
Groot: Impact of Evolutionary Operators in XRPL Testing using Priority-Based
Event Representation

Bryan Wassenaar1

Supervisor(s): Burcu Kulahcioglu Ozkan1, Mitchell Olsthoorn1, Annibale Panichella1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Bryan Wassenaar
Final project course: CSE3000 Research Project
Thesis committee: Burcu Kulahcioglu Ozkan, Mitchell Olsthoorn, Annibale Panichella, Jérémie Decouchant

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Groot: Impact of Evolutionary Operators in XRPL Testing using
Priority-Based Event Representation

Bryan Wassenaar

Delft University of Technology
Delft, The Netherlands

Abstract
The decentralized nature of blockchain systems makes them prone

to concurrency bugs, which are difficult to detect. There exist test-

ing techniques to find these bugs, such as systematic exploration of

the solution space, but these techniques are difficult to scale. Evolu-

tionary algorithms have been proposed as an effective solution to

find these bugs.

In this research, we aim to discover the influence of evolution-

ary operators in the bug detection performance of evolutionary

algorithms. We test this on the XRP Ledger Consensus Protocol

(XRP LCP) using priority-based event representation. We present

Groot, an evolutionary algorithm that is implemented using a mod-

ified version of the Rocket framework. We experimented with two

combinations of operators: the Simulated Binary Crossover (SBX)

operator with the Gaussian mutation operator and the Laplace

Crossover (LX) operator with the Makinen, Periaux and Toivanen

Mutation (MPTM) operator. We evaluated these setups using effec-

tiveness and efficiency and compared them to a random baseline.

We used a bug-seeded version of the XRP LCP to run the experi-

ments of these setups.

We discovered that all setups are capable of detecting bugs in the

XRP LCP. The results indicate that the effectiveness and efficiency

is not influenced by the choice of these operators in a significant

way. We discuss that possible reasons for these discoveries include

noise in the fitness function, event representation limitations and

configuration choices that may have contributed to these results.

Reference Format:
Bryan Wassenaar. 2025. Groot: Impact of Evolutionary Operators in XRPL

Testing using Priority-Based Event Representation. In . TU Delft, Delft, NL,

9 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
With a market capitalization of 2.6 trillion USD in 2021, crypto-

assets can become a threat to global financial stability according

to the Financial Stability Board [1]. Unlike traditional banking sys-

tems, cryptocurrencies are decentralized systems which processes

transactions without a central authority which are most commonly

build on blockchains.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee.

Bachelor Thesis’25, Delft, NL
© 2025 Copyright held by the owner/author(s). Publication rights licensed to TU Delft.

https://doi.org/XXXXXXX.XXXXXXX

One important part of the blockchain is the consensus protocol.

This protocol describes how nodes should communicate to reach

agreement within the network. The consensus protocol for XRP

is the focus of this research. This protocol is theoretically secure

as proposed in the paper from Schwartz [19]. However, implemen-

tation of these systems is not perfect and concurrency bugs can

cause faults such as double spending or network forks. These only

occur in specific message ordering or timings and are difficult to

detect [11]. This means that the consensus protocol should be tested

thoroughly to avoid such bugs happening in production.

One way to test such a system is by using an evolutionary algo-

rithm, which was proven effective in recent research [21]. These

algorithms search for test cases in which faults or bugs occur, by

using a similar method to biological evolution. The evolutionary

algorithms are split into selection and reproduction. The focus of

this research is the reproduction part which is split in crossover

and mutation operators. The crossover operator takes one or more

parent cases and creates one or more child cases by combining the

parents in some mathematical way. The mutation operator changes

one or more values within a child case to create more diversity.

In the before mentioned research [21], there were some gaps that

could be explored more deeply. First of all, the previous research

explores only two fitness function, time-fitness and proposal-fitness.

Secondly, it uses only one combination of crossover and mutation

operators, the simulated binary crossover operator [5] with the

gaussian mutation operator [6]. More operator combinations can

be researched to discover the influence of these operators on the

performance of the evolutionary algorithm. Last of all, even though

the research described two event representations, only the delay-

based method is used in the evolutionary algorithm. The last gap

was discussed in other work from van Meerten [20].

This study researches the gap of the lack of evolutionary op-

erators and the priority-based event representation. We do the

experiments using the rocket framework [10]. This framework is

designed to test the XRPL consensus protocol by intercepting mes-

sages from nodes and delaying, dropping or manipulating them.

The operators that are evaluated are Simulated Binary Crossover

(SBX) with Gaussian mutation and Laplace crossover (LX) with

MPT mutation. This work evaluates these operators with the time

fitness function and priority-based event representation.

Our results show that the effectiveness of the algorithms does not

differ in significant amounts between the baseline and evolutionary

algorithms. It also shows that efficiency is possibly influenced by

the choice of evolutionary operators.

Our contributions with this research are the following:

• An evolutionary algorithm called Groot for testing the XRPL

protocol.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


Bachelor Thesis’25, June 2025, Delft, NL

• A Reproduction Package to replicate this research.

• A comparison between two combinations of operators against

a random baseline.

2 Background
In the background we will go over the workings of the XRP Ledger

protocol and evolutionary algorithms. We will also discuss work

related to this research such as other ways of testing distributed

systems and different evolutionary operators.

2.1 XRP Ledger Consensus Protocol
In blockchains there is no central authority which validates transac-

tions, unlike in a traditional banking systems. Blockchain systems

store information about accounts and transactions on a block. These

blocks are stored by every node in the network and chained to-

gether to create the ledger. The blocks are also immutable so that

the contents cannot be changed after a ledger has been validated.

