.2. RBFN Derivatives
A.2.1. First­Order Derivatives of the Gaussian Basis Function

The partial derivatives of the Gaussian basis function that are presented in the paper are derived
for a basis function of the form:

𝜙𝐺 = exp(−‖𝐱 − 𝐜𝑖‖
2

2𝜎2) , (A.4)

which is the form that commonly found in literature. In tudat­learn, however, the Gaussian basis
function was implemented as

𝜙𝐺 = exp(−‖𝐱 − 𝐜𝑖‖
2

𝜎2) , (A.5)

where the factor 2 was removed, with the intent to simplify the implementation. In retrospect, a sim­
pler result would have been obtained without removing the aforementioned factor, however, it was
implemented in that way, so that is how it is presented here.

The first­order partial derivatives become slightly different, as presented below:

𝜕𝜙𝐺
𝜕𝑥𝑗

(‖𝐱 − 𝐜𝑖‖) =
𝜕
𝜕𝑥𝑗

exp(−‖𝐱 − 𝐜𝑖‖
2

𝜎2)

= exp(−‖𝐱 − 𝐜𝑖‖
2

𝜎2) ⋅ 𝜕𝜕𝑥𝑗
[−‖𝐱 − 𝐜𝑖‖

2

𝜎2]

= 𝜙𝐺(‖𝐱 − 𝐜𝑖‖) ⋅ [−
2 ⋅ (𝑥𝑗 − 𝑐𝑖𝑗)

𝜎2] . (A.6)

A.2.2. Second­Order Derivatives
Even though SNOPT does not make use of user­provided second­order derivatives, other local

optimization algorithms can use them, hence they were implemented as well. The Hessian matrix 𝐻 of
the function 𝑓 which approximates 𝑓 is defined as follows:

𝐻𝑓(𝐱) =
⎡
⎢
⎢
⎢
⎣

𝜕2𝑓
𝜕𝑥1𝜕𝑥1

(𝐱) ⋯ 𝜕2𝑓
𝜕𝑥1𝜕𝑥𝐷𝐼

(𝐱),
⋮ ⋱ ⋮

𝜕2𝑓
𝜕𝑥𝐷𝐼𝜕𝑥1

(𝐱) ⋯ 𝜕2𝑓
𝜕𝑥𝐷𝐼𝜕𝑥𝐷𝐼

(𝐱)

⎤
⎥
⎥
⎥
⎦

, (A.7)

with the second­order partial derivatives being presented below:

𝜕2𝑓
𝜕𝑥𝑘𝜕𝑥𝑗

(𝐱) = 𝜕
𝜕𝑥𝑘

(
𝑁c
∑
𝑖=1
𝑙𝑖
𝜕𝜙
𝜕𝑥𝑗

(‖𝐱 − 𝐜𝑖‖) + 𝑝𝑗)

=
𝑁𝑐
∑
𝑖=1
𝑙𝑖
𝜕2𝜙
𝜕𝑥𝑘𝜕𝑥𝑗

(‖𝐱 − 𝐜𝑖‖). (A.8)

The second­order derivatives of the radial basis functions are also derived in the following expres­
sions:

A.3. Cross­Validation 37

𝜕2𝜙𝐶
𝜕𝑥𝑘𝜕𝑥𝑗

(‖𝐱 − 𝐜𝑖‖) =
𝜕
𝜕𝑥𝑘

(3 ⋅ (𝑥𝑗 − 𝑐𝑖𝑗) ⋅ ‖𝐱 − 𝐜𝑖‖)

= 3 ⋅ (𝑥𝑗 − 𝑐𝑖𝑗) ⋅
𝜕
𝜕𝑥𝑘

(‖𝐱 − 𝐜𝑖‖) + ‖𝐱 − 𝐜𝑖‖ ⋅
𝜕
𝜕𝑥𝑘

(3 ⋅ (𝑥𝑗 − 𝑐𝑖𝑗))

= 3 ⋅ (𝑥𝑗 − 𝑐𝑖𝑗) ⋅
1
2 ⋅ 2

(𝑥𝑘 − 𝑐𝑖𝑘)
‖𝐱 − 𝐜𝑖‖

+ {3 ⋅ ‖𝐱 − 𝐜𝑖‖, if 𝑖 = 𝑗,
0, if 𝑖 ≠ 𝑗

=
3(𝑥𝑗 − 𝑐𝑖𝑗)(𝑥𝑘 − 𝑐𝑖𝑘)

‖𝐱 − 𝐜𝑖‖
+ {3 ⋅ ‖𝐱 − 𝐜𝑖‖, if 𝑖 = 𝑗,
0, if 𝑖 ≠ 𝑗 , (A.9)

𝜕2𝜙𝐺
𝜕𝑥𝑘𝜕𝑥𝑗

(‖𝐱 − 𝐜𝑖‖) =
𝜕
𝜕𝑥𝑘

(𝜙𝐺(‖𝐱 − 𝐜𝑖‖) ⋅ [−
2 ⋅ (𝑥𝑗 − 𝑐𝑖𝑗)

𝜎2])

= [−
2 ⋅ (𝑥𝑗 − 𝑐𝑖𝑗)

𝜎2] ⋅ 𝜕𝜙𝐺𝜕𝑥𝑘
(‖𝐱 − 𝐜𝑖‖) + 𝜙𝐺(‖𝐱 − 𝐜𝑖‖) ⋅

𝜕
𝜕𝑥𝑘

[−
2 ⋅ (𝑥𝑗 − 𝑐𝑖𝑗)

𝜎2]

= [−
2 ⋅ (𝑥𝑗 − 𝑐𝑖𝑗)

𝜎2] ⋅ 𝜙𝐺(‖𝐱 − 𝐜𝑖‖) ⋅ [−
2 ⋅ (𝑥𝑘 − 𝑐𝑖𝑘)

𝜎2] + {𝜙𝐺(‖𝐱 − 𝐜𝑖‖) ⋅ (
2
𝜎2) , if 𝑖 = 𝑗,

0, if 𝑖 ≠ 𝑗

= 4
𝜎4 ⋅ (𝑥𝑗 − 𝑐𝑖𝑗) ⋅ (𝑥𝑘 − 𝑐𝑖𝑘) ⋅ 𝜙𝐺(‖𝐱 − 𝐜𝑖‖) + {

𝜙𝐺(‖𝐱 − 𝐜𝑖‖) ⋅ (
2
𝜎2) , if 𝑖 = 𝑗,

0, if 𝑖 ≠ 𝑗
.

(A.10)

A.3. Cross­Validation
Cross­validation is a statistical method used to evaluate and compare learning algorithms through

the division of data in two segments: one used to train a model and the other used to validate it. The
most common form of cross­validation is 𝑘­fold cross­validation, in which the training and validation
sets must cross over in successive rounds in a way such that each instance of data has a chance to
be validated against [36].

In 𝑘­fold cross validation, which is the method used in this work, the dataset is divided in 𝑘 portions,
called folds. One fold is chosen as the validation set, and the classifier is trained on the remaining
𝑘 − 1 folds, with its performance being evaluated on the aforementioned single fold. The process is
performed a total of 𝑘 times, with each of the folds being the validation set at some point. By averaging
the performance over the 𝑘 folds, an accurate performance estimation on unseen data can be obtained
[36].

In this work, cross­validation is used to perform hyperparameter tuning for the surrogate models.
Since one of the metrics that were used is the sorting accuracy, which relies on the validation set having
100 instances, a different number of folds was used for the different training dataset sizes, to ensure that
the validation set stayed with the correct size. Table A.1 contains the size of the training and validation
sets, as well as the number of folds for some of the dataset sizes used during the hyperparameter
tuning procedure.

Table A.1: Training and validation set sizes as well as amount of folds for different dataset sizes used during cross­validation.

