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Abstract

As our dependency on communication increases so is the demand for protecting
these communication lines. To provide failure-safe connections in optical net-
works, lightpaths can be protected. Protected lightpaths consist of a primary
path and a backup path which are disjoint and ensure connection continuity
in case of a single link failure. Optical networks consist of at least two layers,
the optical layer and the physical layer. And although the primary and backup
paths are disjoint in the optical layer, in the physical layer they may share the
same fiber span or duct. These links are in the same Shared Risk Link Group
(SRLG). If one link of a SRLG fails then all fail. Because of this, a single fail-
ure at the physical layer can causes multiple failures at the optical layer and
protected paths could get disconnected if both paths have fibers in the broken
fiber span. This thesis proposes an exact algorithm which finds the shortest
SRLG-disjoint protected path in a network through an iterative approach.
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Used symbols

Symbol Definition

G Network
N Set of nodes of network G
L Set of links of network G
C Cost function
P ′a initial primary path (before the mixing in Bhandari’s algorithm)
P ′b initial backup path (before the mixing in Bhandari’s algorithm)
Pa final primary path (after the mixing in Bhandari’s algorithm)
Pb final backup path (after the mixing in Bhandari’s algorithm)
(Pa,Pb) Protected path with primary path Pa and backup path Pb

R(l) Set of risk groups link l is in
R(Pa) Set of risk groups in path Pa

Ra Set of Shared Risk Link Groups
T To do set of (Pa,Pb) (thus set of (set of SRLG, set of SRLG))
D Done set of (Pa,Pb)
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Chapter 1

Introduction

1.1 Background

1.1.1 SURFnet

SURFnet is a subsidiary of the SURF organization, in which Dutch universities,
universities for applied sciences and research centers collaborate nationally and
internationally on innovative ICT facilities. The national SURFnet network
connects local networks from institutes together. Besides that, SURFnet is
connected to other networks nationally and internationally. About every 6 years
SURFnet is upgraded so more bandwidth can be supplied. Currently version 6
of the SURFnet network is operational.

SURFnet is completely fiber-based, so from end- to endpoint the signal is
transmitted using light. The route through the network is therefore called “light-
path”. Customers of SURFnet can request lightpaths between two locations in
the network. When a lightpath is set, this will typically sustain for longer pe-
riods for example one year. Optionally the lightpath can be set as a protected
path and in this case two disjoint lightpaths will be setup to guarantee connec-
tivity in case of failure of one of the lightpaths.

1.1.2 SARA

SARA Computing and Networking Services is an institute located in Amsterdam
and Almere which has been given the task to maintain the SURFnet network.
SARA is one of the locations of the Amsterdam Internet Exchange (AMS-IX),
which is one of the largest Internet exchanges in the world.

1.1.3 Protection

To provide failure-safe connections in an optical network, lightpaths can be
protected. Protected lightpaths consist of a primary path and a backup path
which are disjoint and ensure connection continuity in case of a single link
failure. There are two kinds of protection: dedicated protection and shared
protection. In shared protection backup paths can share backup capacity or
backup bandwidth (BBW) on links. This works if only one primary path fails,
but fails if more than one primary path fail of which the backup paths are shared.
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In dedicated protection it is not allowed for backup paths to share bandwidth.
In this thesis protection means dedicated protection unless explicitly stated
otherwise. Optical networks consist of at least two layers, the optical layer and
the physical layer. And although the primary and backup paths are disjoint in
the optical layer, in the physical layer they may share the same fiber span or
duct. Such a fiber span can get damaged during digging for example. Although
this is a single failure at the physical layer, it causes multiple failures at the
optical layer and protected paths could get disconnected if both paths have
fibers in the broken fiber span.

1.2 Problem definition

In WDM optical networks the diverse routing problem is to find a protected
path between a source and a destination at the optical layer such that no single
failure at the physical layer can cause both paths to fail. Fiber links that all
fail together in case of physical damage, like fibers in the same fiber span, are
assigned to the same Shared Risk Link Group (SRLG). A SRLG can have any
number of links and a link can be in more than one SRLG. Further we assume
that links in the same SRLG can be anywhere in the network which is the most
general approach.

Consider an undirected network G with nodes N and links L where the
SRLGs of a link l ∈ L are given by the set R(l). Let P be a single path in the
network. We define R(P) as the set of SRLGs of all links in path P.

R(P) =
⋃
l∈P

R(l)

A link can be in zero or more SRLGs and a SRLG can contain any number of
links. Let ns be a source node and nd a destination node with ns, nd ∈ N . The
objective is to find two paths (Pa,Pb) with minimal cost between nodes ns and
nd with R(Pa) ∩ R(Pb) = ∅. Hence, these paths are SRLG-disjoint. In case of
a single link failure or single SRLG failure, the connection between ns and nd

survives.

1.3 Complexity

The SRLG diverse routing problem has been proved to be NP-complete in [1].
There are several aspects of the diverse routing problem that make it difficult.
In large networks with many SRLGs it can even be hard to find a disjoint path
pair without considering the minimization of the cost.

As explained in section 1.4.2, with Active Path First algorithms (APF) the
choice for the primary path causes limitations for the choice of the backup path.
The backup path cannot contain any links that share SRLGs with links of the
primary path to obtain a SRLG disjoint solution. If a primary path is chosen in
such way that there is no backup path possible that is SRLG-disjoint with the
primary path then this is called a trap. There are two kinds of traps for APF
algorithms: real traps and avoidable traps. A real trap occurs in networks where
no SRLG-disjoint solution is possible. Each choice of the primary path causes a
trap for the backup path. In cases where there is no backup path possible which
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is disjoint with the primary path, but there does exists a solution (Pa,Pb) that
is disjoint then this is called a avoidable trap.

Finding a disjoint path pair is one aspect, but minimizing the cost of that
pair is another difficult aspect. A disjoint path pair with least cost is preferred
above a solution which uses a lot of resources and thus has high cost. The com-
bination of these two aspects causes great complexity. Proposed algorithms in
the field of SRLG diverse routing (such as in section 1.4) try to find a balance
between on one side the performance of the algorithm and on the other side the
exactness of the algorithm. With the approach of heuristic algorithms perfor-
mance improvement can be gained at the risk of not finding a solution while
such solution does exists.

While in small networks an exact solution can be calculated in reason-
able time, this cannot be done in large networks. This is because of the NP-
completeness of the problem. The solution space grows exponentially with the
network size. For large networks with a few SRLGs many developed algorithms
can return the optimal solution, but if the network contains many SRLGs the
probability that an algorithm encounters avoidable traps grows and finding an
optimal path pair becomes far more difficult.

For special cases there exist algorithms with polynomial running time. An
example is an SRLG network in which all the links in a SRLG share a common
node. This and other special cases are discussed at the end of section 1.4.

1.4 Related work

The SRLG-tree algorithm in this thesis is an SRLG diverse routing algorithm
with dedicated protection. Dedicated protection or static routing means that
a backup path is reserved for one primary path only. The backup path is
not shared by other backup paths. If the backup paths are allowed to share
bandwidth with other backup paths then this is called shared protection or
dynamic routing. In the field of SRLG diverse routing a large amount of work
has been done. First we will look at several Integer Linear Programming (ILP)
approaches.

1.4.1 ILP

A basic ILP formulation was proposed in [1], which we will refer to as static
ILP hereafter. Its objective function is to minimize the total costs of the SRLG
disjoint path pair. It can obtain results in seconds for a medium size network,
but is suitable for dedicated protection only.

For ILP approaches which allow shared protection, i.e. different backup
paths can use the same path, [13] proposes “Best Sharing ILP for Dynamic
Routing”. To take into consideration shared protection when determining the
path pair, besides the constraints used in the static ILP formulation, some
additional constraints related to the sharing and/or link capacity are required.
It can achieve optimal (minimum) route allocation, but its running time is too
long to be practical for a large network.

Since best sharing ILP is time-consuming and static ILP is not suitable for
shared protection, a compromise scheme called two-stage ILP was developed
[13]. It uses a path determination method similar to that used by static ILP
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(i.e., it does not consider path sharing at this time). However, once the primary
path and the backup path are chosen, minimal capacity will be allocated on
each link along the backup path, whether complete or partial information is
available.

Although many improvements on the existing ILP models have been made
like in [14] ILP models are not feasible for large networks due to the enormous
complexity of the models for networks with many nodes and links.

Shared backup path protection has been studied extensively in [2, 3, 4, 5,
6, 7, 8, 9]. Since this is an NP-complete problem, heuristic approaches are
employed to obtain near-optimal solutions in polynomial time [4, 7, 8, 9].

1.4.2 Active Path First

Generally speaking, in shared path protection, optimizing a primary path is
much more important than optimizing the corresponding backup path because
the primary path will carry traffic almost all the time, and the bandwidth
allocated to the backup path is used only after the primary path fails and may
be shared by other backup paths in the future. Many approaches for shared
protection assume that the cost of a link for the backup path is only a fraction
of the cost of using a link for the primary path. The path pair is said to
be asymmetrically weighted [15]. Therefore the algorithms mainly focus on
optimizing the primary or active path. Since Active Path First (APF) based
heuristics can naturally optimize a primary path and are intuitively simple,
many such heuristics have been proposed, as described below.

