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Abstract 
Train dwell time is one of the most unpredictable components of railway operations 
mainly due to the varying volumes of alighting and boarding passengers. For reliable 
estimations of train running times and route conflicts on main lines it is however 
necessary to obtain accurate estimations of dwell times at the intermediate stops on the 
main line, the so-called short stops. This is a big challenge for a more reliable, efficient 
and robust train operation. Previous research has shown that dwell time is highly 
dependent on the number of boarding and alighting passengers. However, the latter 
numbers are usually not available in real time. This paper discusses the possibility of a 
dwell time estimation model at short stops without passenger demand information, by 
means of a statistical analysis of track occupation data from the Netherlands. The analysis 
showed that the dwell times are best estimated for peak and off-peak hour separately. The 
peak hour dwell times are estimated using a linear regression model of train length, dwell 
times at previous stops and dwell times of the previous trains. The off-peak hour dwell 
times are estimated using a non-parametric regression model. There are two major 
advantages of the proposed estimation model. The model does not need passenger flow 
data which is usually impossible to know in real time in practice. Also, detailed 
parameters of rolling stock configuration and platform layout are not required, which 
eases implementation. 
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1 Introduction 

Model predictive control has recently been widely used in railway traffic control research, 
especially in the field of rescheduling (Hansen et al. 2010; Caimi et al. 2012; Quaglietta et 
al. 2013; Cacchiani et al. 2014; Kecman 2014). Prediction of train dwell times at stations 
is one of the most important inputs in solving the problem. It provides the predicted trains’ 
trajectories and conflicts to the train dispatchers, and is thus an important input to adjust 
the timetable in order to resolve the conflicts between train paths. The estimation of dwell 
time, especially at short stops on main lines may have a big influence on the result of 
conflict detection. Short stops are stops on the open track where sidings are not available 
and where trains only dwell for alighting and boarding after which they immediately 
continue their journey. These dwell times are thus an integrated part of the overall running 
time over the open tracks between stations. A good estimation of these dwell times is thus 
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required to be able to predict headway conflicts on the open tracks and arrival times at the 
main stations at the end of the open tracks. 

So far, compared to the running time and dwell times at large stations, dwell times at 
short stops are not well estimated. Previous researches (Wiggenraad 2001; Daamen et al. 
2008; Buchmueller et al. 2008; Yamamura et al. 2013) show that the number of the 
boarding and passengers is the main determinant of the dwell times especially at small 
stations which have no passenger connection from one a train to another. However, due to 
the difficulty to obtain passenger information in real time, most of the existing models, 
which represent dwell time as a function of the number of boarding and alighting 
passengers, cannot be used for real time rescheduling when the passenger flow is not 
available. This is a big challenge for a more reliable, efficient and robust train operation.  
Li et al. (2014) analyzed the influence of available factors on dwell times other than the 
number of alighting and boarding passengers. These factors are based on track occupation 
data of Dutch railways. They found that the dwell times at short stop stations are different 
from large stations. Moreover, the dwell times at short stops are  influenced by different 
weekday, peak hour, train length in addition to the number of alighting and boarding 
passengers. This motivates this research: to examine the possibility of building a dwell 
time prediction model based on predictors without passenger demand. 

Based on the assessment of methods of train dwell time estimation by comparing their 
strengths and weakness, independent variables will be selected that can be used for 
estimation. This paper gives a more generic and practical dwell time estimation model 
using the selected variables. The model does not include passenger demand and the 
detailed parameters of rolling stock configuration, which cannot be obtained in real time. 

The remaining paper is organized as follows: Section 2 contains the literature review. 
Section 3 presents the dwell time prediction model; Section 4 validates the proposed 
model and describes a case study. We end this paper with conclusions and discussions of 
further research in section 5.  

2 Literature review 

There are many factors influencing the dwell times. They can be classified into five 
categories: passenger, rolling stock, station, operation and external factors (Figure1).  
Passenger factors include both the amount of passengers and passenger characteristics 
(gender, luggage, handicap). These factors influence the alighting and boarding time. The 
influence from rolling stock are threefold: first, different types of rolling stock have a 
different door control system, which would influence the door unlocking time, door open 
time and door closing time. Second, The number and width of doors,  as well as the 
horizontal and vertical gap between train and platform determine the capacity of the doors 
which influence passenger boarding and alighting time. Third, the interior layout of the 
train (seat arrangements, aisle width, space near the door) would limit the speed of 
alighting and boarding, thus influence the alighting and boarding time. Station factors 
include the position of access facilities on the platform and the layout of the yard. The 
former have an impact on the alighting and boarding time of a door by influencing the 
distribution of passengers on the platform. The latter influences the dwell time by 
influence headway between consecutive trains. The railway operation, such as train delay, 
train overtake or meet, train couple and decouple, time for passenger connection, and 
operation margin can also bring extra waiting times to a train. External factors include 
weather conditions, traffic conditions at level crossings near the platform would also have 
an influence on train dwell times. 

004-2

6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015



3 
 

 
Figure 1: Influencing factors of train dwell time  

 
    Based on how different factors are input into the model, a dwell time estimation model 
may be divided into deterministic and stochastic models. A deterministic estimation 
model tries to quantify a series of factors, which have an influence on dwell time, and 
establish the relationships between the dwell time and these factors by a set of fixed 
parameters. A stochastic prediction model can take into account a certain degree of 
randomness or uncertainty of the system by estimating the expected probability 
distribution of the dwell time. 

