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Abstract

In an era marked by the demand for unprecedented levels of precision in engineering applications, the

profound impact of friction forces on motion control systems cannot be underestimated. This thesis

extensively investigates the frictional behavior of the Proton Motion Stage, an advanced high-precision

motion control system developed by Prodrive Technologies. This research conducts both experimental

investigations and computational simulations, offering valuable insights into its friction behavior across

diverse conditions and scenarios.

The research begins with an analysis of existing models used to describe friction behavior in preci-

sion engineering systems. A critical evaluation of empirical models highlighting strengths and limitations

is presented, and the LuGre friction model is selected. Subsequently, a simulation work is conducted to

identify the viscous coefficients, the stiffness coefficient, the Coulomb friction, the Stribeck friction, and the

Stribeck velocity in the LuGre model. The simulation setup is described, including the incorporation of the

LuGre friction model and the identification of system parameters. The accuracy of the identification value

to the true value is above 99%. A comparison of the sensitivity of the objective function to the change of

parameters is also conducted to enable a comprehensive exploration of friction dynamics. Finally, the re-

search delves into static and dynamic parameter experiments, where cable slab forces’ position-dependent

impacts and velocity-friction maps that capture the intricate Stribeck effect are presented, and closed-loop

and open-loop setups to dissect friction behavior during rapid motion changes are employed. Residual

analysis of histogram and 90% confidence autocorrelation and cross-correlation is also presented to study

the quality of identification and shows that the LuGre model does not fully capture the friction phenomena

on the Proton Motion Stage. Future research should involve the modification of the LuGre model and

data-driven approaches such as machine learning. Overall, this thesis fills the gap in state-of-the-art works

by combining theory and practice to enhance the understanding of friction in precision engineering systems.
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1
Introduction

1.1. Background and Motivation
In the realm of precision engineering, due to the rapid developments in technology, achieving high levels

of accuracy has become crucial. Nonetheless, a challenge arises from the presence of disturbance forces

within precision systems, and frequently results in deviations from accurate tracking and positioning [1] [2].

Among these disturbance forces, friction force plays a prominent role. For control of precision engineering,

the friction force is an unwanted and intricate phenomenon that introduces nonlinear characteristics,

subsequently giving rise to control-related issues [2]. Notably, the friction force is a major contributor to

problems like stick-slip, significantly impacting the overall tracking performance of precision systems. To

eliminate friction force in precision engineering, designs such as air bearings and magnetic bearings are

used. For some scenarios that require performances with higher precision, effectively identifying friction

force and thus compensating friction force is needed to ensure the desired levels of accuracy [3][4].

A widely utilized approach to address friction force identification is through model-based methodologies.

Model-based methodologies use models that encompass friction in both situations with and without a

relative movement and strive to describe the complex behavior of friction within precision engineering

systems [3][4]. Among the options explored, the LuGre friction model [5] emerges as a significant choice.

It offers a comprehensive representation of frictional effects by combining elements of Coulomb friction,

viscous friction, and stick-slip effect, allowing it to capture both static and dynamic friction phenomena [2].

In addition to the LuGre model, the Leuven model [6], the Modified Leuven model [7], and the Generalized

Maxwell Slip model (GMS) [8] are also noteworthy models of friction force. The Leuven model focuses on

simulating dynamic friction behavior, incorporating features such as non-local hysteresis characteristics [6].

The Modified Leuven model expands upon the Leuven model’s foundation, updating its representation of

friction dynamics [7]. Lastly, the GMS model introduces the analogy of multiple viscoelastic elements to

account for the viscoelastic properties of friction materials [9]. These friction force models collectively serve

as indispensable tools for the understanding and modeling of friction force phenomena, and are promising

to be used in mitigating the challenges posed by friction forces in precision engineering systems [8].

The Proton Motion Stage in Figure 1.1, developed by Prodrive Technologies, showcases cutting-edge

engineering in the field of motion control. This high-precision motion system is a complex mix of mechanical

components, sensors, and control algorithms that work together to achieve precise movements with

great accuracy. However, in such complex systems, friction becomes a critical factor that can impact

performance, accuracy, and overall system behavior. The success of the Proton Motion Stage depends

on its ability to overcome the challenges posed by friction, making a comprehensive investigation into its

frictional characteristics a matter of utmost importance.

1



1.2. Objective 2

Figure 1.1: Proton Motion Stage from Prodrive Technologies.

This thesis aims to provide insights into the friction force within the context of the Proton Motion Stage,

and thus offer knowledge that can inform the design, optimization, and operation of the Proton Motion

Stage and similar precision engineering systems.

1.2. Objective
The primary objective of this thesis is to select a suitable friction model and to identify the friction parameters

of the Proton Motion Stage, with the aim of enhancing our understanding of its frictional behavior. The

research is divided into two main components: simulation work and experimental investigations. The

specific objectives include:

• Literature Review andModel Selection: From the existing frictionmodels used in precision engineering

systems, select an appropriate model for further investigation.

• Simulations: Develop a computational model of the Proton Motion Stage that incorporates the

selected friction model. Simulate the behavior of the system to explore the effects of different

parameters and gain insights into friction dynamics.

• Experimental Investigations: Perform a series of experiments on the Proton Motion Stage to identify

friction parameters. This includes friction coefficients analysis and the study of position-dependent

effects on friction forces.

• Comparison and Insights: Compare the findings from simulations and experimental investigations

to have a deeper understanding of friction identification and friction behavior in the Proton Motion

Stage.

1.3. Outline
The rest of the thesis is organized as follows:

• Chapter 2: This chapter presents a comprehensive review of existing friction models employed

in precision engineering systems. The strengths and limitations of different models are discussed,
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leading to the selection of the LuGre friction model for further investigation.

• Chapter 3: In this chapter, the principle of the LuGre friction model and the identification of friction

parameters are explained. A sensitivity analysis of these parameters is also conducted to explain

identification results.

• Chapter 4: The focus of this chapter is on the experiments conducted on the Proton Motion Stage.

In this chapter, first, the position-dependent cable-slab force is modeled. Then, the identification of

static and dynamic parameters is conducted.

• Chapter 5: This chapter includes a summary of the key findings of the thesis and suggestions for

future research and development in understanding of friction in the motion control system.



2
Literature Review

2.1. Static Friction Models
Friction, as a highly nonlinear natural phenomenon, presents a challenge in modeling, including when

the velocity crosses zero. In an effort to characterize this complex behavior, friction models have been

broadly classified into two categories: static and dynamic [3]. Static models predominantly involve a fixed

mapping from velocity to force, while dynamic models consider not only this mapping but also the temporal

relationship between these variables. This section will provide an overview of some of the static models [10].

2.1.1. Coulomb Friction
Coulomb friction is named after Charles-Augustin de Coulomb and is one of the oldest friction models [11].

The Coulomb friction model approximates friction force as zero at zero velocity, and a constant value at

other non-zero velocities, with the direction opposite to the moving direction, as explained mathematically

by

f = FCsgn(v), (2.1)

where FC is the Coulomb friction and v is the sliding velocity [10].

