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Abstract

Safe navigation in a cluttered environment is a key capability for the autonomous op-
eration of Micro Aerial Vehicles (MAVs). This work explores a (deep) Reinforcement
Learning (RL) based approach for monocular vision based obstacle avoidance and goal
directed navigation for MAVs in cluttered environments. We investigated this problem in
the context of forest flight under the tree canopy.

Our focus was on training an effective and practical neural control module, that is easy
to integrate into conventional control hierarchies and can extend the capabilities of ex-
isting autopilot software stacks. This module has the potential to greatly improve the
autonomous capabilities of MAVs, and their applicability for many interesting real world
use-cases. We demonstrated training this module in a visually highly realistic virtual
forest environment, created with a state-of-the-art computer game engine.
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Chapter 1

Background

Today Micro Aerial Vehicles (MAVs) are getting more and more accessible, as various
manufacturers are providing mass-produced MAVs at reasonable prices. Their low size
and cost, along with their agility make MAVs an ideal platform for a number of tasks.
However, most MAVs are still used for hobby and recreational purposes, while their
commercial use is limited. One reason is that for efficient, scalable and safe commercial
use more reliable autonomous capabilities are needed.

Obstacle avoidance and goal-directed navigation are key capabilities for autonomous op-
eration of MAVs. For this, MAVs need to perceive their environment, understand the
situation they are in, and react appropriately. From this point of view, flying in cluttered
outdoor environments (such as forests), or in GPS-denied indoor environments is highly
challenging (see some examples of cluttered environments in Fig. 1.1).

Figure 1.1: Examples of cluttered outdoor and indoor environments: a forest scene; busy
street with buildings and overhanging wires; cluttered warehouse environment.
(credit: CC BY-SA 3.0 Peter Bond, Sebastian Kasten, Andreas Praefcke)

Given the size, weight, power and cost limitations of MAVs the choice in sensors is limited.
LIDARs for example are suitable for depth sensing, but their price, weight and power
consumption make them less suitable for MAV applications. Cameras are cheap and
lightweight sensors that can provide images with an abundance of information. Still
obstacle avoidance and navigation of MAVs based on a monocular camera image input
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6 Background

is challenging. It requires understanding the 3D structure of the scene, which relies on
correct interpretation and integration of a number of visual clues.

Our goal was to create a vision-based navigation module, that can extend the autonomous
capabilities of MAVs with the ability to traverse cluttered environments based on monoc-
ular vision input. To this end, we defined the module and its interfaces such that it can
be easily integrated into existing autopilot software stacks.

Figure 1.2: Screenshot from our simulator (left), and photograph of a real forest (right)

A common approach to vision-based obstacle avoidance is to decouple the perception and
control problems: first a perception algorithm creates a 3D representation of the scene
from the input image(s), and then a path planning/control algorithm is responsible for
safe traversing according to the reconstructed 3D space. In this work, we are exploring
an integrated approach to this problem, where perception and control are strongly cou-
pled and co-adapted. This concept holds the promise of finding more efficient solutions,
however, in most cases it relies on learning-based techniques.

We address the training of a module that integrates perception and control with a Rein-
forcement Learning (LR) based approach. RL is a particularly flexible learning paradigm,
that does not require explicit supervision. Instead it lets agents learn by interacting with
an environment, while providing evaluative feedback [1]. Deep RL (the combination of
RL with deep neural network function approximators) has shown promising results in
learning vision-based policies (e.g. mastering a suite of Atari games [2]).

However, the required training time of Deep Reinforcement Learning algorithms is still
prohibitively high for training in real environments; furthermore initial exploratory poli-
cies might damage the test vehicle itself. These are the main obstacles that prevent
learning in the physical domain for MAVs, and generally for robots. These problems
can be partially addressed with training in a virtual domain. However, training on vir-
tual data introduces a new problem, as the transferability of the learned policies to the
real domain is not trivial. In the literature review we discuss various domain adaptation
techniques that can help closing the reality gap between the simulated environment and
the real world. Within the scope of this thesis we only address this problem with using
a highly realistic simulated environment that is built upon a state-of-the-art computer
game engine, which features a high quality rendering pipeline (see the the side-by-side
comparison to a real image in Fig. 1.2). Testing the effectiveness of the trained policies in
real environment and exploring different domain adaptation alternatives to improve the
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performance is left for future work.

1.1 Content and structure of this report

The first part of this thesis is a scientific paper that summarizes the most important
results and findings of this research, and briefly describes our methodology.

Part III. and IV. are from the Preliminary Thesis, included for completeness and to
provide some additional context and background information for the article.

In particular, Part III. is a literature review, which discusses the theoretical background
of this research. First in Chapter 2 Deep Learning is discussed, with the related opti-
mization and regularization issues, as well as some common network architectures. The
topic of Chapter 3 is Domain Adaptation. This chapter discusses the performance is-
sues of neural networks when transferred to different domains, and reviews the existing
techniques to alleviate these problems. Next, in Chapter 4 we introduce the basics of
Reinforcement Learning, as well as some recent Deep RL algorithms. Chapter 5 con-
cludes the the literature review with a discussion of auxiliary training. This chapter also
contains a brief overview of a number of learning tasks that are relevant for the main task
(obstacle avoidance and goal-directed navigation), and on which successful deep learning
was demonstrated. Finally, we discuss the finding of the literature review in Chapter 6.

Part IV. is a preliminary analysis, that dives more into the core problems. First, we
specify the reinforcement learning task in Chapter 7. Then in Chapter 8 we discuss some
considerations related to the incorporation of real data in the training process. This is
followed by the description of the proposed network architecture in Chapter 9. Finally, a
brief research planning is given in 10.
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Deep Reinforcement Learning for Goal-directed Visual Navigation

Máté Kisantal1, Kevin van Hecke2 and Guido de Croon3

Abstract— Safe navigation in a cluttered environment is a
key capability for the autonomous operation of Micro Aerial
Vehicles (MAVs). This work explores a (deep) Reinforcement
Learning (RL) based approach for monocular vision based
obstacle avoidance and goal directed navigation for MAVs in
cluttered outdoor environments, such as forests. Our focus was
on training an effective and practical neural control module,
that is easy to integrate into conventional control hierarchies
and can extend the capabilities of existing autopilot software
stacks. We demonstrate learning neural policies in a visually
highly realistic virtual forest environment.

I. INTRODUCTION

Today MAVs are getting more and more accessible, as
various manufacturers are providing mass-produced MAVs
at reasonable prices. Their low size and cost, along with
their agility make MAVs an ideal platform for a number of
tasks. However, most MAVs are still used for hobby and
recreational purposes, while their commercial use is limited
(mostly to drone inspection under pilot control). One reason
is that for efficient, scalable and safe commercial use more
reliable autonomous capabilities are needed.

Safe navigation in cluttered environments is a key capa-
bility for autonomous operation of MAVs. Safe navigation
is essentially a trade-off between goal-directed motion and
obstacle avoidance. In order to avoid obstacles, MAVs need
to perceive their environment, understand the situation they
are in, and react appropriately.

In this work we address the problem of MAV forest flight
under the tree canopy. Providing an MAV with the capability
of safely traversing such environments would open the way
for novel use-cases, like flying autonomous search and rescue
missions or surveying forest wildlife and vegetation. In this
environment the MAV has to actively avoid trees, branches
and various other obstacles. Since precise mapping of such
environments for generating safe pre-planned trajectories is
overly expensive for most use-cases, ideally the MAV has to
be capable of generating safe trajectories locally based on
its own observations.

Obstacle avoidance relies on the correct sensing of the 3D
environment around the MAV. Some sensors (e.g. LIDAR)
can directly provide this information [1], [2]. However, given
the size, weight, power and cost limitations of MAVs the
choice in sensors rather is limited. Cameras are cheap,
lightweight and low-power sensors that can provide images

1 Student, Faculty of Aerospace Engineering, Technical University Delft
kisantal.mate@gmail.com

2 Daily Supervisor, Faculty of Aerospace Engineering, Technical Univer-
sity Delft

2 Supervisor, Faculty of Aerospace Engineering, Technical University
Delft

with an abundance of information. These properties make
cameras very suitable for MAVs. Still, vision-based obstacle
avoidance is challenging, as it requires understanding the 3D
structure of the scene, which relies on correct interpretation
and integration of a number of visual clues.

A common approach to vision-based obstacle avoidance
is to decouple the perception and control problems: first a
perception algorithm creates a 3D representation of the scene
from the input image(s), and then a path planning/control
algorithm is responsible for the safe traversal according to
the reconstructed 3D space (e.g.[3], [4], but also some more
recent deep learning based approaches such as [5] and [6]).
An advantage of this framework is that it benefits from
developments both in 3D scene reconstruction and in motion
planning algorithms [7]. Furthermore, as the intermediate
3D representation is easily interpretable, debugging these
systems is easier. On the other hand, decoupling the two
processes, and constraining an intermediate representation
may be less efficient than a solution that integrates these
processes.

Integrated approaches sidestep the need for exact state esti-
mation, and map the states to higher level outputs (typically
collision probabilities, or directly to actions; e.g. [8], [7],
[9], [10]). In practice, obtaining accurate 3D representations
of the full 3D scene, or having highly accurate localization
might not be essential for successful navigation and obstacle
avoidance. In many cases just an approximate relative local-
ization, and knowing obstacle distances in a few directions
is enough already. However, determining what features are
really needed for a particular task is a difficult problem in
itself, which is strongly dependent on both the available
observations, and on the properties of the controller that
uses the features. Here lies the advantage of integrated ap-
proaches: control and perception are strongly coupled and co-
adapted, and since internal representations are not explicitly
constrained, ideally integrated approaches have the potential
to be more effective. Such integrated approaches typically
rely on machine learning techniques that can optimize the
internal representations.

RL provides a flexible framework to learn policies for a
variety of control problems, and has already been explored
on a variety of robotics problems[11]. Recent advancements
in Deep Reinforcement Learning (DRL) (where deep neural
networks are used as function approximators) has shown
promising results, training successful agents in highly chal-
lenging problems (such as a suite of Atari games [12]) from
raw visual inputs, in some cases outperforming even human
performance. DRL algorithms are capable of learning per-
ception and control jointly, and the internal representations



in their neural networks are learned and optimized for the
task at all hierarchical levels.

We employ DRL to train a Vision-based Neural Navigation
Module (VNNM), that can be used to extend the autonomous
capabilities of current autopilot software stacks. To this
end, we set the boundaries of this module and define the
interfaces such that it can be incorporated in conventional
control hierarchies. In order to interface with higher level
navigation modules, the trained policy is a function of both
the observations and a goal direction input. The output of
our policy is a velocity command, that can be easily tracked
with conventional feedback control methods.

Our main contribution is the definition, training and
evaluation of a vision-based neural controller (the VNNM)
that can add vision-based navigation capabilities to existing
MAVs to make them able to operate in cluttered envi-
ronments autonomously. We demonstrate the ability of the
system to learn goal directed navigation in a virtual forest
environment. Furthermore, we release a photo-realistic sim-
ulator of a forest environment with high quality graphics that
can be used to train and and evaluate vision-based approaches
for obstacle avoidance, path planning and navigation.

II. RELATED WORK

Vision based obstacle avoidance and navigation for MAVs
has attracted significant interest in the research community
over the last few years. Through this section our focus is on
learning-based, integrated approaches for these problems.

A. Obstacle avoidance

Most learning-based approaches cast obstacle avoidance
as a supervised learning problem. In imitation learning this
supervision comes straight from an expert, and a direct map-
ping from raw inputs to expert actions is learned [13], [14],
[15]. However, collecting demonstrations might be a tedious
work, and accounting for the changing state distributions
makes repeated iterations necessary [16]. Another possible
source of expert trajectories can be a model predictive
control trajectory planner, that can find optimal trajectories
given full information of the environment. With these expert
trajectories a neural network policy can be trained to follow
the same trajectories based on partial observations. Recent
work explored this idea, but it was demonstrated only in
simplistic simulated environments [17], [18].

Another way to formulate obstacle avoidance as a super-
vised problem is learning to predict collision probabilities
based on the observations. Some approaches check if an
action results in a collision immediately [19], or over a
certain time-horizon following a policy [20], [8]. Despite
being an RL algorithm, we mention the recently introduced
CAD2RL algorithm [7] here, as it can also be seen as very
similar method. In this work the authors defined the reward
to be 0 at collisions and 1 when the agent is further from
obstacles than a threshold distance. Due to this particular
reward definition, the action value function is closely related
to collision probabilities.

Given a learned collision probability function, simple
hand-engineered policies are used in the above mentioned
examples, that are able to follow safe trajectories by choosing
actions according to the collision probabilities. In particular,
[7] follows a greedy policy (choosing the safest action) while
[8] determines a safe flight direction by evaluating left, right
and center crops of the image. In theory collision probability
learning approaches can be integrated with higher level
navigation objectives (e.g. moving towards a goal location if
the required action has low risk, and making detours other-
wise). However, this approach raises two problems. First, the
collision probabilities are only valid as long as the policy is
the same that was used during the training (typically greedy
obstacle avoidance policies that use the command with the
least collision probability). By following a different policy
(e.g. one that takes goal-directed navigation into account) this
condition does not hold anymore. Second, in most cases the
policies are hand-engineered and not optimized. Typically
a certain collision probability threshold is picked, but this
does not necessarily represents a good trade-off between
obstacle avoidance and goal directed motion. In contrast, our
proposed approach learns safe goal directed navigation in an
end-to-end manner, and the RL training directly optimizes
the action selection.

Besides supervised approaches, training obstacle avoid-
ance with RL was also addressed in previous work [9],
[21]. Khan et al. introduced a model-based RL method for
obstacle avoidance, Generalized Computation Graphs (GCG)
[9]. Their most successful GCG instantiation relies on formu-
lating the learning task as prediction of discrete future events.
This formulation works really well in the case of simple
obstacle avoidance, where the predicted discrete events can
be collisions. However, their method is difficult to extend to
goal oriented navigation. As our approach does not rely on
a special formulations of the RL problem, it allows greater
flexibility in the task and reward function definitions, which
lets us train goal-oriented navigation directly. A previous
work of Khan et al. proposed an uncertainty-aware model-
based RL method for collision avoidance [21], however its
effectiveness was demonstrated in a rather limited setting
only (avoiding a single obstacle, based on 16 by 16 grayscale
images). Model-based RL methods in general are learning
a predictive model that gives the expected reward (or in
an obstacle avoidance scenario the collision probability)
given observations and a sequence of actions. This model
is usually used in a model predictive control planner, to find
the best sequence of actions within a certain time horizon.
The separate planning process may consider the goal location
in choosing the best path, however it requires multiple model
evaluations in test time for finding acceptable actions. This
can be a problem for constrained platforms such as MAVs.
Our approach is model free, thus the inference directly
outputs an action.

B. Path Detection

Recent approaches managed to achieve safe traversal in
natural environments by constraining the motion to man-



made paths. In this case the learning task is the prediction
of the path direction, for which supervision can be provided.
Forest paths typically indicate traversable 3D corridors, thus
following them sidesteps the need for obstacle detection and
path planning.

Giusti et al. [10] made recordings with three cameras
looking to different directions, and trained a network to
recognize the direction of the camera relative to the trail.
Another work extended their datasets with videos recorded
with different lateral offsets [22]. While constraining the
motion to forest trails can be useful in a number of practical
scenarios and completely sidesteps the problem of path
planning, it does not make use of the fundamental capability
of MAVs they can fly freely irrespective of the terrain
conditions This significantly limits the accessible areas for
the MAV operation.

C. Goal-directed navigation

Several recent works addressed the problem of vision-
based navigation using learning based methods [23], [24],
[25]. The agent in [23] is trained to locate a certain object
in various mazes, but it does not generalize to other goal
objects/locations. Zhu et al. trained a policy, that is a function
of both a visual input and an image of a target object. Their
approach generalizes to various targets, however specific
layers of their network need to be finetuned for particular
environments to learn room layouts and object arrangements
[25]. In general, semantic navigation approaches are rather
specialized, which renders them less useful for the kind
of general-purpose navigation that we seek to achieve for
MAVs. Gupta et al. also investigates vision-based navigation
as a geometric task, where the goal location is defined as
relative coordinates, however their method assumes the en-
vironment to be a grid-world[24]. A common shortcoming of
the above-mentioned methods from an MAV implementation
point-of-view that they do not consider collision avoidance.

Somewhat similar to our work, Smith at al. focuses on a
learning based approach that is easy to integrate to traditional
navigation stacks [26]. However, their approach relies on
depth sensing, and the primary role of trained neural network
in their setting is avoiding exhaustive search by selecting
the most probable candidate trajectories for a planner. In
the context of indoor ground robots, Pfeiffer et al. proposes
a similar solution to goal-directed navigation as ours [27],
however they simplify the perception problem by using 2D
laser range finder inputs, and the model is trained in a
supervised fashion using expert demonstrations from a path
planning algorithm.

III. TRAINING AN OBSTACLE AVOIDANCE MODULE FOR
MAVS

In the introduction we argued that a learning-based obsta-
cle avoidance module, which integrates perception and con-
trol can be a promising direction towards more autonomous
MAVs. In this section we discuss how such a module can
augment the usual MAV control hierarchy to provide vision
based obstacle avoidance, and how the obstacle avoidance

task can be framed as an RL problem. We also describe the
simulated environment that was used during training, discuss
the RL algorithm and the neural architecture of the agent,
and finally report the training details.

A. Obstacle Avoidance module in the MAV control hierarchy

High level
cont rol

Low level
cont rolVNNM

goal
direct ion

velocity
com m and

RGB
image

Fig. 1. VNNM module in the MAV control hierarchy.

The control hierarchy of a typical MAV can be divided to
two parts: low and high level control. The low level control
typically consists of cascaded layers of feedback controllers,
that stabilize the MAV, provide adequate handling character-
istics, and in most cases control the attitude and velocity of
the MAV. The high level control usually include some sort of
a navigation control loop, and additionally further high level
mission planner and decision making modules. Alternatively,
high level control may also come directly from a human
operator.

In theory, a learning based control module can replace any
part of the control hierarchy, or the whole hierarchy at once
in and end-to-end fashion. However, since our main goal is
to provide obstacle avoidance and goal-directed navigation
capability, it is advantageous to keep some parts of the
original hierarchy. Furthermore, limiting the scope of the
learning task makes training more feasible. The reusability
and easy integration into existing autopilot software stacks
were our main consideration in setting the boundaries and
defining the interfaces of the trained module.

On the low-level side, traditional feedback control meth-
ods are more reliable and better understood, than learning
based methods. Also, keeping low-level feedback control in
place may allow reusing the trained policy across different
MAVs, as suitable feedback control can mask the differences
between platforms at the level of more abstract actions. This
abstraction can also help narrowing the reality gap in case of
training in a simulator [28], and also allows for using simpler
motion models, that can neglect the low-level dynamics of
the MAV. Therefore the outputs of the obstacle avoidance
module are higher level velocity commands, and a conven-
tional low-level cascaded control system is responsible for
tracking these. Since we chose to maintain a constant forward
speed and altitude, this velocity command is a heading
command in our case.

When extending the module to higher levels, the main
consideration is keeping the module flexible so that it can
be used in many contexts. As an example, if the module
is trained directly for a high-level navigation objective (e.g.
searching for a certain object) then its use would be sig-
nificantly constrained (searching for another object would
require the re-training of the module). Based on reusability



considerations the input for the obstacle avoidance module
from higher levels was chosen to be the relative direction of
the navigational goal. This signal only relies on knowing the
current heading of the MAV, which can be provided even
in GPS-denied environments by an on-board magnetometer.
With this input it is easy to integrate the module with
waypoint-based navigation systems. Another use case might
be an intelligent steering mode, in which an operator can
steer the MAV in a desired direction, while the module
prevents it to collide with obstacles.

This formulation essentially leads to a module, that is mak-
ing a trade-off based on visual information between flying
directly towards the goal and making avoidance manoeuvres,
thus providing a safe trajectory locally. In a sense the role
of this model is similar to the path planning a horse does
in an ordinary riding scenario: while the rider can control
the general direction of movement, the horse still has some
authority to avoid running into obstacles.

B. Training Environment

Teaching goal-based navigation for MAVs using RL on
real platforms is problematic, given the trial-and-error nature
of RL and the possibly unsafe initial exploratory policies.
Safe RL is a direction in RL research that is trying to
explicitly minimize the risks of training (e.g [29]). In this
work we sidesteps the safety concerns of RL by training
the agents in a virtual environment. Besides the safety
benefits, virtual environments allow for speeding up the
training process by running the simulation faster than real
time, and also give an opportunity to parallelize training.
Furthermore, given access to the internals of the simulator,
perfect information is available about the state and various
other aspects of the environment. However, training on a
virtual environment introduces a domain discrepancy, and
the performance of the agent on the real environment is not
guaranteed.

Therefore creating a suitable virtual environment for train-
ing an RL agent is a challenging task. On one hand, as
our proposed neural control module operates on the level
of velocity commands, the physical fidelity is relatively easy
to achieve with a simple motion model. On the other hand,
the required visual fidelity is significantly more difficult to
achieve, especially since we do not make use of any explicit
domain adaptation technique.

Fig. 2. Screenshot from our simulator (left), and photograph of a real
forest (right)

The computer game industry, however, has put significant

efforts and resources for creating visually realistic gaming
experiences [30]. In this work we are making use of the open-
source, cross-platform Unreal Engine 4 game engine, which
features an exceptionally high quality rendering pipeline
[31]. We created a virtual forest environment for RL training
using the free Open World Demo Collection of Epic Games.
The environment features 229 collidable trees scattered
around in a roughly 100 m× 100 m area. Latter evaluation
plots are displaying a map of the environment with coarse
obstacle locations, e.g. in Fig. 7 or 10. The traversable areas
are surrounded with a rock wall. A few screenshots of the
simulator are show in Fig. 3 that showcase the high quality
models and textures, and the various light conditions across
the environment. A side-by-side comparison to a real image
is given in Fig. 2.

We access the internals of the simulator using the Un-
realCV plugin [30], that allow us moving the agent in the
environment, detecting collisions and getting RGB and depth
images.

Fig. 3. Scenes from our realistic forest simulation environment built with
UE4. The top three images show different parts of the environment from
the perspective of the agent, while the bottom two show further details of
the environment.

In order to evaluate the difficulty of avoiding obsta-
cles in this environment, we measured the non-dimensional
traversability of the environment [32], which is closely
related to the obstacle density. Traversability is calculated by
spawning the agent to random locations with random head-
ings, and averaging the collision-free straight path lengths
s over n runs. Non-dimensional traversability is normalized



with the radius of the MAV:

Traversability =
1

n · r
n∑

0

s. (1)

The average collision-free trajectory length in our exper-
iments was 23.4 m, calculated over 600 trials. Since the
collision radius of the MAV in our experiments is 0.5 m,
the traversability of the forest environment is 48.6.

