
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Offensive AI for
Directory Enumeration
Alberto Castagnaro

Offensive AI for
Directory

Enumeration
by

Alberto Castagnaro

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Wednesday May 22, 2024 at 10:00 AM.

Alberto Castagnaro: 5861489
Project duration: October 2, 2023 – May 22, 2024
Thesis committee:

Prof. Mauro Conti, Full professor TU Delft, supervisor
Prof. Georgios Smaragdakis, Full Professor, TU Delft
Prof. Jie Yang, Assistant Professor, TU Delft
Dr. Luca Pajola, External Member, Daily supervisor

An electronic version of this thesis is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Acknowledgments

This thesis project marks the end of my academic journey in the Master’s pro-
gram in Computer Science, a journey filled with learning, growth, and invaluable
experiences.

I would like to express my deepest gratitude to all those who have contributed
to the successful completion of this thesis project.

First and foremost, I am deeply indebted to my supervisors, Prof. Mauro Conti
and Dr. Luca Pajola. Your unwavering support and guidance, the opportunities
you gave me to explore new topics I was interested in, and your expertise in
supporting me throughout a project I am proud of have been incredibly valuable.

I would also like to express my heartfelt appreciation to my family and friends
for their support throughout this journey.

To my mom, thank you for giving me this opportunity and continually encourag-
ing me to pursue my dreams.

To my dad, who, even though he is no longer with us, continues to be an endless
source of inspiration, thank you for teaching me to smile even in the face of
adversity.

Tomy girlfriend, Eleonora, thank you for unconditional support even in the tough-
est times and for always being there for me.

Tomy housemates, Pietro, Nicola and Alessio, for sharing this incredible journey
on a daily basis.

To my friends I met here in the Netherlands: Pavlos, Jorge, Rodrigo, Carlo, Ziad,
Anastasis, and Ansh. Thank you for the moments and memories we shared and
for making me relax and smile when needed.

To my Italian friends, F5Z, who every time I came home made me feel like I
never left.

Alberto Castagnaro

i

Abstract

Web Vulnerability Assessment and Penetration Testing (Web VAPT) is an im-
portant cybersecurity practice that thoroughly examines web applications to un-
cover possible vulnerabilities. These vulnerabilities represent potential security
gaps that could severely compromise the web applications’ integrity and func-
tionality if exploited by malicious entities. One of the attacks employed in the
Web VAPT process is the Directory Brute-Forcing Attack. This attack aims to
identify hidden directories and files not adequately secured in a web application
that contain sensitive information or critical functionalities. The attack methodol-
ogy involves sending many requests of possible directories or files to the target
web application, where brute-force generation of requests is performed using a
wordlist. Due to its brute-force nature, this attack methodology often results in
enormous quantities of requests sent for a small amount of successful discov-
eries.

With AI’s quick progress and diffusion, the paradigm of Offensive AI emerges,
where AI-based technologies are employed in traditional cyber attacks to make
them more sophisticated and effective. This research explores whether AI can
enhance the standard directory enumeration process. We propose two novel
attack methodologies for performing directory brute-forcing attacks that lever-
age probability and Language Models (LM). Our experiments - conducted on a
testbed consisting of around 1 million URLs from various domains of web appli-
cations (academic institutions, hospitals, government agencies, and business
corporations) - demonstrate the superiority of our approaches over the standard
brute-force attacks. In particular, the LM-based attack results in an average
discoveries increase of 969%, and the probabilistic attack is more efficient at
sending successful requests in the early stages of attacks in more than 94% of
cases.

ii

Contents

Acknowledgments i

Abstract ii

1 Introduction 1
1.1 Context . 1

1.1.1 Artificial Intelligence . 2
1.1.2 Offensive AI . 2

1.2 Motivation . 2
1.3 Contribution . 2
1.4 Report Structure . 3

2 Background 4
2.1 NLP . 4
2.2 Language Models . 4

2.2.1 Overview . 4
2.2.2 Embedding . 6

2.3 Related Works . 7

3 Threat model 8
3.1 Attack Description . 8
3.2 Automated Tools . 9
3.3 Wordlists . 10

3.3.1 Selected Wordlists Similarity 11

4 Attack Methodology 13
4.1 Overview . 13
4.2 Tree Reconstruction . 14
4.3 Standard Approach . 15

4.3.1 Depth-First . 15
4.3.2 Breadth-First . 17

4.4 Probability Based Approach . 18
4.4.1 Approach . 18
4.4.2 Algorithm . 21

4.5 Language-Model Based Approach 22
4.5.1 Approach . 23
4.5.2 Model Architecture . 23
4.5.3 Training and Validation . 25
4.5.4 Algorithm . 26

5 Datasets 28
5.1 Data Description . 28

5.1.1 Source Of Data . 28
5.1.2 Datasets Collected . 28
5.1.3 Preprocessing Of Data 29

5.2 Datasets Analysis . 30
5.2.1 Dataset Properties . 30
5.2.2 Selected Wordlists Coverage Analysis 32
5.2.3 Stemming Analysis . 33
5.2.4 Dataset Similarity Analysis 35

iii

Contents iv

6 Results 36
6.1 Experimental Settings . 36

6.1.1 Attack Testbed . 36
6.1.2 Language Model Validation 37
6.1.3 Evaluation Metrics . 37

6.2 Experimental Results . 38
6.2.1 K Top-Predictions Analysis 38
6.2.2 Average Successful Responses Results 39
6.2.3 Mean Efficiency Ratio Results 40

6.3 Results Discussion . 43
6.3.1 Results Analysis . 43
6.3.2 Exploiting The Context . 43

7 Conclusion 45
7.1 Future Works . 45

7.1.1 Seq2Seq Approach . 46

References 47

1
Introduction

1.1. Context
The word hacking, in its broadest sense, is the act of altering or manipulating
a system’s features to accomplish an objective beyond the original intent of the
creator. In cybersecurity, hacking is often associated with unlawful cyber activ-
ities that aim to compromise devices and networks, gain unauthorized access,
or disrupt systems. These activities usually also target critical infrastructure or
sensitive information and are carried out by various actors, from cyber criminals
to hacktivists and even entire Nation-state actors.

Cyber attacks have increased in frequency and volume in recent years, reaching
an unprecedented impact. It is predicted that global business damage caused
by cybercrime will reach USD 10.5 trillion annually by 2025, with an annual in-
crease of 15% [29]. One of the leading causes is new threat scenarios where
hackers use increasingly sophisticated techniques to conduct cyberattacks us-
ing artificial intelligence, machine learning and other technologies [41]. Some
of the most common targets of these attacks are web applications.

However, the hacking process may represent a valuable resource when per-
formed ethically. Ethical hacking, also known as Penetration testing, Red Team-
ing or white-hat hacking, involves skilled professionals that have the goal of
identifying vulnerabilities and weaknesses in computer systems, networks and
application so they can be fixed before malicious actors can exploit them.

A penetration test, which is a simulated cyber attack against a system, involves
different stages that constitute a cyber attack from Reconnaissance, where the
intelligence gathering of a target takes place, to Post-Exploitation, where the
test has gained access to the target and try to analyze and exploit it further.

In web applications, the Reconnaissance phase of a penetration test may in-
volve Directory enumeration. This process consists in discovering directories,
files and web paths that may be hidden and contain vulnerabilities, sensitive
information or critical functionalities. Discovery attacks, such as directory brute-
forcing or dirbusting attacks, can be employed for this goal. Specifically, the
directory brute-forcing attack involves sending multiple HTTP requests to a tar-
get web application using a wordlist to construct new URLs. Due to its nature,
this type of attack can be time-consuming and may not always yield useful re-
sults.

1

1.2. Motivation 2

1.1.1. Artificial Intelligence
Artificial Intelligence (AI) has emerged as a transformative force in the modern
world, revolutionizing industries and reshaping how we live and work. AI is pro-
jected to have an economic impact on the global economy in 2030 of up to
$15.7 trillion USD [11]. Among the most significant advancements of AI, 2023
has been the breakout year for generative AI, with a massive spread of gener-
ative AI tools that have been bringing several companies to the adoption and
daily use of generative AI among their employees [9].

AI’s impact is profound in cybersecurity. AI-driven security systems can predict
and thwart cyber threats with unprecedented accuracy, adapting to new risks
dynamically. AI has found applications in many fields of cybersecurity, from
threat hunting [12] to response and mitigation [14, 18], malware and phishing
detection [42, 2], authentication [23] and more.

1.1.2. Offensive AI
Artificial intelligence can be a double-edged sword, allowing attackers to lever-
age its capabilities for malicious purposes.

This topic is becoming increasingly important in the hacking and ethical hacking
world and has been defined as Offensive Artificial Intelligence.