First we will discuss “Simple APF”. For a given source and destination node
pair, a shortest path is found first as the primary path. Then the algorithm
excludes all the links from the network that share at least one SRLG with any
link along the primary path, and try to find another shortest path as the cor-
responding backup path. However, the algorithm can easily fall into avoidable
traps, especially in large networks. With an avoidable trap is meant that a
solution is possible, but the algorithm does not find one.

[28] suggests an improved scheme in which to each link weight an addition
weight is added for each SRLG the link is in. With this approach links that
are in many SRLGs become less attractive. With less SRLGs in both paths
the chance that they are SRLG-disjoint becomes higher. The advantage of this
approach is that it is very easy to implement, but it is not difficult to create
a simple network in which the algorithm does not result in two SRLG-disjoint
paths while there is a solution.

The “Bypass method” [22] was proposed for fiber span failure protection,
which is a special case of SRLG failure protection. Its basic idea is to construct
a single layer subnetwork over the original optical network and try to find two
link disjoint paths on the constructed subnetwork.

In [11] a heuristic is proposed. With Yen’s algorithm [12] the first k shortest
paths are calculated. Then their Iterative Modified Suurballes Heuristic (IMSH)
algorithm iterates over these k paths. For each iteration the path is considered
the first path in Suurballe’s algorithm. Then all SRLGs that also have links in
the first path are removed from the network and Suurballe continues as normal.
If two paths are found then IMSH checks if the paths are indeed disjoint. The
iteration with the solution with the least cost is returned as the solution.
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In [25] with a heuristic a solution is searched with the least number of SRLGs
shared in the primary path and the backup path while keeping the blocking
probability of new requested paths in the network as low as possible. A solution
that is completely SRLG-disjoint becomes a special case.

To address the trap problem [26] describes an approach to deal with this
problem. After a primary path is found all links in SRLGs that also has links
in the primary path get a high link cost. In this way these links become less
attractive to the shortest path search algorithm for the backup path. If a backup
path is found without having links in it which were set at a high cost then a
disjoint path pair is found. But if the backup path does contain links with high
cost then with “MostRiskyActiveLink” a link from the primary path is removed
from the network and the shortest path algorithm is ran again to get a new
primary path. This loops until a disjoint solution is found or no solution is
found. Several suggestions are made to determine the most risky link in the
primary path.

1.4.3 Other approaches

Besides the ILP- and APF-based heuristic algorithms described above, an ap-
proach called network transformation was proposed in [23]. It first transforms
the upper-layer network into a network without SRLGs by adding some virtual
nodes and zero cost links, and then applies the algorithm of finding node dis-
joint paths to the transformed network. The found node disjoint paths will also
be SRLG disjoint after the virtual nodes and links are removed. However, the
transformation is applicable to only a few topologies, and is intractable for an
arbitrary topology.

In addition, a stochastic approach was also proposed in [24] to determine
SRLG disjoint paths for shared SRLG protection. It is similar to simple APF
with the major difference in how the cost of each link is assigned before the
backup path is determined using a shortest path algorithm. More specifically,
while simple APF assigns, say, 1 unit (e.g., a channel) worth of bandwidth
as the cost of each link that can possibly be used by the backup path, the
stochastic algorithm assigns p < 1 units, where p is the probability that backup
bandwidth sharing cannot occur on the link. Its main advantage is that it is
simple to implement, but the price paid is that its bandwidth efficiency is not
as good as its deterministic counterparts such as simple APF. It also did not
address the trap problem, and in fact can fall into as many avoidable traps as
simple APF.

In [16] and [17] the scheme for Protection with Multiple Segments (PROMISE)
is described. The basic idea of PROMISE is to divide the primary path into
several possible overlapping active segments or ASs, and than protect each AS
with a detour called backup segment instead of protecting the primary path
as a whole as in path protection schemes. Note that, several other segmented
protection approaches have been proposed in [18, 19, 20]. In [18], an APF
based heuristic algorithm was proposed to determine segments, which cannot
efficiently deal with a real trap, and in addition, does not consider backup band-
width sharing until the paths are found. The scheme in [19] requires the node
immediately upstream from the link/node failure to restore traffic along an al-
ternate outgoing link, which limits its flexibility (and bandwidth efficiency),
especially in SRLG networks. Another example of segment-based approach is
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called Short Leap Shared Protection (SLSP) proposed in [20], where an AP is
divided into several equal-length and overlapped segments. However, inflexible
segmentation will affect its ability to get the best performance and escaping
traps. In [21] PROMISE is extended. The proposed algorithm uses a dynamic
programming technology and achieves a higher bandwidth efficiency and lower
request blocking probability than the original PROMISE algorithm.

1.4.4 Special cases

For special cases of SRLG problems there exist algorithms with polynomial
complexity. If we take the condition that a SRLG contains only one link then
the problem is reduced to the link-disjoint diverse routing problem. Another
commonly known problem is when all links from a node form a SRLG. This
problem is equal to the node-disjoint diverse routing problem. Suurballe [31, 32]
has proposed algorithms for these problems which run in polynomial time.

In [29] and [30] SRLGs are considered with no more than two links. A pair
of paths is constructed in polynomial time which can survive a dual-link failure.

Another special case is considered in [27] where links in the same SRLG share
a common endpoint. The algorithm in this work runs in polynomial time. After
the proposed Diverse Routing finds a first path with a shortest path algorithm
like Bhandari’s algorithm for example, extra virtual nodes are added to the
network for link that have both endpoints in the first path. A second path is
searched with Find Second Path. Find Second Path uses three different kinds
of routing information per node. Which kind of routing information is used
depends on which of the four cases is encountered while exploring new nodes.
Define v as the last node in a path that is being explored and u as the node
before the last node. The four cases are: both u and v are in the first path,
both u and v are not in the first path, u is in the first path and v is not, and v
is in the first path and u is not. If Find Second Path finds a solution then the
virtual nodes are removed and both paths are checked on common segments.
Like in Bhandari’s algorithm segments are exchanged and common segments
are deleted. The results are SRLG-disjoint paths.

1.5 Contribution of this thesis

Below are the aspects of the SRLG-tree algorithm proposed in this thesis

• Applicable to general SRLG network

• Exact

• Polynomial running time for networks with little SRLGs

In this work we consider the most general case where links in a SRLG can be any
set of links of the network. The proposed SRLG-tree algorithm is an iterative
approach with the focus on the optimality of the path pairs. SRLG-tree is
different with most approaches in that it is not a heuristic or ILP model, but an
exact algorithm that finds two SRLG-disjoint paths with minimal cost between
a source node and a destination node in a network. SRLG-tree addresses the
trap problem by its iterative approach. SRLG-tree has polynomial running time
for networks with SRLG sparse networks. If the average number of SRLGs that
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a link is in grows then the running time converges to an exponential running
time.

1.6 Organization

The SRLG-tree algorithm is described in chapter 3. SRLG-tree uses the SRLG-
exclusion algorithm and the SRLG-exclusion uses the ShortestPathSwitch al-
gorithm. In chapter 2 first the ShortestPathSwitch is discussed and after that
SRLG-exclusion is described. In chapter 4 the algorithms are adapted to be
used in subnetwork topologies. Chapter 5 describes the developed application
in which SRLG-tree is implemented. Finally chapter 6 makes suggestions for
further investigations.
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Chapter 2

The SRLG-exclusion
algorithm

2.1 SRLG-tree introduction

SRLG-tree is based on the exclusion of SRLGs from paths. If a protected path
is not disjoint for a SRLG, for example SRLG A, then if we exclude this SRLG
A from either the first path or the second path then we know that the new
protected path will be disjoint for SRLG A. SRLG-tree uses a tree in which
each node is a pair of sets of SRLGs. For example node (AB, C) means that a
protected path is searched where the first path does not have links that are in
SRLG A or B, and where the second path does not have links in SRLG C. The
top node (−,−) means both paths are allowed to have any link and no SRLGs
are excluded. SRLG-tree is a Breath-First-Search algorithm. A property of the
tree is that the cost of solutions of the nodes grow while traveling down the
tree. So the solution of the top node has the least total cost, but this solution
does not have to be SRLG-disjoint. If a SRLG-disjoint solution is found, no
child node can have a solution with lower cost, because of this property. The
idea behind SRLG-tree is the lazy exclusion of SRLGs. What we mean with
this is that when a found path is not disjoint for a SRLG only then we exclude
this SRLG from one of the paths. The parsing tree is not known in advance,
only the starting node (−,−). From there, the tree evolves with branches. The
branching stops in a node where a SRLG-disjoint solution is found or no solution
is found.