Dataset Size Training Set Size Validation Set Size Number of Folds
200 100 100 2
300 200 100 3
500 400 100 5

1000 900 100 10
1500 1400 100 15
2000 1900 100 20
3000 2900 100 30

A.4. Latin Hypercube Sampling 38

A.4. Latin Hypercube Sampling
One of the most common [26–28, 31, 37, 38] ways to attempt to generate a uniform population is

Latin Hypercube Sampling (LHS). It was first introduced by McKay et al. [39] with sound mathematical
foundation, but it can be described in simple terms. One starts by dividing the range of each decision
variable in 𝑁𝑃 intervals, where 𝑁𝑃 corresponds to the number of individuals in the population or the
amount of points being sampled. Afterwards, for each of the decision variables, an interval is selected
and a value is sampled from that interval. The process is repeated for each of the individuals taking
into account that each interval can only be selected once. A good analogy for the two­dimensional
Latin Hypercube is thinking about the 𝑁𝑃 intervals as rooks placed on an 𝑁𝑃 by 𝑁𝑃 chess board without
threatening each other, as it can be seen in Figures A.1 (b) and (c) [40].

(a) (b) (c)

Figure A.1: Chessboard­Rook LHS analogy: (a) Does not represent a Latin Hypercube as the rooks are threatening each
other; (b) Badly distributed Latin Hypercube as there is a correlation of 1 between the two dimensions; (c) Well distributed Latin

Hypercube [40].

A.5. Monotonic Basin Hopping
In this section, the description of Monotonic Basin Hopping according to Yam et al.[15] is presented,

with slight modifications being made to better suit the problem at hand. Algorithm 1 contains the de­
scription of the routine, which requires further definition of four procedures:

1. g() is a procedure that randomly generates a decision vector uniformly drawn from a box limited
by the problem bounds.

2. s(x) is a procedure that, given a decision vector x, computes a local minimizer of the fitness
function, using x as an initial guess. Naturally, SNOPT is the local minimizer being used.

3. Best(x, y) is a procedure that, given two solutions, x and y, returns the best one according to
a user­defined rule. In this work, it corresponds to feasibility rules enunciated in the paper.

4. update(f_e) is a procedure that, given a variable that keeps track of the function evaluations,
f_e, updates it according to the function evaluations performed during procedure s.

A.6. Wilcoxon Rank­Sum Test 39

Algorithm 1: Monotonic Basin Hopping as given by Yam et al.[15], modified to the needs of
the problem at hand. The individual with the best fitness, according to the feasibility rules, is
denoted by x_best.
x_best = g()
f_e = 0
while f_e < MAX_FUNCTION_EVALUATIONS do

x = g()
x_s = s(x)
update(f_e)
k = 0
while k < MAX_WITHOUT_IMPROVEMENT and function_evaluations <
MAX_FUNCTION_EVALUATIONS do
y = p(x_s)
y_s = s(y)
update(f_e)
if Best(x_s, y_s) == y_s then

x_s = y_s
k = 0

end
else

k = k + 1
end

end
x_best = Best(x_best, x_s)

end

A.6. Wilcoxon Rank­Sum Test
The Wilcoxon rank­sum test [41], sometimes also called Mann­Whitney 𝑈 test [42] is a frequentist,

non­parametric test [43] that was created to compare outcomes between two independent groups [40].
In this test, samples are drawn from two populations and ranked according to their values. In this work,
the samples correspond to all the feasible individuals found during the 20 independent runs from the
various models. The populations comprise all the feasible individuals that would have been found if
the simulations had been run with an infinite amount of random seeds, for each of the models. The null
and alternative hypotheses ℋ0 andℋ1, respectively, are as follows [42]:

• ℋ0: The two populations are equal (The performance of the two models is the same).

• ℋ1: The two populations are not equal (The performance of the two models is not the same).

After drawing the samples, they are ranked according to their values. For instance, in the Earth­
Mars example problem, the lower Δ𝑉 values would come first and the larger ones would come last, that
is, the best solution would have a rank equal to 1, while the worst would have a rank equal to the total
number of samples. In case of a tie, the mean rank for the tied values is given instead. Let 𝑅1 and 𝑅2
correspond to the sum of the ranks given to populations 1 and 2, respectively, the statistic 𝑈 is given
by the lower value between 𝑈1 and 𝑈2, which are given by the following expressions [42]:

𝑈1 = 𝑛1𝑛2 +
𝑛1(𝑛1 + 1)

2 − 𝑇1 (A.11)

𝑈2 = 𝑛2𝑛1 +
𝑛2(𝑛2 + 1)

2 − 𝑇2 (A.12)

where 𝑛1 and 𝑛2 correspond to the number of samples drawn from each population.
As it was mentioned above, the statistic 𝑈 has the same value as the lower value between 𝑈1 and

𝑈2. With this, and after selecting a level of significance 𝛼, which is often set to 0.05 [26, 27, 29, 30], it
is possible to know if ℋ0 is rejected by comparing 𝑈 to the critical value, which depends on 𝛼, 𝑛1 and

A.7. Plotting the Mean Constraint Violation and Mean Feasible Objective 40

𝑛2. If the critical value is larger than or equal to 𝑈, there is statistically significant evidence at 𝛼 to reject
the null hypothesis. Said critical value is tabulated1 for common significance levels.

Regarding the optimization algorithms or the different surrogate models, if the null hypothesis is
not rejected, it means that their performance is similar. In case it is rejected, the best performing
algorithm is the one whose 𝑈 value is higher. Finally, the rank­sum test was conducted using scipy’s
scipy.stats.ranksums implementation.

A.7. Plotting the Mean Constraint Violation and Mean Feasible Ob­
jective

Among the results presented in the paper, Figures 2.3 and 2.4 contain plots of the mean constraint
violation and mean feasible objective, respectively, over the amount of fitness function evaluations.
These means are computed over the 80 individuals in the population and then over the 20 independent
runs. The former is simple to conduct, one just needs to compute the intended average over the
population after every time that the population is saved to a file. However, the latter is more laborious.

The issue is that whenever SNOPT is used to optimize a problemwith a certain initial guess, it needs
to compute the fitness function multiple times until it either finds a solution or fails to converge. That
amount of fitness function evaluations is very rarely the same between SNOPT optimization calls with
different initial guesses. Therefore, for a certain amount of impulsive shots, and a certain optimization
model, it is virtually impossible for the 20 independent runs to have their populations stored at the same
amounts of fitness function evaluations. This makes it impossible to find a true average over the 20
independent runs.

The alternative, which was what was done here, is to provide something similar to a running mean.
To do so, a min­heap [44] data structure such as the one in Figure A.2 is used. This data structure is
a binary tree having all of its levels, except possibly the lowest, completely filled. Furthermore, a min­
heap respects the property that the lowest value is at its root and the property that each of its sub­trees
are min­heaps as well.

12

24 300

60102150289

10304302330785396

30150

200

9999984

1000042

Figure A.2: A min­heap with 20 nodes.

The amount of fitness function evaluations after the first population has been saved is then pushed
onto the heap, for each of the 20 independent runs. The nature of the heap guarantees that its root will
contain the lowest number of function evaluations from all the 20 independent runs. That number is
popped from the heap, and the corresponding constraint or feasible objective values are used to update
the running mean, which naturally starts by being an average of a single simulation. Afterwards, the
number of function evaluations of that same independent run after the second population is saved is
pushed on to the heap and the process repeats. This way, as long as there are data points to process,
1http://ocw.umb.edu/psychology/psych­270/other­materials/RelativeResourceManager.pdf (last ac­
cessed on 10 June 2022)

http://ocw.umb.edu/psychology/psych-270/other-materials/RelativeResourceManager.pdf

A.7. Plotting the Mean Constraint Violation and Mean Feasible Objective 41

the heap maintains a sorted ordering of the ”next amount of fitness function evaluations” for the 20
independent runs. As some simulations have all their populations processed, the amount of elements
in the heap decreases, as no more amounts of fitness function evaluations are pushed onto it.