C. Defining obstacle avoidance as an RL problem

RL is a machine learning paradigm in which an agent is
interacting with its environment, sequentially takes actions
and receives scalar rewards, along with observations of the
state of the environment [33]. The goal of the agent is to
maximize the cumulative reward it receives. By defining the
reward function (“shaping the reward”) we can encourage
the agent learn a particular task. The objective in our case
is learning a policy that navigates the drone towards a goal
location in a safe manner avoiding obstacles. This section
casts this task as an RL problem: we define the reward
function, the action space and the observations the agent
receives from the environment.

The task has two, sometimes competing goals: flying
towards the goal location, and avoiding collisions. These
goals are directly reflected in the reward function:

Rt = rdirection + rcollision (2)

The direction reward is calculated as the dot product of the
(planar) normalized goal and displacement vectors at each
timestep. This provides a dense reward signal with values
in the interval [−1, 1] that encourages flying directly to the
goal. The collision reward is −10 if the command results in
getting closer to an obstacle than one meter, and 0 otherwise.
Upon collision the episode is terminated.

Apart from the reward, the agent receives observations (s)
from its environment. The primary observation is a 84× 84
RGB image, where pixel values are normalized between ±1.
The agent gets information about the goal direction as the
sine of the heading error (sin(ψgoal − ψMAV )), this signal
is again conveniently between ±1.

The action space in our experiments is discrete. It con-
sists of three angular acceleration actions (a) for steer-
ing the drone: changing the heading rate of the drone
(±5◦/step2), or keeping a constant heading rate. Since
the maximum heading rate is limited at ±15◦/step, the
heading rate can take the following discrete values: ψ̇ ∈
[−15, −10, −5, 0, 5, 10, 15]. Our motivations for angu-
lar acceleration commands were the smooth resulting paths,
and that acceleration commands are easily tracked by the
baseline feedback controllers. In order to keep the observ-
ability of the problem, the inputs of the agent are augmented
with the heading rate state.

D. RL Algorithm

A fundamental problem in Deep RL is that on-line obser-
vation sequences from an agent are highly correlated [12].

The first successful deep RL agents were using off-policy
algorithms to overcome this problem, as it allowed learning
from randomly sampled minibatches from an experience
replay memory [12]. As Mnih et al. proposed, uncorrelated
experiences may also come from multiple agents acting in
separate instances of the environment simultaneously. Our
algorithm is largely based on their Asynchronous Advan-
tage Actor-Critic (A3C) algorithm [34]. The critic estimates
the state-value function (V (st; θv)), and the actor uses its
predictions to improve the policy (π(at|st, θ)). The critic is
trained to minimize the temporal difference error, while the
actor updates are calculated with the policy gradient theorem,
using the advantage as a baseline [33]. To lower the variance
of the advantage estimate, we use Generalized Advantage
Estimation (GAE) [35]. Following [34] the entropy of the
policy is added to the objective function to encourage explo-
ration and prevent early convergence to sub-optimal policies.
We are using eight separate agents (workers), each collects
experiences in their separate instances of the simulator, and
send gradient updates to a master network. The network
parameters of the workers are updated after each episode.

Another difficulty in deep RL that these algorithms are
learning from a single, scalar reward signal. This leads to
high sample complexity and excessive training times. A
possible solution to alleviate this problem can be training
the network with multiple loss functions simultaneously.
This idea is closely related to Multi-Task Learning in the
context of supervised learning [36]. An early example of this
approach in RL context was that deep actor-critic implemen-
tations usually did not use separate actor and critic networks,
instead most weights were shared between the two (e.g. in
[34] only the last layer is separate). This decision can be
justified by arguing that the features needed for predicting
the value of a state can be just as useful for the policy, and
vice versa.

Fig. 4. High resolution ground truth depth image (a); quantized depth image
(b); cropped and down-scaled depth image overlaid on the corresponding
input image (c)

Recent works introduced auxiliary tasks for RL, demon-
strating that both supervised [34], [37], unsupervised and
RL tasks [38] can be introduced to improve the RL training
process, both in terms of sample complexity and the perfor-
mance of the learned policies. In particular we build upon the
experiences of Mirowski et al., who showed that an RL agent
that learns to navigate in mazes can significantly benefit from
learning depth and loop closure prediction as auxiliary tasks
[23].

Vision-based navigation and obstacle avoidance relies



heavily on correctly interpreting the 3D scene from single
images. Because of the relatedness of the two task, the RL
training can benefit the auxiliary depth prediction task. An
important consideration is that the auxiliary task has to be
easier to solve, to allow the main task to make use of the
learned features. Therefore (following [23]) we define the
depth prediction task as classification of the pixels of a low
resolution depth image into eight depth bins. The original
depth image from the simulator is shown in Fig. 4 a),
while b) shows the depth image quantized into exponentially
spaced bins. To significantly reduce the number of depth
pixels (thus making the auxiliary task simpler), only the
most important central part of the image is covered in the
depth prediction task, with lower resolution along the less
significant vertical axis. The down-scaled depth image, that
consists of 64 pixels is shown on Fig. 4 c), overlaid on the
visual input the agent receives.

For a pseudo code of the complete RL training algorithm
please refer to Appendix I.
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Fig. 5. Neural architecture of the RL agent.

E. Agent architecture

The neural network architecture of the agent is shown in
Fig.5. The setup closely follows the DQN [12] and NAV [23]
architectures.

The RGB input image (84× 84× 3) is fed to an encoder,
that consists of two convolutional layers and a fully con-
nected layer. The receptive fields of the convolutional layers
are 8 × 8 and 4 × 4 respectively (stride 4 and 2), with 16

Exponential Linear Units (ELU) [39] in the first layer and 32
ELUs in the second. The encoder ends with a fully connected
layer (FC1) that has 256 ELUs.

The next fully connected layer (FC2) consists of 256
ELUs, that are fed with both the encoded image, the goal
direction input, and the heading rate state.

As a typical actor-critic architecture, the neural network
outputs a value prediction, and the action-distribution of the
stochastic policy. The policy (π) is a softmax output from
FC2, while the value prediction (V ) is a single linear output.
The value prediction is trained to minimize the temporal
difference (TD) error [33]. The policy is trained by taking
steps in the policy gradient direction [33].

The for the auxiliary depth prediction task, the network has
a dedicated layer (Depth FC) with 128 ELUs, which outputs
independent softmax predictions, across 8 bins for each of
the 64 depth pixels (following the architecture described in
[23]). The cross-entropy (CE) error of the depth predictions
is minimized, using ground truth data from the simulator.
Note that this part of the network is only used during training
time.
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Fig. 6. Learning curves of the main RL task, and the auxiliary depth
prediction task.

F. Training Details

We trained the network over 1.4 million agent perceived
steps, with 8 agents, using the Adam optimizer[40], with
a constant learning rate of 10−4. During the training, the
updates were calculated over 10 step long episodes.

The progress of the RL agent was tested with evaluation
runs, where we logged the cumulative reward on a fixed
setting (same goal and start locations, random initial heading,
max 500 steps). For each evaluated model, we averaged the
cumulative reward over 10 runs. During these evaluations we
also logged the average cross-entropy error on the auxiliary
depth prediction task. The learning curves are plotted in Fig.
6, and for a subset of the evaluated models (marked with
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Fig. 7. Trajectories produced by models from different stages of the
training.

coloured dots) we also plotted the evaluation trajectories on
Fig. 7. The plotted trajectories show that those models, which
achieve higher cumulative reward are producing qualitatively
better trajectories (more goal directed motion, longer flight
paths). This suggests that the reward definition captures the
most important aspects of the learning task well.

Fig. 6 clearly shows, that the RL training process is not sta-
ble enough. There are significant performance drops, where
the agent seems to forget the skills it has acquired already.
In the following sections we analyze the best performing
model, that was saved at 788k global steps.

IV. EXPERIMENTAL RESULTS

We evaluated the performance of the trained VNNM
module in the simulated forest environment.

A. Quantitative Evaluation

For the quantitative evaluation, goal and start locations
with a distance of 60 m were randomly sampled in the
central 80 m × 80 m area of the environment. We choose
the goal distance such that it is significantly longer than the
dimensional traversability of the environment (23.4 m), yet
it is short enough to capture different parts of the forest (e.g.
longer goal distances fit only diagonally to the environment
making the agent fly similar paths). Runs were terminated
upon crashing, or after taking 1000 steps (which is equivalent
to 200 m in the environment), or when the agent arrived
within a 2 m radius of the goal location .

For the quantitative evaluation we run 400 trials in the
environment. In 43.0% (172) of the trials the module was
able to navigate the MAV to the goal location, the average
path length to the goal was 67.50 m (σ = 4.77 m) .

All unsuccessful runs were due to crashes, and none of
the agents reached the 1000 steps episode limit. On average,
the unsuccessful runs ended 29.30 m (σ = 17.85 m) from
the goal location.

To put these results in context, we compare the perfor-
mance of the VNNM to a simple straight flying policy.
Straight flight in identical conditions on average crashed
38.68 m (σ = 15.59 m) from the goal. In 16.0% (64) of the
trials the straight policy was able to reach the goal, therefore
in terms of successful runs the VNNM module performed
almost three times better. On average, the VNNM got 15.8m
closer to the goal (σ = 2.82 m).

In Fig. 8 we plotted the histograms of the distances from
the goal location at the end of the path, both for the VNNM
module and a baseline straight flying policy (400 trials each).
To show that the difference between the two distribution is
statistically significant, we conducted a randomized bootstrap
test, and concluded that the probability that the two set of
samples are coming from the same distribution is negligible
(p� 10−5).
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Fig. 8. Histogram of distances from the goal location at episode termina-
tion.

B. Qualitative Evaluation

In order to analyze the behavior of the navigation perfor-
mance, we plotted some selected representative trajectories
in Fig. 9. The two upper sub-plots (a) and b)) are showing
trajectories in which the VNNM module was able to navigate
the agent to the goal successfully, avoiding multiple obstacles
along the way. Two unsuccessful trials are plotted on subplot
c) and d).

The motion of the agent is mostly rather goal-directed,
but in some cases limited detours are made (e.g. b). An-
other common characteristics of the control policy that the
VNNM learned that it is commanding right or left angular
acceleration actions at almost all steps. This behavior results
in sinuous (“wiggling”) trajectories, as seen on all subplots
of Fig. 9.

In Fig. 10 we demonstrate the ability of the agent to track
changing goal direction commands. We changed the goal
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location every 200 steps, the steps of the trajectory taken
under a certain goal setting were colours as the corresponding
goal location. The agent clearly follows the actual heading
direction input, but makes smaller detours if needed and
actively avoids obstacles, and flew almost 200 m.
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Fig. 10. Trajectory with changing goal locations.

C. Depth prediction

We plotted depth prediction results in Fig. 11 (bottom
row), along with the ground truth depth classes (top row),
overlaid on the input images.

Both prediction is doing really well on detecting the
horizon line: the bottom row of pixels are consistently from

a closer depth class, while the rest of the image is mainly
detected as the furthest depth class. Since both the attitude
(except for heading) and the height over the ground is fixed
during the training, the horizon line is in the same position
in all observations. This property is therefore easily learned
early on the training (see the significant initial drop of the
cross-entropy loss in Fig. 6).
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Fig. 11. Depth predictions and ground truths overlaid on the corresponding
input images, for two conditions.

We found that the model was able to detect close trees
in the middle of the image (a representative example is the
35◦ heading condition). However, on the side of the image
it was not detecting the tree (see 75◦ heading condition,
which image was taken at the same position under a different
heading). The network was also unable to detect farther trees.

These performance characteristics may be related to the
main RL task. For the goal-directed obstacle avoidance and
navigation, the most relevant information is if there is any
tree close in front of the agent. More distant trees, or those
that are not in front of it are less relevant. Therefore the
shared encoder might be trained for detecting close frontal
trees with all loss functions, while tree detection on other
distances and headings are only trained with the depth loss.

V. DISCUSSION AND CONCLUSIONS

In this paper we introduced a neural control module, the
VNNM, that can extend the capabilities of existing autopilot
software stacks with vision-based navigation capabilities. Its
interfaces (goal direction input towards higher level modules,
and a velocity command to lower level control loops) allow
easy integration to conventional MAV control hierarchies.

We demonstrated training this module for autonomous
flight in a cluttered natural (forest flight under the tree
canopy), using a simulator with high visual fidelity. The



trained VNNM outperformed the baseline straight flying
controller, and demonstrated tracking changing goal direc-
tion inputs while avoiding obstacles. However, the obstacle
avoidance performance did not meet our initial expectations
and the requirements for reasonably safe obstacle avoidance.

On the one hand, the asynchronous RL training was not
proven to be stable enough. Asynchronous RL depends on
having multiple agents acting in parallel. Running multiple
instances of our high visual fidelity simulators represents a
heavy load, and we were not able to have more than 8 agents
acting at the same time given our computational resources.
This might well be the reason for the unstability of the
training process.

On the other hand, we left most of the hyperparameter-
space unexplored. In most cases we relied on good hyper-
parameters reported in [34] and [23]. However, our training
task was different, which might already necessitate different
hyperparameters. Furthermore, the reward function and the
neural architecture added several other design decisions,
which should be further tested in order to achieve better
training results.

We demonstrated that a goal directed obstacle avoid-
ance can be learned using RL in a highly realistic virtual
environment. However, it is still yet to be explored how
well these trained policies generalize to real environments.
Incorporating domain adaptation techniques to this training
process to close the domain gap between the simulation and
the domain of intended use is an interesting direction for
future research.
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[39] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast
and accurate deep network learning by exponential linear units (elus).
CoRR, abs/1511.07289, 2015.

[40] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014.



APPENDIX I
RL ALGORITHM

Algorithm 1 A3C with auxiliary training, pseudo-code for each worker thread
Require: Master network parameter vector θmaster, global step counter T

repeat . Training Loop
dθ ← 0 . reset accumulated gradients
θw = θmaster . synchronize worker parameters from master
t = 0
Start new episode . reset environment, spawn agent
Get st and ot . Initial state and auxiliary observations
repeat . Episode Loop

Perform at according to π(at|st; θw) . stochastic action selection
Receive rt, st+1, ot+1 . collecting experiences
t← t+ 1, T ← T + 1

until Terminal st or t > tmax

R =

{
0, for terminal st
V (st, θw), otherwise.

. bootstrapping value for non-terminal states

AGAE = 0
for i ∈ {t− 1, . . . , 0} do . gradient calculations

R← ri + γR . discounted n-step return
δi = R− V (si; θw) . TD error
AGAE ← δi + λAGAE . Generalized Advantage Estimation
dθw ← dθw + ∇θw [log π (ai|si; θw)AGAE ] . policy gradient update
dθw ← dθw + ∇θw

[
δ2i
]

. value function update
dθw ← dθw + ∇θw [π (ai|si; θw) log π (ai|si; θw)] . policy entropy regularization
dθw ← dθw + ∇θw [CE (p (d|st; θw) , ot)] . auxiliary classification update

end for
Perform asynchronous gradient training step on θmaster with dθw using shared ADAM optimizer

until T > Tmax



22



Part III

Preliminary Thesis - Literature
Review

23





Chapter 2

Deep Learning

Deep Learning (DL) is a very promising approach to Machine Learning (ML), popularized
recently after its success at the ImageNet large-scale visual recognition competition [3].
Since then deep learning produced state-of-the-art results in image classification [4], depth
prediction [5], and semantic segmentation [6], just to name a few problems with high di-
mensionality that are relevant for robotics. DL algorithms generally require large training
sets, and the training process is computationally intensive. On the other hand, it requires
less hand-engineering, and the algorithms are applicable for many different problems. The
available computational resources are expected to continue growing, and even specialized
hardware for DL is being developed. At the same time more datasets are becoming pub-
licly available. Since DL directly benefits from the increasing computation resources and
data, these trends are making it a promising approach for future applications.

This chapter provides an overview of the topic of DL, positioning it within the broader
field of Artificial Intelligence research and among other Machine Learning approaches. We
also cover the basics of Artificial Neural Networks with related training and regularization
issues. Finally the most important practical neural network architectures are briefly
described.

2.1 Artificial Intelligence and Machine Learning

Artificial Intelligence (AI) is a field of Computer Science. It is concerned with the study
and creation of intelligent agents, with the aim of creating machines that exhibit intelligent
behaviour. Kurzweil defined AI as “the art of creating machines that perform functions
that require intelligence when performed by people” [7].

A major direction in AI research is the so-called knowledge base approach: its main
focus is to provide machines with a reasoning ability, using logical inference and a database
of hard-coded statements in a formal language. One advantage of this approach over
machine learning can be its data-efficiency: it does not need multiple samples for learning,
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in fact it might learn new concepts by pure logical inference. However, this paradigm has
proven to be difficult to scale up [8].

A different approach to tackle challenging AI problems is Machine Learning. Its main
aim is to enable systems to acquire knowledge by extracting patterns from raw data, in
order to provide them with a capability to tackle problems involving knowledge of the
real world [8]. ML approaches are easier to scale-up, and some algorithms can be reused
in several different domain.

2.2 Artificial Neural Networks

Deep learning is a ML technique which is based on (artificial) Neural Networks (NN). NNs
are a family of general parametric function approximators, consisting of multiple layers of
artificial neurons interconnected with weights (see Fig. 2.1). Neurons in a layer typically
have simple but non-linear activation functions. Every layer transforms the preceding
representation to a more abstract level [9]. Deep Neural Networks with multiple layers
can learn a hierarchy of representations, while the parallel neurons provide distributed
representations within each layer.

...
...

...

...

I1

I2

I3

Ii

H11

H12

H1j

H21

H22

H2k

O1

Ol

Input
layer

Hidden1
layer

Hidden2
layer

Ouput
layer

Figure 2.1: Illustration of a simple feedforward neural network with two hidden layers

Neural networks reflect the connectionist approach to AI and cognitive science that draws
its inspiration from biological brains and the nervous system. In general, connectionist
systems rely on the parallel processing of information with many simple units. This
processing is based on statistical properties, instead of using explicit logical rules and
serial processing, as in classical systems [10].

The non-linear activations of neurons are a crucial property of neural networks. With lin-
ear hidden units, an arbitrarily deep network would be equivalent to a network without
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any hidden units. In this case the operation done by the network is repeated matrix mul-
tiplication, which can be simplified to a single matrix multiplication. Therefore increasing
depth without non-linear activations does not contribute to increasing expressiveness of
the network. On the other hand using non-linear activations prevents this simplification,
and new layers do increase the expressiveness. However, the difficulty of learning the
connections of non-linear hidden units prevented the widespread use of deep networks for
decades, as their optimization is a non-convex problem.

Traditionally logistic sigmoid and tanh activation functions were popular because of their
smooth derivatives. These days most modern deep network use Rectifier Linear Units
(ReLU) [11] as hidden units, which has the activation function g(z) = max{0, z}. ReLUs
are popular because they are well-behaved from an optimization point-of-view [8].

In general, linear models can only learn to represent linear functions. If we consider
a two-way classification task, a linear model can only define a hyperplane in the input
space for separation. Therefore only linearly separable sets can be discriminated by linear
models, which is a serious limitation. On the other hand, linear models are a convenient
choice from an optimization point-of-view: the training is a convex optimization, and in
some cases even closed form solutions can be found.

A solution to learn non-linear functions while keeping the benefits of convex optimization
was to use a non-linear transformation on the inputs. Then a linear model was trained on
this new space. For instance in the classification example this had the potential to make
the sets of training examples linearly separable. The input space transformation can be
a generic nonlinear function, such as Support Vector Machines using the kernel trick [12].
Instead of using a generic nonlinear function, another option is to hand-engineer suitable
non-linear functions for specific applications. This manual feature engineering approach
led to significant results in many domains (e.g. HOG [13] and ORB [14] features for
visual recognition problems), however it required significant domain expertise, and the
developed features are usually applicable for only one specific domain [8].

Alternatively, the input transformation can be learned: this approach is called repre-
sentation learning. Representation learning approaches provide the models with the
capability to learn from raw, unprocessed data by automatically discovering appropriate
representations of the inputs needed to solve the learning task [9]. Although this is a very
generic approach the drawback is that the convexity of the optimization is lost. Deep
Learning is taking this idea further, essentially doing representation learning at multiple
layers, thus learning a whole hierarchy of representations. This hierarchical representation
is more powerful, but its optimization is even more difficult.

2.3 Interpretations of Deep Learning

Deep Learning has demonstrated its learning abilities in highly challenging domains with
high dimensional inputs. As the number of input dimensions is increasing, the possible
different input combinations are growing exponentially. This phenomenon (commonly
referred to as the curse of dimensionality), is making machine learning on such input
spaces difficult, since the available training samples usually cover only a small subset
of the possible input combinations. There are two interpretations on why deep neural
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networks are suitable for learning even from high-dimensional inputs. The first considers
the exponential advantages brought by both the hierarchical structure with several layers,
and by the distributed representations within each the layer. The second view is explaining
the effectiveness of the learning by the capability of exploring low-dimensional manifolds
in the input space, thus reducing the dimensionality of the problem.

2.3.1 Exponential advantages of deep neural architectures

Deep Learning can be interpreted as learning features at different hierarchical levels, thus
creating representations that are expressed in terms of other simpler representations [8].
In this sense, using a deep neural model implicitly encodes a strong prior belief on the
network: the assumption that the goal of the learning can be solved by discovering under-
lying factors of variation. These factors in turn can also be broken down into even smaller
underlying factors of variation recursively, down to the inputs [8]. This composition of
several layers of representation (corresponding to different levels of abstraction) is one
key to the representational power of deep neural models [9], and their capability to learn
complicated concepts.

Another crucial component is the distributed representation of information within layers.
By using parallel units in layers and creating distributed representations, intermediate
representations are shared and reused between many sub-tasks [15]. This can enable deep
neural networks to generalize to new combinations of the learned features not seen in the
training examples (as an example, having n binary features enables 2n combinations [9]).

2.3.2 Manifold Learning

Another view explaining the effectiveness of neural networks learning from extremely high
dimensional inputs (such as images) is given by the manifold hypothesis and manifold
learning. A manifold in mathematics is a connected region, which locally resembles an
Euclidean space. If the probability density of a high dimensional probability distribution
is concentrated around a lower dimensional manifold, then by discovering this manifold
the dimensionality of the distribution can be reduced.

From a mathematical point-of-view, images can be considered vectors from a high-dimen-
sional vector space: the pixel coordinate space. Here the number of the dimensions equals
to the number of pixels, multiplied by the number of image channels [16]. This would
lead to extremely high dimensional problems, if all variations along all dimensions were
independent. However real samples are located in an extremely small volume of this high
dimensional space. An intuitive example proving this is random generation of images by
independently sampling pixels: it is highly unlikely to generate anything close to a real
image.