First we explain that with a path excluded from SRLG A is meant that this
path does not have links that are in SRLG A. If a found protected path of a tree
node is not SRLG-disjoint, the algorithm only picks one SRLG that is in both
paths. If there are multiple SRLGs that are in both paths then a SRLG can be
chosen randomly. Then two new branches are made with the original exclusions
and the exclusion of the picked SRLG for both paths. So if for example the
original node was (A, B) and the found path is disjoint for SRLG C then two
new branches are made (AC, B) and (A, BC). This makes SRLG tree branch-
and-bound method. Note that the solution of the top node (−,−) can be found
with Bhandari’s algorithm [33], because no SRLG exclusions are necessary. For
finding paths excluded from certain SRLGs this thesis proposes an algorithm
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called SRLG-exclusion.

2.2 SRLG-exclusion introduction

Consider an undirected network G with nodes N and links L where the SRLGs
of a link l ∈ L are given by the set R(l). Let P be a single path in the network.
We define R(P) as the set of SRLGs of all links in path P. So

R(P ) =
⋃
l∈P

R(l)

It is easy to find a single path between nodes in G which is excluded from
certain SRLGs. Just remove all the links that are in unwanted SRLGs and run
a shortest path algorithm. Things get more complicated if we have two sets of
SRLGs Ra and Rb and if the objective is to calculated two disjoint paths Pa

and Pb where Pa is excluded from Ra and Pb is excluded from Rb. If we use the
same technique as for the single path then this is a form of two-times Dijkstra
which not always gives a solution even if it exists. Therefore using an algorithm
like Bhandari’s algorithm is better. In Bhandari’s algorithm after finding the
first path, which we will call the initial first path, this path is made directed
towards the source. If the second path, which we will define as the initial second
path, uses such directed links then these links used by both paths. Therefore
these links can be eliminated and this gives two new paths, which we will call
the final first path and the final second path. But this causes that parts of the
initial first path can be in the final second path after the elimination. And vice
versa, that parts of the initial second path can be in the final first path. So this
also causes that although the initial first path that was found without links that
are in Ra the final first path does have links in Ra and analog for the second
path. This is where the problem lies in finding two paths that are excluded from
Ra and Rb. We will write the algorithm for the calculation of these two paths
(Pa,Pb) as SRLG-exclusion(G, ns, nd,Ra,Rb) or short as (Ra,Rb) if it is clear
what G, ns and nd are.

2.3 Algorithm

We now focus on SRLG-exclusion which is used by the SRLG-tree algorithm.
SRLG-exclusion is called with the parameters SRLG-exclusion(G, ns, nd,Ra,Rb)
where G is a network, ns is a source, nd is a destination in G, Ra and Rb are
two sets of SRLGs. The algorithm returns two paths from which the first path
does not have links that are in a SRLG that is in Ra and the second path does
not have links that are in a SRLG that is in Rb. Both paths are also node
disjoint. We will now explain how SRLG-exclusion works. First we remove all
links from G that are in a SRLG in Ra and call this new network G′a. Then
a initial primary path P ′a is obtained with a shortest path algorithm. P ′a is
evidently excluded from SRLGs in Ra. As in the Bhandari algorithm we make
all links in the original G where the removed links are placed back, that are in
P ′a directed from nd to ns. We call this new network G′. We define

Ga := {(N ,L) ∈ G′ | l ∈ P ′a or R(l) ∩Ra = ∅ ∀l ∈ L}
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Gb := {(N ,L) ∈ G′ | l ∈ P ′a or R(l) ∩Rb = ∅ ∀l ∈ L}

So Gb is the network G′ where all links that are in Rb are removed except if they
are directed because they are in P ′a.

While searching the shortest path from ns to nd in G we keep track of the
queue of paths that is being explored. We define one or more contiguous links
in a path as a “part”.

The algorithm starts its search in ns in Gb. If a path “in progress” has one
part in common with P ′a then the algorithm uses Ga to explore new links. We
also use the term crossing for having a common part. If a path crosses P ′a two
times so it has two parts common with P ′a then the algorithm uses Gb again. So
with an odd number of crossings the algorithm works on Ga otherwise on Gb. So
it is a shortest path algorithm while during the exploration of links the network
on which it operates can change. An example is given below.

2.4 Example

Assume we have a network G shown in figure 2.1 with a source and destination.
G contains two SRLGs, 1 and 2. LetRa = {1} andRb = {2}. Now for the initial
primary path P ′a we can run ShortestPath(G′a, ns, nd) where G′a is G without
links in Ra. This gives the path in figure 2.3 and does not contain links that
are in 1. We now place back all the links that we removed that are in SRLG
1. Further we make all links of the found path directed from nd to ns. Now
remove all undirected l ∈ L in G with R(l) ∩Rb 6= ∅. We call this new network
Gb (figure 2.4). We are now interested in calculating a backup path without
links in Rb. We use a shortest path algorithm which works with a queue of
paths. While running the algorithm, if a path goes through a directed link like
in figure 2.5 then we transform our network Gb to Ga (see figure 2.6). If the path
travels a unidirectional link again (figure 2.7), we transform our network back
to Gb (figure 2.8), etc. After finding the backup path P ′b (figure 2.9) we put both
P ′a (solid) and P ′b (dashed) in the original network G (figure 2.10). Then like
the Bhandari algorithm we remove links in G which are used in both directions
(figure 2.10). The result is a primary path Pa excluded from SRLGs in Ra and
a backup path Pb as displayed in figure 2.11.

Figure 2.1: Network G
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Figure 2.2: Network G′a

Figure 2.3: P ′a=ShortestPath(G′a, ns, nd)

Figure 2.4: Network Gb with primary path and links in Rb removed from G

Figure 2.5: Crossing directed link
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Figure 2.6: Add links in Rb, remove links in Ra

Figure 2.7: Crossing directed link

Figure 2.8: Add links in Ra, remove links in Rb

Figure 2.9: Backup path found
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Figure 2.10: Both paths in G, remove links that are traversed in both directions

Figure 2.11: Result of SRLG-exclusion(G, ns, nd,Ra,Rb)

2.5 Problem of mixing paths

In the example we saw that final solution had a primary path and backup path
which were excluded from the intended SRLGs. But with the used method this
can easily go wrong. While we used the switching between two networks for
the backup path, we did not do this for the first path. This can cause that
after mixing the two initial paths, links with unwanted SRLGs can end up in
the backup path. We give an example where this happens. In this example we
again search a primary path without Ra = {1} and the backup path without
Rb = {2}.

Figure 2.12: Original network G

In figure 2.18 the bold solid path is the primary path and the dashed path
is the backup path. As we see the backup path contains SRLG 1 and SRLG 2
although we searched a backup path without SRLG 2. This is caused by the
mixing of the initial primary and backup path.

There is a way to prevent this. After finding the initial primary path P ′a
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Figure 2.13: Initial primary path P ′a in G′a

Figure 2.14: Network Gb

Figure 2.15: Crossing initial primary path therefore switch network.

Figure 2.16: Network Ga

Figure 2.17: Initial backup path P ′b
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Figure 2.18: Final primary and backup path after mixing

remove from that path all links that are in a SRLG in Rb. This leaves one
or more parts. Also remove the last part, even if there is only one part. This
leaves zero or more parts. During the exploring of the second initial path P ′b
we demand that the number of times that P ′b crosses a part is even. The final
paths Pa and Pb will be correct after mixing.

Assume again a network with SRLGs 1 and 2. We want to calculate (1, 2)
which means that the primary path does not have links in SRLG 1 and the
backup path does not have links in SRLG 2. In figure 2.19 we only show P ′a. If
we remove the two links from P ′a that are in SRLG 2 we get three parts from
which we ignore the last part. For finding P ′b we demand that the number of
times that P ′b crosses each of the two parts is even. Figure 2.20 shows a possible
P ′b that is valid. The first part is crossed two times and the second is crossed
zero times. So each part is crossed an even number of times. The last part
which is crossed once is ignored. After mixing the initial paths the final paths
in figure 2.21 are a valid solution for (1, 2).

Figure 2.19: Initial primary path P ′a

Figure 2.20: Valid path for P ′b
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Figure 2.21: Result after mixing

2.6 Time complexity

Let N be the nodes in a network and L the links. The calculation of P ′a is done
with a shortest path algorithm. We can use an algorithm based on Dijkstra for
this which has time complexity O(|L| + |N |log|N |). The time complexity for
calculating P ′b takes some attention. In normal shortest path calculations for
each node in the network the minimal cost for reaching that is note is kept up.
In SRLG-exclusion a node can be visited in each of the two networks Ga and
Gb. This means that for both networks the minimal cost for reaching a node
has to be tracked. All links and nodes are visited twice in the worst case so
the time complexity for finding P ′b is O(2|L|+ 2|N |log(2|N |)) and so the total
time complexity for SRLG-exclusion is O(3|L|+ 3|N |log(|N |) + 2|N |log(2)) =
O(|L| + |N |log(|N |) + |N |). We assume that the switching between the two
networks does not add to the running time.

2.7 Exactness

Theorem 2.7.1. Let G be a network with nodes N and links L. ns is a
source, nd is a destination in G, Ra and Rb are two sets of SRLGs. SRLG-
exclusion(G, ns, nd,Ra,Rb) or short as (Ra,Rb) finds a solution if one exists.