Offensive AI refers to the use of artificial intelligence technologies to conduct
cyber-attacks, enhance traditional hacking techniques, or create new methods
of breaching digital security systems. The same models that can predict and
prevent attacks can be inverted to find and exploit vulnerabilities more efficiently
than ever before.

The progress in AI not only presents opportunities for defensive strategies but
also poses significant challenges as it becomes a potent weapon in cybercrimi-
nals’ arsenal.

1.2. Motivation
The motivation behind this research relies on the possible usage of Offensive AI
to enhance the penetration testing process, uncover more vulnerabilities, speed
up the process, and test systems more thoroughly.

Additionally, showing the feasibility of these enhanced attacks can highlight how
advanced malicious actors can exploit offensive AI to conduct cyberattacks and
can help design new defence mechanisms for these new attack scenarios.

The scope of this research, based on web applications, does not focus on spe-
cific technologies or vulnerabilities but wants to build on a general context to
demonstrate the feasibility of using offensive AI to improve the standard method-
ology of bruteforce directory attacks.

1.3. Contribution
This thesis project introduces two novel approaches to boost the performance
of directory brute-forcing attacks. The first approach employs a probabilistic
strategy, while the second approach uses a Language Model for web path gen-
eration.

Both techniques exploit prior knowledge from various web applications to predict
possible directories and implement dynamic decision-making when choosing
what HTTP requests to send.

The contributions of this thesis project can be summarised as follows:

• A novel dataset containing data from four distinct types of web applications

1.4. Report Structure 3

frequently targeted for cyber attacks: commercial, government, hospital,
and universities. The dataset contains more than 1 million URLs.

• A novel directory brute-force attack methodology that employs a proba-
bilistic strategy and dynamical decision-making.

• Another novel directory brute-force attack methodology that leverages a
Language model to generate possible directories to discover.

The two proposed novel approaches are systematically evaluated on 8 different
baselines based on the standard directory brute-force approach. The results
highlight the superiority of the proposed approaches, with an average perfor-
mance increase of 969% for the Language model-based approach and an opti-
mal use of the probabilistic strategy in stealthier situations.

Ethical Disclaimer: The techniques and methods discussed in this research
are intended for educational purposes and ethical security testing only. The
authors do not condone the use of these methods for malicious purposes and
strongly advocate for responsible disclosure and remediation of identified vul-
nerabilities. We hope that this research will contribute to the development of
more secure web environments and the advancement of cybersecurity prac-
tices. For this reason, we do not share publicly the collected dataset and code.
Researchers willing to reproduce our experiment are invited to contact the au-
thors.

1.4. Report Structure
The report is structured in the following manner to describe the concepts, the
analysis, and the results of this thesis project. In Chapter 2, background theory
and related works are presented. In Chapter 3 the threat model is discussed.
In Chapter 4, the intuition, methodology and implementation of the standard
directory brute-force approach and the two novel approaches are presented. In
Chapter 5, the data collection and the dataset analysis are reported. In Chapter
6 there is an overview and discussion of the results obtained. Finally, in Chapter
7, the conclusions, limitations and future works are presented.

2
Background

This chapter delves into Language models, providing concepts and theory be-
hind their functioning and research works on the topic.

In addition, this chapter introduces the theme of Offensive AI, presenting state-
of-the-art research that investigates its application in cybersecurity and related
works to this project.

2.1. NLP
Artificial Intelligence (AI) is a branch of computer science that aims to create
systems capable of performing tasks that typically require human intelligence.
These tasks are almost unlimited and can range from learning from experience
to understanding natural language, recognizing patterns, and making decisions.
A field that has gained increasing attention in recent years alongside generative
AI is Natural Language Processing (NLP).

NLP is a branch of artificial intelligence that deals with the interaction between
computers and human language. NLP techniques combine computational lin-
guistics with statistical and machine learning models to comprehend, recognize,
and produce text and spoken language. Some of the main applications of NLP
are machine translation [43, 21], speech recognition [28], text summarization
and generation [1, 24], and information retrieval [25].

Additionally, a foundational concept of NLP that we use in this research and that
we will explore in more detail is Language modelling and language models.

2.2. Language Models
2.2.1. Overview
Language Models (LMs) are statistical models used to predict the next word in
a sentence given the previous words, essentially learning the probability distri-
bution of a sequence of words.

The theory behind these models is based on probability theory and word em-
beddings [32, 36, 34]. These models are often employed in understanding and
generating sequences of words. Their goal is to accurately predict the likelihood
of words following the context of a preceding sequence of words. Mathemati-
cally, considering a sequence of words as:

x = (x(1), . . . , x(t)). (2.1)

The probability of the sequence is obtained by applying the chain rule of proba-

4

2.2. Language Models 5

bility:
P ((x(1), . . . , x(T))) = P (x(1)) · p(x(2)|x(1)) · . . . ·

p(x(T)|x(T−1), . . . , x(1))

=

T∏
t=1

(x(t)|x(t−1), . . . , x(1)).

(2.2)

Then, the probability distribution of the next word x(t+1) is computed as follow:

P (x(t+1)|x(t), . . . x(1)), (2.3)

where x(t+1) ∈ V = w1, . . . , w|V |, and V is a fixed vocabulary.

To give a practical example, let us consider a language model that is trained
with the following sentences:

1. “The cat ate a mouse.”
2. “The dog chases the cat.”

The model will learn the probabilities of word sequences like “the cat”, “cat ate”,
“chase the cat,” and so on. Now, suppose we want to predict the next word after
“the”. In this case, the model will assign some probabilities to the vocabulary
words (composed of all the unique words in the two training sentences). Among
the words, the model will likely predict “cat” as the most likely word since it is
the only word the appears after “the” more than once.

Traditional Language Models were based on N-grams [31]. N-grams are se-
quences of n words: for example, “I love” is a bigram (n=2), and “I love football”
is a trigram (n=3). N-gram language models relied on counting the frequency of
sequences in the training data to estimate the likelihood of a word based on the
preceding N-1 words. However, these models struggled with data sparsity and
could not capture long-range dependencies and context beyond the previous
N-1 words.

Recent progress in AI, especially in Deep Learning, has led to more advanced
LMs that utilize neural networks to learn complex relationships between words
and context, overcoming previous limitations. Specifically, Recurrent Neural
Networks (RNNs) [35], Long Short-Term Memory (LSTM) networks [17], and
Gated Recurrent Units [8] (GRUs) are designed to handle sequential data pro-
cessing that we can make use of for our purposes.

• RNNs are neural networks that maintain a hidden state that acts as a
form of memory, using this state to retain information from previous steps.
At each time step, a RNN calculates the output yt and the new hidden
state ht using the input xt and the hidden state ht−1 from the previous
step. However, standard RNNs suffer from the vanishing gradient during
training [16], resulting in difficulties with learning and remembering long-
term dependencies.

• LSTMs are a particular type of RNN designed to overcome the vanishing
gradient problem, employing a specific cell state and gating mechanisms.

• GRUs are another type of RNN designed to solve the vanishing gradient
problem with a more straightforward structure than LSTM networks. This
structure makes them computationally more efficient but with the cost of
reduced capacity for complex patterns.

LMs are trained on extensive text corpora. The parameters of these models are
learned to optimize the likelihood of the observed sequences, a process known
as maximum likelihood estimation.

2.2. Language Models 6

Considering a sequence, at each step t of the training, a loss function is defined
as the cross-entropy between the predicted probability distribution ŷt and the
actual next word yt. Mathematically, this can be expressed as:

J (t)(θ) = CE(y(t), ŷ(t)) = −
∑
w∈V

y(t)
w log ŷ(t)

w = − log ŷ(t)
xt+1

. (2.4)

By averaging the loss function over the entire training set, we obtain the overall
loss as follows:

J(θ) =
1

T

T∑
t=1

J t(θ) =
1

T

T∑
t=1

− log ŷ(t)
xt+1

. (2.5)

2.2.2. Embedding
Embeddings play a vital role in the performance of LMs. To understand why,
suppose we are building a language model to predict the next word given a
sentence. Our training sentences are:

• “I love to play football.”
• “He loves to play basketball.”
• “She likes to play tennis.”

Now, using the model, let us predict the next word in the sentence: “They love
to play …”. Without word embeddings, our model would treat each word as a
separate entity. It would not understand that “football”, “basketball”, and “ten-
nis” are all related because they are sports or “I”, “He”, and “She” are related
because they are pronouns. With word embeddings, each word is represented
by a vector in a high-dimensional space. Words with similar meanings are close
together in this space. So “football”, “basketball”, and “tennis” would all be close
together because they are all sports. So if we have to predict the following word
in the sentence “They love to play …”, the model can use these embeddings to
understand that the next word is likely to be a sport, even if it has not seen the
exact sentence in the training data.

This example shows how word embeddings allow language models to extrap-
olate the context from sequences and understand the semantic relationships
between words, leading to more accurate predictions.