2.1.2. Viscous Friction
Since the emergence of hydrodynamics theory, Reynolds proposed that viscous friction in lubricated

situations is proportional to velocity.

f = σviscousv, (2.2)

where σviscous is the viscous coefficient [10][3]. It is common to combine the Coulomb and viscous friction

models, where the friction force at zero velocity is non-zero, as shown in Figure 2.1.

2.1.3. Stiction
The concept of stiction is introduced by Morin, defined as the force that must be overcome during the

motion initialization [12]. Compared to the Coulomb friction model, the stiction at zero velocity is generally

larger than the Coulomb friction. The most famous and commonly used in engineering is the combination

of static, Coulomb and viscous friction models, because it preserves simplicity while satisfying industrial

accuracy requirements, as illustrated in Figure 2.1(d) [2].

4



2.1. Static Friction Models 5

(a) Coulomb friction model. (b) Viscous friction model. (c) Coulomb + viscous friction model.

(d) Coulomb + viscous + stiction friction

model.

(e) Stribeck effect + viscous. Tustin fric-

tion model.

Figure 2.1: Static friction models.

2.1.4. Stribeck Curve
The Stribeck curve models the friction force when the relative velocity between two contacting surfaces is

non-zero from a stand-still state. In the Stribeck curve, four regimes are presented, including pre-sliding

friction, boundary lubrication, partial fluid lubrication, and full fluid lubrication [3].

In the static friction regime, it is assumed that the velocity of relative movement is zero, but a small velocity

exists when the contacting surfaces are deformed. The asperity of the contact surface is idealized as

springs when the displacement is very small. Before the breakaway happens, the tangential force Ft

applied on the spring-like asperity junction is:

Ft(x) = −ktz, (2.3)

where z is the displacement before the junction starts sliding, and kt is the stiffness of the spring. The

asperities deform in reaction to the tangential force and recover when the force is absent.

With the increase of the tangential force Ff , the displacement z reaches the maximum value zmax,

the springs breakaway and the contacting surfaces start to slide, resulting in the relative velocity becoming

larger than zero, as shown in 2.2
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(a) Springs analogy of two contacting surfaces. (b) Deformation of springs.

(c) Breakaway when displacement reaches the maxi-

mum value.

Figure 2.2: Regime 1: static friction.

In the second regime, the contact surfaces create some space between each other but the velocity

is still not large enough to generate a lubrication film. Since this regime preserves the shearing action

between two solid surfaces, the friction force in this regime is larger than the following regimes three and

four [13].

The further velocity increase introduces a lubrication film into the contact surface in regime three,

but the lubrication film is not thicker than the asperities. Therefore, solid contact still exists and re-

sults in partial fluid lubrication. As the velocity keeps increasing, the solid contact between two surfaces

decreases, and the lubrication film increases, resulting in a smaller friction force and larger acceleration [14].

The lubrication film grows further with the sliding motion in the fourth regime, so the solid contact

is eliminated and the contact surfaces are fully supported by fluid lubricants.

The microscopic analogies of the two contacting surfaces in regimes 2, 3, and 4 are shown in 2.3:
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(a) Regime 2: boundary lubrication. (b) Regime 3: partial fluid lubrication.

(c) Regime 4: full partial fluid lubrication.

Figure 2.3: Regime 2,3, and 4 in Stribeck curve.

The Stribeck curve shows how friction force changes with velocity in regimes 2,3 and 4, and the friction

force in regime 1 does not change with velocity [15].

Figure 2.4: Generalized Stribeck curve.

The Tustin friction model [16]can be written as

f = sign(v)s(v) + σ2v, (2.4)

where s(v) is a continuous parameterized curve that represents the Stribeck effect, σ2v is the viscous

friction term, and the most common form of s is

s(v) = Fc + (Fs − Fc)e
−( v

v0
)δs , (2.5)

where δs is the Stribeck shape parameter, FC is the Coulomb friction, FS is the stiction friction, and v0 is
the velocity with respect to the Coulomb friction.
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2.2. Dynamic Friction Models
The static models fail to explain the following:

• hysteresis behavior in the situation of non-stationary velocities;

• different experimental conditions including the variations of contact surfaces can result in various

breakaway forces;

• in the sticking phase (regime 1), small displacements should also be considered.

Dynamic models mainly describe the spring-like behavior during the first regime (pre-sliding regime),

including hysteresis behavior and varying break-away forces [5].

2.2.1. LuGre model
LuGre model integrates the Stribeck curve and the pre-sliding regime. The name of the LuGre model is the

abbreviation of the Lund Institute of Technology and INPG Grenoble. As shown in Figure 2.5, the LuGre

model adopts the analogy from the Dahl model [17] and compares the contact surfaces to two sides of

bristles, where one side is considered rigid for simplicity [2].

Figure 2.5: Bristles model to describe contact surface [5]

In the pre-sliding stage, the average deflection of the bristles z can be described as

dz

dt
= v − σ0|v|

s(v)
z, (2.6)

where v is the relative velocity of the sliding movement, and σ0 represents the stiffness coefficient.

The deflection z generates friction force F by

F = σ0z + σ1
dz

dt
+ σ2v, (2.7)

in which σ1 is the micro-viscous damping coefficient and σ2 is the viscous damping coefficient.

With increasing of the displacement z, the change of displacement dz
dt reaches zero, and z approaches the

maximum value

zmax =
vs(v)

|v|σ0
= sign

s(v)

σ0
, (2.8)

the friction force enters the steady-state stage, where z stays constant.

From Equation 2.5, 2.7 and 2.8, the friction force for steady-state can be described as

Fss(v) = s(v)sign(v) + σ2v

= FCsign(v) + (FS − FC)e
−( v

vs
)2sign(v) + σ2v.

(2.9)
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Figure 2.6: LuGre simulation results: (a) applied external force, (b) resulting position, (c) resulting

position-force relationship.

Figure 2.7: Experimental results: (a) applied torque, (b) resulting angular position, (c) resulting

position-torque relationship.

As shown in Figure 2.6 and 2.7, the LuGre model fails to capture the internal loop in the position-force

relation, which means it cannot cover the reversal point memory, also called nonlocal memory. By enabling

the nonlocal memory, friction force can be calculated disregarding the number of velocity reversals [5].

2.2.2. Leuven model
The Leuven friction model builds upon the LuGre model to improve its accuracy in describing friction

dynamics by introducing hysteresis behavior with nonlocal memory[6]. The Leuven model consists of two

equations:

• The friction force equation:

F = Fh(z) + σ1
dz

dt
+ σ2v, (2.10)

• The nonlinear state equation:

dz

dt
= v

(
1− sign

(
Fd(z)

s(v)− Fb

) ∣∣∣∣ Fd(z)

s(v)− Fb

∣∣∣∣n) , (2.11)

The parameters are listed below:

• Fh(z): the hysteresis friction force, which is the part of the friction force that shows hysteresis

behavior;
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• n: the transition curve shape coefficient;

• Fd(z): the transition curve of piecewise-linear spring characteristic of z that is active at a certain time;

• Fb: the beginning point of the curve.

To describe the pre-sliding stage, (2.10) is reduced to

F = Fb + Fd(z) = Fh(z)

dz

dt
= 0 (2.12)

because the velocity is zero.