2.1 Deterministic models 

In the earlier literature, the dwell time was estimated as the sum of a constant (door 
opening, closing time and departure preparation time) and the alighting and boarding time 
(passenger service time). Lam et al. (1998) developed a linear regression model to predict 
the dwell time as a function of the number of alighting and boarding passengers per train. 
The assumption of the study is a uniform distribution of boarding passengers on the 
platform, which may be not true for many stations. According to the investigation from 
the Dutch railway, there are clear concentrations of waiting and boarding passengers 
around platform accesses (Wiggenraad 2001). Wirasinghe and Szplett (1984) developed a 
linear regression dwell time estimation model considering a non-uniform distribution of 
boarding passengers, calculating the passenger service time of each door respectively, and 
estimating the dwell time as the maximum passenger service time over all doors. Lin and 
Wilson (1992), Parkinson and Fisher (1996), and Puong (2000) took the number of 
standing passengers in the vehicle and their interactions with boarding and alighting 
passengers into account and developed nonlinear estimation models. The problems of 
those regression models are that many background variables are not included, such as the 
composition of the passenger population (e.g. with or without luggage, mobility), 
configuration of rolling stock, the type of station and so on, which have an irrefutable 
impact on dwell time (Wiggenraad 2001; Heinz 2003; Daamen et al. 2008). So, these 
models can hardly be used widely for other trains and stations. In order to estimate the 
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effect of the configuration of the train on dwell time, Weston (1989) introduced the door 
width factors of the train into a nonlinear regression model. Weston’s model is the most 
comprehensive model in these deterministic models. It considers the number of alighting 
and boarding passengers, the interaction between alighting, boarding and standees, and the 
width of the doors. According to Weston’s model, the dwell time will be the same given 
the door width of the train and the number of passengers. This may not be true because 
these models neglected some essential factors such as interior layout of train, and 
horizontal and vertical gaps between the train and platform, which are obviously different 
from train to train and also depend on the platform where train stops. Harris (2006) tested 
Weston’s model, and found the interior layout of the train should be considered to 
improve the model accuracy. Jone (2011) estimated the alighting and boarding time at a 
specific station as a function of the number of alighting and boarding passengers, and 
different train services that imply the influence of rolling stock. However, the occupancy 
of the train and the interaction between passengers are not considered. 

The aforementioned studies have demonstrated that the dwell time of a train depends 
on the passengers, rolling stock, station, operation and external factors. However, none of 
the existing models could fully take all these factors into account. Although these models 
fits 87% of the data, most of the relative percentile errors are not reported. According to 
Puong’s model, the standard error is 4.04s, the mean value of the dependent variable is 
27.76s, which hints an error of 14.55% .  

2.2 Stochastic models 

It should be noted that many stochastic factors influence the train dwell times. The 
stochasticity includes the temporal and spatial distribution of passengers, passenger 
behavior, train driver behavior and train delay. This indicates that a deterministic model 
could hardly explain the dwell time difference under such uncertain conditions. A 
stochastic model would be a more appropriate model. There are two types of stochastic 
dwell time estimation models. One type is a model based on statistical techniques.  
Buchmueller et al. (2008) proposed a dwell time calculation model for regional trains in 
Swiss Federal Railways (SBB). The dwell time is estimated as an aggregation of different 
sub-process times. The distribution of the sub process time depends on vehicle types and 
the number of boarding and alighting passengers is analyzed based on the sensors’ data in 
the trains. The dwell time is calculated as the sum of these sub-process times. This model 
is the most generic one. However, the disadvantage of the model is that the occupancy of 
the train is not considered. It is also not clearly stated how the distribution times of sub 
processes are aggregated.  Besides, it is very expensive to install the detectors to each 
door of each running train. Hansen et al. (2010) and Kecman and Goverde (2013) found 
that there is a strong relationship between train dwell time and train arrival delay (or 
earliness). They estimate the dwell time of a train as a function of its arrival delay which 
is derived from track occupancy data of the Dutch Railway. It means that no matter how 
many passengers board and alight, or whatever rolling stock type, the dwell time of a train 
is determined mainly on whether it is delayed. This model is very applicable for real-time 
use. However, a later research shows the error of the model on dwell time estimation is 
even larger than the corresponding scheduled dwell times (Kecman 2014). This may 
because the linear dependency between dwell time and delay may be true for early arrival 
trains at big stations where the train should wait until the scheduled departure time. 
However, there is no evidence whether it is appropriate for shortstop stations where the 
dwell time is not scheduled explicitly and the train driver locks the doors and departs as 
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soon as the alighting and boarding process is finished. The other type of stochastic model 
is the microscopic simulation models. These models focus on passenger alighting and 
boarding behavior, and estimate the dwell time of the train by repeated simulation of the 
passenger alighting and boarding process, and record the dwell time as the average 
passenger alighting and boarding time of each round. Zhang (2008) proposed a 
microscopic simulation model to estimate the dwell time as a function of alighting and 
boarding passenger and the width of the door. Yamamura (2013) developed a multi-agent 
simulation model which also considered the effect of layout of the rolling stock. These 
models can describe train layout and the behavior of passengers in a very flexible and 
detailed way. However, these models need to be improved because some factors like 
horizontal and vertical gap between the train and the platform are not considered. The 
applicability of these models in real time use is also doubtful due to their time consuming 
calculation. 

A comparison of existing models is shown in table 1. In summary, all these models 
could hardly be used in real time estimation and prediction, because of the lack of 
passenger data, the low accuracy or time consuming problems. 
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3 Methodology

The train dwell time estimation for rescheduling can be described as estimating the dwell 
time of a train (target train) at a station (target station) given real time information related 
to that train and historical data. In most cases, the number of alighting and boarding 
passengers, which is the most important independent variable, is unknown in real time. So 
existing dwell time estimation models, which heavily rely on the actual passenger 
demand, cannot be used effectively. The main idea of this paper is to find substitute 
variables which can reflect the passenger demand and to predict the dwell times by using 
these substitution variables. Most importantly, these variables should be obtained in real 
time. 

The modelling approaches to similar estimation problem include parametric regression 
model and non-parametric regression model. The former could provide a clear way to 
show the effect of each predictor on the dependent variable. However, it is difficult to use 
parametric regression when there are uncleared and complicated non-linear relationships 
between different variables. To some extent, Non parametric regression model can solve 
this problem. This paper first select predictors based on the data availability, then it tries 
to find the relationship between the dwell time and the predictors by applying a parametric 
model. When the parametric model cannot fit the data, this partial data are estimated by 
applying a non-parametric model. 

3.1 Predictors’ selection 

Given the dependent variable ˆ s
kDT , which indicates the dwell time of target train k at 

target station s, this paper initially selects 10 independent variables as possible predictors, 
which can be directly get in practical. The main variables and their meanings are shown in 
table 2. 

