
 
 

Delft University of Technology

Systematic and Accurate Method to Model Dielectric Stratifications in Artificial Dielectric
Layers

Tapia Barroso, Roderick G.; Cavallo, Daniele

DOI
10.1109/TAP.2025.3529196
Publication date
2025
Document Version
Final published version
Published in
IEEE Transactions on Antennas and Propagation

Citation (APA)
Tapia Barroso, R. G., & Cavallo, D. (2025). Systematic and Accurate Method to Model Dielectric
Stratifications in Artificial Dielectric Layers. IEEE Transactions on Antennas and Propagation, 73(4), 2654-
2659. https://doi.org/10.1109/TAP.2025.3529196

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TAP.2025.3529196
https://doi.org/10.1109/TAP.2025.3529196


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



2654 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 73, NO. 4, APRIL 2025

Communication
Systematic and Accurate Method to Model Dielectric Stratifications

in Artificial Dielectric Layers
Roderick G. Tapia Barroso and Daniele Cavallo

Abstract— We present a systematic approach to include the effects of
dielectric slabs in artificial dielectric layers (ADLs). Typical implementa-
tions of ADLs consist of layers of subwavelength metal patches supported
by either dielectric slabs or thin dielectric films bonded onto foam spacers.
The presence of dielectrics in the proximity of the metal layers affects
the equivalent layer capacitance and thus must be accurately taken
into account for the modeling and design of the ADLs. The proposed
procedure allows to derive an analytical expression for the effective
permittivity of each capacitive layer that depends on the dielectric layers
in the vicinity of the metal. The equivalent layer capacitance can then be
included in the ADL equivalent transmission line model, which can be
used, for instance, for the design of matching structures in ultrawideband
arrays.

Index Terms— Artificial dielectric layers (ADLs), effective permittivity,
spectral domain method, stratified media, wideband arrays.

I. INTRODUCTION

Artificial dielectric layers (ADLs) are commonly adopted structures
in the design of lenses, antennas, and arrays. They consist of a number
of capacitive metal meshes typically made of subwavelength periodic
patches [1], [2]. Their effective electric and magnetic properties can
be engineered by controlling the spatial density of the metal patches,
i.e., the period and the size of the patches, as well as the distance
and the mutual shift between layers. ADLs have been used to design
microwave or millimeter-wave lenses [2], [3], as partially reflective
surfaces in leaky-wave antennas [4], and as wide-angle impedance
matching layers in antenna arrays [5]. A specific application consid-
ered in this communication is the use of ADLs as superstrates in
ultrawideband array designs [6], [7].

The design of ADLs exploits the availability of equivalent circuits
that describe the propagation of a plane wave through the material by
means of transmission lines in which each metal layer is represented
as an equivalent shunt capacitance.

Closed-form expressions for the layer capacitance of a single layer
were derived in [8], [9], [10], [11], [12], and [13]. Floquet analyses
to derive the equivalent capacitance of periodic strips or circular
patches were given in [14] and [15], but only for free-space case.
The solution given in [13] is particularly advantageous for its simple
generalization to the case of multilayer ADLs. When the distance
between layers is small compared with the period, it is important to
account for the reactive coupling between layers in the estimation of
the capacitance. A closed-form capacitance formula that accounts for
the interaction between layers was derived in [16], which is valid for
general structures where each layer can have different geometrical
parameters.

One key advantage of ADLs when used as slabs in antenna and
array designs is that they exhibit anisotropic properties, i.e., their
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effective refractive index decreases with the incidence angle. This
characteristic behavior allows to avoid the excitation of surface waves.
To maximize the anisotropy, the optimal hosting medium of ADLs is
free space. However, physical realization of ADLs requires dielectric
slabs to support the patches. Previous implementations considered
patches printed on very thin dielectric films glued to foam spacers [7],
[17], to emulate the ideal free-space hosting medium. However, the
thin dielectric substrates and bonding layers change the effective
capacitance of the metal layer. This effect was never rigorously
included in previous models.

Some techniques to estimate the effective permittivity of a layer in
the presence of dielectrics are used in [10], [11], and [12], but they
are only accurate for dielectric thickness that is much larger than
the gap between patches. Contrarily, for very thin dielectric layers,
a method was proposed in [18] to estimate the effective capacitance
and consisted in studying the propagation along a slotline with width
equal to the gap between patches and embedded in the same dielectric
stratification as the ADLs. However, this method is not rigorous and
its accuracy is greatly varying depending on the specific ADL design.

