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Executive Summary
Pilots are an important asset in the operations of airlines, as with insufficient pilots, an airline cannot operate the
planned schedule. The problem of managing the pilots is done in the crew planning department. This department
is in charge of hiring, promoting and scheduling pilots to flights. Within the field of airline cockpit crew planning,
the long-term crew planning problem is defined to optimally plan the supply and demand for pilots as well as
methods and strategies for closing the gap between these. The demand is determined by the number of pilots
required at each crew position based on the demand for the flight schedule, contractual agreements for holidays
and off-days and training requirements. The supply, on the other hand, is determined by the current pilot workforce
and changes over time by factors such as retirements and illness. Finally, the inevitable gap between supply and
demand can be closed by transitioning pilots to other crew positions and by recruiting new pilots.

These transitions are necessary as pilots are typically only certified for one crew position (i.e. a single function
on a single aircraft type). Furthermore, airlines utilise a promotional hierarchy in which pilots can not move from
every position to another but move through defined paths within the system (Ives, 1992). Recruits can only enter
the system on some of the lowest ranked positions. Next to these systems that complicate the problem, the fact
that the plan is made far in advance further convolutes the problem. This introduces a number of uncertainties
for example in the flight schedule and fleet composition, pilot’s preferences regarding crew positions and holidays,
pilot’s illness and other unavailabilities. Because of the large complexity, research often aims to solve a simplified
or partial problem instead of aiming to solve and analyse the full problem.

Little research has been done to determine crew staffing and transitions at the strategic level specifically for airlines.
It is, however, important to have more knowledge of the transition planning problem to be able to assign budgets
with greater accuracy and be able to adjust to different scenarios. Because the transition planning problem is such
a complex and complicated problem, large software packages are used which takes days to solve the problem and
deliver a crew transition plan. Because of this large computation time, it is difficult to analyse the implications
of different strategies, varying stochastic parameters or changes in the demand or supply. Such a scenario analy-
sis tool can be incredibly useful in the decision-making process of airlines as it gives an airline more data-driven
information regarding different scenarios and strategies.

The presented research focussed on developing a decision support tool that can be used to analyse the effect of
different strategies and scenarios on the cockpit crew transition planning problem. A research framework has been
set up from which the research question is to be answered. The chosen strategy was to first develop a heuristic
planning model that is able to plan transitions with the goal to determine an optimal crew plan. This heuristic
planning model uses a local search algorithm that aims to improve the crew plan by evaluating solutions in the
neighbourhood of the current solution. This neighbourhood is defined as all solutions in which one transition is
added to the current solution. This means that at each iteration, a transition is planned, all necessary parameters
are updated and the balance is recalculated until a stopping criterion is met.

The objective function of the optimisation has been designed to accurately reflect the cost of having a higher (sur-
plus) or lower (shortage) supply compared to the demand for different crew positions. In order to reflect the relative
importance between different positions, the shortages and surplusses are multiplied with the salary cost of the po-
sition. Furthermore, the shortages are multiplied with the number of consecutive shortages in the balance for that
position, as having a shortage for a longer period of time greatly increases the impact this has on the business
operations.

As mentioned, the planning model is a local search algorithm which aims to plan transitions to crew positions in
which shortages are present. In order to decrease the size of the neighbourhood search, several methods are used.
A rule-based system aims to disregard transitions that do not comply with certain rules. These rules are based on
parameters such as the balance of a given transition option or the available capacity. Furthermore, a tabu-search
method has been implemented in which past actions are placed on a tabu-list for a number of iterations to prevent
the model to get stuck in a local optimum.

With the heuristic planning model designed, the question arises which of the available transition options in the
neighbourhood should be selected at each iteration in order to obtain the best possible solution. To do this, a
tree search method is proposed. This method generates a tree of the available transition options per iteration and
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iv 0. Executive Summary

explores the tree in order to find an optimal solution. Different configurations of the model can be created by
changing a set of parameters which restrict the search space, amongst which are a naive selection algorithm and a
greedy algorithm. Furthermore, a variation of the tree search method is developed which explores the tree similar
to the shortest path algorithm developed by Dijkstra (1959). This method aims to further decrease the computation
time of the model without compromising the solution quality.

In order to test the various configurations of the model, an experiment was designed in which each configuration
was used to solve 10 different scenarios. These scenarios were created from data from a reference airline. By im-
porting this data and solving the transition planning problem from a given start date for a period of 12 months, the
performance of the different configurations in terms of solution quality, solution stability and computation time
could be compared. In order to compare the results for different scenarios, the results have been scaled per scenario
using min-max normalisation. This method scales the objective function values of the different configurations on
a minimum value of 0 and a maximum value of 1.

From the results, several conclusions have been drawn. The shortest path method is able to determine solutions
faster than the tree search method without compromising the solution quality. Furthermore, it is concluded that a
combination of width and depth produces the best and most stable results, as opposed to configurations focussing
on either width or depth. Finally, from the results of the naive selection and greedy configurations, it can be con-
cluded that a minimum depth of 2 levels is required, as this greatly improves the stability of the solutions. The best
performing configuration was the configuration utilising the shortest path method with a width of 3 and depth of
4. This configuration resulted in the second-best solution quality, the best solution stability and the fourth lowest
computation time.

Following the discussion of the results, it was concluded that all presented configurations of the solution method
are accurate enough to solve the cockpit crew transition planning problem. Depending on the application, different
requirements with regards to computation time, solution quality and solution stability might be set. These require-
ments will also influence what configuration will be best suited for the application. The academic contributions
of this research to the scientific body included a first definition of the cockpit crew transition planning problem,
specifically designed solution methods for this problem and the wide applicability of the developed model to the
airline industry as well as other industries. A more practical contribution of the developed model was that the
model can be used by airline and other companies to quickly analyse different strategies, scenarios and the ef-
fect of variations in stochastic parameters in the system. This helps airlines in their decision-making process and
ultimately improves business operations.
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1
Introduction

Pilots are an important asset in the operations of airlines, as with insufficient pilots, an airline cannot operate the
planned schedule. The problem of managing the pilots is done in the crew planning department. This department
is in charge of hiring, promoting and assigning pilots to flights. Within the field of airline cockpit crew planning, the
long-term crew planning problem is defined to optimally plan, up to five years in advance, the supply and demand
for pilots as well as methods for closing the gap between these. The demand is determined by the number of pilots
required at each crew position (which is a combination of the pilot’s rank and the aircraft type), which is based on
the demand for the flight schedule, contractual agreements for holidays and off-days, training requirements. The
supply, on the other hand, is determined by the current pilot workforce and changes over time by factors such as
retirements and illness. Finally, one of the methods for closing the inevitable gap between supply and demand is
to assign transitions for pilots to other crew positions and to recruit new pilots.

These transitions are necessary as pilots are typically only certified for one crew position. Furthermore, airlines
utilise a promotional hierarchy in which pilots enter the system at one of the lowest positions and get promoted
to higher ranked positions troughout their career until they reach the highest crew positions and eventually retire
(Ives, 1992). These rules complicate the problem as pilots cannot be hired for every position but instead have
to be transitioned from other positions. Also, a crew plan is made far in advance, which further convolutes the
problem as this introduces a number of uncertainties in, for example, the flight schedule and fleet composition,
pilot’s preferences regarding crew positions and holidays, pilot’s illness and other unavailabilities. Because of the
complexities, often a simplified or partial problem is solved in research instead of aiming to solve and analyse the
full problem.

Because the transition planning problem is such a complex and complicated problem, software packages are used
which takes days to solve the problem and deliver a crew plan. As crew costs are one of the largest expenses for an
airline. This makes it even more important to be able to analyse different planning strategies, varying stochastic
parameters or changes in the demand and supply. Such an analysis model can be used as a decision support tool
and provide a more data-driven approach in the decision-making process in the airline cockpit crew planning
process. No research has, however, been published that focuses on fast solution methods for the cockpit crew
transition planning problem while such a tool could help airlines improve the business operations and decrease
the cockpit crew costs.

The main topic of this report has been defined as the airline cockpit crew transition planning problem. The research
aims the following research question:

How to model the transition planning of cockpit crew to provide insight into future staffing levels and transitions
and analyse different planning scenarios, strategies and assumptions and their long-term effect?

The objective of this research is to create a decision support tool that can be used to give better insight into future
staffing levels and transitions. This decision support tool should be able to analyse different planning strategies,
scenarios and variations in input parameters such as the demand for cockpit crew.

In order to solve the cockpit crew transition planning problem, a selection algorithm has been developed that is
based on a tree search method. This selection algorithm aims to select the optimal transition in a heuristic local
search algorithm that is able to plan transitions and consequently calculate the implications to the supply and
demand for pilots. The selection algorithm’s configuration can be changed by varying a number of parameters
that change the search space. By doing this, well-known methods such as the greedy algorithm or naive selection
algorithm can be replicated. A variation of this tree search selection algorithm has also been developed which is
based on Dijkstra’s shortest path algorithm. The variation is developed as it is expected that this method is able to
decrease the computation time without decreasing the solution quality. Using the selection algorithms, multiple
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model configurations are designed that are then tested in experiments created by actual supply and demand data
from a reference airline.

This report is structured as follows: in Chapter 2, a research gap within the field of airline cockpit crew planning is
defined, after which the current state-of-the-art regarding this research gap is presented in Chapter 3. Then, the
design of the research, including a detailed presentation of the problem, is presented in Chapter 4. In order to an-
swer the research question that has been designed, a heuristic planning model has been developed in Chapter 5
and the selection algorithm to be used in conjunction with the planning model is proposed in Chapter 6. Different
configurations of the selection algorithm are tested in a set of experiments in Chapter 7. After the various selec-
tion algorithm configurations have been tested, the application of the model to a practical problem is presented in
Chapter 8 and a sensitivity analysis on the model parameters is performed in Chapter 9. The report is then con-
cluded with the conclusions drawn from the research, the contributions of the research and recommendations for
further research in Chapter 10.



2
Research Gap

In this chapter, the domain of airline planning (Section 2.1) will be explained. Next, the cockpit crew planning is
discussed more specifically (Section 2.2) and finally, within the domain of cockpit crew planning a research gap is
defined (Section 2.3) that forms the basis of the literature survey in the following chapters.

2.1. Airline Planning

The airline planning department is involved in maximizing the airline’s profitability by optimizing future aircraft
and crew schedules. As this problem is characterized by numerous complexities like flight network, different air-
craft types, crew labour agreements, restrictions on gate and airport usage, noise, maintenance requirements and
many more, it is quite impossible to design a single optimization model to solve the problem.

For example, Clarke and Smith (2004) state that the airline planning process typically starts with fleet planning and
is followed by four consecutive procedures; crew scheduling, aircraft maintenance routing, airport resource man-
agement and revenue management. Because of the complexities, the problem is generally separated into different
subproblems that are solved sequentially (Barnhart, Belobaba, & Odoni, 2003):

• Schedule design: Design of the airline’s network schedule by assessing the market and it’s demand for differ-
ent regions, countries and cities.

• Fleet assignment: Determining the aircraft size and type to optimally serve all flights.

• Aircraft maintenance routing: Routing aircraft in such a manner that maintenance requirements are met at
minimum cost.

• Crew scheduling: Assigning cockpit and cabin crew to flight again at minimum cost.

To summarize, the airline planning process can be roughly divided in the development of a flight network, fleet
plan, maintenance plan and crew schedule. Because of this separation into smaller subproblems that are solved
independently of each other, suboptimal yet feasible plans are created. These plans are suboptimal as the solutions
are constraint to the optimal result of the previous process instead of finding a global optimum over the entire
process.

Out of these similarly defined subproblems, crew planning and scheduling is often regarded as one of the most, if
not the most, important problems (Sohoni et al., 2004). Not only are the crew costs one of the largest operating
expenses of an airline, it is also a highly complex problem because of strict labour agreements, large uncertainties
in the planning process and shear problem size.

2.2. Crew Planning

The definitions of airline planning presented in the previous section all identify crew scheduling as part of the plan-
ning process. However, most do not recognize the steps taken before actually scheduling the crew as well as any
measures that have to be taken after the schedule has been published, due to unforeseen circumstances and in-
stead just limit the problem to the scheduling problem. As can be seen in Figure 2.1 (from Sohoni et al. (2004)), the
crew scheduling process defined by Barnhart et al. (2003) only encompasses the final one to 1.5 months before the
day of operations. The crew planning process, however, is a much more complicated and lengthy process that al-
ready starts approximately five years before the day of operations. The process before the crew scheduling consists
of determining the number of crew required in the future, assign vacation, promotion and determine strategies
to minimise the inevitbale gap between supply and demand. This process can be subdivided into long-range or
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Figure 2.1: Graphic showing typical crew planning timeline (Sohoni et al., 2004).

strategic and tactical planning. After scheduling the crew, disruptions are always possible due to illness, delays and
more. In order to minimise the impact this has on the schedule, recovery optimisation is necessary close to the day
of operation.

For the scope of this project, the crew recovery problem is also added to the complete planning problem in contrast
to the definition by Sohoni et al. (2004). To describe the entire process, working backwards in time from the day of
operations, the crew planning problem consists of crew recovery on the day of operations, operational planning or
scheduling for the final one to 1.5 months, tactical planning up to 1 year and strategic planning up to 5 years before
the day of operations. These four parts are discussed in Subsection 2.2.1 - 2.2.4, respectively.

2.2.1. Crew Recovery

No matter how good an initial plan is, things never go perfectly according to plan. On the day of operations, air-
lines face disruptions to their flight schedule because of unexpected causes like severe weather conditions, aircraft
unavailability and crew absence (Yu, Argüello, Song, McCowan, & White, 2003). If these disruptions are not man-
aged properly, they can cause flight delays or even cancellations. It is, therefore, important to reassign crew and
assign reserve crew in order to quickly cover open flights in case of regular crew’s absence. Obviously, this recovery
should be done in a cost-effective way while still honouring all government, contractual and collaborative labour
agreements (Lettovský, Johnson, & Nemhauser, 2000).

Decisions to add, cancel, delay and divert flights create situations in which crews either arrive late for their next
flight, or even not arrive at all, and cannot serve the flights in their schedule, calling for changes in the determined
schedule. Somehow, crews have to be arranged to fill these open flights and if necessary, crew missing their flight
have to be brought back to their home base or to the start location of their next flight. This can be partially done by
scheduling a number of reserve crew in advance who are on standby for this kind of situations. The goal is then to
cover as much of these open flights with reserve crew, thereby minimizing additional cost for cancelled and delayed
flights, incremental crew compensation and passenger surcharges. Furthermore, creating solutions quickly limits
the extent of disruptions and make that airlines can avoid additional delays and cancellations, improve on-time
performance, reduce the number of passengers to reaccommodate, and preserve passenger goodwill (Yu, Argüello,
et al., 2003). Sohoni, Johnson, and Bailey (2006) proposed an integrated planning and rostering approach by pro-
ducing monthly schedules of on- and off-duty days at a tactical level. On the other hand, multiple researchers have
investigated reserve crew pairing for both cabin and cockpit crew (Bayliss, 2016, Shebalov & Klabjan, 2006, Nissen
& Haase, 2006).
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2.2.2. Operational Planning

The operational crew planning phase at airlines is called crew scheduling in literature (Barnhart et al., 2003, Clarke
& Smith, 2004, Medard & Sawhney, 2007). Within the crew scheduling problem, (Medard & Sawhney, 2007) define
two subproblems. The first step is to create working patterns called pairings which are subsequently assigned to a
specific crew in the second step. This method is usually used in European airlines. In contrast to this method, US
airlines usually string a number of the pairings together to create bidlines and then let pilots make bids for certain
bidlines.

The first step in this process is often called the crew-pairing problem (Clarke & Smith, 2004). It is often solved
separately per aircraft type as these systems are independent of each other and consists of creating a set of pairings
that cover a given set of flights at minimum cost. The pairings obviously have to conform to the prevailing labour
and airline agreements. For the crew-pairing problem, Gershkoff (1989) has defined an optimization model that
uses a set-partitioning framework in which the columns represent pairings that are constructed by the flights. The
objective of the model is to minimize the cost of flying the published airline schedule.

After the pairings have been constructed, the problem to be solved in the second step is to assign crew to all avail-
able pairings in the crew-rostering problem. Rest periods, preassigned activities like leaves of absence, training
and other tasks Clarke and Smith (2004) have to be taken into ccount in this step. This problem has already been
formulated in 1989 by Gershkoff as an integer programming problem, solvable with any commercial optimization
software. However, in these early efforts, the lack of computing power made it difficult to perform a global opti-
misation so most research focused on efficient heuristics to solve the problem. Later, global optimization models
have been developed to solve the problem with a greater degree of precision (Fahle et al., 2002, Kohl & Karisch,
2004).

More recently, Cacchiani and Salazar-González (2017) proposed to merge the fleet assignment, aircraft routing
and crew pairing problems into an integrated optimisation model. The objective of this model is to minimize a
weighted sum of the number of aircraft routes, the number of crew pairings, and the waiting times of crews between
consecutive flights. Additionally, it aims to maximize the robustness of the solution by minimizing the number of
times a crew changes aircraft. Even though the model shows an improvement in the objective function of 5 to
10 percent, it also increases the computation time from a couple of minutes to hours. Shao, Sherali, and Haouari
(2017) propose an integration of the same three planning parts and conclude that computational results obtained
through the use of data from a major U.S. airline show the benefits of this integrated approach.

Jarrah and Diamond (1997) have developed a comprehensive approach for addressing the problem of generating
bidlines consisting of a set of pairings for a major US airline. The approach uses a set partitioning model in which
the objective is to maximise the covered credit time while simultaneously minimising the number of bidlines. The
model reduced both the time and the amount of resources needed for generating bidlines. At the same time, be-
cause of the use of several parameters, it gave schedulers the possibility to perform what-if analyses and control
over the quality of the bidlines.

2.2.3. Tactical Planning

As Verbeek (1991) defines it, the tactical manpower planning problem poses the question of when to recruit pilots
and when to schedule transitions for pilots from one function to another. The goal is to minimize shortages and
surplusses of pilots in all different positions as well as to minimize the transition training cost. Furthermore, in
the tactical planning phase, the pilot’s vacation allocation model aims to allocate annual leave to all pilots. For
this allocation, the pilot’s preferred vacation dates, planned training days and the minimized pilot surplusses or
shortages have to be taken into account.

At present, no solution with optimization has been presented for the staffing problem, that is the decisions on who
to transfer where. Most research instead assumes that manual decisions have been made for transfers and focuses
on the transitioning and training parts in the scheme. It starts with the question when a pilot should transfer and
not if or where he should do so. Verbeek (1991) presents a Decision Support System (DSS) for manpower planning in
airlines. Gang Yu has, over the years ((Yu et al., 1998), (Yu, Pachon, & Thengvall, 2003), (Yu et al., 2004)), developed a
DSS for Continental Airlines. In Yu et al. (1998) a heuristic solver for the integrated transition and training problem
was presented. It starts with a manual solution to the staffing problem and tries to assign weeks and schedules for
the pilots that need to take a course during the planning period. The heuristic works by assigning training courses
in chronological order and for each week looking a number of weeks ahead to see if a course during that week
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Figure 2.2: An example of the hierarchical transition system for airline pilots (Ives, 1992).

would cover a lack of supply in one of the upcoming weeks. The heuristic also uses a couple of different assigning
rules but is at heart a greedy heuristic with some soft costs balancing the solution. Yu et al. continued to work on
the problem and in (Yu, Pachon, & Thengvall, 2003) and (Yu et al., 2004) present an optimization-based solution to
the transition and training problem. The solution algorithm splits the problem into two parts, the transition phase
and the training phase, and does not try to integrate them as his earlier heuristic did. The transition algorithm
works by first solving an LP-relaxation to find a lower bound of demands that is impossible to meet. This bound
is used as input in the objective function of a MIP (Mixed Integer Program) that is solved by commercial software.
In the second phase, the training problem is solved using the solution found in the transitioning phase (Thalén,
2010).

In a survey of the different kind of optimization problems within the field of airline operations concerning the tac-
tical planning phase, Holm (2008) presents a number of different mathematical models and also tests an optimiza-
tion of the transition, vacation and recurrent training scheduling problem. For this integrated problem approach,
commercial software is used and a manual solution is used as a starting point of the optimization.

2.2.4. Strategic Planning

At present, transition planning is mostly only performed for one year or season (Holm, 2008), typically, this is also
the period for which the pilot’s preferences regarding transitions and vacation are known. This means that the only
transition planning that is performed is within the tactical planning phase, however, outside this time window, it
is also important to have a reasonably accurate prediction and planning of the pilot staffing levels and required
transitions and thus training capacity. This is especially the case in airlines, where training of pilots is expensive
and time-consuming and hierarchical systems are in place where pilots move up one step in the ladder each time
(see for example the promotional hierarchy of Air New Zealand in Figure 2.2). This results in a slow moving system
when a highly ranked pilot retires and no surplusses are available within the system as every transition from a
lower ranked position creates new shortages in that position. No literature has been found regarding the practices
of making an accurate long-term transition or manpower plan that takes uncertainties in supply and demand into
account (Holm, 2008).

According to Holm (2008), strategic cockpit crew planning problem is a process of three elements:

1. Analyzing and predicting the cockpit crew staffing levels needed to achieve the objectives of the organization.
This includes covering all flights, training requirements, additional functions and holidays.



2.3. Research Opportunity 7

2. Predictions of the future supply of staff in the organization through current staffing, retirement, planned and
unplanned absence, etc.

3. Determining policies to minimize the inevitable differences between the former two by recruiting new pilots
and transitioning pilots to different positions.

In contrast to the tactical planning phase, no information regarding the pilot’s position bids is known during the
strategic planning as pilots have to announce their preferences 6 to 12 months in advance. However, it would still be
desirable to plan transitions alarger number of years in advance with some form of accuracy to provide more insight
in future staffing levels and the airline’s resilience to growth, policy changes, disappearance or emergence of a new
aircraft type etc. Therefore, in the strategic planning phase, the problem at hand is first to determine the number
of pilots required in the future based on long-term company- or network plans as well as predicted retirement,
absence and more. Subsequentially, accurate estimations of staffing levels and required transitions should be made
to give an overview of the staffing levels and potential bottlenecks at different crew positions.

2.3. Research Opportunity
Even though cockpit crew has been identified as one of the largest operating expenses for airlines (Holm, 2008)
and a lot of effort has been made to optimize the process, almost all research in the past has focused mostly on
scheduling and recovery problems. Meanwhile, planning problems have been largely ignored, eventhough solv-
ing this problem could lead to higher savings due to the large salary and transition costs for airline pilots. Little
research has been done to determine crew staffing at strategic level specifically for airlines. It is important to have
information about the crew planning problem in advance because of the slow-moving hierarchical system in place
at most airlines. With the current system, accurate predictions are only known one season to one year in advance,
while budgets, fleet and network plans are typically already defined up to 10 years in advance (Rosskopf, Lehner, &
Gollnick, 2014). This leads to late decisions with respect to cockpit crew transitions and staffing levels which almost
always results in higher costs. It is therefore important to have more knowledge of the long-term planning problem
to be able to assign budgets with greater accuracy and to adjust to different scenarios.

The strategic crew planning problem consists of predicting the supply and demand for cockpit crew in the future
and subsequently closing the gap between the two by recruiting new pilots and transitioning pilots to new posi-
tions. Ideally, this problem should be solved in an integrated manner, where supply, demand and transitions are
dynamically adjusted to each other to generate a long-term solution under the uncertainties involved in the prob-
lem. This solution can be used for an analysis of the effect of different company strategies, new aircraft type and
other managerial decisions.