Table 2: Possible predictors 
NO Variables Meaning NO Variables Meaning
1

kW  
Weekday or weekend 6 2s

kDT   
Dwell time at second 

previous station 
2

kP  
Peak or off-peak 7 

1
s

kDT   
Dwell time of preceding train 

3 s
kL  

Train length 8 
2

s
kDT   

Dwell time of preceding train 
in same train line 

4 1s
kD   

Departure delay at previous 
station 

9 
1

s
kL   

Train length of preceding 
train 

5 1s
kDT 

 
Dwell time at previous station 10 

-hist
s

kDT  
Dwell time in last week 

In table 2, variables refer to weekday or weekend and peak or off-peak 2 and 3 reflect 
the time variation of the dwell time. The peak period is determined based on the passenger 
demand of railway in the Dutch railway network as [6:30,9 :00) [16:00,18:30)kAT    at 
weekdays (NS Group 2013). Statistics (Li et al. 2014) show that dwell times of the peak is 
significantly different from the off-peak hour (p-value = 0). Pk can be considered as a 
vector that contains one dummy variable, which indicate the peak and off-peak 
respectively. Remaining variables are possible predictors which could be derived from 
track occupation data and timetable data. Target train length is set, because different train 
lengths require different stop positions, which have great impact on the dwell time. 
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“Departure delay at previous station” is selected due to the assumption that train delays 
may increase the number of passengers on the platform, and the dwell time; variables 
refer to the dwell time at previous station and the second previous station are based on the 
assumption that there are some relationships of dwell times between consecutive stations. 
In other words, if the dwell time at one short stop is longer than normal, this may also 
hold for other trains at other short stops. Variables refer to the dwell time of preceding 
train and preceding train in same train line are based on the assumption that there are 
some relationships between the dwell times of consecutive trains. Because the length of 
preceding train may be different from the target train, variable refers to the train length of 
previous train is also chosen. Variable refers to dwell time of the same train number in the 
same day of the last week is a historical variable. We also tested other variables such as 
headways including headway between the target train and preceding train, head way 
between the target train and the follower train, and more complicated time series variables 
including historical average dwell times of the target train, historical average dwell times 
of the target train at previous station and second previous station, historical average dwell 
times of the preceding trains at target station. However, these variables have very weak 
relationships with the dwell times of target train at target station. 

 Based on the selected variables, the initial model can be described as follows 
1 1 2

1 2 1 1 -hist
ˆ ( , , , , , , , , , , )s k s s s s s s s

k k k k s k k k k k k kDT f W P L D DT DT DT DT D L DT  
                     (1) 

3.2 Estimation models 

Parametric regression model 
A parametric regression method is introduced to build the estimation model. The 
independent variables are fitted by using a stepwise regression process: First, we started 
fitting the regression model from a simple linear model with the minimum number of 
variables (Model 1), and add more variables gradually (Model 2 - Model 6) to see whether 
a better result can be obtained. The decision about the order in which variable is entered 
into the model depends on the significance of the relationship between the new variable 
and the dependent variable as well as the improvement of estimation accuracy by adding 
the new variable. Some non-linear items are also added to examine whether they can 
improve the accuracy of the model. The non-linear items include both quadratic items and 
interactive items (Model 7, Model 8 and Model 9). Due to the earlier finding that the 
dwell time fits the log-normal distribution (Li 2014), there is an additional model (Model 
10), based on the logarithm of the dwell time instead of dwell time.   
    The significance of an independent variable is different from the synthesis effect of 
multiple variables. After a model is selected, the significance of each parameter is 
estimated by using t-test.  The corresponding variable with large p-value, which indicate 
the parameter is not significantly different from zero, is removed from the model. By 
these steps, a final model is obtained. 
Model 1: 1, s

k kW DT   

Model 2: 1 2, ,s s
k k kW DT DT   

Model 3: 1 2
1, , ,s s s

k k k kW DT DT DT 
  

Model 4: 1 2
1 -hist, , , ,s s s s

k k k k kW DT DT DT DT 
  

Model 5: 1 2
1 -hist 2, , , , ,s s s s s

k k k k k kW DT DT DT DT DT 
    
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Model 6: 1 2 1
1 -hist 2, , , , , ,s s s s s k

k k k k k k sW DT DT DT DT DT D  
    

Model 7:    2 21 2 1 1 2
1 -hist 2, , , , , , ,s s s s s k s s

k k k k k k s k kW DT DT DT DT DT D DT DT    
  ，  

Model 8:    2 21 2 1 1 2 1 2
1 -hist 2, , , , , , , , *s s s s s k s s s s

k k k k k k s k k k kW DT DT DT DT DT D DT DT DT DT      
  ，  

Model 9:     2 21 2 1 1 2 1 2
1 -hist 2 1 2, , , , , , , , * , *s s s s s k s s s s s s

k k k k k k s k k k k k kW DT DT DT DT DT D DT DT DT DT DT DT      
   ，  

Model 10: 
   2 21 2 1 1 2 1 2

1 -hist 2ln( )= ( ,ln( ),ln( ),ln( ),ln( ),ln( ), ln( ) , ln( ) ,ln( )*ln( ))s s s s s s k s s s s
k k k k k k k s k k k kDT f W DT DT DT DT DT D DT DT DT DT      

  ，

 

Non-parametric regression model 
A non-parametric regression model is also used to estimate the dwell times, especially on 
part of the dataset where the parametric model gets low accuracy. The reasons are twofold: 
firstly, the relationship between dwell time and the independent variables might not be 
linear. Taking the delay factor as an example, if the delay is small, the effect of delay on 
dwell times is not significant. However, large delays do have great impact on dwell times 
due to the accumulation of the boarding passengers. Secondly, the dwell times at 
shortstops does not fit normal distribution, which is a compulsory condition of linear 
regression models. In this case, linear regression would be likely to fail. An alternative is 
to use a non-parametric regression. The basic approach of non-parametric regression is 
influenced by its roots in pattern recognition (Karlsson 1987). 