The manifold hypothesis states that real data samples are only from a low dimensional
manifold which is embedded in a higher dimension space. Therefore a learning algorithm
can efficiently reduce the dimensionality of the problem by discovering manifolds. Deep
generative models such as Variational Auto-Encoders (VAE) and Generative Adversarial
Networks (GAN) show some indirect evidence that deep learning models are capable of
discovering manifolds in the input space [8].
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2.4 Training

Training parametric models is basically an iterative process of finding parameters θ for
a parametric model f(x; θ) in order to reduce an appropriate cost function J(θ). The
dynamics of neural network optimization in general is not well understood yet, and still
an area of active research (e.g. see [17] [18]). Many of the popular methods (e.g. the
momentum method later in this section) are conceptually simple, based on heuristics
and intuition. Some gradient-free optimization method, such as genetic algorithms [19]
or cross-entropy optimization [20] are a viable alternative for training networks with
relatively few parameters. However modern neural networks usually contain parameters
in the order of millions, and evolutionary algorithms with inexact gradient calculation are
generally considered to be less efficient in this regime [21]. Therefore in this section the
focus is on gradient-based optimization, which is the common approach to optimize deep
neural networks.

For any optimization problem it is important to have some metrics of the performance.
Therefore to measure performance a cost function is needed, which is a mapping from
the outputs (and from training targets in supervised settings) to a scalar cost. In most
cases cost function for machine learning applications can be decomposed as a sum of
per-example losses over the training set. Consider a supervised example, where the set of
training inputs x(i) and targets y(i) are drawn from the true data generating distribution
pdata. This training set defines an empirical distribution p̂data. The model that is being
optimized is a neural network, with θ being the vector of its parameters. Let L(x, y; θ)
denote the per-example loss; then the loss function J(θ) is given by: [8].

J(θ) = Ex,y∼p̂dataL(x, y; θ) =
1

m

m∑

i=1

L(x(i), y(i); θ) (2.1)

Note that since the network architecture is kept fixed during the training, the loss is only
dependent on the network parameters.

The backpropagation algorithm [22] is an important part of all practical learning methods
for training large neural networks, which calculates ∇θJ(θ), the gradient of the cost func-
tion with respect to the parameters of the network (θ). It essentially allows information
from the cost function to flow backwards to the weights. Backpropagation is simply the
recursive application of the chain rule for derivatives: the gradient is calculated iteratively
for each weight starting from the output layer, moving backwards in the neural network.

Once the derivatives are calculated, a gradient descent method can take a step in the
direction of the derivative, to iteratively decrease the cost and improve the performance.
However, calculating the exact gradient over the whole training set before taking a single
training step is prohibitively expensive for practical problems where training sets are large.
The commonly used Stochastic Gradient Descent (SGD) algorithm takes an estimate of
the gradient instead, by sampling minibatches randomly from the training set, and taking
gradient steps on each minibatch [23]. The estimated value g of the gradient over a mini-
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batch is given by:

g = E[∇θJ(θ)] =
1

m′
∇θ

m′∑

i=1

L(x(i), y(i); θ) (2.2)

The minibatch size m′ controls the trade-off between the variance of the gradient and the
required calculations. SGD can significantly speed up the convergence of gradient descent
algorithms, as approximate gradients are sufficient for improving the model.

The network weights are then updated by taking a gradient descent step in the (approx-
imate) negative gradient direction:

θ ← θ − εg (2.3)

The learning rate ε in the above equation is a crucial hyperparameter of the learning
process with a significant impact on the convergence of the algorithm. Typically some
form of gradually decreasing scheduling of the learning rate is important for efficient
training. Instead of predetermined scheduling, a number of algorithms have been proposed
to adjust the learning rate adaptively during the training process, separately for each
parameter. For example RMSProp [24] scales the gradients by an exponentially weighed
moving average of past gradients, while Adam [25] calculates an unbiased estimate for
both the first (gradients) and second order (velocity) moments.

A commonly used intuitive method to speed up learning is incorporating a momentum
term in the network update [26]. It can accelerate learning by amplifying small but per-
sistent components of the gradient, which is especially beneficial when the gradient is
noisy, or in the presence of high curvature in some directions [27]. The update incorpo-
rates a velocity term v that incorporates an exponential moving average of the previous
gradients, weighed by the hyperparameter α [8]:

v ← αv − εg (2.4)

θ ← θ + v (2.5)

This update rule can be seen as taking two steps: one in the gradient direction, with
the gradient of the starting point, and another with the momentum accumulated from
previous steps. However if the gradient direction is significantly different at the place after
taking a momentum step, then moving further in the previous gradient direction will lead
to less optimal updates. This issue is addressed by a variation of the momentum method,
the Nesterov momentum [27]. This method first takes a momentum induced step, then
evaluates the gradient at this new location, before taking a gradient descent step with the
new gradient.

v ← αv − εE[∇θJ(θ + αv)] (2.6)

θ ← θ + v (2.7)
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The advantage of this method that the calculated gradient can be more relevant. Note that
the computational requirements are the same for the two algorithms, since the gradient
is only evaluated at one location for both cases.

To conclude our brief overview of neural network training, a further important design
consideration that strongly affects the convergence properties is parameter initialization.
An essential requirement for parameter initialization is ‘symmetry breaking’ between hid-
den units. Units receiving the same input have to be initialized with different weights [8].
Otherwise these units would be updated in a same way, wasting computations and ex-
pressivity, and preventing developing distributed representations. Therefore usually ini-
tializations for weights are chosen from random distributions (typically either uniform
or Gaussian) with zero mean, and the variance is set to provide appropriate activation
and/or gradient variance in the following layer [28]. Biases and other extra parameters
are typically initialized heuristically [8].

Another choice for finding good initial parameters is using pre-trained weights and bi-
ases. The first successful attempts for neural network training relied on greedy layer-wise
unsupervised pre-training [29]. In this approach the network was first trained on the
training set with an unsupervised algorithm, then the learned parameters were used as
an initialization for the main supervised training on the same training set. Since then it
was demonstrated that given enough training data and sufficient computation resources,
random initialization is sufficient. However, initializing with network parameters from su-
pervised training on similar training tasks is still common (see transfer learning in Section
3.1).

2.5 Regularization

Deep models are learned on a training set; however the ultimate goal of learning is to
provide good performance on the test set, and on other unseen examples. This capability
is called generalization. Deep neural networks typically have high model capacity, which
makes them susceptible to overfitting on the training data.

Regularization is a family of methods in machine learning aimed at improving the gener-
alization and preventing overfitting in the learned models. It basically trades off increased
bias for reduced variance [8]. In practice, the best results are achieved when large neural
networks, with huge model capacity are chosen together with the heavy use of regulariza-
tion methods.

A way of regularizing parametric models is to impose penalties on some norms of the
network parameters. The most common form is weight decay, which penalizes the size of
the parameters by an extra term in the cost function, usually measured by the L1 or L2

norm. Weight decay is trying to drive the weights towards zero. Weights which contribute
significantly to the reduction of cost function are less affected, while less important weights
are driven towards zero more aggressively. The most important difference between using
the two norms is that for the L2 norm, the gradient of the weight decay term is dependent
on the weight itself; for L1 it is constant. Therefore the latter has more significant
contribution on weights close to the origin, thus it can result in more sparse solutions [8].
In general, “nets with large weights have more representational power” [30], causing them
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to be more prone to overfitting. Therefore restricting the weights to regions closer to the
origin helps generalization.

Another widespread regularization method is early stopping. It requires a separate vali-
dation set of training examples, on which the model is evaluated periodically. Validation
error typically has a U-shaped curve when plotted for training steps. First, both the
training and validation error decreases, however at some point the model starts to overfit
the training data, and performance on the validation set deteriorates [8]. If the training is
stopped as soon as the error on the validation set starts to increase, overfitting on training
examples can be limited. As stated above, neural networks have greater representational
power with large weights. Since networks are initialized with small weights, during the
training first simpler hypotheses are explored before more complex hypotheses, which are
prone to overfitting [30]. Therefore stopping before the network gets far from the origin
and fits a more complex hypothesis can help generalization. From this point of view, L2

weight decay and early stopping are acting in a similar way. However, the latter has the
advantage that is less sensitive to hyperparameters: the optimal amount of regularization
is automatically discovered by monitoring the validation performance [8]. On the other
hand, early stopping requires setting aside some training data for the validation set.

Learning algorithms can generally benefit from increased number of training examples.
Dataset augmentation artificially generates more examples from existing ones. This can
help the model to be invariant for certain transformations and other factors of variation
that are indecisive for the task to be learned [31]. These methods work particularly well
for image inputs [3], but the amount of transformation applied has to be tuned carefully
(for supervised methods the transformation has to preserve the original labels, i.e. the
transformation should not push examples to other categories).

Injecting noise can also be seen as dataset augmentation. Noise can be injected either at
the input, at the hidden unit activations, or even to output targets. Using noisy training
targets, referred to as label smoothing can account for mislabelled training examples
[8]. Noise applied to hidden units can be seen as augmenting the dataset at different
hierarchical levels [32]. Finally noisy inputs can be used to increase the noise robustness
of the network. In the presence of noisy inputs good performance can only be achieved if
the function is relatively insensitive to variations. This encourages finding local minima
during the optimization, which is surrounded by flat regions [33].

Ensemble methods are based on the practical finding that different models tend to make
different errors; thus by training separated models, the average results can reduce gen-
eralization error. Therefore training an ensemble is a simple way to regularize models,
on the other hand it is computationally rather expensive both at training an test time.
Dropout [34] provides a less expensive way to approximate an exponentially large ensem-
ble of neural networks [8]. At training time, input and hidden units are removed from
the model with a certain probability, thus essentially training all possible sub-networks
jointly. This forces the neurons to learn useful functions in many different contexts, and
restricts the co-adaptation of neurons [34].
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2.6 Neural Network Architectures

The most simple neural network architectures are fully connected, feedforward networks,
also called Multi-Layer Perceptrons (MLP). These are directed acyclic computational
graphs, without any feedback from outputs to neurons of preceding layers. Because of
the dense connections, the number of trainable parameters grow exponentially with the
size of the network. Thus it is difficult to scale them up to large network sizes, or to
accommodate high dimensional inputs (such as images).

Parameter sharing is a common way to efficiently scale up for large network sizes: it
can greatly simplify the learning problem by forcing sets of parameters to be equal [8].
Parameter sharing is typically used when the input exhibit a certain structure or invari-
ance. In this section we describe two popular neural network architectures: Convolutional
Neural Networks, which work on grid-like inputs and share parameters through different
positions; an Recurrent Neural Networks that share the same parameters through time.

2.6.1 Convolutional Neural Networks

Convolutional Neural Networks [35] are a family of neural networks architectures that
are particularly efficient in processing data with a known grid-like structure [8], such as
images or time series. Instead of general matrix multiplication and dense connections
CNNs feature a convolution operation with a kernel. CNNs are directly inspired by
neuroscience, and exhibit a very similar structure and working principles to the V1 visual
cortex in mammal brains.

Convolution in general is a fundamental operation on two real valued functions in signal
processing and analysis; usually the first argument of this operation is referred to as the
input and the second as kernel. In this context however convolution is discrete: the input
is a tensor of data (inputs or hidden activations) and the kernel is a tensor of parameters
adapted by the learning algorithm [8]. Also the kernel flipping is usually omitted from
implementations, and in most cases convolution is done in a parallel manner on multiple
input channels and kernels.

Figure 2.2 illustrates convolution with a single filter. The input image is 7× 7 pixel, and
extended to 9 × 9 with zero padding. Zero padding gives control over the output size,
sometimes it is used to preserve the input dimensions. The receptive field in this case
is 3 × 3 patch of the input image. The distance between subsequent input patches is
defined by the stride, which is 2 in our example. A convolutional filter contains weights
for every pixel in the receptive field, thus it is also 3 × 3. By multiplying every pixel in
the receptive field with its respective weight in the filter and summing up the products,
we get one element of the output map. The outputs are usually fed through an activation
function (e.g. ReLU, not illustrated in the figure). As we see in this example, further
differences between general convolution and the convolution operation used in neural
networks is that it might involve downsampling by using a stride other than 1, and it can
preserve the input dimensions using zero padding.

Two properties make CNNs very efficient for such inputs: local connectivity and shared
weights. Local connectivity is sufficient for understanding an input patch, since in grid-like
inputs local variables are often highly correlated. These correlated regions are “forming



34 Deep Learning

Stride

receptive field

filter (weights)

output (heat map)

zero padding

Figure 2.2: Convolution with a single filter

distinctive local motifs that are easily detected” [9] (such as oriented edges, end-points
or corners in images [36]). Therefore dense connectivity (connecting an output neuron to
all input neurons) is not required in lower layers, and local connectivity greatly reduces
the number of connections and parameters. Furthermore, weights can be shared between
different input patches. This is because the same patterns can appear in various parts
of the input, in other words the local input statistics are invariant to translation [9]. An
object or motif should be detected the same way irrespective its location. Therefore a
detector learned on one part of the input might be useful in other regions as well, thus
justifying weight sharing.

Besides the convolutional layers another common component of CNNs are pooling layers.
Pooling reduces the size of the output layer by summarizing the statistics of nearby
outputs of the preceding layer. This is most commonly done by calculating the average
output (average pooling), or by choosing the maximum output (max-pooling) from a small
neighbourhood of neurons. Besides efficiently reducing the output dimensions, pooling
also provides small-scale translation invariance. [8].

Even though successful applications of CNNs are dating back to the 90’s [36], the wide-
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spread use of CNNs started in 2012, when AlexNet [3] won the ILSVRC challenge by a
huge margin. Since then numerous extensions were developed, and the state-of-the-art has
been pushed further with new improvements being published in a fast pace. The general
trend is that networks are becoming deeper and larger. Just to name a few examples from
recent developments, VGG Net [37] for example increased the number of layers (up to 19)
while keeping the number of parameters relatively low, by using only 3x3 convolutions.
The GoogLeNet [38] went over 100 layers, and introduced the inception module, where the
network can do pooling and convolution with different kernel sizes in parallel. ResNet [4]
proposed using skip connections, to help the backpropagation of gradients in very deep
networks, performing deep residual learning with 152 layers.

2.6.2 Recurrent Neural Networks

Recurrent Neaural Networks (RNN) are computational graphs, which (as opposed to
feedforward networks) contain cycles. The recurrent computations can be unrolled to a
repetitive graph, thus RNNs can be interpreted as models sharing parameters across time.
Their main use is in sequential data processing [8].

The recurrent connection can connect hidden units to other hidden units, or it can connect
previous output to the hidden units. This latter case, output recurrence is significantly
easier to train. While normally the recurrent connections are feeding the network with
its own previous predictions, during training the known correct outputs can be fed back
instead. This method (known as teacher forcing [39]) makes training easier, and and
allows for decoupling training steps, which makes the training more efficient. Teacher
forcing is not applicable in case of hidden unit recurrence, as the correct outputs of
hidden units are normally unknown.

The conventional method of learning in networks with recurrence between hidden units is
Backpropagation Through Time (BPTT), which is simply the application of the general
backpropagation algorithm [22] to the unrolled computational graph. It is however still
very difficult to learn long-term dependencies with BPTT: as the same weight occurs
many times, its effect is exponential. Therefore gradients propagated through many steps
may either vanish or explode [40].

One solution used by Echo State Networks [41] to overcome the exploding/vanishing
gradient problem is setting the hidden-to-hidden weights upfront to values capturing past
inputs sufficiently, and fixing these weights. Thus in these models only the output weights
are learned, which imposes serious limitations on the their expressivity. Another way of
addressing the problems of the gradient backpropagation is adding ‘skip-connections’
(connections with unit weight over multiple time-steps, also referred to as ‘shortcuts’),
or completely removing length-one connections. These solutions effectively decrease the
number of steps for backpropagation, thus mitigating the exploding/vanishing gradient
problem [8].

The most effective RNN models used in practical applications are gated RNNs. Gated
RNNs are using Gated Recurrent Units (GRU). The most popular GRU is Long Short-
Term Memory (LSTM) [42] units. LSTM units have internal recurrence, a self-connection
with weight 1. This self-connection can enforce constant error flow for long durations.
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Gate neurons are used to access the state of the LSTM unit, or to erase or update its
content. The weights governing the use of these gate neurons are learned.



Chapter 3

Domain Adaptation

Ideally machine learning algorithms are trained and tested on the same domain, and the
samples used are coming from a fixed distribution. However in many cases we might wish
a model, which was trained on a source domain to be used in a significantly different
target domain. The shift between training and test distributions is referred to as domain
discrepancy, and this problem is addressed by domain adaptation techniques [43].

The need for domain adaptation usually arises in the case when in some domain the
available training examples are abundant or easy to acquire, while the domain of intended
use has less or no labeled examples available. Using synthetic images to train an agent
for operating in the real environment is a typical case of domain adaptation. The domain
discrepancy between virtual and real domains is often called the reality gap.

Within supervised learning, domain adaptation settings might differ in the availability of
labelled examples from the target domain. In the supervised domain adaptation setting
labels are available for all target domain samples. For the semi-supervised domain adapta-
tion only a subset of target samples are labelled (possibly only for a subset of categories).
Finally, unsupervised domain adaptation is using only unlabelled samples from the target
domain [44]. For an unsupervised learning setting, only unsupervised domain adaptation
methods can be used as both the source and target domain samples are unlabeled (appli-
cability of domain adaptation methods for Reinforcement Learning is discussed in Section
3.4).

The domain adaptation problem can be framed as a regularization problem: the aim is to
prevent overfitting on the source domain, and ensure generalization to the target domain.
A natural question to ask: under what conditions can we expect a model to perform well
on the target domain [45]?

First, if no ideal model is capable of performing well on both the source and target do-
mains, we cannot expect good performance regardless the domain adaptation. If the
underlying function that we are trying to fit with our model (for example a labeling func-
tion in a supervised case) is fundamentally different in the two domains, then knowledge
learned in the source domain is simply not applicable on the target domain. Since domain

37
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adaptation is only used when this contribution to the generalization error is expected to
be small (i.e. the task is similar in the two domains), this problem is not addressed by
domain adaptation methods.

Therefore the main reason why test error on the target domain is normally higher is the
discrepancy between the target and the source domain distributions. Evaluation of the
differences in distributions is therefore a key part of domain adaptation. Determining
whether two sets of observations are coming from the same underlying distribution is
referred to as the two-sample problem in statistics.

In this chapter the main focus is on unsupervised domain adaptation, as one goal of
this research is to enable the transfer of knowledge learned in a virtual domain to the
real world robots. The two other settings are only addressed briefly. Also, some prior
work was only applicable to shallow networks; here we focus on solutions for deep neural
networks instead. Furthermore, we shortly discuss a different research direction, which
sidesteps the domain adaptation problem: domain randomization. Finally, we discuss
some domain adaptation results in the field of Reinforcement Learning, where not only
the input distributions, but the underlying dynamics and Markov processes might differ
(i.e. a domain might not only appear different, but may also behave differently).

3.1 Supervised Domain Adaptation

Supervised domain adaptation is a rather common practice in deep learning. In fact most
deep convolutional networks are trained first on large image datasets (such as ImageNet),
and then finetuned for the specific task. This procedure is called transfer learning, and
normally it does not involve any explicit domain adaptation. In this setting, the first
phase is essentially just providing a very good initialization for training on the target
domain.

The reason why transfer learning is so useful in many cases lies in the fact that features,
which networks are learning can be rather general and applicable for a variety of tasks.
This is especially true in the first few layers in a deep network. A usual phenomenon
in deep convolutional networks trained on real images is that the features learned in the
first layer resemble Gabor-filters and color blobs, regardless of the datasets and training
objectives [46]. This already suggests that transfer learning can be a valid strategy for
domains where available training data is not sufficient for training deep models.

Bengio et al. further investigated the generality vs. specificity of layers in deep net-
works, by studying the effectiveness of transferring (and finetuning) one or more layers in
a convolutional network [46]. In their experiments the authors pre-trained a network on
ImageNet examples from a subset of categories, and reused some layers in another net-
work, which was trained on a different subset of ImageNet categories. The main finding
was that the first layers are rather general, and pre-training those layers on a similar do-
main improves the performance of the network on the target domain. This was due to the
fact that these general layers were able to benefit from the increased amount of training
data. On the other hand, task specificity increases in the final layers, which deteriorates
transferability of those layers. These results justify the common strategy of replacing
only the last layers with new random initialized layers when transferring a network to the
target domain or target task.
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Sometimes parameters of the transferred layers are frozen, and just the new layers are
involved in learning on the target domain. However, another important finding in [46]
was that allowing the transferred layers to learn, can improve performance. This is partly
because this way the transferred layers can still improve on the target domain. Also when
neighbouring new and transferred layers can learn together, they can co-adapt better than
with one layer being frozen [46].

On the other hand, during the initial phase of the training with random top layers, the
network outputs are random and therefore the backpropagated errors are high. This
might lead to unnecessary big changes in the transferred layers, while with converged
top layers only slight changes for co-adaptation would be required. Therefore it is also
a common practice to set different learning rates for the transferred layers and for the
new, random initialized layers. The new layers are therefore more flexible to learn, while
changes in the transferred layers are less significant. Still, transferred layers are able to
adapt to the new layers and to the new task.

3.2 Semi-supervised Domain Adaptation

In semi-supervised domain adaptation labels are available only for a subset of target sam-
ples. Furthermore, target domain labels are not necessarily available for all the categories,
possibly only a subset of categories have labeled samples.

A trivial case of self-supervised adaptation is just using the available labelled target do-
main examples together with the source domain examples in the same training procedure.
The remaining unlabelled target samples are then used with any unsupervised domain
adaptation method.

Tzeng et al. [47] proposed a method for semi-supervised domain adaptation inspired
by network distillation [48], which is a model compression method. Normally supervised
neural network training is using hard, one-hot label vectors (i.e. a training sample is either
100% ‘dog’ or 100% ‘car’). However the network output is typically a softmax probability
distribution over all categories, and normally the probability is not concentrated on a
single class (e.g. the prediction for an image of a dog might be just 80% ‘dog’, and also
some probability is given for other furry, four-legged animals, such as ‘cat’ or ‘bear’). Thus
softmax output distributions of a trained classifier network contain important semantic
information (‘dog’ is closer to ‘cat’ than to ‘car’). Network distillation is making use of
this semantic information. Instead of training on the original hard, one-hot label vectors
of the training set, soft labels are used. These soft labels are softmax output vectors
of a trained larger network (or ensemble of networks). While training on the soft labels
the network is learning about multiple categories simultaneously, utilizing the semantic
relations discovered by a larger network. In an ideal case, this way the performance of
the large network can be achieved with a smaller network and less computations.

Sparsely labeled target examples can be used in a similar way to align semantic structure
across domains. First, the network is trained on the source domain. Then the one-hot
labels of target domain examples are changed to corresponding softmax network outputs,
and these examples are used for training the network further [47]. Compared to simple
transfer learning (i.e. using the available examples with the original hard labels), now
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the network can also learn about categories for which no labelled target examples are
available. This is possible because the semantic relations are assumed to be the same
between categories across domains.