In order to provide a clear definition of the goal of the research following the defined research opportunity, a re-
search question can be determined. The research question has been defined as:

How to model the transition planning of cockpit crew to provide insight into future staffing levels and transitions
and analyse different planning scenarios, strategies and assumptions and their long-term effect?

Subsequentially, this research question can be moulded into research objectives that define what should be at-
tained in order to properly answer the research question. The objectives of this research are to:

[a] Create a decision support system by giving better insight into future staffing levels and transitions.

[b] Be able to study the effect of different scenarios and strategies on long-term cockpit crew planning.

[c] Perform an analysis on the different strategies and assumptions involved in strategic crew planning.

[d] Make recommendations on the assumptions and strategies for cockpit crew transition planning.

The next chapters in this report discusses the available literature with regards to the three different parts of man-
power planning in airlines as defined by Holm (2008), manpower planning practices in other industries and some
methodologies that have been developed for related problems, either in other industries or within different fields
within the airline industry, that are thought to be applicable.
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Literature Review

3.1. Current Practices

In this section, the available literature and current practices regarding the tactical and strategic cockpit crew plan-
ning process will be discussed. First, in Subsection 3.1.1, methods regarding the assessment and predictions of
crew supply and demand will be discussed, followed by different transition strategies in Subsection 3.1.2. Finally, a
synthesis of the current practices in cockpit crew planning will be presented in Subsection 3.1.3.

3.1.1. Demand and Supply

In an ideal world, the number of pilots to supply to the system would be equal to the demand generated by the
flight schedule. However, this is seldom the case. First of all, the nett demand (dictated by the flight schedule) is
increased by flexible demand for holidays, training requirements and additional functions. This demand is flexible
as the precise allocation or schedule can be determined (to a certain extent) by the airline while the total over a
given time window is predetermined by regulations and contracts. Secondly, the supply of pilots for flights is never
the same as the number of pilots hired by the airline as pilots get sick, crew get disrupted, etcetera. Therefore the
total number of pilots per seat to be hired to have enough pilots available has to be predicted in advance in order
to be able to fly the scheduled flight plan.

Within the description of an integrated manpower management system, Yu, Pachon, and Thengvall (2003) discuss
two important factors in the assessment of demand and supply of airline pilots. Demand forecasting is mentioned
as the first critical step in manpower planning. According to Yu, Pachon, and Thengvall the need for cockpit and
cabin crew is estimated based on the airline’s fleet when planning more than a year in advance and based on the
number of block hours in the published flight schedules when planning less than a year in advance. This estimation
for the need of crew is divided by the expected utilization rate to account for training, vacation and other absences.
As the proposed model is developed for Continental Airlines, it can be assumed this is the preferred method for this
airline.

The next parts of Yu, Pachon, and Thengvall’s model discuss absence and vacation management. For absence
management, the module takes unplanned or unstructured absence requests from the crew as input in order to
feed actual absence data to the system. With the lack of more information, it is assumed that this module estimates
future absence based on the provided input, as, during the tactical or strategic planning phase, these unplanned
absences are generally not known yet. For the vacation management, the module plans and proposes vacation
periods for a crew to bid on. This allocation is based on the demand fluctuations of the airline since it is preferable
to plan more vacation in periods with low nett demand. These two modules are subsequentially being followed by
transition management, which will be discussed in Subsection 3.1.2.

Verbeek (1991) chooses to allocate the flexible demand within the year so as to minimise the cost of shortages
and surplusses. According to Verbeek, this problem can easily be solved as a minimum-cost network-flow model.
Similar to (Yu, Pachon, & Thengvall, 2003), this is done before transition management instead of in conjunction
with it, which results in sub-optimal solutions since they are not independent. While at Continental Airlines, pilots’
vacation is allocated by allowing pilots to bid for certain pre-proposed vacation blocks, it is also possible to allow
pilots to register their preferred vacation dates and use these as input in the allocation of budget and planning of
vacation

8
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3.1.2. Transition Strategies

Verbeek (1991) describes the process of designing a decision support system (DSS) for crew planning at KLM. The
goal of this system is to improve both the effectivity in terms of quality of the plans and a faster planning process
and the efficiency by reducing the effort that is needed to create a plan. Even though the focus of this paper is on
the design of a DSS in general, some important basics of the theory and mathematics behind the system are also
given. Because of the large scale of the problem (19 seats, 120 months and 900 pilots), the mixed integer model
could not be solved with any software and therefore a heuristic approach was used to come up with a feasible but
sub-optimal solution. However, the paper does not go into detail about the (heuristic) methods used to solve the
problem.

When a plan is generated using the system, several subproblems are solved to come up with an entire plan. After
the allocation of flexible demand, the model is able to resolve shortages automatically by planning transitions from
one seat to another. However, through these transitions, the shortages and surplusses change, and so does the
optimal flexible demand allocation. Therefore, both problems are ideally solved in one formulation as a mixed
integer problem. Finally, the allocation of instruction tasks per fleet can be modelled as an LP algorithm.

After a plan is generated by the model (Verbeek, 1991), the planner is able to evaluate the created plan manually
using a number of metrics. The seat-year screen presents the shortages and surplusses for all seats and years in
a matrix, while the transition matrix shows all transitions in one year grouped per ’from-to’ pair. The experience
development graph plots the ratio of experienced pilots in a seat over the total number of pilots versus time. For the
flexible demand, a bar chart is shown with for every month a bar showing the amount of seasonal and yearly flexible
demand allocated and a bar showing the balance between supply and demand. The training capacity graph plots
the required and available simulator capacity over time per aircraft type. The mutation matrix meanwhile shows,
for all seats, the values of gross supply, retirements, attrition, transitions out and transitions in per year and finally,
the seat survey table details all parts of the supply and demand for twelve months for one seat.

As mentioned, the planning horizon for the model is 10 years, however, pilots could change their transition bids
every season (6 months). Obviously, human behaviour is quite uncertain and this introduces some uncertainty in
the pilots eligible for transition to a certain seat and thus also in the overall solution. To cope with this, Verbeek
simulates the individual pilot’s behaviour, however, no details about the structure of this simulation are given. So
although the model is planning far into the strategic planning phase, no further information is given on how to
handle the uncertainties associated with planning for this time frame. Verbeek also briefly mentions the supply
and demand of pilots and while the flexible demand is allocated in the model, predictions of the supply are not
taken into account for the described model.

A year later, Ives (1992) developed a linear programming model with the goal of finding the optimal promotion
schedule for cockpit crew based on current staffing and changes and demand for up to two years in advance. As
the hierarchical system used in this model is almost fully linear (except for the highest ranked position which has
two preceding seats, see Figure 2.2), there is always only one position from which a pilot can be transitioned to a
position with a shortages, which greatly simplifies the problem and makes the sequential solution of first planning
transitions and then choosing which pilots to fill the transitions possible without deteriorating the solution. The
solved problem incorporates a 79 week period with only two intermediate demand changes and does not take any
other factors, like recurrent training, vacation and unplanned absences into account.

After its first definition of the manpower planning problem in (Yu, Pachon, & Thengvall, 2003), Yu et al. (2004)
present the Crew ResourceSolver system for Continental Airlines in more detail. The model consists of modules to
handle staffing, vacation, planning and training, as displayed in Figure 3.1.

The staffing module identifies shortages and surplusses for all seats based on the planned flight schedule, current
staffing and already planned transitions and attritions. Based on the shortages and surplusses, pilots are transi-
tioned to different seats based on seniority and their position bids. Since this module does not perform any op-
timization, no guarantee can be given that the awarded transitions are optimal and the module can only be used
when pilot transition bids are known. Therefore, it is only applicable to the tactical planning phase. Next, the va-
cation module determines vacation periods on which pilots can bid. In contrast to the situation at KLM, pilots at
Continental can bid on previously determined vacation blocks while pilots at KLM identify their preferred vacation
dates. The vacation module now aims to avoid shortages by assigning more vacation blocks outside peak demand
time windows.

Subsequently, the two optimization modules in the Crew ResourceSolver model provide both pilot-planning and



10 3. Literature Review

Figure 3.1: The four modules of the Crew ResourceSolver system with their in- and output (Yu et al., 2004).

training functions. The pilot-planning module is tasked with optimizing the transitions of pilots from one seat to
another. This is done using a two-step approach in which the problem is first solved as a linear programming (LP)
relaxation of the mixed-integer program (MIP). This relaxation is used to determine an estimate of the optimal
shortages the airline can achieve. With this estimation, a cost associated with shortages is calculated which can
subsequentially be used in the objective function of the MIP. The input of this model consists of current pilot po-
sitions, awarded transitions, the flight schedule, the airline costs and any existing constraints. The output is then
comprised of the training and transition dates for all pilots with new positions, the timing and number of new hires,
the number of training-class starts, and the training-class rosters. Secondly, the training module aims to optimise
training and instructor schedules based on training curricula, existing plans and instructor availability using a MIP
model. This model determines schedules for training resources (like simulators), students and classes.

Based on the pilot-transitioning model of Yu et al. (2004), Holm (2008) defines a model for the training and vacation
allocation problem. Similar to the Crew ResourceSovler system, the model assumes the transitions are determined
by the planner in an earlier stadium and the problem at hand is to plan the pilot’s transition and vacation in an
optimal way. A number of restrictions have to be considered by the model: the demand for pilots is covered at
all times, the resources for training are constraint, pilots may have pre-assigned activities and all pilots with an
awarded transition have to be trained within the planning horizon. Finally, seniority rules have to be enforced if
they are used within the airline. In contrast to Yu et al. (2004), this model takes recurrent training courses into
account and vacation is allocated concurrently with the courses as they have a similar effect; a loss of production
due to pilot unavailability.

In contrast to the previous models, Thalén (2010) aims to solve the pilot transition allocation problem using a tabu-
search heuristic. The aim of this model is to determine what pilots to transition, when, and to what seat, instead of
having awarded transitions manually and then optimizing the planning of those transitions (Yu et al., 2004, Holm,
2008). Thalén identifies the possibility of finding superior solutions by planning a pilot different from the most se-
nior pilot eligible for a certain position by either using pay-protection rules or making sure more senior pilots move
to a different position in an earlier stadium. The heuristic solution algorithm makes use of two problem specific
neighbourhoods are mentioned in several papers (Gendreau, 2003, Lü & Hao, 2008, Lü, Hao, & Glover, 2011), the
best way to combine these two neighbourhoods is to sequentially shift between the two until the stopping criterion
is met. The first neighboorhood used is that of adding or removing one course from the solution, which can be seen
as equivalent to the add or drop neighbourhood regularly used in other problems. The second neighboorhood is
moving a course one week forward or backwards. After the neighboorhood search, actions are stored in the tabu
list for a predetermined number of iterations to prevent the solution to get stuck in a loop. However, two cases are
allowed to breach the tabu rules. The first are moves that create a new best solution, while the second are a set of
bad courses that are never allowed to be added if they do not improve the previous best solution.

The solution algorithm was found to yield similar results, but up to a factor 100 faster than a commercial MIP-
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solver. However, with a problem consisting of 1100 pilots, 13 positions and 3 bases, the heuristic method still took
more than 7000 seconds to solve.

Recently, Altenstedt, Thalén, Sjögren, and Nilsson (2017) defined a model where it is assumed the predictions of
supply and demand are given and accurate and the problem at hand is to award transitions to pilots in an optimal
way. The problem is formulated as a MIP problem that, although too large to solve using commercially available
software, can be used as a reference to test the heuristic algorithm used to solve the problem. For this heuristic
algorithm, a very large-scale neighboorhood search is used, consisting of different types of neighbourhoods that
aim to improve an initial heuristic solution. This initial solution is determined by relaxing the integrality first and
subsequentially rounding off to produce a number of transitions and assign these to a crew.

Jarmar and Sörensson (2017) developed a model with the objective to assign cockpit crew promotions. The prob-
lem is described as a known stable matching problem, the hospitals/residents problem with ties and forbidden
pairs. This is a problem where a set of residents and a set of hospitals have to be matched to each other. Both
sets have preferences for the other and the hospitals have a given capacity. The problem is now to find a stable
matching where residents are assigned to hospitals in such a way that the capacity conditions and preference lists
are respected. When ties are allowed, the preference lists can contain ties in the order of preference. Also, forbid-
den pairs allow for the definition of pairs of residents and hospitals that might be preferred but are not allowed
due to some rules (Manlove, O’Malley, Prosser, & Unsworth, 2007). This method is applied to the crew promotion
assignment problem where pilots are residents and courses are hospitals. The courses have a capacity based on
the gap between supply and demand. Ties are only allowed in the pilots’ preference list, as no seniority ties exist in
the system. A drawback of the proposed solution is that it is only able to solve for one point in time. If the method
is repeated for multiple instances, no guarantee can be given that a global optimum is found as the solution is de-
termined independently for all times. However, the solution method could provide to be useful as part of a larger
integrated solution method as the results presented show to be promising.

3.1.3. Synthesis

The purpose of this section was to present the current practices, found in available literature, regarding tactical and
strategic cockpit crew planning.

Not much research has been done regarding the assessment and prediction of supply and demand within the air-
line industry. As Yu, Pachon, and Thengvall (2003) mention, estimating the demand for pilots is usually done based
on either the flight schedule (if available) or the projected fleet size and composition. Next, the estimated value is
increased with a certain amount or percentage to account for the absence of pilots. Another part of the demand
is for pilot’s vacation and training. This demand can be allocated by the airline itself to a certain extent. Both Yu,
Pachon, and Thengvall (2003) and Verbeek (1991) identify the possibility of allocating this demand based on fluc-
tuations in the schedule demand using optimization techniques, however, no details about the used methods are
given. It is therefore of important to study the possibilities regarding estimating schedule demand, predicting ab-
sence demand and optimizing flexible demand in the next sections in order to come up with useful methodologies
for the integrated model proposed in the research question.

Most of the research in strategic and (predominantly) tactical cockpit crew planning has focused instead on transi-
tion strategies in order to close the gap between supply and demand. It has been found that in a number of cases
(Verbeek, 1991, Yu et al., 2004, Thalén, 2010), this problem is simply too large to solve using optimization techniques
and therefore, the problem has to be simplified greatly, split up into sub-problems or solved using heuristics. For
example, Yu et al. (2004), choose to award transitions using a heuristic algorithm first and then use an optimisation
model to plan the moment these transitions start. Also, available literature aims to solve the problem in a deter-
ministic manner, thereby ignoring the stochastic elements involved in transition bids, pilot absence, etcetera. The
most used method in literature is to make the problem smaller and thus easier to solve, therefore, it seems the focus
of the propsed research project should also be geared towards splitting the complete problem into sub-problem in
an effective and smart way and carefully integrating them after solving. Since the problem focuses on long-term
planning and therefore does not have to be solved very often, the main focus should not be on computational time
but on solution quality first.
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3.2. Manpower Planning In Other Industries

The problem of manpower planning is1 not limited to the airline industry. Therefore, this section will discuss man-
power planning literature originating from other industries. In Subsection 3.2.1 manpower planning practices for
general applications are presented and some separate examples from other industries are given. Subsequently, in
Subsection 3.2.2 workforce planning of nurses in hospitals is discussed and in Subsection 3.2.3, taskforce planning
in armies is discussed. Finally, in Subsection 3.2.4, a synthesis of the reviewed literature is presented.

3.2.1. General Applications

In this first section, available literature is discussed with regards to manpower planning in industries other than
the airline industry. The literature is subdivided into two sections, presenting prediction methods and transition
management strategies, respectively.

Predictions For the first steps in manpower planning, Zhu, Sanil, Mardookhy, Sawhney, and Sun (2013) developed
two statistical approaches for evaluation workforce requirements in a multi-purpose research organization. The
proposed models aim to predict attrition for a large pool of employees with different skills as a resource with a
certain demand using Logistical Regression and Time Series. This problem can be compared to the airline’s case
where different pilots seats are comparable to the skills and factors such as attrition, short-term leave and long-
term absence have to be predicted.

The logistical regression method (Zhu et al., 2013) aims to find the probability of individual events (in this case the
attrition of an employee) on the basis of a set of relevant predictors. In order to select these predictors, a stepwise
selection method and the Akaike information criterion are used in the analysis of their significance. The minimum
AIC value shows the relative goodness of fit (Akaike, 1974). The stepwise selection method is a semi-automated
process in which variables are added or removed one after the other based on their t-statistics. Finally, the goodness
of fit test designed by Hosmer and Lemesbow (1980) is used, p-value range from zero to one and models with a
higher value are preferred. Both methods result in a list of relevant predictors, with an associated coefficient, that
is used to determine the probability of attrition of an employee. Summing this for all employees with a certain skill
in a certain time period yields the loss in the workforce which has to be accounted for.

In contrast to the logistic regression method, time series do not look at predictors of a certain event but solely on the
numbers in the past. Some important time series models are the decomposition model, exponential smoothing,
ARIMA and dynamic regression model. Using R2 statistics, the models are assessed on their effectiveness. This
statistic shows the amount of variability that is accounted for by using three sums of squares formulas; the total
sum of squares, the explained sum of squared and the residual sum of squares. The results for the different time
series models show that in this case, the decomposition model performs best with a R2 value of 0.65.

Ho (2010) propose a single variable, first order grey model forecast for construction manpower one quarter ahead.
Grey systems theory was developed by Deng (1982) and deals with problems with small samples or poor informa-
tion. It searches for patterns based on this limited data. This is also one of the advantages of grey model forecasting:
the limited amount of input data required, however, with that comes the inability to accurately capture seasonal-
ity in data. This can, however, be solved by deseasonalizing the data before applying the prediction method. The
’memory length’ of the model is determined by the sample number, a larger sample number can be better used
with very random series and a smaller sample number with smooth time series. The models with different sample
number are tested on the minimum mean absolute percentage error criterion, from which it follows that optimal
results are found, in this case (with a MAPE of 3.21%), with a sample size of 5.

Even though the only grey model tested in this paper is a GM(1,1) model, the author identifies the possibility that
a number of more sophisticated grey models provide better results. Examples of these models are the remnant
GM(1,1) model, GM(1,N) model, GM(2,1) model and Verhulst model. It is therefore suggested to develop a com-
puter model that is able to forecast a time series with several different models and from the results choose the
optimal for that specific case.

Transition Management For the process of transition planning for closing the gap between supply and demand,
several authors have presented an overview of manpower planning models in the past. In his review of models,
Price, Martel, and Lewis (1980) define two types. First of all, there are descriptive models that are used to describe
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how personnel moves through an organization and are usually defined by Markov models, fractional flow models
and renewal models. Secondly, there are normative models that aim to determine a set of actions from all feasible
solutions. This type of models can make use of, amongst others, linear programming or stochastic programming
techniques.

Optimization models are seen as the optimal method for manpower planning in companies where costs are the
prevailing criterion, where many conflicting objectives exist or with situations in which many complex constraints
must be taken into account (Price et al., 1980). These models define an objective function which should be op-
timized by changing the decision variables while not violating the constraints (as imposed by labour agreements,
logical constraints and more). The model can subsequently be solved by a chosen solution algorithm such as a
heuristic method or commercial LP solver.

For the proposed research question, normative models are deemed to be more applicable. First of all, flow be-
tween different crew positions in an airline cannot really be defined by Markov or fractional flow models as they
are largely determined by vacancies, crew bids and seniority rules instead of general flows between seats. Secondly,
the problem at hand is not how personnel moves through the system. Instead, it focuses on the best actions the
airline can take to meet demand in the future at minimum cost. For this reason, the following sections will focus
more on normative models as opposed to descriptive models. Purkiss (1981) makes the same distinction between
normative and exploratory models. It is mentioned that normative models can be more efficient in cases where
clear objectives can be defined. Subsequently, these models are often made for specific situations and no gener-
alised programs have been produced. Some of these models use dynamic programming or Markov programming
techniques, but by far the most used models are linear programming models.

In another literature survey, Edwards (2007) identified important differences between the labour market in the
U.S.A compared to Europe and the UK. As he mentions, the labour market in which a company is situated has a
large impact on the way manpower planning is done. Due to more strict employment protection laws, it is more
difficult to reduce staffing quickly in Europe when compared to the U.S.A. Also, the influence of trade unions is
greater in Europe. For these reasons, his survey focuses on manpower planning for European organizations. From
his survey, Edwards sees two main areas for improved planning models: first of all the trade-off between short- and
long-term manpower needs and secondly the recruitment process.

In a review of operations research applications in military workforce planning, Wang (2005) identifies four different
types of models: Markov chain models, computer simulation models, optimisation models and system dynamics
models. For each of these models, the mathematics and concepts together with their advantages and disadvantages
are presented. Of these four types of models, only optimisation models are ranked among the normative models
while the rest are exploratory models and therefore, as mentioned before, not applicable to the identified research
opportunity and the accompanied objective of this research.

These optimisation models as identified by Wang (2005), can be distributed into four different optimisation tech-
niques. Linear programming aims to find the decision variables where the objective function and constraints are
linear relations of these decision variables. With integer programming, a linear programming model is defined in
which decision variables only take on integer values. Goal programming meanwhile aims to solve linear program-
ming problems with multiple objectives. In this case, deviation variables are introduced which are defined by the
deviation of the different objectives to their goal value. These deviations are subsequently minimised. Finally, dy-
namic programming is a method for solving more complex, multi-stage problems in which the output of a stage
serves as the input for the next.

Bard, Morton, and Wang (2007) describe the process of workforce planning at USPS with stochastic demand. The
two-stage solution method first determines the amount of full time and part time employees to hire given the
stochastic demand and then, in the second stage, the actual demand becomes known and the schedule for all em-
ployees is determined and if necessary, overtime is assigned and casual workers are hired. Even though this prob-
lem focuses more on the operational planning phase, the fact that it incorporates stochastic demand is interesting
for the proposed research.

Taking the inherent uncertainty within a problem into account often slows the model down. Therefore, it is im-
portant to think about the way the stochastic elements are incorporated into a model. A very easy way is to solve a
deterministic problem in which the stochastic elements are replaced with the expected value, however, this greatly
generalizes the problem and any non-linear effects are completely removed from the results (Birge & Louveaux,
2011). For the presented model, Bard et al. identified three methods for taking stochastic elements into account.
The first method, the recourse problem (RP), minimizes the sum of the cost in the first stage problem and the
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expected (mean) cost of the second stage given the stochastic demand. The second method, the expected value
problem (EV), instead computes the cost of the second stage using the mean demand and sums this with the cost
of the first stage as the objective function. Finally, the third method, the wait-and-see value is obtained by taking
the expected value of the full two-stage problem under stochastic demand. The results of the different methods
show the RP method produces better results compared to the EV method. Also, it shows the RP method allocates
a larger permanent workforce, but this is partly covered by thereby reducing the cost of overtime and casual work-
ers.

Ng, Huang, and Ng (2008) defined a problem where workforce staffing levels have to be determined before em-
ployee attendance rate is known. This attendance rate is defined as the percentage of workers available for jobs.
Subsequently, when attendance is known, workers have to be assigned to jobs. This problem can easily be trans-
lated to the cockpit crew planning problem where the same problems and uncertainties exist. Obviously, under-
staffing pilots might cause severe costs as flights could be forced to be cancelled if no pilots are available. With
the uncertainty in attendance rate taken into account, the problem is to determine staffing levels using a trade-off
between fulfilling the demand and the staffing cost. Ng et al. propose six approaches to make this trade-off. The
first two approaches take either the average or the theoretical minimum attendance rate and therefore make the
problem deterministic. These approaches are very convenient and serve as a baseline solution for the other ap-
proaches. The third approach takes the minimum attendance rate per worker type from a sample of attendance
rates and uses these values to determine the staffing levels. The ’combined largest approach’ solves the initial prob-
lem for different historical realizations of attendance rates and then takes the maximum of the staffing levels for
each worker type as a decision variable. The fifth approach proposes a two-stage stochastic LP formulation which
provides a good solution, however, it does so at a high computational cost. The final approach is based on robust
optimization methodology using ellipsoid uncertainty sets (Ben-Tal & Nemirovski, 1999). In this approach, the
set of attendance rate realizations is assumed to be confined in an N-dimensional ellipsoid. Once this ellipsoid
is completely defined, a number of realizations are taken from the worst-case frontier and used in the two-stage
stochastic model of the fifth approach. Computational studies showed this last approach appeared to be the best
choice when modelling with the attendance rate uncertainty since it provides a high success rates with reasonable
cost savings.