The non-parametric regression has been widely used in urban traffic estimation and 
prediction (Davis and Nihan 1991; Smith et al. 2002), where particularly the method of k-
nearest neighbor (k-NN) was applied. This approach will be used in this paper for its fast 
calculation and relatively good performance accuracy. In the k-NN method, it is assumed 
that the dwell time DTi  depends on a series of variables xi,i=1,2,3,…,n.  Given the 
measurement of xi at the moment of prediction, one can find similar cases (called nearest 
neighbors) from historical data based on the distance between the historical data points 
xhist,i and the current observation xi. The smaller the distance, the more likely the DTi equal 
to DThist,i. More generally, the forecast of DTi can be computed as the mean of the dwell 
times with k-th nearest neighbors. 

1

1 ( )
k

i hist i
hist i

DT DT x
k 

 

   

The core problem is to define the distance function and the choice of K. The simplest 
way to define this distance is to use the absolute sum of differences of independent 
variables | |i histd x x  . Other functions include non-weighed Euclidean distance 

2( )i histd x x  , and weighted Euclidean distance 2( )i i histd w x x  to 
show the importance of each variable. Different values of K will be tested to get the 
minimum estimation error. 

The prediction error of k-NN method is related to the size of historical data n and the 
neighbor k. it can be shown that as n   and k   the k-NN procedure yields 
asymptotically minimum risk decisions (Devijver 1982). 
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3.3 Performance measure 

The estimation accuracy is evaluated in terms of the performances of two indicators, 
the mean absolute percentage error (MAPE) and the root mean square error (RMSE). The 
MAPE is used to measure the estimation accuracy. The RMSE is also selected to show the 
actual error when the result is used as inputs of real time rescheduling model, where the 
total error is calculated based on the combination of the running time and dwell time.  

ˆ -1MAPE 100%
s s

k k
s

k

DT DT
N DT

   

21 ˆRMSE ( )
s s

kk
DT DT

N p
 

   

Where ˆ s
kDT  and s

kDT indicate the predicted and observed dwell times of train k at 
stop s respectively. N is the total number of trains observed. p indicates the number of 
degree of freedom. 

4 Case study 

4.1 Data Collection 

The Dutch railway Utrecht – Eindhoven area is selected. Utrecht and Eindhoven are the 
fourth and fifth largest city in the Netherlands. The railway connected the two cities has a 
length of 45 kilometers, and contains 13 stations. Utrecht, Eindhoven and Tilburg are the 
main stations: most trains depart and terminate in these stations. Geldermalsen and Boxtel 
are basic stations which allow trains to merge, diverge and cross. The remaining stations 
are shortstop stations. Stations in the corridor are distinguished based on three principles: 
first, only shortstop stations are selected; second, consecutive short stop stations are 
selected, so that the relationship of the dwell times between two successive shortstops can 
be examined; third, stations at which at least 4 trains stop per hour are selected, this 
ensures as many data as possible for a station. Based on these principles, Houten, Houten 
Castellum and Culemborg are selected (see Figure 2). 

 
Figure 2: Selected Dutch railway corridor for dwell time estimation 
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At these selected stations, two train lines S6000 and S16000 have a stop, both have a 
train interval of 30 minutes.  Thus, a train stops at these stations every 15minutes. 
     The dwell times at selected stops and trains are estimated based on the track 
occupation data. In the Netherlands, track occupation data are collected using a train 
describer system (TNV), which provides the exact time of occupation and clearance of 
track sections. By using a dwell time estimation algorithm (Li 2014) in total 17306 trains 
running from 1 Sep. 2012 to 30 Nov. 2012 are processed and analyzed. 

The correlation coefficients for all possible predictors and dependent variables are 
obtained from the data and shown in table3. It shows that all the predictors are statistically 
significantly different from zero ( 0.001  ). The peak hour, length of the train, dwell 
times at previous station and the second previous trains, dwell times of preceding train has 
weak linear relationships with dwell time of target train. The best predictor of the dwell 
time may be the dwell time of the previous station with a correlation coefficient of 0.456. 
Other relatively high correlation coefficients include:  dwell time of the second previous 
station (0.381), peak time (0.376), dwell time of previous train (0.376), train length 
(0.308). 

Table3: Correlation coefficients of possible predictors and dependent variable(n=1940) 
NO Variables Correlation NO Variables Correlation
1

kW  
0.178 6 2s

kDT 
 

0.381 

2
kP  

0.376 7 
1

s
kDT   

0.376 

3 s
kL  

0.308 8 
2

s
kDT   

0.305 

4 1s
kD 

 
0.224 9 

1
s
kL   

0.101 

5 1s
kDT   

0.456 10 
-hist
s

kDT  
0.317 

 *p-value=0.000   
  The relationships between these four variables and the dependent variable are shown as 
figure 2 

  
(a) Dwell times between consecutive stations (b) Dwell times at different periods of a day 
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(c) Dwell times between consecutive trains   (d)  Dwell times on different train lengths 

Figure 3: Relationship between dwell time and the most significant variables 
   From figure 3, it can be seen that the dwell times are rather scattered, while the dwell 
time between two consecutive trains ranks the highest; dwell times at off-peak are 
significantly smaller than the morning peak and afternoon peak; there is a weak linear 
relationship between dwell times of the preceding train and following train; dwell times of 
different train length are significant. Longer trains lead to relatively larger dwell times. 
This is because for longer trains, conductors needs more times to confirm there is no 
passengers boarding before departure. It is also found that dwell times of train length 4 
and 6 has a larger standard deviation than longer trains. This can be explained that shorter 
trains have a higher probability of deviating from their stop position, and the shorter trains 
may deviate more from their stop positions than longer trains.  
    By analysing the relationships (Appendix A) between the selected independent 
variables, the relationships between dwell times at the previous station and the second 
previous station, peak hour and train length, last week dwell time, and previous train 
dwell time are stronger than others. To avoid overfitting, these variables are tested 
separately to get the best fitting result. 

4.2 Parametric Regression results 

Models in section 3.2.1 are estimated using linear regression in different week days, peak 
or off-peak and different lengths of trains as well as a mixed lengths of trains. The results 
are compared by using the indicators adjusted R2 and RMSE, which are shown at 
Appendix B-E. The following summary can be made: 

(1) The estimation results at peak hours are better than off-peak hours. It is also found 
that the R2 during peak hours are larger than the same model in off peak hours. This is 
because at off-peak hours, the dwell time variation is larger than peak hours.. 