3.3 Unsupervised Domain Adaptation

Unsupervised domain adaptation is concerned with the case when no labels are available
for samples from the target domain. Differences in input distributions lead to differences
in the activation distributions (also called feature distributions) in the hidden layers of
the network. Therefore a common strategy for unsupervised domain adaptation for deep
neural models is matching the source and target feature distributions at some layers of the
network. An example is given in Fig. 3.1, where hidden layer distributions are visualized
for the source and target domain samples, with and without domain adaptation. Here
the source domain is a training set of synthetic numbers, while the target domain is
the Street View House Numbers dataset [49]. Ten distinct clusters can be recognized in
the visualizations, corresponding to the then digits of the decimal numeral system. The
separate feature distributions without domain adaptation are apparent in the figure, while
the adapted neural network produces similar feature distributions on both domains.

Figure 3.1: t-SNE visualization [50] of a CNN hidden layer feature distributions with (b)
and without (a) domain adaptation (source: [44])

As it was stated earlier, matching feature distributions is a central concept of unsupervised
domain adaptation. The common hypothesis of most domain adaptation methods is that if
feature distributions are matched in the network, then good performance can be achieved
on both domains. Feature matching can be done either with explicit transformations of the
distribution statistics, or by including an additional loss term during training. This loss is
usually based on some distribution distance measure, which penalizes differences in feature
distributions. Essentially this loss encourages the network to learn a transformation to an
invariant feature space, where samples from both domains result in similar distributions.

Measuring the distance between the domain distribution is key element of unsupervised
domain adaptation algorithms. In the following section we review some common ap-
proaches: matching correlation distances, methods minimizing the Maximum Mean Dis-
crepancy between feature distributions, and other methods that are using a domain clas-
sifier to measure domain discrepancy.
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3.3.1 Aligning second-order Statistics

A simple and intuitive way of domain adaptation is simply matching feature distributions
by aligning second-order statistics in an unsupervised manner. This can be done with
rather straightforward procedures, therefore these methods are sometimes referred to as
‘frustratingly easy’ domain adaptation methods. One algorithm based on this principle,
Correlation Alignment [51], starts with normalizing the feature distributions for zero
mean and unit standard deviation. Then covariances are matched by first whitening (un-
correlating) the source feature distribution, and then recoloring with the covariance of
the target distribution statistics. Opposite transformation is also possible, matching the
target feature distributions to the source distribution, however the authors found it to be
less effective in practice [51].

3.3.2 Maximum Mean Discrepancy based methods

A commonly used distribution distance metric in machine learning is Maximum Mean
Discrepancy (MMD) [55]. MMD measures the domain discrepancy with a function, which
has different expectations when evaluated on different domains. MMD is the distance
between these mean embeddings. With p and q denoting Borel probability distributions
and for a function class F , which consist of functions mapping sets to real numbers
(f : X → R), MMD is formalized as [55]:

MMD[F , p, q] = sup
f∈F

(
Ex∼p[f(x)]− Ex∼q[f(x)]

)
(3.1)

For two set of samples X and Y , consisting of m and n samples drawn from distributions
p and q respectively, a biased empirical estimate of the MMD can be given by:

MMD[F , X, Y ] ≈ sup
f∈F

(
1

m

m∑

i=1

f(xi)−
1

n

n∑

i=1

f(xi)

)
(3.2)

In practice f(xi) can be simply the activations in a network at a given layer. In other
cases the function f is chosen to be a (positive definite) kernel function, or an optimized
mixture of kernels that maximizes the MMD.

The common neural network training loss can be augmented with an MMD dependent
term. Backpropagating this error can directly force the network to match feature dis-
tributions for target and source domain samples. This matching is improving feature
transferability and thus the performance of the network on the new domain. At the same
time, the other original terms of the loss function are making the representation discrimi-
native (thus useful) for the original learning task. The effect of the MMD dependent loss
term can be controlled by a hyperparameter in practice. Too low MMD loss would not
affect the learned representations. The other extreme, a too strong term might lead to de-
generate representations, forcing representations of different categories too close together.
This may significantly degrade performance on the original learning task [52].

Some approaches directly include an optimization step in the training process, which aims
to maximize the measured MMD by the choice of the function f [53], while other domain
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a)

b)

c)

Figure 3.2: Network architectures for different MMD based domain adaptation methods. a)
Deep Domain Confusion architecture [52], b) Deep Adaptation Network [53], c)
Residual Transfer Network [54]
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adaptation methods simply approximate the MMD directly on hidden representations
of a layer in a neural network. Deep Domain Confusion [52] is an example of the
latter. This method introduced an additional, fully connected layer to the original AlexNet
convolutional architecture (referred to as the ‘adaptation layer’, a normal fully connected
layer where feature distributions are matched); and an associated domain confusion loss.
This loss is based on the MMD calculated on the activations of the adaptation layer.
The network architecture is depicted in Fig. 3.2 a). Note that the same layers are used
on both domains (dashed lines symbolize weight tying). By trying to explicitly reduce
the domain discrepancy in the adaptation layer, the domain confusion loss encourages
learning representations in the adaptation layer that are invariant to the input distribution
change between the domains. Using an adaptation layer leads to two design choices:
choosing the position (depth) and the size (width) of the adaptation layer. In [52] both
are optimized using MMD as metric: the first is chosen by evaluating MMD with different
adaptation layer placements. For determining the optimal size of the adaptation layer,
the authors proposed a grid-search where networks are finetuned with different adaptation
layer dimensions and evaluated based on MMD.

Opposed to Deep Domain Confusion, the Deep Adaptation Network architecture [53]
(in Fig. 3.2 b) is trying to match the representations not just in one, but in multiple
layers. Since in deep neural networks lower layers tend to learn more general features,
while higher layers are more domain and task specific [46], in Deep Adaptation Networks
the domain discrepancy is reduced in these task specific layers independently (on the
figure, MMD loss is calculated at the three final layers). Instead of calculating MMD
directly on activations in a given layer, Deep Adaptation Networks use a multi-kernel
approach for measuring the domain discrepancy, feature distributions are evaluated with
a mixture of kernels. Since the mixture of kernels is influencing the testing power of
MMD, the kernel for evaluation is optimized (in the figure, f∗i stands for the optimal
kernel that maximizes MMD at layer i). Therefore training of the full architecture is an
alternating optimization, with iterated optimization of both the evaluation kernels (for
maximizing MMD) and the network (minimizing MMD).

Inspired by the recent success of residual learning1 [4], Residual Transfer Networks
(Fig. 3.2 c) [54] relax the usual assumption that the classifier function has to be the same
on the two domains. Instead it assumes that the two classifiers (cS and cT ) only differ in
a small perturbation term (∆c). Therefore the source classifier activations are given by
the element-wise sum of the target classifier activations plus a residual function.

cS = cT + ∆c (3.3)

In our example architecture there are two extra layers for the source domain classifier
to learn the residual∆c. This residual function is learned using the supervised examples,
and the target classifier is refined using entropy minimization of the class-conditional
distribution on target domain samples.

1 Residual learning makes use of a deep neural networks containing shortcut (skip) connections. Just
like in RNNs, these skip connections are making error backpropagation simpler, thus allowing training
deeper networks than before.

With a block of ordinary neural layers (F (.)) the goal is to learn a desired mapping (H(x), H(x) ≈
F (x)). The basic building block of a residual network contains one or more layer, and the inputs (x) are
directly ‘feedforwarded’ to the outputs. Thus the mapping learned by the layers is a residual function
(H(x) ≈ x + F (x))
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In Residual Transfer Networks, simultaneous adaptation of multiple layers is done by
fusing the features of multiple layers using tensor products (which is a generalization of
the Kronecker/outer product), and then performing feature adaptation on these fused
features with a single MMD loss (as seen in Fig. 3.2 c) [54]. Again, the evaluation kernel
f can be optimized for MMD.

3.3.3 Domain adversarial training

Another way to assess domain distribution discrepancies is training a domain classifier,
and measuring its performance. If the classification task is easy, then the distributions
are significantly different. On the other hand, for similar distributions the classifier has a
more difficult job, resulting in higher error rates. Therefore the error of a domain classifier
can be used to assess distances between distributions.

Using a classifier in this manner to assess domain discrepancy can outperform methods
based on some form of a metric loss (e.g. MMD). In some cases there might be subtle, but
consistent differences that does not correspond to large metric distances. As an example,
consider images with watermarks: the watermark only changes pixel intensities in a few
pixels. These differences might not correspond to a significant change in a metric space,
still a classifier might be able to spot the pattern and distinguish between images with or
without watermarks.

Domain adversarial training [44] is a domain adaptation methods that jointly trains a
domain classifier together with a base network, in an adversarial manner. The domain
classifier is trying to get better at recognizing the input domains from the activations of a
hidden layer. The base networks is trying to build a representation which is indiscrimina-
tive for the domains, to fool the domain classifier. At the same time the base network also
keeps learning on the main training task. The hypothesis is that if the hidden features
for inputs from the source and target domains are matched, then based on those features
domain discrimination is not possible. Therefore the rest of the network is not affected
by the changes in the input distribution, and the same network can be used on the source
and target domains as well [44]. Thus the ultimate goal of the training is learning a
representation that is discriminative with respect to the original task, but indiscriminative
for the domains.

In this section first we introduce the theory of assessing distribution distances with a clas-
sifier. The idea of domain adversarial training is directly related to Generative Adversarial
Networks [56] (GANs), therefore we review the basic working principles of GANs briefly.
Then we compare the common architectures and training objectives used for Domain
Adversarial training.

H-divergence

The concept of measuring domain discrepancy with a classifier is formalized in [45] by the
notion of H-divergence, which formally assesses domain discrepancy by the separability
of the samples. Let H be a hypothesis class of binary classifiers, then H-divergence is
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defined as:

dH(DS ,DT ) = 2 sup
η∈H

∣∣∣∣Px∼DS [η(x) = 1]− Px∼DT [η(x) = 1]

∣∣∣∣ (3.4)

H-divergence is high, if there exist a binary classifier, which can distinguish between
samples drawn from the source and target distributions, assigning high values either to
the target or source domain samples. Empirical H-divergence can be computed from
finite samples by finding a classifier which attempts to separate samples by sources. For
a symmetric hypothesis class H it is calculated as [45]:

d̂H(S, T ) = 2


1−min

η∈H


 1

m

∑

x:η(x)=0

I[x ∈ S] +
1

n

∑

xη(x)=1

I[x ∈ T ]




 (3.5)

where I[a] is a binary indicator function which is one if a is true, and 0 otherwise. A
way to find η which minimizes the expression in the square bracket is to assign all source
examples with 1 and all target examples with 0 labels. Then a classifier can be trained
on this supervised problem to discriminate between source and target distances. Note
that despite having domain labels, this setting is still unsupervised domain adaptation
(see definitions at the introduction of this chapter).

Generative Adversarial Networks

Generative Adversarial Networks [56] (GANs) are a family of generative models. Gener-
ative models are aiming to learn a data generating probability density function pdata, in
order to generate samples that are similar to training examples coming from pdata. Adver-
sarial training jointly optimizes two networks: a discriminative model D and a generative
model G. D is trained to estimate the probability of an input sample coming from the
training data. At the same time, G is trained to maximize the probability of D making a
mistake by falsely identifying generated samples as samples coming from the training set.
Therefore the two networks are working against each other, and both are getting better
as a result of this joint training.

The joint optimization of the two network is a minimax game with the optimal solution
being at a saddle-point, where the discriminator has a maximum and the generator has
a minimum. The value function of the minimax game is:

min
G

max
D

V (G,D) = Ex∼pdata(x) [log(D(x)] + Ez∼pz(z) [log(1−D(G(z)))] (3.6)

where pz(z) is a distribution that provides random noise input for the generator.

Rather than matching a density function, this concept is used in the domain adaptation
setting to match the hidden representations of a network over the different training do-
mains. Therefore instead of a generator network, a deep representation learning model (a
feature extractor) is trained. It is learning to remove domain dependent variation from
the hidden representation, while keeping other important factors of variation that are
important for the original learning task. This way the network can learn to perform the
same task on both domains ideally at the same level.
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Network Architecture

Figure 3.3: Symmetric (left) and asymmetric (right) network architectures for Domain Ad-
versarial training, with the associated loss functions (classification, domain con-
fusion and GAN losses)

The basic symmetric architecture of domain adversarial training (as seen on the left side
of Fig. 3.3) can be described as a base network and a domain classifier sub-network
that is branched out from an intermediate layer. A domain classifier is trained on this
intermediate representation of the base network. We can divide this architecture into
three sub-networks and corresponding parameter sets:

• a shared feature extractor F (x; θF ) = f that outputs the feature vector f

• the domain discriminator D(F (x; θF ); θD) = d that predicts a domain label d based
on the feature vector f

• and a task-specific network, G(F (x; θF ); θG) = y, which can be either a classifier or
any other regressive model.

Another architecture for domain adversarial training is maintaining separate feature ex-
tractors for both domains [57], Fs(x; θsF ) for the source and Ft(x; θtF ) for the target domain
respectively (as seen on the right side of Fig. 3.3). In this asymmetric domain adaptation
case, the target feature extractor is initialized with the trained source feature extractor.
Then, only FT is trained with domain adversarial loss from the domain classifier; FS is
fixed. The domain classifier D receives either source domain inputs through FS or target
domain inputs through FT . To confuse the domain classifier, FT is trained to match the
feature distribution of FS . Once the domain adversarial training has converged, G can
be used with features from FT on the target domain.

Instead of learning a shared feature extractor (which maps both domains to an identical
feature space), the asymmetrical architecture adapts only the target feature extractor to
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match the source feature distribution. This is generally a more flexible learning paradigm,
as it allows both feature extractors to remain domain specific [57], while the symmetric
architecture trains a universal feature extractor. The asymmetric adaption is also con-
sidered to be an easier task than finding a common feature space, and therefore may
yield better results than using a common feature space that ignores the differences [51].
However, this architecture is less suitable for joint training, as it requires a fully trained
source feature extractor for initialization.

Adversarial Training

In this section we review different formulations of GAN loss functions, which can be used
to train the above introduced network architectures.

The general GAN minimax value function (Eq. 3.6) can be reformulated for the domain
adaptation case:

min
F

max
D

V (F,D) = Ex∼DS [log(D(F (x))] + Ex∼DT [log(1−D(F (x)))] (3.7)

Based on this, the minimax loss functions for the domain classifier and for the feature
extractor can be thus given as:

J (D) = −Ex∼DS [log(D(F (x))]− Ex∼DT [log(1−D(F (x)))] (3.8)

J
(F )
minimax = −J (D) (3.9)

Here the loss function of the feature extractor is exactly the opposite of the loss function
of the domain discriminator.

These equations are used in the reverse gradient domain adaptation method [44]. This
method backpropagates the classifier error, and flips the sign of the gradient at a gradient
reversal layer between the domain classifier and the feature extractor. This way their
objectives are opposite: while the domain discriminator does gradient descent on the
domain classification error, the feature extractor does gradient ascent.

The problem of this approach is that if the domain classifier is able to predict the labels
correctly, then the backpropagated gradient vanishes. This case is typical early on the
training, as at the beginning the domain distances are usually high, which makes classifi-
cation easy. This situation makes it even more difficult for the feature extractor to learn:
on top of the difficult distribution matching task it does not even get proper gradients.

Therefore Eq.3.9, which is explicitly trying to minimize the probability of a good answer
is often replaced with another cost, the GAN loss. This new loss is trying to force the
feature extractor to maximize the probability of a bad answer instead:

J
(F )
GAN = −Ex∼DT [log(D(F (x))] (3.10)
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The advantage of this objective function over the minimax loss formulation is that it has
a high gradient even when the domain discriminator is making perfect predictions. These
equations are suitable objective functions only for a general GAN, or for an asymmetric
domain adaptation architecture, where the feature extractor is not shared.

However, if the feature extractor F is shared for both domains, then both the source and
target feature distributions are changing as the training progresses. This is a significant
difference between symmetric domain adaptation an the general GAN case. For GANs the
pdata distribution that generated the training samples is stationary. As noted by [57], for
symmetric domain adaptation the GAN objective functions might lead to oscillations, as
both feature distributions are changing. Consider the case when JF objective is satisfied,
i.e. the domain classifier is consistently fooled. Then the representations have practically
flipped, an this makes them separable again: the domain classifier only needs to flip the
sign of its prediction for correct classification.

The domain confusion loss [47] is addressing the above mentioned incompatibility of
the GAN loss with the symmetric domain adaptation architecture. Instead of trying to
‘fool’ the classifier, its aim is to ‘confuse’ it. This means that F is now trying to match
the output distribution of the domain classifier with a uniform distribution.

J
(F )
conf = −1

2
Ex∼DS ,DT [log(D(F (x))]− 1

2
Ex∼DS ,DT [log(1−D(F (x)))] (3.11)

Besides a version of the above described different adversarial losses, the feature extractor
F is also trained on the initial task with gradients backpropagated through G. This
ensures that the features are still discriminative for the main learning task, while being
indiscriminative for source domains.

3.4 Domain adaptation for Reinforcement Learning

This section focuses on domain adaptation in reinforcement learning settings. The in-
creased difficulty of domain adaptation in a reinforcement learning setting comes from
the interactive, sequential nature of these problems. Here not only the inputs are chang-
ing, but the underlying physics of the domains might differ as well. For example, the
behaviour of a physical system in the real world and in a simulation might significantly
differ. Unmodeled dynamics and other physical effects might cause different responses,
especially on longer time horizons where even small changes might accumulate.

However, RL would benefit greatly from reliable domain adaptation methods. Recent
successes in deep RL showed the potential of learning highly complex control policies
in virtual environments. Still, given the data intensive nature of these algorithms the
applicability of state-of-the-art deep RL algorithms to real world robotics problems is
limited. With suitable simulators and domain adaptation techniques, RL control policies
for real robots could be trained safely and efficiently in a virtual environment.

Sequential decision making problems can be described by Markov Decision Processes
(MDP). A detailed introduction of MDPs is a topic for the following chapter. Here we
only review how it is different from a supervised learning problem, and what implications
it has from a domain adaptation point-of-view. An MDP can be described as the tuple
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〈S,A,P,R〉, where S and A are the state and action spaces, P is the state transition
probability function, and R is the scalar reward function.

The state space S of the MDP might change with changing domains. If high-dimensional
state spaces (such as pixels of an image) are used, even just changing input distributions
might lead to transfer problems. In case only the distributions are shifting over the same
state space S with changing domains, then the problem is similar to domain adaptation
in Supervised Learning. For this situation most unsupervised domain adaptation meth-
ods described in previous sections are directly applicable to improve performance on the
target domain. In a reinforcement learning setting other components of the underlying
MDP might differ too when transferring the trained model to a new domain. In domain
adaptation usually the task is assumed to be the same in the different domains, therefore
the reward function is usually identical. Also most methods are assuming direct corre-
spondence between RL agents, thus action spaces can also be considered alike. However,
the state transition probability function and the underlying physics of the domains might
significantly differ in domain adaptation.

An example where differences in the state transition probability function P are particu-
larly critical is the simulation to real world transfer scenario. Even though parameters
and properties of the real domain can be measured using system identification methods,
some physical factors are usually not captured even in modern physics simulators, like
non-rigidity, gear backlash, wear-and-tear and fluid dynamics [58]. Small errors due to
under-modeling accumulate, leading to large differences on longer time-frames. Further-
more RL agents can exploit such inaccuracies if those are making the learning task easier.
This may easily lead to policies that cannot perform well on the real physical system [59].

In this section we first review domain adaptation examples where only the input distri-
butions are changing. Then we discuss some results for more complex domain adaptation
problems.

3.4.1 Changing input distributions

If the underlying MDPs are similar across domains and the changes are only in the input
distributions over the state space, then many of the previously described unsupervised
domain adaptation methods (ie. domain adversarial training [44], Deep Adaptation Net-
works [53], etc.) are suitable for domain transfer without any further modification.

In this section some methods are described, which are particularly applicable for domain
adaptation in robotics.

Domain randomization [58] addresses the problem of transferring learned models from
a simulated, synthetic environment to the real world. In other words, its aim is to close
the reality gap between the simulator and the real environment. The main concept behind
domain randomization is rather straightforward: instead of trying to accurately model
the real environment or using domain adaptation techniques, it simply randomizes many
components and parameters of the simulation. The hypothesis is that if the variance of the
simulator is high enough, then the real environment may appear just as another variation
of the simulator. Therefore if the model has good performance on a highly variable
simulation, then the acquired skills can be transferred without any domain adaptation.
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While in principle domain randomization can be used for any component of the reality
gap, recent experiments were focusing only on differences in input image distributions.
Tobin et al. [58] investigated domain randomization for precise object localization, while
Sadeghi and Levine [60] were using this technique to learn indoor obstacle avoidance for
an MAV.

In some sense domain randomization is a way to make the model invariant for certain
factors of variation, like color and textures of objects, or lightning conditions. However
this can be seen as hand-engineering transferability, as all the critical factors of variation
have to be explicitly randomized by the designer of the simulator. This is a serious
disadvantage of this approach. Still, domain randomization can be effective in scenarios
when number of factors to be randomized are limited.

Another approach enhances usual unsupervised distribution alignment with weak pair-
wise constraints [61]. Since generating many synthetic examples with large enough
variation is relatively easy, for some applications it is reasonable to assume that for each
unlabeled examples there exist a matching synthetic image. By finding corresponding
pairs and minimizing the Euclidean distance between corresponding hidden unit activa-
tions in some layers, the network can be forced to treat images with matching labels in
an identical way. Still, this method is mainly applicable for tasks where the variation of
the environment is limited (stationary robotic manipulators for example), to make the
assumption of the existence of corresponding images viable.

The common advantage of the above described methods or any other unsupervised domain
adaptation techniques is that direct transfer of the learned policies is possible, without
the need for further training on the real domain.

3.4.2 Domain adaptation in a general case and transfer learning

Next we consider domain adaptation methods, which can handle more fundamental
changes between the domain MDPs. In this context transfer learning refers to the do-
main adaptation strategy, when a model first trained on a source domain, then transferred
and finetuned on the target domain. In general, transfer learning also refers to training
strategies when a learning agent is exposed to increasingly difficult tasks. The general
hypothesis behind transfer learning is that the source domain knowledge can serve as a
very good prior for further learning. This can greatly help the training, especially when
rewards are so sparse in the new domain, that with random exploration the learning would
probably never take off [62].

Progressive nets [62] are a general framework that enables easy reusing of previously
learned network components for new tasks, by utilizing lateral connections to these previ-
ous models. Training of a progressive network starts with training a deep neural network
on a task. Upon converging on the first task/domain, the parameters of the first net-
work are frozen, and a new network is initialized. In this new network each layer is
receiving inputs from the preceding layer of both the new network, and from the frozen
network through lateral connections. Progressive networks have numerous advantages.
Since previous network parameters are frozen, already acquired skills are not destroyed
by finetuning on a new task. The new network can decide to reuse or ignore previously
learned features/skills. Also there are no limitations on the new networks. The models
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can be heterogeneous, and even different input modalities can be added. Finally, pro-
gressive nets are adding extra capacity to the network, in order to accommodate for the
increasingly difficult of the new tasks. To conclude, progressive networks can handle a
wide variety of transfer learning tasks, and in a domain adaptation settings they are ca-
pable of handling the change in the underlying physics of the domains. On the other
hand with its growing network architecture it might not be the most efficient method for
domain transfer. Domain transfer might render features and skills preserved in the frozen
networks useless on the new domain.