In this communication, we propose a systematic approach to
include the effects of dielectric slabs with arbitrary thickness. The
procedure allows to derive a closed-form expression for the effective
permittivity of each capacitive layer that depends on the dielectrics
in the vicinity of the metal. We resort to spectral domain methods to
study scattering from a single layer, with and without the dielectrics.
By comparison of these two results, we derive an effective permittiv-
ity that is used as a correction factor for the layer capacitance. The
expressions are valid for both transverse electric (TE) and transverse
magnetic (TM) modes and for general oblique incidence.

The equivalent layer capacitance can then be included in the
equivalent transmission line model in a multilayer configuration.
A validation of the method is presented, based on the use of ADLs
as matching structures for ultrawideband arrays. As an example
of application, we use our model for the estimation of the active
reflection coefficient of connected arrays loaded with ADLs.

II. ANALYSIS OF A SINGLE LAYER

A single layer of an ADL structure is a capacitive mesh, made
of periodic square metal patches. It is assumed that both the patch
size and the period are subwavelength (<λ/4) and that the patches
are infinitely thin and perfectly conducting. It is well-known that the
scattering from such a layer is azimuthally independent [19], thus we
can assume, without loss of generality, that the plane of incidence
is φ = 0◦, aligned with one of the two orthogonal gaps between
patches [see Fig. 1(a)].

A. Free Space

To explain the method used for the analysis of ADLs in general
dielectric stratified media, we start from the known solution of a
single layer in free space, under generic plane-wave incidence from
the direction θ [Fig. 1(a)]. The layer consists of periodic patches
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Fig. 1. (a) Single layer of subwavelength periodic square patches in free
space under generic plane-wave illumination. (b) Equivalent transmission line
model for TE and TM incidences. (c) Electric field in the gaps for periodic
strips and patches, explaining the correction factor α for the edge capacitance.

with spacing d and gap width w. A method was described in [13],
based on a spectral method of moments (MoM) analysis, leading
through some approximations to the equivalent circuit representation
in Fig. 1(b). This equivalent circuit consists of two transmission
lines representing the fundamental Floquet wave, for the TE and
TM modes, respectively. The lines have characteristic impedance
Z0,TM = ζ0kz0/k0 and Z0,TE = ζ0k0/kz0, where k0 and ζ0 are
the free-space wavenumber and impedance, and kz0 = k0 cos θ is the
propagation constant on the lines.

The layer equivalent admittances for TE and TM waves are given
by

YTM = j BFS (1)

YTE = j BFS

(
1 −

k2
ρ0

2k2
0

)
(2)

where kρ0 = k0 sin θ . The admittances are expressed in terms of the
free-space layer susceptance BFS, defined as

BFS = α
ωε0d

π

∑
mx ̸=0

1
|mx |

sinc2
(πmxw

d

)
(3)

where ω is the angular frequency, ε0 is the vacuum permittivity,
and mx is an integer that denotes the index of the Floquet mode.
We introduced the factor α that is equal to (d − w)/d . This factor
takes into account the difference in capacitance between strips and
patches, when the phase of the electric field in the gaps is uniform
[see Fig. 1(c)].

B. General Dielectric Stratification: MoM Solution

The expressions given in the previous section are only valid for a
layer in free space. To derive an expression for the layer admittance in
arbitrary stratified media, we have to recall the general MoM solution
given in [13] and [20]. The procedure consisted of solving for the
equivalent magnetic current in the gaps by defining four entire domain
basis functions. Two basis functions are constant in amplitude and
linear in phase to account for the oblique incidence, as shown in
Fig. 2(a). The other two functions are odd distributions [see Fig. 2(b)]
needed to represent the continuity of the field at the crossing between
slots.

Fig. 2. Representation of (a) linear phase basis functions and (b) odd basis
functions.

The elements of the 4 × 4 MoM admittance matrix can be
expressed in the spectral domain as

Ypq = −
1

d2

∞∑
mx =−∞

∞∑
m y=−∞

Fp
(
kxm , kym

)
G
(
kxm , kym

)
· F∗

q
(
−kxm , −kym

)
(4)

where kxm = kx0 − (2πmx )/d and kym = −(2πm y)/d are the
Floquet modes, with kx0 = k0 sin θ , and the symbol ∗ denotes
complex conjugation. G is the dyadic spectral Green’s function
relating magnetic field to magnetic source, and Fp and Fq are the
Fourier transforms of the basis and test functions, respectively, and
are given explicitly in the Appendix.