B
Verification

The basis functions, GRNNs, RBFNs and respective derivatives, as well as the linear scaler and
the LHS were all implemented from scratch in tudat­learn. The software verification was done in
the form of unit tests in the original version control repository. The results obtained with tudat­learn
were not compared to results found in literature, but to implementations provided by other libraries.
Some results were also implemented in a more efficient way, being verified with a less efficient, more
verbose, implementation. Single­precision, floating­point numbers are used here as they are shorter,
making it easier for them to be written down in a clear way. Differences in the results are highlighted in
bold.

B.1. Radial Basis Functions
The input vector 𝐱 and the center point 𝐜 were generated using Python’s random module, always

using a random seed set to 0. The values computed with tudat­learn are denoted by the C++ sub­
script and are compared to a Python implementation. The gradients and Hessian matrices that were
hard­coded in tudat­learn were evaluated and compared to symbolic differentiated expressions,
through the use of the sympy package.

B.1.1. Inputs

𝐱 = [
0.84442185
0.75795440
0.42057158

] , 𝐜 = [
0.25891675
0.51127472
0.40493414

] , 𝜎 = 0.7837989. (B.1)

B.1.2. Gaussian Basis Function
The evaluation of the Gaussian basis function at the input 𝐱 and center point 𝐜, with the ”true value”,

computed with Python, on the left, and the value obtained with tudat­learn, on the right:

(𝜙𝐺)python(𝐱, 𝐜) = 0.51815949, (𝜙𝐺)C++(𝐱, 𝐜) = 0.51815949. (B.2)

The evaluation of the gradient of the Gaussian basis function at the input 𝐱 and center point 𝐜, with
the ”true value”, computed with Python, on the left, and the value obtained with tudat­learn, on
the right:

(∇𝜙𝐺)python(𝐱, 𝐜) = [
−0.98767754
−0.41611931
−0.02637851

] , (∇𝜙𝐺)C++(𝐱, 𝐜) = [
−0.98767754
−0.41611931
−0.02637850

] . (B.3)

Finally, the evaluation of the Hessian matrix of the Gaussian basis function at the input 𝐱 and center
point 𝐜, with the ”true value”, computed with Python, followed by the value obtained with tudat­

42

B.2. Generalized Regression Neural Network 43

learn:

(𝐻𝜙𝐺)python(𝐱, 𝐜) = [
0.19575717 0.79317606 0.05028078
0.79317606 −1.35270747 0.02118384
0.05028078 0.02118384 −1.68553831

] , (B.4)

(𝐻𝜙𝐺)C++(𝐱, 𝐜) = [
0.19575716 0.79317606 0.05028076
0.79317606 −1.35270748 0.02118383
0.05028076 0.02118383 −1.68553831

] . (B.5)

It is considered that the Gaussian basis function is verified.

B.1.3. Cubic Basis Function
The evaluation of the cubic basis function at the input 𝐱 and center point 𝐜, with the ”true value”,

computed with Python, on the left, and the value obtained with tudat­learn, on the right:

(𝜙𝐶)python(𝐱, 𝐜) = 0.25670216, (𝜙𝐶)C++(𝐱, 𝐜) = 0.25670216 (B.6)

The evaluation of the gradient of the cubic basis function at the input 𝐱 and center point 𝐜, with the
”true value”, computed with Python, on the left, and the value obtained with tudat­learn, on the
right:

(∇𝜙𝐶)python(𝐱, 𝐜) = [
1.11633646
0.47032472
0.02981468

] , (∇𝜙𝐶)C++(𝐱, 𝐜) = [
1.11633646
0.47032472
0.02981468

] (B.7)

At last, the evaluation of the Hessian matrix of the cubic basis function at the input 𝐱 and center point
𝐜, with the ”true value”, computed with Python, followed by the value obtained with tudat­learn:

(𝐻𝜙𝐶)python(𝐱, 𝐜) = [
3.52484826 0.68177668 0.04321898
0.68177668 2.19386119 0.01820863
0.04321898 0.01820863 1.90777552

] (B.8)

(𝐻𝜙𝐶)C++(𝐱, 𝐜) = [
3.52484826 0.68177668 0.04321897
0.68177668 2.19386118 0.01820862
0.04321897 0.01820862 1.90777551

] (B.9)

It is considered that the cubic basis function is verified.

B.2. Generalized Regression Neural Network
As a highly parallelizable regression algorithm, GRNN is implemented in tudat­learn as a set

of matrix multiplications, benefitting from the vectorization capabilities of the Eigen package. This
implementation is denoted by the subscript matrix, and it is compared to an implementation that uses
nested for­loops, by closely following Equation (A.3).

B.2.1. Fitting
A randomly generated training dataset using Python is used for the verification. In this case, a

dataset of size 10 is used, where the center points or feature vectors are 7­dimensional, and the labels
are 2­dimensional. The center points:

𝐜 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.548814 0.715189 0.602763 0.544883 0.423655 0.645894 0.437587
0.891773 0.963663 0.383442 0.791725 0.528895 0.568045 0.925597
0.071036 0.087129 0.020218 0.832620 0.778157 0.870012 0.978618
0.799159 0.461479 0.780529 0.118274 0.639921 0.143353 0.944669
0.521848 0.414662 0.264556 0.774234 0.456150 0.568434 0.018790
0.617635 0.612096 0.616934 0.943748 0.681820 0.359508 0.437032
0.697631 0.060225 0.666767 0.670638 0.210383 0.128926 0.315428
0.363711 0.570197 0.438602 0.988374 0.102045 0.208877 0.161310
0.653108 0.253292 0.466311 0.244426 0.158970 0.110375 0.656330
0.138183 0.196582 0.368725 0.820993 0.097101 0.837945 0.096098

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (B.10)

B.3. Radial Basis Function Networks 44

and the corresponding labels, line by line:

𝑓(𝐜) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.976459 0.468651
0.976761 0.604846
0.739264 0.039188
0.282807 0.120197
0.296140 0.118728
0.317983 0.414263
0.064147 0.692472
0.566601 0.265389
0.523248 0.093941
0.575946 0.929296

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (B.11)

The following value for the smoothing parameter 𝜎 was also randomly generated and used for
verification purposes:

𝜎 = 0.318569 (B.12)

B.2.2. Evaluation
After being fitted to the dataset, the GRNN is evaluates the output of the following input values, also

randomly generated:

𝐱 = [
0.667410 0.131798 0.716327 0.289406 0.183191 0.586513 0.020108
0.828940 0.004695 0.677817 0.270008 0.735194 0.962189 0.248753
0.576157 0.592042 0.572252 0.223082 0.952749 0.447125 0.846409

] . (B.13)

Below are the values yielded by the GRNNs when trained on the dataset given by Equations (B.10)
and (B.11) and evaluated on the inputs present in Equation (B.13). The values obtained with the imple­
mentation that uses nested for­loops are followed by the ones obtained with the implementation that
uses matrix multiplications:

(𝑓)nested(𝐱) = [
0.212657 0.569603
0.712506 0.374801
0.327922 0.146603

] , (B.14)

(𝑓)matrix(𝐱) = [
0.212657 0.569603
0.712506 0.374801
0.327922 0.146603

] . (B.15)

It is considered that the GRNN is verified.

B.3. Radial Basis Function Networks
B.3.1. Fitting

Similarly to what happens with the GRNN, the RBFN is fitted to the dataset given by Equations
(B.10) and (B.11), and a nested implementation is used to verify the matrix implemenation. The
RBFN is fitted using both a Gaussian and a cubic basis function, with the former using the smoothing
parameter in Equation (B.12).