Zhu and Sherali (2009) propose a two-stage solution model for workforce planning that takes demand fluctuations
and uncertainty into account. The solution method first aims to make personnel recruitment and allocation deci-
sions based on the stochastic demand and then in the second stage determine centre-, shift- and month-changes
for tasks in order to cover the demand for all individual units. This is done as recruiting and allocation decisions
generally have to be made further in advance while shifts of tasks can be postponed to a later stage when more
information about the actual demand is known.

The first step in the two-stage approach aims to determine, based on stochastic demand, the optimal number of
recruited employees as well as their allocation in the company (as the triplet category k, planning unit u, month t).
With these recruitment and allocation decisions made, the next stage is to determine, for all demand scenarios s,
any required changes in location, shift and/or month for tasks in order to optimally use the determined workforce
on all assignments. This second step is done with the Benders’ decomposition method, in which additional con-
straints are imposed on the first stage if the second stage was found to be infeasible for any of the scenarios.

The results of the two-stage stochastic approach, when compared to a deterministic solution method, show that for
all problem sizes, the two-stage method decreases the amount of shortage to zero and, especially for problems with
a greater number of scenarios, decreases the number of changes and splits of demand over different centres.

Two heuristic solution algorithms have been proposed by Fozveh, Salehi, and Mogharehabed (2016) for a multi-
skilled, multi-objective workforce planning problem. The objective of the problem is threefold: minimise the
number of night-shift workers, minimise the total workforce cost and maximise the number of engaged employ-
ees.

The first solution heuristic is a bee colony optimization in which at first a set of feasible solutions is created. This
initial population of solutions is then split into two groups based on their performance. A neighboorhood search is
performed on the best scoring group while a random search is performed on the worst scoring group. This yields
a new population of results. The described process is then repeated until a stopping criterion is met. The second
solution algorithm is a differential evolution algorithm. This algorithm works by first creating a set of feasible solu-
tions using a multi-start variable neighboorhood search after which, all solutions are altered by creating a mutant
vector, applying a crossover operator combine the two vectors and apply a repair method two solve any infeasibility.
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Subsequently, the best solutions are stored and the method is repeated until a predetermined number of iterations
have been performed. The best solutions are in this case selected based on a Pareto optimisation of the different
objectives.

Catalá, Moreno, Blanco, and Bandoni (2016) have formulated a multi-period mixed integer programming model for
medium-term planning (which is defined as a one-year horizon, divided over 12 monthly periods) in the pome-fruit
industry. A lexicographic approach is used in order to handle the multi-objective nature of the problem in which
the planning of shifts of workers has to be determined in order to maximise the profit from growing, harvesting and
selling fruit. This approach orders the relative importance of the different objectives, solves the most important first
and then uses the results of this first optimisation as a constraint for the second objective, repeating the process
until all objectives are evaluated and/or a single optimum is found (Sawik, 2007). In the model presented by Sawik,
the most important objective is to minimise the dissatisfaction of clients, followed by maximising the total profit
of the company. This approach could be used in cockpit crew planning problems with multiple objectives such
as service level (defined by, for example, the gap between crew supply and demand), robustness, cost, number of
transitions etcetera.

3.2.2. Nurse Planning

The nurse planning problem is in many ways similar to the cockpit crew planning problem. Similar to pilots, nurses
often have a specific qualification or specialisation which determines what tasks they can perform. Next to this, the
nurse planning problem is solved in a similar way as cockpit crew planning. Punnakitikashem, Rosenberger, Behan,
Baker, and Goss (2006) define four subsequent stages: nurse budgeting, nurse scheduling (which can be subdivided
between staffing and rostering for long- and short-term, respectively), nurse rescheduling and nurse assignment.
As for the defined research gap, the stage of interest is the nurse scheduling phase and more specifically nurse
staffing.

In contrast to Punnakitikashem et al. (2006), the nurse planning problem is divided into three pases by Abernathy,
Baloff, Hershey, and Wandel (1973). The first phase handles "policy decisions, including the operational procedures
for service centres and for the staff-control process itself". The second phase determines "staff planning, including
hiring, discharge, training and reallocation decisions", and finally, the third phase is for "short-term scheduling of
available staff within the constraints determined by the two previous phases". Abernathy et al. identified the same
problem as with cockpit crew planning research; most research has focused on short-term scheduling problems
and improvements in solutions for this.

Several solution methods have been proposed by Abernathy et al.. The first method uses an iterative approach
using a random loss function. This approach iteratively solves the staff-level problem and staff-allocation problem,
it then updates the staffing cost function in the staff-level problem with the result from the allocation problem
until the solution converges. The second solution method incorporates a chance constraint which states that an
effective staffing level has to be achieved such that the probability of a shortage is smaller than a certain threshold.
No recommendations are made in the paper with regards to the optimality of any of the two solution methods.
However, as the first requires successively solving both the planning as well as the scheduling problem, it potentially
becomes too large to be able to solve within a reasonable time.

Li et al. (2007) have developed an integrated staffing decision model that is divided into three stages: demand fore-
casting, planning and scheduling (as can be seen in Figure 3.2). The first stage is used for forecasting demand.
In the nurse planning problem, the demand can be divided into two separate groups: known and unknown de-
mand. Known demand entails planned appointments while unknown demand are walk-ins without appointment
and emergencies. The output of this first stage are forecasts of the total demand on a weekly or monthly basis. The
second stage then uses these forecasts to determine the staffing levels for each skill class for the entire planning
time window. This stage takes as input the mentioned demand forecasts as well as planning requirements and
regulations. The number of employees in each class, number of recruits and attritions serve as the output and are
subsequently used in the third stage in which detailed schedules are constructed for all staff members generated
by the planning model. This scheduling phase is constraint by several labour agreements.

The staff planning model (Li et al., 2007) will define the amount of staff to be hired using a multi-objective problem.
The objectives of the staffing problem are defined with regards to the staffing cost, staff augmentation, staff task
substitution, overtime and shortfall of professional development. The staffing problem is solved by converting the
multi-objective linear programming model to a single-objective problem by using the Analytic Hierarchy Process
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Figure 3.2: Block diagram of the three-stage integrated staffing model (Li et al., 2007).

(AHP) (Winston & Goldberg, 2004). In this method, the relative importance of all objectives compared to the others
is put in a matrix and normalized, yielding a weight for each objective that can be used in the single-objective
problem. Next, with the staff scheduling model defined as well, the full problem is solved in an iterative manner
in which the planning model is solved first. From the results, it is analysed if the amount of overtime, number of
recruits, number of task substitutions or the unachieved professional development are unacceptable, and if so, the
weight of the relevant objective is increased. If all parameters are acceptable, the scheduling problem is solved for
all time periods. If the amount of overtime or temporary staff is too large, the associated weight of these objectives
are increased and the staffing problem is solved again, starting over with the algorithm. If everything is acceptable,
the algorithm is finished.

The integrated staffing and scheduling model proposed by Maenhout and Vanhoucke (2013) aims to integrate two
parts of the total problem using a Dantzig–Wolfe decomposition method in which the staffing problem is solved as
the master problem and the scheduling of individual nurses as the subproblems. The staffing master problem then
determines the required number and mix of nurses in each ward and recruitment plan for all wards. The paper
shows the benefits of integrating the two phases in nurse planning. It is shown that by solving the problem for
multiple departments simultaneously improves the schedule in terms of cost, job satisfaction and effectiveness.
Also, the model can be used as a simulation tool in order to assess the effect of different staffing and scheduling
strategies. From the presented results, it can be concluded that efficiency, effectiveness and job satisfaction can be
greatly influenced by only minor differences in staffing and scheduling strategies. Because of the analogies with
cockpit crew planning, it can be assumed that this is also the case for the identified research gap.

3.2.3. Army Planning

Similar to the problem with nurses, the army features several different positions and therefore decision makers face
the problem of planning the strength of these different functions on a strategic level given a (regularly uncertain)
demand.

Gass, Collins, Meinhardt, Lemon, and Gillette (1988) developed the Army Manpower Long-Range Planning System
(MLRPS) for analysing the army’s strength over a 20-year horizon. The MLRPS is a decision support tool providing
the answers to two sub-problems. First of all, a projection of the strength of the army by grade, skill, years of service,
and quality is made. This enables decision makers to evaluate the effect of different strategies over the 20-year time
window and compare the projected strength to the desired one. Secondly, optimal transition probabilities are de-
termined which enables decision makers to determine the desired strategies to ultimately reach desired workforce
parameters defined by skill, grade, years of service and quality. The program utilises a Markov chain for analysing
the flows between different states and can therefore be seen as an exploratory model. It furthermore assumes fixed
transition probabilities and long-term behaviour.

In contrast to the exploratory model defined by Gass et al. (1988), Silverman, Steuer, and Whisman (1988) devel-
oped a multi-period, multi-criteria optimization model for the U.S Navy manpower planning problem. The model
serves as a decision support system (DSS) and the goal is to come up with a recruitment and promotion strategy
that best conforms to the seven defined goal trajectories. These seven trajectories are the salary cost, the strength
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of force of paygrade two and three, promotions to paygrade two and three and mean level-of-service for paygrade
two and three. The objective function is then to minimize the maximum over-deviation in terms of salary and the
minimum of the other six over deviations. An iterative approach is used called the augmented weighted Tcheby-
cheff procedure. In this procedure, a sample of solutions is tested in an increasingly smaller subset of the deviation
values. Based on the results of each iteration, the decision maker is able to alter the model and its goal trajectories
based on any insights gained from the results, after which the next iteration is started. This method was chosen
for several reasons. First of all, it does not require the user to specify any weights for the different objectives. Sec-
ondly, the Tchebycheff procedure does not produce large jumps in the solution following only minor changes in
the weights, which provides the user with more control of the problem. Finally, the procedure provides multiple
solutions, yielding the user the possibility to choose the best based on their expertise.

Škraba, Kljajić, Papler, Kofjač, and Obed (2011) have described the development and usage of a workforce planning
model for the Slovenian Army. The model utilises a system approach, system dynamics and numerical optimiza-
tion. As with all armed forces, the manpower system is hierarchical, similar to the cockpit crew system, however,
in the Slovenian case, it is strictly hierarchical. This means higher rank member must be provided from the sin-
gle next subordinate rank. The goal of the model is then to track the goal trajectories in the eight highest ranks in
the system. Using a quadratic performance index for the deviations from the goal trajectories based on the three
relevant parameters; recruitment, promotions and fluctuations, acceptable strategies were identified. Next, using
Genetic algorithms and pattern search, these strategies were improved. From the two algorithms, it was found that
the pattern search showed to be significantly more suitable to determine the optimal strategy. In later research,
Škraba, Stanovov, Semenkin, and Kofjač (2016) describes the use of stochastic local search and genetic algorithms
for manpower planning with the same application to the Slovenian Army. In this paper, a heuristic stochastic search
algorithm is used to achieve the desired number of crew in each rank at each time by defining recruitments, promo-
tions and fluctuations. This algorithm randomly chooses an action in each of the possible situations. For instance,
if the number of crew in a certain rank is too low, possible actions are to decrease promotion from that rank to
the next, increase promotion from the previous rank or decrease the outflow from that rank. This algorithm was
able to find a feasible solution, however, the solution depended greatly on the initial values. Therefore, a genetic
algorithm was proposed as an optimization technique where the optimised values were used as the initial values
for promotion and fluctuation coefficients. The results of the model applied to the Slovenian Army show that for
this specific situation, only a short modelling time is required to reach good solutions to the presented problem,
however, this does require a proper modelling strategy because of the dynamic nature of the problem, creating a
large search space.

3.2.4. Synthesis

As the literature regarding cockpit crew planning at airlines was quite limited and the problem has quite some sim-
ilarities with manpower planning problem in other industries, the purpose of this section was to identify solution
methods for the identified research gap in other industries.

Predictions have to be performed in all industries when planning for the future. The results of different prediction
methods are often highly dependent on the specific application and system. Therefore, any methods found in this
section should be compared and evaluated on the actual process in the cockpit crew problem. Identified methods
include Logistical Regression and Time Series models for predicting employee attrition (Zhu et al., 2013) or Grey
model forecasting for construction manpower (Ho, 2010). An important factor to account when using a specific
forecasting technique is the ability of the method to account for seasonalities and trends and if the method is
unable to factor this is, measures should be taken to alter the technique accordingly.

For transition management, two distinct types of models have been identified (Price et al., 1980, Purkiss, 1981,
Wang, 2005): exploratory or descriptive models that describe how the system behaves and evolves and normative
models that aim to determine actions to make the system evolve in a desired way. For the identified research gap,
normative models are deemed more applicable. Some research has also tried to incorporate stochastic elements in
the model in some way. Bard et al. (2007) does so for stochastic demand at USPS by using a two-stage approach that
first determines the optimal amount of employees given the uncertain demand and then schedules the employees
and if necessary assigns overtime and casual workers based on the actual demand. Again, a number of heuristic
solution methods have been defined (Fozveh et al., 2016, Škraba et al., 2011), but another method often used is goal
programming, in which the deviation from a number of goal values or trajectories is minimised (Škraba et al., 2016,
Gass et al., 1988, Li et al., 2007). Because of the large computational time for optimisation models for the indentified
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research gap, a heauristic method will likely provide adequate results while still keeping the computational time
acceptable.

3.3. Promising Methods from Related Problems

After moving the focus to manpower problems in other industries, a next step is to look at promising methods used
in other, related, problems. First, fleet planning problems and the similarity with cockpit crew planning will be
discussed in Subsection 3.3.1. Next, in Subsection 3.3.2, several useful prediction methods will be discussed en
after that, some solution algorithms will be discussed in Subsection 3.3.3. Again, the section is finished with a short
synthesis in Subsection 3.3.4.

3.3.1. Fleet Planning

Because of the similarities between fleet and crew planning, this section discusses methods used in fleet planning
literature that could be used in the field of cockpit crew planning as well. Rosskopf et al. (2014) define the fleet
planning problem for an individual airline as the problem to determine the optimal fleet composition, in terms of
the amount of aircraft and type, for each time period within the planning horizon. Factors under consideration in
this process include the usage of aircraft within the airline’s operations, evolution of the fleet over time and fleet
financing. One objective of fleet planning that is not present for the cockpit crew planning problem, however, are
environmental goals. For the fleet and choice of aircraft, current and future environmental goals are an important
driver. For this, Rosskopf et al. presented a methodology for balancing these environmental challenges with eco-
nomic goals. It shows that reducing the fleet’s NOx emissions comes at a relatively high cost (around double the
percentage of the emissions reduction).

Similar to the field of crew planning, a lot of advancements in modelling and optimisation approaches have arisen
in the last years. Earlier, the problem was often solved with general linear programming methods such as mixed-
integer programming (Marsten & Muller, 1980) or a multi-commodity flow problem (Listes & Dekker, 2005). Obvi-
ously, the fleet planning problem has to deal with some of the same uncertainties as for the crew planning problem,
such as demand and availability uncertainty. To account for this, Listes and Dekker defined a scenario aggregation-
based approach for dealing with the stochastic demand in the problem. In this approach, the problem is iteratively
solved for different scenarios of the stochastic elements and the results are aggregated into an overall usable solu-
tion. Next, a decision solution is obtained by taking the weighted average of all scenario solutions. This solution is
called the implementable solution, however, it may not be admissible (which means it is feasible for all scenarios).
In search for an optimal solution that is both implementable and admissible, a sequence of converging estimates is
made of the decision solution (Wets, 1989). Another important factor in the scenario aggregation-based method is
the generation of scenarios. Careful generation ensures valid data as it is not possible to assess all possible scenar-
ios. In this case, the descriptive sampling method is used (Saliby, 1990). Instead of picking stochastic realizations of
a certain process using a random set and random sequence, the set of numbers is made deterministic while keeping
the random sequence. The deterministic set is sampled from the known distribution at constantly spaced quan-
tiles, ensuring more samples are drawn from high probability regions, but extreme values are also drawn.

Another solution strategy that focuses on uncertainty in the process is proposed by List et al. (2003) where a trade-
off is the investment of a certain fleet and the risk associated with it. The uncertainty incorporated in the model
includes uncertainty in future demand and vehicle productivity. Instead of focussing on the average performance of
a solution, the model focusses on the probability that the total cost for a given solution exceeds a certain threshold.
This probability is defined as the risk of the solution. By now assigning a weight κ to the amount of over-deviation
of the threshold by a solution, the trade-off between risk and reward can be altered.

The approximate dynamic programming approach proposed by Requeno García (2017) is designed to determine
adaptive fleet plans in order to better cope with demand uncertainty. This adaptive fleet plan defines, for each year
in the planning horizon, an optimal strategy. However, for all years after the next, this plan is adaptive since it de-
pends on the demand realization (most optimistic, most likely and most pessimistic) of the preceding year. In this
way, a fleet policy decision tree is generated showing the optimal strategy based on the demand of previous years.
The approach was tested on real-world data from Kenya Airways, which showed the applicability of the method,
as well as the capability to estimate future operational profits. The approach’s profitability was also larger than
the current airline’s fleet plan, showing the model’s usefulness in coping with demand uncertainty using adaptive
policies.
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3.3.2. Predictions

Although prediction methods have already been discussed in the previous two sections regarding cockpit crew
planning and general applications. some interesting approaches towards predictions will be given here to further
develop the available knowledge regarding accurate predictions, especially regarding time series featuring trends
and seasonality.

Tseng, Yu, and Tzeng (2001) developed a hybrid grey model used for forecasting time series. Usually, grey forecast
models are not able to account for seasonality in its predictions. Tseng et al. instead propose a hybrid grey model
with the ratio-to-moving-average deseasonalization method. This method calculates a seasonality index per period
using the following approach:

1. Compute a k period moving average, where k is the period of seasonality.

2. Compute a seasonal index by dividing the actual value by the k period moving average.

3. Determine, for each period in k, the average seasonal index.

4. Divide individual values by their corresponding seasonal index to obtain the deseasonalized time series.

This method for deseasonalizing historic data can be used for any forecasting method. In this case, however, it was
used together with a GM(1,1) model, which is defined by the first order differential equation:

d x(1)(k)

dk
+ax(1)(k) = b, (3.1)

where x(1)(k) is defined as the cumulative sum of the time series x(0)(k) and a and b the developing coefficient and
the grey input, respectively. The solution can then be obtained using the least-squares method. In their computa-
tional results it was shown that the GM(1,1) model with deseasonalized data outperformed the in-sample forecast
of the SARIMA-, GM(1,N)- and neural network model.

For the other special kind of time series, those with trends, Qi and Zhang (2008) have developed forecasting network
using a neural network. In the paper, a Monte Carlo study is performed to determine what the optimal method is to
forecast trend time series. The neural network used in this study is a standard three-layer feedforward network. Five
different data generating processes where used and four modelling strategies were analysed: modelling with raw
data, raw data with a time index, modelling with linearly detrended data and with differenced data. It was found
that the differenced forecasting method is the most effective. Although neural networks are a powerful method for
forecasting all sorts of time series, a large disadvantage is the lack of insight in the prediction process because of the
network’s hidden layers which gives the user less control of the solution as well as less insight in the process.

3.3.3. Solution Algorithms

As previous research has shown, the complete cockpit crew planning problem is often too large to solve using opti-
misation methods. Therefore, a lot of research focuses on heuristic methods to come up with a feasible, yet subop-
timal, solution. In order to improve these heuristic solutions, several search algorithms exist that could potentially
improve the solution significantly in a short time.

In his research with respect to multi-variable optimization problems, Abramson (2002) reviews a number of search
heuristics and their applicability to his problem. The first heuristic, simulated annealing was originally devised by
Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller (1953). The method is based on the cooling of a substance
to a desired temperature while keeping a certain thermodynamic equilibrium. This system was translated to op-
timization problems in which the hypothetical temperature is decreased (according to the user-defined cooling
schedule) if the evaluated neighbour of the current solution is not better (smaller in a minimisation problem) than
the current objective function. If it is better, the temperature is held constant. This process is continued until the
minimum temperature is reached.

The next method, already briefly described in Subsection 3.1.2, is the tabu search. In this procedure (Abramson,
2002), it is tried to avoid local optima by accepting a worse solution if no better solutions are found amongst the
neighbours and the solution is not found in the tabu list containing recently visited points. The efficiency and
effectiveness of the tabu search rely on three parameters: aspiration, diversification, and intensification that define
the strategies of overriding the tabu list with good points, global, and local searching, respectively.
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Finally, Abramson discusses various evolutionary algorithms: evolution strategies, evolutionary programming and
genetic algorithms. Only genetic algorithms are designed for discrete problems, while the others are designed for
continuous problems. A genetic algorithm consists of four steps, named after biological processes:

• Selection: Procedure for the appropriate parents for reproduction.

• Reproduction: Of the selected parents in order to generate offspring

• Mutation: Introduction of random errors in the offspring.

• Competition: Evaluation of the performance of the offspring.

In contrast to the direct search methods presented above, pattern search methods evaluate the neighbours of a
solution in a certain pattern. Torczon (1997) presented the method for solving non-linear, unconstrained problems.
One of the pattern search methods, Generalised Pattern Search (GPS) starts by computing the objective function at
an initial solution. It then determines the candidate points based on the defined pattern and picks either the first
improving or best candidate point based on the user’s preferences.

As with many computational problems, search heuristics can be improved using machine learning techniques.
One example of such machine learning techniques often used for search algorithms with a finite set of actions is
the so-called Learning Automata (LA). Thathachar and Sastry (2002) describe a number of different LA methods.
They, however, all rely on the technique of improving the probability distribution over the action set based on the
previously determined results of different actions. While learning, the algorithm increases the change of perform-
ing actions that are known to improve the objective function. Using techniques like LA could potentially decrease
the time it takes to find a sufficiently optimal solution for the transition planning problem.

3.3.4. Synthesis

This section reviewed a number of methods and techniques found in various applications that are applicable to the
cockpit crew planning problem. One problem that has quite some analogies with cockpit crew planning is (airline)
fleet planning. In this field of research, several approaches to deal with uncertainties were found. The scenario
aggregation-based approach (Listes & Dekker, 2005) is promising in determining an optimal solution given uncer-
tain demand data and also discusses scenario generation methods when using a limited number of scenarios. One
downside of their model, however, is the large number of computations and therefore computational time. Other
research proposed to make a trade-off between risk (defined by the probability to go over budget) and reward (List
et al., 2003) or an adaptive plan that presents an adaptive plan per year based on the demand of previous years
(Requeno García, 2017).

An important part of accurate planning is the ability to make accurate predictions of the future. As literature with
regards to predictions for crew or manpower planning has been found to be quite limited, some additional pre-
diction methods have been reviewed in this chapter. For time series with seasonality, an approach by (Tseng et
al., 2001) showed good results by deseasonalizing the time series using the ratio-to-moving-average method and
forecasting that data with a GM(1,1) grey model. Qi and Zhang (2008) on the other hand proposed a method for
forecasting trend time series using a neural network. Although the use of a neural network is very powerful and
promising, it forms a sort of black box which does not give the user an idea of the source of the predictions.