Following the steps in the Appendix, the TE and TM components
of the admittance matrix can be written as

YTMTM = Y22 (5)

YTETE = Y11 −
Y41Y14Y33

Y33Y44 − Y34Y43
. (6)

The approximated expressions of all the mutual admittance terms
are given in (21)–(27). To arrive to a circuit representation, it is
convenient to split the admittances in a term accounting for the
fundamental Floquet wave Yf and a term including all higher order
modes Yho

YTMTM = Yf,TM + Yho,TM (7)

YTETE = Yf,TE + Yho,TE. (8)

The fundamental Floquet mode can be approximated as the xx- and
yy-components of the spectral dyadic Green’s function [13]

Yf,TM = −G yy (kx0, 0) (9)

Yf,TE = −Gxx (kx0, 0) (10)

while the higher order terms are

Yho,TM = −

∑
mx ̸=0

Smx G yy (kxm , 0) (11)

Yho,TE = −

∑
m y ̸=0

Sm y Gxx
(
kx0, kym

)
−

Y41Y14Y33
Y33Y44 − Y34Y43

(12)

where Smx = sinc2(kxmw/2) and Sm y = sinc2(kymw/2).
The expressions (5) to (12) can be applied to arbitrary dielectric

stratification, since they are written in terms of the spectral Green’s
function, which is known for layered media by solving an equivalent
transmission line problem (see the Appendix). Therefore, the funda-
mental mode can be modeled as equivalent transmission line sections
representing the stratified medium, while the higher order modes are
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described as a shunt admittance, which also takes into account the
presence of the dielectrics through Green’s function.

C. General Dielectric Stratification: Approximated Solution

While the expressions (5)–(12) can be used to find the equivalent
layer admittance for arbitrary oblique incidence and general dielectric
stratification, they still require several Floquet sums to be computed
for each incidence angle. Furthermore, these solutions do not allow
to easily extend the method to multiple layers. For this reason, in this
section we propose an approximated formula for the layer admittance
that is simpler to compute and can be directly applied for multilayer
configurations.

We start from the assumption that the layer admittance in the
presence of dielectrics can be related to the free-space admittance
in (1) and (2) as follows:

YTM = jεr,eff BFS (13)

YTE = jεr,eff BFS

(
1 −

k2
ρ0

2k2
0εr,eff

)
(14)

where the effective layer permittivity εr,eff is introduced, multiplying
the susceptance in both YTM and YTE, and the wavenumber in YTE.
This assumption was also used in [10] and [12]. However, accurate
estimation of εr,eff has only been available for simple stratifications,
i.e., when the metal patches are immersed in an infinite homogeneous
medium or at the boundary of two infinitely extending homogeneous
media. On the contrary, the method presented here is valid for a more
general dielectric stratification.

The expression in (14) assumes that εr,eff is not varying with the
angle of incidence. Under this hypothesis, εr,eff can be calculated for
normal incidence, by comparing (11) with (1) and (3), leading to

εr,eff ≈
−
∑

mx ̸=0 Smx G yy(kxm , 0)

jωε0d/π
∑

mx ̸=0 Smx /|mx |
. (15)

It can be noted that even if the effective permittivity is derived
for normal incidence, the dependence on the incidence angle is taken
into account for TE incidence by the kρ0 term in (14). To quantify
the accuracy of the approximation (15), in Section III we compare it
with the general MoM solution and CST simulations.