Tables B.1 and B.2 have the coefficients 𝑙𝑖, 𝑝0, and 𝑝𝑘, obtained for each of the output dimen­
sions out. The first table concerns the Gaussian basis function, with the second concerning the cubic
basis function. In each of those tables, the two columns on the left­hand side correspond to the im­
plementation with nested for­loops, while the two columns on the right­hand side correspond to the
implementation with matrix multiplications, used in tudat­learn. To solve the linear system inher­
ent to RBFN, the nested implementation uses a the solver in the numpy.linalg package, while the
matrix implementation uses Eigen’s householderQr decomposition:

B.3. Radial Basis Function Networks 45

Table B.1: Gaussian coefficients for both the nested and matrix implementations.

nested matrix
out 1 2 1 2

𝑙1 0.164707 ­0.080970 0.164707 ­0.080970
𝑙2 ­0.043197 0.016828 ­0.043197 0.016829
𝑙3 0.042483 ­0.024992 0.042483 ­0.024992
𝑙4 ­0.113948 0.037186 ­0.113948 0.037186
𝑙5 ­0.026745 0.004714 ­0.026744 0.004713
𝑙6 ­0.003996 0.032135 ­0.003996 0.032136
𝑙7 0.061702 ­0.042552 0.061702 ­0.042552
𝑙8 ­0.010971 ­0.010852 ­0.010971 ­0.010852
𝑙9 0.045096 0.006501 0.045096 0.006500
𝑙10 ­0.115131 0.062003 ­0.115131 0.062003
𝑝0 0.360567 ­1.450516 0.360566 ­1.450512
𝑝1 ­0.397730 0.858258 ­0.397730 0.858257
𝑝2 0.820341 ­0.567872 0.820341 ­0.567871
𝑝3 ­0.171501 1.422127 ­0.171500 1.422124
𝑝4 ­0.153605 0.888652 ­0.153604 0.888651
𝑝5 ­0.674028 ­1.052130 ­0.674028 ­1.052130
𝑝6 0.513273 1.337520 0.513274 1.337519
𝑝7 0.513274 0.398121 0.513274 0.398120

Table B.2: Cubic coefficients for both the nested and matrix implementations.

nested matrix
out 1 2 1 2

𝑙1 0.210345 ­0.124317 0.210345 ­0.124317
𝑙2 ­0.047379 0.017144 ­0.047379 0.017145
𝑙3 0.061512 ­0.046473 0.061512 ­0.046473
𝑙4 ­0.112250 0.019956 ­0.112250 0.019956
𝑙5 ­0.019254 ­0.009396 ­0.019254 ­0.009396
𝑙6 ­0.058411 0.108840 ­0.058411 0.108840
𝑙7 0.100389 ­0.089431 0.100389 ­0.089431
𝑙8 0.014692 ­0.048700 0.014692 ­0.048700
𝑙9 0.006936 0.066522 0.006935 0.066521
𝑙10 ­0.156580 0.105854 ­0.156580 0.105854
𝑝0 0.543433 ­1.464384 0.543433 ­1.464385
𝑝1 ­0.472862 0.854898 ­0.472862 0.854898
𝑝2 0.850252 ­0.588660 0.850252 ­0.588659
𝑝3 ­0.088981 1.370274 ­0.088981 1.370274
𝑝4 ­0.243245 0.940585 ­0.243245 0.940585
𝑝5 ­0.722858 ­1.034396 ­0.722858 ­1.034395
𝑝6 0.615800 1.275494 0.615800 1.275493
𝑝7 0.524939 0.396612 0.524939 0.396613

B.3.2. Evaluation
Below are the results yielded by the nested implementation of RBFNwith aGaussian basis function

for the inputs points in Equation (B.13), followed by the results yielded by its matrix counterpart:

B.3. Radial Basis Function Networks 46

(𝑓𝐺)nested(𝐱) = [
0.224686 0.922516
0.003029 1.074597
0.502017 −0.346183

] , (B.16)

(𝑓𝐺)matrix(𝐱) = [
0.224686 0.922516
0.003029 1.074596
0.502017 −0.346182

] . (B.17)

And now, the results yielded by the nested implementation of RBFN with a cubic basis function for
the inputs points in Equation (B.13), followed by the results yielded by its matrix counterpart:

(𝑓𝐶)nested(𝐱) = [
0.337597 0.844558
0.071872 1.007463
0.486969 −0.348277

] (B.18)

(𝑓𝐶)nested(𝐱) = [
0.337597 0.844557
0.071872 1.007463
0.486969 −0.348276

] (B.19)

B.3.3. Gradient
The gradients yielded by the nested implementation of RBFN with a Gaussian basis function eval­

uated at the points in Equation (B.13), followed by the results yielded by its matrix counterpart:

∇(𝑓𝐺)nested(𝐱) = [
−0.397016 0.821603 −0.171936 −0.148307 −0.672812 0.506353 0.519774
0.857843 −0.568336 1.422509 0.884785 −1.052923 1.341997 0.394420] ,

(B.20)

∇(𝑓𝐺)matrix(𝐱) = [
−0.397016 0.821603 −0.171936 −0.148307 −0.672812 0.506353 0.519774
0.857843 −0.568336 1.422509 0.884785 −1.052923 1.341997 0.394420] .

(B.21)

And with a cubic basis function:

∇(𝑓𝐶)nested(𝐱) = [
0.365133 0.986004 −0.024654 −0.244258 −0.697604 0.498648 0.617562
0.785769 −0.653578 1.315828 0.927130 −1.035478 1.340054 0.402368]

(B.22)

∇(𝑓𝐶)matrix(𝐱) = [
−0.365133 0.986004 −0.024654 −0.244258 −0.697604 0.498648 0.617562
0.785769 −0.653578 1.315828 0.927131 −1.035478 1.340054 0.402368]

(B.23)

B.3.4. Hessians
Finally, the Hessians are presented, evaluated at the same points, in Equation (B.13). Naturally, one

Hessian matrix exists for each output dimension, there being two in this case. The output dimension is
denoted by a 1 or 2 superscript. First, for the Gaussian basis function:

(𝐻1𝑓𝐺(𝐱))nested =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−0.022846 −0.004908 −0.005201 0.009077 −0.002424 −0.001289 −0.001047
−0.004908 0.012587 −0.001683 0.001212 0.010069 0.011126 0.016673
−0.005201 −0.001683 −0.022130 0.002080 −0.000436 0.009541 −0.010190
0.009077 0.001212 0.002080 0.016986 0.006265 −0.050305 0.039650
−0.002424 0.010069 −0.000436 0.006265 −0.013757 −0.001410 0.011036
−0.001289 0.011126 0.009541 −0.050305 −0.001410 0.044094 −0.041008
−0.001047 0.016673 −0.010190 0.039650 0.011036 −0.041008 0.029044

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(B.24)

B.3. Radial Basis Function Networks 47

(𝐻1𝑓𝐺(𝐱))matrix =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−0.022846 −0.004908 −0.005201 0.009077 −0.002424 −0.001289 −0.001047
−0.004908 0.012587 −0.001683 0.001212 0.010069 0.011126 0.016673
−0.005201 −0.001683 −0.022130 0.002080 −0.000436 0.009541 −0.010190
0.009077 0.001212 0.002080 0.016986 0.006265 −0.050305 0.039650
−0.002424 0.010069 −0.000436 0.006265 −0.013757 −0.001410 0.011036
−0.001289 0.011126 0.009541 −0.050305 −0.001410 0.044094 −0.041008
−0.001047 0.016673 −0.010190 0.039650 0.011036 −0.041008 0.029044

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(B.25)

(𝐻2𝑓𝐺(𝐱))nested =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.013963 0.002824 0.002359 −0.004822 0.001493 0.001272 −0.000113
0.002824 −0.004298 0.001301 −0.000177 −0.005423 −0.007785 −0.006225
0.002359 0.001301 0.012581 0.001649 0.001311 −0.004944 0.004198
−0.004822 −0.000177 0.001649 −0.015315 −0.004644 0.034923 −0.025982
0.001493 −0.005423 0.001311 −0.004644 0.008853 0.001491 −0.006001
0.001272 −0.007785 −0.004944 0.034923 0.001491 −0.028368 0.024666
−0.000113 −0.006225 0.004198 −0.025982 −0.006001 0.024666 −0.012396

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(B.26)