Theoretically, an embedding is a numerical vector that provides a represen-
tation for elements of language - words, phrases, sentences, or even entire
documents. These vectors, often high-dimensional, encapsulate the semantic
meaning of the text. Since the simple text is unsuitable for directly feeding to
machine learning models, embeddings can convert text into a format that can
be comprehended and manipulated. Additionally, this transformation process
allows the models to capture the nuanced meanings of words based on their
context, an indispensable feature for various tasks such as translation and senti-
ment analysis. Traditional word representations as discrete symbols or one-hot
vectors were sparse and did not capture the semantic relationships between
words. Embeddings address this issue by representing words as dense vectors
in a lower-dimensional space. These dense vectors are learned from the data
and can capture different semantic properties. There are several methods for
embeddings, such as Word2Vec [26], GloVe [32] and FastText [19], that, with
different approaches, aim to learn rich semantic representations of words.

2.3. Related Works 7

2.3. Related Works
The latest progress in artificial intelligence and its widespread diffusion marks a
new chapter where Offensive AI is utilized to conduct advanced and automated
attacks [20, 27]. These attacks constitute a novel landscape that brings forth
substantial challenges and opportunities in cybersecurity, particularly with the
rise of LLMs and generative AI.

The exploration of generative AI to bolster directory brute-forcing attacks re-
mains uncharted. However, some works have similarly explored enhancing di-
rectory brute-forcing attacks employing AI.

The nearest attempt is presented by He et al. [15], where the authors designed
an approach utilizing semantic clustering of sentences to attack medical sys-
tems. Despite that, limited information was presented regarding the attack’s
data, methodology, experiments and outcomes. Adopting similar reasoning,
Antonelli et al. [3] introduced a novel method to optimize directory brute-forcing
using the Universal Sentence Encoder (USE) for semantic analysis and the K-
means algorithm and the elbow method for clustering. The approach improved
performance by up to 50% for each of the experiments conducted on eight dif-
ferent web applications tested.

Numerous other studies have analyzed the threat that offensive AI poses to
organizations in different types of attacks and contexts. Bontrager et al. [6]
exhibited the potential of AI-generated fingerprint deepfakes to undermine bio-
metric systems through dictionary attacks. Al-Hababi et al. [13] probed man-in-
the-middle attacks leveraging machine learning to identify services in encrypted
network flows. Li et al. [22] demonstrated a generative adversarial network de-
signed to evade PDF malware classifiers, highlighting how easily AI can circum-
vent traditional cybersecurity defences when maliciously used. Nam et al. [30]
developed a recurrent GANs-based password cracker without user intervention.
In the same context, Trieu et al [38] designed sophisticated AI-based password
brute-force attacks by cleverly constructing the attack dictionary. Finally, Petro
et al [33] implemented an AI-based hacking tool that learns to exploit databases
in web applications using reinforcement learning.

Although these work can be employed for beneficial purposes by testing and
increasing the security of systems and organizations, it also underscores how
offensive AI is a rapidly growing field that exponentially increases the attack
surface and poses new cyber challenges and threats.

3
Threat model

This chapter presents the threat model, from how the attack works to the targets
and possible ways of conducting it.

3.1. Attack Description
A directory enumeration brute-force attack is a technique that probes for and
tries to access hidden directories and files on a web server that are not refer-
enced but still accessible.

This attack is executed by generating many requests, each associated with a
different URL, and sending them to the server. Once the server responds by
sending back HTTP responses, the attacker can examine the response content
and the status code associated with the responses: if the response has a status
code different than 404 (which indicates “Page not found”) but with other status
codes such as 200 (request succeeded) or others, then the URL specified in
the request and therefore the directory or file is likely to be available in the web
application.

The attack often relies on a wordlist for the brute-forcing component, a compi-
lation of words used to construct the new URLs that will be used to send the
requests.

Due to its brute-force nature, directory brute-force attacks could be both time
and resource-consuming, involving an enormous amount of requests to be sent.

The potential consequences of a directory enumeration attack are not to be un-
derestimated. They can lead to the discovery of hidden files, directories, backup
files, or administrative interfaces that may contain sensitive data or configuration
details. If these resources are not adequately secured, they can be exploited to
gain unauthorized access, escalate privileges, or initiate additional attacks.

To illustrate with a practical example, let us consider this scenario:

• a web server with a directory named “/admin”, which is not linked any-
where within the application but is still accessible if the exact URL is known.

• the web server home URL http://example.com
• a wordlist [home, about, admin].

An attacker could launch a directory enumeration attack using the mentioned
wordlist in the following way:

1. Construct the newURLs: [“http://example.com/home”, “http://example.com
/about”, “http://example.com/admin”].

8

3.2. Automated Tools 9

2. Send sequentially HTTP requests associated with the newly createdURLs.
3. Analyze the HTTP responses. For example, suppose the server responds

with a response with a status code 200 for the URL http://example.com
/admin. In that case, the attacker can infer the presence of the directory
admin and explore the directory content, potentially launching further at-
tacks.

Therefore, it’s essential to ensure all directories and files are adequately se-
cured, even if they are not directly linked within the application. Enhanced direc-
tory brute-force attacks that are able to detect vulnerabilities could be launched
from penetration testers looking for vulnerabilities to fix but also from malicious
actors.

3.2. Automated Tools
Various commercial and open-source tools are frequently employed to execute
directory brute-force attacks. These tools can either be specialized for this spe-
cific attack type or more comprehensive, offering a range of functionalities, vul-
nerability scanners, proxies, and much more that come handy in security as-
sessments.

These tools can ease the penetration test process and the launch of direc-
tory brute-forcing attacks, providing graphical user interfaces (GUI) to visual-
ize attack progress in real-time, advanced attack implementations with multi-
threading available and custom options such as redirection following and re-
sponse filtering. Additionally, these tools often come equipped with default
wordlists.

Some of the most commonly used tools include:

• Dirbuster : This Java-based, multi-threaded tool was developed to brute
force directories and file names on web or application servers. It was
implemented and released open-source by the Open Web Application Se-
curity Project (OWASP). 1 It comes with nine different default wordlists,
giving users a wide range of wordlist options. The tool is freely available
and can be downloaded from the Kali Linux tools repository. 2

• Wfuzz: This open-source security tool is designed to launch different types
of brute-force attacks against web applications by fuzzing input parame-
ters. Wfuzz is versatile and designed to perform various attacks, includ-
ing brute-forcing, fuzzing, and injection attacks. Wfuzz also provides sev-
eral wordlists employable for different types of brute-force attacks, among
which directory brute-forcing attack is one possible option. The tool is
freely available and can be accessed at its official documentation site. 3

• Burpsuite: This commercial platform provides a user-friendly graphical
tool for conducting security testing on online applications. It supports the
entire security testing process, from initial automated mapping and analy-
sis of an application’s attack surface to discovering and exploiting security
flaws, manual analysis and more. Among its many capabilities, Burpsuite
can perform brute-force attacks to enumerate directories, given a target
and a wordlist. The tool is available under different licenses and can be
obtained from the official PortSwigger website. 4

While these tools incorporate different features that may lead a user to pick one
over another, the methodology by which they conduct a directory brute-force

1https://owasp.org/
2https://www.kali.org/tools/dirbuster/
3https://wfuzz.readthedocs.io/en/latest/
4https://portswigger.net/burp

https://owasp.org/
https://www.kali.org/tools/dirbuster/
https://wfuzz.readthedocs.io/en/latest/
https://portswigger.net/burp

3.3. Wordlists 10

attack is standardized and follows the same process.

On the other hand, choosing a proper wordlist can influence the obtained results
much more, since it is the core component from which new URLs are generated.
Therefore, some tools may provide a better variety of default wordlists than
others.

It is again worth mentioning that although their use purpose is focused on legit-
imate security testing, they can also be misused by malicious actors.

3.3. Wordlists
In the context of directory brute-force attacks, wordlists are lists of words that
may correspond to directory or file names.

As mentioned before, selecting an appropriate wordlist when conducting a direc-
tory brute-force attack is crucial, as it can significantly influence the outcomes
and the vulnerabilities detected.

For this reason, a wide array of wordlist categories are available for various
needs. Some of these categories are:

• general purpose wordlists: These wordlists contain general words that are
likely to correspond to directories or files without any linking to a specific
technology or web application context.

• backup-file wordlists: Wordlists in this category usually contain common
names used for backup files.

• CMS-specific wordlists: These wordlists are designed to be used in web
applications that utilize specific Content Management Systems (CMS) since
they contain standard files and directory names associated with the spe-
cific technology.

Even if several automated tools come pre-packaged with various wordlists, the
internet is also a rich source of user-created wordlists. There are numerous
examples of user-created repositories where people created wordlists based
on different criteria and made them available online. In addition, attackers can
create custom wordlists that meet their specific requirements.