Proof. Let (P∗a ,P∗b ) be a solution so P∗a ∩ Ra = ∅ and P∗b ∩ Rb = ∅. For
calculating (Ra,Rb) we first calculate the initial primary path P ′a. Such path
is always possible, because calculation of P ′a is exact (i.e. it is just Dijkstra’s
algorithm). We then switch to Gb as defined above and calculate P ′b. If a direct
path from source to destination is possible over undirected links then we found
a solution (P ′a,P ′b). If no direct path P ′b in Gb is possible then P ′a∩P∗b 6= ∅ holds
otherwise P ′b = P∗b is a path in Gb which is a contradiction. For constructing P ′b
we first follow P∗b until P ′a. Then we follow the directed links until we encounter
P∗a . If P∗a ∩P ′a = ∅ then this is all the way back to the source. SRLG-exclusion
then switches to Ga. If a direct path to the destination is possible then we
are done otherwise we follow P∗a in the direction of the destination until we
reach P ′a again. Then follow the directed links until we encounter P∗b again. By
continuing this process we finally reach the destination, because we follow P∗a
and P∗b towards the destination.

Because the main algorithm SRLG-tree has to calculate the shortest SRLG-
disjoint protected path in a network, we want SRLG-exclusion to return the
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Figure 2.22: Original network G

Figure 2.23: Path P ′a

shortest protected path. But SRLG-exclusion does not guarantee to give the
solution with minimal cost. We will show this in an example where we again
calculate (1, 2) in a network G with SRLGs 1 and 2 shown in figure 2.22. First
P ′a is calculated and shown in figure 2.23. In figure 2.24 network Gb is shown and
in figure 2.25 is the calculated P ′b. In figure 2.26 the primary path is drawn as a
thick, solid lines and the backup path is dashed. This solution is obviously not
the optimal solution. The optimal solution is shown in figure 2.27. Although
SRLG-exclusion does not guarantee to return a solution with minimal cost, we
can prove the next theorem.

Theorem 2.7.2. Let G be a network with nodes N and links L. ns is a source,
nd is a destination in G, Ra and Rb are two sets of SRLGs. (Ra,Rb) or
(Rb,Ra) returns an optimal solution if exists with a path excluded from links in
SRLGs in Ra and a path excluded from links in SRLGs in Rb.

Proof. The difference between the two SRLG-exclusion calculations is with
which path is started, the path without Ra or the path without Rb. The first
path from (Ra,Rb) we call P ′aRa

and the initial primary path from (Rb,Ra)
we call P ′aRb

. Let (P∗a ,P∗b ) be the optimal solution in G. If P ′aRa
∩ P∗a = ∅ and

P ′aRb
∩ P∗b = ∅ then if P ′aRa

∩ P ′aRb
= ∅ then because C(P ′aRa

) ≤ C(P∗a) and
C(P ′aRb

) ≤ C(P∗b ) it holds that C(P ′aRa
,P ′aRb

) ≤ C(P∗a ,P∗b ) and (P ′aRa
,P ′aRb

) is
a solution. Else if P ′aRa

∩ P ′aRb
6= ∅ then (P ′aRa

,P∗b ) is a optimal solution and
(P∗a ,P ′aRb

) is a optimal solution.
So now we look at the case that P ′aRa

∩ P∗a 6= ∅ or P ′aRb
∩ P∗b 6= ∅. Assume

P ′aRa
∩ P∗a 6= ∅. The prove for P ′aRb

∩ P∗b 6= ∅ is analog. If P ′aRa
∩ P∗b = ∅

then (P ′aRa
,P∗b ) is an optimal solution. Assume P ′aRa

∩ P∗b 6= ∅. But then we
can use the same construction as in the previous proof to construct P ′b. The
optimal route for the initial backup path is from the source over P∗b until P ′aRa

.
Then follow the directed links until P∗a is encountered. Follow P∗a towards
the destination until the destination node or until P ′aRa

is reached. If we are
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Figure 2.24: Network Gb

Figure 2.25: Path P ′b

Figure 2.26: Final paths, but not optimal.

Figure 2.27: Optimal solution
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in the destination we are done otherwise follow the directed links until P∗b is
encountered. Then follow P∗b towards the destination. This process is repeated
until the destination node is reached. After mixing the initial paths the final
paths are C(Pa,Pb) ≤ C(P∗a ,P∗b ).
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Chapter 3

The SRLG-tree algorithm

We can now focus on the main algorithm of this work, the SRLG-tree algorithm.
Given a network G with nodes N , links L and a source node ns and a destination
node nd with ns, nd ∈ N . Links in G can be in one or more SRLGs and a SRLG
can contain any number of links. The goal of the SRLG-tree algorithm is to
find the two shortest paths between ns and nd which are node, link and SRLG
disjoint. To calculate the cost C of a path we can use any cost function.

3.1 Algorithm

Below follows the global layout of the algorithm. Afterwards it is explained step
by step. SRLG-tree(G,ns,nd)

1: Initialize T ← ∅ (todo set of tree nodes)
2: Initialize D ← ∅ (done set of tree nodes)
3: Initialize Pmin ← ∅ (current two shortest paths)
4: Initialize Cmin ←∞ (cost of current two shortest paths)
5: (Pa,Pb)← Bhandari(G, ns, nd) (normal Bhandari)
6: if (Pa,Pb) = ∅ then
7: exit (no solution possible, stop)
8: else
9: if R(Pa) ∩R(Pb) = ∅ then

10: Pmin ← (Pa,Pb) (save found solution)
11: Cmin ← C(Pa,Pb) (save cost)
12: exit (solution is SRLG disjoint, stop)
13: else
14: for all r ∈ R(Pa)∩R(Pb) (is single path without SRLG possible?) do
15: L∗ = {l ∈ L|r /∈ R(l)}
16: G∗ = G(N ,L∗)
17: if ShortestPath(G∗, ns, nd) = ∅ then
18: exit (no SRLG-disjoint paths possible)
19: end if
20: end for
21: r ∈ R(Pa) ∩R(Pb)
22: T ← T ∪ {({r}, ∅), (∅, {r})}
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23: end if
24: end if
25: while T 6= ∅ (loop if todo is not empty) do
26: (Ra,Rb)← {(R1,R2) ∈ T , min{|R1|+ |R2| | (R1,R2) ∈ T }}
27: (Pa,Pb)←SRLG-exclusion(G, ns, nd,Ra,Rb)
28: if (Pa,Pb) = ∅ then
29: D ← D ∪ (Ra,Rb) (add to done set)
30: else
31: if R(Pa) ∩R(Pb) = ∅ (no overlapping SRLGs?) then
32: if C(Pa,Pb) < Cmin then
33: Pmin ← (Pa,Pb)
34: Cmin ← C(Pa,Pb) (if currently shortest sol. then save)
35: end if
36: D ← D ∪ (Ra,Rb) (add to done set)
37: else
38: if C(Pa,Pb) < Cmin then
39: r ∈ R(Pa) ∩R(Pb)
40: T ← T ∪ {(Ra ∪ {r},Rb)} ∪ {(Ra,Rb ∪ {r})}
41: else
42: D ← D ∪ (Ra,Rb) (not possible to become opt. sol.)
43: end if
44: end if
45: end if
46: T ← T \(Ra,Rb) (evaluated (Ra,Rb), remove from todo set)
47: T ← {(T1, T2) ∈ T | ∀(D1,D2) ∈ D,D1 ∪ D2 * T1 ∪ T2}
48: end while
49: return Pmin

3.2 Explanation

If a solution exists, the algorithm returns two node/link/SRLG-disjoint paths
with minimal cost. The algorithm starts with the Bhandari algorithm to find
two initial paths. If we find paths that are SRLG-disjoint then we are done,
otherwise we check for each SRLG that is in both paths if a single path from ns

to nd without links in the SRLG is possible. We can do this by removing links
that are in the SRLG and run a shortest path algorithm. If there is a SRLG
for which no single path can be found then there cannot be two paths that are
SRLG-disjoint and the algorithm stops.

We pick a SRLG that is in both paths, say A, and add {(A, ∅)} and {(∅, A)}
to T . T is the set we still have to evaluate. We pick an element in T with
the least number of SRLGs, say {(A, ∅)}. If SRLG-exclusion(G, ns, nd, {A}, {})
returns two paths then we know that the first path will not have links that are
in SRLG A. So the two paths will be disjoint for SRLG A. If the two paths are
disjoint for all SRLGs then we found a possible solution, but if the two paths
have another overlapping SRLG B then we remove the current element {(A, ∅)}
from T that is being evaluated and add {(AB, ∅)} and {(A, B)} to T . Our set
T now contains {(∅, A)}, {(AB, ∅)} and {(A, B)}. We now evaluate the next
element of T with the least SRLGs, {(∅, A)}. This loop continues until the
set T is empty. Every time a solution is found, the cost is compared with the
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currently optimal solution. If the cost is lower then the new solution is saved.
If we calculate SRLG-exclusion(G, ns, nd,Ra,Rb) where Ra and Rb are sets

of SRLGs, there are three possible outcomes. SRLG-exclusion(G, ns, nd,Ra,Rb)
has a solution (Pa,Pb) where the SRLGs of both paths are disjoint so R(Pa) ∩
R(Pb) = ∅. The second possibility, SRLG-exclusion(G, ns, nd,Ra,Rb) finds two
paths with one or more SRLGs that are in both paths, R(Pa) ∩ R(Pb) 6= ∅.
And the last possibility is that SRLG-exclusion(G, ns, nd,Ra,Rb) does not find
a solution.