Two stacks are required to implement Fh(z): stack m for the minimum value of Fh(z) in ascending

order and stack M for the maximum value of Fh(z) in descending order. These stacks grow at velocity

reversals, shrink when internal hysteresis loops are closed.

During each time velocity reversal, if the transition curve is descending, the value of Fb is added to

the current value of stackM , and if the transition curve is ascending, the value of Fb is added to the current

value of stack m. In this way, when the velocity reversal finishes, the new extreme values of Fh would be

added to stack M and m. When an internal loop, as shown in Figure 2.7 closes, the Leuven model wipes

out the extreme values within the internal loop from the stacks, just like the loop has never happened. The

stacks are reset when the stage shifts from pre-sliding to sliding.

With this procedure, the displacement z is reset to zero value when a velocity reversal is finished

and recalculated when an internal loop is closed[6].

To describe the steady-state stage, s(v) = Fd(z) + Fb, and the friction is described similarly to Equation

(3.5) in the LuGre model.

2.2.3. Modified Leuven model
Based on the Leuven model, there are two major modifications [7]:

• Adaptation of the state equation to overcome discontinuities.

In the Leuven model, when an internal loop closes or starts, the values of z and Fd(z) are re-

set to zero and the value of Fb is set to Fh(z). This leads to a discontinuity of the values of Fh(z) and
Fb, which causes the discontinuity of Fd(z)/(s(v)− Fb) and eventually makes dz/dt discontinuous.
This will ultimately lead to the friction force being discontinued since friction force is calculated from

dz/dt.

Modified Leuven method replaced
Fd(z)

s(v)−Fb(z)
with Fh

s(v) , to avoid the discontinuity in the friction

force brought by the sudden change of Fd(z) and Fb.

dz

dt
= v

(
1− sign

(
Fh(z)

s(v)

) ∣∣∣∣Fh(z)

s(v)

∣∣∣∣n) (2.13)

• Maxwell Slip implementation to overcome stack overflow.

In the Leuven model, a potential implementation error can arise if the memory stacks become

overwhelmed due to an excessive number of initiated loops. This situation can occur due to the

necessity of predefining the stack size beforehand. Also, since the stack must be reset during the

shift from the pre-sliding and sliding phase, a clear boundary between the two phases must be drawn.

Therefore, the second major modification is the replacement of the hysteresis force function with the

Maxwell Slip model [7].
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Figure 2.8: Maxwell Slip model for N elements

Modified Leuven method realizes hysteresis behavior by using N parallel Maxwell Slip elements with

the same input of the displacement and the same output Fi. The hysteresis force Fh equals the sum

of Fi. Each Maxwell-Slip element is described as:

if |z − ζi| <
Fbi

ki
then

{
Fi = ki(z − ζi)

ζi = const.

else


Fi = sign(z − ζi)Fbi

ζi = z − sign(z − ζi)
Fbi

ki
.

(2.14)

Fh =

N∑
i=1

Fi. (2.15)

In the equation, the parameters’ meanings are:

– Fbi: the maximum force,

– ki: a linear spring constant,

– ζi the position of the element i.

The first part of the equation describes the sticking phase, and the second describes the slipping phase.

The sum of hysteresis forces Fi equal the hysteresis force Fh [7].

2.2.4. Generalized Maxwell-Slip Model
The Generalized Maxwell Slip model (GMS) builds upon the modified Leuven model introduced in the

previous section. In this advancement, the Maxwell slip model introduces a change to the hysteresis

function used in the modified Leuven model. Specifically, the Coulomb law at the point of slip is replaced

with a rate-state law. [8].

Similar to the Maxwell-Slip model, GMS can also be represented as N parallel connected elastoslide

elements with the same input (v or z) and different sets of parameters. With the velocity input v and the zi
as the ith element of state vector z, for each elements the dynamics can be determined as:



2.3. A Comparison of Friction Models 12

Figure 2.9: Maxwell Slip model for N massless elements.

• For the element i in the pre-sliding phase:

dzi
dt

= v (2.16)

and the pre-sliding phase remains until zi = si(v), where si(v) is the Stribeck function for element i.

• For element i in the sliding phase:

dzi
dt

= sign(v)Ci

(
1− zi

si(v)

)
, (2.17)

where Ci is the attraction parameter that determines the speed of convergence for zi to si.
The slipping phase remains until velocity reversal.

The friction force is the sum of the friction force output of the N elements and two extra terms for effects

not included in the model.

Ff (t) =

N∑
i=1

(kizi(t) + σiżi(t)) + fviscous(v), (2.18)

in which the first term is the elastic-sliding friction force, the second is the viscoelastic behavior, and the

last term is the viscous component proportional to velocity v(t) [8].

2.3. A Comparison of Friction Models
In this chapter, friction models including static and dynamic friction models are introduced. For friction

identification in later simulation and experiment work, one of the friction models is selected based on the

criteria of

• Coverage of static friction phenomena;

• Coverage of dynamic friction phenomena;

• Accuracy;

• Easy to identify.

Among all the static models, the Tustin friction model explained the four regimes of the friction force

most detail. However, the Tustin model failed to explain the displacement and the variations of breakaway

force in the pre-sliding stage. Since the Proton Motion Stage can move in near zero velocities, the dynamic

friction phenomena is an important research interest in this thesis work. The selection is limited to the

dynamic friction models for the need of dynamic friction phenomena [2].

The LuGre model creates a unified model that applies to both the pre-sliding and sliding stages, as

well as the transition between them. While the LuGre model can successfully encompass most of the
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known friction phenomena, it remains incapable of representing hysteresis with nonlocal memory and

addressing undesired position drift observed in simulations [18].

The Leuven model resolves these problems, yet introduces numerical and implementation challenges.

However, through two specific adjustments, the modified Leuven model successfully resolves the dis-

continuity and implementation issues. Thus, the modified Leuven model is chosen over the Leuven

model. Furthermore, the model briefly touches on physics-based friction models, paving the way for the

introduction of the Generalized Maxwell Slip model. However, due to the elaborateness and complexity,

the ability to support fast simulation and calculation is limited. [8]

The GMS model employs multiple internal states z instead of just one, which enables an even more

accurate description of pre-sliding behavior. However, an issue with the GMS model is the challenge of

determining the precise number of internal states required to achieve an accurate identification of the

friction force. To address this limitation, two potential solutions are under consideration:

• Set a fixed number of internal states;

• Adjust the number through the identification procedure, based on the identification performance.

For the first solution, the determination of the fixed number for all positions of the Proton Motion Stage

is hard, as different positions fit the model differently. The second solution introduces high complexity to

the identification procedure.

The decision between the LuGre model and the GMS model leads to the trade-off between identification

complexity and the coverage of non-local memory [19]. Because the Proton Motion Stage runs mostly

in the velocity belongs to the second, third, and fourth regimes, the coverage of non-local memory is

considered less important than the identification complexity added by GMS. Based on the comparisons in

Table 2.1, the LuGre model is selected for the model-based identification [20][21].

coverage of static friction phenomena coverage of dynamic friction phenomena accuracy easy to identify

Tustin model + - - - ++

LuGre model + + +/- +

Leuven model + + + - -

Modified Leuven model + + ++ -

GMS model + + ++ - -

Table 2.1: A comparison of friction models.