Four general-purpose wordlists, gathered from different sources and of different
sizes, were selected for the purpose and scope of this project.

• big_wfuzz 5[BW]: This is a default general-purpose wordlist provided by
Wfuzz. This wordlist is the smallest among the four, containing 3024
words.

• top_10k_github 6[GH]: This is a user-created wordlist available online. It
contains 10,000 words. As criteria, the author selected 10,000 of the most
common directory names found in more than 10 million URLs.

• megabeast_wfuzz 7[MW]: This is another default general-purpose wordlist
provided by Wfuzz. Differently from the other wordlist from Wfuzz, this
wordlist contains 45459 words.

• directory-list_dirbuster 8[DB]: This is a default wordlist provided by
Dirbuster. This wordlist represents the biggest one among the selected
wordlists, containing 141835 words in total.

5https://github.com/xmendez/wfuzz/blob/master/wordlist/general/big.txt
6https://github.com/xajkep/wordlists/blob/master/discovery/

top-10k-web-directories_from_10M_urlteam_links.txt
7https://github.com/xmendez/wfuzz/blob/master/wordlist/general/megabeast.txt
8https://github.com/3ndG4me/KaliLists/blob/master/dirbuster/directory-list-1.0.

txt

https://github.com/xmendez/wfuzz/blob/master/wordlist/general/big.txt
https://github.com/xajkep/wordlists/blob/master/discovery/top-10k-web-directories_from_10M_urlteam_links.txt
https://github.com/xajkep/wordlists/blob/master/discovery/top-10k-web-directories_from_10M_urlteam_links.txt
https://github.com/xmendez/wfuzz/blob/master/wordlist/general/megabeast.txt
https://github.com/3ndG4me/KaliLists/blob/master/dirbuster/directory-list-1.0.txt
https://github.com/3ndG4me/KaliLists/blob/master/dirbuster/directory-list-1.0.txt

3.3. Wordlists 11

There are two main reasons for selecting these four wordlists. The first is the
general-purpose nature of this project, which does not target specific vulnera-
bilities or technologies. The second is the possibility of evaluating the perfor-
mances of wordlists of different sizes from different sources.

3.3.1. Selected Wordlists Similarity
To give an initial idea and better analyze the results obtained in this project and
reported in Chapter 6, it may be useful to analyze the similarity among the four
wordlists.

To do so, we will use two metrics: the number of words in common between
each pair of wordlists and the Jaccard similarity between the two lists.

Specifically, the Jaccard similarity metric, defined in equation 3.1, can take a
value between 0 and 1, where 0 indicates that the two sets are disjoint and 1
that they are identical.

J(A,B) =
|A ∩B|
|A ∪B|

. (3.1)

In Figure 3.1, we can see the number of words each couple of wordlists has
in common, while Figure 3.2 shows the Jaccard similarity for every couple of
wordlists.

Both the figures, considering the size differences of the wordlists, highlight how
the wordlists mainly differ in their content, even though they are supposed to be
used in the same attack context.

BW DB MW GH

BW
DB

M
W

GH

1199

1053 4939

784 5701 2315

Figure 3.1: Number of words in common for each couple of wordlists

3.3. Wordlists 12

BW DB MW GH

BW
DB

M
W

GH
0.008

0.022 0.027

0.064 0.039 0.044

Figure 3.2: Jaccard similarity for each couple of wordlists

4
Attack Methodology

This chapter presents an overview of the standard approach to perform a direc-
tory brute-force attack.

Additionally, we introduce the two enhanced approaches that are the subject of
this project, alongside the intuition behind them, how they work, and how they
can be implemented.

4.1. Overview
Traditional brute-force attacks are inefficient due to their nature. In the context
of directory enumeration, sequentially sending numerous requests can be both
time-consuming and resource-consuming since the number of possible URLs
to send requests is limitless.

To conduct directory brute-force attacks, we have to generate numerous URLs
and send many HTTP requests associated with those URLs to the web applica-
tion. Then, we must wait for the web server to answer and analyse the HTTP
responses received.

This strategy also raises an additional problem: sending an enormous number
of requests in a limited amount of timemay trigger cyber defensive systems such
as Intrusion Detection Systems (IDS), Firewalls and Black-holing. Furthermore,
if the web server cannot handle all the incoming requests, this attack can lead
to a Denial of Service or a service disruption of the web application.

In this study, we want to explore the feasibility of enhancing this simple strategy
by implementing attacks that exploit information and smart strategies that the
standard directory brute-force approach does not consider. This can potentially
boost the performance of this type of attack. In particular, we aim to leverage
the two features: Prior Knowledge and Adaptive decision-making.

The intuition behind prior knowledge is simple: when considering web applica-
tions, several can be implemented with the same technologies, such as web
servers, databases, and CMS. In addition, web applications to the same con-
text and category, such as university or hospital websites, may use a similar
structure and convention in indexing folders and files (considering web applica-
tions that use the same language). This work investigates whether leveraging
this information when conducting a directory brute-force attack can yield better
results.

On the other hand, the reasoning behind adaptive decision-making lies in choos-
ing the next request to send. Instead of trying sequential words to construct a

13

4.2. Tree Reconstruction 14

new URL, the following HTTP request to be sent should be decided based on
what directories and files we have discovered so far in the web application and
dynamically adjusted at run-time. If we can use some criteria to select the next
request to be sent.

4.2. Tree Reconstruction
Before explaining the standard and enhanced approaches, it is helpful to under-
stand how we manage to perform directory brute-force attacks while maintain-
ing an ethical posture that does not harm any web application. We decided to
run offline simulations of the attacks, reconstructing the filesystem of every web
application target in our tests. To do so, we used the data described in Chap-
ter 5 , which consists of HTTP responses crawled from various web applications.
For each URL in a HTTP response, we can consider the domain as the root of
the filesystem, which is the same for every HTTP response received from the
same web application. Then, since the filesystem of a web application has a
hierarchical tree structure, the paths can be used to reconstruct the directory-
subdirectory relations. In this project, the filesystem reconstruction is performed
using the AnyTree 1. For example, let us consider the following URLs that are
part of the crawl of a web application:

• “http://www.example.com/”
• “http://www.example.com/news”
• “http://www.example.com/home”
• “http://www.example.com/register”
• “http://www.example.com/news/2024”
• “http://www.example.com/news/today”
• vhttp://www.example.com/news/weather”

From these URLs, we can extract “www.example.com” as the domain, and the
paths “/news”, “/home”, “/register”, “/news/2024”, “/news/today” and “/news/weather”.

Considering the root node as “/”, a visualisation of the reconstructed tree corre-
sponding to the web application filesystem can be seen in Figure 4.1.

1https://anytree.readthedocs.io/en/latest/

https://anytree.readthedocs.io/en/latest/

4.3. Standard Approach 15

/

news home register

2024 today weather

Figure 4.1: Visualization of a reconstructed tree.

When conducting an offline attack simulation, the attacks will generate new
URLs. From these URLs, we will need to extract the path. Then, we will try
to traverse the tree starting from the root: for every node of the tree, which rep-
resents the current directory, we check if in its children, which represents the
subdirectories, there is a word corresponding to the next one in the path. If that
is not the case for every word in the path, the generated URL is not valid; else-
where, the URL is valid, and the last word in the path is the newly discovered
directory.

4.3. Standard Approach
The standard directory brute-force attack based on a wordlist can follow two
strategies: Depth-First and Breadth-First.

In the results comparison of the enhanced approaches results, we will run offline
attack simulations employing both these strategies and use the results obtained
as comparison baseline.

4.3.1. Depth-First
A directory brute-force attack that follows the depth-first approach prioritizes
exploring subdirectories when a new directory is discovered before proceeding
to explore other directories at the same hierarchical level.

An attack that employs this approach begins by sequentially dispatching HTTP
requests and generating new URLs using the entries from a wordlist. When a
positive response is received (denoting the discovery of a valid URL and a new
directory), the attack redirects its attention to brute-forcing the subdirectories of
this newly identified directory. It conducts an exhaustive search within these

4.3. Standard Approach 16

subdirectories (until there are no more words in the wordlist to use to generate
new URLs) before it resumes the task of brute-forcing other directories at the
same hierarchical level as the previously validated one.

This method ensures an exhaustive search within each directory before advanc-
ing to the next, optimizing the probability of revealing hidden directories or files
at deeper levels.

For example, let us consider a web application target “http://www.example.com”
with the corresponding filesystem identical to Figure 4.1 and the wordlist [“news”,
“home”].