Theorem 3.2.1. Let Ra,Rb,R+
a ,R+

b be sets of SRLGs with Ra ⊆ R+
a and

Rb ⊆ R+
b . If SRLG-exclusion(G, ns, nd,Ra,Rb) has a SRLG disjoint solu-

tion (Pa,Pb) then SRLG-exclusion(G, ns, nd,R+
a ,R+

b ) cannot have a solution
(P+

a ,P+
b ) with C(P+

a ,P+
b ) < C(Pa,Pb).

Proof. SRLG-exclusion(G, ns, nd,Ra,Rb) has a SRLG disjoint solution (Pa,Pb)
with minimal cost where the primary path is excluded from SRLGs in Ra and
the backup path is excluded from SRLGs in Rb. Let us assume that SRLG-
exclusion(G, ns, nd,R+

a ,R+
b ) returns a solution (P+

a ,P+
b ) with C(P+

a ,P+
b ) <

C(Pa,Pb). Because the primary path P+
a is excluded from SRLGs in R+

a , it
is also excluded from SRLGs in Ra because Ra ⊆ R+

a . Analog is P+
b ex-

cluded from SRLGs in Rb ⊆ R+
b . So paths (P+

a ,P+
b ) are also a valid solution

for SRLG-exclusion(G, ns, nd,Ra,Rb), but with less cost than (Pa,Pb). But
SRLG-exclusion(G, ns, nd,Ra,Rb) gives a solution with minimal cost, so this is
a contradiction and C(P+

a ,P+
b ) ≥ C(Pa,Pb).

The result is that if we evaluate SRLG-exclusion(G, ns, nd,Ra,Rb) and find
a SRLG disjoint solution, we do not have to search any further for solutions of
SRLG-exclusion(G, ns, nd,R+

a ,R+
b ). If SRLG-exclusion(G, ns, nd,Ra,Rb) does

not find a solution it is evident that SRLG-exclusion(G, ns, nd,R+
a ,R+

b ) also will
not find a solution.

Figure 3.1: Tree-view

Assume a network has three SRLGs: A, B and C and we write SRLG-
exclusion(G, ns, nd,Ra,Rb) as (Ra,Rb). Then all the possibilities are shown in
figure 3.1. The algorithm starts at the top with calculating (-,-) which stands for
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SRLG-exclusion(G, ns, nd,Ra,Rb) with Ra = Rb = ∅. If two paths are found
which are not SRLG-disjoint one SRLG is picked, A in the example, and from
the top node we make two branches (A,-) and (-,A), and add them to the set T
of nodes which still have to be parsed. The top node we have parsed is removed
from T . We then pick from this set the next node with the least number of
SRLGs which is either (A,-) or (-,A). We pick (A,-) and run SRLG-exclusion. If
we find two disjoint paths then we found a solution and from theorem 3.2.1 we
know that further parsing the children of node (A,-) will not result in a solution
with less cost. If (A,-) does not find a solution then children of (A,-) also do not
have solutions. If (A,-) results again in two paths which is not SRLG-disjoint
then we know that both paths are disjoint for A. In the example the paths share
B and the node branches into (AB,-) and (A,B). Next (-,A) is picked and the
this process continuous until T is empty.

3.3 Analyses

Let G be a network and RG the set of all SRLGs in the network. Now let
(P∗a ,P∗b ) be two SRLG-disjoint paths with minimal cost in G. We now define

R∗a = {r ∈ RG | r /∈ R(P∗a)}

R∗b = {r ∈ RG | r /∈ R(P∗b )}

Lemma 3.3.1. If (P∗a ,P∗b ) is SRLG disjoint then R∗a ∪R∗b = RG.

Proof. Assume R∗a ∪ R∗b 6= RG . Then ∃r ∈ RG with r /∈ R∗a and r /∈ R∗b . But
then r ∈ R(P∗a) and r ∈ R(P∗b ). This is a contradiction, because the two paths
are SRLG disjoint. So R∗a ∪R∗b = RG .

Lemma 3.3.2. Let (Pa,Pb) be a SRLG disjoint path in G and let (P∗a ,P∗b ),
R∗a, R∗b be defined as above. The algorithm SRLG-exclusion(G, ns, nd,R∗a,R∗b)
or SRLG-exclusion(G, ns, nd,R∗b ,R∗a) returns a SRLG disjoint solution (P∗a ,P∗b )
with C(P∗a ,P∗b ) ≤ C(Pa,Pb)

Proof. SRLG-exclusion(G, ns, nd,R∗a,R∗b) or SRLG-exclusion(G, ns, nd,R∗b ,R∗a)
returns the optimal solution (P∗a ,P∗b ). Then by definition if (Pa,Pb) is an opti-
mal solution then C(Pa,Pb) = C(P∗a ,P∗b ) else C(P∗a ,P∗b ) < C(Pa,Pb).

Theorem 3.3.3. SRLG-tree finds two SRLG-disjoint paths with minimal cost
in a network G, if such paths exists.

Proof. Assume an optimal SRLG disjoint solution (P∗a ,P∗b ) exists. Let R∗a,
R∗b be defined as above. The quest for the optimal disjoint path in the al-
gorithm begins with SRLG-exclusion(G, ns, nd,Ra,Rb) where Ra = Rb = ∅.
As we will see, for every iteration holds Ra ⊆ R∗a and Rb ⊆ R∗b . We al-
ready described that there are three possible results. The first is that we
find a disjoint solution (Pa,Pb). Then because of theorem 3.2.1 C(Pa,Pb) ≤
C(P∗a ,P∗b ). Because (P∗a ,P∗b ) is an optimal disjoint solution, it must be that
C(Pa,Pb) = C(P∗a ,P∗b ) and the iterations stop. The second option is that SRLG-
exclusion(G, ns, nd,Ra,Rb) does not find a solution. But this is not possible be-
cause (P∗a ,P∗b ) is a valid solution. The third possible outcome is a path (Pa,Pb)
which is not SRLG disjoint. The algorithm takes a r ∈ R(Pa) ∩ R(Pb) and
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creates two new searches SRLG-exclusion(G, ns, nd,Ra ∪ {r},Rb) and SRLG-
exclusion(G, ns, nd,Ra,Rb ∪ {r}). If r ∈ R∗a then in this proof we only con-
sider SRLG-exclusion(G, ns, nd,Ra ∪ {r},Rb) otherwise we will look at SRLG-
exclusion(G, ns, nd,Ra,Rb ∪ {r}). Actually if r ∈ R∗a and r ∈ R∗b then we
could focus on either one. From this follows that the new Ra ⊆ R∗a and new
Rb ⊆ R∗b . From here we move on to the next iteration. Because of lemma 3.3.2,
if Ra = R∗a and Rb = R∗b then an optimal disjoint solution is found and the
iterations stop. So during the iterations Ra ⊆ R∗a and Rb ⊆ R∗b .

3.4 Time complexity

Assume a network with nodes N , and links L and R SRLGs. In each iteration of
the SRLG-tree algorithm the SRLG-exclusion algorithm is ran. We have shown
that the time complexity of SRLG-exclusion is O(|L|+ |N |log(|N |) + |N |). In
the worst-case the SRLG-tree algorithm has to iterate through the complete
tree shown in figure 3.1 which has 2R+1 − 1 nodes. For SRLG-tree this gives a
time complexity of O((2R+1 − 1) · (3|L|+ 3|N |log(|N |) + 2|N |log(2)) = O(2R ·
(|L|+ |N |log(|N |) + |N |).

3.5 Improvement

Finding a disjoint solution as soon as possible is important, because with this
solution certain branches of the parsing tree can be disregarded. Theorem 3.2.1
states that no child nodes can have a solution with less cost than the solution
of the parent node. So if we have a disjoint solution we can compare it with
solutions of other nodes. If the cost of a solution of a node has higher cost then
we do not need to explore that node any further.

To create a disjoint solution SRLG-tree can use the primary path it has
already found in its iteration and than search a disjoint backup path. This can
be done by eliminating all links that share an SRLG with the primary path and
than run a shortest path algorithm. By doing this in each iteration SRLG-tree
quickly obtains disjoint solutions and is able to compare the cost with solutions
of tree nodes.