3
Parameter Identification

3.1. Introduction
This chapter focuses on the simulation and parameter identification of the LuGre friction model. The LuGre

model is a widely used friction model that describes the friction between two surfaces using a combination

of elastic, viscous, and Coulomb friction forces, introduced in the previous chapter. This chapter will

explain the identification problem, the methodology used, and the discussion based on the results. For the

pre-sliding stage of the LuGre model, the hysteresis effect has to be captured during performing velocity

reversals. For the steady state, the friction force at different velocities is required. So the parameter

identification consists of two parts: static parameter identification for steady state and dynamic parameter

identification for the pre-sliding stage. The static parameter identification constructs a velocity-friction map

using constant non-zero velocities. Dynamic parameter identification is made by measuring velocity and

friction while applying a motion profile with velocity reversals [22]. The optimization method implemented

for both static and dynamic parameter identifications is the Levenberg–Marquardt algorithm [23]. Based

on the simulation results, a discussion about the noise level dependency of the identification of parameters

is also presented in this chapter.

3.2. LuGre Model and Parameters
The LuGre model[5] describes the stage of the internal dynamics between two touching surfaces before

the relative sliding motion begins as the pre-sliding stage:

s(v) = FC + (FS − FC)e
−( v

v0
)δs , (3.1)

dz

dt
= v − σ0|v|

s(v)
z, (3.2)

F = σ0z + σ1
dz

dt
+ σ2v, (3.3)

zmax =
vs(v)

|v|σ0
= sign(v)

s(v)

σ0
, (3.4)

in which the parameters

• FS : the stiction force;

• FC : the Coulomb force;

• v0: the velocity when the friction is FC ;

• δs: the Stribeck shape parameter, set to 2 in this work [5];

• v: the relative velocity of the two contacting surfaces;

• F : the friction force between the two contacting surfaces;

• z: the relative displacement of the bristles, the analogy of the two surfaces in the LuGre model;

• zmax: the maximum displacement of the bristles, before the sliding happens;

14



3.3. Methodology 15

• t: time;

• σ0: the stiffness coefficient;

• σ1: the micro-viscous damping coefficient;

• σ2: the viscous damping coefficient.

The friction force enters the steady-state stage, where the friction force can be described as

Fss(v) = s(v)sign(v) + σ2v

= FCsign(v) + (FS − FC)e
−( v

v0
)2
sign(v) + σ2v.

(3.5)

In the pre-sliding stage, with the change of velocity, external force, and friction force, the bending of the

bristles changes. Therefore, the pre-sliding stage is also called the dynamic stage. The parameters that

characterize the LuGre model in the dynamic stage are σ0 and σ1, called dynamic parameters [22][24]

In the steady state, the displacement of the bristles already reaches its maximum value and stops

changing, so the steady state is also called the static stage. The parameters that characterize the LuGre

model in the static stage are σ2, FC , FS , and v0, called static parameters[25].

3.3. Methodology
3.3.1. Levenberg–Marquardt algorithm [26]
The identification problem is formulated as a least-squares optimization problem, with the cost function de-

fined as the sum of the squares of the vector F, and the parameters to be identified formulated in the vector x.

The parameter vector x is defined as x = [x1 x2 . . . xn]
T , where n is the number of parame-

ters to be identified.

The vector of velocities collected from m timestamps is denoted as v = [v(t1) v(t2) . . . v(tm)]T .

The vector F is defined as F(x,v) =


Foutput(x, v(t1))− Fmeasure(v(t1))

Foutput(x, v(t2))− Fmeasure(v(t2))
...

Foutput(x, v(tm))− Fmeasure(v(tm))

, where Foutput(x, v(ti)) is

the output friction force of velocity v(ti) using the parameters of the current iteration, and Fmeasure(v(ti)) is
the measured friction force of velocity v(ti).

The identification problem can be formulated as follows:

min
x

c(x), (3.6)

where c(x) =

m∑
i=1

F 2(x, v(ti)) (3.7)

=

m∑
i=1

(Foutput(x, vi)− Fmeasure(vi))
2, (3.8)

The Levenberg–Marquardt algorithm finds the optimum solution iteratively. In each iteration k, the
parameter vector xk+1 is updated by xk + dk, where dk is the step size. So the objective function at the

next iteration xk+1 be calculated as:

c(xk + dk,v) =||Foutput(x
k + dk,v)− Fmeasure(v)||2 (3.9)

=[Foutput(x
k + dk,v)− Fmeasure(v)]

T [Foutput(x
k + dk,v)− Fmeasure(v)]. (3.10)
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To determine the optimal step size dk of each iteration k, the derivative of f(xk + dk) with respect to

dk is supposed to be set to zero, which is hard to perform analytically with Equation 3.10. Therefore, a

series of successive linear approximations are used. F(xk + dk,v) can be linearized by

Foutput(x
k + dk,v) ≈ Foutput(x

k,v) + J(xk,v)dk, (3.11)

where J(xk,v) is the Jacobian matrix of F(xk) with dimensions of m× n, calculated by

J(xk,v) =
∂c(xk,v)

∂xk
. (3.12)

With the linearization of Equation 3.11, Equation 3.10 can be further calculated by:

c(xk + dk,v) =[Foutput(x
k + dk,v)− Fmeasure(v)]

T [Foutput(x
k + dk,v)− Fmeasure(v)]

≈[Foutput(x
k,v) + J(xk,v)dk − Fmeasure(v)]

T [Foutput(x
k,v) + J(xk,v)dk − Fmeasure(v)]

=[Foutput(x
k,v)− Fmeasure(v)]

T [Foutput(x
k,v)− Fmeasure(v)]

+ [Foutput(x
k,v)− Fmeasure(v)]

TJ(xk,v)dk

+ (J(xk,v)dk)T [Foutput(x
k,v)− Fmeasure(v)] + (dk)TJT (xk,v)J(xk,v)dk

=[Foutput(x
k,v)− Fmeasure(v)]

T [Foutput(x
k,v)− Fmeasure(v)]

+ 2[Foutput(x
k,v)− Fmeasure(v)]

TJ(xk,v)dk + (dk)TJT (xk,v)J(xk,v)dk.
(3.13)

In order to obtain the step size that minimizes the objective function the best, taking the derivative of

c(xk + dk,v) with respect to dk and setting the derivative to zero yields the equation:

JT (xk,v)J(xk,v)dk = −JT (xk,v)[Foutput(x
k,v)− Fmeasure(v)], (3.14)

so dk is calculated:

dk = −(JT (xk,v)J(xk,v))−1JT (xk,v)[Foutput(x
k,v)− Fmeasure(v)], (3.15)

which is the search direction of the Gauss-Newton method.

When the current step is far away from the optimum, the value of dk is large since Foutput(x
k, v)−Fmeasure(v)

is large. Therefore, the Gauss-Newton method updates parameters with big search steps for the next

iteration, which causes the method to become unstable. The Levenberg-Marquardt method improves the

Gauss-Newton method for this shortcoming by adding a damping term

(JT (xk,v)J(xk,v) + λkI)dk = −JT (xk,v)F(xk,v), (3.16)

where I is the identity matrix, and the damping factor λk is adjusted as the iterations proceed. If

||F(xk + dk)|| < ||F(xk)||, indicating a successful step, the k + 1th point is closer to the optimal point, λk+1

is set to 0.1 times λk to make larger search steps. On the other hand, if ||F(xk +dk)|| ≥ ||F(xk)||, indicating
an unsuccessful step, then the value of xk+1 is discarded, and xk+1 takes the value of previous parameter

vector xk. λk+1 is set to 10 times the value of λk in order to make smaller and more careful search [27].