(2) At off peak hours, the R2 of longer trains dwell times are much higher than of 
shorter trains, which means that correlation between the dwell time of longer trains and 
with the preceding trains and previous stations are higher than shorter trains. This can be 
explained by the fact that longer trains have more “rigid” stop positions, so that the 
distribution of alighting and boarding passengers would not change from train to train.  

(3) The delay at peak hour can increase the number of passengers on the platform and 
cause an increase of dwell time. This effect can be much stronger for shorter trains than 
for longer trains. This is consistent with the result in table 6. For shorter trains with 4 cars, 
the R2 increased significantly, from 0.245 to 0.722 when delay is introduced.  

(4) Non-linear items do not improve the result significantly except the dwell time of 
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eight car, train and ten cars, train during the afternoon peak hour, and ten cars train in the 
weekend. 
     In summary, at peak hours, the parametric regression model is better than off-peak 
hours, during which there are more uncertainties, the parametric regression model should 
not be used directly. Based on the most powerful model in the above mentioned models, 
low significance variables are removed using t-test. The final model of dwell time 
estimation during peak hours is shown as equation 2: 

1 2
1 2 1 3 1 4 *s s s s s s

k k k k k kDT c L L DT DT D     
                  (2) 

In order to validate the model, the dwell time data are split into two parts based on the 
train running date with equal sample size. The first part is used for model parameter 
estimation. The remaining part is used to validate the model. For all trains at peak hours, 
the regression model is implemented. The estimated parameters and performance under 
each train length are shown in table4. The comparison between estimation results and 
observations are shown in figure 4. In case of perfect estimations, the observations would 
be on the line y = x (shown in green). Data points that are far away from this line 
represent situations with bad estimation quality. 

Table 4: Estimation of dwell time models at peak hours 
Parameter\ s

kL  4 6 8 10 12 Mix 

Num of cases 33 79 11 56 64 243 
constant -27.46 

(0.16) 
-13.07 
(0.01) 

60.47 
(0.01) 

-3.8 
(0.01) 

-15.62 
(0.02) 

-14.50 
(0.00) 

1 - - - - - 0.60 
(0.00) 

2 0.47 
(0.00) 

1.60 
(0.00) 

-7.9 
(0.04) 

1.11 
(0.09) 

1.89 
(0.01) 

0.77 
(0.01) 

3 0.00 0.03 0.00 0.00 0.34 
(0.00) 

0.18 
(0.00) 

4 1.19 
(0.00) 

1.11 
(0.00) 

0.85 
(0.04) 

1.12 
(0.00) 

0.83 
(0.00) 

1.09 
(0.00) 

Performance       
Adjust R2 0.708 0.577 0.742 0.428 0.653 0.574 
RMSE(s) 6.96 6.22 6.44 8.69 6.78 7.95 
MAPE 12.65% 13.55% 6.53% 12.98% 11.55% 13.9% 
Note: p-values are shown in brackets 

 
(a) Lk=4                                     (b) Lk=6 
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(c) Lk=10                                         (d) Lk=12 

 
Figure 4: Estimation results of dwell time at peak time  

 
   From table 4, it can be summarized that the expected dwell times of a train can be 
represented by the dwell time of preceding train and the dwell time at previous stations. If 
the dwell times of previous stations and preceding train are large, it is likely the dwell 
time of the target train at the target station is also large and vice versa. 

4.3 Non-parametric regression results 

A non parametric regression model is introduced in order to predict dwell times at off-
peak hours. Two types of variables are selected. Weekday, peak hour and train length are 
three variables to get the selection of the historical data. It means when predicting DTi, the 
historical data set is chosen based on the same weekday, peak hour properties and same 
train length. 1s

kD  , 1s
kDT  , 2s

kDT  , 1
s

kDT   are selected to calculate the distance between 
the historical data and the observations. 

In total 1560 records are identified without outliers. The data set is then split into two 
parts, the first parts contain 900 records is used as learning samples. The second part 
contains 660 records, which are used to predict. In order to avoid the arbitrary, the 
distance function is selected by using sum of differences and non weighed Euclidean 
distance. Because of the limited size of the learning samples, the value of k could only be 
selected from one to nine. The predicted result is shown as figure 5. 

 
Figure 5: The relationship between k and RMSE in k-nearest neighbor method 
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From the figure it can be seen that the RMSE get the minimum value of 8.49 when k 

equals seven, which is higher than the parametric regression model. The MAPE is 19.95% 
which is within the acceptable estimation error and better than use the simplest 20% 
percentile value (RMSE=16.6084) which was used in the reference (Hansen 2010). 

5 Conclusion

Although a lot of dwell time estimation models exists based on the number of passengers, 
they can rarely be used in rescheduling practice, because of a lack of real time passenger 
information. This paper tried to develop a more generalized and more practical estimation 
model based on train detection data. This paper proposed both parametric regression 
model and non parametric regression model for real time scheduling. Most importantly, 
the proposed model does not rely on passenger data, thus it is more practical in real time 
rescheduling when the number of passengers could hardly be obtained.  

The proposed model also shows some potential for development of a more general 
estimation model despite of different type of rolling stock and stations. We conclude this 
would be very important for broad applications. The estimation error of dwell times at 
peak hour is 6.2 -8.8 seconds. The corresponding percentage accuracy is from 85.8% - 
88.5%. Since trains are scheduled in minutes, this accuracy is promising. In some cases, 
especially for short trains in off-peak hours, the accuracy of the proposed estimation 
model still needs to be improved.  Very recently, passenger check in and check out data is 
becoming available in Dutch network. We believe putting this data into the model can 
improve the accuracy of the estimation significantly. This work will be done in further 
research. 

004-15

6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015



16
 

 

 

A
pp

en
di

x 
A

: C
ov

ar
ia

nc
e 

of
 in

de
pe

nd
en

t v
ar

ia
bl

es
 

 

k
W

kP
kL

1
s k

D


1
s k

D


1
s k

D
T


2

s k
D

T


1
s k

D
T


1

s kL


2
s k

D
T


s k

hi
st

D
T



k
W

1 
0.

22
5 

0.
17

5 
0.

04
2 

0.
01

2 
0.

06
5 

0.
16

0 
0.

23
9 

0.
26

8 
0.