The nodes have to agree which transactions are committed to the

ledger and which are declined, such that there is only one version

of the ledger in the whole network.

The XRP LCP is such a system and works on the basis of consen-

sus. Transactions can be submitted to any of the validator nodes

in the network. The network validates transactions by having the

nodes agree on a set of transactions and commit them to a ledger.

XRP LCP is byzantine fault-tolerant, meaning that it can cope with

malicious participants in the network. The participation in the net-

work is also open, each node defines a set of trusted participants in a

Unique Node List (UNL). The node runs the protocol using the votes

from these nodes. As long as 80% of the nodes are non-byzantine,

the protocol guarantees correctness [19].

The protocol consists of synchronized consensus rounds inwhich

transactions get added, proposed for the current ledger and the

ledger gets validated and added to the chain. A consensus round

consists of three stages: open, establish and validate. Transactions

can be submitted to the nodes at any time, but they will likely be

included in the next round.

2.1.1 Open. In the open phase, the nodes distribute submitted

transactions to the other nodes in their UNL. They collect all trans-

actions to be included in the next ledger to prepare for the establish

phase. The open phases takes about half the duration of the previous

consensus round.

2.1.2 Establish. During the establish phase the nodes will try to

reach consensus on the set of transactions to include in the next

ledger. They do this by iteratively proposing sets of transactions

until a consensus of at least 80% is reached. Of course not every node

has the same transaction set because of network faults and timings.

Transactions that are not included in the nodes own proposals but

are in other node’s proposals or transactions that are in the node’s

own proposal, but not in the proposals of other nodes are called

disputed transactions. Every node makes a list of these disputed

transactions. During the phase, nodes change their proposals to

include transactions that most other nodes in the UNL also include

and by removing disputed transactions that are not supported by

the other nodes. Transactions become more easily disputed when

the round takes longer compared to the previous round. At the start

transactions are marked as disputed if less than 50% of the UNL

nodes propose it. This percentage increases to 65%, 70% and 95% as

the round progresses. When the 80% agreement is reached, a node

will declare consensus and move on to the validation phase. If no

agreement can be reached before a predetermined time, then the

nodes will go back to the open phase.

2.1.3 Validate. The final phase validates if all nodes agreed on the

same ledger. The nodes do this by computing a ledger hash from

the agreed transaction set and sharing this with the other nodes.

Once a node has collected validations with the same hash from

more than 80% of the nodes in its UNL, it will assume the ledger

is fully validated. It will then apply all transactions to the ledger,

which will become immutable.

2.1.4 Correctness properties. The specification of correctness that

we used in this research is the following [3]:

• Termination: Every correct process eventually decides some

value.

• Validity: If a process decides some value, then that value

was proposed by some process.

• Integrity: No process decides twice.

• Agreement: No two correct processes decide differently.

In the case of the XRP LCP the value to decide upon is which

ledger to validate and a process is a node. The two most important

properties for this research are the agreement and termination

properties. An example of an agreement violation would be when

two nodes validate two different ledgers, causing a fork in the

network. An example of a termination violation would be if the

network gets stuck and stops processing any transactions.

2.2 Evolutionary algorithm
Evolutionary algorithms work on the principle of biological evolu-

tion. It is specifically useful for search spaces which are complex.

The algorithm works with populations. A population is a group of

test cases for one round, also called a generation. In our research

we also call an individual test case an encoding. An evolutionary

algorithm always starts with an initial population. This initial pop-

ulation is often randomly generated. Each population performs

four stages. First all test cases in the population are tested. After

this some selection takes place to determine the mating pool. After

selection crossover and mutation operators are applied to create

the new population for the next generation from the mating pool.

After this the new population gets run through the same cycle. This

repeats until a pre-determined generation or some result has been

reached.

2.2.1 Selection. Within the selection it is determined from the

results of the test cases which test case performed best. This is

decided by a fitness function, which calculates a value from the

results for each test case, and a selection method.

For example tournament selection, which works by taking a

small random sample of candidates from the population which will

compete in a tournament. The candidate with the highest fitness is

placed in the mating pool. This repeats until the desired size of the

mating pool is reached.



Bachelor Thesis’25, June 2025, Delft, NL Bryan Wassenaar

2.2.2 Crossover operator. The crossover operator is responsible
for combining test cases in the mating pool to create new test

cases. The goal is a combination of exploitation and exploration.

The crossover operators in our research work by removing two

parents from the mating pool and combining them using the chosen

crossover operator to create two children. These two children get

added to the mutation pool, which will be used by the mutation

operator.

2.2.3 Mutation operator. The mutation operator is the last step in

creating a new generation. Its goal is to create more exploration

within the search space. It does this by changing values within the

test cases randomly to some degree using the mutation operator.

It also limits the ranges of the values so that it does not go out of

bounds.

2.3 Related Work
2.3.1 Testing distributed systems. There are many other ways to

test a distributed system as well. First of all you can systematically

explore possible executions of the system, which will eventually

test all possible executions but is very time consuming [9], [8],

[18]. You can also use randomized concurrency testing, which is

faster than systematically exploring all options but can also miss

certain executions because of the randomization [4] [12]. A third

option is probabilistic concurrency testing, which uses controlled

randomization with formal guarantees which aim to find bugs

more efficiently than standard randomized testing, however these

formal guarantees are difficult to reach in practice [2] [16]. Some

other notable options include Reinforcement learning, which can

be used to learn effective strategies based on previous executions

[14], and ByzzFuzz, which is effective at finding implementation

bugs in blockchain systems by applying small mutations to message

contents [23]. As a final option evolutionary algorithms were also

proven effective at finding bugs in the XRP Ledger Consensus

Protocol (XRP LCP) [21].