(𝐻2𝑓𝐺(𝐱))matrix =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.013963 0.002824 0.002359 −0.004822 0.001493 0.001272 −0.000113
0.002824 −0.004298 0.001301 −0.000177 −0.005423 −0.007785 −0.006225
0.002359 0.001301 0.012581 0.001649 0.001311 −0.004944 0.004198
−0.004822 −0.000177 0.001649 −0.015315 −0.004644 0.034923 −0.025982
0.001493 −0.005423 0.001311 −0.004644 0.008853 0.001491 −0.006001
0.001272 −0.007785 −0.004944 0.034923 0.001491 −0.028368 0.024666
−0.000113 −0.006225 0.004198 −0.025982 −0.006001 0.024666 −0.012396

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(B.27)
And finally, for the cubic basis function:

(𝐻1𝑓𝐶(𝐱))nested =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−0.281995 −0.062577 −0.037437 0.091527 −0.104265 0.060146 −0.132788
−0.062577 −0.047900 −0.001114 0.007576 −0.010361 0.083593 −0.018292
−0.037437 −0.001114 −0.197624 0.062519 −0.064718 0.039502 −0.092705
0.091527 0.007576 0.062519 −0.277696 0.053671 −0.126865 0.130489
−0.104265 −0.010361 −0.064718 0.053671 −0.210858 0.115168 −0.034071
0.060146 0.083593 0.039502 −0.126865 0.115168 −0.156658 0.103230
−0.132788 −0.018292 −0.092705 0.130489 −0.034071 0.103230 −0.239243

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(B.28)

(𝐻1𝑓𝐶(𝐱))matrix =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−0.281995 −0.062577 −0.037437 0.091527 −0.104265 0.060146 −0.132788
−0.062577 −0.047900 −0.001114 0.007576 −0.010361 0.083593 −0.018292
−0.037437 −0.001114 −0.197624 0.062519 −0.064718 0.039502 −0.092705
0.091527 0.007576 0.062519 −0.277696 0.053671 −0.126865 0.130489
−0.104265 −0.010361 −0.064718 0.053671 −0.210858 0.115168 −0.034071
0.060146 0.083593 0.039502 −0.126865 0.115168 −0.156658 0.103230
−0.132788 −0.018292 −0.092705 0.130489 −0.034071 0.103230 −0.239243

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(B.29)

(𝐻2𝑓𝐶(𝐱))nested =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.118457 0.039558 0.010134 −0.037972 0.056766 −0.039384 0.066058
0.039558 −0.016906 0.009447 0.015074 0.029756 −0.052556 0.015745
0.010134 0.009447 0.063250 −0.000725 0.045274 −0.001931 0.024348
−0.037972 0.015074 −0.000725 0.116810 0.028232 0.099444 −0.054338
0.056766 0.029756 0.045274 0.028232 0.097426 −0.070777 −0.007832
−0.039384 −0.052556 −0.001931 0.099444 −0.070777 0.054743 −0.088420
0.066058 0.015745 0.024348 −0.054338 −0.007832 −0.088420 0.090468

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(B.30)

B.4. Linear Scaler 48

(𝐻2𝑓𝐶(𝐱))matrix =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.118457 0.039558 0.010134 −0.037972 0.056766 −0.039384 0.066058
0.039558 −0.016906 0.009447 0.015074 0.029756 −0.052556 0.015745
0.010134 0.009447 0.063249 −0.000725 0.045274 −0.001931 0.024348
−0.037972 0.015074 −0.000725 0.116810 0.028232 0.099444 −0.054338
0.056766 0.029756 0.045274 0.028232 0.097426 −0.070777 −0.007831
−0.039384 −0.052556 −0.001931 0.099444 −0.070777 0.054743 −0.088420
0.066058 0.015745 0.024348 −0.054338 −0.007831 −0.088420 0.090468

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(B.31)
It is considered that the RBFN is verified.

B.4. Linear Scaler
A linear scaler was also implemented in tudat­learn and tested with the help of the numpy

package. The C++ and python is used here again, and scaling is applied to the center points from the
dataset in Equation (B.10), scaling every feature dimension between 0 and 1. Below are the results
obtained with the Python version:

(𝐜scaled)python =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.582133 0.724968 0.766193 0.490299 0.479482 0.704967 0.436325
1.000000 1.000000 0.477731 0.773993 0.634007 0.602485 0.944760
0.000000 0.029780 0.000000 0.820993 1.000000 1.000000 1.000000
0.887158 0.444141 1.000000 0.000000 0.797027 0.043413 0.964630
0.549277 0.392320 0.321366 0.753890 0.527195 0.602997 0.000000
0.665986 0.610857 0.784831 0.948712 0.858548 0.327963 0.435747
0.763454 0.000000 0.850374 0.634828 0.166333 0.024421 0.309053
0.356600 0.564479 0.550280 1.000000 0.007259 0.129670 0.148485
0.709206 0.213703 0.586724 0.144986 0.090843 0.000000 0.664223
0.081813 0.150931 0.458374 0.807630 0.000000 0.957786 0.080544

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(B.32)
and now the results obtained with tudat­learn’s implementation.

(𝐜scaled)C++ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.582133 0.724968 0.766193 0.490299 0.479482 0.704967 0.436325
1.000000 1.000000 0.477731 0.773993 0.634007 0.602485 0.944760
0.000000 0.029780 0.000000 0.820993 1.000000 1.000000 1.000000
0.887157 0.444141 1.000000 0.000000 0.797027 0.043413 0.964630
0.549277 0.392320 0.321366 0.753890 0.527194 0.602997 0.000000
0.665986 0.610857 0.784831 0.948712 0.858548 0.327963 0.435747
0.763454 0.000000 0.850374 0.634828 0.166333 0.024421 0.309053
0.356600 0.564479 0.550280 1.000000 0.007259 0.129670 0.148485
0.709207 0.213703 0.586724 0.144986 0.090843 0.000000 0.664223
0.081813 0.150931 0.458374 0.807630 0.000000 0.957786 0.080544

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(B.33)
It is considered that the linear scaler is verified.

B.5. Latin Hypercube Sampling
To verify the Latin hypercube sampler implemented in tudat­learn, three Latin hypercubes were

generated for each of three, five, and ten samples, with the respective results being presented in
Figures B.1, B.2, and B.3.

B.5. Latin Hypercube Sampling 49

4 2 0 2 4
x

0

1

2

3

4

5

y
LHS Bucket Boundaries
Latin Hypercube 1
Latin Hypercube 2
Latin Hypercube 3

Figure B.1: Three Latin Hypercubes with three samples each.

4 2 0 2 4
x

0

1

2

3

4

5

y

LHS Bucket Boundaries
Latin Hypercube 1
Latin Hypercube 2
Latin Hypercube 3

Figure B.2: Three Latin Hypercubes with five samples each.

4 2 0 2 4
x

0

1

2

3

4

5

y

LHS Bucket Boundaries
Latin Hypercube 1
Latin Hypercube 2
Latin Hypercube 3

Figure B.3: Three Latin Hypercubes with ten samples each.

Since the sampled points form Latin hypercubes, that is, they do not violate the bucket boundaries
according to the rules established in Section A.4, it is considered that the Latin hypercube sampler is
verified.

B.6. Dynamical Model, Monotonic Basin Hopping, and Differential Evolution Operators 50

B.6. Dynamical Model, Monotonic Basin Hopping, and Differential
Evolution Operators

The dynamical model, as well as the queries for the states of the celestial bodies are taken from
Tudat and either wrapped or used directly. As Tudat has a test suite, the tools are considered verified
an no further verification was conducted.

Regarding the MBH algorithm and the DE operators that were taken from pagmo, they were not
used directly or wrapped, essentially their code was copied and slightly changed to match what was
needed in the optimization scripts. As pagmo also has a comprehensive test suite, and the changes
were deemed small enough, it is also considered that these algorithms are verified.

C
Validation

As stated by Sargent [45], while model verification is defined as ”ensuring that the computer pro­
gram of the computerized model and its implementation are correct”, model validation corresponds
to ”substantiation that a computerized model within its domain of applicability possesses a satisfactory
range of accuracy consistent with the intended application of the model”. With that in mind, some words
on the validity of the chosen models can be found in this chapter.