11
3 

0.
15

7 

kP
0.

22
5 

1 
0.

39
0 

0.
23

6 
-0

.0
01

 
0.

25
9 

0.
26

4 
0.

40
9 

0.
24

4 
0.

21
1 

0.
30

9 

kL
0.

17
5 

0.
39

0 
1 

0.
19

0 
-0

.0
16

 
0.

27
7 

0.
19

5 
0.

22
8 

-0
.0

15
 

0.
17

6 
0.

20
9 

1
s k

D


0.
04

2 
0.

23
6 

0.
19

0 
1 

0.
00

6 
0.

23
9 

0.
05

8 
0.

17
8 

.0
52

8 
0.

12
1 

0.
12

3 

1
s k

D


0.
01

2 
-0

.0
01

 
-0

.0
16

 
0.

00
6 

1 
0.

00
1 

0.
00

0 
-0

.0
4 

-0
.0

66
 

0.
03

5 
0.

03
5 

1
s k

D
T


0.

06
5 

0.
25

9 
0.

27
7 

0.
23

9 
0.

00
1 

1 
0.

35
5 

0.
24

2 
0.

05
5 

0.
12

6 
0.

16
0 

2
s k

D
T


0.

16
0 

0.
26

4 
0.

19
5 

0.
05

8 
0.

00
0 

0.
35

5 
1 

0.
22

8 
0.

03
64

 
0.

11
1 

0.
20

7 

1
s k

D
T


0.

23
9 

0.
40

9 
0.

22
8 

0.
17

8 
-0

.0
4 

0.
24

1 
0.

22
8 

1 
0.

21
7 

0.
25

1 
0.

26
9 

1
s kL


0.
24

4 
-0

.0
15

 
0.

05
3 

-0
.0

66
 

-0
.0

66
 

0.
05

5 
0.

03
64

 
0.

21
7 

1 
0.

14
2 

0.
09

0 

2
s k

D
T


0.

11
3 

0.
21

1 
0.

17
6 

0.
12

1 
-0

.0
35

 
0.

12
6 

0.
11

1 
0.

25
1 

0.
14

2 
1 

0.
12

6 

s k
hi

st
D

T


0.
15

70
 

0.
30

9 
0.

20
9 

0.
12

3 
0.

04
5 

0.
16

0 
0.

20
7 

0.
26

9 
0.

09
0 

0.
12

6 
1 

      

004-16

6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015



17
 

 B
: M

od
el

 te
st

 a
t m

or
ni

ng
-p

ea
k 

pe
rio

ds
 

M
od

el
 

T
ra

in
 L

en
gt

h 
4 

6 
10

 
12

 
M

ix
 

C
as

es
20

 
27

 
16

 
27

 
 

91
 

 
R

2  
R

M
SE

 
R

2  
R

M
SE

 
R

2  
R

M
SE

 
R

2  
R

M
SE

 
R

2  
R

M
SE

 
1

0.
19

3 
9.

21
2 

0.
23

2 
10

.9
53

 
- 

12
.0

83
 

- 
11

.1
22

 
0.

08
0 

11
.2

35
 

2
0.

51
9 

7.
11

2 
0.

45
2 

9.
25

7 
- 

12
.3

65
 

- 
11

.1
65

 
0.

16
4 

10
.7

08
 

3
0.

61
9 

6.
33

3 
0.

43
9 

9.
35

9 
- 

12
.7

55
 

0.
01

5 
10

.8
24

 
0.

23
1 

10
.2

67
 

4
0.

60
4 

6.
45

4 
0.

45
2 

9.
25

0 
- 

13
.0

96
 

0.
01

0 
10

.8
55

 
0.

22
5 

10
.3

10
 

5
0.

64
3 

6.
12

4 
0.

43
4 

9.
40

7 
- 

13
.2

75
 

- 
11

.0
67

 
0.

22
0 

10
.3

44
 

6
0.

62
4 

6.
28

8 
0.

42
6 

9.
47

3 
- 

13
.9

89
 

0.
16

2 
9.

98
8 

0.
21

6 
10

.3
69

 
7

0.
55

7 
6.

82
6 

0.
36

7 
9.

94
7 

0.
08

60
 

11
.4

60
 

0.
25

3 
9.

42
92

 
0.

24
6 

10
.1

67
 

8
0.

53
9 

6.
96

4 
0.

36
7 

9.
94

8 
- 

12
.2

37
 

0.
25

9 
9.

39
0 

0.
24

6 
10

.1
76

 
9

- 
0.

65
6 

- 
0.

87
1 

- 
6.

86
5 

- 
0.

90
8 

- 
0.

29
9 

10
 

0.
51

0 
7.

17
6 

0.
41

3 
9.

57
9 

0.
35

95
 

9.
59

3 
0.

25
8 

9.
39

3 
0.

25
0 

10
.1

40
 

C
: M

od
el

 te
st

 a
t a

fte
rn

oo
n 

pe
ak

 p
er

io
ds

 
M

od
el

 
T

ra
in

 L
en

gt
h 

4 
6 

8 
10

 
12

 
M

ix
 

C
as

es
13

 
52

 
11

 
40

 
37

 
15

3 
R

2  
R

M
SE

 
R

2  
R

M
SE

 
R

2  
R

M
SE

 
R

2  
R

M
SE

 
R

2  
R

M
SE

 
R

2  
R

M
SE

 
1

0.
05

4 
8.

78
6 

0.
20

7 
7.

54
7 

0.
30

0 
8.

59
8 

0.
18

9 
8.

53
8 

0.
07

1 
8.

33
2 

0.
24

4 
8.

78
2 

2
0.

22
3 

7.
96

6 
0.

30
9 

7.
04

1 
0.

22
5 

9.
05

0 
0.

20
1 

8.
47

2 
0.

31
7 

7.
14

6 
0.

39
1 

7.
87

8 
3

0.
16

3 
8.

26
4 

0.
29

5 
7.

11
4 

0.
25

5 
8.

87
5 

0.
25

5 
8.

18
2 

0.
39

5 
6.

72
3 

0.
38

9 
7.

89
6 

4
0.

15
2 

8.
32

2 
0.

33
9 

6.
88

7 
0.

19
3 

9.
23

5 
0.