2.3.2 Evolutionary operators. Evolutionary algorithms have been

researched extensively and so a lot of operators exist for them. For

example for crossover operators you have the simulated binary

crossover (SBX) [5], Laplace crossover (LX) [7], dominance and

co-dominance operators [17] or logistic crossover [15]. Also the

following mutation operators are known in research: gaussian mu-

tation [5], non-uniform mutation (NUM), Makinen, Periaux and

Toivanen Mutation (MPTM) [13] and Power mutation (PM).

3 Groot
In this research, we compare the two combinations of operators

to a random baseline. This is done with an experimental approach

using a modified version of the Rocket framework and our own

evolutionary algorithm called Groot. In this section we discuss the

encoding, the workings of Groot including the operators and how

we evaluate our setups.

3.1 Encoding
The behavior of the original Rocket framework was only able to

use delays. For the priority-based event representation we modified

Rocket to take a list of priorities, called the encoding. This encoding

Algorithm 1: Adjust Message Delivery Rate

if inbox_size > target_inbox × overflow_factor then
𝑟 ← min

(
𝑟 × sensitivity_ratio,max_events

)
;

else if inbox_size < target_inbox × underflow_factor then
𝑟 ← max

(
𝑟/sensitivity_ratio,max_events/6

)
;

packets_per_sec← max

(
min_packets_per_second, ⌊𝑟⌋

)
;

XRPL 
Node

XRPL 
Node

XRPL 
Node

Rocket 
Interceptor

Rocket 
Controller

Priority 
List

Run 
CasesSelection

Crossover Mutation

Groot

Initial 
Population

XRPL 
Node

XRPL 
Node

XRPL 
Node

XRPL 
Node

Figure 1: Experimental setup using the Rocket framework

determines the order of message delivery for specific message types

and nodes. Messages are intercepted and put in a queue for later

delivery. A time interval depending on the queue size determines

how often a message is delivered. The interval is calculated using

algorithm 1 which was adjusted from van Meerten [21]. Messages

with a lower priority value will be delivered before messages with

a higher priority. Every time a message is delivered, the priority of

all messages in the queue will be lowered to avoid messages getting

delayed forever. Message delay is also capped at a maximum of one

second so that delays are never responsible for faults, but instead

the order of the messages is always the reason for faults.

3.2 The workings of Groot
Groot, our evolutionary algorithm, consists of several stages which

can be seen in figure 1. First an initial population of random pri-

ority lists are created. Each of these encodings is run using the

Rocket framework. The time that each encoding takes to validate

a single ledger is measured and averaged to be used in selection,

this is called time fitness. For time fitness we try to maximize the

ledger validation time which can lead to more complex executions.

crossover and mutation operators are applied to create a new popu-

lation of priority lists. After this the new test cases can be run and

the cycle repeats.

3.3 Random Baseline
The baseline setup is very simplistic. The same mechanism to create

initial populations is used. However, instead of using selection and

crossover with mutation operators, the baseline simply creates new

populations by calling the initial population functionality again for



Bachelor Thesis’25, June 2025, Delft, NL

every generation. This does not take into account the probability

that an encoding occurs twice.

3.4 Simulated Binary Crossover with Gaussian
mutation

This setup was inspired by the research from van Meerten [21].

They also used the SBX and Gaussian operators which makes our

research better comparable to theirs. This setup has a clear selection,

crossover and mutation separation.

3.4.1 Selection. For selection we decided to use tournament selec-

tion, as this method is proven useful in evolutionary algorithms in

other research such as from Naqvi [15]. In tournament selection,

a small random sample is taken from the previous population to

be candidates. The best sample from these candidates is selected

and added to the mating pool. The samples are evaluated based on

the before mentioned time fitness. This is repeated until the mating

pool is the desired size.

3.4.2 SBXCrossover. After selection the simulated binary crossover

operator is used to perform the crossover. Crossover takes place by

selecting two parents randomly from the mating pool and applying

the SBX operator to get two children. These children are added to

the mutation pool while the parents are removed from the mating

pool. This makes sure that every parent is used exactly once. This

repeats until the mating pool is empty. The distribution value used

for the operator is set to 3, to make our research better comparable

to the research from van Meerten [21] who also used this value. It

is also within the recommended range from the original paper [5].

3.4.3 Gaussian Mutation. Finally mutation takes place on the new

mutation pool using the Gaussian mutation operator. Mutation is

always performed on every encoding, but not on all single priorities.

For every priority in the encoding the priority is mutated with a

probability of 10%. If it is chosen for mutation then the Gaussian

mutation operator is applied to that priority. After the mutation is

done on the new population all values are restricted to be within

the specified ranges.

3.5 Laplace crossover with MPT mutation
The last setup is inspired by papers such as from Naqvi [15]. Here

they used Laplace and Makinen, Periaux and Toivanen Mutation

as examples to compare their new operator with. The selection

part for this setup is identical to the one from SBX and Gaussian

mutation and will therefor be skipped in this section.

3.5.1 Laplace crossover. The Laplace crossover is used as an alter-

nate distribution to the simulated binary crossover operator. It still

uses the same method of choosing parents by selecting them from

the mating pool and removing them after use so every parent is

used exactly once. For the location and scaling variables we used 0

and 0.5 respectively as recommended by the original paper from

Deep [7].