3.6 Worst-case scenario’s

The worst-case scenario for SRLG-tree is that it will run SRLG-exclusion 2R+1−
1 times, where R is the number of riskgroups. This is for example the case in the
following situation. The algorithm starts with Bhandari. Assume this results
in two paths which share SRLG A. Next SRLG-exclusion will run which will
eliminate A being shared by both paths, but these new paths now share B. If
SRLG-exclusion searches for paths disjoint in A and B, a new shared SRLG C
pops up. This continues until all R SRLGs are encountered. In this situation
SRLG-tree performs poorly and has to run SRLG-exclusion 2R+1− 1 times and
performs with time complexity O(2R · (|L|+ |N |log(|N |) + |N |).

In figure 3.2 an example of such network is shown. This network is strongly
simplified and has only a source node s and a destination node d, and has four
SRLGs A, B and C. The link cost/length are within the brackets beside the
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Figure 3.2: Worst-case scenario example network

links. Starting with Bhandari, this returns two paths which share A and C.
SRLG-tree picks one of these SRLGs, we take A. SRLG-exclusion returns a
path which is disjoint for A, but now we have paths that share B. The tree that
is fully parsed by SRLG-tree is shown in figure 3.1. All nodes at the lowest level
result in a SRLG-disjoint solution, but only ABC,− is the optimal solution.
We have to note that if SRLG-tree picked C when Bhandari returned two paths
that shared A and C then SRLG-exclusion would have directly resulted in the
optimal solution.

3.7 Performance of SRLG-tree

For measuring the performance of the SRLG-tree algorithm we create two kind
of networks, random and scale-free networks. The default network has 100
nodes, 15 SRLGs and SRLG probability, the probability of a link being in a
SRLG, of 0,1. In case of the random network the link probability of the default
network is 0,05. We will vary each variable while keeping the others static.

When the random network is created each possible link between any node
pair has probability p to be in the network. For creation of the scale-free network
a power law distribution function is used. The link probability of the nodes are
uniformly distributed along the x axis of then the corresponding link probability
is given by the power law function. This probability varies between 0 and 1.
Then for each possible link between any node pair (m, n) with link probabilities
pm and pn, the probability for the link to be in the network is max(pm, pn).In
both type of networks we also vary the probability pr that a link is in a SRLG.
For each link and for each SRLG it has probability pr that the link is in that
SRLG.

For each of the different networks with N nodes and R SRLGs we created
10 random sample networks with N nodes and R SRLGs and in each sample
network calculated 10 random protected paths. We measured the running time
of the SRLG-tree algorithm and the number of nodes in the iteration tree of the
SRLG-tree algorithm. The averages of these 100 outcomes are calculated and
shown in the figures below.

For low number of nodes and/or low link probability the network can be
disconnected and SRLG-tree quickly detects this. For example in figure 3.3a the
network will be disconnected in the beginning when the number of nodes is low.
In both types of networks similar graphs show for varying the SRLG probability.
First both number of iterations and running time grow exponentially, but then
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(a) Iterations (b) Running time

Figure 3.3: Random network: Variable number of nodes

(a) Iterations (b) Running time

Figure 3.4: Random network: Variable number of SRLGs

the growth reverses. An explanation for this can be that if links are in more
SRLGs then the possible number of disjoint pairs in the network decreases. The
same we see in the figure of the random network where we vary the number of
nodes. If the network becomes larger the change that a disjoint path between
two random nodes is possible becomes smaller. In case such path is not possible
then SRLG-tree detects this in one iteration.

The maximum number of iterations is 2R+1 − 1 where R is the number of
SRLGs and this gives the maximum iterations in the parsing tree in the worst-
case scenario. In average SRLG-tree parses only a fraction of this. In the cases
where SRLGs = 0 SRLG-tree only needs 1 iteration and performs equal to
Bhandari’s algorithm.
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(a) Iterations (b) Running time

Figure 3.5: Random network: Variable link probability

(a) Iterations (b) Running time

Figure 3.6: Random network: Variable SRLG probability

(a) Iterations (b) Running time

Figure 3.7: Scale-free network: Variable number of nodes
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(a) Iterations (b) Running time

Figure 3.8: Scale-free network: Variable number of SRLGs

(a) Iterations (b) Running time

Figure 3.9: Scale-free network: Variable SRLG probability
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Chapter 4

SRLG-tree in subnetwork
topology networks

4.1 Introduction

Figure 4.1: Protected path with shortcut

The SURFnet network consists of separate rings. These rings are connected
to each other in two center states, Amsterdam1 and Amsterdam2. These center
states or hubs are directly connected with each other. A protected path between
a source and destination node on separate rings always go via the two hubs,
the primary path through one hub and the backup path through the other.
Sometimes there is no such SRLG-disjoint protected path possible.

Assume that we are allowed to make a shortcut between a path pair between
a source and destination node. The simplest example of a protected path with
a shortcut is shown in figure 4.1. The protected path consists of a pair of
paths, the primary path over nodes S → A→ D and a backup path over nodes
S → B → D. The shortcut is the path A→ B which connects the primary path
and the backup path. In a protected path with a shortcut there are four ways
to go from the source node to the destination. Besides the primary path and
backup path, by using the shortcut there are also the paths S → A → B → D
and S → B → A → D possible. These two shortcut paths are not link/node
disjoint with the primary path or backup path. A shortcut path uses the first
part of the primary path until the starting node of the shortcut, then goes over
the shortcut and finally uses the second part of the backup path to reach the
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destination node. And the other shortcut path goes vice versa. If a primary
path and a backup path share a SRLG then with a shortcut a connection could
survive if this SRLG fails. In figure 4.1 the primary path and the backup path
share SRLG 1. If this group fails then because of path S → B → A → D
connection between source and destination survives. But if for example the
shared SRLG 1 had links (S, A) and (S, B) then with even with the shortcut
the connection does not survive. To use the same terminology we will call a
protected path with a shortcut, which can survive a single SRLG failure, a
SRLG-disjoint path.

Let (Pa,Pb) be a protected path between a source node ns and a destination
node nd, then a shortcut Ps for (Pa,Pb) is a path between a node na in Pa to
a node nb in Pb where na and/or nb are not the source or destination node.
We also demand that na and nb are the only nodes in Ps that are in Pa or Pb.
Below we give a formal definition.

Definition 4.1.1. Given a protected path (Pa,Pb) between source ns and des-
tination nd in a network G with nodes N and links L. Path Ps =

⋃
i=0..n(ui, vi)

where ui, vi ∈ N , i = 0..n is a shortcut for (Pa,Pb) if

u0 ∈ Pa\{ns, nd}

vn ∈ Pb\{ns, nd}⋃
i=1..n−1

(ui, vi) ∩ (Pa ∪ Pb) = ∅

We call (Pa,Pb,Ps) a “protected path with shortcut”.

Assume a network which is constructed of multiple subnetworks. These
subnetworks are not directly connected to each other, but are connected through
hubs. An example of such topology with only one hub is shown in figure 4.2.
Nodes in the same subnetwork can connect directly through the subnetwork
they are in, but nodes in different subnetworks have to connect through a hub.

Figure 4.2: ring topology

The SURFnet network consists of rings which are connected in two center
states, Amsterdam1 and Amsterdam2, which are directly connected with each
other. Therefore we assume a network with two hubs where the two hubs are
directly connected. We will regard this direct connection between the hubs as
the shortcut described above. If there is a protected path with shortcut between
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two nodes on different subnetworks then a flat view of the path in the network
can look like depicted in figure 4.3 and shows the four possible paths from source
ns to destination nd through hubs/nodes h1 and h2.

Figure 4.3: Protected path with shortcut between two hubs

4.2 Problem definition

Assume an undirected network G with SRLGs, constructed of subnetworks
which are connected through two hubs. Network G has nodes N of which
two hub nodes h1, h2 and links L. The link between the two hubs is not in any
SRLG. Let ns be a source node and nd a destination node with ns, nd ∈ N . The
objective is to find a SRLG-disjoint protected path with shortcut (Pa,Pb,Ps)
between nodes ns and nd with minimal cost and with the shortcut between h1

and h2.

4.3 Related work

For this problem we need an algorithm that is able to calculate a SRLG-disjoint
path between a source node and two destination nodes. The destination nodes
are the hubs. We can then calculate a disjoint path from source to the two hubs
and from the destination to the two hubs. If we combine these two protected
paths and add a shortcut between the two hubs then the result is also SRLG-
disjoint. Every algorithm in section 1.4 which is able to calculate a disjoint path
between a source and two destination nodes can be used for this problem.

4.4 Algorithm

We are interested in describing an algorithm to find a protected path with
shortcut that is SRLG-disjoint with least total cost. Let G be a network with
nodes N and links L. Besides a source node ns and a destination node nd, we
have two hub nodes h1 and h2 which are the end nodes of the shortcut path.
We define the path from ns to h1 as Pas, the path from ns to h2 as Pbs, the
path from h1 to nd as Pad and the path from h2 to nd as Pbd as shown in figure
4.3.
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For the protected path with shortcut to be SRLG-disjoint we need the con-
dition that R(Pas,Pbs) = ∅ and R(Pad,Pbd) = ∅ holds. So the SRLG-diverse
routing problem is split up in two subparts. The first subpart is a diverse rout-
ing problem from a source ns to two different destinations h1 and h2. The other
subpart is the SRLG-disjoint route from h1 and h2 to nd. If both sub problems
have SRLG-disjoint solutions then we can join the solutions together to obtain
a protected path with shortcut between ns and nd which is SRLG-disjoint.