Another interesting transfer learning approach, invariant feature space learning [63]
is considering multi-agent transfer learning, but the method is also applicable for general
domain adaptation. The effectiveness of this method is illustrated by transferring policies
between robotic arms with different morphologies. The only assumption is that the reward
functions share some structural similarity, other than that the components of the MDPs
might be vastly different. The correspondence between the hidden states of the two agent
is found by using proxy skills: easy tasks that both robots are capable of doing. Using
these proxy skills mappings are found from the hidden states of the two agent to a common
feature space. In the common feature space knowledge transfer is possible with matching
optimal policy state trajectories.

3.5 Training with synthetic data

In this section we review some results on how synthetic images are used for neural network
training and the effect they have on the final performance, without any explicit domain
adaptation. Also we compare synthetic samples to real data in terms of learning value,
ease of acquisition and ground truth precision.

For some visual problems, obtaining training sets that are sufficiently large for training is
difficult and expensive. A good example is semantic segmentation, which requires pixel-
level labels. This particular problem became very popular recently, largely due the reliance
of autonomous driving on detailed scene understanding (which semantic segmentation can
provide). Unfortunately collecting datasets for this problem is difficult: labeling a single
image from the CityScapes dataset took 90 minutes on average for a human annotator [64].
Another example is optical flow estimation. Obtaining dense ground truth optical flow
data is difficult, as true per-pixel correspondences are hard to determine [65].

Synthetic data generation provides a viable alternative for obtaining large datasets for
such problems. However, the applicability of synthetic samples are largely dependent
on the fidelity of the data generation process. Modern open-world games often feature
extensive and highly realistic virtual environments [66]. One particular game, Grand
Theft Auto (GTA) V was already used to generate large, synthetic semantic segmenta-
tion datasets by multiple research groups. Richter et al. introduced an efficient semi-
automatic semantic segmentation tool, and investigated the effects of augmenting tradi-
tional hand-labeled datasets with synthetic data (see Fig. 3.4) [66]. They found that
networks trained with synthetic images and just one third of the real CamVid dataset,
outperformed a network trained entirely with real data. Furthermore Johnson-Robertson
et al. demonstrated that networks trained on synthetic data only, without any real images
were able to outperform networks trained entirely on a real dataset [67].
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Figure 3.4: Synthetic image and corresponding semantic segmentation ground truth from
GTA V [66]

It is worth noting, that the number of samples required was roughly two magnitudes
higher. This suggests that the “variation and training value of a single simulation image
is lower than that of a single real image” [67]. The diversity of the real environment is
a clear advantage of the real images. On the other hand generating significantly more
synthetic data is still easier than obtaining real annotated images, as it only requires
computational resources but no human labeling effort.

In problems such as optical flow or depth prediction, providing the ground truth for real
training data either requires extra sensors for data acquisition, or relies on traditional
methods for calculating the ground truth. Even then measurements may contain noise,
and traditional methods are imperfect and may fail in some cases (e.g. image corre-
spondence based methods may break down in featureless regions). When this data used
for training, neural networks are prone to learn the imperfections of the ground truth
prediction, especially if failure in some situation is consistent. Furthermore, this ground
truth is sparse in most cases. Therefore a significant advantage of synthetic training
data generation is that given full access to the simulator, perfect dense ground truth
can be provided for the learning system. As an example state-of-the-art learning based
approaches for optical flow prediction can be mentioned, which are relying on synthetic
datasets for training [68].

To conclude, adding extra synthetic images to a training set can improve performance,
furthermore image generation is a viable alternative data sources in some cases. Even
though their applicability largely depends on the fidelity of the virtual environment, recent
result suggest that modern game graphics is already at a level where generated images
are useful. The inferior training value of synthetic images can be compensated by the
ease of data acquisition.



Chapter 4

Deep Reinforcement Learning

Reinforcement Learning (RL) is a family of machine learning algorithms that are partic-
ularly suitable for learning control policies. Deep Reinforcement Learning is the combi-
nation of RL approaches with Deep Neural Network function approximators. Deep RL
is a very active research field nowadays, and it has already brought major breakthroughs
in AI research. Examples range from mastering the game of Go [69] (which was a long
standing challenge for AI), to learning a wide variety of Atari games [2], and algorithms
that decreased energy consumption in Google Data Servers [70].

This chapter first introduces the general Reinforcement Learning setup, and some conven-
tional RL algorithms that are relevant from a Deep RL point-of-view. Then the problems
of using deep NN function approximators in an RL framework are discussed. Finally,
some recent approaches and algorithms to deep RL are reviewed.

4.1 General Reinforcement Learning

Figure 4.1: Breakout, a popular Atari computer game (source: McLoaf, Wikipedia)

For many interesting problems direct supervision is not available for the learning system,
simply because the correct answer or the optimal action in a particular situation is un-
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known. Nevertheless, assessing the performance might still be possible, with a reward
received from the environment. This information from the environment is an ‘evaluative’
feedback [1], which does not provides information about the alternative decisions, it only
assesses the action taken by the learner. The reward is based on the (sometimes delayed)
outcomes of the actions. Such feedback is typical in problems where the goal is to learn an
effective control policy, or interaction with an environment. A simple illustrative example
for interaction problems is Breakout (see Fig. 4.1), an Atari computer game. Without
prior experiences, the best action for a given situation is unknown. However, the agent
is given feedback from the environment: it is rewarded if the ball hits a brick, and pun-
ished when the ball touches the bottom of the screen. Thus the agent can learn in an
iterative manner to use the paddle to hit the ball and keep it from falling, based on prior
experiences and rewards. Furthermore, with enough experience effective strategies can be
discovered (like eliminating the bricks on one side first and guiding the ball to go behind
the remaining bricks, which is a highly effective strategy in Breakout).

A biologically inspired family of algorithms for such problems is Reinforcement Learning
[71] (RL). The general RL setting (in which an agent is interacting with its environment)
is illustrated in Fig. 4.2. The agent receives rewards rt from the environment and observes
its state st, and tries to optimize its policy to choose actions at in order to maximize the
reward received.

Figure 4.2: General RL setting: the agent-environment interaction in Reinforcement Learn-
ing (source: [71])

Sutton and Barto list three distinctive characteristics of RL settings, which set it apart
from other learning paradigms such as supervised or unsupervised learning [71]:

1. RL is a closed loop problem. The decisions of the agent may change the state of
the environment, and this can influence later inputs the agent receives.

2. No direct instruction or direct supervision is given for the learner. It only receives a
scalar, evaluative reward. The best action/correct answer is unknown, furthermore
no information on the appropriateness of alternatives is given [1]. Therefore the
agent needs to discover the most rewarding actions by repeatedly interacting with
its environment.

3. RL agents receive a sequential feedback [1]. Consequences of actions might not be
immediate; the effects of actions and the resulting rewards are often delayed. This
property brings about the problem of credit assignment.
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The second property places RL somewhere between Supervised and Unsupervised learn-
ing on the spectrum of machine learning paradigms, based on the amount of the available
feedback for the learner. However the other two properties make this setting fundamen-
tally different.

The family of RL methods contain various algorithms. The most significant division is
between policy based algorithms, which directly learn a policy; and value based algorithms,
which learn an optimal value function. Another distinction can be made between on- and
off-policy algorithms. On-policy algorithms are acting in the environment according to the
policy that they are improving. In contrast, off-policy algorithms can learn a policy while
they are acting according to a different, so-called behaviour policy in the environment.
Further explanation of these RL algorithms is given in Section 4.2, but before that Markov
Decision Processes are introduced in the following section.

4.1.1 Markov Decision Processes

A Markov Decision Process (MDP) is a suitable mathematical framework for modelling
the stochastic sequential decision making processes, in which reinforcement learning takes
place. Based on the notation in [72], an MDP can be defined with the tuple 〈S,A,P,R, γ〉.
The components of an MDP in a simple case with discrete, finite state and action spaces
are the following:

• S is a finite set of states (S ∈ S) of the environment, with the Markov property,
which means that the actual state of the system captures all relevant information
from the history. This property can be formulated as follows:

P [St+1|St] = P [St+1|S1, . . . , St] (4.1)

• A is a finite set of actions (a ∈ A), from which the agent can choose.

• P is the state transition probability function, giving the probability of arriving to
a particular state s′, after choosing action a in state s:

Pass′ = P
[
St+1 = s′|St = s,At = a

]
(4.2)

• R is the scalar reward function, it gives the expected reward received by the agent
after performing action a in state s

Ras = E [Rt|St = s,At = a] (4.3)

• γ is a discount factor (γ ∈ [0, 1]), used to differentiate between the importance of
immediate and future rewards, setting the effective horizon of the agent. It is also
useful to ensure the numerical stability of algorithms, preventing infinite sum of
rewards. In a different interpretation, the discount factor reduces the variance of
the value estimates on the cost of introducing a bias to the estimate [73].
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The ultimate goal of an RL agent is to maximize the expected return Gt, which is the
sum of rewards from a certain time-step t onwards. Future rewards are discounted, using
the multiplicative discount factor γ:

Gt = Rt + γRt+1 + · · · =
∞∑

k=0

γkRt+k (4.4)

Based on the definition of return, two value functions can be defined. The state value
function V (s) is the expected return starting from state s:

V (s) = E [Gt|St = s] (4.5)

The so-called Q-function, or action-value function in turn is the expected return when at
state s action a is taken:

Q(s, a) = E [Gt|St = s,At = a] (4.6)

Finally, a policy π, which defines what action is taken in a certain state, can be charac-
terized as a distribution over actions given states:

π(a|s) = P [At = a|St = s] (4.7)

The expected return following a policy π from a given state or from a given state-action
pair is given by V π(s) and Qπ(s, a), respectively.

4.2 Value and policy based RL algorithms

Two distinct approaches to RL are policy and value based methods. The first is trying to
learn an optimal behaviour by directly optimizing its policy. Value based methods, on the
other hand are solving the dual problem instead, which the finding of an optimal value
or action-value function Q∗(a, s). The optimal value function in every state determines
what the optimal action is. Therefore if Q∗(a, s) is found, then the optimal policy is given
by acting greedily according to it (always choosing the action that leads to the highest
expected return).

In practice the effectiveness of these algorithms are largely affected by the nature of
the problem at hand. For some problems, parametrizing and learning an optimal policy
directly is easier; while for other problems the value function might be easier to represent
[71]. Also, value-based methods might experience problems when the states are aliased
and the Markov property does not hold [74].

This section first introduces the Bellman equation and Value based methods, then policy
gradient methods are addressed.
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4.2.1 Value based methods

An important decomposition of the value functions is the Bellman equation, which pro-
vides an intuitive way for learning the value and Q functions. The Bellman equation
is based on the fact that the sum of the return can be decomposed into an immediate
reward, plus the discounted return from the next step:

Gt =
∞∑

k=0

γkRt+k = Rt +
∞∑

k=1

γkRt+k = Rt + γGt+1 (4.8)

Similarly, the value and action-value functions can be decomposed as well: to an imme-
diate reward, plus the value of the next state. In the following the equations are given
for the action-value function, but the formalization is similar for the state value function
as well.

Qπ(s, a) = Eπ [Rt + γQπ(St+1, At+1)|St = s,At = a] (4.9)

This equation allows for an intuitive iterative update for learning value functions, the
Value Iteration algorithm, which (in a tabular setting) is proven to converge to a global
optimum [75]. Given an approximation of the action-value function Qi, once a new reward
is observed, a slightly better approximation can be given.

yQ = Rt+1 + γmax
a′

Qi(s
′, a′) (4.10)

This new approximation can be set as a target for updating the Q function, yielding the
update rule of Q-learning.

Qi+1(s, a) = Qi(s, a) + α




y︷ ︸︸ ︷
Rt+1 + γmax

a′
Qi(s

′, a′)−Qi(s, a)




︸ ︷︷ ︸
TD error

(4.11)

α in the equation above is the learning rate. The term in the square brackets (the
difference between the previous approximation of the Q value and the approximation
that encorporates the observed immediate reward) is called the temporal difference (TD)
error.

SARSA, an on-policy temporal difference method is not using the max operator for se-
lecting the action, but evaluates the Q value following the actual policy [76]. The name
refers to the observations that are required for calculating updates: starting state, action,
observed reward (s, a, r); and also the new state s′ and the action a′, taken in that state.

ySARSA = Rt + γQπi (s′, a′) (4.12)

This method provides more accurate value predictions during the exploratory exploratory
period of the training, while it converges to the standard Q-learning updates as exploration
ceases.
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4.2.2 Policy Gradient Reinforcement Learning Methods

Policy Gradient methods solve RL problems by directly improving the policy, calculating
the gradient of an objective function with respect to the policy parameters. Compared
to value-based algorithms, these methods enjoy better theoretical convergence properties,
and are able to learn stochastic policies as well (which is the only way to act optimally
in some tasks, think of the game ‘Rock-Paper-Scissors’ as an example) [72]. Another
important advantage of policy based methods is that they handle continuous action spaces
better than value based methods. Value based action selection includes a max operation
on the possible actions. This calculation might get intractable in case of many actions,
or on continuous action spaces.

Even thought policies can be learned using gradient-free optimization methods (such as
Evolutionary Algorithms), those methods are less suitable for learning policies with a high
number of parameters. This makes them impractical for training policies represented by
deep neural networks, therefore the focus of this sub-section is on gradient-based methods.

Numerical policy gradient calculation

A conceptually simple method of calculating the policy gradient is simply calculating the
gradient numerically with finite differences, by perturbing every parameter of the policy.
This method is applicable for a wide variety of policies (even to non-differentiable func-
tions, or to arbitrary policy representations). However, separate evaluations are required
for every parameter of the policy. As usually there are costs associated with evaluations
in the environment, this method is impractical for learning models with a high number
of parameters, such as deep neural networks.

Analytical policy gradient calculation

An alternative is calculating the policy gradient analytically. The policy gradient theorem
gives the gradient of the objective function J(θ) with respect to the policy parameters
[77]. Here, the policy is represented with a parametric probability distribution πθ(a|s) =
P[a|s; θ], which select actions stochastically based on both the state and the parameter
vector θ [78]. The gradient is calculated as the expected gradient of the log of the policy,
multiplied by the action-value of the action selected by the policy:

∇θJ(θ) = E [∇θ lnπθ(s, a)Qπθ(s, a)] (4.13)

In the above equation, log πθ(s, a) is the score function of the policy. Its gradient is
showing the direction of parameter change that can increase the log-likelihood of choosing
a certain action. Intuitively by multiplying this term with the Q value, the calculated
policy gradient will be bigger in the direction of actions with higher Q values. Therefore
this update makes choosing more rewarding actions more probable.

However, the availability of the Q values is not trivial. The REINFORCE algorithm is
simply using unbiased Monte-Carlo estimates of Q, essentially by evaluating a full episode
and summing the experienced rewards [79]. This gives a high variance estimate, while
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also being rather sample-inefficient. Actor-Critic algorithms [71] lower the variance and
increase sample-efficiency by employing two different function approximators. The actor
is parametrizing the policy, while the critic is parametrizing the Q function. The critic can
be trained with temporal difference methods, just like algorithms in the previous section.
The Q estimate of the critic is then used in Eq. 4.13 to scale the gradient updates of the
actor.

A common way to further reduce variance of the policy gradient updates is by subtracting
a state-dependent baseline value from the Q function [71]. The most appropriate choice of
this baseline is the value function V (s). As discussed earlier, V (s) is the expected reward
from a particular state, while Q(s, a) is the expected future reward from a state choosing
a particular action. By subtracting V (s) from Q(s, a) we get a measure of how action a
compares to other possible actions at that state. The resulting function A(s, a) is called
the Advantage Function. Intuitively, by using A we are trying to increase the probability
of actions that are better than the action chosen by the actual policy, and decrease those
that are worse [73]. One option for calculating A is separately learning both Q and V .
However, it can be shown that an unbiased estimate of A can be given by the TD error,
which can be used directly to learn A [72].

Deterministic Policy Gradient

Stochastic policies were long favoured, because of their smoothness and differentiability,
which made gradient calculation with the policy gradient theorem straightforward. At
the same time gradient for deterministic policies were considered non-existent, or com-
putable only using a model of the environment [78]. However, Silver et al. showed that
gradient calculation of a deterministic policy (a = µθ(s) ) is indeed possible [78]. With
a deterministic policy, the policy gradient can be decomposed into two terms using the
chain rule. The first term is the gradient of the critic with respect to the action, and the
second part is the gradient of the actor, with respect to its parameters. This gives the
Deterministic Policy Gradient (DPG) update rule:

∇θJ(µθ) = E [∇θQµ(s, a)] = E
[
∇θµθ∇aQµ(s, a)|a=µθ(s)

]
(4.14)

A disadvantage of a deterministic policy is that it does not provide sufficient exploration
of the state-space in itself. Therefore it is required to learn off-policy, using a stochastic
behaviour policy to collect the experiences that ensures sufficient exploration.

4.3 Deep Reinforcement Learning

Reinforcement Learning methods traditionally relied on tabular representations of the
value functions or policies. However scaling up tabular approaches is difficult, as these
representations are susceptible for the curse of dimensionality. Also, every state in this
look-up table has to be visited by the agent, since no generalization is made between
neighbouring states. A way to overcome these difficulties is to use function approxima-
tion. Function approximation not only provides an efficient way to keep the information
otherwise stored in large look-up tables; it also allows for generalization to neighbouring



60 Deep Reinforcement Learning

states. Under function approximation, the value functions are parametrized with a set of
weights θ:

Q̂(s, a; θ) ≈ Q(s, a) (4.15)

Linear function approximators were proven to be useful in some cases, either working
directly on the inputs, or on some features of the inputs. However in general, linear
functions of the inputs are less expressive than non-linear models. Even though this can
be compensated using a linear model on top of non-linear features of the raw observations,
finding and hardcoding these features still required expertise and significant knowledge of
the domain. On the other hand, for a long time RL algorithms were considered unstable
when used with non-linear function approximation (see the next section).

As described in the previous chapters, deep neural networks are exceptionally good func-
tion approximators, and recent advances in deep learning made it possible to train these
networks efficiently. Deep reinforcement learning is utilizing deep neural networks as func-
tion approximators; either for parametrizing the policy, or in case of value based methods,
the state value or Q functions. This holds the key to enable learning directly from high
dimensional sensory input, such as images.

4.3.1 Difficulties of using Deep Neural Networks in RL

Some properties of RL prevented successful training of neural networks, and more gener-
ally the use of non-linear function approximators in an RL framework:

• Given the global function approximator nature of neural networks (as opposed to
local function approximators, such as Radial Basis Function Networks), a weight
change that can improve the network’s performance for a particular state-action
pair, might deteriorate the performance in other regions of the state-action space,
possibly destroying knowledge and skills learned already [80]. This makes Deep RL
training more difficult than traditional RL algorithms.

• Usually general supervised and unsupervised deep learning algorithms need ‘iden-
tical and independently distributed’ training data for learning. This criteria is not
met for experiences an agent receives during RL training. Usually subsequent states
are similar: there are both temporal and spatial correlations between states. This
can destabilize the training, or even make it diverge [2].

• TD methods face another destabilization factor: the function to be approximated
is also used to set the targets for its own updates (see Eq. 4.10), i.e. the target
is also dependent on the network weights. This is a major difference compared to
supervised deep learning, where targets are fixed before the training [2].

• Furthermore for value based methods, even small changes in the Q function can
lead to significant changes in the policy, and in the resulting data distribution [2].
This property also sets Deep RL apart from other deep learning problems, where
the training data distribution is independent from the predictions of the learner.
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4.3.2 Deep RL Algorithms

In the following we introduce some recent deep RL algorithms and see how they address
the above mentioned challenges.

Neural Fitted Q-iteration

The Neural Fitted Q-Iteration (NFQ) algorithm addressed the first two problems based
on the principle of storing and reusing experiences [80], with a common RL technique
called Experience Replay. The main idea is minimizing the negative influence of a new
update by offering previous knowledge explicitly. Therefore the gradients for an update
are calculated based on all the previous experiences, retrieved from an experience replay
memory. These batch updates can mitigate the negative global effects of the updates,
and also solve the problem of the correlated observations, associated with online updates.

The loss function of the network at iteration i is the squared TD error. The expectation
is calculated on the whole replay memory D:

Li(θi) = Es,a,r,s′∼D

[(
r + γmax

a′
Q(s′, a′; θi)−Q(s, a; θi)

)2
]

(4.16)

The shortcoming of NFQ is that the batch updates it uses have per-iteration computa-
tional costs, proportional to the size of the replay memory. This makes it inefficient for
training large networks.

Deep-Q Networks

Deep Q-Networks (DQN) address the batch update problem of NFQ by using SGD, with
mini-batches of experiences sampled from the replay memory [2]. The experience memory
is a ‘First-In-First-Out’ memory typically storing the last 105−106 experiences. Just like
SGD made training deep neural networks more feasible in general, in this particular case
SGD also manages to keep the benefits of the full-batch updates of NFQ while preventing
the linear increase of computational costs with the increased number of stored experiences.

Another key contribution of DQN is the use of a ‘target network’, which provides fixed
targets for the Q-learning updates. This helps with the problem of the correlated targets of
the network updates (i.e. the network is used to set its own targets for updates, see Section
4.3.1). The target network is a copy of the Q-network, which is updated periodically, but
kept fixed within updates. By fixing the targets the optimization process becomes more
similar to supervised learning.

These modifications in practice are usually sufficient for training deep-RL agents, even
from high dimensional image-stream inputs. However, it is worth noting that RL training
under non-linear function approximation is still not guaranteed to converge, unlike the
tabular methods for which theoretical guarantees exist. In practice, DQN demonstrated
learning a wide variety of Atari games with fixed hyperparameters, reaching human per-
formance on some games [2].



62 Deep Reinforcement Learning

The DQN loss function is calculated on a mini-batch of experiences sampled from the
experience memory D, using the target network weights θ− as follows:

Li(θi) = Es,a,r,s′∼U(D)

[(
r + γmax

a′
Q(s′, a′; θ−)−Q(s, a; θi)

)2
]

(4.17)

To calculate updates for the network, the squared error loss has to be differentiated with
respect to the network parameters θi.

∇Li(θi) = Es,a,r,s′
[(
r + γmax

a′
Q(s′, a′; θ−)−Q(s, a; θi)

)
∇θiQ(s, a; θi)

]
(4.18)

Note that with fixed target network weights, the targets are not dependent on the actual
network weights, which turns the training to a well-defined optimization problem [2].