D. Example: Two Homogeneous Dielectrics

As an example, we consider a layer at the interface between two
infinite media with relative permittivity, wavenumber, and impedance
εr,1, k1, ζ1 and εr,2, k2, ζ2, respectively. Considering TM incidence
at φ = 0 Green’s function is given as

G yy(kxm , 0) =
−k1

ζ1

√
k2

1 − k2
xm

+
−k2

ζ2

√
k2

2 − k2
xm

≈ −

(
k1
ζ1

+
k2
ζ2

)
jd

2π |mx |
(16)

where we used the approximation (k2
i − k2

xm)1/2
≈ (−k2

xm)1/2
≈

− j2π |mx |/d , with i ∈ {1, 2}, valid for the subwavelength period.
Realizing that ki /ζi = ωε0εr,i and substituting (16) in (15), one
obtains the well-known approximation

εr,eff =
εr,1 + εr,2

2
. (17)

This average value is typically used as an approximation if the
thickness of the two media is finite, yet large compared with the
gaps w. To investigate how the effective permittivity of finite height
slabs tends to the quasi-static approximation in (17), we study a
layer of patches with period d = 6 mm, between two dielectric

Fig. 3. (a) Example of stratification, considering periodic patches between
two slabs with height h and relative permittivities εr,1 = 3.4 and εr,2 = 2.32.
(b) Effective permittivity as a function of h for different gap widths w.

Fig. 4. (a) Example of stratification, considering periodic patches with
spacing d = 6 mm printed on a dielectric film with thickness h2 = 25 µm
and relative permittivity εr,2 = 2.32, and bonding layers above and below
with thickness h1 = 38 µm and relative permittivity εr,1 = 3.4. (b) Effective
permittivity as a function of the gap width w.

slabs with increasing but finite height h, and relative permittivities
εr,1 = 3.4 and εr,1 = 2.32 as shown in Fig. 3(a). The εr,eff is plotted
as a function of h for three different values of the width w. It can be
seen that εr,eff in Fig. 3(b) converges faster to the quasi-static value
in (17) for larger h/w ratios. However, the convergence is reached
only for values of h large enough (around d/4).

III. NUMERICAL RESULTS

A. Single Layer

As an example, we consider a layer in the presence of a realistic
dielectric stratification, as shown in Fig. 4(a). The patches are printed
on a 25-µm-thick dielectric film with relative permittivity 2.32 and
bonding layers are considered above and below with thickness 38 µm
and relative permittivity 3.4.

The effective permittivity from (15) is evaluated and plotted in
Fig. 4(b) as a function of the gap width w. Once the permittivity
is calculated, the equivalent layer admittances are found using (13)
and (14). The equivalent admittances of the metal patches can be
placed in parallel to the TE and TM transmission lines representing
the fundamental Floquet wave, as depicted in Fig. 5. The reflection
coefficient for generic plane-wave incidence can then be found from
the equivalent transmission lines.

To validate the method, we compare in Fig. 6 our analytical
solution with CST simulations. Fig. 6(a) refers to a layer with period
d = 6 mm and varying gap width w, at the calculation frequency of
5 GHz, under normal plane-wave incidence. A good comparison can
be observed with CST, for both the cases with and without dielectrics.
It can be noted that higher reflection occurs in the presence of the
dielectrics, since the effective layer capacitance increases when the
dielectrics are included. Fig. 6(b) shows the case for 60◦ TE and TM
incidences, in the presence of the dielectric slabs. The expression
for the layer impedance in (13)–(15) can be compared with more
general expressions (9)–(12), to verify whether the assumption that
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Fig. 5. Single layer of subwavelength periodic square patches in the presence
of bonding layers. (a) Three-dimensional view. (b) Side view. (c) Equivalent
TE/TM transmission lines.

Fig. 6. Magnitude of the reflection coefficient for a layer with d = 6 mm
and varying gap width w, at the calculation frequency of 5 GHz. Comparison
between our method and CST is shown for (a) normal incidence, with and
without dielectrics. (b) 60◦ TE and TM incidences, with dielectrics.

Fig. 7. Two-layer structure at distance dz. (a) Side view and (b) equivalent
transmission line. The two layers are shifted relative to each other so that the
distance between the patch centers of the two layers is d/2.

εr,eff is independent of the incidence angle is accurate. Both the MoM
solution and the approximation based on the effective permittivity
(computed for normal incidence) are in good agreement with CST.

B. Multiple Layers

Although the expression for the effective permittivity has been
derived for a single layer, we can assess its validity in a multilayer
ADL configuration. In multilayer ADLs, we use a more general
expression of the layer susceptance BML given in [16], which
accounts for the reactive coupling between layers. As such, the
expression of the layer susceptance depends on the geometrical
parameters of the layer itself, as well as on the geometries of the
two adjacent layers above and below.