With minor changes the algorithms in this work can also be applied to paths
with one or two sources and/or one or two destinations. The algorithm SRLG-
exclusion has parameters ns for the source and nd for the destination node.
SRLG-exclusion returns two paths with the same source and destination. To
enable the algorithm to return two paths with different sources and destinations
it first has to get two extra parameters. Instead of the parameters ns and nd

the algorithm gets ns1, ns2, nd1 and nd2. If we want two paths with the same
source node, but different destination node then parameters ns1 and ns2 are set
the same and nd1 and nd2 different.

The main algorithm SRLG-tree needs also extra parameters. Also here we
have instead of parameters ns and nd the new parameters ns1, ns2, nd1 and
nd2. These new parameters are given as input to the new SRLG-exclusion in
SRLG-tree.

With this new SRLG-tree algorithm we are now able to solve the two sub
problems of the SRLG diverse routing problem with shortcut. To obtain a
SRLG-disjoint protected path between ns and nd with the given shortcut be-
tween node h1 and h2. The new SRLG-tree algorithm has to be used twice.

(Pas,Pbs) = SRLG− tree(G, ns, ns, h1, h2)

(Pad,Pbd) = SRLG− tree(G, h1, h2, nd, nd)

If both return a solution then we can create a protected path with shortcut
(Pa,Pb,Ps) that is SRLG-disjoint with Pa = Pas ∪ Pad and Pb = Pbs ∪ Pbd.
(Pa,Pb,Ps) is then a protected path with shortcut with least total cost.

If a solution to the SRLG diverse routing problem can optionally have a
shortcut then problem has to be split up in the normal SRLG diverse rout-
ing problem (without shortcut) and the SRLG diverse routing problem with
shortcut. If both produce a result the one with the least cost is chosen.

4.5 Time complexity

Let a G be a network with nodes N and links L. The number of subnetworks of
G is S. Assume a source node in a subnetwork and a destination node in another
subnetwork. We want to know the time complexity for a protected path between
these nodes over the two hub nodes. In each subnetwork are |N |/S nodes and
|L|/S links on average. SRLG-tree is ran for each subnetwork. So the time
complexity is 2 · O((2R+1 − 1) · (3|L|/S + 3|N |log(|N |/S)/S + 2|N |log(2)/S))
with S ≥ 2. The maximum value is obtained for S = 2 which gives O((2R+1 −
1) · (3|L|+ 3|N |log(|N |/2) + 2|N |log(2))) = O(2R · (|L|+ |N |log(|N |) + |N |)).
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Chapter 5

Implementation

For the practical work of my thesis, I worked at SARA in Amsterdam. I devel-
oped a web-based Java/J2EE application “PathPlanner”, which implements the
SRLG-tree algorithm, for planning lightpaths in SURFnet. The functionalities
of PathPlanner are:

• Calculate the optimal single or protected path between two nodes.

• Display information about active lightpaths.

• Display ranking of all active lightpaths sorted on efficiency.

• Display hot spots.

While planning a path, the user can prefer and/or exclude certain routes, nodes.
This gives the user some control over the planning of the path. Displaying
information of a lightpath gives the user detailed information for example which
route the path takes and which devices the path uses in lower layers of the
network. For the ranking for each lightpath the following costs are calculated:
cost of current active path, cost of rerouted path and cost of rerouted path in
an empty network. For the cost of the rerouted path the active path is first
removed from the network and than rerouted with SRLG-tree. The percentage
of improvement is also shown and the list is sorted on this percentage from high
to low. This gives the user an overview of lightpaths that are not provisioned
optimally. The last functionality of PathPlanner is the list of hot spots. Here
first all active lightpaths are routed in an empty network and than all calculated
paths are added to an empty network. A list of all nodes with the needed
capacity is shown. This gives the user an idea which nodes could be potential
bottlenecks. If the for example the capacity of a node is exceeded then there
could be lightpaths that are not routed optimal. By increasing the capacity of
this node, resources could be reduced.
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Chapter 6

Further investigations

• Can the approach of SRLG-tree can be adapted to be used for shared
protection routing?

• If a near-optimal solution is sufficient, how much can be gained on the
running time?

• How “near” is this solution to the optimal solution?

• Ragarding the routing problem with shortcuts from chapter 4, is there an
efficient exact algorithm for non-fixed shortcut paths?

• Are there good heuristics for this non-fixed shortcut problem?
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Chapter 7

Appendix

7.1 Snapshots Pathplanner on SURFnet

Figure 7.1: Protected path between Rotterdam and Apeldoorn

7.2 Extract source code PathPlanner

private List<List<Interface>> SRLGtree(List<Interface> from,

List<Interface> to, int sts1capacity, boolean noifcweight) {

if (from == null || to == null || from.size() == 0

|| from.size() != to.size()) {

return null;

}

boolean protectedpath = from.size() > 1;
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Figure 7.2: “Hotspots” in the network
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Figure 7.3: Ranking of currently most inefficient planned lightpaths

System.out.println("\nCalculate path\nfrom: " + from + "\nto: " + to

+ "\nprotected: " + protectedpath);

capacity = sts1capacity;

Set<List<Set<String>>> todo = new HashSet<List<Set<String>>>();

Set<String> necessaryriskgroups = new HashSet<String>();

boolean checkednecessary = false;

List<Set<String>> ls = new ArrayList<Set<String>>();

ls.add(new HashSet<String>());

ls.add(new HashSet<String>());

todo.add(ls);

List<Set<String>> current = null;

List<List<Interface>> shortestDijkstra = new ArrayList<List<Interface>>();

shortestDijkstra.add(new ArrayList<Interface>());

shortestDijkstra.add(new ArrayList<Interface>());

int shortestDijkstraCost = 0;

exploredsets.clear();

int iterations = 0;

while (todo.size() > 0) {

System.out.println(todo);

iterations++;

int min = network.riskgroups.size() + 1;

for (List<Set<String>> lss : todo) {

int sum = lss.get(0).size() + lss.get(1).size();

if (sum < min) {

min = sum;

current = lss;

}

}

// Suurballe free
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System.out.println("first path without " + current

+ ", backup path free");

iterationresultfree = new ArrayList<List<Interface>>();

iterationresultnotfree = new ArrayList<List<Interface>>();

iterationresultfree.add(Dijkstra(from.get(0), to.get(0), current

.get(0), false, true));

iterationresultnotfree.add(new ArrayList<Interface>());

for (Interface ifc : iterationresultfree.get(0)) {

iterationresultnotfree.get(0).add(ifc);

}

if (protectedpath && iterationresultfree.get(0).size() > 0) {

FlagLinks();

iterationresultfree.add(Dijkstra(from.get(1), to.get(1),

current.get(1), false, false));

RemoveCommonLinks(iterationresultfree.get(0),

iterationresultfree.get(1));

} else {

iterationresultfree.add(new ArrayList<Interface>());

}

// check if two paths are free of riskgrous in current.get(0) and current.get(1)

List<List<Interface>> history = new ArrayList<List<Interface>>(); //check for cycles

while (iterationresultfree.get(1).size() > 0

&& RiskgroupsOverlap(RiskgroupsInPath(iterationresultfree

.get(1)), current.get(1))

&& history.indexOf(iterationresultfree.get(1)) == -1) {

history.add(iterationresultfree.get(1));

iterationresultfree.remove(1);

network.ResetFlags();

negativeWeight.clear();

shortestPath = iterationresultfree.get(0);

shortestPathWithout = current.get(0);

FlagLinks();

iterationresultfree.add(Dijkstra(from.get(1), to.get(1),

current.get(1), false, false));

RemoveCommonLinks(iterationresultfree.get(0),

iterationresultfree.get(1));

}

if (history.indexOf(iterationresultfree.get(1)) != -1) {

iterationresultfree.get(1).clear();

}

// evaluate result

if (!protectedpath || iterationresultfree.get(1).size() > 0) {

System.out.println(iterationresultfree);

System.out.println("solution found");

int cost = TotalCost(iterationresultfree, true, noifcweight);

if (shortestDijkstra.get(0).size() == 0

|| cost < shortestDijkstraCost) {

System.out

.println("shortest (cost:" + cost + ") -> saving");

shortestDijkstra = iterationresultfree;

shortestDijkstraCost = cost;

} else {

System.out.println("not shortest");

cost = TotalCost(iterationresultfree, false, noifcweight);

if (shortestDijkstraCost != 0

&& cost >= shortestDijkstraCost) {

// no possiblity to lower value below shortestDijkstraCost

System.out

.println("cost can’t can lower then current shortest -> add to done");

exploredsets.add(current);
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todo.remove(current);

RemoveExploredsets(todo);

continue;

}

}

Set<String> rg1 = RiskgroupsInPath(iterationresultfree.get(0));