In Atari games, which are often used as benchmarks for Deep RL algorithms, not all
states of the environment is observable in single images (e.g. velocity of obstacles, or
flickering objects). The original DQN architecture made these game observable by stack-
ing four frames together [2]. An alternative architecture, Deep Recurrent Q-Networks
(DRQN) is solving partial observability by using a recurrent LSTM layer as the first
post-convolutional fully-connected layer with [81]. The recurrent layer allows integration
of information over multiple timesteps, thus making the games observable.

Deep Deterministic Policy Gradient

The ideas that made DQN training stable (experience replay + target network) were
used in the Deep Deterministic Policy Gradient (DDPG) algorithm, to train Deep RL
policies with continuous action spaces effectively [82]. In this approach both the actor
and the critic are deep neural networks, and target networks were utilized for both. Since
DDPG (and the original DPG) is an off-policy method, experience replay can be used to
provide uncorrelated mini-batches of samples for the network updates. Capabilities of the
algorithm were demonstrated on simulated robotic grasping tasks amongst others, and
the algorithm was able to learn effective policies using image inputs [82].

Trust Region Policy Optimization

Trust Region Policy Optimization (TRPO) algorithm [83] is a policy gradient method,
in which the size of the gradient step is carefully calculated. As noted by the authors,
step sizes are of crucial importance for the success of training RL agents. In a supervised
setting it is less of a problem: if a too large step is taken, subsequent gradient steps can
make corrections and guide the optimization back. In contrast, changing the policy of an
RL agent influences the visited state distribution, and subsequent experiences collected
under the deteriorated policy might not be able able to correct the erroneous step. That
is why it is difficult in Deep RL to obtain stable and steady improvements. Therefore
the TRPO algorithm constrains the step size based on the KL divergence of the old and
new policies (measured on the policy parameters), thus providing updates that result in
monotonic improvements of the policy.



4.3 Deep Reinforcement Learning 63

Asynchronous Deep RL

All the previously introduced methods used experience replay (either replaying the whole
memory or a mini-batch of experiences) to get uncorrelated samples. An alternative
source of uncorrelated updates can be the experience collected from multiple agents on-
line; this is the basic idea behind Asynchronous Methods for Deep RL [84]. In this case
multiple agents are acting simultaneously, each in its own instance of the environment.
They are experiencing a variety of different states simultaneously, likely exploring different
parts of the state-space. The agents are providing these uncorrelated experiences, and the
gradient updates calculated on these, to a shared neural network. Asynchronous methods
can train deep neural networks with a wide range of existing RL algorithms. Previous
methods relied on experience replay for uncorrelating the samples; this made using on-
policy methods problematic, since experiences stored in the memory were sampled under
previous policies. By sidestepping the need for experience replay, asynchronous methods
allow training with on-policy algorithms as well. Also the multi-agent setting allows for
larger flexibility (e.g. different agents may utilize different exploration strategies as an
example).

Mnih et al. experimented with a number of different RL algorithms in the asynchronous
Deep RL setting, namely the off-policy 1-step and n-step Q-learning, and the off-policy
Sarsa and actor-critic methods [84]. Their most successful algorithm was the Asyn-
chronous Advantage Actor-Critic (A3C) algorithm, which is a regular actor-critic algo-
rithm, trained asynchronously. It maintains an actor and a critic network, and uses a
a baseline to reduce the variance of the updates. Compared to DQN, A3C was able to
surpass the previous state-of-the-art in half the training time [84].
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Chapter 5

Auxiliary Training

As we discussed in 2, one reason for the effectiveness of Deep Learning models lies in the
fact that they are trained in an end-to-end fashion: these models are able to learn feature
extractors on different hierarchical levels, starting from raw inputs. This way the network
training is aiming to optimize the hidden representation for the given task at each layers.
However, learning all the parameters for each layer makes the training of these models
a rather data-intensive process, so the performance of Deep Learning models in general
relies heavily on the amount of available training data.

This problem is maybe even more pronounced in a Deep Reinforcement Learning setting.
Here, the only training signal is a scalar reward, which is sometimes even sparse and
delayed. Consider a DQN agent learning an Atari game from visual inputs: the agent
literally needs to ‘learn to see’ (i.e. optimize parameters for a convolutional encoder
network) using only the scalar reward signal from the environment. This is an important
cause behind the high sample complexity and excessive training time of RL agents.

Auxiliary training is addressing the above mentioned problems by augmenting the learning
with auxiliary tasks. This method incorporates additional supervised, unsupervised or RL
losses in the training process, and also allows for leveraging multimodal sensory inputs [85]
[86]. Besides drastically reducing training times, auxiliary training has also demonstrated
finding superior final policies.

This chapter first covers some relevant concepts in Section 5.1 from the supervised deep
learning literature. Then some recent research are reviewed, where auxiliary training
was used to aid RL training (e.g. the NAV agent in Section 5.2.2 which uses supervised
auxiliary tasks, or the UNREAL agent in Section 5.2.3 that makes use of unsupervised
training). Finally in Section 5.3 we investigate different possible auxiliary tasks, for
which successful deep learning has been demonstrated and which are relevant for learning
obstacle avoidance and navigation capabilities for MAVs.

65
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5.1 The auxiliary training in supervised training

In this section the focus is on how supervised training methods were demonstrated to
benefit either from extra supervised or unsupervised training.

5.1.1 Multi-Task Learning

The idea of introducing new tasks to improve the training process of a neural network
dates back to the early ’90s. Suddarth and Kergosien referred to these additional tasks
as ‘hints’ [87]. A hint can generally help the training when the capacity is sufficient to
learn both functions simultaneously, and both the hint and the original function share
some underlying rule. The authors demonstrated how a hint can both reduce training
time and eliminate pathological local minima in the example of learning XOR function
with an OR function hint. Using hints was compared to chemical catalysis in a sense that
both can deform the potentials temporarily, in order to arrive to a better minimum with
lower potential. Also, using hints is an effective way to provide prior knowledge about
the task or the domain for the learning system.

Caruna extended hints and introduced the term of Multi-Task Learning (MTL) for super-
vised settings [88]. MTL is improving training by making use of the domain information
contained in the training signals of other related tasks. The information is shared be-
tween tasks by using a shared representation. The underlying prior belief in MTL is that
“among the factors that explain variations observed in the data associated with different
tasks, some are shared across more tasks” [8]. If this prior is correct, the networks can
benefit from the increased amount of training data and extra supervision, which leads to
increased performance on the individual tasks and better generalization.

5.1.2 Aiding supervised learning with unsupervised learning

Before the success of AlexNet [3] on the ILSVRC comptetition in 2012, the common
approach for training deep neural networks was combining supervised learning on the
main classification task with unsupervised learning from the input images. Unsupervised
learning was used for pre-training the networks, to help learning useful representations
in the deeper layers. AlexNet demonstrated that large capacity networks with sufficient
training data can be trained by using supervised learning exclusively, without any pre-
training. These results showed that pre-training is not essential for training deep neural
architectures. Alleviating the requirement of compatibility with unsupervised pre-training
allowed for a various novel architectural choices [89]. This focused further research more
towards novel network architectures in recent years, such as GoogLeNet [38], VGGnet [37]
and more recently ResNet [4].

However the idea of using unsupervised learning to improve supervised learning (even
in novel architectures) came up again recently. An approach for this is augmenting the
supervised neural network with “decoding pathways for reconstruction” [89]. A decoding
pathway in practice is an auto-encoder [8]. The general architecture of an auto-encoder
(see Fig. 5.1) consists of an encoder and a decoder sub-network. The encoder network
transforms the input to a hidden code, and the decoder is trying to reconstruct the
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Figure 5.1: Schematic picture of an autoencoder architecture (source: Wikipedia, Chervin-
skii - CC BY-SA 4.0)

input from this hidden code. Usually the decoder architecture is just a mirrored copy of
the encoder (convolutional layers are paired with deconvolution for example). In an auto-
encoder the hidden code has low capacity, or some other form of restriction is present. This
forces the auto-encoder to learn efficient representations and to prevent trivial copying of
the input.

In the context of augmenting a supervised network, the auto-encoder is attached to an
intermediate representation of the original supervised architecture, and trained to recon-
struct the inputs based on the hidden activations. One possible architecture for this is
depicted in Fig. 5.2. Here a deep neural network is augmented with an auto-encoder.
The first three convolutional layers are shared: at one hand they are part of the original
supervised network, on the other hand they form the encoder layers of the auto-encoder.
The hidden representation after the third convolution is connected to the decoder layers
of the auto-encoder, which is trained to reconstruct the original image using repeated
deconvolution operations. These layers are trained with reconstruction loss(es) in an un-
supervised manner. The reconstruction loss can be calculated between the original and
reconstructed image (Reconstruction Loss 1), and optionally also between hidden repre-
sentations (Reconstruction Loss 2 and 3). The fully-connected upper layers are trained
with some form of a supervised loss (classification loss in this example).

The shared part of the network is trained with backpropagated errors from both pathways.
This way these layers can benefit from both the supervised and the unsupervised training.
In practice, the auto-encoder training is trying to maximize the information contained in
an intermediate representation of the original supervised network (which is the bottleneck
for the autoencoder). This optimized representation can help the network learning on
the main supervised task as well. Zhang et al. reported noticeable improvement on the
classification test performance of a VGGNet, trained on ImageNet dataset by augmenting
the supervised training process with unsupervised objectives using auto-encoders [89].
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Figure 5.2: A deep neural network augmented with an autoencoder. Yellow arrows indicate
the general direction of forward propagation.

5.2 Auxiliary training for RL

Auxiliary training in Reinforcement Learning is rather similar to the above described
concepts of additional training in a supervised setting. Here again an intermediate-level
representation and inputs are shared between different learning tasks, while some task
specific layers remain independent. The main goal is to improve the training progress
and the final performance of an RL agent. There are no restrictions on the nature of the
auxiliary tasks: they can be supervised, unsupervised and RL tasks as well. The main RL
training can benefit from the shared representation, which is trained lot faster and may
learn more useful features using all training signals simultaneously. A general network
architecture for auxiliary training is illustrated in Fig. 5.3.

A common, but sometimes overlooked example of shared representation in RL is the
usual practical implementation of actor-critic architectures with function approximation.
While parameters of the actor and the critic are normally shown being independent for
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generality, in practice usually some of the parameters are shared. As an example, in
an A3C agent all non-output layers are shared [84]. On top of the shared convolutional
feature extractor there is a linear output for the value function, and a softmax output for
the policy (for discrete action spaces).

Figure 5.3: Architecture with shared and task specific sub-networks. Black arrows indicate
the flow of the information during forward propagation, yellow arrows during
backpropagation.

5.2.1 RL agent for FPS playing

Figure 5.4: Network architecture of the augmented DRQN agent used in [90]

An early attempt to use auxiliary training in RL was made in the context of learning
to play in a death-match scenario in an FPS game environment [90]. In this work a
Deep Recurrent Q-Network (DRQN) agent [81] is trained on the main task, with the
auxiliary task being enemy detection on the input frames. Fig. 5.4 illustrates the network
architecture. The convolutional feature extractor of the DRQN agent is shared between
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the two tasks, and the detector has a separate fully connected hidden layer. Compared
to the DRQN baseline, the agent is able to learn more effective policies in less time.

The authors also compared the performance to another architecture, which featured a
completely separated detector network for enemy prediction. In this setting, the output
of this separate network is used as an additional input for the DRQN network. If the
sole use of the auxiliary training were to provide the agent with information whether an
enemy is present, then the performance would not be significantly affected. However, the
performance of this architecture dropped down roughly to the level of the base DRQN
agent without any enemy information. This experiment showed that learning a shared
representation has additional benefits, compared to simply providing information about
the presence of enemies [90]. This result suggests that auxiliary training can be used to
provide extra domain information and supervision for the agent, focusing the learning
efforts on the important aspects of the learning task.

5.2.2 NAV agent

Mirowski et al. investigated the problem of learning navigation abilities in 3D maze envi-
ronments using RL [85]. Learning this problem from visual inputs is highly challenging:
rewards are often distributed sparsely in the environment, and effective navigation in un-
known environments requires exploration and the use of a rapid, one-shot memory. For
dealing with these complexities the authors introduced the NAV agent.

Network Architecture

The NAV agent (see Fig. 5.5) is an extension of the A3C LSTM agent [84] . Here,
on top of a convolutional encoder two LSTM layers are stacked, from which a linear
output gives Value function prediction, and an n-way softmax layer outputs the action
distribution of the policy. On top of the input image, three extra inputs are used: the
most recent reward rt−1, the agent-relative velocity vector vt and the last selected action
at−1. With the first LSTM layer being fed with the observed reward and encoded image
the authors hypothesize this layer might be able to make associations between rewards
and visual inputs and provide this as a context for the second LSTM layer. That layer also
receives the encoded image, as well as the other two extra observations in order to build
an information rich representation for the value and policy predictions. In training time,
this architecture is extended with additional sub-networks, in order to accommodate for
the auxiliary training signals.

Auxiliary tasks

Two auxiliary tasks were proposed for the NAV agent: depth prediction and loop closure
prediction.

Learning to predict depth from image inputs might help the agent, to learn about the
underlying 3D structure of the environment. This knowledge can improve obstacle avoid-
ance and short term trajectory planning capabilities [85]. Ground truth depth images
are provided by the simulator. The authors experimented with different formulations of
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Figure 5.5: Architecture of the NAV agent

the depth prediction task (casting it either as a regression or as a classification prob-
lem), and investigated two different architectures for integration (predicting depth after
the convolutional layers or from the second LSTM layer output). In order to keep the
computational costs of this auxiliary task minimal, the predicted depth image has low
resolution (4x16 px), and covers only the most relevant central section of the input image.

Loop closure prediction is trying to encourage the agent to integrate its displacements,
thus keeping track of its position. This capability is useful both for efficient exploration
and spatial reasoning [85]. Loop closure prediction is a binary classification task (the
actual position has either been visited previously, or not), with the ground truth labels
labels available from the simulator.

Experimental results

The main findings from the different auxiliary loss combinations were the following:
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• Agents with auxiliary depth training outperformed A3C agents, even when A3C
agents were given perfect depth information. Therefore in this context depth in-
formation is more useful for auxiliary training than as an extra input. This result
shows the benefits of the better representation built using auxiliary training over
extra information (in line with the results from [90] in Section 5.2.1).

• Auxiliary depth classification gave better results than depth regression, even though
a regression loss contains more precise information. A reason for this might be
that for the main task less precision is sufficient. However, another important
consideration is that auxiliary tasks have to converge significantly faster than the
main RL task, to allow the main task to benefit from the representations built by
the auxiliary task. Therefore it is beneficial to keep the auxiliary tasks relatively
simple.

• Depth2 auxiliary training (prediction from the second LSTM layer) performs better
than Depth1. The reason for this can be that Depth2 provides auxiliary training
for the LSTM layers too, while Depth1 influences the convolutional layers only.

5.2.3 UNREAL agent

The previously introduced auxiliary training tasks relied on extra supervision from the
environment, and also the the auxiliary losses were task-specific. A recent work by Jader-
berg et al. focuses on more general auxiliary tasks, which are applicable for a wide variety
of RL problems and do not rely on extra supervision from the environment [86]. They refer
to these as unsupervised auxiliary tasks, and introduce the UNsupervised REinfiorcement
and Auxiliary Learning (UNREAL) agent.

Unsupervised learning is traditionally used for learning useful visual representations, typ-
ically by reconstructing the input image (e.g. with an auto-encoder), or by predicting
the next frame. However in this work the authors focused on learning objectives that
are trying to ‘predict and control features of the sensorimotor stream’ instead, as these
objectives might lead to more useful representations on the main task [86]. Two differ-
ent types of unsupervised auxiliary rewards were proposed: auxiliary control tasks and
auxiliary reward tasks.

Auxiliary control tasks

Auxiliary control tasks make use of different pseudo-rewards, by learning optimal policies
and value functions to maximize these pseudo-rewards.

The authors introduced pixel control as an auxiliary control task. In pixel control, the
agent is rewarded for changing the pixel intensities in a region of the input image. This
reward is available for the agent without any extra information from the environment.
This control task encourages the agent to learn how it can influence the perceptual stream
it receives, which can help the agent learning how to control its environment. As an
example example, consider a situated agent in an 3D environment with egocentric visual
inputs: if the pixel intensity difference is high between the controlled part of the input
and the segment right to it, then the agent can maximize intensity change by turning
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right. In general, knowing how to control the environment can be a useful capability for
a wide variety of tasks. Therefore this auxiliary task is generally applicable for RL agents
using visual inputs.

The authors also proposed feature control as an auxiliary control task, where the pseudo-
rewards are the hidden activations of a higher layer. This auxiliary task is justified based
on the observation that the value and policy networks can learn to extract task-relevant
high level features. Therefore learning ‘how to get more’ of a certain feature might be a
suitable auxiliary task. However, the effects of this auxiliary task were not investigated
in [86].

An important property of off-policy auxiliary training tasks, that for off-policy learning it
is sufficient to simply collect experiences using the policy of the main RL task. Off-policy
learning enables learning optimal policies for auxiliary control tasks without ever using
those policies for acting in the environment.

Auxiliary reward tasks

A key for learning a successful RL policy is that the agent needs to develop features,
which can recognize rewarding states. However in case of sparsely distributed rewards
it takes a long time to observe enough rewarding experiences for learning these features.
Therefore the aim of auxiliary reward tasks it to focus the observations of the agent on
these sparse extrinsic rewards.

The well-known experience replay technique (which was used in DQN [2] to stabilize
training and to increase data efficiency) can be used in this context as an auxiliary reward
task: value function replay can provide further off-policy training for the critic of the on-
policy A3C agent.

Another auxiliary reward task is reward prediction: predicting the reward in the next
time-step given some prior inputs. Reward prediction is practically a simpler version of
value prediction from a temporal aspect. In the future direction it only considers the
immediate reward in the next time step, not the sum of future rewards as value functions
do. In the past direction only the three most recent predecessor states are considered
rather than the complete history. The learning task is formulated as classification, as
only the sign of the next reward is predicted (positive, negative or zero), which makes
this training task even simpler.

Since reward prediction is only used for helping representation learning, it is not impor-
tant to keep the data distribution unbiased for this auxiliary learning task. This way,
rewarding experiences can be replayed more often, and this results in significantly faster
representation learning. In contrast, value predictions are used as a baseline for the
training of the policy network, therefore biasing the value estimate is not acceptable.

Neither of the above mentioned task require any extra information for training, which
makes these techniques universally applicable for RL training.

Network architecture

The network architecture of the UNREAL agent is visualized in Fig. 5.6. This architecture
is based on an A3C LSTM agent, which contains a convolutional encoder, an LSTM layer,
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a linear output for the value prediction and n-way softmax output layer for the policy.
Since value function replay does not require any architectural changes, it is not depicted
on the figure.

+- 0

Figure 5.6: Network architecture of the UNREAL agent

Reward prediction has three soft-max outputs for predicting the sign of the next reward.
Instead of doing reward prediction from LSTM activations, it is calculated based on the
outputs of the convolutional encoder for the preceding 3 time steps. These observations
are concatenated with a simpler feedforward network. This way the prediction is only
based on the three previous step, not on a longer history captured in the LSTM.

Q values of the pixel control auxiliary task are calculated separately for a n × n non-
overlapping grid placed over the input image. The spatial nature of this control task
is exploited by using deconvolutional layers. The deconvolutional architecture allows
learning separate Q functions jointly: the weights are shared between Q functions in
different positions.
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5.3 Auxiliary training tasks

In this section a number of different tasks are reviewed, which might be used as auxiliary
tasks for training an RL agent for obstacle avoidance an navigation in a cluttered envi-
ronment. The main focus is on tasks, where successful NN training was demonstrated,
and the information learned is of interest from an obstacle avoidance/navigation point of
view.

5.3.1 Depth prediction

Depth prediction is a key component to scene understanding, as it concerns directly the
3D geometry of a scene. However, predicting depth from a single monocular camera image
is a challenging problem. One major difficulty is that “the global scale is a fundamental
ambiguity in depth prediction” [91]. Even with all inter-image spatial relations correctly
predicted, the global scale (or a corresponding mean depth value) is still difficult to
obtain, and may lead to erroneous results. However, humans are capable of estimating
depth based on monocular cues such as perspective, occlusion, and scaling relative to
the known size of a familiar object [92]. This section first gives a brief overview of some
current deep learning approaches for single image depth prediction, then discusses how it
can be used as an auxiliary training for Deep RL.

Deep learning for depth prediction

For effective single camera depth prediction, multiple local depth cues (such as object
sizes, perspective, atmospheric effects) have to be considered and related on a global image
level. Eigen et al. addressed this problem with the ‘Multi-Scale deep network’, which uses
both a global ‘coarse-scale’ network to integrate global understanding of the full screen,
and a local ‘fine-scale’ network, which can make local refinements on the coarse depth
map [91]. This network learns direct depth regression using ground truth depth images,
and produces dense depth maps. As it was mentioned above, scale ambiguity may lead to
large errors using conventional regression error metrics, which makes it difficult to learn
the relative positions of objects. The authors therefore proposed a ‘scale-invariant error’
metric, which focuses the learning efforts on predicting local spatial relations correctly.
This error metric uses a log-scale, which is a more natural choice for measuring depth
errors than a linear scale (e.g. making 20 cm error at 1 meter is a bigger mistake than 20
cm on 15 meters).

Another approach by Godard et al. is capable of learning depth prediction without depth
images, using only a training set of stereo image pairs [92]. This innovation makes collect-
ing datasets easier. The authors are posing depth estimation as an image reconstruction
problem, by learning to predict the disparity map from an input image. Given the baseline
distance of the training image pairs, the depth can be calculated trivially from the dispar-
ity map. The network is trained to predict disparity maps for both left and right images,
given only the left image. This added ‘Left-Right Disparity Consistency’ requirement has
proven to increase prediction accuracy.

Even though regression might seem as a natural choice for learning depth estimation
given the continuous nature of the depth, casting this problem as classification has its
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Figure 5.7: Depth prediction results [92] (top: input image, middle: ground truth, bottom:
prediction)

advantages as well [93]. With depth quantization, the precision of the predictions can be
different for different depth values (e.g. using fine-grained quantization for low distances
and a more coarse quantization at higher distances). Also, this formulation gives the
confidence of the predictions as well, since the classification outputs are providing a prob-
ability distribution. Cao et al. demonstrated that depth classification can outperform
depth regression when local smoothness constraints are enforced on the outputs [93].

A closely related problem is surface normal prediction. The surface orientation is an
important information about the 3D structure of the environment, and carries information
about the derivative of depth [94]. Chen et al. explores using surface normal annotated
images for improving depth prediction, by including a surface normal related terms in the
loss function [94].

Auxiliary depth training

Depth prediction is one of the auxiliary tasks that Mirowski et al. used for the training of
the NAV agent [85]. From their results it is apparent that using it as an auxiliary training
can help the agent learn about the fundamental 3D nature in which it is embodied.