C.1. Dynamical Model
The Sims­Flanagan model, combined with an impulsive orbit insertion model and with the approx­

imation that the spheres of influence of the departure and arrival bodies are negligible at the scale of
an interplanetary trajectory is very common in literature [11, 13–15, 22]. The fact that said literature
concerns preliminary mission design, which is what this work addresses, leads to the conclusion that
the dynamical model is valid for the use it was given throughout this report.

C.2. Surrogate Functions
The cross­validation plots in Appendix B of the paper, namely the ones concerning the sorting

accuracy make it clear that the chosen surrogate functions can distinguish good from bad candidate
solutions for some hyperparameter combinations. Even though the error yielded by these approxima­
tions is not the lowest, their objective is to guide the optimization process in the direction of the optimal
solutions, which they are able to do, as validated by the results of the paper. Therefore, the choice of
the surrogate functions and the functions themselves are considered validated.

C.3. Optimization Algorithms
The triad of MBH, SNOPT, and DE is commonly used in literature with positive results [11, 13–

15, 22, 46–49], which leads to the three of them being considered validated from the start.
The surrogate­assisted optimization proposed by Wang et al. [27], which was modified and used in

this paper, is also considered verified due to the results obtained in this work.

51

D
tudat­learn

In this appendix, simplified versions of tudat­learn’s class diagrams are presented for better
understanding of the library.

Dataset<Datum_t, Label_t = none_t>

- data:vector<Datum_t>
- labels:vector<Datum_t>

+ vector-like utility methods
+ get_closest_data(vector_of_interest:Datum_t, amount:int)

Dataset<Datum_t, none_t>

- data:vector<Datum_t>

+ vector-like utility methods
+ get_closest_data(vector_of_interest:Datum_t, amount:int)

Figure D.1: Class diagram for the Dataset class in tudat­learn.

Random

- seed:int
- mt19937:rng

+ set_seed(new_seed:unsigned int)
+get_seed():unsigned int

+get_rng():mt19937

Figure D.2: Class diagram for the Random class in tudat­learn.

52

53

E
st

im
at

or
<

D
at

um
_t

, L
ab

el
_t

 =
 n

on
e_

t>

da

ta
se

t_
pt

r:
sh

ar
ed

_p
tr

<
D

at
as

et
<

D
at

um
_t

, L
ab

el
_t

>

+
 fi

t(
)

+
fit

(f
it_

in
di

ce
s:

ve
ct

or
<

in
t>

)

C
la

ss
ifi

er
<

D
at

um
_t

, L
ab

el
_t

 =
 N

on
e>

+
ev

al
(in

pu
t:D

at
um

_t
):

La
be

l_
t

C
lu

st
er

in
g<

D
at

um
_t

,
La

be
l_

t =
 n

on
e_

t>
R

eg
re

ss
or

<
D

at
um

_t
, L

ab
el

_t
 =

 n
on

e_
t>

+
ev

al
(in

pu
t:D

at
um

_t
):

La
be

l_
t

G
R

N
N

<
D

at
um

_t
, L

ab
el

_t
>

rb

f_
pt

r:
sh

ar
ed

_p
tr

<
R

B
F

<
La

be
l_

t::
S

ca
la

r>
>

>

ce
nt

er
_p

oi
nt

s:
M

at
rix

<
D

at
um

_t
::S

ca
la

r,
D

yn
am

ic
, D

yn
am

ic
>

 #
 o

ut
pu

t_
ce

nt
er

_p
oi

nt
s:

M
at

rix
<

D
at

um
_t

::S
ca

la
r,

D
yn

am
ic

, D
yn

am
ic

>

+
 e

va
l(i

np
ut

_v
ec

to
r:

ve
ct

or
<

D
at

um
_t

>
):

M
at

rix
<

D
at

um
_t

::S
ca

la
r,

D
yn

am
ic

, D
yn

am
ic

>

R
B

F
N

<
D

at
um

_t
, L

ab
el

_t
>

rb

f_
pt

r:
sh

ar
ed

_p
tr

<
R

B
F

<
La

be
l_

t::
S

ca
la

r>
>

>

ce
nt

er
_p

oi
nt

s:
M

at
rix

<
D

at
um

_t
::S

ca
la

r,
D

yn
am

ic
, D

yn
am

ic
>

 #
 c

oe
ffi

ci
en

ts
:M

at
rix

<
D

at
um

_t
::S

ca
la

r,
D

yn
am

ic
, D

yn
am

ic
>

+
 e

va
l(i

np
ut

_v
ec

to
r:

ve
ct

or
<

D
at

um
_t

>
):

M
at

rix
<

D
at

um
_t

::S
ca

la
r,

D
yn

am
ic

, D
yn

am
ic

>
+

 g
ra

di
en

t(
x:

D
at

um
_t

):
M

at
rix

<
D

at
um

_t
::S

ca
la

r,
D

yn
am

ic
, D

yn
am

ic
>

+
 h

es
si

an
s(

x:
D

at
um

_t
):

ve
ct

or
<

M
at

rix
<

D
at

um
_t

::S
ca

la
r,

D
yn

am
ic

, D
yn

am
ic

>
>

R
B

F
N

P
ol

yn
om

ia
l<

D
at

um
_t

, L
ab

el
_t

>

D
at

um
_t

 a
nd

La

be
l_

t m
us

t b
e

flo
at

in
g-

po
in

t
E

ig
en

 v
ec

to
rs

, i
n

th
e

cu
rr

en
t

im
pl

em
en

ta
tio

n.

Fi
gu

re
D
.3
:C

la
ss

di
ag

ra
m

fo
rt
he

E
s
t
i
m
a
t
o
r
cl
as

s
an

d
th
e
cl
as

se
s
th
at

de
riv

e
fro

m
it
in
t
u
d
a
t
­
l
e
a
r
n
.

54

P
ro

ce
ss

in
g<

D
at

um
_t

, L
ab

el
_t

 =
 n

on
e_

t>

S
ca

le
r<

D
at

um
_t

, L
ab

el
_t

 =
 n

on
e_

t>

+
 fi

t(
)

+
fit

(f
it_

in
di

ce
s:

ve
ct

or
<

in
t>

)
+

tr
an

sf
or

m
(d

at
as

et
:D

at
as

et
<

D
at

um
_t

, L
ab

el
_t

>
):

D
at

a
se

t<
D

at
um

_t
, L

ab
el

_t
>

+
tr

an
sf

or
m

(d
at

as
et

:D
at

as
et

<
D

at
um

_t
, L

ab
el

_t
>

, f
it_

in
di

ce
s:

ve
ct

or
<

in
t>

):
D

at
as

et
<

D
at

um
_t

, L
ab

el
_t

>
+

in
ve

rs
e_

tr
an

sf
or

m
(d

at
um

:D
at

um
_t

):
D

at
um

_t

O
pe

ra
to

r<
D

at
um

_t
>

C

he
ck

 D
oc

um
en

ta
tio

n
Im

pl
em

en
ts

 o
pe

ra
tio

ns
 fo

r m
ul

tip
le

ty

pe
s

M
in

M
ax

S
ca

le
r<

D
at

um
_t

, L
ab

el
_t

>

ra

ng
e:

pa
ir<

in
t,

in
t>

di

ffe
re

nc
e_

ra
ng

e:
in

t

m
in

_i
n_

da
ta

se
t:D

at
um

_t

m
ax

_i
n_

da
ta

se
t:D

at
um

_t

di
ffe

re
nc

e_
da

ta
se

t:D
at

um
_t

+
 g

et
_r

an
ge

(
):

pa
ir<

in
t,

in
t>

+
 g

et
_m

in
(

):
D

at
um

_t
+

 g
et

_m
ax

(
):

D
at

um
_t

S
ta

nd
ar

dS
ca

le
r<

D
at

um
_t

, L
ab

el
_t

>

m

ea
n:

D
at

um
_t

st

an
da

rd
_d

ev
ia

tio
n:

D
at

um
_t

va

ria
nc

e:
D

at
um

_t

+
 g

et
_m

ea
n(

)
:D

at
um

_t
+

 g
et

_s
ta

nd
ar

d_
de

vi
at

io
n(

)
:D

at
um

_t
+

 g
et

_v
ar

ia
nc

e(
)

:D
at

um
_t

w

el
fo

rd
_i

te
ra

tio
n(

co
un

t:i
nt

, m
ea

n:
D

at
um

_t
,

m
2:

D
at

um
_t

, n
ew

_v
al

ue
:D

at
um

_t
)

S
am

pl
er

<
D

at
um

_t
>

ra

ng
e:

pa
ir<

D
at

um
_t

, D
at

um
_t

>

+
 s

am
pl

e(
)

:v
ec

to
r<

D
at

um
_t

>

se
t_

ra
ng

e(
ne

w
_r

an
ge

:p
ai

r<
D

at
um

_t
, D

at
um

_t
>

)

sa
m

pl
e_

ze
ro

_o
ne

()
:D

at
um

_t

La
tin

H
yp

er
cu

be
S

am
pl

er
<

D
at

um
_t

>

bu

ck
et

s_
pe

r_
di

m
en

si
on

:in
t

bu

ck
et

_s
iz

e:
D

at
um

_t

+
 s

am
pl

e(
ne

w
_r

an
ge

:p
ai

r<
D

at
um

_t
, D

at
um

_t
>

, n
um

be
r_

sa
m

pl
es

:in
t)

:v
ec

to
r<

D
at

um
_t

>
+

 s
am

pl
e(

ne
w

_r
an

ge
:p

ai
r<

D
at

um
_t

, D
at

um
_t

>

):

ve
ct

or
<

D
at

um
_t

>
+

 s
am

pl
e(

 n
um

be
r_

sa
m

pl
es

:in
t)

:v
ec

to
r<

D
at

um
_t

>

se
t_

bu
ck

et
s(

bu
ck

et
s_

pe
r_

di
m

en
si

on
:in

t)

ge
ne

ra
te

_b
uc

ke
ts

(s
am

pl
ed

_i
nd

ic
es

:v
ec

to
r<

ve
ct

or
<

in
t>

>
):

ve
ct

or
<

D
at

um
_t

>

D
at

um
_t

 m
us

t b
e

an
 a

rit
hm

et
ic

, a
n

E
ig

en
 o

r a

ve
ct

or
<

ar
ith

m
et

ic
>

ty

pe

D
at

um
_t

 a
nd

La

be
l_

t m
us

t b
e

E
ig

en
 o

r
A

rit
hm

et
ic

 ty
pe

s.

Fi
gu

re
D
.4
:C

la
ss

di
ag

ra
m

fo
rt
he

P
r
o
c
e
s
s
i
n
g
an

d
O
p
e
r
a
t
o
r
cl
as

se
s
an

d
th
e
cl
as

se
s
th
at

de
riv

e
fro

m
th
em

in
t
u
d
a
t
­
l
e
a
r
n
.

55

Split<Datum_t, Label_t = none_t>

dataset_ptr:shared_ptr<Dataset<Datum_t, Label_t>>
shuffle:bool

+ split():vector<pair<vector<size_t>, vector<size_t>>>

KFoldSplit<Datum_t, Label_t = none_t>

n_folds:size_t

CrossValidation<Datum_t, Label_t>

dataset_ptr:shared_ptr<Dataset<Datum_t, Label_t>
estimator_ptr:shared_ptr<Estimator<Datum_t, Label_t>

split_ptr:shared_ptr<Split<Datum_t, Label_t>>
#metrics:vector<function<double(

 shared_ptr<Dataset<Datum_t, Label_t>>,
 shared_ptr<Estimator<Datum_t, Label_t>>,
 vector<size_t>
)>>

Figure D.5: Class diagram for the Split and CrossValidation classes and the classes that derive from them in
tudat­learn.

List of References
[1] Marc D. Rayman, Pamela A. Chadbourne, Jeffery S. Culwell, and Steven N. Williams.

Mission design for deep space 1: A low­thrust technology validation mission. Acta As­
tronautica, 45(4):381–388, 1999. ISSN 0094­5765. doi: https://doi.org/10.1016/
S0094­5765(99)00157­5. URL https://www.sciencedirect.com/science/article/
pii/S0094576599001575. Third IAA International Conference on Low­Cost Planetary Mis­
sions.

[2] Hitoshi Kuninaka. Microwave discharge ion engines onboard hayabusa asteroid explorer. AIP
Conference Proceedings, 997:572–581, 04 2008. doi: 10.1063/1.2931929.

[3] Marc D Rayman, Thomas C Fraschetti, Carol A Raymond, and Christopher T Russell. Dawn: A
mission in development for exploration of main belt asteroids vesta and ceres. Acta Astronautica,
58(11):605–616, 2006.

[4] Johannes Benkhoff, Jan Van Casteren, Hajime Hayakawa, Masaki Fujimoto, Harri Laakso, Mauro
Novara, Paolo Ferri, Helen R Middleton, and Ruth Ziethe. Bepicolombo—comprehensive explo­
ration of mercury: Mission overview and science goals. Planetary and Space Science, 58(1­2):
2–20, 2010.

[5] Onur Çelik, Diogene Alessandro Dei Tos, Takayuki Yamamoto, NaoyaOzaki, Yasuhiro Kawakatsu,
and Chit Hong Yam. Multiple­Target Low­Thrust Interplanetary Trajectory of DESTINY+. Journal
of Spacecraft and Rockets, pages 1–18, 2021.

[6] D J Gondelach. A hodographic­shaping method for low­thrust trajectory design. Master’s thesis,
Delft University of Technology, 2012.

[7] Anastassios E Petropoulos and James M Longuski. Shape­based algorithm for the automated
design of low­thrust, gravity assist trajectories. Journal of Spacecraft and Rockets, 41(5):787–
796, 2004.

[8] Anil V Rao. A survey of numerical methods for optimal control. Advances in the Astronautical
Sciences, 135(1):497–528, 2009.

[9] Harold W Kuhn and Albert W Tucker. Nonlinear programming. In Traces and emergence of
nonlinear programming, pages 247–258. Springer, 2014.

[10] J Sims and S Flanagan. Preliminary design of low­thrust interplanetary missions. In AAS/AIAA
Astrodynamics Specialist Conference, AAS paper 99­338, Girdwood, Alaska, August 1999.

[11] Donald H Ellison, Jacob A Englander, and Bruce A Conway. Robust global optimzation of low­
thrust, multiple­flyby trajectories. In AAS/AIAA Astrodynamics Specialist Conference, Hilton Head,
SC, 2013.

[12] Donald H Ellison, Jacob A Englander, Martin T Ozimek, and Bruce A Conway. Analytical partial
derivative calculation of the sims­flanagan transcription match point constraints. In AAS/AIAA
Space­Flight Mechanics Meeting, Santa Fe, NM, 2014.

[13] Jacob A Englander and Bruce A Conway. Automated solution of the low­thrust interplanetary
trajectory problem. Journal of Guidance, Control, and Dynamics, 40(1):15–27, 2017.

[14] Chit Hong Yam, Francesco Biscani, and Dario Izzo. Global optimization of low­thrust trajectories
via impulsive delta­v transcription. In 27th International Symposium on Space Technology and
Science, 2009.

56

https://www.sciencedirect.com/science/article/pii/S0094576599001575
https://www.sciencedirect.com/science/article/pii/S0094576599001575

List of References 57

[15] C H Yam, D D Lorenzo, and D Izzo. Low­thrust trajectory design as a constrained global op­
timization problem. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of
Aerospace Engineering, 225(11):1243–1251, 2011. doi: 10.1177/0954410011401686. URL
https://doi.org/10.1177/0954410011401686.

[16] Martin TOzimek, Jack FRiley, and Juan Arrieta. The low­thrust interplanetary explorer: Amedium­
fidelity algorithm for multi­gravity assist low­thrust trajectory optimization. In AAS Space Flight
Mechanics Conference, No. AAS, pages 19–348, 2019.