3.5.2 MPT Mutation. MPTM is a mutation operator which focuses

on exploration early on and moves to exploitation in later gener-

ations. This operator was proposed by Mäkinen in 1999 [13] and

has been used in other research since then. Just like in setup two,

every priority inside an encoding is mutated with a probability of

10%, in which case the MPTM operator gets applied. We decided to

use a scaling variable of 9 for a good balance between exploration

and exploitation.

4 Study design
In our research, we divided the tests in three experimental setups.

Experimental setup one is the random baseline without any opera-

tors. Setup two is the simulated binary crossover in combination

with the Gaussian mutation operator, similarly to the paper from

van Meerten [21]. The last setup is the Laplace crossover with MPT

mutation, inspired by research from Naqvi [15]. The main research

question we aim to answer is: How do different operators influence

the ability of an evolutionary algorithm to detect bugs in imple-

mentations of the ripple consensus algorithm using priority-based

event representation? We aim to answer this question with the

following sub-questions:

• Can the evolutionary algorithms find any bugs in the imple-

mentation of the XRP Consensus Protocol or its variants?

• How is the effectiveness of bug detection performance influ-

enced by the selected evolutionary operators?

• How is the efficiency of bug detection performance influ-

enced by the selected evolutionary operators?

During this research, the Rocket framework was modified ex-

tensively. To accommodate this all code and docker images are

available in a replication package on Zenodo [22]. All tests were

run in docker on a physical server with one i5-11400F @2.60GHz

processor and 16GB memory. Only one test was run at the same

time to avoid overloading the docker daemon and all XRP nodes

were configured as tiny nodes. All configurations discussed in the

next sub sections are already configured in the provided docker

images.

4.1 XRPL Network
For the runs of the XRPL networkwe decided to use seven nodes.We

made this decision to create the possibility of agreement violations.

The protocol has a minimum agreement of more than 80% of its

peers [19], meaning that is less than seven nodes are used, all nodes

would have to agree to reach consensus. When using seven nodes,

it is possible that one node that does not agree with the others and

the network still reaches consensus of more than 80%.

For the UNL of the nodes, it was decided to have almost identical

UNL’s. All nodes trust node 0,1,2,3 and 4, but node 5 is only trusted

by nodes 0,1 and 2 whereas node 6 is only trusted by nodes 3 and 4.

Nodes 5 and 6 only trust the nodes 0,1,2,3 and 4. By having almost

identical UNL’s the tests become less dependent on the UNL. We

choose to not have full identic UNL’s to create clearer possibilities

for forks in the network, which in turn would become easier to

detect.

The XRPL docker image used for testing is not the official XRPL

image, but instead a bug seeded one where the agreement boundary

is reduced to 40%. This makes it possible to be certain that our

algorithm can find some bugs during testing. Due to the scope of

the research it was not possible to also test our setups on the official

XRPL image. The nodes are also configured as tiny nodes to make

simulation tests possible.



Bachelor Thesis’25, June 2025, Delft, NL Bryan Wassenaar

4.2 Groot
Groot was run with a population size of 10 for 50 generations.

These values were chosen to allow for enough generations to see a

difference over time, but still keep within the scope of this research.

It was decided to only use priorities for eight types of messages,

as to not mess with the startup or synchronization of the nodes.

Instead we only manipulate messages from transactions and ledgers.

Since we have seven nodes in our XRPL network and we have eight

types of messages, this means that we need encoding of length

294. Because we have encodings of length 294, we decided to use

priorities ranging from 0 to 300. This way an absolute ordering of

messages can be made with a high probability that small changes in

priority lead to different orderings. From Groot, two test cases are

run at the same time to speed up the testing process. If more tests

were run in parallel problems with the docker daemon occurred

causing containers to not be removed and thus leading to memory

leaks.

4.3 Rocket
Modifications were made to the rocket framework to make it usable

in this research. The interceptor was rewritten to allow multiple

instances to run in parallel using docker and to allow running with

custom XRPL images. The controller was extended to allow priori-

ties to be used and to check violations with more accuracy. When

testing an encoding, it is run twice in an iteration and the results

from both iterations is averaged to compensate for concurrency

variability. The reason we have only two iterations per encoding is

because the sequential computation time of one test setup is 233

hours or around ten days. We were able to decrease this time with

parallelization to around two days, but because of the amount of

containers needed to be created, started, stopped and removed for

each run, the docker daemon was not able to keep up with multiple

setups at the same time. The averaged result is used in selection.

During one iteration, a total of 14 ledgers are validated after which

the iteration is ended. The first 10 ledgers are influenced by the

priorities while the last four ledgers are run as normal to allow

the network time to heal. During the iteration, three accounts are

created with a balance of 80 XRP. Two seconds after the start of the

iteration account one submits four transactions of 80 XRP to four

different nodes. This can cause agreement violations and tries to

commit a double spend. In the implementation every transaction

has slightly different amounts to avoid the network detecting the

transactions as one transaction.

4.4 Evaluation of the experimental setups
We evaluate the experimental setups on effectiveness and efficiency

to discover the influence of the operators between the setups. Ef-

fectiveness is measured by the amount of generations which found

a violation. Efficiency is measured based on the earliest generation

that detected any violations and the number of violations identified

within that generation. We check both agreement and termination

violations. We mark a potential agreement violation when, at the

end of an iteration, the final validated ledger hashes of all nodes

do not match. We mark a potential termination violation when a

ledger validation takes more than 65 seconds [21]. It is important to

note that the ledger validation under normal procedures only takes

Baseline SBX-Gaussian Laplace-MPTM

Failed Agreement 68 69 67

Failed Termination 0 0 0

Table 1: Total amount of runs having violations.