The iteration terminates when the objective function c(xk,v) or step size dk is smaller than the tolerance

value. So in this way, the Levenberg-Marquardt method increases the stability while preserving the speed

of convergence.

3.3.2. Static Parameter Identification
The static parameters to be identified are the viscous damping coefficient σ2, the Coulomb friction FC , the

static friction FS , and the Stribeck velocity v0.

Velocity-friction maps are constructed in the simulation work to identify these static parameters. For

positive velocity values, 50 velocity-friction data points are measured, ranging from 0.001 to 0.41 m/s. The
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negative velocity data is symmetrical to the positive velocities. Because the velocity reversal between

positive and negative includes near-zero velocities that are not described by steady-state Equation 3.5,

but in dynamic Equation 3.3, the identification process is performed separately for positive and negative

velocities, and the final identification result is obtained as the average of the results from positive and

negative velocities [22].

To initiate the identification process as close to the real values as possible, initial guesses for posi-

tive velocities are set as follows:

Figure 3.1: Initial guesses of static parameters on velocity-friction map.

• F init
C is set to the minimum measured friction force min(Fmeasure(v)), because the minimum friction

force is Coulomb friction if no noise is presented [3]

• F init
S is set as the friction force at the minimum velocity Fmeasure(v(t1)). Since the friction force with

respect to the minimum velocity is defined as static friction[3].

• vinit0 is determined by the velocity corresponding to the minimum friction force argminvFmeasure.

• σinit
2 is calculated as the slope of the line between the point of minimum friction force and the friction

force with the largest velocity on the velocity-friction map. Written in equation form is:

σinit
2 =

Fmeasure(v(tend))−min(Fmeasure(v))

v(tend)− argminvFmeasure

. (3.17)

For negative velocities, the initial guesses are taken likewise.

3.3.3. Dynamic Parameter Identification
The dynamic parameters to be identified are the stiffness coefficient σ0 and the micro-viscous coefficient

σ1. The initial guesses of the dynamic parameters are as follows:

• The initial guess of parameter σ0 is calculated from Equation 3.5 and Equation 3.3. At the moment of

the transition from the pre-sliding stage and the steady-state stage, the velocity is positive but has a

value of near zero. The deflection z reaches the maximum distance and dz
dt becomes almost zero.

So Equation 3.5 and Equation 3.3 can be written as

F =σ0max(z) (3.18)

=Fc + FS − FC (3.19)

where we set σinit
0 = FS

max(z) .
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• The initial guess of σ1 is set to a random value between 0 and σinit
0 [28].

3.4. Simulation Results
3.4.1. Input
The velocity input is generated by using the Prodrive Motion Platform trajectory generator.

For static parameter identification, velocities are obtained by setting initial and target positions as 0 and 0.2m,

and gradually increasing themaximum velocity and a sampling rate of 104/s.Astepsizeof0.01m/sisusedfrom−
0.41to−0.01andfrom0.01to0.41m/s, andthestepsizeisreducedto0.001m/sintheintervalof [−0.01m/s,−0.001m/s][0.001m/s, 0.01m/s]tobettercapturetheStribeckeffectfromFS

to FC , as shown in Figure 3.3(a).

For example, for the maximum velocity of 0.001m/s, when moving from position 0 to 0.2m, the ve-

locity changes with the sampling count in the following way:

Figure 3.2: Velocity vs time with maximum velocity set to 0.001m/s.

With each maximum velocity, the friction force is collected by averaging the friction forces at the

velocities that are at the flat plateau in the time-velocity relationship.

For dynamic parameter identification, the velocity input is constructed by having the carriage move

back and forth from position -0.00005m to 0.00005m to realize repeated velocity reversals near the zero

point, in order to simulate the pre-sliding stage of friction force.
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(a) Velocities for static parameter identification. (b) The velocity inputs for static and dynamic parameter identifica-

tion.

Figure 3.3: The velocity inputs for static and dynamic parameter identification.

In the simulation work, the measured friction forces corresponding to input velocities are calculated by

using the LuGre friction model and adding Gaussian white noise with a signal-to-noise ratio of 80dB to the

true values of friction forces.

3.4.2. Identification
Implementing the Levenberg–Marquardt(LM) method for parameter identification, the results are as follows.

The tolerance of each component of search direction dk is set to 1e-14 for static parameter identification,

and 1e-6 for dynamic parameter identification. The iteration terminates when one of the components of dk

is smaller than the tolerant.
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(a) Static parameter identification at positive velocities using LM method. The plot with negative velocities is identical.

(b) Dynamic parameter identification using LM method.

Figure 3.4: LM method simulation.

After running 100 Monte-Carlo trials where in each trial the true friction is added with a white Gaussian

noise with an SNR of 80dB, and taking the averages of the outputs, the identification results are shown

below:
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Friction Parameter v>0 v<0 Nominal Value True Value

FC 0.2850 0.2850 0.2850 0.2850

FS 0.3350 0.3350 0.3350 0.3350

v0 0.0100 0.0100 0.0100 0.0100

σ2 0.0179 0.0179 0.0179 0.0180

σ0 – – 259.9927 260

σ1 – – 0.6001 0.6000

Table 3.1: True value and simulation results.

The results show that it is obvious that the six parameters are identified with higher than 99% accuracy,

and the errors are within an acceptable range.

3.4.3. Parameter sensitivity
Due to the presence of noise in the friction input, the locations of the global optimum for each parameter

vary to different extents.

The error rate of a parameter p is defined as:

E(p) =
p̂− p

p
, (3.20)

where p̂ is the estimated value of parameter p, and p is the true value.

When there is no noise added to the friction force, only alter the value of one parameter when the

other five parameters are set to the true value, the objective function changes as follows:

Figure 3.5: Sensitivity of objective function to changes of static and dynamic parameters.

From Figure 3.5, it is shown that when the error rate is zero, the objective function is zero as it means

the most accurate estimation. With the change in the error rate of each parameter, the objective function

responds differently. For example, at the same error rate, for the parameter FC , the objective function

is higher than other parameters, and for the parameter σ2, the objective function is lower than other

parameters. In this way, the objective function is more sensitive to the changes of FC , and less sensitive to

the changes of σ2. This analysis leads to the explanation of the difference in identification results between
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each parameter.

After running 100 Monte-Carlo trails where each trial the true friction is added with a white Gaussian noise

with an SNR of 80, the error rates of parameters are displayed as follows:

Figure 3.6: Probability density function of parameters from 100 Monte-Carlo trails.

Figure 3.6 illustrates the distributions of different parameter identification results. The static parameters

FC , FS , v0, and σ1 have results that are centered around the true values with small variances. This

indicates that the identification of these parameters is more accurate and less sensitive to the addition of

noise to the friction force. On the other hand, the dynamic parameters, σ2, show larger variances, with σ1

slightly being overestimated compared to the true value.