If we had to conduct a directory brute-force attack using the depth-first strategy,
the following steps show how the attack would work:

1. Send a HTTP request with URL. “http://www.example.com/news”.
2. Receive a positive HTTP response with status code 200. “news” is a newly

discovered directory (subdirectory of the root).
3. Explore the subdirectories of “news”, starting from the beginning of the

wordlist.
4. Send a HTTP request with URL “http://www.example.com/news/news”.
5. Receive a negative HTTP response with status code 404. The URL is not

valid, and “news” is not a subdirectory of “/news”.
6. The previous two steps apply for the next URL “http://www.example.com/

news/home”.
7. The subdirectories research is exhausted since there are no more words

to generate a newURL. Now, the attack resumes the brute-forcing process
at the previous level.

8. Send a HTTP request with URL. “http://www.example.com/home”.
9. Receive a positive HTTP response with status code 200. “home” is a

newly discovered directory.
10. Explore the subdirectories of “home”, starting from the beginning of the

wordlist.
11. Send twoHTTP requests with URLs “http://www.example.com/home/news”

and “http://www.example.com/home/home”.
12. Receive two negative responses with status code 404. Both the URLs are

not valid.
13. The directory research at this level is terminated. There are no more re-

quests to generate, so the attack terminates.

A possible implementation of an algorithm that employs this approach is exem-
plified in Algorithm 1.

In this algorithm, constructURL(URL, word) is a function that generates a valid
URL given a word from a wordlist, appending it to the URL’s current path. Addi-
tionally, isValid(response) is a function that, given a HTTP response, checks
if the response is valid.

4.3. Standard Approach 17

Algorithm 1 Depth-First brute-force attack Pseudocode
1: procedure DepthFirst(rootURL,wordlist)
2: for each word in wordlist do
3: url← constructURL(rootURL,word)
4: response← sendHTTPrequest(url)
5: if isValid(response) then
6: DepthFirst(url, wordlist)
7: end if
8: end for
9: end procedure

4.3.2. Breadth-First
On the other hand, a directory brute-force attack that follows the breadth-first ap-
proach prioritizes exhausting the research of directories at a given level before
exploring their subdirectories.

An attack that employs this approach initiates similarly as the depth-first strategy,
sequentially dispatching HTTP requests and generating new URLs using the
entries from a wordlist. Unlike the previous strategy, when a positive response
is received (denoting the discovery of a valid URL and a new directory), the
attack continues to brute-force other directories at the same hierarchical level,
exhausting all the possible URLs that it can generate given the wordlist. Once
this research is over, the attack will start to brute-force all the subdirectories of
the newly discovered directories, from the first to the last discovered.

This method ensures an exhaustive search for each hierarchical level before
moving to deeper levels.

This strategy promises better results than the previous approach since directo-
ries at deeper hierarchical levels are likely to be rare and, therefore, not in the
wordlist.

Indeed, most commercial tools adopt this strategy, even those that implement
additional features such as multi-threading and response filtering.

To visualize how these two approaches work differently, let us consider the previ-
ous example where we had theweb application target “http://www.example.com”
with the corresponding filesystem in Figure 4.1 and the wordlist [“news”, “home”].

Conducting a directory brute-force attack using the breadth-first strategy would
follow these steps:

1. Send a HTTP request with URL. “http://www.example.com/news”.
2. Receive a positive HTTP response with status code 200. “news” is a newly

discovered directory (subdirectory of the root).
3. Continue to brute-force directories at this depth. Send a HTTP request

with URL “http://www.example.com/home”.
4. Receive another positive HTTP response with status code 200. “home” is

another discovered directory.
5. The research at this level is exhausted. Now start exploring the subdirec-

tories of the first discovered directory “news”.
6. Send a HTTP request with URL “http://www.example.com/news/news”.
7. Receive a negative HTTP response with status code 404. The URL is not

valid, and “news” is not a subdirectory of “/news”.
8. The previous two steps apply for the next URL “http://www.example.com

/news/home”.

4.4. Probability Based Approach 18

9. The subdirectories research for “news” is exhausted since there are no
more words to generate a new URL.

10. Start brute-forcing the subdirectory of the following discovered directory
“home”.

11. Send twoHTTP requests with URLs “http://www.example.com/home/news”
and “http://www.example.com/home/home”.

12. Receive two negative responses with status code 404. Both URLs are not
valid.

13. The subdirectory research for “home” at this level is terminated. There are
no more discovered directories to explore their subdirectories. The attack
is terminated.

We also present Algorithm 2 that implements the breadth-first strategy.

In this algorithm, constructURL(URL, word) isValid(response) are the same
functions presented in Algorithm 1. Additionally, the algorithm uses a queue to
store the discovered directories and to maintain the order of which directory the
attack should first brute-force the subdirectories.

Algorithm 2 Breadth-First brute-force attack Pseudocode
1: procedure BreadthFirst(rootURL,wordlist)
2: queue← new Queue()
3: queue.enqueue(rootURL)
4: while queue is not empty do
5: currentURL← queue.dequeue()
6: for each word in wordlist do
7: url← constructURL(currentURL, word)
8: response← sendHTTPrequest(url)
9: if isValid(response) then
10: queue.enqueue(url)
11: end if
12: end for
13: end while
14: end procedure

4.4. Probability Based Approach
The first enhanced approach that we have designed is a probabilistic approach.

This section presents how the approach works, its building blocks, a practical
example, and a possible algorithmic implementation.

4.4.1. Approach
Leveraging prior knowledge can significantly enhance the effectiveness of a
directory brute-force attack. The underlying concept is quite simple: if many
web applications contain similar paths such as /login and /register, the web
application target of an attack will probably contain these paths and, hence,
the directories that form the paths. Consequently, an algorithm that prioritizes
directories based on prior knowledge can be highly effective.

The first novel approach we introduce refines the standard approach discussed
in Section 4.3. This approach introduces the usage of prior knowledge and
exploits it to implement dynamic decision-making regarding URL generation for
the subsequent HTTP request.

4.4. Probability Based Approach 19

The goal is to maximize the number of successful requests, selecting the most
probable URL to send a HTTP request to each time, while minimizing the num-
ber of unlikely and incorrect ones.

The prior knowledge, or training dataset, comprises crawled paths from vari-
ous web applications. Ideally, these applications should belong to the same
category as the target of the attack that will be conducted. This ensures that
the strategy is tailored to the specific characteristics of the target application,
thereby increasing the likelihood of a successful attack.

The integration of prior knowledge into the attack methodology can be achieved
in two distinct ways:

1. Building a Weighted Training Tree. Similarly to how we have described
how to reconstruct a filesystem from the paths of a web application, a
possible way to integrate prior knowledge in the attack methodology is
by building a unique filesystem tree that will unify all the paths from our
training dataset, even from different web applications. This tree has to be
weighted, meaning that for each new node in the tree (which corresponds
to a directory), we maintain a counter that indicates the frequency of that
particular node. It is essential to highlight that for each node its weight
represents how many times that directory is at that depth level in a path:
if we consider the two paths “/news” and “/home/news”, we will have one
node at depth 1 for “news” with weight=1, and another node “news” as
well at depth 2 with weight=1.

A visualization of how the filesystem tree reported in Figure 4.1 would be
transformed into a weighted training tree is shown in Figure 4.2.

/

news,
w=12

home,
w=7

register,
w=3

2024,
w=7

today,
w=2

weather,
w=1

Figure 4.2: Visualization of a Weighted Training Tree, obtained merging paths from a Training
Dataset.

2. Building a Weighted Wordlist Tree. This strategy involves constructing
a weighted training tree as described in the previous point, using only the
words from a given wordlist. Starting from a general wordlist and a train-
ing dataset, we construct a weighted tree similar to the Weighted Training

4.4. Probability Based Approach 20

Tree. However, this tree only includes words from a wordlist and every
node that includes a directory, not a word in the wordlist, is pruned. The
weight of each node (directory) in this tree is determined based on the train-
ing set. For instance, if we consider the wordlist [“news”, “home”, “2024”,
“today”, “about”] and the Weighted Training Tree shown in Figure 4.2, the
corresponding Wordlist Weighted Tree can be visualized in Figure 4.3. In
this case, directories such as register and weather are not included in
the tree, as they are not part of the original wordlist.

/

news,
w=12

home,
w=7

2024,
w=7

today,
w=2

Figure 4.3: Visualization of a Wordlist Weighted Tree, based on a wordlist and a Weighted
training tree.

By adopting these strategies, we can effectively utilize the parent-child relational
information between directories and subdirectories and assign weights to words
in the wordlist, which we can use to decide the next HTTP request.

Additionally, in the case of the weighted wordlist, we apply a process of pruning
all the wordlist’s words that do not appear as directories in the training dataset
and vice versa. Pruning a node means that that node has weight 0.

This pruning of unlikely words aims to minimize the number of less probable
requests that we would otherwise consider.