Baseline SBX-Gaussian Laplace-MPTM

First Violation G2 G1 G2

Failed Agreement 4 3 5

Failed Termination 0 0 0

Table 2: First generation that found a violation.

a few seconds. We do not check for integrity violations, because

the rocket framework does not incorporate data to determine this.

5 Results
The results section is split in two distinct parts. First we will take

a look at the effectiveness of finding violations by comparing the

amount of violations found for each setup. Second, we will compare

the efficiency of the setups in finding the first violation.

5.1 Effectiveness in finding violations
Effectiveness of the setups is determined by the amount of violations

that were found during the tests. From table 1 we can see that the

amount of violations found does not differ a lot in between each

setup. None of the setups was able to find termination failures. This

is also seen from the fact that the maximum time a ledger validation

took was only 9.74 seconds, which is lower than the 65 second limit

for termination failures. The average of all ledger validation times

was only 4.86 seconds. For agreement failures all setups were able

to discuss a good amount of violations. From table 1 we can see that

the baseline has 68 violations, SBX-Gaussian has 69 violations and

Laplace-MPTM has 67 violations. There is no significant difference

between the setups, as they only differ by 1 violation found. This

means that all setups were as effective as each other. If we look at

individual runs instead of populations, we can see that the Baseline

has 915 correct runs without violations while the evolutionary

approaches have 910 correct runs. This difference is again small,

only 0.5%, which makes this difference not significant.

5.2 Efficiency in finding the first violation
Efficiency is determined as the amount of generations it took until

the first violations was found and how many violations were found

in that first generation. If we look at table 2 we can see that SBX-

Gaussian was the first to find a violation in G1, however this was

the initial generation. If we leave out G1 we see that the baseline

and Laplace-MPTM were the first to find a violation in the second

generation. Short after in generation three SBX-Gaussian was able

to find its first violation. The difference between these generations

is negligible, only one generation from 50.

We can also see that the amount of violations that the setups

were able to find in its first generation are also quite close. The

baseline found 4 agreement violations in its first generation, while



Bachelor Thesis’25, June 2025, Delft, NL

Laplace-MPTM found 5 agreement violations in generation 2. SBX-

Gaussian was the slowest, finding only 3 agreement violations in

generation 3. This means that with a maximum of 10 violations in

one generation, we can see a difference between 10% and 20%.

6 Discussion
Within the discussion we will look at possible reasons that our re-

sults are close together for both effectiveness and efficiency. First we

will discuss the reasons for effectiveness and secondly the reasons

for efficiency.

6.1 Reasons for similar effectiveness
From the results we can see that effectiveness is not influenced by

the choice of operators in evolutionary testing of the XRPL protocol.

This could be because of the noise in the fitness function or the

chosen event representation.

6.1.1 Noisy fitness function. It could be that the chosen config-

uration of two iterations in combination with time-fitness leads

to too much variability within the fitness function. This creates

less effectiveness, but this could be improved with more iterations.

We were able to see from analyzing the logs that the variation

between validation times could change with more than a few sec-

onds between runs. This indicates enough variation that selection

is influenced by this variation leading to almost random selection

instead of selection based on the fitness values. Using more itera-

tions would better average out the variation between rounds and

possibly support better selection. This could in turn give better

results for the evolutionary algorithms.

Another configuration possibility is the chosen fitness function.

We used time-fitness as the fitness function, whichworkedwell with

delay-based event representation in the paper from van Meerten

[21]. It could be that time-fitness does not work well with priority-

based event representation because no extra delays are added during

the test.

6.1.2 Event representation. It is also possible that priority-based

event representation is not as effective at finding violations as delay-

based event representation. This aligns with the research of van

Meerten [21] [20] in which they discovered that delay-based event

representation outperformed priority-based event representation

using evolutionary algorithms. We have also seen that our research

did not discover any termination violations. This is logical as pri-

ority based event representation does not cause large delays in

its implementation, being capped to a delay of one second. Delay

based event representation does implement larger delays getting

closer to the termination threshold with every generation. In the

paper from van Meerten [21] they found a termination bug which

occurred because of the sum of the added delays to the messages.

We have a maximum validation time of 9.74 seconds and would

thus not reach this delay threshold to cause this bug.

6.2 Reasons for similar efficiency
We see that for efficiency the three setups also are close to each

other. We do see that SBX-Gaussian is slightly worse than the

baseline and Laplace-MPTM, being both one generation later and

discovering less violations during the generation. Reasons for this

could be the seeded bug being too easy to find or that not enough

tests were run to take an average.

6.2.1 Seeded bug too easy to find. It could be that agreement thresh-

old of 40% is too low and therefor the seeded bug is too easy to find.

This is supported by the fact that the violations already started to

occur in the first few generations. This causes that a lot of encodings

can find the bugs, meaning that a random initial population has a

high probability of finding the seeded bug. Evolutionary algorithms

are better against unguided approaches in finding difficult to detect

bugs, as they are guided towards complex executions. This would

mean that the evolutionary algorithms are currently not truly being

evaluated as the bug is found before the evolutionary algorithm

is really used. It could be useful to test our setups with a variety

of seeded bugs with different difficulties of discovering them, for

example with an agreement threshold of 60% instead of 40%. This

way we could see if the complexity of the seeded bug is the reason

for the similar performance of the experimental setups.

6.2.2 High mutation probability. Another possible reason could

be that our mutation probability, which was 10% for every value

within an encoding, was too high. Every encoding had a length of

294 so on average 29.4 values within an encoding would have been

mutated. It is possible that these mutations caused the population to

be very diverse for every generation. The evolutionary algorithms

could possibly not have good exploitation using the fitness function

because of this. Also the lack of elitism means that we could have

lost good encodings when using crossover and mutation. This could

be solved in future work by lowering the mutation probability or

implementing elitism in the evolutionary algorithms.