This result coincides with Figure 3.5, where the objective function has the lowest sensitivity to the

change of σ2, and the sensitivity to v0 and σ1 is worse than FC and FS . This suggests that identifying

these parameters is more susceptible to the effects of friction noise and may have less confidence.

3.5. Summary
This chapter focused on the simulation and parameter identification of the LuGre friction model, encompass-

ing both static and dynamic parameter identification processes. Static parameter identification involved

constructing velocity-friction maps and utilizing initial parameter guesses, while dynamic parameter

identification simulated the pre-sliding stage with appropriate initial values. The Levenberg–Marquardt (LM)

algorithm is used as the primary optimization method. Simulation results demonstrated the LM algorithm’s

effectiveness, achieving highly accurate parameter identification in the presence of noise. Sensitivity

analysis revealed variations in parameter sensitivity, with some parameters exhibiting smaller variances.

In summary, this chapter successfully addressed LuGre model parameter identification, shedding light on

parameter sensitivity, which is crucial for modeling and controlling systems involving friction.

This chapter has laid the theoretical groundwork for identifying friction force. In the next chapter,

practical experimentation will be conducted, where the theoretical knowledge is put to the test. Chapter 4

will introduce the Proton Motion Stage and the experiments to identify static and dynamic parameters. The

feasibility of the identification approach presented in Chapter 3 will be discussed.
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Experiments

4.1. Experiment Setup
The experiments are conducted on the Proton Motion Stage built by Prodrive Technologies. The Proton

Motion Stage is a demonstrator of the motion control of a wafer inspection machine. It is a high-precision

motion stage that consists of a vacuum-compatible XY gantry stage and a vibration isolation system.

The performances of the Proton Motion Stage can be monitored with the software PMP (Prodrive Motion

Platform). MatLab can be used to interact with the PMP systems, and code commands for the Proton

Motion Stage.

Figure 4.1: Proton Motion Stage from Prodrive Technologies.

In this experiment work, the static and dynamic friction forces on the X-axis are studied. The relevant

forces include inertia, friction force, and cable slab force, which can be described as:

f + Factuator + Fcable = m ∗ a, (4.1)

where f is the friction force, Factuator is the actuator force applied to maintain the movements of the

carrier, Fcable is the force introduced by the cable slab,m and a are the mass and acceleration of the carrier.

23
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Figure 4.2: Relevant forces.

In the Proton Motion Stage, the actuator force is estimated from the current acting on the actuator with

a proportional relation:

Factuator = 53.4 ∗ Iactuator, (4.2)

where Iactuator is the current.

4.2. Identification of Cable Slab Force
As shown in Figure 4.1, on the Proton Motion Stage, cable slabs are used to transmit power and information.

However, the cable slabs also introduce a position-dependent force to the carrier. The cable slab force has

a force on the carrier whether when it is moving to the positive or negative direction. Since this experiment

aims to model the dynamic and static friction forces in different positions, the cable slab forces are not

negligible.

To identify the cable slab forces, for simplicity, the acceleration in Equation 4.1 is set to zero, which means

the carrier is controlled to move in constant velocities. At a certain position positioni, when the carrier is

moving in the positive direction with the velocity vp, Equation 4.1 can be written as:

fp + Factuator,p + Fcable = 0, (4.3)

where the subscript p means positive direction, and n means negative direction.

When the carrier is moving in the negative direction with the velocity vn, Equation 4.1 can be writ-

ten as:

fn + Factuator,n + Fcable = 0. (4.4)

The identification of cable slab force is based on the assumption that the velocities have the same value

but opposite direction, the friction force also has the same value but opposite direction. So when vp = vn,

fp + fn = 0. (4.5)

Adding Equation 4.3 and Euqation 4.4, the cable slab force at the positioni is obtained as

Fcable = −(Factuator,p + Factuator,n)/2. (4.6)

On the Proton Motion Stage, first, the carrier is controlled to move with the velocity vp = 0.1m/s from the

position -0.15m to 0.15m with a sampling period of 0.0001 seconds. The movement is repeated 10 times.

The actuator force at each sampling time is estimated from the actuator current, and the mean actuator

force at the sampled position is calculated with the data from the 10 times movement.

Then, the carrier is controlled to move to the negative direction with the velocity vn = −0.1m/s from the
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position 0.15m to -0.15m for 10 times. The range of movement and the sampling period are kept the same

as in the positive direction movement. The actuator force is also estimated from the negative actuator

current, and the mean actuator force is also calculated.

Finally, using (4.6), the cable slab force is calculated from the mean actuator force when moving in

positive and negative directions.

The actuator forces and cable slab force in the experiment are smoothened with a Gaussian-weighted

moving average filter in Matlab function smoothdata and are shown below:

Figure 4.3: Cable slab force at position range [-0.15m,0.15m].

In Figure 4.3, the blue line and the red line are the actuator forces when moving in the positive and

negative direction, respectively. The yellow line is the cable slab force at different positions.

From Figure 4.3, it is clear that as the position increases in the positive direction, the cable slab

force increases in the negative direction. This matches the physical characteristic of the cable slab in

Figure 4.1. The indication of the cable and the carrier is shown in Figure Figure 4.4. Figure 4.4(a) shows

the carrier at position 1, and Figure 4.4(b) shows the carrier moved in a positive direction to position 2.
From position 1 to position 2, the radius of folding of the cable slab increases, so there is less elastic
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energy stored in the cable slab, and thus more kinetic energy to drag the carrier. Therefore, the more the

carrier moves in the positive direction, the more the cable slab force increases in the negative direction.

(a) Cable slab and carrier at position 1. (b) Cable slab and carrier moved to the position direction to posi-

tion 2.

Figure 4.4: Indication of cable slab and carrier. The cable slab is shown as red lines, and the carrier is

shown as the blocks.

Moreover, in the curves of positive and negative actuator forces, the force spikes are evident in Figure

4.3. The spikes appear regularly every 0.034m, which is exactly the distance of the bearing rollers.

Therefore, when investigating the friction forces at different positions, the spike areas should not be

considered.

4.3. Static parameter experiments
4.3.1. Velocity-Friction Map
The identification of static parameters is conducted based on velocity-friction maps at various positions.

In the experiment, the carrier is controlled to move 0.005 meters with different constant velocities

ranging from 0.001m/s to 0.25m/s by a closed-loop control system, where the actuator force applied in

order to maintain the constant velocity is the control output. The output of the closed-loop system is the

actuator force that is required for maintaining constant velocities. During the movements, the control

output is sampled every 0.001 seconds. At each sampling point, the friction force is calculated in the same

manner as Equation 4.3 and 4.4 by adding the sampled control output and the cable slab force obtained

from Figure 4.3. To avoid the impact of the transition period, which is the period when the velocity changes

from zero to the desired constant velocity, the carrier is controlled to move twice the effective distance,

and only the latter half is considered, as explained in Figure 4.5.
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(a) Positive direction movement. (b) Negative direction movement.

Figure 4.5: To avoid the impact of the transition period, the carrier is controlled to move twice the effective

distance, and only the latter half is considered effective.