In their experiments simpler formulation of the depth prediction problem were proven
to benefit the agent more: the best results were obtained with a low-resolution depth
classification auxiliary training.

There is no prior experience on incorporating surface normal prediction as auxiliary task
in RL training. In a sense depth and surface normal information might be redundant,
however combining two different sources of information about the 3D structure of the
environment may provide additional benefits over depth auxiliary training in isolation.
As an example, learning about planar regions might be easier with surface normals, as
it is constant over a planar region while the depth is gradually changing over the same
region.
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5.3.2 Optical Flow

Optical flow (the pattern of apparent motion of a visual scene) contains useful information
about the motion of the observer and the 3D structure of the scene [95]. Therefore using
this information to provide auxiliary training can be beneficial, especially for learning
obstacle avoidance.

The first successful deep neural network that demonstrated end-to-end optical flow learn-
ing from pairs of input images was FlowNet [65]. The authors experimented with two
architectures. FlowNetS works with stacked input images, and has a simple convolutional
architecture, where contractive convolutional layers are followed by deconvolutional lay-
ers, to provide per-pixel optical flow estimates. FlowNetC on the other hand features
two separate, yet identical streams for the first processing steps, then combines these pre-
processed images in a later stage. The authors found that both architecture performed
roughly on the same level. Since the available optical flow datasets were not sufficient
for training deep models at that time, the authors generated a synthetic ‘Flying Chairs’
optical flow training set, which contained rendered chairs superimposed on various back-
ground images collected from Flickr. Still, the performance of FlowNet was behind tradi-
tional state-of-the-art methods. Ilg et al. improved FlowNet in various ways [68]. They
found that by using curriculum learning (i.e. using more difficult training examples grad-
ually) can significantly improve performance, especially for the FlowNetC architecture.
The authors also experimented with iterative refinement, by stacking multiple FlowNets
together.

Figure 5.8: FlowNet2.0 optical flow prediction [68]

Even though FlowNet demonstrates the capability of neural networks to learn optical
flow prediction, the fact that it processes a pair of input images with a special parallel
network architecture makes it less suitable for auxiliary training. Walker et al. on the
other hand investigate dense optical flow prediction from single, static images [96]. This
problem goes beyond traditional optical flow estimation, where the task can be solved
by merely matching corresponding image parts. Predicting optical flow from a static
image requires complex understanding of the context and some fundamental knowledge
about the objects in the scene. The authors proposed a convolutional architecture, with
pixel-wise classification to quantized optical flow directions.

Single image optical flow prediction can be considered as a candidate auxiliary task,
especially if the most recently taken action is provided as an extra input. This modified
problem (i.e. optical flow prediction based on action) is easier, as it is more deterministic.
Furthermore it can teach the agent the connections between its actions and the changes
in its perceptual stream, besides providing information about the ego-motion and 3D
structure of the environment.
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Figure 5.9: Single image optical flow prediction results [96]

5.3.3 Ego-motion estimation

Estimating the ego-motion is a rather useful capability for an autonomous agent that
is operating in a 3D environment. The loop closure prediction auxiliary task of the
NAV agent encouraged building this capability. The NAV agent receives (egocentric)
velocity information, and loop closure prediction requires the agent to integrate these
measurements over time.

In the absence of velocity measurements, it is still possible to estimate ego-motion from
camera images. Visual odometry is the incremental calculation of the camera ego-motion
between consecutive images. Just like depth estimation, monocular visual odometry has
the problem of scale ambiguity. Visual odometry is a challenging problem, and algorithms
addressing this usually rely on optical flow calculations. A very recent deep learning
approach for visual odometry, VINet [97] is also relies on optical flow in a sense that its
convolutional layers are initialized with a pre-trained FlowNet [65]. VINet is based on a
sequence-to-sequence learning approach, using LSTM cells. Scale ambiguity is handled
by integrating visual and inertial measurements. Since inertial measurements typically
arrive at an order of magnitude higher rate, inertial input pre-processing has its dedicated
LSTMs operating on a corresponding rate. VINet demonstrated comparable performance
to traditional visual odometry methods, with its main advantage being robustness to
calibration errors [97]. Still, this formulation of ego-motion calculation might be overly
challenging for being used as an auxiliary task.

More simple formulation of the ego-motion estimation problem are also possible. As an
example, one step displacement or velocity estimates can be calculated, for which the
supervision may come from IMU or other measurements.

5.3.4 Detection and semantic segmentation

Detecting or classifying features of the environment from input images is a relatively
straightforward choice for an auxiliary task. It provides a very simple way to focus
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the representation learning on important aspects of the environment, thus incorporating
expert domain knowledge in the training. An example for this is the enemy detector of
the FPS playing agent of Lample and Chaplot [90], which turned out to be a decisive
factor for learning high performance policies in their experiments.

A shared representation can be made more sensitive to certain environmental features
by using detection as an auxiliary task. The opposite effect, representation invariance
can also be achieved using auxiliary detection tasks. The key is using an adversarial
loss instead of simply backpropagating the detection loss, thus training the shared repre-
sentation to degrade detection/classification performance. An example for this is domain
adversarial training, which aims to train representations that do not differentiate between
input domains [44].

Figure 5.10: Semantic segmentation of a traffic scene (source: AImotive.com)

Instead of doing classification on a whole-image level, convolutional neural networks are
able to predict class labels on pixel level [6]. This spatially dense, per-pixel prediction
task is referred to as semantic segmentation. The challenge of semantic segmentation is
that global information (i.e. what the object is) needs to be fused with fine-grained local
information (which pixels belong to it). Long et al. introduced two architectural changes
to adapt typical recognition networks for semantic segmentation. First, they replaced the
fully connected layers (which throw away spatial coordinates) with convolutional layers,
thus making fully convolutional networks. The output of a fully convolutional network is
a ‘heatmap’ instead of a single probability distribution. Second, predictions are combined
from lower layers (with smaller receptive fields but finer details) and from the final output
(which is more coarse, but contains global information). Predictions are then up-sampled
to the same resolution and summed, to get a final output that combines local predictions
that respect the global structure.

Semantic segmentation as an auxiliary task can provide a highly informative training
signal to a shared representation, since it requires not only the prediction whether objects
or features appear in the input image but also directly pinpoints which input pixels
represented the objects on the input image.

5.3.5 Mapping

Humans and animals alike make use of ‘cognitive maps’ that helps them to reason about
obstacles and free space [98]. Gupta et al. demonstrated jointly learning both mapping
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a visual input to a 2D metric cognitive map, and route planning using this cognitive
map [98]. The ‘Cognitive Mapping and Planning’ architecture they proposed is fully dif-
ferentiable and learned end-to-end, using supervised (imitation) learning and the DAG-
GER algorithm [99]. The mapper part of the architecture is creating a latent 2D metric
representation of the environment from first-person camera images, while the planner
is making use of these latent maps for path planning based on a modified, hierarchical
version of Value Iteration Networks [100].

Figure 5.11: Output visualizations for the cognitive mapper. The top row shows the con-
secutive input images in 4 directions. Bottom row (left to right) shows ground
truth free space, analytical projection of depth images, learned predictions us-
ing RGB and depth images. (source: [98])

From an auxiliary training point-of-view, mainly the experiments with the mapper in
isolation are of interest. In this setting, the agent was rotating around (90◦ at a time)
and made a free-space prediction of its surroundings. Supervision (ground truth free space
map) was not provided at every time-step, only at the end of the rotation. Interestingly,
the agent was able to give good predictions even for occluded regions from where no
observations were available.

Free space mapping as an auxiliary task can teach the agent both about the 3D structure of
the actual scene and how to interpret its visual inputs, but it can also provide agents with
knowledge about regularities in their environments (like corners usually have a 90◦ angle,
doors are leading to rooms, etc.). For navigation capabilities these auxiliary information
might be rather helpful.

5.3.6 Unsupervised auxiliary tasks

Jaderberg et al. identified various useful auxiliary tasks that are useful for reinforcement
learning. These tasks do not require any extra supervision from the environment, using
only information that is already available for RL agents [86] (see Section 5.2.3).

On the other hand using more conventional unsupervised visual learning tasks for auxil-
iary training is also an option. One possibility for this is using training auto-ecoders on
middle-level representation for reconstructing the input images, in a similar way it was
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demonstrated for supervised networks (see Section 5.1.2 and [89]). However, such unsu-
pervised objectives are are trying to reconstruct the whole input images. Even though
they might yield efficient low-dimensional representations, still they do not focus the
learning efforts on important aspects of the input. Furthermore reconstruction losses are
usually based on some metric distance, like mean squared error between input and recon-
structed images. Such a loss penalizes missing large features more, while missing small
details does not lead to large reconstruction error.

These effects are even more pronounced if the unsupervised feature learning is used in
isolation, to yield a low dimensional representation of the input images. Theoretically
learning RL tasks would be easier using an informative low-dimensional representation.
Still some result suggest that due to missing details the performance is actually worse in
this case [101].
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Chapter 6

Literature Review Discussion

In the preceding chapters an extensive literature study was given in the topics of Deep
Learning, Domain Adaptation, Reinforcement Learning and Auxiliary Training, which
together form the theoretical basis of this research. In this chapter the main findings and
conclusions of this literature study are summarized.

6.1 Deep Learning

Deep learning is probably the most popular approach to statistical machine learning these
days. In the recent years deep learning approaches started redefining the state-of-the-art
in speech recognition, visual object recognition, natural language translation and in a
number of other domains [9].

One particular network architecture, convolutional neural networks, are very efficient in
processing images an other grid like data [8]. Therefore in most cases when working with
image inputs the first few layers are convolutional layers, which form a convolutional
feature extractor together. This feature extractor can be followed by fully connected or
recurrent layers, or alternatively in some cases with further convolutional (or deconvolu-
tional layers). In this project the aim is to demonstrate a vision-based policy for MAVs,
therefore starting the network with a convolutional feature extractor is a natural choice
in our case as well.

Since the field-of-view of the cameras used on MAVs is limited, with using only single
images the state of the environment is not fully observable. Also, determining velocity
states from single images is difficult. Despite this, simple reactive policies based on single
images might be able to provide some level of obstacle avoidance. However, by integrating
information from multiple images a better understanding of the situation can be achieved.
For this, recurrent layer(s) can be added to the network, such as layers with LSTM
units [42]. Training networks with internal recurrency is making the training process
more complicated. An alternative choice is to feed subsequent images to the network at
any given time. This is a simpler task to learn but less efficient since full images are
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processed repeatedly, instead of carrying over just the relevant processed information in
the state of recurrent units. Recurrent units also allow the network to learn retaining
information as long as needed, while with feeding preceding frames this time horizon is
limited.

For optimizing parameters in neural networks, deep learning typically relies on the back-
propagation algorithm [22]. Other methods (such as genetic algorithms) can also be used
for optimization, but these methods are less efficient for the high number of parameters
common in large neural networks [21]. In our case, using image inputs already pushes the
network out of the regime where genetic algorithms are considered to be a competitive
alternative to backpropagation.

6.2 Domain Adaptation

A central problem of this research is the transfer of the simulation trained policies to real
drones. Due to the systematic differences between the two domains, the performance on
real environments is not guaranteed. Since the main learning task is a reinforcement learn-
ing problem, mainly unsupervised domain adaptation methods are applicable. The two
main approaches are MMD distance based (e.g. [52], [53] and [54]) and domain adversarial
training based methods (e.g. [44], [57]). Performance-wise it is not clear yet whether either
approach is superior, as the state-of-the-art is being redefined every few months. How-
ever, domain adversarial training is easier to integrate to the multiple-objective training
framework, due to its similarity to auxiliary tasks.

An interesting approach is domain randomization [58], which sidesteps the need for do-
main adaptation by randomizing many component of the simulation used. However, it
requires hand-engineering variation to the simulator, and some capacity of the network
is possibly wasted on adapting to any possible combination of the simulator (while only
performance on the real domain is of interest).

When domain adaptation is used for RL tasks, it is important to consider that changes
between domains are not necessarily restricted to changes in the input distribution. The
behaviour and physics of the two domains might differ as well, which may render trained
policies useless on the new domain. This is a significant difficulty for learning low level
motor commands. On the other hand, in our case the learning task is higher level control.
Higher level physical behaviour is expected to be easier to model, while the low level
dynamics of the system can be handled by traditional feedback control.

6.3 Deep Reinforcement Learning

Deep reinforcement learning is a very promising approach for a wide variety of problems,
and particularly suitable for learning intelligent control policies from raw image inputs.
However, training a neural network with RL is challenging compared to standard super-
vised learning (which is already difficult in itself). After a short period when value-based
methods (DQN [2] and its extensions) dominated deep RL, recently policy-based actor-
critic methods are the most promising. At the moment the A3C algorithm seems to be an
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optimal choice for our research, since it is a relatively established algorithm with multiple
implementations available. On the other hand, an off-policy learning algorithms as DQN
might be more flexible, as it allows learning from experiences collected under different
policies. This makes off-board learning from real experiences easier. However, the signifi-
cantly improved efficiency of on-policy algorithms might outweigh the advantages brought
by off-policy learning. A3C improved the state-of-the-art in most Atari 2600 Games “in
half the training time of other methods” [84].

6.4 Auxiliary training

Auxiliary training is a promising approach to improve the capabilities of neural networks.
Auxiliary training allows the incorporation of additional training data in the learning
process. On top of that, it also provides extra guidance for the training, as it can help
to focus the learning efforts on the important aspects of the environment. In our case,
understanding the 3D structure of the scene from monocular camera images is essential
for learning obstacle avoidance and navigation capabilities. By giving related auxiliary
tasks for the network, the shared representation can be trained to discover important
depth clues.

For RL, the lack of information is an inherent problem, as the only feedback given to the
learner is a possibly sparse scalar reward signal. Therefore auxiliary training is partic-
ularly beneficial for RL, as it provides more information and can significantly boost the
learning of useful features. Interestingly, in some cases extra information was more useful
when used for auxiliary training, than simply providing that information to the network
as an extra input [85], [90].

As auxiliary tasks, both supervised, unsupervised or RL tasks can be used. In the context
of learning obstacle avoidance and navigation policies for MAVs, we considered a number
of different auxiliary tasks. The selection criteria was the usefulness of the predicted
information for the main learning task, and also whether successful deep learning was
demonstrated on the task. Another consideration is the suitability of the task for continual
Self-Supervised Learning on-board the MAV. The most straightforward task is probably
depth prediction, especially since its effectiveness was already demonstrated for related
navigational tasks [85]. Detecting other properties related to the 3D structure of the
environment (such as surface normals) might also help acquiring a useful feature extractor.
Optical flow prediction can teach valuable information about both the 3D structure and
the ego-motion of the agent. Detection and segmentation tasks can be used to guide
the learning towards acquiring semantic information from the input images. Finally, a
mapping auxiliary task can be used to teach regularities of the environment (such as
typical rooms having 90◦ corners).
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Chapter 7

The learning task

In this chapter we define the main learning task, describe its role in a MAV autonomous
software pipeline, and specify its inputs and outputs to/from other components of the
control system. For this, we first discuss the typical control system hierarchy used in
autonomous MAV flight, and then describe how our neural obstacle avoidance and navi-
gation module fits into this scheme.

7.1 MAV control hierarchy

In a typical MAV a cascaded control system is responsible for flying the drone in a desired
way. An example block diagram can be seen in Fig. 7.1. This is a high level example,
actual control system architectures and implementations may vary.

Velocity
control

Attitude/
Stability
Control

FCU

Low level controlHigh level control
Position/
orientation

Flight
plan

Navigation
module

Figure 7.1: Typical control system for a MAV

Starting from the end of the hierarchy, the actuators are most often electric motors (aerial
control surfaces with servos are used too for fixed/flapping wing MAVs, however the main
focus here is on quadrotor MAVs). At the lowest control level a Flight Control Unit (FCU)
is used to control the RPM of motors, and thus the force generated by the propellers.
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The next control level is usually a stability augmentation or attitude control loop, which
stabilizes the dynamics of the drone, and gives desirable handling characteristics. If the
MAV is manually controlled, then normally it is the outermost control loop in the system.

Autopilots implement further control loops, such as velocity and position control. Usually
the highest control loop is some sort of navigation loop. This can guide the MAV to
a desired position according to a pre-defined flight plan or goal location, using some
positioning system (e.g. GPS).

7.2 Obstacle Avoidance and Navigation module

In this research we are planning to augment the control system described in the previous
chapter with a new middle-level module, as shown in Fig. 7.2.

A critical shortcoming of the control system outlined in the previous section is that it lacks
a local trajectory planning step. Without this capability, we need to make sure beforehand
that ‘blindly’ executing the flight plan is safe. This can either be done by flying in a safe
airspace (high above all obstacles, free of other aerial vehicles), or by having perfect
information of the environment and providing meticulous flight plans. However, these
stringent requirements are significant constrains on the autonomous capabilities. The
Obstacle Avoidance & Navigation module is giving the MAV the capability to actively
react to its environment based on sensory input from a camera, and deviate from the
flight plan locally if it is required for safe flight.

High level
control

Low level
control

OA  + NAV
module

goal
direction

velocity
command

visual
input

Figure 7.2: Control system augmented with the RL trained Obstacle Avoidance & Naviga-
tion module

In order to provide easy interfacing with the higher level navigation module, the input
of the obstacle avoidance and navigation module is a relative goal direction. Given a
positioning system (such as GPS or OptiTrack [102]), providing a goal direction is trivial.
Most drones are also equipped with a magnetometer, which allows for measuring the
heading even in GPS-denied environments. The best format for providing angular input
for a neural networks is using the sine and cosine of the angle (in this case the relative
heading angle of the goal direction), as this representations avoids periodicity issues and
both function are restricted between ±1.

In cluttered environments taking the shortest route and flying directly towards the goal
location is usually not possible. The obstacle avoidance and navigation module is respon-
sible to guide the drone towards its goal location in a safe manner. For this, the sometimes
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competing goals (flying directly towards the goal vs. flying safely) have to be harmonized.
The first priority of this module is obstacle avoidance: to avoid collisions by modifying the
trajectory. It is also possible that taking the shortest route would get the MAV stuck in a
dead end. In this case, the module should also be able to overcome this myopic behaviour
and to help finding alternative directions, escaping these ‘local minima’. In a sense this
module functions as a local trajectory planner, and overrides the direction given by the
navigation module (however there is no explicit trajectory planning, the trajectory is a
result of repeated decisions).

The output of the obstacle avoidance module is a reference velocity vector, which is fed as
a reference to the low-level controls. To make the RL task easier, the control outputs can
be discretized. In the simplest case choosing from a few different horizontal directions
is enough for obstacle avoidance, reducing the action space to 1D. Later on vertical
directions can be added (2D) as well as speed commands (3D). Furthermore, continuous
valued outputs can also used.

Theoretically this neural control module can be extended to both direction in the hierar-
chy. On one hand, higher hierarchical levels can be included. This would allow for taking
higher level navigational goals (such as searching for an object, or exploring efficiently a
building). This, however, would make the problem significantly more complex, further-
more it would make the system very specific. In contrast, when only a goal direction is
taken as an input the module can be incorporated in various control systems, and used
in more contexts.

On the other hand, the module can be extended towards lower hierarchical levels (e.g. di-
rectly outputting motor commands). Even though in theory it might lead to more efficient
policies, again the learning task difficulty increases. Apart from this, traditional feedback
control methods can guarantee stability, but for a neural controller these guarantees can
not be provided.

7.3 Reward function

Reinforcement Learning relies on a reward signal, which penalizes the outcome of wrong
decisions and rewards solving the RL task. The reward signal can be used to describe
how an agent should behave in the environment, and communicate the intended learning
goals.

In our case, there are two, sometimes competing goals:

• flying towards the goal location (rgoal)

• avoiding collisions (rcrash)

Therefore two corresponding terms can be included in the reward signal:

Rt = rgoal + rcrash (7.1)

The first term, rgoal in the simplest case is a positive number once the goal is reached, and
zero otherwise. However, this might lead to rather sparse rewards, thus slow learning.
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A better formulation can be given using a goal distance dependent term, such that the
reward increases as the agent is getting closer to the goal location. This acts as a potential
field attracting the agent. An alternative reward can be the dot product of the velocity
vector and the goal direction. This reward term does not require knowing the exact goal
location.

In order to avoid crashes, rcrash need to be set to a sufficiently high negative value to
penalize collisions. It is also possible to penalize not only crashes but dangerous near-
collision situations as well, in order to encourage the agent keeping a safe distance from
obstacles.

It is important to set the relative values of these reward terms and the discount factor
properly. If the rgoal term is too high and the discount factor is low, then the agent might
easily get stuck in dead-ends, as flying against the goal location requires trading of some
immediate rewards for higher long-term returns. If rgoal is high compared to rcrash term,
then it might encourage the agent to collide into objects just to get closer to the goal
location. On the other hand rgoal needs to be strong enough to keep the agent moving
towards the goal, even when it needs to fly close to obstacles in order to get there.

If needed, other terms can be added to the reward signal, to correct for unintended
outcomes of the learning process.



Chapter 8

Auxiliary training with real data

In this project, we are setting up a multi-objective training with auxiliary training tasks.
Most of these tasks are supervised learning problems. Supervised learning does not involve
interactions with the environment, and this setting allows more flexibility in the training
of these auxiliary tasks.

In this chapter we discuss how can we incorporate real images in the virtual training
process of an RL agent when auxiliary tasks are used, what benefits we expect, and some
related considerations.

8.1 Incorporating real images in the training process

Even though recent algorithms keep improving the sample efficiency of deep RL, training
directly on physical robots is still impractical, as it requires either excessive training
times or parallelization over multiple machines [103]. Therefore training the RL task in
a simulated environment is still easier, furthermore cheaper and safer.

However, as auxiliary tasks do not require interaction with a system, a simulator is not
essential for learning these tasks. In principle, any available dataset can be incorporated
in auxiliary training processes. This flexibility allows for using training images for these
tasks from our target domain, the real environment. Layers trained with added real
images can learn features that are useful in both domains, efficiently bridging the domain
discrepancy in the feature extractor with supervised domain adaptation. As the feature
extractor is shared across all tasks, this way the RL task can also benefit from real
images, despite being trained on the simulator only. Compared to unsupervised domain
adaptation, supervised domain adaptation is more efficient and generally an easier task.
Its main advantage is that it can directly learn features that only exist in the target
domain, whereas in unsupervised domain transfer only the feature distributions can be
matched.

In an ideal case the feature extractor is learning features that are useful on both domains,
therefore the RL agent can work effectively in both domains using the same set of features.
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In the worst case however, theoretically it is also possible that the feature extractor learns
two separate set of features for the two domains, with the RL agent using only synthetic
features. In this extreme scenario the performance in the real domain would be seriously
deteriorated. Constraining the capacity of the shared feature representation, or regular-
ization might help preventing this failure. Alternatively, unsupervised domain adaptation
might also eliminate this problem. However, most probably the real performance of the
system is somewhere between the two extremes. Therefore practical domain adaptation
tests are required to assess whether this issue present when real data is used for bridging
the domain discrepancy.