[17] T McConaghy and James Longuski. Parameterization effects on convergence when optimizing a
low­thrust trajectory with gravity assists. In AIAA/AAs Astrodynamics Specialist Conference and
Exhibit, page 5403, 2004.

[18] Eugina D Mendez Ramos, Pranay Mishra, Stephen Edwards, and Dimitri Mavris. Response sur­
face regressions for low­thrust interplanetary mission design. In AIAA SPACE 2016, page 5651.
2016.

[19] Christos Ampatzis and Dario Izzo. Machine learning techniques for approximation of objective
functions in trajectory optimisation. In Proceedings of the ijcai­09 workshop on artificial intelligence
in space, pages 1–6. Citeseer, 2009.

[20] Haiyang Li, Shiyu Chen, Dario Izzo, and Hexi Baoyin. Deep networks as approximators of optimal
low­thrust and multi­impulse cost in multitarget missions. Acta Astronautica, 166:469–481, 2020.

[21] L Stubbig. Investigating the use of neural network surrogate models in the evolutionary optimiza­
tion of interplanetary low­thrust trajectories. Master’s thesis, Delft University of Technology, 2019.

[22] Veronica Saz Ulibarrena and Kevin Cowan. Low­thrust interplanetary trajectory optimization using
pre­trained artificial neural network surrogates. AAS/AIAA Astrodynamics Specialist Conference,
AAS Preprint, 2021.

[23] Daniel Hennes, Dario Izzo, and Damon Landau. Fast approximators for optimal low­thrust hops
between main belt asteroids. In 2016 IEEE Symposium Series on Computational Intelligence
(SSCI), pages 1–7. IEEE, 2016.

[24] Alessio Mereta, Dario Izzo, and Alexander Wittig. Machine learning of optimal low­thrust transfers
between near­earth objects. In International Conference on Hybrid Artificial Intelligence Systems,
pages 543–553. Springer, 2017.

[25] Bo Liu, Qingfu Zhang, and Georges GE Gielen. A gaussian process surrogate model assisted
evolutionary algorithm for medium scale expensive optimization problems. IEEE Transactions on
Evolutionary Computation, 18(2):180–192, 2013.

[26] Guodong Chen, Yong Li, Kai Zhang, Xiaoming Xue, Jian Wang, Qin Luo, Chuanjin Yao, and Jun
Yao. Efficient hierarchical surrogate­assisted differential evolution for high­dimensional expensive
optimization. Information Sciences, 542:228–246, 2021.

[27] Yong Wang, Da­Qing Yin, Shengxiang Yang, and Guangyong Sun. Global and local surrogate­
assisted differential evolution for expensive constrained optimization problems with inequality con­
straints. IEEE transactions on cybernetics, 49(5):1642–1656, 2018.

[28] Chaoli Sun, Yaochu Jin, Jianchao Zeng, and Yang Yu. A two­layer surrogate­assisted particle
swarm optimization algorithm. Soft computing, 19(6):1461–1475, 2015.

[29] Qunfeng Liu, XunfengWu, Qiuzhen Lin, Junkai Ji, and Ka­ChunWong. A novel surrogate­assisted
evolutionary algorithm with an uncertainty grouping based infill criterion. Swarm and Evolutionary
Computation, 60:100787, 2021.

[30] Mariana­Edith Miranda­Varela and Efrén Mezura­Montes. Constraint­handling techniques in
surrogate­assisted evolutionary optimization. an empirical study. Applied Soft Computing, 73:
215–229, 2018.

https://doi.org/10.1177/0954410011401686

List of References 58

[31] Xiwen Cai, Liang Gao, Xinyu Li, and Haobo Qiu. Surrogate­guided differential evolution algorithm
for high dimensional expensive problems. Swarm and Evolutionary Computation, 48:288–311,
2019.

[32] Alan Díaz­Manríquez, Gregorio Toscano, and Carlos A Coello Coello. Comparison of metamod­
eling techniques in evolutionary algorithms. Soft Computing, 21(19):5647–5663, 2017.

[33] C Acton, N Bachman, J Diaz Del Rio, B Semenov, E Wright, and Y Yamamoto. Spice: A means
for determining observation geometry. In EPSC–DPS Joint Meeting, volume 553, 2011.

[34] Donald F Specht. A general regression neural network. IEEE transactions on neural networks, 2
(6):568–576, 1991.

[35] Emanuel Parzen. On estimation of a probability density function and mode. The annals of math­
ematical statistics, 33(3):1065–1076, 1962.

[36] Payam Refaeilzadeh, Lei Tang, and Huan Liu. Cross­validation. Encyclopedia of database sys­
tems, 5:532–538, 2009.

[37] Junheung Park and Kyoung­Yun Kim. Meta­modeling using generalized regression neural network
and particle swarm optimization. Applied Soft Computing, 51:354–369, 2017.

[38] Huachao Dong, Baowei Song, Zuomin Dong, and Peng Wang. Scgosr: Surrogate­based con­
strained global optimization using space reduction. Applied Soft Computing, 65:462–477, 2018.

[39] Michael D McKay, Richard J Beckman, and William J Conover. A comparison of three methods for
selecting values of input variables in the analysis of output from a computer code. Technometrics,
42(1):55–61, 2000.

[40] Francisco Andrade Castanheira. Online Surrogate Models for the Optimization of Interplanetary
Low­Thrust Trajectories: Literature Study . Delft University of Technology, 2020.

[41] FrankWilcoxon. Individual comparisons by ranking methods. In Breakthroughs in statistics, pages
196–202. Springer, 1992.

[42] Henry B Mann and Donald R Whitney. On a test of whether one of two random variables is
stochastically larger than the other. The annals of mathematical statistics, pages 50–60, 1947.

[43] Jacinto Carrasco, Salvador García, MM Rueda, S Das, and Francisco Herrera. Recent trends in
the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical
guidelines and a critical review. Swarm and Evolutionary Computation, 54:100665, 2020.

[44] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms, pages 2–145. MIT press, 2009.

[45] Robert G Sargent. Verification and validation of simulation models. In Proceedings of the 2010
winter simulation conference, pages 166–183. IEEE, 2010.

[46] Helena R Lourenço, Olivier C Martin, and Thomas Stützle. Iterated local search. In Handbook of
metaheuristics, pages 320–353. Springer, 2003.

[47] David J Wales and Jonathan PK Doye. Global optimization by basin­hopping and the lowest
energy structures of lennard­jones clusters containing up to 110 atoms. The Journal of Physical
Chemistry A, 101(28):5111–5116, 1997.

[48] Swagatam Das and Ponnuthurai Nagaratnam Suganthan. Differential evolution: A survey of the
state­of­the­art. IEEE transactions on evolutionary computation, 15(1):4–31, 2010.

[49] Rainer Storn and Kenneth Price. Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces. Journal of global optimization, 11(4):341–359, 1997.

	Preface
	Abstract
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Research Objective and Question
	Outline of the Report

	Paper
	Limitations on Run Time and Performance
	Conclusions and Recommendations
	Complementary Information on the Chosen Methods
	GRNN
	RBFN Derivatives
	First-Order Derivatives of the Gaussian Basis Function
	Second-Order Derivatives

	Cross-Validation
	Latin Hypercube Sampling
	Monotonic Basin Hopping
	Wilcoxon Rank-Sum Test
	Plotting the Mean Constraint Violation and Mean Feasible Objective

	Verification
	Radial Basis Functions
	Inputs
	Gaussian Basis Function
	Cubic Basis Function

	Generalized Regression Neural Network
	Fitting
	Evaluation

	Radial Basis Function Networks
	Fitting
	Evaluation
	Gradient
	Hessians

	Linear Scaler
	Latin Hypercube Sampling
	Dynamical Model, Monotonic Basin Hopping, and Differential Evolution Operators

	Validation
	Dynamical Model
	Surrogate Functions
	Optimization Algorithms

	tudat-learn
	List of References