Finally, a number of solution algorithms for the transition planning problem have been reviewed as current lit-
erature shows the problem is often too large to be solved using optimisation software. In these cases, a carefully
designed heuristic algorithm could be used to speed up the solution and obtain sufficient solution quality. Ex-
amples of search heuristics that can be used in the crew planning problem are simulated annealing, tabu search,
evolutionary algorithms and pattern search. The performance and convergence of these search algorithms heavily
depend on the application and algorithm parameters and should, therefore, be tested on the actual problem to
determine the optimal algorithm. With many heuristic algorithms, the solve time can be drastically decreased by
designing machine learning techniques to aid the algorithm in searching in favourable areas. One of these machine
learning techniques is Learning Automata which increase the probability of choosing actions that have shown to
improve the objective function.
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3.4. Literature Synthesis

The goal of this chapter was to present the available literature regarding the long-term cockpit crew planning prob-
lem. This problem was divided into three subproblems according to the definition by Holm (2008). The first sub-
problem aims to allocate flexible demand for training, vacation and more based on the nett demand distribution,
thereby minimising shortages. The second subproblem is to make sufficiently accurate predictions for the absence
demand. The third and largest subproblem then aims to close the still remaining gaps between supply and demand
by transitioning pilots between different positions and by recruiting new pilots. In this section, the most important
literature regarding these three subproblems is summarised. Next, in Chapter 4, this is used to define a project
scope for the research.

The first subproblem in the cockpit crew planning process is the allocation of flexible demand for training, vacation
and office days based on the gap between supply and demand for all seats and time periods. This allocation can
be done using a rather straightforward linear programming model where the constraints define the contractual,
governmental and labour agreements and the objective is to minimise the cockpit crew shortages.

The next sub-problem is tasked with making predictions for the absence demand, i.e. the amount or percentage
pilots for each seat and time period that is absent due to unforeseen circumstances such as illness, pregnancy and
injuries. Within the field of cockpit crew planning, not much literature was found regarding these predictions. Yu,
Pachon, and Thengvall (2003) briefly mentions that a certain percentage is used to account for this absence de-
mand, but provides no details about the predictions and their accuracy. Therefore, the scope of the search was
broadened to manpower planning problems in different industries. Two types of models with various different
applications have been identified by (Zhu et al., 2013): Logistical Regression in which relevant predictors are iden-
tified and used in the predictions and Time Series in which a number of techniques can be used to extrapolate the
data. Grey model forecasting in a technique proposed by a number of authors (Ho, 2010; Tseng et al., 2001). An
advantage of grey model forecasting is that it relies on a limited number of data points to make an accurate pre-
diction. Depending on the data and prediction method, the data might have to be detrended or deseasonalized.
This can be done using differenced data forecasting or ratio-to-moving-average methods, respectively. However, it
should first be checked whether the data shows trends and seasonality. A significant number of prediction methods
have been reviewed in this study, however, their usefulness and accuracy greatly depend on the specific application
and data, therefore, these methods should be modelled and assessed on the actual data before choosing the most
appropriate.

The final sub-problem is planning transitions for pilots between different seats as well as new recruits in order to
close the gap between supply and demand. It was found that even without stochastic elements, this problem is too
large to be solved using commercial optimisation software. Add to this the stochastic absence demand of pilots
and the uncertain transitions bids and a problem is created that is too large to solve with any optimisation model.
Available literature, therefore, focusses on only a small part of this problem and takes the rest of it as predetermined
constant or aims to design efficient heuristic algorithms to obtain a solution of sufficient quality. Verbeek (1991)
decided to use a heuristic approach but did not provide any details about the heuristics, Yu et al. (2004) uses a
heuristic to award transitions and then optimises the plan the time of the transitions and two heuristic algorithms
(bee-colony optimization and DE algorithm) are used by Fozveh et al. (2016).

As the problem at hand is large, it is also quite difficult to determine a single objective. The total cost is ultimately
to be minimised but then factors such as crew satisfaction, transition capacity, overstaffing and understaffing sur-
charges are simply excluded. When working with a multi-objective optimisation problem, a careful combination of
the different goals should be done in order to obtain optimal solutions. One method to combine the different goals
into a single objective is goal programming (Wang, 2005), in which the deviation of goal trajectories with respect to
the different objectives is minimised and Pareto optimisation (Fozveh et al., 2016) in which the optimal solutions
are found on a frontier from which it is impossible to improve the objective in one field without aggravating the
objective in other fields. On the other hand, Catalá et al. (2016) used a lexicographic approach in which the most
important objective is solved first and then used as a constraint for the following objective and the Analytic Hier-
archy Process (AHP) is used in (Li et al., 2007). This process identifies the relative weights of the different objective
that can then be used to combine them into one objective function.

Using a simple heuristic algorithm, it is possible to come up with a feasible initial solution. This solution can then be
improved by using efficient search algorithms combine with machine learning techniques in order to converge to
an optimal solution. Examples of search algorithms that were found in the literature are simulated annealing, tabu
search, evolutionary algorithms and pattern search. The performance and convergence of these search algorithms
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heavily depend on the application and algorithm parameters and should, therefore, be tested on the actual problem
to determine the optimal algorithm. Machine learning techniques can then be used to further improve the search
algorithm by steering the algorithm to search in favourable areas. One of these machine learning techniques is
Learning Automata which increase the probability of choosing actions that have shown to improve the objective
function in the past.

Finally, the stochastic elements of the problem have to be integrated into the solution approach, preferably without
exponentially increasing the computational time. On two extremes of the amount of integration of these stochastic
elements into a model, one can choose to simply use average or expected values of the stochastic parameters or
choose to simulate the entire model for a number of realisations of the stochastic parameters. The major downside
of the first method is that it loses any dependencies between different parameters, non-linear relations and extreme
cases. The second method, however, increases the computational time too much to be practically applicable. An
interesting method, stemming from the fleet planning problem is to construct a limited number of scenarios using
the descriptive sampling method in order to create an accurate representation of the stochastic variables with only
limited iterations (Saliby, 1990). From the results of the different scenarios, it is then important to analyse the data
in an efficient and useful way, this has been done with the scenario aggregation method (Listes & Dekker, 2005),
recourse problem approach (Bard et al., 2007) or a trade-off between risk and reward (List et al., 2003).

Following the definition of the research gap and available literature, the design of the research will be presented in
Chapter 4. As the time for the project is limited, the focus of the research will be demarcated and the context of the
problem will be given.
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Research Design

The next chapter in this report introduces the design of the research as it has been carried out. In Section 4.1, the
context of the research within the complete cockpit crew planning process is discussed. In Section 4.2, a simpli-
fied example of the cockpit crew transition planning problem is presented to better introduce the problem. Next,
in Section 4.3, the structure and content of the models that have been used to solve the cockpit crew transition
planning problem are presented and finally, in Section 4.4, the main assumptions made within the research are
presented and discussed briefly.

4.1. Context
In this section, the context of the cockpit crew transition planning problem within the crew planning process is
presented. The research will focus on this subproblem of the long-term cockpit crew planning problem as this is
the largest and most complex problem of the three subproblems. As literature regarding this subproblem is limited
and the problem is very complex, a local search method will be applied to solve the problem.

In Figure 4.1, a high-level overview of the full crew planning process is given. The input for the long-term crew
planning problem is a flight schedule or fleet plan coming from the network department. Using this input, the
necessary amount of pilots at each crew position (which is a combination of rank and aircraft type) and point in
time can be determined using the relevant employment rules of the airline. Also, the supply of pilots has to be
determined from the current workforce. In case the demand and supply of pilots at different positions do not
match, measures have to be taken to resolve these shortages or surplusses. This can be done in various ways,
but the most used method is to plan transitions for pilots from one function to another. The output of the crew
planning problem is then a set of pilots that matches the planned demand as closely as possible, at minimal cost.
These pilots can then be scheduled to the flights in the flight schedule and the flexible demand. This problem is
solved in the crew scheduling problem. Afterwards, any disruptions to the schedule that arise close to or on the day
of execution are resolved in the crew recovery process.

Network scheduling Crew planning Crew scheduling Crew recovery

Figure 4.1: High-level overview of the airline crew planning process.

In his research into reserve crew pairings, Janssen (2018) defined the various parts in the crew planning process
together with the problems in the different parts in more detail, as can be seen in Figure 4.2. The problems within
the crew planning domain are defined to be: manpower sizing per crew position, transition planning, training
planning and margins (or premises) for illness, operational disturbances and more.

For the transition planning problem, the input is a demand (both fixed demand and demand relative to the crew
strength in a position) per position and time, and a current pilot workforce; the supply. These have been deter-
mined in the other three parts of the crew planning problem. From the input, the transition planning problem can
determine the balance per crew position and date. This balance is created by subtracting the demand for pilots
from the supply and shows any shortages and surplusses in crew. Now, the goal is to plan transitions and hire re-
cruits in order to minimise both shortages and surplusses at minimal cost. These transitions minimise shortages
by promoting a pilot from his current crew position to a new position.

As the transition planning problem is a complex problem, current solution methods using commercial software of-
ten take hours to even days to solve the problem, which makes it difficult to analyse the effects of different choices,

23
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Figure 4.2: Detailed overview of the airline crew planning process (Janssen, 2018).

scenarios and strategies. The proposed research, therefore, aims to develop a model that is able to solve the transi-
tion planning problem in a limited time. This gives airlines the option to analyse the impact of different choices on
the crew plan.

4.2. Simplified Problem

In order to create a better understanding of the transition planning problem, as small and simplified problem will
be presented and solved in this section. In Figure 4.3, the promotional hierarchy for this simplified problem can
be found. The simplified system features two aircraft types: one flying in Europe only (EUR) and one flying inter-
continental (ICA). As can be seen, the problem consists of 5 different crew positions with for each position (except
for captain ICA) two possible positions to transition to. There is one direct-entry position (second officer ICA),
which means this crew position is increased by hiring recruit from outside the airline. For all possible transitions
(depicted by arrows), the binding period is pictured next to the arrow. This value shows how long a pilot has to be
in his current function to be able to be awarded the transition to the other position. Next to the binding period de-
fined between two functions, binding from the date the pilot started at the airline are in place for various positions.
For transitions to first officer (FO) ICA, the pilot has to be in service for 5 years, for transitions to captain (CP) EUR,
this period is equal to 6 years, and for transitions to CP ICA even 9 years of service are required.

The first step in making a crew plan is to construct the current balance. This process starts with obtaining the nett
demand (i.e. the crew demand for flying the scheduled flights) as can be seen in Figure 4.4. This nett demand is
then increased with demand for a number of factors such as crew vacation, training requirements and illness to
come up with the gross demand (Figure 4.5). The various factors contained in the gross demand are explained in
more detail in Section 5.2.

On the other side of the balance is the supply of pilots to the available crew positions. This supply can be calculated
from the number of pilots in a position multiplied with their full-time equivalence percentage (FTE). This results in
a crew strength per position and time as can be seen in Figure 4.6. By now subtracting the gross demand from the
supply of pilots, the balance per crew position and time is obtained, as shown in Figure 4.7.

As the current balance features a number of shortages in the various positions, measures have to be taken to re-
solve these. One of such methods is to award transitions to pilots from one position to another. However, these
transitions are subject to a number of rules that complicate the problem greatly.

The first step, in this case, is to resolve the shortage at the captain function on the EUR fleet for September 2019.
The airline is not able to choose which pilot will be awarded a transition to the EUR fleet at that moment directly.
Instead, the most senior pilot with a valid bid will be awarded the transition automatically. In this case, the most
senior pilot is currently a first officer on the ICA aircraft type. He is awarded a transition to CP EUR starting in
August 2019 as in the first month after a transition, a pilot is being trained for the new function and is unable to
contribute to the supply. After the first month, the pilot will contribute to the supply, but because this pilot also
brings in extra demand for holidays, training and more, the demand will go up as well. The balance for CP EUR,
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Figure 4.3: Schematic of the hierarchic promotion system for the simplified problem.

Figure 4.4: Nett demand for the simplified
example problem (in FTE).

Figure 4.5: Gross demand for the simplified
example problem (in FTE).

Figure 4.6: Crew strength for the simplified example problem (in FTE).

therefore, rises 0.7 FTE and the balance for FO ICA decreases by 0.8 FTE as can be seen in Figure 4.8. This process
completes the first iteration of the model, in which an iteration is defined as one step in the construction algorithm
in which a transition or recruitment is planned. In this case, eight transitions (all from FO ICA, as this is the only
position pilots can come from in the used system) are required to resolve the shortage of 4.1 FTE in September
2019. As can be seen in Figure 4.9, these transitions have also decreased the shortages on the CP ICA later in the
planning window, but two shortages remain in the captain position on the EUR aircraft type.

With the first shortage resolved, a new option should be chosen. These options are shortages that have to be re-
solved. A rather large shortage can be found for FO EUR in September 2019. In this case, the only position a pilot
can be transitioned from is the second officer ICA position. As can be seen in Table 4.1, the next iteration is indeed
to plan a transition from SO ICA to FO EUR starting in August 2019. This, however, creates a shortage for second
officers ICA in August 2019. Therefore, the next step is to hire a recruit to this position. In Figure 4.10, the balance
after 21 transitions is shown. In this balance, the shortage in FO EUR in September 2019 has decreased by 4.5 FTE.
This shows that quite a large number of iterations is going to be required to completely resolve this shortage and
prevent larger shortages in the SO ICA position.
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Figure 4.7: Initial balance of the simplified
example problem (in FTE)..

Figure 4.8: Balance after the first iteration in the
simplified example problem (in FTE).

Figure 4.9: Balance after 8 iterations in the
simplified example problem (in FTE).

Figure 4.10: Balance after 20 iterations in the
simplified example problem (in FTE).

Table 4.1: First 21 planned transitions in the simplified example problem (full list can be bound in Table A.1).

Iteration Type Employee From To Date
0 Transition 2394 FO ICA CP EUR 2019-08-01
1 Transition 7130 FO ICA CP EUR 2019-08-01
2 Transition 9196 FO ICA CP EUR 2019-08-01
3 Transition 8049 FO ICA CP EUR 2019-08-01
4 Transition 8398 FO ICA CP EUR 2019-08-01
5 Transition 6878 FO ICA CP EUR 2019-08-01
6 Transition 0613 FO ICA CP EUR 2019-08-01
7 Transition 0223 FO ICA CP EUR 2019-08-01
8 Corrected 8294 SO ICA FO EUR 2019-08-01
9 Recruit R35 - SO ICA 2019-07-01
10 Corrected 2231 SO ICA FO EUR 2019-08-01
11 Recruit R36 - SO ICA 2019-07-01
12 Corrected 5571 SO ICA FO EUR 2019-08-01
13 Corrected 2656 SO ICA FO EUR 2019-08-01
14 Recruit R37 - SO ICA 2019-07-01
15 Corrected 1844 SO ICA FO EUR 2019-08-01
16 Recruit R38 - SO ICA 2019-07-01
17 Corrected 3165 SO ICA FO EUR 2019-08-01
18 Recruit R39 - SO ICA 2019-07-01
19 Corrected 2015 SO ICA FO EUR 2019-08-01
20 Recruit R40 - SO ICA 2019-07-01

In Figure 4.11 the final balance after 105 iterations is shown. This simplified problem results in a feasible crew plan.
Fesible, in this applicaiton, means a crew plan without any shortages. The fact that transitions cannot be chosen
completely but are partially dictated by seniority rules makes it harder to choose the optimal transition. As transi-
tion capacity for certain positions gets filled, transitions have to be moved to earlier stages. This means the balance
of other positions does not only get influenced in the future, but also in the past. These factors make the transition
planning problem a complex and complicated process that is hard to model and solve. Even for this small problem,
with 30 transition options at each iteration and 105 iterations to solve the problem, 30105 = 1.25 · 10155 possible
solutions can be created. Clearly, it is not achievable to evaluate all possible solutions and an efficient solution
algorithm has to be designed to create a solution with sufficient solution quality within a reasonable time.

In the next section, the design framework of this research will be presented, which will show what the structure and
content of the proposed model will look like.
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Figure 4.11: Final balance of the simplified example problem (in FTE)..

4.3. Research Framework
The framework that is used to test and analyse the proposed model in order to answer the research question is
shown in Figure 4.12. On the left side, the input of the research is shown. From the chosen planning window, the
promotion plan and other CLA agreements and the transition bids of pilots, a scenario is constructed. Next to this,
the current workforce is used to determine the supply of pilots. Finally, the schedule and additional demand to-
gether with the size of the different crew positions determine the gross demand for pilots per crew position and
date. From the scenario, supply and demand, the initial crew plan can be obtained. This initial crew plan is ba-
sically a zero-solution with the supply, demand and balance during the planning window without any transitions
planned.

In order to obtain an optimal crew plan, a number of methods are developed. A heuristic planning model (Chap-
ter 5) is designed that is able to plan transitions and hire recruits to improve the crew plan. To do this, the plan-
ning model uses a selection algorithm that select a transition out of the available options. Also, constraints for
the planning model are defined from CLA agreements as well as heuristic methods. Finally, an objective function
is designed that aims to capture the quality of the crew plan in a single measure by summing the relative cost of
shortages and surplusses. With this objective function, the crew plan can be evaluated and the optimal crew plan
is assumed to be the crew plan with the lowest objective function value.
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Figure 4.12: Flow diagram of the research framework for the cockpit crew transition planning problem.

The selection algorithm proposed in Chapter 6 is based on a tree-search method. In this algorithm, the different
options in subsequent iterations are placed in a tree. A number of parameters are defined that limit the search
space and thereby limit the computation time. By changing the algorithm’s parameters and the way the tree is
built, different configurations of the algorithm are developed. All of these configurations produce a different crew
plan, dependent on the size of search space and build strategy as different choices are made in the process.

In order to test the performance of the various configurations, a number of experiments are performed from which
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the algorithms can be compared. The input for these experiments consists of the supply and demand for pilots from
a major European airline for various start dates. In order to create a crew plan, all planned transitions from the start
date to the end date (a year in advance) are deleted and the selection algorithm and planning model are used to
develop a new crew plan. From these experiments, conclusions and recommendations can be made regarding the
modelling op cockpit crew planning and the research question can be answered in the conclusion.

4.4. Research Assumptions
A number of assumptions have been made to clearly scope the research and its place within the cockpit crew plan-
ning and scheduling process. The major assumptions and their implications are presented in this section while any
assumptions specific to a subproblem or model will be discussed in the relevant chapters.

• Transition planning problem is modelled after a European legacy carrier. In this reference airline, pilots have
the option to place bids on certain positions and transitions are awarded in seniority order to pilots with a
valid bid on that position.

• In cases when no bids are placed on a crew position, airlines usually assign a transition to the least senior
pilot in a certain position, based on a number of parameters. In the reference airline, however, this rarely
happend and the process of assigning the transition is quite complex. Therefore, in the model, no pilot is
transitioned to that position if no bids are placed on that position.

• Pilots are only qualified to operate on one aircraft type and cockpit position (rank).

• The only methods to resolve shortages are to schedule transitions or hire recruits. In some cases, crew plan-
ning models are able to rearrange the distribution of flexible demand, however, the focus of this research is
planning transitions only.

• The capacity for transitions is assumed to be only dependent on the maximum capacity as dictated by the
simulator availability. The actual capacity might be decreased in some cases due to the limited availability of
instructors.

• For each time period, the average supply and demand are used to determine the balance, therefore, it is
assumed that any variances within these time periods can be resolved by scheduling strategies.

• The balance values are determined in FTE. Therefore, all shortage and surplus costs are determined as a
function of the balance value only and it is assumed that the cost (shortage and surplus) is independent of
the size of the position. This means that a balance value of −1 is evaluated the same for both a position group
size of 10 FTE and 1000 FTE.
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Planning Model

In this chapter, the heuristic planning model is presented. The first step is to define the objective function used in
the model (Section 5.1) and input (Section 5.2). Next, the assumptions made in the development are discussed in
Section 5.3 and the planning process is detailed in Section 5.4. The chapter is conluded with the model output in
Section 5.5 and verification of results in Section 5.6.

5.1. Objective

The objective of the planning model is to create a feasible crew plan a number of years in advance by scheduling
transitions for pilots to different crew positions and by recruiting new pilots. In this case, feasible means no short-
ages of supply given the demand for the different pilot positions. As this is not always possible given the constraints
present within the problem (transition capacity for example), a trade-off has to be made between various param-
eters in order to obtain an optimal crew plan. An objective function has to be designed that accurately weighs all
different aspects of a crew plan which can then be used to determine the optimal crew plan.

5.1.1. Objective Function

If the only focus of the model was to create a feasible crew plan, the objective function would be developed to
minimize the total shortage in the system:

min
P∑
p

D∑
d

∣∣Bp,d
∣∣ ∀d ∈ D , p ∈ P if Bp,d < 0, (5.1)

where D is the set of months in the planning window, P the available positions within the airline and Bp,d the
balance value at position p and date d. However, this does not accurately capture the entire objective. First of all,
not all positions are equally important. This can be accounted for with the average salary of pilots in a position, or
by a manually determined weight to account for more problematic positions (for example because of key positions
in the hierarchical system). Secondly, the shortage cost is not the only factor in the problem. The goal of the
model should not be to minimise shortages at all cost, which could result in large surplusses, a very high number of
transitions and much more. Third of all, the absolute value of shortages as well as the total duration of a shortage
in a position should be taken into account. For example, a shortage lasting for six months is harder to compensate
than six isolated one month shortages. Also, when shortages start to become larger, the effort it takes to resolve this
by other measures becomes increasingly harder.

As the amount of transitions is already limited by the available capacity, the number or cost of transitions is not
incorporated in the objective function. The excess staff, however, should be penalised to a certain degree in order
to steer the model to a solution with both minimal shortages and surplusses. Therefore, a surplus cost is added
to the objective function. In addition, both the shortage and surplus are altered with an exponential factor. This
exponential factor is used as the cost of having a shortage or surplus increases non-linearly with increasing absolute
values. Furthermore, the different positions are weighted in order to capture the relative weight of the different
crew positions. Finally, the cost of shortages is further increased by multiplying each shortage with the length of
the consecutive shortage in that crew position. In mathematical form, the objective function now becomes:

min
(
Cshortage +Csurplus

)
(5.2)
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Cshortage =
P∑
p

(
wp ·

D∑
d

ln · (−Bp,d )β
−

if Bp,d < 0 ∀d ∈ D
)
∀p ∈ P (5.3)

Csurplus =
P∑
p

(
wp ·

D∑
d

(Bp,d )β
+

if Bp,d > 0 ∀d ∈ D
)
∀p ∈ P, (5.4)

where wp is the weight given to a position, ln the length of consecutive shortages in a position, and β− and β+ the
exponential factor for shortages and surplusses.

5.1.2. Parameter Value Selection

Within the scope of this research, some values are fixed while others can be analysed in a sensitivity analysis with
the goal to find the best parameter value out of a range of values. First of all, the weight of a position is set equal to
the average monthly salary of that position, thereby increasing the importance of those positions with the highest
salary. This is done as these positions are more expensive and also feature on the top of the promotional hierarchy,
this are the hardest to replace if no surplusses are available in the system. Furthermore, since the positive and
negative counterparts in the equation aim to resemble the relative importance of shortages versus surplusses, one
of those parameters can be set to 1 while the other is varied. In this case, β+ is set to 1, thereby simplifying the
shortage and surplus cost to:

Cshortage =
P∑
p

(
wp ·

D∑
d

ln · (−Bp,d )β if Bp,d < 0 ∀d ∈ D
)
∀p ∈ P (5.5)

Csurplus =
P∑
p

(
wp ·

D∑
d

Bp,d if Bp,d > 0 ∀d ∈ D
)
∀p ∈ P, (5.6)

where β+ has been abbreviated to β. With this objective function definition, only one parameter has to be altered
to change the objective function and thus the solutions generated by the model.