For a clearer understanding of how pruning operates, let us consider Figure 4.2
and Figure 4.3. In this example, we can observe that the word “about”, ini-
tially part of the wordlist used to create the tree, is not included in the Wordlist
Weighted Tree (thus, it has a weight of 0 as a possible subdirectory). Similarly,
“news” has a weight of 12 as a subdirectory of the base root, but it is pruned from
being a child node of “home”.

Finally, it is worthwhile mentioning the correlation between a weighted training
tree and a weighted wordlist tree: a weighted training tree is simply a weighted

4.4. Probability Based Approach 21

wordlist tree where the corresponding wordlist is the set of all directories that
are in the paths in the training dataset. We will refer to this wordlist as train-set.

4.4.2. Algorithm
Our probabilistic attack algorithm utilizes a max heap to integrate the dynami-
cal decision-making feature. This data structure maintains the element with the
higher value of a given property at its top and allows efficient insertion and re-
moval of elements. This heap contains tuples of base URLs, a word, and its
assigned weight. The tuples in the max heap are arranged according to their
probability, allowing us always to select and send the request with the highest
probability.

In order to properly use the prior knowledge, the probability assigned to a word
to be a valid subdirectory of a directory is dynamically calculated by dividing the
weight of the word in the weighted tree by the total weight of all possible words
that can be subdirectories of that word.

At the start, the algorithm initiates by pushing all possible subdirectories of the
root directory “/” from the weighted tree into the max heap, each with its cor-
responding probability, given a target base URL. Then, it selects the tuple at
the top of the heap, constructs a new URL using the base URL and the word
from the tuple and sends a request. When a successful response is received,
the algorithm pushes all potential subdirectories of the response URL and their
probabilities into the heap.

The process of sending each time HTTP requests utilizing the tuples at the top of
the heap (i.e., the one with the highest probability) enables the implementation
of the adaptive decision-making feature. The described algorithm is presented
in algorithm 3.

Here, getWordswithWeights() returns the pairs of words and weights from the
specified URL in theweighted tree (i.e., our prior knowledge, while getProbability()
computes the probability of a word as previously described.

Algorithm 3 Probabilistic brute-force attack Pseudocode
1: procedure Probabilistic(rootURL,weightedTree)
2: maxHeap← new MaxHeap()
3: rootTuples← getWordswithWeights (rootURL, weightedTree)
4: for each word,weight in rootTuples do
5: prob← getProbability(word, weight, rootTuples)
6: maxHeap.push((rootURL, word, probability))
7: end for
8: while maxHeap is not empty do
9: currentURL,word, probability ← maxHeap.pop()
10: url← constructURL(currentURL, word)
11: response← sendHTTPrequest(url)
12: if isValidURL(response) then
13: newTuples← getWordswithWeights(url, weightedTree)
14: for each word,weight in newTuples do
15: newProb← getProbability(word, weight, newTuples)
16: maxHeap.push((url, word, newProb))
17: end for
18: end if
19: end while
20: end procedure

The pruning process may prune the majority of possible HTTP requests that

4.5. Language-Model Based Approach 22

the attack would send for different reasons, from incompatibility between the
training dataset and the selected wordlist or due to a small dataset.

Considering a given budget of requests, the attack may terminate early before
exhausting the number of possible requests to send.

To address this problem, we suggest integrating a standard breadth-first direc-
tory brute-force attack after the termination of the probability attack if the re-
quests budget has not been fully consumed, with a slight difference: it is im-
portant to save the URLS that have been used in the probability attack to send
HTTP requests, so during the standard attack, we avoid sending requests that
have already been sent.

In our offline attack simulations, we chose to use two strategies.

To give an example of how this attack methodology works, let us again con-
sider the web application target “http://www.example.com” with the correspond-
ing filesystem shown Figure 4.1 and our prior knowledge corresponding to the
weighted wordlist tree in Figure 4.3. A directory brute-force attack employing
the probability-based approach would follow the following steps:

1. The attack starts pushing the possible subdirectories of the root directory
“/” in the max heap. In this case, “news” will have a probability of 63%,
while “home” 27%. After the operation, considering the left-most element
as the maximum element, the heap will be [(“/”, “news”, 63%), (“/”, “home”,
27%)].

2. Pop the top element of the heap. Construct the URL “http://www.example.
com/news” and send a request. The heap becomes [(“/”, “home”, 27%)].

3. Receive a positive HTTP response with status code 200. A new direc-
tory has been discovered. Now, for the discovered directory, push all the
possible subdirectories retrieved from prior knowledge in the heap. After
this operation, the heap will be [(“/news”, “2024”, 78%), (“/”, “home”, 27%),
(“/news”, “today”, 22%)].

4. Pop the top element of the heap. Construct the URL “http://www.example.
com/news/2024” and send a request. The heap becomes [(“/”, “home”,
27%), (“/news”, “today”, 22%)].

5. Receive a positive HTTP response with status code 200. A new directory
has been discovered. Since in the prior knowledge we do not have any
possible subdirectory for “/news/2024”, no element is pushed in the heap.

6. Pop the top element of the heap. Construct the URL “http://www.example.
com/home” and send a request. The heap becomes [(“/news”, “today”,
22%)].

7. Receive a positive HTTP response with status code 200. A new directory
has been discovered. Since in the prior knowledge we do not have any
possible subdirectory for “/home”, no element is pushed in the heap.

8. The previous two steps apply to the last element in the heap.
9. The attack terminates.

Additionally, we could launch the modified breadth-first directory brute-force at-
tack as described before.

4.5. Language-Model Based Approach
The probability approach described in Section 4.4 presents how prior knowledge
can be exploited to improve the standard methodology of directory brute-force
attacks.

4.5. Language-Model Based Approach 23

Upon closer examination of this approach, it becomes evident that the context
plays a pivotal role in predicting new directories, underscoring the decision-
making strategy. Being able to extrapolate the context from the information
we have discovered so far during an attack can be the key to further boosting
the attack’s performance.

To achieve this, we have decided to design a new attack methodology that em-
ploys AI to refine the attack further and predict directories more efficiently and
qualitatively.

4.5.1. Approach
The second enhanced approach proposed in this project employs a neural net-
work mechanism that uses Language Models to predict likely subdirectories for
a given path.

The reasoning behind this choice is simple: Given a URL, we can consider its
path as a sequence of words divided by “/”. This sequence can be input to
the Language model, which predicts the words most likely to follow the input
sequence. These predicted words can form new URLs and initiate new HTTP
requests.

This method refines the probability-based approach by harnessing the strength
of custom embeddings (i.e., embeddings trained on the corpus) and addresses
the pruning implications. Specifically, the probabilistic method determines rela-
tionships among directories in similar URLs in the training dataset.

Additionally, embeddings help to extrapolate the context from paths and create
connections between similar directories that will be used to generalize the pre-
dictions. For example, consider that in our prior knowledge, we have paths such
as:

• "/account/setting/info”
• "/account/setting/password”
• "/account/setting/logout”
• "/profile/setting/password”
• "/profile/setting/info”

The directories account and profile are used in a similar context, and hence
their embeddings will be similar.

During inference, a LanguageModel might predict the URL "/profile/setting
"/password” even if this information was not in our prior knowledge. A proba-
bilistic approach would have assigned 0% to this path, which would have led to
avoiding this request.

4.5.2. Model Architecture
The neural network architecture that we use in our enhanced approach is based
on several core components.

The first crucial component is the vocabulary. Since normal text cannot be fed
directly to neural networks, the vocabulary is responsible for several operations:

• it collects all the different words (i.e., directories) in the dataset by filtering
out the rarer ones that might create overfitting duringmodel training. Given
an input sequence, when the language model needs to predict the words
that should follow the input sequence, it will take the vocabulary words
and assign a probability to each.

• it maps word sequences into integer sequences that the Language model
can process.

4.5. Language-Model Based Approach 24

• it handles special cases, including words given unknown input and variable-
length paths. The handling of particular cases and variable-length paths
is performed using specific tokens: UNK (Unknown word), PAD (Padding to-
ken, used to pad sequences to a fixed size), SOS (Start of sentence token,
used to highlight where a sequence start) and EOS (End of sentence token,
used to highlight where a sequence end).

When it comes to the neural network architecture, we have designed several
layers that compose our LM:

1. Embedding Layer: The initial layer of the model is an embedding layer.
This layer converts input words into dense vectors of a predetermined size,
known as the embedded size. The representations for these embeddings
are learned during the training phase.

2. LSTM Layer: Following the embedding layer is an LSTM layer, essential
for recognizing patterns in sequential data and exploiting the extrapolated
context. This layer takes the word embeddings as input and produces its
hidden and cell states.

3. Dropout Layer: To avoid overfitting our architecture (which could lead to
poor results), dropout layers are incorporated after the Embedding and
LSTM layers. Dropout is a regularization method that randomly sets a
portion of input units to 0 at a certain probability rate during each training
step.