23
7 

8.
28

1 
0.

37
7 

6.
82

1 
0.

39
2 

7.
87

5 
5

0.
24

5 
7.

84
9 

0.
32

5 
6.

96
0 

0.
06

7 
9.

92
8 

0.
28

5 
8.

01
4 

0.
35

8 
6.

92
6 

0.
38

8 
7.

90
0 

6
0.

72
2 

4.
76

2 
0.

38
0 

6.
66

9 
- 

10
.8

23
 

0.
32

9 
7.

76
4 

0.
34

5 
6.

99
8 

0.
38

6 
7.

91
3 

7
0.

61
1 

5.
63

8 
0.

35
6 

6.
80

2 
0.

83
1 

4.
22

8 
0.

29
2 

7.
97

7 
0.

34
4 

7.
00

1 
0.

38
6 

7.
91

4 
8

0.
48

7 
6.

47
0 

0.
39

8 
6.

57
2 

0.
66

3 
5.

96
5 

0.
40

5 
7.

31
0 

0.
37

2 
6.

85
0 

0.
39

2 
7.

87
4 

9
- 

20
.9

78
 

- 
0.

22
5 

- 
19

.5
74

 
- 

0.
96

4 
- 

0.
35

9 
0.

34
5 

0.
15

3 
10

 
0.

89
7 

2.
89

9 
0.

40
7 

6.
52

4 
- 

10
0.

00
0 

0.
40

0 
7.

34
6 

0.
33

4 
7.

05
6 

0.
38

5 
7.

92
1 

 

004-17

6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015



18
 

 D
: M

od
el

 te
st

 a
t o

ff
-p

ea
k 

pe
rio

ds
 in

 w
or

kd
ay

 
M

od
el

 
T

ra
in

 L
en

gt
h 

4 
6 

8 
10

 
12

 
M

ix
 

C
as

es
18

2 
49

9 
11

0 
68

 
9 

86
8 

R
2  

R
M

SE
 

R
2  

R
M

SE
 

R
2  

R
M

SE
 

R
2  

R
M

SE
 

R
2  

R
M

SE
 

R
2  

R
M

SE
 

1
0.

11
3 

10
.3

23
 

0.
07

3 
9.

42
5 

0.
18

1 
10

.2
62

 
0.

11
8 

10
.6

82
 

0.
20

8 
6.

99
4 

0.
14

9 
10

.3
71

 

2
0.

11
9 

10
.2

89
 

0.
08

1 
9.

38
2 

0.
18

6 
10

.2
35

 
0.

25
9 

9.
79

3 
0.

45
2 

5.
81

3 
0.

17
2 

10
.2

31
 

3
0.

12
6 

10
.2

46
 

0.
09

0 
9.

33
5 

0.
25

4 
9.

79
3 

0.
32

0 
9.

37
7 

0.
52

9 
5.

39
0 

0.
21

1 
9.

98
5 

4
0.

12
1 

10
.2

74
 

0.
09

0 
9.

34
0 

0.
29

3 
9.

53
7 

0.
35

9 
9.

10
3 

0.
44

8 
5.

83
5 

0.
22

1 
9.

92
1 

5
0.

12
0 

10
.2

84
 

0.
09

2 
9.

32
6 

0.
30

0 
9.

49
2 

0.
40

5 
8.

77
5 

0.
56

6 
5.

17
4 

0.
23

4 
9.

84
1 

6
0.

12
3 

10
.2

61
 

0.
09

6 
9.

30
5 

0.
29

4 
9.

53
2 

0.
40

0 
8.

81
2 

0.
90

7 
2.

39
5 

0.
24

6 
9.

76
2 

7
0.

12
0 

10
.2

82
 

0.
11

6 
9.

20
3 

0.
29

3 
9.

53
7 

0.
41

7 
8.

68
7 

- 
- 

0.
25

6 
9.

69
5 

8
0.

11
5 

10
.3

07
 

0.
11

5 
9.

21
1 

0.
28

8 
9.

57
0 

0.
41

5 
8.

69
9 

- 
- 

0.
25

9 
9.

67
7 

9
- 

0.
34

5 
0.

13
2 

0.
24

0 
0.

13
4 

0.
24

6 
0.

00
6 

0.
23

4 
- 

- 
0.

25
9 

9.
67

7 

10
 

0.
11

 
10

.3
41

 
0.

11
4 

9.
21

1 
0.

27
4 

9.
66

4 
0.

39
8 

8.
82

6 
- 

- 
0.

26
6 

9.
63

2 

E:
  M

od
el

 te
st

 in
 w

ee
ke

nd
 

M
od

el
 

T
ra

in
 L

en
gt

h 
4 

6 
10

 
M

ix
 

C
as

es
81

 
19

5 
23

 
29

9 
R

2  
R

M
SE

 
R

2  
R

M
SE

 
R

2  
R

M
SE

 
R

2  
R

M
SE

 
1

0.
16

2 
11

.4
38

 
0.

10
7 

9.
67

9 
0.

31
3 

12
.2

28
 

0.
16

0 
10

.9
22

 
2

0.
15

2 
11

.5
09

 
0.

13
3 

9.
53

9 
0.

40
4 

11
.3

87
 

0.
18

5 
10

.7
56

 
3

0.
20

3 
11

.1
58

 
0.

13
6 

9.
52

1 
0.

38
4 

11
.5

77
 

0.
19

7 
10

.6
79

 
4

0.
19

4 
11

.2
20

 
0.

13
3 

9.
53

6 
0.

36
4 

11
.7

61
 

0.
19

5 
10

.6
95

 
5

0.
18

7 
11

.2
71

 
0.

13
4 

9.
53

6 
0.

37
4 

11
.6

66
 

0.
20

4 
10

.6
32

 
6

0.
17

6 
11

.3
46

 
0.

13
5 

9.
52

6 
0.

33
7 

12
.0

08
 

0.
20

5 
10

.6
27

 
7

0.
24

1 
10

.8
85

 
0.

13
5 

9.
52

8 
0.

50
2 

10
.4

11
 

0.
22

2 
10

.5
11

 
8

0.
23

5 
10

.9
32

 
0.

14
5 

9.
47

2 
0.