In the sensitivity analysis on the bet a parameter presented in Chapter 9, five different values (1,
p

2, 2, 3 and 4) are
tested on four different scenarios. As minimising the shortages is more important than minimising the surplusses,
values below 1 are not usefull and the minimum value chosen for bet a is equal to one. The maximum is chosen to
be 4 as the relative cost of surplusses with respect to shortages with higher values for β will become negligible and
the objective function almost only focuses on the shortages again. The results of the sensitivity analyse also do not
show a trend that higher β values are better.

From the results of the sensitivity analysis, it was concluded that out of the five testedβ values, a value of 2 produces
the best results. This value is therefore used in the objective function defined for the planning model.

5.2. Model Input
The goal of the planning model is to develop an optimal crew plan as determined by the objective function. Various
forms of input are necessary for this process. The input has been subdivided into four categories: supply, demand,
labour agreement rules and others.

5.2.1. Supply

The supply for a crew plan consists of the pilots currently in service. In the supply, entries are created for every pilot-
position pair, which means that pilots have multiple entries in the set if they are awarded a transition by the model.
The pilots all have different characteristics that affect their salary, usage and more. These characteristics include
the crew position, date of birth, the full-time equivalance (FTE) the pilot is working at, inservice and retirement
dates and position bids. From the given pilot characteristics, the supply (in FTE) can be calculated per time-period
and crew position. Also, the salary costs can be determined from the chracteristics of the individual pilots.

The supply is used in the model to calculate the balance per crew position and time-period. Furthermore, when
transitions are planned, the supply for that period has to be changed according to the planned transition and the
rules attached to that transition.
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5.2.2. Demand

The demand for crew comes primarily from the flight schedule for which pilots are needed to operate the aircraft.
Besides this nett demand, a number of other factors create demand on top of the nett demand and together com-
prise the gross or total demand. This additional demand originates from aspects such as pilot’s vacation, training
sessions required to keep one’s certification, unavailability because of illness, transition periods and instructor du-
ties.

After calculating the gross demand in FTE per time-period and crew position, the demand can be subtracted from
the supply to determine the balance for each time-period and position. This balance then serves as the main
input for every iteration in the planning model, as the balance dictates the next transition to be planned by the
model.

5.2.3. Transition Rules

A number of rules with regards to transitions and recruitment have been agreed between the union and airline and
written down in the collective labour agreement (CLA). When finding a pilot that is eligible for a transition to a
certain crew position, the rules dictate whether and which pilot should be awarded the transition. These rules are
thus used in the planning model to select the pilot for a chosen transition.

• Seniority: All transitions are awarded to pilots in strict seniority order. Every pilot has a seniority number,
where a lower number equals a higher seniority, in other words, the pilot with the lowest seniority number
should be awarded the transition.

• Function Binding: To prevent pilots from transitioning too often, a pilot is ineligible for a transition to a
position for a certain period depending on the origin and destination position. In this period, the pilot can
only be awarded a transition to a position if no pilot with a valid function bid without binding exists.

• Employement Binding: Similar to function binding, transitions to certain positions can only be awarded to
pilots who have been employed by the airline. This is done to ensure pilots have sufficient experience for a
certain crew position.

• Retirement Binding: In order to prevent pilots close to retirement from making an expensive transition,
depending on the contract percentage (FTE), pilots within the last period before retirement are not eligible
for a transition.

• Disappearing Fleet: When a certain aircraft type is disappearing or shrinking, surplusses in the relevant
positions can be prevented by giving those pilots priority over more senior pilots in non-disappearing fleets.

• Direct Entry: In the hierarchical system used by an airline, only a number of positions (the lowest) can be
filled by recruits while the other positions do not allow direct entry and therefore have to be filled by planning
transitions for pilots from different positions.

5.2.4. Parameters

Some other input parameters that influence the process of awarding transitions to pilots and the effect these tran-
sitions have on the crew plan include transition bids, the capacity for transitions and the various characteristics
different types of transitions have.

• Transition bids: In European airlines, pilots can make bids on the positions of their preference. Since for
all the transitions, the most senior pilot with a valid transition bid (based on the various binding rules) is
considered first, these bids can have a great influence on the origin of a pilot and therefore the resulting
balance after the transition.

• Transition capacity: The capacity of transitions to a certain position is limited by both simulator capacity
and instructor availability. These instructors often also operate as pilots in the same position, which further
increases the demand when a transition is planned.

• Transition characteristics: The transitions that have to be planned have a number of characteristics that in-
fluence the supply and demand for a certain period of time. When a pilot starts a transition, training is first
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done in a flight simulator, which means the pilot can not contribute to the supply of pilots in that crew posi-
tion. After this period the pilot will be able to fly according to his new position with an instructor present on
one of the other positions in the aircraft. Based on the type of transition, it will also take up a predetermined
part of the given capacity (TQ), based on both the origin and destination position.

5.3. Model Assumptions

In this section, the assumptions made for the planning model are presented.

Simplifications
When modelling real-life systems, often, a number of assumptions have to be made to be able to translate that
system to a mathematical model.

• The modelling time period (frequency) has been set to one month throughout the development, however,
this can be changed for the entire period but also made variable with respect to time (for instance model the
first year at one month frequency and the second year at a frequency of two months). A sensitivity analysis is
presented in Chapter 9 to study the effect of different modelling frequencies.

• All transitions are scheduled to start on the first day of the month. By doing this, the number of decision vari-
ables decreases (from 28 to 31 per month to only one) and the solution quality decreases as not all transitions
can be planned on the best date.

Pilots
Pilot behaviour influences the system in a large number of ways. A number of assumptions have to be made re-
garding this behaviour:

• Pilots do not change their transition bids. Usually, pilots are able to change their transition bids every six
months or year, however, usually these changes are not large and with a planning window of 1 year, not
applicable for the majority of the planning window.

• Planned transitions are assumed to always be carried out as planned. Transitions can be changed for a num-
ber of reasons. First of all, the date can be changed in a later stage due to circumstances. Secondly, the pilot
can get sick and thereby postpone of completely cancel the transtion. Finally, in some airlines, pilots can
decide to pass on a transition because they give priority to, for instance, a holiday. This creates disruptions to
the crew plan since a new pilot has to be found for the transitions that may not come from the same position.
However, these factors are hard to predict and are therefore not taken into account.

• Pilots do not change their FTE percentage. Pilots can decide to work more or fewer hours in a week if they de-
sire. However, since the planning horizon used in this research is relatively small, the effect of these changes
to the overall supply is not large and it is therefore not taken into account.

Recruits
When a new recruit is added to the airline, a number of assumptions regarding this recruit have to be made:

• Recruits start working at 1.0 FTE.

• The age of recruits will be set to 25.

• The retirement age of new recruits is set to be 58. However, this choice will not have any effect on the results
as the retirement age will only influence transitions a couple of years before retirement.

5.4. Process

This section describes the process used in the planning model in order to create a crew plan. Various methods that
have been applied in the model are presented and discussed.

5.4.1. Planning Model Overview

In Figure 5.1, a schematic overview of the planning model is presented in the form of a flow diagram. This diagram
shows the process of creating an optimal crew plan as defined by the objective function from start to finish. In the
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next sections, some characteristics and methodologies of the planning model will be discussed in more detail. The
blocks in this flow diagram can be described as follows:

Selection 
algorithm 

Selection 
algorithm 

Direct entry  
position?

Selection 
algorithm 

Generate new recruit

Update supply,
demand and balance

Find most senior
eligible pilot

Yes No

Check transition
capacity

Capacity limit
reached? 

No transition  
options left?

START
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FINISHED

Move back a  
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Out of options  
to move back? No eligible pilot? Transition in  

tabu list?
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PM3

PM4 PM5

PM6

PM7

PM8
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PM9
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Calculate balance
from supply and

demand

Create list of  
transition options

PM0

PM1

Figure 5.1: Flow diagram presenting the process of creating an optimal crew plan.

Calculating the balance (PM0)
From the demand for and supply of pilots, the initial balance can be determined per crew position and time pe-
riod.

List transition options (PM1)
From the balance calculated in PM0, a list of possible and allowed transition options is created. These transition
options are defined as a crew position a transition is planned to and a date. Whether transition options are allowed
is determined by some of the rules that are presented in Subsection 5.4.3.
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Selection algorithm (PM2)
In this block, the selection algorithm introduced in Section 4.3 is applied to the list of transition options determined
in PM1. The chosen option is dependent on the configuration of the selection algorithm, which will be explained
in more detail in Chapter 6.

Recruit or transition? (PM3)
In PM3, it is checked whether the crew position selected in PM2 is a direct entry position or not. If the position is a
direct entry position, the planned transition is a recruitment of a new pilot, while in other cases a transition from a
pilot in a different position has to be planned.

New recruit (PM4)
If the selected transition option is a transition to a direct entry position, it means a new pilot will be recruited and
added into the system.

Plan transition (PM5)
If instead, the selected transition option is not to a direct entry position as determined in block PM2, a transition has
to be planned for a pilot from his current position to the selected position. First, the most senior pilot with a valid
bid who is eligible for that transition has to be determined based on the constraints as defined in Section 5.2.

Transition capacity (PM6)
For each transition and recruitment, the available transition capacity has to be checked. If no capacity restrictions
exist, the transition or recruit is planned according to the assumptions presented in Section 5.3.

Updating supply, demand and balance (PM7)
If the transition or recruit that is planned, the supply, demand and balance can be updated. For the supply, the
FTE percentage of the pilot awarded a transition should be subtracted from his old position and added to his new
position from the start date of the transition onwards. The demand that is a function of the strength in a position
should be recalculated for the new strength values and added to the constant demand. Furthermore, extra demand
has to be determined for the time the pilot is in transition, as dictated by the length of the planned transition.
When the supply and demand are updated, the balance can also be determined by subtracting the demand from
the supply.

Exceptions (PM10, PM11, PM12, PM13)
A number of exceptions have to be dealt with when planning a transition or recruit. If in PM6 is was found that
there is not sufficient capacity remaining to accommodate the transition, it is moved to an earlier date (in PM9 and
PM10) as it is still desirable to resolve the shortage. This process is continued until a transition date is found where
there is sufficient capacity, or until the model reaches the beginning of the planning window (which is checked in
PM11). When planning a transition, it should again be checked which pilot is the most senior eligible pilot for that
transition after the date has been changed as this pilot could also have changed. Furthermore, if no eligible pilots
exist (PM13), or if the proposed transition is featured in the tabu list (PM12), the option is discarded and the next
transition option is selected by the selection algorithm.

Finalising the model (PM8, PM14)
There are two ways the model can be terminated. When a feasible crew plan is reached in which no shortages exist,
the algorithm is finalised in PM8 after recalculating the balance. In other cases, the algorithm reaches a point at
which shortages still exist, but no transition options yield a valid transition (PM14). In that case, the algorithm will
stop after trying to select the next option and finding out no options are left.

5.4.2. Local Search Algorithm

The planning model employes a local search technique to find the optimal crew plan. The model starts with an
initial solution based on the current supply and demand of pilots. The model then moves from solution to solution
by applying local changes, defined in the neighborhood of the solution. In this case, the neighborhood is defined
as all solution with one additional transition or recruit compared to the current solution, as well as all solutions in
which one transition is changed compared to the current solution. As this neighborhood is quite large, the search
space is made smaller through a number of methods that are presented in the next subsections.
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5.4.3. Rule-based

As the number of options at each iteration is very large (the amount of positions multiplied with the number of
time periods in the planning window), a rule-based algorithm is applied to decrease the number of possibilities
and thereby improve the computation time.

Recruit or transition
Different strategies have to be followed when scheduling a transition to a direct-entry position as opposed to an-
other position. For direct-entry positions, a new recruit is generated and the transition can be planned. For other
positions, however, the most senior pilot with a valid bid has to be found and not only the supply and demand
of the destination position change but also those of the previous position of the pilot. This possibly creates more
shortages in that position. This application of this rule can be found in Figure 5.1 in PM3.

Only shortages
As discussed in Section 5.1, the main objective of the planning model is to construct a crew plan without shortages.
Therefore, the focus of the model is to resolve these shortages and ignore the surplusses. This, however, does not
always mean that transitions will never be planned in time periods with a positive balance, as factors such as the
transition time and capacity influence the transition date. This rule is applied to the planning model process in
Figure 5.1 in PM1.

Transition date
Transitions generate additional demand in the first period after the transition date for training sessions. Because of
this, transitions are not planned in the time period of the shortage if the balance is lower than a certain threshold
(after sensitivity analysis of the threshold, a balance value of −0.1 for a time period of one month was chosen) as
additional supply will be smaller than the extra demand. Instead, if the balance is lower than the threshold, the
transition is planned one month earlier. When constructing the list of transition options in PM1 in Figure 5.1, this
rule is immediately applied to the options.

Pilot selection
In order to find the most senior, eligible pilot for a transition to a certain position, a number of steps have to be
taken. First of all, the most senior pilot, without binding of any kind with a current bid on the open position is
found. Since pilots in the disappearing fleet can be given priority over other pilots, the most senior pilot that is free
of binding and in a disappearing fleet is found and both transitions are planned and evaluated independently in
order to choose the best transition. If no pilots with a current bid on the open position are free of binding, the most
senior pilot who is bounded under the function binding rules is found and this pilot is awarded the transition. It is
important to note that only pilots who are bounded to their current position are taken into account. Pilots who are
bounded by their employment start date or retirement date are never allowed to be awarded a transition. This rule
applies to block PM5 in Figure 5.1.

Transition capacity
Since transition capacity is limited because of a number of reasons (such as simulator capacity and instructor
availability), the capacity for a certain transition should be checked prior to planning that transition. However, if
no capacity is available, the shortage should not be to disregard as the goal of the planning model is to resolve all
shortages. Instead, when no capacity is available to resolve a shortage, the transition will be moved a time period
back (earlier in time). This increases the salary cost as the pilot is promoted earlier. The shortage will only be
disregarded if the beginning of the planning window is reached and no possible transition date is found. This rule
is applied in the planning model process in blocks PM6, PM9, PM10 and PM11.

Disappearing fleet
As mentioned before, pilots in the disappearing fleet can be granted priority over other pilots when awarding tran-
sitions. Large surplusses can occur in disappearing fleet since pilots often cannot be transitioned out of the crew
position as fast as necessary. However, one thing to be careful of is that even though transitions from disappearing
fleet can seem favourable at first, shortages in those aircraft types should be avoided as this would require addi-
tional transitions to that aircraft type. Therefore, the transition to a disappearing fleet is disregarded when it creates
(additional) shortages in that position. When selecting the most senior eligible pilot in PM5 in Figure 5.1, this rule
is applied.
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5.4.4. Tabu Search

Tabu search is a local search metaheuristic previously applied to the cockpit crew planning problem by Thalén
(2010). Because of the sneiority rules in the problem, it often happens that the models is trapped in a loop where
pilots are awarded transitions between two crew positions continuously as every transition creates a shortage in
the other position and vice versa. The core idea of the algorithm is, therefore, to block certain moves in order
to steer the algorithm to new solutions and prevent getting stuck in a local optimum. Glover (1997) argues that
intelligent choices are better than random choices, which is hard to argue. As Glover states: "Efficiency and quality
can be greatly affected by using intelligent procedures for isolating effective candidate moves, rather than trying to
evaluate every possible move in a current neighbourhood of alternatives." This is even more applicable when the
neighboorhood of possible choices is large and difficult to examine, both of which are the case in the cockpit crew
planning problem as many transitions can be scheduled at each iteration and the added benefit of a transition is
hard to quantify directly.

A simple application of the tabu search principle is to store every previous solution in a tabu list and prohibit
the algorithm from returning to these solutions. However, this method is inefficient as it only prohibits the exact
solutions previously evaluated. Instead, a tabu list is created with in it the inverse of the moves performed in the
past iterations. This is done as it prevents the model to plan transitions between two crew positions continuously, as
in this case, the supply will remain the same in both positions while the demand increases because of the planned
transitions. This is an undesired effect as it does not improve the crew plan and takes up capacity for transitions to
other functions within the same aircraft type.

The tabu search thus prevents inverse transitions between specific crew positions and any date for a number of
iterations. This technique is implemented in the planning model process in block PM12 in Figure 5.1. The length of
the tabu list (i.e. for how many iterations previous transitions are blocked) is decided through a sensitvity analysis
in Section 9.4 and is equal to 10.

5.5. Model Output

In this section, the various outputs of the planning model are presented and explained, these outputs are used by
airline crew planners to evaluate the crew plan and if necessary, make changes to the system.

5.5.1. Key Performance Indicators

The first and most important KPI is the objective function as defined in Section 5.1. This objective function calcu-
lates the cost of shortages and surplusses in supply in the system. It has been defined in order to provide a single
parameter to assess the quality of a given solution. To calculate the objective function, the balance of demand and
supply have to be determined and the salary cost per crew position has to be known. Apart from the costs captured
in the objective function, more cost factors are present in the system.

The largest part of the cockpit crew cost is the crew salary. This cost is based on the pilot’s current position, working
percentage, age and number of years in service. The surplus cost used in the objective function definition is actually
part of the salary cost. For the objective function, it is not necessary to use the total salary cost as the largest part of
this cost is simply needed for the airline to operate the planned flight schedule and only the surplusses should be
minimised.

Part of the cost for transitions comes from additional demand for pilots and instructors for the transitions. This
cost is, however, already captured in the salary cost. Another part can be calculated separately based on the cost
for the different sessions in the planned transitions (this includes the cost for simulators, flight hours, etc.).

The final aspect of the crew plan cost is the shortage cost. This shortage cost is quantified relative to the cost of
surplusses in the objective function.

The objective function is used in the model to assess the quality of the evaluated solutions. The other KPI’s can be
used, if necessary, to perform a deeper analysis into the quality of the solution.
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5.5.2. Balance

An important output for an airline is the balance showing the shortages and surplusses at the different crew posi-
tions for different months, as can be seen in Figure 5.2. The model uses the objective function previously defined
to assess the quality of the balance in a single parameter. However, in some cases the balance is needed to obtain
more information about the proposed solution.

By looking at the balance, crew planners can assess any problems in the crew plan. In the provided example, high
surplusses can be found in the first two months of the planning window. This might urge the crew planner to shift
budgets between months. In later months, shortages can be found for a number of positions. If these shortages
cannot be resolved with transitions and/or recruitments, other methods have to be applied to resolve the shortages
as it is of vital importance to an airline to resolve all shortages. However, these additional measures that can be
performed from an analysis of the balance are outside the scope of this research and, therefore, not incorporated
into the model.

Figure 5.2: Example of the crew plan balance output.

5.5.3. Transitions

In terms of transitions, two important outputs are generated. The first is a list of all planned transitions. This list
includes the employee id of the pilot that is awarded the transition, the position the pilot was previously on, the
new position he is transitioned to and the start date of the transition, as can be seen in Table 5.1.

The second part is a table showing the used transition capacity per fleet and month (Figure 5.3). When comparing
this to the maximum capacity as defined by the airline, possible bottlenecks can be identified. If for example the
total transition capacity is used for an aircraft type for a long period of time, it might be profitable to increase the
capacity for that aircraft type. It also serves as a verification tool to see if the capacity limitations are implemented
correctly by checking if no values rise above the planned capacity.

Figure 5.3: Utilised transition capacity per crew position and date combination (rounded to the
nearest integer) as well as the maximum capacity.

5.6. Verification

In this section, the planning model is verified using the simplified example problem previously presented in Sec-
tion 4.1. For a number of steps in the model, the calculations and choices of the model is evaluated manually to see
that everything is done as it is supposed to be.

The gross demand and supply have already been presented in Section 4.1. From these two tables, the balance at
each crew position and date can be calculated as:

Bp,d = Sp,d −Dp,d , (5.7)

where Bp,d is the balance value at position p and date d , Sp,d the supply of pilots at the same position and date and
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Table 5.1: Sample of planned transitions output.

Index Employee Seat from Seat to Date
23 5172 SO C FO C 2018-01-01
28 2649 FO F FO C 2018-01-01
36 5420 SO D FO A 2018-03-01
46 5760 CP C CP D 2018-03-01
73 2526 FO F FO B 2018-03-01
88 5513 FO C CP C 2018-03-01
95 5842 CP A CP B 2018-04-01
105 5591 SO C FO D 2018-02-01
114 5259 CP C CP D 2018-02-01
116 2539 FO F FO C 2018-01-01
120 5198 CP D CP C 2018-01-01
189 7944 - SO D 2018-05-01

Table 5.2: List of transition options used for verification of the planning
model.

Date Position Position weight
0 2019-09-01 CP EUR 24
1 2019-09-01 FO EUR 14
2 2019-09-01 SO ICA 11
3 2019-10-01 CP EUR 24
4 2019-10-01 FO EUR 14
5 2019-10-01 SO ICA 11
6 2019-11-01 CP EUR 24
7 2019-11-01 SO ICA 11
8 2019-12-01 CP ICA 29
9 2019-12-01 CP EUR 24

10 2019-12-01 SO ICA 11

Dp,d the gross or total demand. Doing so yields the balance as shown in Figure 5.4, which is identical to the balance
already shown in Section 4.1.

Figure 5.4: Calculated balance for the example problem.

From this balance, the list of transition options can be constructedbased on the rules defined in Section 5.4. For
the first iteration, the tabu list is empty and all shortages appear in the options list, which is ordered according to
the sorting method presented in Section 6.1. As can be seen in Table 5.2, the list is ordered by date first, and by the
salary cost for the crew positions second.

The first transition option is selected and planned if possible. In this case, this means a pilot is awarded a transition
to CP EUR in September 2019. However, since the balance value is lower than −0.1, one of the rules in the planning
model dictates the transition should be planned a month earlier, in August 2019. The next step is to find the most
senior pilot with a valid transition bid on this position. In Table 5.3, the ten most senior pilots with a function bid
on CP EUR are shown. If the first pilot shown conforms to all binding rules, the transition can be awarded to this
pilot. If not, the next pilot should be evaluated, until a pilot with a valid function bid is found.

Table 5.3: List of pilots with a bid on CP EUR, sorted by seniority (first 10 pilots shown).

Employee Position FTE Seniority Inservice Position start Retirement Bids
0671 FO EUR 0.50 338 01/28/1987 01/26/2009 01/07/2023 CP ICA/EUR - FO ICA
2394 FO ICA 1.00 456 10/25/1993 03/28/2006 09/06/2024 CP ICA/EUR
8802 FO ICA 0.80 567 11/29/1985 01/23/2004 01/25/2022 CP ICA/EUR
7130 FO ICA 1.00 593 01/13/1995 11/09/2014 05/31/2025 CP ICA/EUR
7105 FO EUR 0.50 638 04/24/1995 12/12/2001 04/15/2030 CP ICA/EUR - FO ICA
9196 FO ICA 0.67 714 12/04/1995 11/10/2005 03/14/2036 CP ICA/EUR
8049 FO ICA 0.80 820 10/24/1994 10/19/2006 02/14/2027 CP ICA/EUR
8398 FO ICA 0.80 826 01/02/1995 01/02/2016 10/30/2029 CP ICA/EUR
6878 FO ICA 0.80 885 08/26/1996 07/07/2007 08/13/2029 CP ICA/EUR
0613 FO ICA 0.67 922 12/02/1996 04/06/2008 05/03/2024 CP ICA/EUR

The first pilot in the sorted list of pilots with a bid on CP EUR, presented in Table 5.3 is currently operating as a
first officer at the European fleet, at 0.5 FTE. For the transition from FO EUR to CP EUR, a number of binding rules
apply. As transitions from FO EUR to CP EUR are not allowed in the designed promotional hierarchy, this first pilot
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can therefore be disregarded. The second pilot in the list is currently employed as a first officer on the ICA fleet and
working full time (1.0F T E). The transition from FO ICA to CP EUR is allowed, with a binding term of 3 years. Since
the pilot has been at his current position since 2006, this poses no problem at all. The pilot should also be in service
at the airline for 6 years to be eligible for a transition to CP EUR. As the pilot started at the airline in 1993, this also
poses no complications. Finally, for pilots operating full time, to be eligible for a transition, their retirement date
should be at least 2.5 years in the future. With a retirement date in 2024, the pilot also complies to this rule. The
second pilot in the list is thus eligible for the transition to CP EUR in August 2019 and this transition can now be
planned.