4. Fully Connected Layer: The outputs (hidden states) from the LSTM are
then fed into a fully connected layer. This layer transforms the LSTM out-
puts into the required output shape corresponding to the size of the vocab-
ulary.

5. Softmax Function: Finally, a softmax function is used to convert the out-
put from the fully connected layer into probabilities assigned to each word
in the vocabulary.

Figure 4.4 shows an overview of the model architecture and exemplifies the
entire process of prediction generation. In the figure, we can see how an input
sequence is first split into tokens, encoded to a sequence of integers and special
tokens, and fed to the language model that will then assign a probability to each
word of the vocabulary. Finally, the word with the highest probability is chosen
to generate a new path that can later be used to send a new HTTP request.

4.5. Language-Model Based Approach 25

Input path:
"/Today/Home"

Token sequence:
["SOS", "UNK",
"Home", "PAD",
"PAD" "EOS"]

Encoded
sequence:

[0,2,4,3,3,1]

Embedding
layer

LSTM

Softmax

FC layer

Dropout layer

Dropout layer

Vocabulary=
{ "SOS" : 0,
"EOS" :1,
"UNK" : 2,
"PAD" : 3 ,

"Home" : 4 ,
"About" :5 ,
"2024" : 6,
"News" :7 }

5 6 7 1 ...

20% 10% 50% 7%

"About" "2024" "News" "EOS" ...

New URL path: /Today/Home/News"

Figure 4.4: Prediction of the next directory from our LM-based architecture.

4.5.3. Training and Validation
The training process of our architecture that follow the standard training of a Lan-
guagemodel can be described in more detail as follows: Themodel is trained by
feeding it paths from the training dataset. Then, the model predicts the following
directories to the given path.

Once the model generates the predictions, these predictions are compared with
the subsequent directory in the path, and a loss function is employed to mea-

4.5. Language-Model Based Approach 26

sure the discrepancy between the model’s predictions and the actual values.
This loss quantifies the error made by the model in its predictions, and an op-
timization algorithm is then used to minimize this loss correcting the model’s
parameters responsible for the predictions to make them more accurate.

The model’s performance is also periodically evaluated on a validation set dur-
ing training. This technique is typically adopted to evaluate how the model can
generalize unseen data. Using the validation set, we also employ an early stop-
ping mechanism to prevent the model from overfitting on the training data. Over-
fitting is a phenomenon where the model performs well on the training data but
poorly on unseen data. The early stoppingmechanism halts the training process
when the model’s performance on the validation set starts to overfit or does not
improve for a certain number of epochs, denoted by p. The loss computed on
the validation sample fed as input determines the model’s performance on the
validation set.

4.5.4. Algorithm
The algorithm that implements the language-based approach attack, shown in
Algorithm 4, uses a logic similar to that of the probabilistic approach, using a
max heap to choose the requests to be sent dynamically. In this case, though,
a weighted tree is not used as prior knowledge since it is unnecessary since the
Language model has already been previously trained on the training dataset.

In the algorithm, the function predict() returns the most likely K subdirectories
given a URL, where K is a parameter defined as topPredicts chosen by the
attacker.

For each new directory identified, the LM is given as input the path to the URL
including the new directory. Then, the LM returns predictions of possible subdi-
rectories with a certain probability in output. These tuples of base URL, possible
subdirectory, and associated probability are fed into the heap, which will then
sort them by probability from highest to lowest.

Algorithm 4 Language-model based brute-force attack Pseudocode
1: procedure LMattack(rootURL,LM, topPredicts)
2: maxHeap← new MaxHeap()
3: rootTuples← predict(rootURL, LM ,topPredicts)
4: for each word, prob in rootTuples do
5: maxHeap.push((rootURL, word, prob))
6: end for
7: while maxHeap is not empty do
8: currentURL,word, prob← maxHeap.pop()
9: url← constructURL(currentURL, word)
10: response← sendHTTPrequest(url)
11: if isValidURL(response) then
12: newTuples← predict(url, LM ,topPredicts)
13: for each word, prob in newTuples do
14: maxHeap.push((url, word, newProb))
15: end for
16: end if
17: end while
18: end procedure

To give an example of how this attack compares to the probabilistic approach, let
us again consider the same scenario with the web application target “http://www.
example.com” and the corresponding filesystem shown in Figure 4.1. We also
set the prediction parameter topPredicts to 3.

4.5. Language-Model Based Approach 27

A directory brute-force attack employing the Language model-based approach
would employ the following steps:

1. The attack starts feeding to the LM the path of the root URL “/”. In this
case, the LM is fed with the token “SOS”. For example, the LM may return
[(“news”, 70%), (“about”, 10%), (“Agenda”, 4%)]. These 3 predictions are
then pushed to the heap, which will then become = [(“/”, “news”, 70%), (“/”,
“about”, 10%), (“/”, “Agenda”, 4%)]

2. Pop the top element of the heap. Construct the URL “http://www.example.
com/news” and send a request. The heap becomes [(“/”, “about”, 10%),
(“/”, “Agenda”, 4%)].

3. Receive a positive HTTP response with status code 200. A new directory
has been discovered. Now, feed the path of the newly discovered URL
to the LM, get 3 new predictions and push them into the heap. After this
operation, our heap may become [(“/news”, “2024”, 85%), (“/”, “about”,
10%), (“/news”, “press”, 8%), (“/”, “media”, 6%) (“/”, “Agenda”, 4%)].

4. the attack can continue sending requests and pushing new predictions in
the heap every time a new directory is discovered.

This hypothetical attack scenario shows how this novel approach is highly adapt-
able to suit the attacker’s needs and overcomes the pruning problem in the
probability-based approach. Since the predictions made by the model can be
unlimited, the attacker can set a proper value for topPredicts that better fits
his requests budget.

5
Datasets

This chapter presents the datasets used in this project. We present howwe have
collected the data, how we have processed them and the in-depth analysis we
have conducted that helped us to design the proposed novel approaches.

5.1. Data Description
5.1.1. Source Of Data
The data utilized for this research is sourced from CommonCrawl. Common-
Crawl is a non-profit organization that periodically crawls the internet and freely
offers its archives and datasets for public use. We chose CommonCrawl due
to its extensive collection of web crawls that are regularly updated; specifically,
we used the CC-MAIN-2023-40 version of the crawl.

This choice simplifies the data-gathering process and also aligns with ethical
guidelines. By doing so, we can avoid performing manual spidering and crawl-
ing of web applications, which could potentially be classified as brute-force at-
tacks, and prevent overloading web servers with excessive requests.

Since this project aims to demonstrate the feasibility of enhancing the directory
brute-force attack methodology, using historical data is perfect for us, consider-
ing we do not focus on specific vulnerabilities or technologies.

CommonCrawl provides crawls in different formats: WARC (Web ARChive For-
mat), WAT (WebArchive Transformation), andWET (WARCEncapsulated Text).
These contain raw response data, metadata, headers, and more. The data can
be accessed by querying for specific data using AWS Cloud or directly down-
loading the compressed files containing the crawls.

The data we need to collect are the URL and the status code for each HTTP
response we want to collect. We will explain how to process this information
later in the preprocessing section.

In addition, it is important to consider that web applications can block Com-
monCrawl from crawling parts or even the entire website if specified in the
robots.txt file.

5.1.2. Datasets Collected
Given the rising number of cyber attacks and the broad range of potential tar-
gets, we decided to select four distinct datasets representing some of the most
common categories of organizations at risk of cyber attacks.

Additionally, due to the scope of the search, we restricted our focus to English-

28

5.1. Data Description 29

based web applications since different languages in the directory naming con-
vention can significantly increase the complexity of the directory enumeration
process.

For each target category, we selected several web applications and specifically
queried all HTTP responses in CommonCrawl associated with them.

The four datasets that we have collected from this process are:

• Universities dataset [UNI]: In this dataset, we choose the first 100 univer-
sities listed in QS 2023 World University Rankings. 1 We retrieved the
corresponding web applications from this list and collected the associated
HTTP responses.

• Hospitals dataset [HOS]: In this dataset, we choose the first 100 USA
hospitals listed in ”Ranking Web of World Hospitals”. 2 As previously, we
retrieved the corresponding web applications from this list and collected
the associated HTTP responses.

• Companies dataset [COM] This dataset comprises the HTTP responses
from 100 corporate web applications of companies listed in the S&P 500,
selected in order of highest capitalization as of January 2024. Companies
whose main web application was e-commerce were excluded since, in
many cases, this would add pointless complexity.

• Government dataset [GOV]: In this dataset, we chose 336 different USA
government web applications. 3 We retrieved the corresponding web ap-
plications from this list and collected the HTTP responses associated with
the web applications.