7 Threats to Validity
In this section, we outline three main threats to the validity of our

findings: nondeterminism in distributed systems, the re-presentability

of our local testing environment, and the generalization of our re-

sults beyond the XRP Ledger Protocol (XRPL).

7.1 Nondeterminism
The nondeterministic nature of decentralized systems introduces

inherent variability in the test results. Distributed systems are sub-

ject to concurrency bugs which can cause the same test case to

give different results during multiple executions. We mitigated

this partially by averaging the results of two iterations for each

encoding, but this is insufficient to fully eliminate the effects of

nondeterminism. Ideally, more repetitions would increase statistical

confidence.

7.2 Re-presentability of Local System
Although our experiments were conducted in a controlled environ-

ment, this local setup may not fully represent the dynamics of a

real-world XRPL deployment. Factors such as hardware limitations,

the XRPL nodes being configured as tiny and low transaction vol-

umes reduce the comparability of our experiments with real world

implementation. Because of this our results may not fully reflect

how the protocol behaves in production environments.



Bachelor Thesis’25, June 2025, Delft, NL Bryan Wassenaar

7.3 Generalization
In this research we have only tested one consensus protocol, XRPL.

This means that our results can not be directly generalized to differ-

ent consensus protocols, as our results are possibly specific to the

XRPL code base. However, Groot is not dependent on the frame-

work that it is implemented with. This means that future research

could use Groot on different frameworks in order to test different

consensus algorithms.

8 Responsible Research
Our research is not influencing humans directly, but finding bugs in

a systemwhich processes a lot of transactions is of course an ethical

implication. For instance bugs could provide security breaches or

exploitation options for the one who found it. If we had found

bugs in the current version of the XRPL protocol, we would have

disclosed it responsibly with the help of our supervisors.

8.0.1 Global Influence. A different concern is the impact our tests

have on the production version of XRP which is currently run

globally by Ripple. To avoid such problems we have ran all our

tests on a private XRPL network, meaning that we could not have

influenced the global XRPL network in any way. This also makes

sure that our tests are better reproducible as it is not affected by

any real world events.

8.0.2 Reproducibility. The reproducibility and replicability of our

tests have already been discussed in the Study Design section 4.

You can find the used versions of the code base, docker images, logs

and instructions in the reproduction package on Zenodo [22].

9 Conclusion and future work
During this research we tested the XRP Ledger protocol using three

different setups. The three tested setups were a random baseline,

Simulated Binary Crossover operator in combination with Gaussian

mutation and the Laplace operator with MPT mutation. We tested

these setups on a bug seeded version of the XRP LCP version 2.4.0

in which the agreement threshold was lowered from 80% to 40%. We

evaluated these setups based on effectiveness, how many violations

were found, and efficiency, how fast and how many violations were

found in this generation.

9.0.1 Effectiveness. During these tests all three setups found agree-
ment violations indicating that the seeded bug was found. Seeing

that all three setups had around the same amount of violations, the

evolutionary algorithms are not more effective than a random base-

line at finding bugs in the XRP Ledger protocol. This was possibly

caused by a noisy fitness function, which possibly did not work well

with priority-based event representation. It could also have been

caused by the choice of event representation, as in other research

the priority-based event representation is also less effective than

for instance delay-based.

9.0.2 Efficiency. In the efficiencymetric, the evolutionary approaches

were also similar with finding the first violations. We noticed that

SBX-Gaussian was the worst, but only had a one generation differ-

ence with the baseline and Laplace-MPTM. This could have been

caused by the seeded bug being too easy to find, therefor random

initialization already had a high probability of finding the bug. The

high mutation probability and lack of elitism could also have been

the cause for these results.

9.0.3 Conclusion. From this we can not conclude that operators

have an impact on the effectiveness or efficiency of evolutionary

algorithm in finding bugs in the XRP Ledger protocol. However

since this could have been influenced by our choice of parameters,

configuration and setup.We can conclude that bugs are discoverable

by evolutionary algorithms and that they do not perform worse

than a random baseline.

9.0.4 Future Work. For future work multiple directions can be

explored. There are possible solutions to discover if evolutionary

operators do have an impact on the performance of evolutionary

algorithms.

First of all, a larger variety of seeded bugs could be tested. If

future research seeds more bugs with different levels of difficulty,

than it could be discovered if the seeded bug that we used was

indeed to easy to find. This could also be a way of testing the

performance of operators on problem complexity.

Second of all, parameters such as population size, amount of

generations and specific values of operators could be tuned to

achieve better results. This would allow the same setup to be used

and could for instance be done using machine learning, which could

be an interesting direction.

As a last option, a different fitness function which is not time

dependent could create better results. This could have a positive

influence since priority-based event representation does not create

large amounts of delays. Also complex executions can occur with-

out large ledger validation times. This would better be measured

by for instance proposal-fitness.

To expand the scope of Groot, some other directions could be ex-

plored.

Firstly, Groot could be used on different consensus algorithms

to see if results on the XRP LCP can be generalized. This could

provide a way for evolutionary algorithms to be tested on more

variety of applications. This could also be used as a starting point to

generalize other research on XRPL to different distributed systems.

Secondly, futurework could look at using different event-representations.

We only looked at priority based event representation, but more

ways can be explored to manipulate the network to find bugs. One

option would be to look at the content of the messages and use

this to delay certain critical messages. Another option would be to

instead of delaying messages, messages could also be duplicated

and send at a later time.