Fig. 8. Magnitude of the reflection coefficient for a two-layer structure
with d = 6 mm and varying layer distance dz, at the calculation frequency
of 5 GHz. Comparison between our method and CST is shown for (a) normal
incidence, with and without dielectrics, for w = 0.3 mm; (b) 60◦ TE and
TM incidences, with dielectrics, for w = 0.3 mm; and (c) 45◦ TE and TM
incidences, with dielectrics, for w = 1.5 mm.

Fig. 9. (a) Three-dimensional view and (b) side view of the connected array
unit cell with characteristic dimensions.

When dielectrics are included, we assume that this susceptance
BML is multiplied by the effective permittivity derived for the single
layer. To analyze the accuracy of this approximation, we consider two
metal layers each surrounded by dielectrics with the same dimensions
used for the single-layer analysis. The two metal layers are assumed
to be at a distance dz, shifted relative to each other so that the distance
between the patch centers of the two layers is half the period (d/2),
as depicted in Fig. 7(a). The equivalent transmission line in Fig. 7(b)
can be used to estimate the reflection coefficient under generic oblique
incidence.

The magnitude of the reflection coefficient for the two-layer
structure with d = 6 mm, w = 0.3 mm, and varying layer distance dz
is shown at the frequency of 5 GHz in Fig. 8(a) and (b), for normal
incidence and 60◦ incidence, respectively. Comparison between our
method and CST is shown to be good in both the cases. The results
for 45◦ incidence and a larger width w = 1.5 mm are presented in
Fig. 8(c). The error with respect to CST is slightly worse in this case
but still relatively small.
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Fig. 10. Side view of the connected array unit cell with geometrical
parameters (in mm) and active reflection coefficient. (a) Dimensions are
optimized for free space. (b) Same dimensions as free space, but including
the dielectrics. (c) Dimensions reoptimized by accounting for the dielectrics.

C. Application to Wideband Array Designs

As final validation of the method, we apply the proposed approach
to the design of ADL superstrates for ultrawideband arrays. ADLs
have been used in combination with connected slot elements to
achieve wideband wide-scanning phased arrays [7], [17]. When
considering multiple nonaligned layers with small interlayer distance,
the factor α introduced in (3) is taken equal to 1 for H-plane scanning,
since we observed a reduction in the effect illustrated in Fig. 1(c).

The active reflection coefficient of the unit cell can be evaluated
with closed-form expressions that use the transmission line represen-
tation of ADLs. An example design with the 5:1 bandwidth is shown
in Fig. 9(a), where the geometrical parameters of the connected array
are as follows: hgap = 0.84 mm, hbr = 3.46 mm, δ = 5 mm,
wslot = 3.07 mm, and array spacing is 12 mm. The characteristic
dimensions of the ADL are illustrated in Fig. 9(b), where wi is
the gap width between patches for the i th layer, while di i+1 and
si i+1 are the distance and the shift between two adjacent layers with
index i and i + 1, respectively. This 12-layer ADL in free space is
optimized to achieve the performance shown in Fig. 10(a), of which
the geometrical parameters are given in the inset. Both the connected
array input impedance formulas and CST show similar results, for
broadside and scanning to 60◦ in the main planes.

If dielectrics are added for each layer without changing the ADL
geometrical parameters, the active reflection coefficient performance
degrades above 9 GHz as shown in Fig. 10(b). However, if we
reoptimize the widths and shifts of the ADL using the modified

formulas for the effective layer capacitance in the presence of the
dielectrics, a new unit cell is obtained which achieves the performance
shown in Fig. 10(c). Even for the example with large number of
layers, the proposed method shows good comparison with full-wave
simulations performed with CST. It can be emphasized that our
method can simulate the unit cell in Fig. 9(b) in a few seconds,
while CST simulations require several hours.

IV. CONCLUSION

We derived an analytical solution to take into account the effect of
dielectric slabs in ADLs. Typical ADL designs for wideband arrays
include electrically thin dielectric layers within the structure that
change significantly the ADL performance with respect to free space.
The method described here allows to accurately consider this effect,
enabling the efficient optimization of the array unit cell performance
in the presence of realistic dielectric stacks.