With the required transition found, the transition capacity should be checked. As this is the first transition to be
planned in the simulation, no transition capacity is used yet and all values in Figure 5.5 are therefore equal to 0. As
the selected transition from FO ICA to CP EUR requires 0.5 TQ, the updated transition capacity in Figure 5.6 shows
a value of 0.5 for the EUR fleet in August 2019.

Figure 5.5: Used transition capacity prior to the selected transition. Figure 5.6: Used transition capacity after the selected transition.

Figure 5.7: Updated supply of pilots (in FTE). Figure 5.8: Updated gross demand for pilots (in FTE).

Following the transition, the supply and gross demand are recalculated, as can be seen in Figure 5.7 and Figure 5.8,
respectively. With the new supply of pilots and gross demand calculated, the updated balance can be determined
using Equation 5.7. This results in the balance in Figure 5.9. A comparions with the second balance presented in
Section 4.1 (Figure 5.10) shows both balances are identical.

Figure 5.9: Manual verification of the balance
after the first iteration in the example problem.

Figure 5.10: Balance after the first iteration in the
simplified example problem (in FTE).

The presented process for manually verifying the model is repeated for a number of iterations. From this, it can be
concluded the the planning model meets the requirements.



6
Selection Algorithm

In order to obtain a solution for the crew planning problem using the planning model presented in Chapter 5, a
selection algorithm is required that chooses which transition to plan at each iteration in the construction algorithm,
constraint to the rule-based tabu-search planning model. The goal of this selection algorithm is to find a solution
with sufficient quality in a limited time. In this chapter, some possibilities of selection algorithms will be discussed
after which the results of these methods are presented in Chapter 7. The investigated selection algorithms are based
on a tree search method as already discussed in Chapter 4.

6.1. Algorithm Design

The local tree search is designed to be able to make a trade-off between an exhaustive search method, greedy and
naive algorithms. The method creates a tree of options with a potential based on the results a number of iterations
later. Furthermore, a search width and depth are defined as the number of options at each level that are taken into
account and the number of iterations the tree evaluates, respectively. To bette explain the algorithm, Figure 6.1
shows an example of a local tree search with a width of 2 and depth of 3. Here, the current state or solution is shown
on the top of the tree. Since the width is equal to two, 1 and 2 are the two options evaluated in the tree search. A
depth of 3 means this process is repeated three times as shown in Figure 6.1. The choice to select either option 1
or 2 is determined by the the potential calculated using the objective function value of the lowest level in the tree
under that option, in other words, the potential of 1 is determined using 111,112,121,122 and the potential of 2
is determined using of 211,212,221,222. If option 1 has the best potential, the tree is expanded below 1 with two
more options for all bottom options: 111,112,121,122 and the part of the tree starting with a 2 is discarded. For
calculating the potential, several strategies can be used, which will be discussed in the next subsection.

When setting the width and depth parameters to specific values, some well known methods can be replicated. An
exhaustive search method is creating using a width =∞ and depth =∞), while a greedy algorithm is created using
width =∞ and depth = 1. Finally, a naive selection algorithm is created using width = 1 and depth = 1. By changing
the parameters for the tree search (width and depth), a trade-off between the search space, solution quality and
computing time can be made.

6.1.1. Determining Potential

For calculating the potential of different options in the search tree, two options can be employed. The first strategy
is to use the average of the lowest iterations objective function values as the potential of the highest option. In the
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Figure 6.1: Visual example of the local tree search method with width = 2 and depth = 3.
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example in Section 6.1 this means the potential of option 1 is determined as the average of the objective function
values of 111, 112, 121 and 122. In mathematical form, this can be represented as:

Px = 1

Ymax ·Zmax
·
( Y∑

y

Z∑
z

Ox,y,z

)
(6.1)

A different strategy is to use the minimum of those same options. In this case, the potential can be determined
as:

Px = min
(
Ox,y,z ∀ y, z ∈ Y , Z

)
(6.2)

Using the average to determine the potential is quite conservative. The other strategy, to use the minimum, is
a more aggressive approach as it potentially reaches better solutions because of this strategy. It, however, also
increases the chance to get stuck in a local optimum as the potential is only determined by one option.

In order to compare the two methods, a number of small tree search configurations have been used to solve differ-
ent scenarios. The objective function is then normalized with respect to the naive selection algorithm’s objective
function. The resulting values can then be compared between the two strategies. This is done in Figure 6.2 which
shows a box plot of the relative performance with respect to the naive selection algorithm of the two methods. From
the plot, it can be seen that the minimum-approach is a more aggressive method, even though the mean of the two
methods is almost identical, the spread of the minimum-approach is a lot larger (a spread of 0.13 for the mean-
approach and a spread of 0.31 for the min-approach). As a stable solution is better suited for comparing different
scenarios and strategies, the mean-approach is chosen as the best approach for this research.

Figure 6.2: Box plot showing the spread of objective function values from 18 different crew plan
scenarios (constructed from the reference airline’s data) for the average and minimum tree

search method.

6.1.2. Sorting Options

As the number of options evaluated in the tree search method can be changed with the width parameter, is has to
be determined which of the available options is used in the method. This is done by sorting the available options
based on rules which can be defined following expert knowledge of the process and behaviour of the system. Then,
in the tree search method, the width parameter determines how many of the first available options are evaluated
in the tree.

A number of sorting options have been evaluated by two different variations of the tree search method. By looking
at the number of times a certain option is chosen, as can be seen in Figure 6.5, the sorting method where the first
couple of options are chosen the most can be seen as the best sorting option.

There are a number of parameters that can easily be used to order the possible transition options. First of all, the
date of the transition option can be used. Furthermore, the options can be sorted by the balance value (where
higher shortages are solved first) and the minimum balance in that position (again, higher shortages are solved
first). Finally, the options can be sorted by the same position salary cost as used in the objective function calcula-
tion. Two parameters are used in every algorithm with a primary and secondary sorting parameter. Furthermore,
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Table 6.1: Performance of various naive selection algorithms.

Abbreviation Primary Secondary Tree Search (10,2) Greedy (∞,1) Average
dpb Date Position min. 24.94% 19.42% 22.18%
db Date Balance 21.67% 19.58% 20.62%
ds Date Position weight 24.56% 24.92% 24.74%
pbd Position min. Date 21.67% 19.58% 20.62%
bd Balance Date 21.67% 19.58% 20.62%
sd Position weight Date 21.67% 19.58% 20.62%

the date should always be used in the algorithm as the first shortages are the most important to resolve and can
potentially also resolve later shortages. This results in six possible sorting methods that are evaluated on the greedy
selection algorithm (width = ∞, depth = 1) and a tree search solution method with a width of 10 and depth of
2.

In Table 6.1, the performance of the different sorting methods is presented. The first two values show the percentage
of the iterations for which any of the first three options were chosen for the two chosen solution algorithms (a
greedy algorithm and a tree search with a width of 10 and depth of 2). The third value is the average of the first
two and is used to select the best naive selection algorithm. As all sorting options with the date of the shortage as
the secondary parameter score identical results and also the same as the second sorting option, these last three are
disregarded.

For the remaining three sorting options, detailed results for the two solution methods are shown in Figure 6.3
and Figure 6.4. In these figures, the cumulative distribution of option choices have been plotted. This means
the plot show how many times that option or a higher ranked option are chosen in the solution method. The main
difference for the tree search method is the performance of the ′db′ option that performs worse compared to the
other two. In the greedy solution, the option that uses the position weight performs significantly better than the
other two. As this parameter is also used in the objective function equation, sorting the different shortages based
on this parameter and thus solve the shortage with the highest salary cost first is the best option.

Figure 6.3: Cumulative distribution of option choices in the (10,2) tree search for three of the
naive selection algorithms.

6.2. Naive Selection Algorithm

As mentioned before, the parameters of the tree search method can be set in such a way that the method replicates
other algorithms. One of these in the naive selection algorithm which assumes that the best option can be deter-
mined using prior knowledge. By setting the width and depth of the tree search to 1, the algorithm will assume
that the sorting done in the tree search method is accurate enough to blindly select the first option and plan the
associated transition.

As in this case only one option is evaluated at each iteration and no potential has to be calculated using later
iterations, it is to be expected that the computation time of the naive selection algorithm will be very low.
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Figure 6.4: Cumulative distribution of option choices in the greedy solution for three of the
naive selection algorithms.

6.3. Greedy Algorithm

The greedy algorithm is a heuristic that aims to make the local optimal decision at each iteration. In this specific
case, it aims to find and plan the transition that has the greatest direct impact on the objective function value. As
mentioned before, it can be replicated by a tree search method with a width of∞ and a depth of 1. It only looks at the
objective function value after one iteration instead of evaluating all options until the end (as an exhaustive search
method does) and, therefore, produces solutions many times faster. However, a drawback of a greedy algorithm is
that is has a high chance of finding a local optimum as opposed to the global optimum. In a lot of cases, this might
not be the best strategy as an option that is the best local choice can end up creating bottlenecks, such as capacity
restrictions, in later stages.

In Figure 6.5, the number of times a certain option was chosen in the greedy selection algorithm is presented,
where the order is determined by the selected sorting method. Furthermore, Figure 6.6 shows the progression of
the objective function value of the greedy algorithm versus the best random solution out of 25 independent runs for
the random selection algorithm. It can be seen that the greedy solution makes significantly larger improvements to
the objective function in the first stage of the solution process. This can be explained by the fact that the algorithm
selects the option with the largest improvement as the optimal transition option. After about a quarter of the
number of iterations in the greedy algorithm, the objective function already drops below the best random solution,
after which only small improvements to the objective function are made for a while. The algorithm continues to
search for a better solution but instead, the objective function only rises until eventually no options are left.

Figure 6.5: Histogram of the chosen options in the greedy algorithm (order based on the selected sorting method).

6.4. Shortest Path Algorithm

The local tree search provides a method in which a search space can be defined using two parameters and the best
solution in this search space can be found. However, the design of the tree search makes it impossible to select a
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Figure 6.6: Objective function value progression for greedy selection algorithm and
best random solution for a single scenario.

different path once a choice for a certain option is made and therefore potentially gets trapped in a local optimum if
the depth of the configuration is not large enough. Also, the tree search method always evaluates all options in the
tree. With an increasing tree size, this will greatly increase the required computation time eventhough sometimes
it might be clear that a certain path is not improving the solution and does not have to be evaluated. A variation of
the tree search selection method that aims to prevents this is the shortest path algorithm.

6.4.1. Search Strategy

The shortest path algorithm is an vartiation of the tree search method based on Dijkstra’s algorithm (Dijkstra, 1959)
for finding the shortest path between two nodes. It picks the unvisited node with the lowest distance to the origin at
every iteration, then calculating the distance through that node to all unvisited neighbours and finally updating the
neighbour’s distance if it is smaller than the current distance. The algorithm can be adjusted to the crew planning by
using the objective function value as the distance from the origin and creating neighbours as the available transition
options at an iteration.

An example of the algorithm is given in Figures 6.7 - 6.12. From the initial balance, a number of neighbours are
created by planning the available transitions and calculating the resulting objective function value (Figure 6.7). The
initial node is now visited and turns red. For the two created neighbours, the objective function value is determined
and stored and they are marked as unvisited. In Figure 6.8, the unvisited node with the lowest objective function
(in this case, option 2) is selected and expanded by planning new transition options, which now results in three
unvisited nodes. In the next iteration (Figure 6.9), the best unvisited node (again option 2) is again expanded,
creating 4 available options. This process is repeated until no unvisited nodes are available and the best solution is
then the node with the lowest objective function value.

6.4.2. Search Restrictions

The computational time of the proposed algorithm will quickly increase when the algorithm starts looking for al-
ternatives when a single path has been solved to completion and is unavailable for further exploration. Therefore,
three search restrictions have been implemented to the problem to limit the computational time.

• Width
Similar to the local tree search method, the width is defined as the number of options (or neighbours) to be
evaluated from each node. In the visual example of Figures 6.7 - 6.12, the width is equal to 2, since for each
node, two options are evaluated.

• Height
Even with the width of the algorithm restricted, the algorithm is able to look back hundreds of iterations to
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Figure 6.7: Visual representation of the
local shortest path algorithm (step 1).
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Figure 6.8: Visual representation of the
local shortest path algorithm (step 2).
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Figure 6.9: Visual representation of the local
shortest path algorithm (step 3).

5

1 2 3 4

Figure 6.10: Visual representation of the
local shortest path algorithm (step 4).
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Figure 6.11: Visual representation of the
local shortest path algorithm (step 5).
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Figure 6.12: Visual representation of the
local shortest path algorithm (step 6).

explore all possible transitions and find a better solution. In order to prevent this, the height parameter re-
stricts the number of levels the algorithm is allowed to go back to search for unvisited nodes. In the algorithm,
the level of a node is defined as the distance, or number of iterations, from the initial node or origin. This pa-
rameter is similar to the depth parameter defined for the tree search method, but because the orientation
of the search is the other way around (the tree search method looks down to determine the potential of the
option while the shortest path algorithm looks up to find the best, unvisited node), a different name is used.
As an example for the restriction, in Figure 6.12, a height parameter of 1 would mean only options 1 to 5 are
allowed, while options 6 and 7 are prohibited.

• Relative distance
With the width and height defined, the search space of the algorithm is already a lot smaller. However, the
amount of available options can still increase to large numbers which in turn greatly increases the compu-
tational time. Therefore, a final restriction is related to the ’family’ of the available nodes. This means that
the availability of nodes is also determined by nodes they originate from. With a relative distance of 2, only
nodes that have the same origin two levels above the lowest level are allowed. In Figure 6.12, this means only
options 3, 4 and 5 are allowed since options 1 and 2 do not share the same relative at the second level.

6.5. Selected Configurations

In order to test the performance of the proposed solution methods, different configurations of the defined param-
eters and search techniques will be tested in the experiments in Chapter 7. First of all, the two presented special
cases of the tree search method (the greedy algorithm with a width of ∞ and a depth of 1) and the naive selection
algorithm (with a width and depth of 1) are selected.

For the standard tree search method, which searches for the best transition option in a tree where the size is defined
by the width and depth parameter, four configurations will be tested. First of all a baseline configuration (width = 2,
depth = 2), secondly a configuration with a specific focus on width (width = 6, depth = 2), the third is a configuration
with a specific focus on depth (width = 2, depth = 5) and finally a configuration focussing on both (width = 3, depth
= 3). These configurations were selected as a variety of focus point for the tree search will give more information
on the best strategy to use for solving the problem. Furthermore, the configurations where selected to have a
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computation time within the range set by the naive selection and greedy algorithm’s computation time.

Similar to the configurations selected for the standard tree search method, a selection has been made for the
shortest path algorithm by looking at the computational time and constructing configurations with different fo-
cus points. First of all, the relative distance will be fixed at the height parameter plus one. This means the options
have to come from the relative node at the first unavailable level. The chosen configurations include a base config-
uration (width = 2, height = 2), a configuration with a specific focus on width (width = 8, height = 2), a configuration
with a specific focus on height (width = 2, height = 6) and a configuration focussing on both (width = 3, height = 4).
These configuration will be evaluated in the experiments in Chapter 7 alongside the tree search configuration, as
well as the naive and greedy algorithms.
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Experiments

This chapter presents the experiments performed in order to assess the performance of the different selection
algorithms designed in Chapter 6. In Section 7.1 the experiment set up is presented, afterwards the results of the
experiments are discussed in Section 7.2 and finally, the results are validated in Section 7.4.

7.1. Experiment Design
In this first section, the design of the experiments is discussed. This includes the method used to analyse and assess
the performance of the various models, the scenarios constructed for the experiments and the models tested in the
experiments.

The goal of the experiments is to test the performance of the ten selected selection algorithm configurations. To
do this, the configurations are used to solve ten different scenarios and the parameters of the best found solution
are stored for every simulation (100 simulations in total). From these solutions, the performance of the various
configurations can be assessed and recommendations can be made regarding the best configuration for the cockpit
crew transition planning model.

In order to compare the objective function values over the different scenarios and models and to be able to draw
a conclusion from the performance of the different methods, the objective function is scaled using min-max nor-
malisation. This means that the objective function is scaled to a value in the range from zero to one, where 1 is the
highest objective function and 0 the lowest objective function for that scenario. This is done through the following
equation:

x ′ = x −xmi n

xmax −xmi n
(7.1)

7.1.1. Scenarios

As discussed before, the development of the models is performed for a planning window of 1 year and a modelling
frequency of 1 month. This means the scenarios will consist of 12 dates on which transitions can be planned. By
selecting different starting dates and constructing datasets from the available data by disregarding transitions after
the chosen date and calculating the supply and demand, several scenarios can be constructed.

Table 7.1: Summary of the different scenarios used in the experiments.

Start date Shortages Lowest balance Initial objective function
1 01/01/2018 66 -20.2 1.448 ·109

2 01/04/2018 65 -37.7 1.060 ·109

3 01/07/2018 60 -38.6 2.390 ·109

4 01/10/2018 61 -33.3 3.555 ·109

5 01/01/2019 61 -65.4 3.762 ·109

6 01/07/2019 46 -66.8 6.894 ·109

7 01/01/2020 40 -51.2 9.812 ·109

8 01/07/2020 40 -44.9 4.222 ·109

9 01/01/2021 46 -29.8 3.022 ·109

10 01/07/2021 32 -38.4 1.878 ·109

For every scenario, simulations have to be performed for all ten selection algorithm configurations. As some of
these configurations result in high computation times (up to 1 hour), it is not possible to test the configurations on
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a very high number of scenarios. To limit to total time required for the experiments, ten scenarios have been con-
structed. In Table 7.1, a summary of the ten different scenarios is given. In this table, the amount of shortages are
all combinations of date and position that have a balance below 0, out of a maximum of 12 (dates) ·15 (positions) =
180. Furthermore, the lowest balance value is given in FTE and the objective function value is calculated using the
method as presented in Section 5.5.

7.1.2. Models

The selection algorithms that have been presented in Chapter 6 have to be tested in order to select the best method
for the cockpit crew transition planning problem. The greedy and naive selection algorithms (as found in Table 7.2)
present two of the extreme points of the tree search method with a width of ∞ and 1, respectively, and a depth of 1.
For the tree search and shortest path methods, however, several different models have been developed by changing
the two algorithm parameters. By doing this, the search space of the algorithms is changed which changes both the
computational time and the solution quality.

Table 7.2: Summary of the different configurations tested in the presented experiments.

ID Method Width Depth Height
G Tree search ∞ 1 -
N Tree search 1 1 -
T1 Tree search 2 2 -
T2 Tree search 6 2 -
T3 Tree search 3 3 -
T4 Tree search 2 5 -
P1 Shortest path 2 - 2
P2 Shortest path 10 - 2
P3 Shortest path 3 - 4
P4 Shortest path 2 - 7

For the tree search method, three models have been selected that focus on width (model T 2 in Table 7.2), depth
(model T 4) and a combination of both (model T 3) as well as a baseline model (model T 1). For the shortest path
method, the same strategy was used. A baseline model has been selected (model P1) as well as three models that
focus on width (model P2), height (model P4) and a combination of both (model P3).

7.2. Results
In this section, the results of the presented experiments are presented and discussed. In Appendix B, the detailed
results for all methods and scenarios are presented for further reference.

7.2.1. Tree Search

For the proposed tree search method, six standard configurations have been selected for the experiments. The first
two are special cases of the tree search method in the form of the greedy algorithm (width =∞, depth = 1) and the
naive selection algroithm (width = depth = 1). The other four configurations where selected to represent a broad
range of focus points for the tree search method while keeping the computation time between those of the naive
selection and greedy algorithms.

Greedy algorithm
The first configuration that was tested is the greedy selection algorithm that follows a steepest descent approach
and selects the transition option with the best local improvement of the objective function value at each itera-
tion. In Figure 7.1, the progression of the best objective function value of the greedy algorithm for the ten different
scenarios is plotted against the number of iterations. In the plot, the objective function value is normalised with
respect to the initial objective function value. The objective function value drops rapidly in the early stages of the
solution method. This can be explained by the usage of the steepest descent method in which the option with the
highest improvement is selected. However, the progression quickly stagnates and eventually, the model is termi-
nated since no valid options are left. From the end of the plots, it can be seen that for all scenarios, the best objective
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function value found by the greedy selection algorithm lies between 0.8% and 8.8% of the initial objective function.
As for the computation time of the greedy algorithm, the time required to solve the different scenarios ranges from
around 30 minutes up to more than 1.5 hours, as can be seen in Figure 7.3. It can also be seen that the computation
time for different scenarios has a lot of variation, which can be attributed to the number of shortages in the system
and consequently the number of iterations required to solve the problem.

Figure 7.1: Objective function progression of the ten different
scenarios for the greedy algorithm.

Figure 7.2: Objective function progression of the ten different
scenarios for the naive selection algorithm.

Naive selection algorithm
The naive selection algorithm is created as a tree search method with a width and depth of 1. This means the first
possible transition option is selected without evaluating the objective function value improvement of this option.
The computation time for both the naive selection and greedy algorithms are plotted for the different scenarios in
Figure 7.3 in order to compare the computation times of both configurations. It can be seen that the naive selection
algorithm presents a large improvement in computation time: the computation time of the naive selection algo-
rithm ranges from 2% to 6% of the greedy algorithm’s computation time. For some scenarios, the computation time
of the naive selection algorithm was below 1 minute, which provides the opportunity to perform many more simu-
lations with this configuration. Looking at the objective function value progression of the naive selection algorithm
in Figure 7.2, it can be seen that the progression is initially smaller than the greedy algorithm. However, the pro-
gression continues for a longer time and the end results do not differ much from the greedy results (ranging from
0.5% to 7.9% of the initial objective function value and an average of 4.3% versus 3.0% for the greedy configuration).
Also, the number of iterations of both methods are in the same order of magnitude.

Figure 7.3: Comparison between computation time for the ten
different scenarios for the naive selection and greedy algorithms.

Figure 7.4: Comparison between computation time for the ten
different scenarios for configurations T1 and P1.

Other configurations
The four remaining configurations represent different focus points and thus differnt search space sizes and shapes,
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created by varying the width and depth parameters of the algorithm. For model T3 (width = 3, depth = 3), the
progression of the objective function is plotted in Figure 7.6. The plot shows a progression similar to that of the
naive selection algorithm in Figure 7.2, which is to be expected as the search space (with 3 options per iteration)
is not much larger than the naive selection’s width when comparing it to the greedy algorithm’s width. The search
depth of the tree decreases the speed of the objective function decrease, as the model does not select the best
option locally (and thus the steepest descent). Instead, it chooses the option that performs best on average three
iterations later.

Figure 7.5: Box plot showing the spread of the objective function (normalized by the initial
objective function) for the tree search models.

A comparison of the scaled objective functions for the four different tree search models is presented in Figure 7.5. It
can be seen that the best performing model is the model focussing on a combination of width and depth (model T3)
with a median scaled objective function of 0.2. Meanwhile, the worst performing model is model T4 (focussing on
depth). It should be noted however that the median results of the four configurations do not differ much (ranging
from 0.2 for the best configuration to 0.32 for the worst configuration). This means that all configurations are valid
solution methods for the cockpit crew transition planning problem.