Set<String> rg2 = RiskgroupsInPath(iterationresultfree.get(1));

rg1.removeAll(necessaryriskgroups);

rg2.removeAll(necessaryriskgroups);

if (RiskgroupsOverlap(rg1, rg2)) {

boolean expand = true;

// check if some riskgroups are nessacary

if (current.get(0).size() == 0

&& current.get(1).size() == 0 && !checkednecessary) {

expand = false;

checkednecessary = true;

for (String s : rg1) {

if (rg2.contains(s)) {

Set<String> temp = new HashSet<String>();

temp.add(s);

if (Dijkstra(from.get(0), to.get(0), temp,

false, true).size() == 0

&& Dijkstra(from.get(1), to.get(1),

temp, false, true).size() == 0) {

List<Set<String>> lss = new ArrayList<Set<String>>();

lss.add(temp);

lss.add(new HashSet<String>());

exploredsets.add(lss);

lss = new ArrayList<Set<String>>();

lss.add(new HashSet<String>());

lss.add(temp);

exploredsets.add(lss);

necessaryriskgroups.add(s);

System.out.println("necessary: "

+ necessaryriskgroups);

}

}

}

rg1.removeAll(necessaryriskgroups);

rg2.removeAll(necessaryriskgroups);

if (RiskgroupsOverlap(rg1, rg2)) {

expand = true;

}

}

// if overlapping -> expand

if (expand) {

System.out.println("overlapping");

System.out

.println("trying to find backup path without riskgroups of primary path...");

Set<String> rginprimary = RiskgroupsInPath(iterationresultnotfree

.get(0));

iterationresultnotfree.add(Dijkstra(from.get(1), to

.get(1), rginprimary, true, false));

RemoveCommonLinks(iterationresultnotfree.get(0),

iterationresultnotfree.get(1));

// check if two paths are free of riskgrous in current.get(0) and current.get(1)

history.clear();

while (iterationresultnotfree.get(1).size() > 0

&& RiskgroupsOverlap(

RiskgroupsInPath(iterationresultnotfree
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.get(1)), current.get(1))

&& history.indexOf(iterationresultnotfree

.get(1)) == -1) {

history.add(iterationresultnotfree.get(1));

iterationresultnotfree.remove(1);

network.ResetFlags();

negativeWeight.clear();

shortestPath = iterationresultnotfree.get(0);

shortestPathWithout = current.get(0);

FlagLinks();

iterationresultnotfree.add(Dijkstra(from.get(1), to

.get(1), current.get(1), false, false));

RemoveCommonLinks(iterationresultnotfree.get(0),

iterationresultnotfree.get(1));

}

if (history.indexOf(iterationresultnotfree.get(1)) != -1) {

iterationresultnotfree.get(1).clear();

}

if (iterationresultnotfree.get(1).size() > 0) {

System.out.println(iterationresultnotfree);

System.out.println("solution found");

cost = TotalCost(iterationresultnotfree, true,

noifcweight);

if (shortestDijkstra.get(0).size() == 0

|| cost < shortestDijkstraCost) {

System.out.println("shortest (cost:" + cost

+ ") -> saving");

shortestDijkstra = iterationresultnotfree;

shortestDijkstraCost = cost;

} else {

System.out.println("not shortest");

}

}

System.out.print("expand ");

// if overlapping solution then expand todo

for (String s : rg1) {

if (rg2.contains(s)) {

System.out.print(s + " ");

// add overlapping element to first set

List<Set<String>> copy = new ArrayList<Set<String>>();

Set<String> copyss = new HashSet<String>();

for (String st : current.get(0)) {

copyss.add(st);

}

copyss.add(s);

copy.add(copyss);

copyss = new HashSet<String>();

for (String st : current.get(1)) {

copyss.add(st);

}

copy.add(copyss);

todo.add(copy);

// add overlapping element to second set

copy = new ArrayList<Set<String>>();

copyss = new HashSet<String>();

for (String st : current.get(0)) {

copyss.add(st);

}

copy.add(copyss);

copyss = new HashSet<String>();

for (String st : current.get(1)) {
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copyss.add(st);

}

copyss.add(s);

copy.add(copyss);

todo.add(copy);

break; // add only 1 element of overlapping set

}

}

System.out.println("");

}

} else {

exploredsets.add(current);

}

} else {

//System.out.println("no solution");

// no solution

exploredsets.add(current);

}

todo.remove(current); // remove current from todo’s

// check of todo’s are allready explored

RemoveExploredsets(todo);

}

// sort list by to

if (shortestDijkstra.get(1).size() > 0

&& to.get(0) != shortestDijkstra.get(0).get(

shortestDijkstra.get(0).size() - 1)) {

shortestDijkstra.add(shortestDijkstra.get(0));

shortestDijkstra.remove(0);

}

System.out.println("# iterations: " + iterations);

System.out.println("riskgroups primary path: "

+ RiskgroupsInPath(shortestDijkstra.get(0))

+ "\nriskgroups in backup path: "

+ RiskgroupsInPath(shortestDijkstra.get(1)));

/*

* System.out.println("\nPRIMARY PATH:");

* System.out.println(NetworkStateDB.getPathWithCpls(shortestDijkstra

* .get(0))); System.out.println("\nBACKUP PATH:");

* System.out.println(NetworkStateDB.getPathWithCpls(shortestDijkstra

* .get(1)));

*/

return shortestDijkstra;

}

private void ExploreDevice(Interface from, Interface to, int path,

Set<String> without, boolean costriskgroup, boolean firstpath,

List<Interface> freeifcs) {

Interface lastifc = explore.get(path).get(explore.get(path).size() - 1);

int index = 0;

// if cost higher than allready found path -> delete

if (shortestPathCost > 0 && explorecost.get(path) >= shortestPathCost) {

RemovePathExplore(path);

return;

}

// check for cycles

if (DeviceInPath(lastifc.getDevice(), explore.get(path).subList(0,

explore.get(path).size() - 1))) {

RemovePathExplore(path); // remove if cycle
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return;

}

// check if we’ve already been on this device

index = done.indexOf(lastifc.getDevice());

if (index != -1) {

int cost = -1;

if (exploreswitch.get(path)) {

cost = nodecost.get(index).get(1);

} else {

cost = nodecost.get(index).get(0);

}

if (cost != -1 && cost <= explorecost.get(path)) {

RemovePathExplore(path); // there is a shorter path

return;

} else {

if (exploreswitch.get(path)) {

nodecost.get(index).set(1, explorecost.get(path));

} else {

nodecost.get(index).set(0, explorecost.get(path));

}

}

} else {

done.add(lastifc.getDevice());

nodecost.add(new ArrayList<Integer>());

if (exploreswitch.get(path)) {

nodecost.get(nodecost.size() - 1).add(-1);

nodecost.get(nodecost.size() - 1).add(explorecost.get(path));

} else {

nodecost.get(nodecost.size() - 1).add(explorecost.get(path));

nodecost.get(nodecost.size() - 1).add(-1);

}

}

// check if target is on device

ArrayList<Interface> ifcs = explore.get(path).get(

explore.get(path).size() - 1).getDevice().getInterfaces();

if (ifcs.contains(to)) { // target found!

AddInterface(path, to, costriskgroup, freeifcs);

if (shortestPath.isEmpty()

|| explorecost.get(path) < shortestPathCost) { // if shortest -> save path

shortestPath = explore.get(path);

shortestPathCost = explorecost.get(path);

if (firstpath) {

shortestPathWithout = without;

}

}

RemovePathExplore(path);

} else {

ifcs.clear();

// create new path for every interface-out

ifcs = lastifc.getDevice().getConnectedInterfaces();

for (int i = ifcs.size() - 1; i >= 0; i--) {

if ((capacity > 0 && (ifcs.get(i).getFreeCapacity() < capacity || ifcs

.get(i).getConnectedTo().getFreeCapacity() < capacity))

|| lastifc.getConnectedTo() != null

&& lastifc.getConnectedTo().getDevice() == ifcs.get(i)

.getConnectedTo().getDevice()

|| (!exploreswitch.get(path) && ifcs.get(i)

.RiskgroupOverlap(without))

|| (exploreswitch.get(path) && ifcs.get(i)

.RiskgroupOverlap(shortestPathWithout))) {

ifcs.remove(i);
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}

}

if (ifcs.size() == 0) {

RemovePathExplore(path); // dead end

} else {

int newpath;

for (int i = 0; i < ifcs.size(); i++) {

if (i == 0) {

newpath = path;

AddInterface(newpath, ifcs.get(i), costriskgroup,

freeifcs); // add to existing path

} else {

// copy existing path and add new interface

newpath = explore.size();

for (int j = 0; j < explore.get(path).size() - 2; j++) {

AddInterface(newpath, explore.get(path).get(j),

costriskgroup, freeifcs);

}

AddInterface(newpath, ifcs.get(i), costriskgroup,

freeifcs);

}

AddInterface(newpath, ifcs.get(i).getConnectedTo(),

costriskgroup, freeifcs); // make jump

}

}

}

}
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