APPENDIX

DERIVATION OF ADMITTANCE MATRIX ELEMENTS

The MoM solution for a single layer involves the calculation of
mutual admittances defined in (4). The admittances are written as
spectral domain Floquet sums, in terms of the Fourier transform of
the basis functions

F1
(
kxm , kym

)
= dδ (mx ) sinc

(
kymw/2

)
F2
(
kxm , kym

)
= dδ

(
m y
)

sinc (kxmw/2)

F3
(
kxm , kym

)
= Bd (kxm) sinc

(
kymw/2

)
F4
(
kxm , kym

)
= Bd

(
kym

)
sinc (kxmw/2) (18)

where δ(·) is the Kronecker delta, and the function Bd is the Fourier
transform of the odd distribution depicted in Fig. 2(b)

Bd (kx )

=
e− j(kx +k0)

d
2 − e− j(kx +k0)

w
2

j (kx + k0)
− 0

e− j(kx −k0)
w
2 − e− j(kx −k0)

d
2

j (kx − k0)

+
e j(kx −k0)

d
2 − e j(kx −k0)

w
2

j (kx − k0)
+ 0

e j(kx +k0)
d
2 − e j(kx +k0)

w
2

j (kx + k0)

+ C
kxw cos (kxw/2) − 2 sin (kxw/2)

jk2
x

(19)

with 0 = −e− jk0d and C = 2/w(e− jk0(w/2)
+ 0e jk0(w/2)).

The admittance matrix can be simplified by noting that Y13 ≈

Y31 ≈ Y24 ≈ Y42 ≈ 0 as they represent the projection of a
nearly uniform basis function onto an odd function. Without loss
of generality, we may assume that similar to the free-space case
the reduced admittance matrix is azimuthally independent, and thus
the analysis can be continued by assuming φ = 0◦. The reduced
admittance matrix for TE and TM modes is diagonal (TE and TM
modes are decoupled) and given as follows:[

YTMTM 0
0 YTETE

]
=

 Y22 0

0 Y11 −
Y41Y14Y33

Y33Y44 − Y34Y43

 . (20)

We now calculate the matrix elements explicitly as

Y22 = −

∞∑
mx =−∞

Smx G yy
(
kxm , ky0

)
(21)

Y11 = −

∞∑
m y=−∞

Sm y Gxx
(
kx0, kym

)
(22)

Y14 ≈ −
jwC
dy

∑
m y ̸=0

Sm y

kym
Gxy

(
kx0, kym

)
(23)
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Fig. 11. (a) Layer embedded in general stratified medium and (b) equivalent
transmission lines to evaluate spectral Green’s function.

Y44 ≈
1

dx

1
dy

| jwC |
2

∞∑
mx =−∞

∑
m y ̸=0

Sm y Smx

k2
ym

G yy
(
kxm , kym

)
(24)

Y33 ≈
1

dx

1
dy

| jwC |
2
∑

mx ̸=0

∞∑
m y=−∞

Sm y Smx

k2
xm

Gxx
(
kxm , kym

)
(25)

Y34 ≈
1

dx

1
dy

| jwC |
2
∑

mx ̸=0

∑
m y ̸=0

Sm y Smx

kymkxm
Gxy

(
kxm , kym

)
(26)

Y43 ≈ Y34. (27)

To obtain the components of the dyadic Green’s function, one can
solve for the currents iTE and iTM on the TE and TM transmission
lines representing the generic layered medium above and below the
metal layer, as shown in Fig. 11. The line sections of the i th slab have
characteristic impedance Zi,TM = ζi kzi /ki and Zi,TE = ζi ki /kzi ,
where ki and ζi are the wavenumber and impedance of the medium,
and kzi is the propagation constant on the line sections.

Assuming magnetic currents and magnetic fields only oriented
along x and y, the relevant components of the dyadic Green’s function
are given by

[
Gxx (kx , ky) Gxy(kx , ky)

G yx (kx , ky) G yy(kx , ky)

]
=


−

iTEk2
x + iTMk2

y

k2
ρ

(iTM − iTE) kx ky

k2
ρ

(iTM − iTE) kx ky

k2
ρ

−
iTMk2

x + iTEk2
y

k2
ρ


(28)

where k2
ρ = k2

x + k2
y . From Fig. 11(b), the currents flowing through

the short-circuit at the aa′ terminals can be found as the parallel of
the input impedances for the upper and lower lines

iTE =
1

Zup,TE
+

1
Zdown,TE

(29)

iTM =
1

Zup,TM
+

1
Zdown,TM

. (30)
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