Figure 7.6: Objective function progression of the ten different
scenarios for the third tree search configuration.

Figure 7.7: Objective function progression of the ten different
scenarios for the third shortest path configuration.

7.2.2. Shortest Path Algorithm

The local shortest path algorithm only evaluates different paths in a restricted tree (similar to the tree search
method) when the objective function increases instead of decreases. Therefore, the model finds improvements
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in the objective function value quickly when the chosen options decrease the objective function. However, when a
local or global optimum is reached, the model starts to evaluate other paths in order to find better paths in the tree.
The algorithm only continues when such an improving path is found, or the full tree is evaluated. This can also be
seen in Figure 7.7 where the progression of the best objective function value of model P3 (width = 3, height = 4) is
plotted. The progression stagnates a lot and compared to the tree search model, more iterations are needed. How-
ever, as each iteration requires a lot less options to evaluate (for model T3 and P3, 27 and 3 options are calculated
and evaluated at each iteration, respectively) the shortest path algorithm is able to determine the best solution
quicker than the tree search method. This can best be seen in the comparison of the computation time between
models T1 and P1 in Figure 7.4.

The two plotted models utilise the same size tree. However, the tree search method always evaluates all options in
the tree (with 4 options in the lowest level of the tree), while the shortest path algorithm selects the best one at each
iteration without looking at the rest of the tree unless these options do not provide a decrease in objective function.
This means, at every iteration, the tree search method evaluates four transition options, while the shortest path
algorithm only evaluates two options.

Finally, in Figure 7.8, the scaled objective function values of the four different configuration of the shortest path
method tested are presented. It can be seen that the median scaled objective function of the four models do not
differ much and range from 0.18 to 0.26. In this case, the worst performing model is model P2, the configuration
focussing on width. Furthermore, the best performing model is again the configuration focussing on a combination
of width and height (model P3).

Figure 7.8: Box plot showing the spread of the objective function (normalized by the initial
objective function) for the shortest path algorithm models.

7.3. Discussion of Results
In this section, the previously presented results are discussed. From the discussion with regards to the objective
function and computation time of the models, a conclusion can be drawn regarding what model is best for the
cockpit crew transition planning problem.

7.3.1. Objective function value

As all results are in the same range of values because of the min-max normalisation, the values can be easily com-
pared. In Figure 7.9, the median of the scaled results for the different configurations is plotted against the average
computation time. The error bars shown in the plot represent the 25th and 75th percentile of the results, which
can be used as a measure of the variance of the results, or in other words, the solution stability of the configurations.

From the plot it can be concluded that the greedy algorithm obtains the best median solution quality. However,
the results show a big variance, with an inter-quartile range (IQR) of 0.75. This can be explained by the fact that
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Figure 7.9: Scatter plot showing the average computation time versus median
normalised objective function for the tested models.

the greedy algorithm only looks at the potential of options locally. This can result in bad choices being made
even though the option has the best local performance. The next best performing models are T3 and P3, the tree
search and shortest path models that focus on a combination of width and depth/height. These models also show
a smaller variance when compared to all other models (an IQR of 0.12 and 0.07, respectively). When comparing the
tree search and shortest path models focussing on width (T2 and P2), with the models focussing on depth/height
(T2 and P4), no conclusion can be drawn regarding the benefit of width over depth or vice versa. It can be con-
cluded that a combination of width and depth produces the best results. For both the tree search and shortest path
algorithms, the configuration focusing on a balance between width and depth performs best in terms of solution
quality and solution stability. The naive selection configuration shows the worst median solution quality (0.76) and
a similar stability as the greedy algorithm with an IQR of 0.81.

7.3.2. Computation Time

The distribution of computation times for the different configurations is shown in Figure 7.10. The naive selection
algorithm presents the shortest computation time while the greedy algorithm has the longest computation times
(median value of 104 against 2730 seconds, respectively). The computation times for the other tree search and
shortest path configurations between these two. Also, all shortest path configurations yield a smaller computation
time when compared to their equivalent tree search models, eventhough most of these configurations have a larger
search space compared to their tree search equivalent. Only configurations P2 and T2 have the same (maximum)
search space, but the difference between computation time is also large (median values of 195 versus 543 seconds).

It can be seen that the naive selection has the most stable computation time of all configurations. Meanwhile,
the greedy algorithm, as well as the shortest path configurations, show the largest variance in computation time.
For the shortest path configurations, this can be explained by the fact that the amount of options to be evaluated is
highly dependent on the scenario. For the tree search method, however, approximately the same amount of options
are evaluated for all scenarios and the computation time is mainly determined by the number of iterations. For the
greedy algorithm, the amount of options that is evaluated depends on the number of shortages left in the balance,
which again means that the computation time is highly dependent on the scenario.

7.3.3. Comparison

In Figure 7.11 a radar chart is shown for four of the tested configurations: the naive selection algorithm (N, width =
1, depth= 1), greedy algorithm (G, width=∞, depth= 1), configuration P1 (width= 2, height= 2) and configuration
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Figure 7.10: Box plot showing the spread of computation time for the tested models.

P3 (width = 3, height = 4). In the chart, the median scaled objective function value and inter-quartile range of the
configuration’s results are plotted together with the average computation time in hours on three different axes.
From the shape and the size of the radar, the overall performance of a configuration can easily be read. From this
chart and the previously presented results, the different configurations are compared and recommendations are
made about which configuration should be used in different cases.

Figure 7.11: Radar plot showing the computation time (in hours), solution quality and solution
stability of four of the tested configurations.

Best configuration
From the presented results, it can be concluded that the best configuration that has been tested is configuration
P3. This configuration ranks fourth in terms of computation time (only behind the naive selection algorithm and
the tree search and shortest path baseline models). Furthermore, the median result ranks second after the greedy
algorithm and the results show the most stable performance, with an IQR of 0.07. This configuration presents the
smallest total area in Figure 7.11, from which it can immediately be seen that this configuration has the best overall
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performance of the tested configurations.

Solution quality
In some cases, however, the solution quality of the results is more important than the computation time. In this
case, the best configuration is the greedy algorithm. This model has the best median solution quality. However, the
variance of the solutions is high (IQR = 0.75) as can be seen in Figure 7.11. Therefore, instead of using the greedy
algorithm, it is recommendable to test a larger version of the tree search or shortest path algorithms to see if these
produce better and more stable results. As it was found in the previous section that for both the tree search and
shortest path algorithm, the best configurations were those focussing on a combination of width and depth, this
should be one of the requirements. In other words, the width and depth or height of the configuration should be
equal or at least almost equal.

Computation time
When the computation time of the configuration is the most important parameter, two configurations can be con-
sidered. First of all, the naive selection algorithm is the fastest configuration with an average computation time of
2.4 minutes. The solution quality and stability, however, are the worst of all tested configurations (median scaled
objective function value of 0.76 and IQR of 0.81). Configuration P1, on the other hand, has a higher average com-
putation time of 4.6 minutes, but this increase in computation time is accompanied by a large increase in solution
quality and stability. The median scaled objective function value of this configuration is equal to 0.24 and the inter-
quartile range (IQR) is equal to 0.47. Therefore, configuration P1 can be seen as the optimal configuration when a
low computation time is required but the solution quality and stability are still important.

7.4. Validation

In this section, the validation process that is performed on the model and its results is discussed. This validation
process aims to answer the question of whether the obtained results are sufficiently accurate to be used by an airline
to analyse different scenarios. To do this, two different strategies have been used:

• Face validation with a number of people working on the cockpit crew transition planning problem on a day-
to-day basis. This provides insight into the choices made by the developed model and might expose any
factors that limit the validity. In these discussions, the assumptions made throughout the research as well
as the implications of these assumptions to the results have been discussed. All relevant labour agreements
have been implemented into the model as accurately as possible and are deemed valid within the scope of
this research.

• Quantitative validation with respect to the number of planned transitions, balance values and objective func-
tion value. This comparison shows whether the obtained results fall within a reasonable range of possible
values. In Figure 7.12, the balance of one position in the current scenario of the model application problem
is comparde to the data in the system currently used. It can be seen that the final balance quite accurately
follows the trends in the validation results. Especially in the first months, the difference is negligible. In
later months, the results present higher balance values compared to the validation data. When looking at the
number of transitions planned to one aircraft type in Figure 7.13, it can be seen that the model is able to plan
more transitions compared to the validation data. To compensate for this, more transitions are planned in
the validation data in the first months. Looking at the last 6 months, however, more transitions are planned
in the validation data compared to the model. This can be explained by the fact the validation data plans
further into the future and probably has to plan these shortages already for future shortages, while the model
only evaluates the defined planning window.

From the results of the validation process, it can be concluded that the results of the model are valid within the
project scope. The goal of the research is to create a decision support tool that helps airlines analyse different
planning scenarios and strategies. To do this, a trade-off has to be made between computation time, solution
quality and solution stability. From the presented results and validation of these results, it can be concluded that
the quality of the solutions is accurate enough to perform these analyses. Furthermore, a high solution stability
and low computation time can be reached by choosing the appropriate model configuration.

Although the results are deemed valid, the definition of the project within the research scope introduces some
limitations to the validity of the model within the complete crew planning process:
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Figure 7.12: Validation data comparing the balance of the CP B position
between the model’s results and the actual data.

Figure 7.13: Validation data comparing the amount of transitions to
aircraft type D between the model’s results and the actual data.

• The scope of the research was defined such that only one method for resolving shortages was used. Alter-
natively, budgets can be shifted to change the demand and thus the balance. However, since this was not
modelled, more transitions are planned in the model compared with reality. In order to create a more ac-
curate model, it could be valuable to add these additional methods in future research into the cockpit crew
transition planning problem.

• A number of assumptions have been made that limit the validity of the results. As seen in the quantitative
validation, the model is able to plan more transitions in a number of months compared to the validation data.
It is thought that this is due to the supply of pilots changing through planned transitions. For transitions,
instructors are required that normally are available for the nett demand, but in case of planned transitions
are required to train the pilots. Because of this, transitions are sometimes not planned by the airline as the
decrease in supply is larger than the shortages. Since the model does not take this change in supply into
account, the model does not find any objections to planning the transitions and is, therefore, able to plan
more transitions compared to the validation data. Because of this, the balance as shown in Figure 7.12 is
higher for the model compared to the validation data and more transitions are planned. Therefore, in future
research, more accurate modelling of the usage of instructors could prove to further increase the accuracy of
the model.

To summarise, the model provides results that are accurate enough to be used to analyse different planning sce-
narios and strategies. Furthermore, the model can be configured to provide solutions with a high stability in a low
computation time. However, some recommendations can be made in order to further increase the accuracy of the
results and thereby represent the actual data even better.
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Model Application

In this chapter, an example of the application of the developed model will be presented. In Section 8.1 a the case
that has been studied is presented. Then, in Section 8.2, the results of the current and alternative scenario simula-
tions are presented and an analysis of the differences between the two scenarios is provided.

8.1. Planning Case
A case study has been developed together with the reference airline. In this case study, the effects of a number of
demand changes for different aircraft types are analysed. These changes form the alternative scenario of this case
study. The current scenario represents the system without the proposed changes.

• A decrease of flight for aircraft type A as can be seen in Figure 8.1.

• A shift in demand from aircraft type B to aircraft types C and D. This change is presented in Figure 8.3.

• A change in demand (both an increase and decreas in different periods) for aircraft type E, as shown in Fig-
ure 8.2.

Figure 8.1: Visual representation of the change of
demand for the captain position on aircraft type A.

Figure 8.2: Visual representation of the change of
demand for the captain position on aircraft type E.

A planning window of 24 months is used, with a modelling frequency of 1 month. The start date is chosen a number
of months before the first change in order to allow the model to plan transitions in earlier months if necessary.
The planning window of 2 years is chosen to be able to fully analyse all demand changes. For both the current
and alternative scenarios, the problem is solved using configuration P3 with a width of 3 and height of 4 as this
configuration was found the best performing configuration in the experiments of Chapter 7.

8.2. Results and Analysis
In this section, the results of the simulations for the two scenarios are presented. Afterwards, in the next section,
the results are analysed and a conclusion from the results can be drawn.

8.2.1. Current Scenario

The current scenario presents the state of the supply and demand without the changes presented in Section 8.1.
As can be seen in Table 8.1, the balance constructed from this supply and demand features 138 shortages with
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Figure 8.3: Visual representation of the change of demand for the captain positions on aircraft types B, C and D.

Table 8.1: Initial state of the current scenario.

Parameter Value
Objective function 6.369 ·1010

Shortages 138
Minimum balance −85.3

Table 8.2: Initial state of the alternative scenario.

Parameter Value
Objective function 7.120 ·1010

Shortages 151
Minimum balance −86.3

the largest shortage of −85.3. By solving this scenario with the developed model and comparing the results to the
alternative scenario, the implications of the proposed demand changes can be analysed and recommendations
regarding these changes can be made.

From the results of the solution for this scenario in Table 8.3, it can be seen that from the 138 shortages initially
present, only 5 remain after solving the problem. This results in an objective function of 5.977 ·107 or 0.09% of the
initial objective function.

When looking at the utilised transition capacity in Figure 8.4 and Table 8.5 it shows that in the first year in the
planning window, most of the transition capacity is filled, while for the second year, the maximum capacity is
utilised in only a few months.

Figure 8.4: Utilised transition capacity per aircraft type and month for the current scenario.

8.2.2. Alternative Scenario

Following the changes in demand for the alternative scenario, the balance for this scenario is also changed, result-
ing in a different initial objective function and balance. In Table 8.2, these changes can be seen. Because of the
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Table 8.3: Solution parameters of the current scenario.

Parameter Value
Objective function 5.977 ·107

Shortages 5
Minimum balance −4.6

Transitions 828
Recruits 273

Table 8.4: Solution parameters of the alternative scenario.

Parameter Value
Objective function 5.351 ·107

Shortages 5
Minimum balance −4.7

Transitions 825
Recruits 294

Table 8.5: Total utilised transition capacity per aircraft type for the first and second
year in the planning window for both scenarios.

Current Alternative
Aircraft type year 1 year 2 year 1 year 2

A 83% 23% 63% 32%
B 94% 28% 68% 55%
C 90% 0% 83% 1%
D 91% 46% 86% 54%
E 80% 2% 77% 23%

changed demand, the initial objective function has risen by 11.8% and the amount of shortages has risen from 138
to 151. The lowest balance value has remained almost constant; from −85.3 to −86.3.

Looking at the results found for the alternative scenario in Table 8.4, the final objective function of 5.351 · 107 is
around 10% lower compared to the current scenario. The same amount of shortages is present in the final solution
and the lowest balance value is almost identical. Also, more recruits are hired in the alternative scenario. The
lower objective function can, therefore, be explained by the alternative scenario having lower shortages in the final
solution. The addition of more pilots is not represented completely in the objective function as these added pilots
will stay in the airline for a long time. This represents a large salary cost of which only a small part falls within the
planning window and an even smaller part represents surplusses.

When looking at the utilised transition capacity per month in Figure 8.5 and the total utilised capacity in Table 8.5,
it can be seen that less transition capacity is used in the first year of the planning window in the alternative scenario
compared to the current scenario. For the second year, however, more capacity is used in the alternative scenario.
Since the total number of transitions for both scenarios is almost equal, the changes in transition capacity utilisa-
tion can be attributed to a better distribution of the transitions over the two years.

Figure 8.5: Utilised transition capacity per aircraft type and month for the alternative scenario.

From the presented results, a number of conclusions regarding the demand changes can be made. Even though the
number of recruits rises, this should not generate higher costs in the future as it is expected that the total demand
will not decrease in the near future, in which case additional recruits are necessary to account for retirements. It
appears that transitions can be spread out more in the alternative scenario, which is a benefit for the airline as
capacity is available in a higher number of months in the first year of the planning window which can be used
if necessary. The objective function value of the alternative scenario solution shows a 10% decrease compared
to the current scenario. This shows the overall crew plan is improved with the changes in demand in this case
study.
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Sensitivity Analysis

This chapter presents the results of the sensitivity analysis that has been performed on some of the parameters used
in the planning model in order to solve the transition planning problem. The parameters that have been tested in
this analysis are the objective function parameter (Section 9.2), planning model frequency (Section 9.3) and tabu
search list length (Section 9.4). Furthermore, a sensitivity analysis into the scalability of the model is presented in
Section 9.1. The aim of this chapter is to test the change in the model’s output for a change in the chosen parameters
and to determine which of the selected parameter values yield the best performance.

9.1. Model Scalability

An important sensitivity analysis is the scalability of the model. This shows how the computation time and results
of the model change when the model size is increased or decreased. In order to test this, an experiments has been
designed in which the model is solved for a planning window of 6 months, 1 year and 2 years. This is done with the
same start date and planning frequency. For these simulations, a number of parameters are stored. The amount
of time a transition is evaluated and the number of iterations show how many times a transition has been planned
and how many iterations have been performed. For configuration P1, 2 transitions are planned at every iteration,
so the number of transitions should be roughly twice the number of iterations. Furthermore, the computation
times for evaluating a transition, computation time per iteration and the total computation time are stored. All
simulations are done using the selection algorithm configuration P1 with a width of 2 and height of 2, as presented
in Chapter 6. From these times, it can be assessed what the increase in computation time is for increasing planning
windows but also what causes this increase in computation time. In Table 9.1, the mentioned parameters for the
three simulations with different planning windows are shown. These results are the averaged values based on three
different scenarios per planning window size.

From the results, it can be seen that the amount of evaluated transitions and the number of iterations increases
with a factor 3 if the planning window increases by a factor 2. However, the time required to evaluate a transition
also increases, with a factor of around 1.7. Overall, this results in an increase in computational time with a factor
of 5 for a simulation with a planning window double in size. This can be extrapolated to longer planning windows
which would mean a planning window of 4 years has a computation time of almost 1.5 hours and the computation
time for a planning window of 8 years is estimated at almost 7 hours.

Table 9.1: Averaged results for the model scalability sensitivity analysis.

Planning window
Amount of Average time [s]

transitions iterations transition iteration total
6 months 474 239 0.078 0.155 37

1 year 1502 754 0.133 0.265 200
2 years 4512 2257 0.218 0.754 986

9.2. Objective Function

The objective function as designed in Chapter 5 utilises a parameter β that represents the relative importance of
shortages versus surplusses. In order to choose the best value for this parameter out of the selected options, a
sensitivity analysis on a number of different β values is performed.

In this analysis, a number of scenarios are solved using 5 different β values: 1,
p

2, 2, 3 and 4. For the value of β,
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Figure 9.1: Plot showing the sum of shortages and the shortage count for the five models with different β values.

values below 1 are not helpfull as the goal of the parameter is to increase the relative importance of shortages, while
values below one do exactly the opposite. Furthermore, value over 4 are assumed to bee too high as in that case the
relative importance of surplusses becomes negligible. For all generated solutions, the balance is used to assess the
quality of the solution by taking two parameters. The first is the sum of the shortages in the balance. Secondly, the
number of shortages is used.

In Figure 9.1, the averaged results for the two parameters for the five different β values are shown. On the left y-axis,
the sum of shortages is plotted, while on the right y-axis, the number of shortages is plotted. The average results
are obtained from four different scenarios with the same settings as in the experiments in Chapter 7. It can be seen
that the models with β= 2 and β= 3 score best on the number of shortages. The sum of the shortages of the model
with β= 3 is, however, a lot higher. This means the model with β= 3 results in solutions with higher shortages than
the model with β= 2. This model (β= 2) also scores best on average in terms of the sum of shortages (tied with the
model with β= 1). Based on this analysis, it can be said that the best of the tested values for β is 2, which is why this
value is used throughout the research.

9.3. Planning Model Frequency

In the development of the model, the supply and demand have been averaged over a period of a month and sub-
sequently, transitions are planned on a monthly basis. Doing this decreases the accuracy of the simulation, but
greatly decreases the number of decision variables as opposed to planning transitions on a daily basis.

The planning frequency of 1 month has been chosen since it is the highest frequency that allows a simplification of
the changes in demand and supply through absence due to transitions. This is because the longest transitions take
just under a month. In order to study the effect of a changing planning model frequency, a scenario with a planning
window of 2 years has been solved with a frequency of 1, 2 and 3 months.

In Table 9.2, the initial parameters for the scenarios with three different planning frequencies are shown. It can be
seen that because of the larger smoothing of the balance, the number of shortages, minimum balance value and
objective function decrease with an increasing planning frequency.

The results for the 9 different simulations can be found in Table 9.3. From the results, it can be seen that the com-
putation time decreases with an increasing frequency for all three different scenarios. In general, the amount of
shortages of the optimal solution also decreases, which is to be expected as the total number of data points also
decreases. The results in terms of the lowest balance value and amount of transitions do not show a obvious differ-
ence. Instead, from these varying results, it can be concluded that the solutions with a lower planning frequency
are less accurate and stable because the effect of the assumptions becomes greater. From the results, it can be
concluded that in terms of solution accuracy, it is best to develop the model with a planning frequency as high as
possible, which in this case is equal to 1 month. However, the models with a lower frequency show a clear improve-
ment in computation time, which could be useful for simulations in which a significantly longer planing window is
necessary. In these cases, the planning frequency can be decreased for the periods further into the future. The loss
in accuracy for these periods is not as important as the predictions further in the future are also less accurate and a
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Table 9.2: Initial parameters for the planning model frequency sensitivity analysis.

Scenario Frequency Objective function Shortages Min. balance

S1
1 month 7.268 ·1010 144 −91.9
2 months 6.983 ·1010 71 −85.4
3 months 7.403 ·1010 48 −87.5

S2
1 month 2.770 ·1010 166 −72.8
2 months 2.818 ·1010 82 −71.3
3 months 2.696 ·1010 55 −65.8

S3
1 month 1.448 ·109 66 −20.2
2 months 1.419 ·109 33 −18.2
3 months 1.288 ·109 21 −17.9

Table 9.3: Results for the planning model frequency sensitivity analysis.

Scenario Frequency Objective function Time [s] Shortages Min. balance Transitions

S1
1 month 1.721 ·108 1711 26 −15.7 1363
2 months 4.064 ·108 806 16 −27.8 1251
3 months 7.448 ·108 698 22 −23.3 1276

S2
1 month 5.211 ·108 435 41 −31.6 712
2 months 2.477 ·108 359 14 −20.2 795
3 months 3.110 ·108 317 13 −19.7 835

S3
1 month 4.443 ·107 115 11 −8.4 291
2 months 4.392 ·107 59 8 −4.9 238
3 months 6.684 ·107 64 7 −5.7 247

very accurate model far into the future therefore does not yield more accurate results.

9.4. Tabu Search
The tabu search method used in the planning model blocks certain transitions from being planned for a number of
iterations. This method is used to prevent the model from being stuck in local optima and keeping looping around
this point. The length of the list of the tabu search method defines for how many iterations planned transitions are
blocked.

To test the sensitivity of the model to different tabu list lengths, an experiment has been designed to test the model’s
results for a number of different scenarios for 6 different tabu list lengths: 0 (which means no tabu search method
is utilised), 1, 3, 5, 10 and 20.

From the results in Figure 9.2, created using the selection algorithm configuration P1 with a width and height of 2,
as the number of simulations required for this sensitivity analysis is quite high (18 simulations). It can be seen that
the model with a tabu list length of 0 results in the worst objective function value for all scenarios. Furthermore,
the model with a tabu list length of 20 performs worse than the other models with a length between 1 and 10. Out
of those four models, the model with a tabu list length of 10 just outperforms the others. In the development of the
planning model and in the experiments, a tabu list with a length of 10 iterations has, therefore, been used.
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Figure 9.2: Plot showing the normalised objective function values for 3 different scenarios as well as
the mean for the 6 different tabu list lengths.