50
8 

10
.3

47
 

0.
23

5 
10

.4
26

 
9

- 
0.

50
9 

- 
- 

- 
0.

87
1 

0.
23

5 
10

.4
26

 
10

 
0.

21
5 

11
.0

69
 

0.
16

7 
9.

35
2 

0.
43

3 
11

.1
07

 
0.

25
5 

10
.2

89
 

004-18

6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015



19 
 

 

Acknowledgements 
This research is supported by the State Key Laboratory of Rail Traffic Control & Safety

（Contract No. RCS2014ZTY1）, China Scholarship Council (201308110079), Beijing 
Higher Education Young Elite Teacher Project (YETP0555), the Fundamental Research 
Funds for the Central Universities (2014JBM058).  The author would also thank Prof Ingo 
Hansen for his advices on the paper. 

References 
Buchmuller, S., Weidmann, U., Nash, A.(2008). “Development of a dwell time calculation 

model for timetable planning”. Institute for Transport Planning and Systems, Comprail 
XI 525. Switzerland. 

Cacchiani, V., Huisman, D., Kidd, M., Kroon, L., Toth, P., Veelenturf, L., & Wagenaar, J. 
(2014). “An overview of recovery models and algorithms for real-time railway 
rescheduling”. Transportation Research Part B: Methodological, 63, 15-37. 

Caimi, G., Fuchsberger, M., Laumanns, M., & Lüthi, M. (2012). “A model predictive 
control approach for discrete-time rescheduling in complex central railway station 
areas”. Computers & Operations Research, 39(11), 2578-2593. 

Daamen, W., Lee, Y., Wiggenraad P.( 2008). “Boarding and alighting experiments: 
Overview of setup and performance and some preliminary results”. Transportation 
Research Record: Journal of the Transportation Research Board, 2042(1): 71-81.  

Davis, G.A., Nihan, N.L.(1991). “Nonparametric regression and short-term freeway 
traffic forecasting”. Journal of Transportation Engineering, 117 (2): 178-188. 

Devijver P. (1982). “Statistical pattern recognition”. Applications of pattern recognition, 
K.S. Fu, ed., CRC press, Boca Raton, Fla., 15-36. 

Harris, N. G. (2006). “Train boarding and alighting rates at high passenger loads”. 
Journal of advanced Transportation 40 (3) : 249-263.  

Heinz, W. (2003). “Passenger Service Times on Trains—Theory, Measurements and 
Models”. Licentiate thesis. Royal Institute of Technology, Stockholm.  

Hansen, I. A., Goverde, R. M. P., van der Meer, D. J. (2010). “Online Train Delay 
Recognition and Running Time Prediction”. 13th International IEEE Annual 
Conference on Intelligent Transportation Systems: 1783–1788. 

Jone, J.(2011). “Investigation and Estimation of Train Dwell Time for Timetable 
Planning”, Proceedings of 9th World Congress on Railway Research, May 22-26. 

Kecman, P., Goverde, R. M. P. (2013). “An online railway traffic prediction model”. 
Proceedings of the 5th International Seminar on Railway Operations Modelling and 
Analyisis, Copenhagen. 

Karlsson, M., Yakowitz,  S. (1987). “Rainfall-runoff forecasting methods, old and new”. 
Stochastic Hydrology and Hydraulics, 1(4): 303-318. 

Kecman, P. (2014). “Model for Predictive Railway Traffic Management”. PhD 
Dissertation, Department of Traffic and Planning, Delft University of Technology, The 
Netherlands, 2014 

Lam, W. H. K., Cheung, C.Y., Poon, Y. F. (1998). “A study of train dwelling time at the 
Hong Kong mass transit railway system”. Journal of Advanced Transportation 32 (3): 
285-295. 

004-19

6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015



20 
 

Li D., Goverde R.M.P., Daamen W., He H.(2014). “Train Dwell Time Distributions at 
Short Stop Stations”. Proceedings of 17th International IEEE Conference on Intelligent 
Transportation Systems. October 8-11, Qingdao, China,  

Lin, T., Wilson, N. H. M. (1992).  “Dwell Time Relationships for Light Rail Systems”. 
Transportation Research Record 1361, TRB, National Research Council, Washington, 
D.C.,  pp. 287–295.  

NS Group. (2013) NS Annual Report 2012. Utrecht. 
Parkinson, T. ,Fisher, I. (1996). TCRP Report 13: Rail Transit Capacity. TRB, National 

Research Council, Washington, D.C.. 
Puong, A. (2000). “Dwell time model and analysis for the MBTA red line”. Massachusetts 

Institute of Technology Research Memo.  
Quaglietta, E. , Corman, F. , Goverde, R. M. P. (2013). “Analysis of a closed-loop control 

framework in a realistic railway traffic environment”. Proceedings of the 3rd 
conference on Models and technologies for intelligent transportation systems ,1-10. 

Weston, J. G.( 1989). “Train service model – technical guide”. London Underground 
operational research note 89/18.  

Smith, B.L., Williams, B.M., and Oswald R. K.(2002). “Comparison of parametric and 
nonparametric models for traffic flow forecasting”. Transportation Research Part C: 
Emerging Technologies, 10(4): 303-321. 

Wiggenraad, P.B.L.(2001). “Alighting and boarding times of passengers at Dutch railway 
stations  analysis of data collected at 7 stations in October 2000”. TRAIL Research 
School: Delft University of Technology, Delft. 

Wirasinghe, S. C., Szplett, D. (1984). “An Investigation of Passenger Interchange and 
Train Scheduling Time at LRT Stations: (ii) Estimation of Standing Time”. Journal of 
Advanced Transportation, Vol. 18, No. 1, pp. 13–24. 

Yamamura, A., Koresawa, M., Inagi, T., Tomii, N. (2013). “Dwell time analysis in 
Railway Lines using Multi Agent Simulation”. 13th World Conference on 
Transportation Research (WCTR) , July 15-18, Rio de Janeiro, Brazil. 

Zhang Q., Han B., Li, D. ( 2008). “Modeling and simulation of passenger alighting and 
boarding movement in Beijing metro stations”. Transportation Research Part C: 
Emerging Technologies, 16 (5): 635-649. 

004-20

6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015