In order to better capture the Stribeck effect, the step size of increasing the velocity is 0.0001 between

the velocity 0.0001 to 0.001, and 0.001 between the velocity 0.001m/s to 0.015m/s and increases to 0.01

when the velocity is up to 0.13m/s. The friction force of the i-th position with the velocity v is calculated by

averaging the calculated friction force at sampling points in the effective distance.

The experiment is performed at 9 different positions on the x-axis. The position on the far left is

-0.136m, where the velocity-friction force map is obtained as follows:
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Figure 4.6: Velocity-friction map for static parameter identification at position -0.136m.

In Figure 4.6, at velocities far from zero, the friction forces with positive and negative velocities have a

symmetrical increasing rate. At velocities near zero, the Stribeck effect is evident. For negative velocities,

Columb friction force and Stribeck force are smaller than positive velocities.
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(a) Stribeck effect at negative velocity. (b) Stribeck effect at positive velocity.

Figure 4.7: Stribeck effect at position -0.136m.

The velocity-friction force map is also obtained at various positions selected away from the spike areas

shown in Figure 4.3.

Figure 4.8: Velocity-friction map for static parameter identification at different positions.

In Figure 4.8, the Stribeck effect is obvious at all positions, with different Columb forces and Stribeck
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forces. The rate of increase and the Stribeck velocities appear similar to all positions.

4.3.2. Identification
Same as in the simulation, the identification is conducted separately with positive velocities and negative

velocities, and the results are averaged to obtain the final identification result. As in the simulation work,

Levenberg–Marquardt algorithm is used to calculate the optimum parameter values as well, and the

initial value of λ is set as 0.01, same as the lsqcurvefit function of MatLab, and the initial guesses of

parameters FS , FC , v0, σ2 are chosen in the same manner as in simulation.

Using the v-F maps at 9 positions, the identification results of static parameters FS , FC , v0, σ2 are

shown below:

(a) Identification results of FS at 9 positions. (b) Identification results of FC at 9 positions.

(c) Identification results of σ2 at 9 positions. (d) Identification results of v0 at 9 positions.

Figure 4.9: Identification results at 9 positions.

In Figure 4.9, for the static parameters FS and C , the parameters have a trend of decreasing from the

position -0.102m. The trend of the parameters σ2 and v0 at different positions are not significant. The

differences in the parameters at different positions are assumed to be caused by the inhomogeneously

distributed lubrication on the track and the material of the track, thus different normal force along the track.

The rate variance of identified values of v0 is the largest among all parameters, one possible cause is that

the measurement at near-zero velocity is affected by hysteresis dynamic friction phenomena.
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To further analyze the result of identification, the residuals of the identified and the measured fric-

tion force are studied. Here the identification residuals at position 0 are shown as an example.

Figure 4.10: Histogram of residuals after identification at position 0.

From Figure 4.10 the histogram of residuals, the residuals after identification are slightly negatively

biased, which means that lower estimations are more likely to happen. It can also be observed that the

residuals do not follow a normal distribution or are also not centered to zero, and are more centered at -0.1

and 0.1.

The autocorrelation of residuals and cross-correlation between residuals and measured friction force

are shown in Figure 4.11, where the red dotted lines represent the confidence of 90%. From Figure

4.11(a), most data points fall within the confidence intervals, and the residuals resemble random noise.

The near-sinusoidal wave and the repeat spikes in both Figure 4.11 (a) and (b) indicate that the LuGre

model does not account for all the underlying structures, which is explained in themodel comparison chapter.
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(a) Autocorrelation of residuals.

(b) Cross-correlation between residuals and measured friction forces.

Figure 4.11: Analysis of identification result at position 0.
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4.4. Dynamic parameter experiments
4.4.1. Direct identification under the closed-loop control system
In the simulation work, the velocity reversal is realized by simulating a sinusoidal velocity with a very small

gain. However, in the experimental setup, it is more realistic to control the carrier to move back and forth

for a small distance by a closed-loop control system. The actuator force that can ensure the carrier moves

in the most effective way is the control output of the control system. The carrier is controlled to move back

and forth for a distance of 4um 50 times, the velocity at the end of each time is -0.001m/s and 0.001m/s for

positive and negative movements, respectively.

Figure 4.12: Closed-loop experiments to achieve velocity reversal.

During the 50 times velocity reversals, the velocity and the position in the time domain are shown as

follows:
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(a) Velocity in the time domain under closed-loop control system.

(b) Position in the time domain under closed-loop control system.

Figure 4.13: Closed-loop experiment for dynamic parameters.

The dynamic friction force is calculated using (4.1) by subtracting the actuator force and cable slab

force from the inertia. In Figure 4.14, the measured friction force is represented by blue dots, and the

red line shows the identified friction force using the LM algorithm based on the identification results of

static parameters. It is obvious that compared to the hysteresis circle in Figure 3.4, the shape of the

friction force curve in Figure 4.14 is unsuitable to be identified using the LuGre model. Because the

closed-loop experiment on dynamic phenomena heavily depends on the design of the control system. To

design effective control strategies, closed-loop control systems require a known or approximated model

of the system’s dynamics, which is unknown in this experiment. Closed-loop experiments are heavily

reliant on accurate control system design, and create significant challenges when dealing with dynamic
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friction’s nonlinear and time-varying characteristics, making open-loop experiments the preferred choice

for parameter identification in this context.

Figure 4.14: Identification of dynamic friction under closed-loop control system at position 0.

4.4.2. Inverse identification under the open-loop control system
To better capture the friction force at the velocity reversals, in real-world experiments, the inverse identifi-

cation method under the open-loop control system is adopted[22][29]. In the open-loop control system,

the actuator force is programmed to be sinusoidal with a gain of 2.136N, a frequency of 3s, and an offset

of the cable force at the specific position. The sinusoidal actuator force empowers the carrier to move

to positive and negative directions with small velocities, in this way, the velocity reversals are achieved.

The data is sampled every 0.1 ms. The changes in velocity result in changes in positions, which can be

demonstrated in the LuGre model and the system equation 4.1 by:

a ∗ d2p

dt2
= Factuator + f + Fcable; (4.7)

dz

dt
= v − σ0|v|

FC + (FS − FC)e
−( v

v0
)σ2
z; (4.8)

f = σ0z + σ1
dz

dt
+ σ2v; (4.9)

In this system model, p is the position of the carrier, the velocity v = dp/dt.

The parameter vector is σ = [σ0 σ1], The identification problem can be formulated as follows:

min
x

c(x), (4.10)

where c(x) =

m∑
k=1

(pmeasure(k)− poutput(σ̂, k))
2, (4.11)
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where σ̂ is the estimated parameter vector, and m is the number of sampled positions.

The Ordinary Differential Equation (ODE45) solver in MATLAB is used in the objective function. The

presence of an ODE solver in the cost function introduced complexities in computing first and second

derivatives because of its non-smoothness. These characteristics posed challenges for the Levenberg-

Marquardt algorithm’s gradient-based approach. On the contrary, the Simplex method’s characteristic of

direct search and its exploratory approach enabled it to navigate the discontinuous optimization problem

with greater efficacy, resulting in improved convergence and better parameter estimation. Therefore, in

the open-loop inverse identification of dynamic parameters, the Simplex search algorithm in the MATLAB

optimization toolbox is chosen over the Levenberg-Marquardt algorithm.