10
Conclusions and Recommendations

This final chapter first presents the conclusions that can be drawn from the performed research in Section 10.1.
Then, in Section 10.2, the contributions of the developed model will be discussed and finally, in Section 10.3, some
recommendations for improvement or further research will be given.

10.1. Conclusions

The main topic of this report has been defined as the airline cockpit crew transition planning problem. In a litera-
ture study, a research gap and subsequently a research question has been defined as:

How to model the transition planning of cockpit crew to provide insight into future staffing levels and transitions
and analyse different planning scenarios, strategies and assumptions and their long-term effect?

In a review of the available literature, it was found that there is not a lot of research into the domain of transition
planning. Some commercial solvers are available that take days to solve the problem but no fast solution meth-
ods exists that accurately model the problem. It was also found that the problem is too complex and large to be
solved using an optimisation method. Therefore, an efficient heuristic method is necessary to solve the problem.
Solving the transition planning problem in limited time provides airlines with the opportunity to analyse different
scenarios, variation in parameters such as illness or bidding behaviour and test different strategies. This gives the
airline more insight into the process and helps airlines innovate and create better policies for cockpit crew plan-
ning.

In order to answer the posed research question, a research framework has been set up in which several methods
can be compared. A heuristic planning model was developed that is able to create a crew plan using a local search
method. This model is supported by a rule-based system and tabu-search method that decrease the number of
available options in the model and is able to steer the model towards favourable options. This improves the speed at
which solutions for the transition planning problem are found. In order to select the best transition at each iteration
in the planning model, a tree search method is proposed. For this method, the extensiveness of the search can be
changed by changing two parameters, the width and the depth which define the number of options evaluated
for each solution and the number of levels in the tree. A variation of the tree search method has been developed
which aims to decrease the computation time without compromising in solution quality. This variation is based
on the Dijkstra algorithm for finding the shortest path between two nodes. For the selection algorithms, several
different configurations have been developed that are tested in a number of experiments. The objective function
of the model was designed to reflect the cost of having shortages in supply as well as the cost of having a surplus of
pilots. The other crew costs for the airline, such as the cost for transitions or crew salaries have not been directly
implemented into the objective function as they are already constraint to a maximum or incorporated into the
shortages and surplusses indirectly.

Two extreme points of the tree search method have been identified. The first is a greedy selection algorithm in
which the local performance of all options is compared and the best is chosen. This algorithm is created by defining
a tree search model with a width equal to ∞ and a depth equal to 1. Secondly, a naive selection algorithm in which
an option is selected based on prior knowledge of the options and the system. This algorithm is created by defining
a tree search model with a width and depth equal to 1. For the tree search and shortest path methods, four more
configurations have been selected as a baseline configuration, a configuration emphasizing width, one focussing
on depth and a combination of both. The configurations have been selected in such a manner that the computation
time falls within the computation times of the greedy and naive selection algorithms.

In an experiment based on data from a reference airline, the ten selected configurations of the selection algorithm
have been tested on 10 different scenarios. These scenarios have been constructed by selecting a different start and
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end date for the planning window and constructing the supply, demand and balance for this time period. From the
results, several conclusions can be drawn.

• The configuration with the highest median solution quality is the greedy algorithm (tree search with a width
equal to ∞ and depth of 1). However, the computation time of this algorithm is the highest of all tested
configurations (almost an hour on average) and the stability of the solution quality is the second worst of all
configurations, only out-performing the naive selection configuration. The usefulness of this configuration
is, therefore, limited and a minimum depth of 2 might be required in order to improve the solution stability.

• The best performing configuration was the shortest path algorithm focussing on a combination of width
and height (width = 3, height = 4). With an average computation time of only 15 minutes, it had the fourth
lowest computation time. The configuration produces results 4 times faster than the greedy algorithm. With
a median scaled objective function of 18%, the model still outperforms all models apart from the greedy
algorithm. Finally, the high of the configuration was the highest of all tested configurations (with an inter-
quartile range (IQR) of 0.07 versus an IQR of the greedy algorithm of 0.75).

• Finally, the fastest configuration is the naive selection configuration, with an average computation time of 2.4
minutes. However, both the solution quality and solution stability of this configuration score worse than all
other tested configurations. The second fasted configuration scores considerably better in terms of solution
quality (a median scaled objective function value of 0.24 versus 0.76) and solution stability (an IQR of 0.47
versus 0.81). The computation time of this configuration is almost double the computation time of the naive
selection algorithm (4.6 minutes), but still allows significantly more simulations in a limited time compared
to the other configurations.

In general, the shortest path method is able to determine solutions faster than the tree search method without
compromising the solution quality. Furthermore, it is concluded that a combination of width and depth produces
the best and most stable results, as opposed to configurations focussing on either width or depth. Finally, from the
results of the naive selection and greedy configurations, it can be concluded that a minimum depth of 2 levels is
required, as this greatly improves the stability of the solutions. In summary, it can be concluded that all presented
configurations are valid methods to solve the cockpit crew transition planning problem. Depending on the applica-
tion, different requirements with regards to computation time, solution quality and solution stability might be set.
These requirements will also influence what configuration will be best suited for the application. However, overall,
model P3, a shortest path algorithm configuration with a width of 3 and height of 4 can be seen as the optimal
configuration, scoring the second-best median objective function value, a limited computation time of 15 minutes
on average and presenting the most stable results of all tested configurations.

10.2. Research Contributions

The contributions of the presented research are discussed in this section. The contributions state how the research
adds value and knowledge to the scientific body of research already available in the field of cockpit crew planning
as well as how the presented research and models can help the business of airlines and other companies.

Problem definition
Not much research has been published in the field of cockpit crew planning. Especially the transition planning
problem has been untouched for years and no models have been developed that are able to quickly create a solution
that can be used to analyse different scenarios. This research, therefore, fills a research gap in the field of cockpit
crew planning that could aid airlines in their decision-making process.

Solution methods
The developed solution methods for the transition planning problem form a novel application of known methods
to this problem. Specifically for the transition planning problem, no solution methods have been published in the
past. This research, therefore, forms a first step on which future research can build.

Model applicability
As the model has been developed with generality in mind, it can be applied not only to the field of cockpit crew
planning but to different problems and industries as well. The first problem that seems evident is the cabin crew
planning problem. A lot of restrictions that are present in the cockpit crew transition planning problem are also
applicable to cabin crew, which makes it easy to change the model to be able to plan cabin crew transitions. A
distinction between cabin crew and cockpit crew, however, is that in almost all cases, the cabin crew is qualified to



10.3. Recommendations 65

operate on multiple aircraft types. Other industries for which the model can be used are nurse planning and army
planning as has already been discussed in the literature review of this report. The manpower planning problem in
these industries shows great resemblance to the cockpit crew transition planning problem.

Practical application
On the practical side of the research, the developed model provides airlines and other companies the opportunity
to create crew plans in limited time. Through this, they are better able to analyse different strategies, variations of
demand parameters and scenarios. This will provide more insight into the future and makes it possible to perform
more analyses in the decision-making process.

10.3. Recommendations
Following the conclusions as well as the academic and practical contributions of the research, some recommenda-
tions regarding opportunities for further research should be made.

Assumptions
In order to increase the accuracy of the model’s results, a more detailed analysis of the impact of the different
assumptions made throughout the project can further increase the accuracy of the model. From the validation, it
was already concluded that the change of supply due to the usage of instructors can influence the total amount of
transitions planned by the system more than expected. When this is modelled in more detail, the results will more
accurately match the validation results.

Methods
In the developed model, the only method to resolve shortages is to plan transitions. However, an airline can usually
employ different methods depending on the exact state. An example of these methods is to change the planned
vacation budgets if these budgets are not yet allocated to specific pilots yet. By doing this, shortages and surplusses
can be decreased since the vacation budget in a period with a shortage can be moved to a period with a surplus.
Implementing such a method asks for a decision tool that decides which method to employ at each point in time,
creating a hyper-heuristic model for the cockpit crew planning problem.

Experiments
The experiments for the different models performed in this research are created from a single airline’s system and
data. This means that the different models and algorithms have only been tested on this system. Even though this
system is comparable to the system used at a high number of other airlines, it is useful to test the models on different
systems as this increase the confidence in the results and the conclusions that are drawn from these results. Also,
testing the algorithms on systems from other industries might provide insight into the validity of the proposed
models on a wider number of applications within the field of manpower planning. Furthermore, the experiments
have only been done for planning windows up to 2 years to limit the total time needed for all experiments. As the
cockpit crew transition planning problem is a long-term problem in which usually up to 3 to 5 years are planned in
advance, experiments in which this planning window is larger could also benefit the overall results and conclusions
that can be drawn from these. If necessary, the computation time for these experiments can be slightly decreased
by decreasing the planning frequency for later periods and using smaller models.
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A
Example Problem Data

This appendix displays the data of the simplified example problem as presented in Section 4.1.

Table A.1: Full list of planned transitions in simplified example problem (first part).

Iteration Type Employee From To Date
0 Transition 2394 FO ICA CP EUR 2019-08-01
1 Transition 7130 FO ICA CP EUR 2019-08-01
2 Transition 9196 FO ICA CP EUR 2019-08-01
3 Transition 8049 FO ICA CP EUR 2019-08-01
4 Transition 8398 FO ICA CP EUR 2019-08-01
5 Transition 6878 FO ICA CP EUR 2019-08-01
6 Transition 0613 FO ICA CP EUR 2019-08-01
7 Transition 0223 FO ICA CP EUR 2019-08-01
8 Corrected 8294 SO ICA FO EUR 2019-08-01
9 Recruit R35 - SO ICA 2019-07-01
10 Corrected 2231 SO ICA FO EUR 2019-08-01
11 Recruit R36 - SO ICA 2019-07-01
12 Corrected 5571 SO ICA FO EUR 2019-08-01
13 Corrected 2656 SO ICA FO EUR 2019-08-01
14 Recruit R37 - SO ICA 2019-07-01
15 Corrected 1844 SO ICA FO EUR 2019-08-01
16 Recruit R38 - SO ICA 2019-07-01
17 Corrected 3165 SO ICA FO EUR 2019-08-01
18 Recruit R39 - SO ICA 2019-07-01
19 Corrected 2015 SO ICA FO EUR 2019-08-01
20 Recruit R40 - SO ICA 2019-07-01
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Table A.2: Full list of planned transitions in simplified example problem (second part).

Iteration Type Employee From To Date
21 Corrected 1802 SO ICA FO EUR 2019-08-01
22 Recruit R41 - SO ICA 2019-07-01
23 Corrected 2570 SO ICA FO EUR 2019-08-01
24 Recruit R42 - SO ICA 2019-07-01
25 Corrected 3663 SO ICA FO EUR 2019-08-01
26 Recruit R43 - SO ICA 2019-07-01
27 Corrected 2935 SO ICA FO EUR 2019-08-01
28 Recruit R44 - SO ICA 2019-07-01
29 Transition 6538 SO ICA FO EUR 2019-08-01
30 Recruit R45 - SO ICA 2019-07-01
31 Correction 8294 SO ICA FO EUR 2019-07-01
32 Transition 5850 SO ICA FO EUR 2019-08-01
33 Recruit R46 - SO ICA 2019-07-01
34 Correction 2231 SO ICA FO EUR 2019-07-01
35 Correction 5571 SO ICA FO EUR 2019-07-01
36 Transition 6869 SO ICA FO EUR 2019-08-01
37 Recruit R47 - SO ICA 2019-07-01
38 Correction 2656 SO ICA FO EUR 2019-07-01
39 Correction 1844 SO ICA FO EUR 2019-07-01
40 Transition 8318 SO ICA FO EUR 2019-08-01
41 Recruit R48 - SO ICA 2019-07-01
42 Correction 3165 SO ICA FO EUR 2019-07-01
43 Correction 2015 SO ICA FO EUR 2019-07-01
44 Transition 4599 SO ICA FO EUR 2019-08-01
45 Recruit R49 - SO ICA 2019-07-01
46 Correction 1802 SO ICA FO EUR 2019-07-01
47 Correction 2570 SO ICA FO EUR 2019-07-01
48 Transition 8193 SO ICA FO EUR 2019-08-01
49 Recruit R50 - SO ICA 2019-07-01
50 Correction 3663 SO ICA FO EUR 2019-07-01
51 Correction 2935 SO ICA FO EUR 2019-07-01
52 Transition 7804 SO ICA FO EUR 2019-08-01
53 Recruit R51 - SO ICA 2019-07-01
54 Recruit R52 - SO ICA 2019-08-01
55 Recruit R53 - SO ICA 2019-08-01
56 Recruit R54 - SO ICA 2019-08-01
57 Recruit R55 - SO ICA 2019-08-01
58 Recruit R56 - SO ICA 2019-08-01
59 Recruit R57 - SO ICA 2019-08-01
60 Recruit R58 - SO ICA 2019-08-01
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Table A.3: Full list of planned transitions in simplified example problem (third part).

Iteration Type Employee From To Date
61 Recruit R59 - SO ICA 2019-08-01
62 Recruit R60 - SO ICA 2019-07-01
63 Transition 8078 FO ICA CP EUR 2019-09-01
64 Recruit R61 - SO ICA 2019-09-01
65 Recruit R62 - SO ICA 2019-09-01
66 Recruit R63 - SO ICA 2019-09-01
67 Recruit R64 - SO ICA 2019-09-01
68 Recruit R65 - SO ICA 2019-08-01
69 Transition 9031 FO ICA CP EUR 2019-10-01
70 Transition 0970 FO ICA CP EUR 2019-10-01
71 Transition 1845 FO ICA CP EUR 2019-10-01
72 Recruit R66 - SO ICA 2019-10-01
73 Recruit R67 - SO ICA 2019-10-01
74 Recruit R68 - SO ICA 2019-10-01
75 Recruit R69 - SO ICA 2019-10-01
76 Recruit R70 - SO ICA 2019-10-01
77 Recruit R71 - SO ICA 2019-10-01
78 Recruit R72 - SO ICA 2019-09-01
79 Recruit R73 - SO ICA 2019-10-01
80 Recruit R74 - SO ICA 2019-10-01
81 Recruit R75 - SO ICA 2019-10-01
82 Recruit R76 - SO ICA 2019-10-01
83 Recruit R77 - SO ICA 2019-10-01
84 Recruit R78 - SO ICA 2019-10-01
85 Recruit R79 - SO ICA 2019-10-01
86 Recruit R80 - SO ICA 2019-09-01
87 Transition 8869 CP EUR CP ICA 2019-11-01
88 Transition 1121 CP EUR CP ICA 2019-11-01
89 Transition 2139 FO ICA CP EUR 2019-10-01
90 Transition 1217 CP EUR CP ICA 2019-11-01
91 Corrected 1930 FO ICA CP EUR 2019-11-01
92 Correction 1930 FO ICA CP EUR 2019-10-01
93 Transition 1664 CP EUR CP ICA 2019-11-01
94 Transition 0042 CP EUR CP ICA 2019-11-01
95 Transition 2260 FO ICA CP EUR 2019-10-01
96 Transition 0615 CP EUR CP ICA 2019-11-01
97 Transition 4128 FO ICA CP EUR 2019-10-01
98 Transition 3694 FO ICA CP ICA 2019-12-01
99 Transition 7105 FO EUR FO ICA 2019-11-01
100 Transition 9844 FO EUR FO ICA 2019-11-01
101 Transition 8623 FO EUR FO ICA 2019-11-01
102 Transition 6161 FO EUR FO ICA 2019-11-01
103 Transition 1853 FO EUR FO ICA 2019-11-01
104 Transition 3077 FO EUR FO ICA 2019-11-01



B
Detailed Experiment Results

In this appendix, the detailed results for the twelve tested models in the ten different scenarios are presented. In
the tables, the objective function and computation time columns speak for itself, where the computation time is
given in seconds. The shortages column presents the amount of shortages in the optimal solution found in the
model and the min. balance columns shows the lowest balance value in the same optimal solution. Finally, the
transitions column shows the amount of transitions planned in the optimal solution. These last three parameters
give some more insight in the solution found by the model. Also, model 0 in the tables represents the initial state of
the scenario, therefore, the computation time and amount of transitions for these entries are equal to zero.

Table B.1: Detailed experiment results for the twelve models for the scenario with start date 01/01/2018.

Model Objective function Computation time Shortages Min. balance Transitions
0 1.448 ·109 - 66 -20.2 -
N 5.751 ·107 79 14 -7,9 317
G 2.910 ·107 2823 28 -4,8 255
T1 4.287 ·107 335 12 -7,1 302
T2 3.051 ·107 1674 12 -6,8 306
T3 3.806 ·107 1191 13 -6,6 287
T4 3.910 ·107 1207 16 -6,8 299
P1 4.677 ·107 134 11 -8,2 298
P2 3.954 ·107 860 23 -5,8 267
P3 3.346 ·107 514 12 -5,9 295
P4 4.843 ·107 690 11 -8,3 316

Table B.2: Detailed experiment results for the twelve models for the scenario with start date 01/04/2018.

Model Objective function Computation time Shortages Min. balance Transitions
0 1.060 ·109 - 65 -37.7 -
N 6.595 ·107 94 21 -10,2 351
G 2.522 ·107 2544 22 -4,5 254
T1 4.011 ·107 524 16 -6,9 313
T2 6.283 ·107 1703 23 -8,7 328
T3 4.396 ·107 1324 19 -7,7 313
T4 8.368 ·107 1270 26 -11,3 308
P1 4.258 ·107 201 21 -6,9 281
P2 7.128 ·107 1360 24 -10,2 286
P3 4.703 ·107 554 18 -8,1 301
P4 4.169 ·107 879 14 -6,9 273
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Table B.3: Detailed experiment results for the twelve models for the scenario with start date 01/07/2018.

Model Objective function Computation time Shortages Min. balance Transitions
0 2.390 ·109 - 60 -38.6 -
N 1.179 ·108 114 23 -12,4 412
G 6.334 ·107 2589 36 -13,5 278
T1 6.625 ·107 562 25 -6,4 401
T2 7.337 ·107 1975 30 -9,5 356
T3 7.701 ·107 1511 26 -8,3 366
T4 9.846 ·107 1698 31 -10,2 372
P1 6.241 ·107 202 22 -6,5 412
P2 6.642 ·107 1548 23 -9,1 363
P3 6.974 ·107 659 24 -9,1 401
P4 7.324 ·107 738 24 -7,4 325

Table B.4: Detailed experiment results for the twelve models for the scenario with start date 01/10/2018.

Model Objective function Computation time Shortages Min. balance Transitions
0 3.555 ·109 - 61 -33.3 -
N 2.377 ·108 308 43 -17,9 389
G 9.658 ·107 5575 46 -9,7 431
T1 2.280 ·108 1909 37 -13,1 417
T2 1.527 ·108 2267 48 -12,9 423
T3 1.270 ·108 2394 47 -10,1 437
T4 1.629 ·108 2087 37 -16,3 466
P1 1.900 ·108 688 40 -17,3 381
P2 1.295 ·108 3811 45 -10,8 406
P3 1.253 ·108 2260 38 -16,7 368
P4 2.378 ·108 2701 44 -18,0 379

Table B.5: Detailed experiment results for the twelve models for the scenario with start date 01/01/2019.

Model Objective function Computation time Shortages Min. balance Transitions
0 3.762 ·109 - 61 -65.4 -
N 2.966 ·108 226 39 -14,8 482
G 1.334 ·108 6070 38 -25,9 397
T1 1.767 ·108 1403 36 -13,5 475
T2 9.933 ·107 6474 37 -12,6 433
T3 1.357 ·108 4644 31 -11,6 521
T4 1.203 ·108 3092 32 -13,4 520
P1 2.348 ·108 477 37 -15,8 566
P2 1.034 ·108 4434 38 -10,2 473
P3 2.102 ·108 1433 43 -12,7 523
P4 2.234 ·108 3547 32 -19,1 547
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Table B.6: Detailed experiment results for the twelve models for the scenario with start date 01/07/2019.

Model Objective function Computation time Shortages Min. balance Transitions
0 6.894 ·109 - 46 -66.8 -
N 5.054 ·108 289 34 -31,1 442
G 6.055 ·108 6231 45 -20,9 356
T1 2.723 ·108 2129 47 -21,8 571
T2 2.151 ·108 6509 35 -24,1 534
T3 2.376 ·108 4936 39 -19,0 502
T4 2.140 ·108 3300 37 -19,9 539
P1 2.261 ·108 504 44 -20,5 563
P2 1.660 ·108 4573 35 -20,3 537
P3 2.248 ·108 2389 41 -16,6 555
P4 2.483 ·108 2705 43 -20,9 562

Table B.7: Detailed experiment results for the twelve models for the scenario with start date 01/01/2020.

Model Objective function Computation time Shortages Min. balance Transitions
0 9.812 ·109 - 40 -51.2 -
N 4.557 ·107 88 13 -9,8 358
G 8.304 ·107 2847 30 -10,0 261
T1 5.553 ·107 568 23 -8,8 326
T2 8.512 ·107 2261 21 -13,9 298
T3 4.761 ·107 1855 18 -8,3 316
T4 5.340 ·107 1879 23 -8,5 312
P1 5.702 ·107 189 15 -10,7 328
P2 1.438 ·108 1265 27 -17,4 265
P3 6.544 ·107 647 22 -9,3 340
P4 5.353 ·107 548 22 -10,8 322

Table B.8: Detailed experiment results for the twelve models for the scenario with start date 01/07/2020.

Model Objective function Computation time Shortages Min. balance Transitions
0 4.222 ·109 - 40 -44.9 -
N 5.722 ·107 114 15 -5,7 315
G 5.800 ·107 2637 11 -7,9 261
T1 5.510 ·107 317 9 -4,9 300
T2 5.708 ·107 2251 12 -6,5 285
T3 5.412 ·107 1264 10 -5,1 270
T4 5.880 ·107 1574 11 -4,5 284
P1 5.561 ·107 136 11 -5,8 295
P2 5.266 ·107 1161 8 -5,8 258
P3 5.392 ·107 175 11 -4,6 276
P4 5.550 ·107 264 10 -5,8 292
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Table B.9: Detailed experiment results for the twelve models for the scenario with start date 01/01/2021.

Model Objective function Computation time Shortages Min. balance Transitions
0 3.022 ·109 - 46 -29.8 -
N 4.261 ·107 41 13 -2,9 235
G 4.258 ·107 1812 15 -2,9 231
T1 4.345 ·107 302 12 -3,4 246
T2 4.746 ·107 1571 16 -5,4 239
T3 4.294 ·107 1227 9 -5,4 240
T4 4.267 ·107 1176 12 -3,6 238
P1 4.313 ·107 77 8 -4,2 240
P2 4.691 ·107 665 15 -5,5 227
P3 4.280 ·107 200 9 -4,3 242
P4 4.310 ·107 355 11 -4,0 234

Table B.10: Detailed experiment results for the twelve models for the scenario with start date 01/07/2021.

Model Objective function Computation time Shortages Min. balance Transitions
0 1.878 ·109 - 32 -38.4 -
N 4.820 ·107 60 4 -7,4 258
G 7.200 ·107 1705 14 -7,3 197
T1 5.124 ·107 424 5 -8,1 276
T2 4.753 ·107 2405 8 -4,3 268
T3 5.065 ·107 2054 8 -3,8 272
T4 5.472 ·107 1522 6 -7,5 265
P1 5.213 ·107 150 6 -8,1 288
P2 5.474 ·107 1296 8 -8,0 237
P3 4.904 ·107 250 6 -6,3 277
P4 5.213 ·107 690 6 -8,1 288
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