References
[1] 2022. Assessment of risks to financial stability from crypto-assets. Financial

Stability Board, (Feb. 16, 2022). Retrieved Apr. 27, 2025 from https://www.fsb.o

rg/2022/02/assessment-of-risks-to-financial-stability-from-crypto-assets/.

[2] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh

Nagarakatte. 2010. A randomized scheduler with probabilistic guarantees of

finding bugs. In Proceedings of the 15th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS 2010,
Pittsburgh, Pennsylvania, USA, March 13-17, 2010. James C. Hoe and Vikram S.

Adve, (Eds.) ACM, 167–178. doi:10.1145/1736020.1736040.

[3] Christian Cachin, Rachid Guerraoui, and Luís E. T. Rodrigues. 2011. Introduction
to Reliable and Secure Distributed Programming (2. ed.) Springer. isbn: 978-3-
642-15259-7. doi:10.1007/978-3-642-15260-3.

https://www.fsb.org/2022/02/assessment-of-risks-to-financial-stability-from-crypto-assets/
https://www.fsb.org/2022/02/assessment-of-risks-to-financial-stability-from-crypto-assets/
https://doi.org/10.1145/1736020.1736040
https://doi.org/10.1007/978-3-642-15260-3


Bachelor Thesis’25, June 2025, Delft, NL

[4] HaichengChen,WenshengDou, DongWang, and FengQin. 2020. Cofi: consistency-

guided fault injection for cloud systems. In 35th IEEE/ACM International Con-
ference on Automated Software Engineering, ASE 2020, Melbourne, Australia,
September 21-25, 2020. IEEE, 536–547. doi:10.1145/3324884.3416548.

[5] Kalyanmoy Deb and Ram Bhushan Agrawal. 1995. Simulated binary crossover

for continuous search space. Complex Syst., 9, 2. http://www.complex-systems

.com/abstracts/v09%5C_i02%5C_a02.html.

[6] Kalyanmoy Deb and Debayan Deb. 2014. Analysing mutation schemes for

real-parameter genetic algorithms. Int. J. Artif. Intell. Soft Comput., 4, 1, 1–28.
doi:10.1504/IJAISC.2014.059280.

[7] Kusum Deep and Manoj Thakur. 2007. A new crossover operator for real coded

genetic algorithms. Appl. Math. Comput., 188, 1, 895–911. doi:10.1016/J.AMC.2

006.10.047.

[8] Alkis Gotovos, Maria Christakis, and Konstantinos Sagonas. 2011. Test-driven

development of concurrent programs using concuerror. In Proceedings of the
10th ACM SIGPLAN workshop on Erlang, Tokyo, Japan, September 23, 2011. Kenji
Rikitake and Erik Stenman, (Eds.) ACM, 51–61. doi:10.1145/2034654.2034664.

[9] Ralf Huuck, Gerwin Klein, and Bastian Schlich, (Eds.) 5th International Work-
shop on Systems Software Verification, SSV’10, Vancouver, BC, Canada, October
6-7, 2010, (2010). USENIX Association. https://www.usenix.org/conference/ssv

10.

[10] Wishaal Kanhai, Ivar van Loon, Yuraj Mangalgi, Thijs Van der Valk, Lucas

Witte, Annibale Panichella, Mitchell Olsthoorn, and Burcu Kulahcioglu Ozkan.

2025. Rocket: A system-level fuzz-testing framework for the XRPL consensus

algorithm. In IEEE Conference on Software Testing, Verification and Validation,
ICST 2025, Napoli, Italy, March 31 - April 4, 2025. IEEE, 737–741. doi:10.1109
/ICST62969.2025.10988979.

[11] Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and Haryadi S.

Gunawi. 2016. Taxdc: A taxonomy of non-deterministic concurrency bugs in

datacenter distributed systems. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems, ASPLOS 2016, Atlanta, GA, USA, April 2-6, 2016. Tom Conte and

Yuanyuan Zhou, (Eds.) ACM, 517–530. doi:10.1145/2872362.2872374.

[12] Rupak Majumdar and Filip Niksic. 2018. Why is random testing effective for

partition tolerance bugs? Proc. ACM Program. Lang., 2, POPL, 46:1–46:24. doi:1
0.1145/3158134.

[13] R.A.E. Mäkinen, J. Periaux, and J. Toivanen. 1999. Multidisciplinary shape

optimization in aerodynamics and electromagnetics using genetic algorithms.

International Journal for Numerical Methods in Fluids, 30, 2, 149–159. Publisher:

John Wiley & Sons Ltd. doi:10.1002/(SICI)1097-0363(19990530)30:2<149::AID-

FLD829>3.0.CO;2-B.

[14] Suvam Mukherjee, Pantazis Deligiannis, Arpita Biswas, and Akash Lal. 2020.

Learning-based controlled concurrency testing. Proc. ACM Program. Lang., 4,
OOPSLA, 230:1–230:31. doi:10.1145/3428298.

[15] Fakhra Batool Naqvi, Muhammad Yousaf Shad, and Saima Khan and. 2021.

A new logistic distribution based crossover operator for real-coded genetic

algorithm. Journal of Statistical Computation and Simulation, 91, 4, 817–835.
eprint: https://doi.org/10.1080/00949655.2020.1832093. doi:10.1080/00949655.20

20.1832093.

[16] Burcu Kulahcioglu Ozkan, RupakMajumdar, Filip Niksic, Mitra Tabaei Befrouei,

and Georg Weissenbacher. 2018. Randomized testing of distributed systems

with probabilistic guarantees. Proc. ACM Program. Lang., 2, OOPSLA, 160:1–
160:28. doi:10.1145/3276530.