4.4.3. Identification results
At nine positions ranging from -0.14m to 0.14m, which are the same as in the static parameter experiments,

in the open loop system, a sinusoidal-shaped external force with a frequency of 3 s and a gain of 0.21

N is inserted into the carrier. The external force compensates the cable slab force with a bias that is

manually tuned based on the identified cable slab force in the previous section. Under the influence of the

inserted force, the carrier moves with small velocities in both directions, the velocity reversals are thus

achieved. In the experiment window of 30s, the velocities and positions are measured. Using the Simplex

search algorithm, the identified dynamic parameters σ0 and σ1 are obtained and shown in Figure 4.15, and

estimated positions are shown in Figure 4.16 with the position 0.102m as an example.
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(a) Identification results of σ0 at 9 positions.

(b) Identification results of σ1 at 9 positions.

Figure 4.15: Identification results at 9 positions.

Figure 4.16 shows that under the sinusoidal force, the velocity and position move with the same

frequency as the force. The position has a transition time of one period, where the carrier moves closer

to the starting point. With an accurate compensation of cable slab force, the position after the transition

period has a fixed maximum/minimum point. The estimate fits better after the transition period than within

the transition period.
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(a) Injected sine-shaped force.

(b) Identified and measured position for dynamic parameters at position 0.102m.

(c) Measured velocity for dynamic parameters at position 0.102m.

Figure 4.16: Identification results at 0.102m
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To understand the identification results better, the residuals of the identified position and the measured

position are analyzed. In the analyze work, the identification at position 0.102m is taken as an example.

Figure 4.17: Histogram of residuals after identification at position 0.102.

From Figure 4.17 the histogram of residuals, the distribution of the residuals resembles normal

distribution. It can also be seen that the distribution is slightly negatively biased, which can be explained in

Figure 4.16(b) in the transition area, where the estimated position is significantly smaller than the measured

position.

Figure 4.18 shows the autocorrelation of residuals and cross-correlation between residuals and measured

positions. In both sub-figures, the red dotted lines represent the confidence of 90%. From Figure 4.18,

the autocorrelation figure shows that the residuals are highly autocorrelated and highly cross-correlated,

indicating that there is a persistent structure or pattern in the model’s errors. This suggests that the

model may not fully capture all the dynamics and there may be higher-order dynamics, nonlinearities, or

unmodeled disturbances that are affecting the system.
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(a) Autocorrelation of residuals.

(b) Cross-correlation between residuals and measured positions.

Figure 4.18: Analysis of identification result at position 0.102..

4.5. Summary
This chapter provides a practical investigation into friction modeling on the Proton Motion Stage. First, a

detailed introduction of the experimental setup is explained. Then, the chapter proceeds to the identifica-
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tion of cable slab forces and the demonstration of their position-dependent nature. Subsequently, static

parameter identification experiments at different positions are conducted, revealing variations likely linked

to material properties and lubrication along the motion track. The chapter then delves into dynamic param-

eter experiments, comparing closed-loop and open-loop control approaches, with the latter successfully

identifying dynamic parameters σ0 and σ1.



5
Conclusions and Future Work

This research addresses the identification of friction force in the domain of precision engineering. Focusing

on the Proton Motion Stage, this study selected the LuGre friction model and performed parameter

identification in both simulation and experiments to gain a better understanding of the friction behavior and

parameter identification on the Proton Motion Stage.

The thesis work accomplished the goals set in the introduction chapter as follows:

• Literature Review and Model Selection: From the existing friction models used in precision

engineering systems, select an appropriate model for further investigation.

The selection of model-based identification as the core approach for its capacity to provide a

structured and comprehensive understanding of friction behavior. The model evaluation procedure

involves static and dynamic friction models including the Stribeck model, LuGre, Leuven, modified

Leuven, and Generalized Maxwell-Slip (GMS) models, based on the coverage of static and dynamic

friction behavior, the required identification effort, and accuracy. Because the LuGre friction model

incorporates both static and dynamic friction phenomena and requires achievable identification

difficulty, LuGre is chosen as the model for further friction identification, despite the lack of non-local

memory.

• Simulations: Develop a computational model of the Proton Motion Stage that incorporates

the selected friction model. Simulate the behavior of the system to explore the effects of

different parameters and gain insights into friction dynamics.

Based on the LuGre friction model, simulation work is conducted using data generated using

a trajectory generator tailored for the Proton Motion Stage. Through the incorporation of the LuGre

friction model and identification of its parameters, the Stribeck effect and hysteresis dynamic

phenomena are captured. The simulation work not only explored the frictional behaviors across

a wide range of velocities but also provided sensitivity analysis on parameters, and disclosed the

relative significance of each parameter in influencing friction force. The simulation work confirms

the effectiveness of the LuGre friction model and the identification method and guides subsequent

experimental procedures and identification using the real-world scenario.

• Experimental Investigations: Perform a series of experiments on the Proton Motion Stage

to identify friction parameters. This includes friction coefficient analysis and the study of

position-dependent effects on friction forces.

The experimental investigations explored friction behavior within the Proton Motion Stage. The

position-dependent cable slab force is investigated, and the effects of the force spikes caused by the

bearing rolls entering and exiting the pressure zone are shown. For the identification of static friction

force, the experiments utilized the same method as in the simulation work. The static parameters FS ,

42
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FC , v0, and σ2 at 9 positions away from the force spike areas are identified. For dynamic parameters

σ0 and σ1, the experiment work compares the closed-loop and open-loop methods, which provides

insights into the forward and inverse approach to the identification problem. Finally, under the

open-loop control system, with the injection of sinusoidal force, the dynamic parameters at 9 positions

are identified using the Simplex pattern search method. By analyzing the identification residuals of

static and dynamic parameters, the thesis concludes that the LuGre model does not fully capture

friction behavior, especially dynamic friction.

• Comparison and Insights: Compare the findings from simulations and experimental investi-

gations to have a deeper understanding of friction identification and friction behavior in the

Proton Motion Stage.

In light of the findings and implications presented in this thesis, the following recommendations are

suggested for future research and practical implementation:

– Enhance Friction Model Accuracy: Given the limitations of the LuGre friction model in

describing nonlinear friction forces, consider exploring modifications to improve model accuracy,

including the evaluation of the GMS friction model’s potential effectiveness, and extending the

LuGre model to include additional parameters of terms that capture the hysteresis effects better.

– Multi-Model Investigation: Explore the possibility of combining multiple friction models, such

as the LuGre model and the modified Leuven model, to capture a broader range of friction

behaviors and improve overall model accuracy, especially under varying operating conditions.

– Additional Data Collection: Acquire additional data specifically designed to capture the

behavior of the system at near-zero velocities. This may involve conducting experiments or

measurements at extremely low speeds, where dynamic effects are more pronounced.

– Data-Driven Approaches: Consider using data-driven approaches, such as machine learning

algorithms, to predict and compensate for friction forces based on historical data and real-time

sensor measurements, potentially enhancing the adaptability of the control scheme.

– Long-Term Stability and Reliability: Perform long-term stability and reliability check of the

proposed friction identification method, evaluating its performance over extended experimental

periods and analyzing potential wear effects on friction behavior.
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