8.2 Mixing synthetic and real data in the training process

As we discussed in the previous section, auxiliary tasks can be trained with real images
instead of synthetic ones. It is also possible to entirely exclude synthetic images from the
auxiliary training process, and use only real images.

This, on the other hand can be a sub-optimal way to train the network, if we already
have a simulator with sufficient fidelity. As we discussed in Section 3.5, adding extra
synthetic data can help the training process, especially when the amount of available real
data is limited. Another advantage is that given perfect knowledge of the synthetic data
generation process (if we have access to the simulator), then perfect and dense ground
truth can be provided for the synthetic examples. Therefore in some cases it is advisable
to keep using synthetic data for these auxiliary tasks. However, if there is a large amount
of available real training images with high quality ground truth information (e.g, in the
case of SSL), and/or the fidelity of the simulator is not sufficient, then it is better to rely
on real data only.

Finding the optimal ratios for real and synthetic images requires experimentation with
the training of the agent. Besides this, the ratio does not have to be constant during the
training: it can be a scheduled variable. For example we can start with more synthetic
data, but gradually shift more towards real data at the end of the training, thus essentially
finetuning the auxiliary tasks to the target domain.

8.3 Sources of real training data for auxiliary training

The training of the auxiliary tasks is not constrained to the simulator, as we discussed
it earlier this chapter. In this section we discuss two sources for training data: public
datasets, or collecting our own datasets.

8.3.1 Public Datasets

Possible sources for training data are the various publicly available datasets. A number
of datasets are published for various learning tasks ranging from image classification and
various regression problems to sentiment analysis. Multiple depth prediction datasets are
available, such as the NYU V2 dataset (see Fig. 8.1) [104]. Also driving-related datasets
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Figure 8.1: An example image (left) with depth (center) and semantic segmentation anno-
tation (right) from the NYU Depth V2 dataset [104]

were made available such as the CityScape [64] datasets with semantic segmentation
annotation; or the KITTI dataset [105], where stereo driving sequences are supplemented
with ground truth from LIDAR and GPS measurements. The KITTI dataset also contains
ground truth for optical flow prediction, as shown in Fig. 8.2.

Figure 8.2: Sparse optical flow ground truth for a sequence from the KITTI dataset [105]

It is important to note that using various datasets for training an auxiliary task might
require the harmonization of the category labels for classification tasks, or the harmo-
nization of scales for regression tasks.

8.3.2 Collecting new datasets

Another option is collecting our own datasets. These datasets can be collected directly
with the MAV, or alternatively with different sensors. The main advantage of collecting
our own dataset is that it allows for training on images directly from the environment on
which we intend to use the MAV afterwards.

For our multi-objective learning set up, depth ground truth can be provided from stereo
images, or with an RGBD camera. For other prediction tasks, such optical flow prediction,
ground truth data can be calculated from sequences of images using traditional algorithms.
For other tasks related to ego-motion prediction, data from on-board sensors (gyros and
accelerometers) or off-board sensors (such as the OptiTrack system [102]) can be used.
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8.4 Specificity problems of the real datasets

Using public datasets or collecting our own, however, raises two interesting questions
about the specificity of these data sets. First, is it important to collect the training
images from the exact same environment, where we intend to fly the drone later? Second,
is it important to collect the data under the same policy which governs the MAV later,
thus ensuring matching visited state distributions?

So far we have been referring to our target domain as the ‘real domain’. However, there is
a great variety between real visual scenes, therefore it is unclear whether we can treat real
images as if they were coming from the same distribution. In an ideal case, the feature
extractor learns to detect general 3D clues, which are applicable to any real environments.
The other extreme is learning very scene specific features, for example relying on the color
of the wall or other specific properties of an environment. In this case flying to another
room, or just the presence of new objects might seriously deteriorate the performance.
Also it would practically prevent using public datasets. Probably the network can learn
both specific and general features, therefore adding images from the testing environment
will likely improve the performance. However the extent of the dependence on such
training data needs to be investigated.1

The second question concerns the policy under which the training set is collected. The
policy is directly related to the visited state distribution. The MAV can enter states
which were not encountered during the collection of the training data. This problem
is well-known in the context of ‘Learning from Demonstrations’ (LfD). There a good
behaviour is learned from expert demonstrations, however the learner’s decisions may
cause departure from the expert trajectories [99]. Therefore the learner experiences a
different visited state distribution, and may encounter states which were not included
in its training, violating the usual i.i.d. assumption. However, while in the LfD setting
the policy is being learned directly, with auxiliary training only a shared representation
is trained. The different visited state distribution may influence the learned policy, but
only indirectly. Therefore experiments are required to find out whether these effects
significantly influence the learned policy, or not.

In case either the visited state distribution, or the specific source location turns out to
be an important factor during auxiliary training with real images, then persistent Self-
Supervised Learning [106] (SSL) can be a suitable learning method. In persistent SSL the
MAV can fly under the control of an RL policy, while it collects data and ground truth
with its own sensors. In theory, with this information the agent can keep training on the
auxiliary tasks on-line, while flying. However, an off-line training with iterated periods of
data collection and training (similar to the DAgger algorithm [99] for imitation learning)
might be easier to implement in practice. This is partly due to the limited on-board
resources. Another important difficulty is that auxiliary tasks need to be trained jointly
with the RL task, otherwise the RL task performance would deteriorate. In an offline
setting the RL training can still be trained in a simulator.

1This first question is also relevant to synthetic datasets to some extent, i.e. it is also a question
whether for training we need an exact 3D reconstruction of a specific environment. Training in a virtual
forest for example might be less useful for indoor flying, but is it important to model the exact rooms
where the MAV is going to operate, or is it sufficient to train in similar virtual office environments?



Chapter 9

Network architecture

Constructing a suitable neural network architecture is a crucial part of this project. In
this chapter the design choices are discussed.

In the first section, we introduce the base network which is trained for the main Reinforce-
ment Learning task. Then in the following two sections the architectural considerations
brought by auxiliary training and domain adversarial training are discussed.

9.1 Base RL network

Constructing a neural network from scratch involves a number of architectural decisions.
Amongst other choices, the number of layers (depth), the number of hidden units in
each layer (width), and connectivity patterns between layers have to be decided. These
decisions can all be considered hyperparameters of the optimization process.

Unfortunately finding the optimal values is a non-convex optimization problem in itself,
in which evaluation of a hyperparameter set requires complete training of the network.
This optimization is computationally extremely expensive. Apart from some recent meta-
learning approaches (where a network is trained with RL to design other networks [107],
or in other cases networks are evolved [108]), the usual approach to hyperparameter
optimization is grid- or random search. These optimization procedures are still expensive
as training a single network may take days to finish. Therefore it is common to use a
proven network architecture such as AlexNet [3], VGGNet [37] or ResNet [4]. In this
section we review some neural architectures for deep RL (see the comparison of the
discussed network architectures at Table 9.1).

In deep RL, the first successful network architecture was the Deep-Q Network [2], which
has an architecture that was inspired by AlexNet. The input images (four consecutive
stacked grayscale images) are fed to a convolutional encoder that has three convolutional
layers, and ReLU activations. This is followed by a fully connected layer with 512 neurons,
and finally a linear layer connecting to the 4 - 18 outputs (depending on the number of
available actions). This network contains over 1.6 million parameters.
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Agent

Layer DQN [2] A-DQN [84] A3C FF [84] A3C LSTM [84] NAV [85]

Input 84 x 84 x 4 84 x 84 x 3

Conv1 8 x 8 x 32, stride 4 8 x 8 x 16, stride 4

Conv2 4 x 4 x 64, stride 2 4 x 4 x 32, stride 2

Conv3 3 x 3 x 64, stride 1 -

FC4 512 ReLU 256 ReLU

FC5 256 LSTM 64/128 LSTM
FC6 256 LSTM

Output Q-values V + softmax action probabilities

Table 9.1: Neural network architectures used for Deep Reinforcement Learning

The asynchronous version of DQN halved the number of convolutional filters and hidden
units, thus reducing the number of parameters below 700000 [84]. The A3C algorithm is
using the same convolutional encoder, but in this case the fully connected layer is followed
by a separate linear output for value prediction, and an n-way softmax for action-selection.
The LSTM A3C variant contains an additional layer of 256 LSTM cells before the outputs.
Mirowski et al. used the LSTM A3C agent as a starting point and baseline for their NAV
agent [85]. If the auxiliary training and extra inputs are excluded, then their base agent
is an LSTM A3C agent, with two LSTM layers.

As a starting point for this research project, we can use the an A3C LSTM or NAV
base network. This initial network is then augmented with auxiliary tasks and domain
adversarial training, as discussed in the following sections.

9.2 Auxiliary tasks

Auxiliary tasks are incorporated in the training process in order to make use of more
information in building of a shared representation. The main learning task (the RL task
in our case) can therefore benefit from the features of this shared representation, learning
faster and possibly converging to better solutions.

There are three new design choices introduced by an auxiliary task:

• The number of separate layers dedicated to the auxiliary task, and the number of
neurons in those layers.

• The branching location where this task-specific network is connected to the base
network.

• The usage of any additional inputs for the auxiliary task.

As discussed in the previous section, the number of layers (depth) and number of neurons
(width) in each layer are usually treated as a hyperparameter in neural network train-
ing. These parameters can either be determined in a hyperparameter search, or just set
based on prior experiences or heuristics. It is worth noting that auxiliary outputs can
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be attached without any extra hidden layers, simply as a linear or softmax output layer.
However, in this case the backpropagated auxiliary training losses might act too ‘directly’
on the shared representation. This is because task specificity increases towards the last
layers of a network [46]. The shared representation might be forced to be overly specific
for one task, if it is the last hidden layer before an auxiliary output. Therefore it is better
to provide more flexibility for learning the auxiliary task by dedicating at least one hidden
layer to it. In practice these task-specific network parts are kept relatively simple, with
no more than two hidden layers (e.g. [85] [86]).

In order to choose the branching location, again the task specificity of layers has to be
considered. On the one hand, the network has to be able to specialize some layers on
its main learning task, which favours an early branching. On the other hand, those
layers which are not shared cannot benefit from the auxiliary training signals, so from
this aspect a late branching is better. When choosing the branching location, also the
relevance of the auxiliary task has to be considered. If it is closely related to the main
learning task, then more layers can be shared, while for loosely related tasks an earlier
branching is more beneficial. Mirowski et al. compared navigation training with auxiliary
depth prediction branched out either after the convolutional layers, or from the last hidden
(LSTM) layers [85]. In their experiments the latter architecture gave better results, since
in this case the auxiliary training is “providing structure to the recurrent layer, not just
the convolutional ones” [85].

Finally, additional inputs can be provided for the auxiliary tasks, if needed. As an example
consider a task when the network has to predict changes in the visual input: optical flow
prediction. Given only the current image, this is a rather challenging task, as the optical
flow is dependent on both the 3D structure of the scene, but also on the action that the
agent took. Predicting its own actions is less useful for the agent. Instead by providing
this information the auxiliary task can be focused on learning about the 3D structure
behind the input images and making connections between its actions and changes in
the perceptual stream, which capability is more useful for the main learning task. It is
important to note that the auxiliary tasks are not performed at test time (except for
finetuning with SSL on a real robot). Therefore these auxiliary inputs are only needed
during training, it is not necessary to provide them during normal use of the network on
the main task.

9.3 Domain Adversarial training

The architectural design choices of domain adversarial training are closely related to those
introduced by auxiliary training. In this case again we connect some task specific layers
to the original network at a certain location. These layers form the domain discriminator
network, which tries to predict the source domain of the input image based on hidden layer
activations in the original network. The depth and width of the domain discriminator are
hyperparameters.

The effect of the domain adversarial training is the opposite of an auxiliary detection task.
While the latter tries to build a representation that is discriminative for the detection task,
domain adversarial training strives to make the representation indiscriminative for the
source domains. Therefore the branching location in this case determines the hierarchical
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level on witch feature distributions are matched. Ideally the goal of domain adversarial
training is avoiding to rely on some property of one domain that is not present in the
other domain.

To illustrate this, consider a network trained on a car racing game for road scene segmen-
tation. The network may learn to detect the exact textures used to visualize grass in the
game. This gives a very high accuracy when evaluated on the game, but less for real input
images. If there is a neuron that consistently activates in the presence of the virtual grass
texture, then this activation pattern can easily be spotted by the domain discriminator
network. Another neuron, which activates for a more general features instead (such as
green regions), would be activated on both domains. This neuron cannot be used by the
domain discriminator to recognize the source domain, and may be a useful feature on
both domains.

Ideally domain adversarial training has to work on such mid-level representations, elim-
inating domain specific activations and encouraging to detect features present on both
domains. If the domain discriminator is attached to one of the first few layers instead,
then the feature extractor is given a difficult task, as it has to provide domain indepen-
dent features with less layers (and thus less flexibility). In this case low level features are
matched (such as corner detectors and color blobs), and it might easily lead to degenerate
solutions where most of the information is discarded. On the other hand, if the matching
is done at the highest layer, then basically the action selection statistics are matched.
Even though these statistics might be influenced with changing input distributions, this
level might be too far from the inputs for effectively rejecting learning domain-specific
features.

9.4 The complete neural architecture

In Fig. 9.1 Agent one possible layout for the complete network is given, which summarizes
our discussion about the possible agent architectures.

We illustrated the base network in the central part of the figure. It starts with a convo-
lutional encoder, consisting of 2-3 convolutional layers that are shared across all tasks.
Following the A3C LSTM architecture, a recurrent layer with LSTM cells follows. This
recurrent layer may or may not be shared with other tasks (even though on the figure we
illustrated the branching location for auxiliary tasks after this layer). Finally, the base
network may contain a sub-network dedicated to the RL task, which is not shared. It
may consist of one or more additional layers (e.g. one more LSTM layer as in the NAV
agent). The base network is trained with an RL loss, calculated based on the reward
received from the environment. In the figure we illustrated an actor-critic loss, but in
principle it can be any other suitable RL loss.

In the figure we also included some possible auxiliary tasks. For simplicity we branched
out all auxiliary tasks from the same location, past the LSTM layer. But in practice the
branching location has to be considered for each task individually, and in an ideal case it
should be optimized.

We can group the auxiliary tasks into two categories: those for which ground truth
labels can be provided by self-supervision, and those that rely on some extra information
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only available from simulator or from another source. We illustrated the first group of
auxiliary tasks at the right side of the base network. For these tasks the training data
may either come from the simulator, from public datasets, or alternatively from the MAVs
own observations with ground truth from its sensors. Other auxiliary tasks, such as the
mapping task may rely on some special information, which can not be provided on-board.

We also included the various data sources on the figure. As we discussed in Chapter 8,
various parts of the network can be trained with different datasets. The learning on the
RL task is largely relies on the simulator. Ideally given access to all internal states of the
simulator, it can be used for any auxiliary task, but in practice some information might
be difficult to get (such as optical flow ground truth which is sometimes obtained by
modifying the motion-blur pipeline [109]). For some problems, such as depth prediction
public datasets are available, which can be incorporated in the training process. Fur-
thermore, given suitable sensors on-board the MAV, training can be done on-board with
self-supervised learning. Finally, when using an unsupervised domain adaptation method
(such as Domain Adversarial training [44]), unsupervised images from the target domain
can be used as well.



Figure 9.1: Network architecture combining Actor-Critic RL, multiple supervised-
                    and self-supervised auxiliary tasks, and domain adversarial training.



Chapter 10

Remaining Thesis Work

In this chapter we discuss the remaining tasks of the research project. This chapter is
accompanied by a project plan GANTT chart in Appendix A.

10.1 Simulation Environment Setup

Creating a suitable virtual environment for training an RL agent is a challenging task.
However, the computer game industry spent a lot of effort on creating realistic games [110],
and we can make use of this work by creating a simulated environment using a game
engine. In this project, for the virtual RL training we chose to use the Unreal Engine
4 (UE4) simulation engine [111]. UE4 is an open-source cross-platform game engine,
which features an exceptionally high quality rendering pipeline. UE4 also comes with a
marketplace where a number of pre-made environments can be acquired, which allows for
training in various environments.

The 3D environments for training might be some generic environments from the UE4
marketplace. However, if we wish to train the agent in an environment that is similar
to the environment where we intend to use it, we may also need to create our own 3D
environments. This is relatively easy using the built-in Editor of UE4, but modelling
still require some work, and the quality of the scene might not reach the professionally
designed environments.

Various plugins are available to make UE4 more useful for training RL agents. Microsoft
Research has recently open-sourced a complex simulator, Airsim [112], which was built
upon UE4. AirSim strives for realism both in terms of perception and physics. Currently
it contains a high fidelity quadrotor model, and it supports both software-in-the-loop
(SITL)and hardware-in-the-loop (HITL) simulations. AirSim can provide realistic ren-
derings, depth views and object instance masks for training an agent with multimodal
data.

An alternative UE4 plugin for agent training is UnrealCV. This plugin is targeted at
generating virtual training datasets with multimodal ground truth for computer vision
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Figure 10.1: Images generated with UnrealCV [110]

algorithms. At this point depth view, object masks and normal maps can be generated
as ground truth for learning tasks (see Fig. 10.1).

Even though AirSim and UnrealCV can both be suitable for training an RL agent, the
focus of these plugins are different. The main advantage of AirSim is its physical model
and HITL/SITL capabilities. However these capabilities are less crucial, as in this project
we are training an agent to give higher level velocity commands. The dynamics of the
MAV are going to be handled by a low-level control system. Speeding up the simulation is
problematic in AirSim due to the real time components, furthermore the synchronization
of camera images and ground truth images (depth, object instance masks, etc.) is not
solved at the time of writing this report. These properties make it less suitable for train-
ing computer vision algorithms. UnrealCV completely lacks the vehicle simulation: the
camera just ‘teleports’, and then remains stationary while the images and corresponding
ground truth is rendered. This solution sidesteps the synchronization problem, but also
has its disadvantages, most notably the lack of motion blur on the images. Still, at this
point UnrealCV is more suitable for training an RL agent in the context of this project.

10.2 RL agent and Neural Network architecture setup

In order to start training an RL agent, first experience handling has to be solved. The
experiences the agent collects during its learning process consist of the input image of the
start state, ground truth for the auxiliary training tasks, the immediate reward received,
and the image of the end state. These experiences are coming from the simulator, which
runs an UnrealCV server. The agent can communicate to this server through a Python
client, in order to access simulation data and give commands.

Then, the experiences are used in an RL training process, to train a neural network
both for the main obstacle avoidance and navigation task, and for the auxiliary training
tasks. For constructing the neural network architecture, various libraries can be used
(e.g. TensorFlow [113], Theano [114], Caffe [115], etc.). As TensorFlow has currently the
largest user community and the most available resources (e.g. multiple open-source A3C
implementations are available), it was selected as the preferred library for this project.
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10.3 Auxiliary training experiments in simulation

Once both the simulation environment and the RL architecture are finished, training in
the simulation environment can be started. As a baseline experiment we will train the
agent without any auxiliary task. Then experimentation with auxiliary training can be
started. The main goal of this stage is to determine which auxiliary tasks are useful for
the main learning task, and what is the best way to incorporate them.

The first auxiliary task can be depth prediction. Depth is relatively easy to access from
UE4 thanks to the UnrealCV plugin. Also, the effect of depth prediction has already
been studied for similar tasks [85]. Surface normals are easily accessible from UnrealCV
as well, and because of its strong connection to depth prediction it might be a natural
choice for the next auxiliary task.

Ego-motion prediction can be a relatively easy auxiliary task to implement, given the low
dimensionality of this information compared to images.

Another promising auxiliary task is optical flow prediction. However, currently UnrealCV
can not provide optical flow ground truth. Therefore implementing some extensions might
be required in order to access this information from the simulator. One possible solution
is to modify the motion blur pipeline for dense optical flow field generation [109].

To investigate the effects of free-space mapping as an auxiliary task, we need to extract
a schematic top-view of the environment from the simulator. Alternatively, it is also
possible to generate or create ’maps’ of the environment separately, and feed the training
process with the corresponding segments of these maps.

The number of experiments we can do with different auxiliary task combinations and
architectural choices is limited by the available computational power and the time-frame
of this project. Even though exhaustive investigation is out of reach, we still expect to
find good auxiliary training combinations that are suitable for the subsequent domain
adaptation experiments.

In general, we expect that RL combined with auxiliary training converges faster, and
possibly also reaches higher cumulative rewards by the end of the training. If confirmed,
then auxiliary training can be considered an effective method to integrate prior domain
knowledge for Reinforcement Learning in real robotics tasks.

10.4 Setting up MAV experiments

Experiments on the real drones are a vital part of this project, as our goal is to demon-
strate the effectiveness of simulation-trained policies on real MAVs. In order to do neural
inference on-board, the sufficient computational resources have to be provided. We are
planning to use the S.L.A.M.dunk by Parrot [116], which is an integrated extension kit
for the Bebop2 MAV. It comes with an NVIDIA Tegra K1 mobile processor, an IMU,
ultrasound sensors and a stereo camera.

From the software side, there are three main implementation tasks. First, we need to run
inference on the neural networks on-board. Second, a low level control system is needed
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that can execute the velocity commands that the neural network gives. These processes
has to be integrated with the autopilot software running on the MAV.

In normal tests only inference of the main (RL related) part of the network is required for
action selection. However for Self-Supervised Learning experiments not only inference is
required for auxiliary tasks, but also error backpropagation to keep training the network.
The required amount of computation might easily exceed the on-board capabilities of the
MAV. Therefore either off-board but real time network training is needed, or alternatively
a training process with iterated observation collecting and off-board training phases.

10.5 Domain Adaptation Experiments

We are investigating the effects of three different domain adaptation method: domain
adversarial training, auxiliary training with real examples, and SSL. Both of these domain
adaptation methods require a joint training in the virtual environment, with added real
images for domain adaptation.

To establish a baseline, we are going to use an agent trained with auxiliary tasks, but
without any domain adaptation technique. Then we see how transferable the original
policy is, and will test our domain adaptation methods against this baseline.

To make more accurate comparisons between agents trained with different domain adap-
tation methods, we can make use of the OptiTrack indoor positioning system [102]. With
OptiTrack, we have better control over the circumstances of experiments, for example we
can start experiments from the same initial state. Furthermore, the OptiTrack system can
accurately track the trajectories of the different agents, and based on these trajectories
we can make quantitative comparisons.

With these experiments our expectation is that using a domain adaptation technique will
increase the performance of the trained policy in the real domain. This can confirm our
hypothesis that Reinforcement Learning methods can benefit from domain adaptation
techniques, and that simulated training with domain adaptation might be sufficient for
learning high level, intelligent control policies for robots. If policies are still not reli-
able enough even after domain adaptation, then possibly in order to achieve a required
performance for safe operation SSL and training in the environment of intended use is
required.
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