[17] G. Pavai and T. V. Geetha. 2019. New crossover operators using dominance

and co-dominance principles for faster convergence of genetic algorithms. Soft
Comput., 23, 11, 3661–3686. doi:10.1007/S00500-018-3016-1.

[18] Jennifer Rexford and Emin Gün Sirer, (Eds.) Proceedings of the 6th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 2009, April
22-24, 2009, Boston, MA, USA, (2009). USENIX Association.

[19] David Schwartz, Noah Youngs, and A. Britto. 2014. The ripple protocol consen-

sus algorithm. In Retrieved Apr. 8, 2025 from https://www.semanticscholar.or

g/paper/The-Ripple-Protocol-Consensus-Algorithm-Schwartz-Youngs/bff4

ecdd2c40bb67abab8d49e99c81287a7b2810.

[20] Martijn van Meerten, Burcu Kulahcioglu Ozkan, and Annibale Panichella.

2022. Discotest: evolutionary distributed concurrency testing of blockchain

consensus algorithms. Retrieved June 22, 2025 from https://resolver.tudelft.nl

/uuid:5ac105ac-f2d0-4891-8b20-f5caae141854.

[21] Martijn van Meerten, Burcu Kulahcioglu Ozkan, and Annibale Panichella. 2023.

Evolutionary approach for concurrency testing of ripple blockchain consensus

algorithm. In 45th IEEE/ACM International Conference on Software Engineering:
Software Engineering in Practice, SEIP@ICSE 2023, Melbourne, Australia, May
14-20, 2023. IEEE, 36–47. doi:10.1109/ICSE-SEIP58684.2023.00009.

[22] [SW] Bryan Wassenaar, Reproduction Package Groot version 1.0.0, June 2025.

doi:10.5281/zenodo.15665194, url: https://doi.org/10.5281/zenodo.15665194.

[23] Levin N. Winter, Florena Buse, Daan de Graaf, Klaus von Gleissenthall, and

Burcu Kulahcioglu Ozkan. 2023. Randomized testing of byzantine fault tolerant

algorithms. Proc. ACM Program. Lang., 7, OOPSLA1, 757–788. doi:10.1145/3586
053.

https://doi.org/10.1145/3324884.3416548
http://www.complex-systems.com/abstracts/v09%5C_i02%5C_a02.html
http://www.complex-systems.com/abstracts/v09%5C_i02%5C_a02.html
https://doi.org/10.1504/IJAISC.2014.059280
https://doi.org/10.1016/J.AMC.2006.10.047
https://doi.org/10.1016/J.AMC.2006.10.047
https://doi.org/10.1145/2034654.2034664
https://www.usenix.org/conference/ssv10
https://www.usenix.org/conference/ssv10
https://doi.org/10.1109/ICST62969.2025.10988979
https://doi.org/10.1109/ICST62969.2025.10988979
https://doi.org/10.1145/2872362.2872374
https://doi.org/10.1145/3158134
https://doi.org/10.1145/3158134
https://doi.org/10.1002/(SICI)1097-0363(19990530)30:2<149::AID-FLD829>3.0.CO;2-B
https://doi.org/10.1002/(SICI)1097-0363(19990530)30:2<149::AID-FLD829>3.0.CO;2-B
https://doi.org/10.1145/3428298
https://doi.org/10.1080/00949655.2020.1832093
https://doi.org/10.1080/00949655.2020.1832093
https://doi.org/10.1080/00949655.2020.1832093
https://doi.org/10.1145/3276530
https://doi.org/10.1007/S00500-018-3016-1
https://www.semanticscholar.org/paper/The-Ripple-Protocol-Consensus-Algorithm-Schwartz-Youngs/bff4ecdd2c40bb67abab8d49e99c81287a7b2810
https://www.semanticscholar.org/paper/The-Ripple-Protocol-Consensus-Algorithm-Schwartz-Youngs/bff4ecdd2c40bb67abab8d49e99c81287a7b2810
https://www.semanticscholar.org/paper/The-Ripple-Protocol-Consensus-Algorithm-Schwartz-Youngs/bff4ecdd2c40bb67abab8d49e99c81287a7b2810
https://resolver.tudelft.nl/uuid:5ac105ac-f2d0-4891-8b20-f5caae141854
https://resolver.tudelft.nl/uuid:5ac105ac-f2d0-4891-8b20-f5caae141854
https://doi.org/10.1109/ICSE-SEIP58684.2023.00009
https://doi.org/10.5281/zenodo.15665194
https://doi.org/10.5281/zenodo.15665194
https://doi.org/10.1145/3586053
https://doi.org/10.1145/3586053

	Abstract
	1 Introduction
	2 Background
	2.1 XRP Ledger Consensus Protocol
	2.2 Evolutionary algorithm
	2.3 Related Work

	3 Groot
	3.1 Encoding
	3.2 The workings of Groot
	3.3 Random Baseline
	3.4 Simulated Binary Crossover with Gaussian mutation
	3.5 Laplace crossover with MPT mutation

	4 Study design
	4.1 XRPL Network
	4.2 Groot
	4.3 Rocket
	4.4 Evaluation of the experimental setups

	5 Results
	5.1 Effectiveness in finding violations 
	5.2 Efficiency in finding the first violation

	6 Discussion
	6.1 Reasons for similar effectiveness
	6.2 Reasons for similar efficiency

	7 Threats to Validity
	7.1 Nondeterminism
	7.2 Re-presentability of Local System
	7.3 Generalization

	8 Responsible Research
	9 Conclusion and future work