Having four different datasets can help us evaluate the novel attack method-
ologies we have designed more thoroughly, comparing them to the standard
methodology. In our experiments, we will evaluate the performance of the at-
tacks considering each dataset alone and all the datasets together collectively.
We will refer to this comprehensive dataset as the general dataset [ALL].

5.1.3. Preprocessing Of Data
After the collection of the HTTP responses, we proceeded to process the data.

From the URL of each HTTP response, we extracted the domain, which iden-
tifies the web application, and the path, which is the core component for the
filesystem reconstruction, the weighted tree and the Language model training.

Our next steps involved applying additional preprocessing to eliminate unneces-
sary data, ensure accurate filesystem reconstruction of web applications, and
facilitate further analysis.

Firstly, we filtered responses by keeping only the HTTP responses with a status
code of 200 (representing the vast majority of the collected responses). We
chose to do so mainly to make the filesystem reconstruction more efficient and
accurate.

Secondly, we removed all the eventual parts from the URL paths that were
queries or files. In this way we could reduce the already high degree of complex-
ity of the possible directory words to predict. These specific files and queries
are often associated with specific technologies that the web applications employ,
and the focus on these technologies is beyond the scope of this project.

1https://www.topuniversities.com/world-university-rankings/2023
2https://hospitals.webometrics.info/en/americas/usa
3https://www.usa.gov/agency-index

https://www.topuniversities.com/world-university-rankings/2023
https://hospitals.webometrics.info/en/americas/usa
https://www.usa.gov/agency-index

5.2. Datasets Analysis 30

Thirdly, we have the depth metric: the depth of a path is the number of direc-
tories that form that path. In other words, considering the path as a sequence
of words, the depth is the number of words in the sequence. In this sequence,
the order matters since words that come later are deeper into the hierarchical
filesystem structure of web applications.

To give an example, “/news/2023” has depth = 2, where “news” is at depth 1,
and “2023” is at depth 2).

5.2. Datasets Analysis
After preprocessing, we conducted several analyses on the properties, similari-
ties, and disparities for each dataset and between datasets.

Namely, we present the following analyses:

• Properties: Here, we present the datasets’ properties, such as the number
of domains, paths, directories and more.

• Wordlist coverage: Here, we analyze how the four wordlists we have se-
lected cover the directories in the URL paths in the datasets.

• Stemming: Here, we present the stemming analysis, where we try to un-
derstand how directory names between different web applications differ.

• Dataset Similarity: Here, we analyze the degree of similarity between the
different datasets presented.

5.2.1. Dataset Properties
We will now provide a detailed description of the four unique datasets that we
have collected. For each dataset, we report the following properties:

• Number of Domains (# Domains). This refers to the total number of do-
mains in each dataset, representing the number of different web applica-
tions for each dataset.

• Number of Paths (# Paths). This represents each dataset’s total number
of paths. For example, if a dataset contains two web applications, each
with one domain (e.g., “domain1/home” and “domain2/home”), the number
of paths is two, i.e., [“/home”, “/home”].

• Average Number of Paths and Standard Deviation (# Paths AVG and #
Paths STD). This is the average number (and standard deviation) of paths
that each web application has for a given dataset. For example, if two web
applications contain 3 URLs each, the average equals 3, and the standard
deviation equals 0.

• Number of Unique Paths (# Unique Paths). This is the number of unique
paths for a dataset. For example, if the dataset contains the samples
“domain1/home/about” and “domain2/home/about”, the unique paths are
[“/home/about”].

• Number of Directories (# Directories). This is the total number of direc-
tories in a dataset. For example, given “domain1/home/about” and “do-
main2/home/news”, the dataset contains four directories [“home”, “about”,
“home”, “news”].

• Number of Unique Directories (# Unique Directories). This is the to-
tal number of unique directories in a dataset. For example, given “do-
main1/home/about” and “domain2/home/news”, the dataset has 3 unique
directories [“home”, “about”, “news”].

• Depth of Paths (Depth AVG and Depth STD). Considering the depth met-
ric we have introduced, for a given dataset, we analyze the depth of the

5.2. Datasets Analysis 31

paths that it contains by average and standard deviation. For example,
the URL “domain1/home/about” has a path with a depth equal to 2. We
hypothesize that a directory with greater depth will likely be more specific
and more correlated with the single web application. Consequently, it may
be less common. This analysis can reveal interesting insights about web
application structures and granularities between different datasets.

• Average Depth and Standard Deviation of URLs Similarities (Similarity
AVG and Similarity STD). This property highlights the similarity between
each pair of web applications for a given dataset. The metric considered
is the Jaccard similarity previously introduced in Equation 3.1. Consider-
ing a web application as a set of the directories that compose its paths,
we computed the Jaccard similarity between every pair of web applica-
tions. Then, we calculated the average similarity and the standard devia-
tion. The wordlist selected to conduct a directory brute-force attack plays
a pivotal role in its performance. Additionally, the wordlist effectiveness is
strictly correlated with the directories of a web application, so this analysis
can give us valuable insights into whether web applications that belong to
a similar category have similar directories (thus, the same wordlist can be
effective for many web applications).

Table 5.1 presents the statistics for each dataset.

Dataset

features UNI HOS COM GOV
Domains 88 80 97 336
Paths 209657 211911 147198 520571

Paths AVG 2301 2584 1479 1507
Paths STD 2906 2800 2360 2340

Unique Paths 201768 205587 143067 502693
Directories 203613 209945 143620 512595

Unique Directories 171215 173394 106097 462812
Depth AVG 4.11 3.31 4.43 3.40
Depth STD 1.69 1.72 2.23 1.66

Similarity AVG 0.022 0.019 0.016 0.016
Similarity STD 0.031 0.017 0.023 0.024

Table 5.1: Summary statistics for the four datasets: universities [UNI], hospitals [HOS],
companies [COM], and government [GOV].

The reported properties leave room for some interesting discussions.

Web applications from different datasets average quite different structures con-
sidering the number of web pages (shown in # Paths AVG). For example, uni-
versities and hospitals have considerably more paths than companies and gov-
ernments on average.

Additionally, web applications in the same datasets tend to have a high vari-
ance of number of pages (# Paths STD), a limited difference between the num-
ber of directories and the number of unique directories (# Directories and
Unique Directories), and a Jaccard similarity close to zero (# Similarity
STD). These results show how even web applications that belong to the same
category are substantially different types of directories and structures.

By considering these statistics collectively, we can clearly understand why di-

5.2. Datasets Analysis 32

rectory enumeration is a complex task. Effective brute-force attacks might ne-
cessitate a vast number of requests for even a small number of successful dis-
coveries.

5.2.2. Selected Wordlists Coverage Analysis
This analysis aims to analyze the coverage performance of the four selected
wordlists at each depth level. We perform this analysis in the following way. For
each dataset, we collect the directories at a given depth for each web applica-
tion in the dataset. Then, we compute the coverage ratio by calculating how
many directories are in the wordlists at the given depth and the total number of
directories at that depth.

Figure 5.1 shows the results.

1 2 3 4 5 6 7 8 9 10
Depth

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Co
ve

ra
ge

 ra
tio

big_wfuzz
directory-list_dirbuster
megabeast_wfuzz
top_10k_github

(a) Universities.

1 2 3 4 5 6 7 8 9 10
Depth

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Co
ve

ra
ge

 ra
tio

big_wfuzz
directory-list_dirbuster
megabeast_wfuzz
top_10k_github

(b) Hospitals.

1 2 3 4 5 6 7 8 9 10
Depth

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Co
ve

ra
ge

 ra
tio

big_wfuzz
directory-list_dirbuster
megabeast_wfuzz
top_10k_github

(c) Companies.

1 2 3 4 5 6 7 8 9 10
Depth

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Co
ve

ra
ge

 ra
tio

big_wfuzz
directory-list_dirbuster
megabeast_wfuzz
top_10k_github

(d) Government.

Figure 5.1: Coverage ratio at increasing of depth for the four datasets: universities [UNI],
hospitals [HOS], companies [COM], and government [GOV].

The coverage ratio between different datasets exhibits significant variance. It
also reveals an unexpected trend: contrary to our initial hypothesis, the cover-
age ratio shows an upward trend with increasing depth, suggesting that directo-
ries at higher depths are more likely to be found on standard wordlists. However,
this

However, this trend has to be carefully considered by taking into account the
depth average and distribution reported in Table 5.1 and Figure 5.2. We can see

5.2. Datasets Analysis 33

how the number of directories at that depth is significantly reduced, so the higher
coverage ratio is relative to the corresponding limited number of directories.

2 4 6 8 10
Depth

UNI

HOS

COM

GOV

Da
ta

se
t

Figure 5.2: Depth distribution box plot for the four datasets: universities [UNI], hospitals [HOS],
companies [COM], and government [GOV].

Additionally, the poor coverage at early depths is critical considering the direc-
tory brute-force attack methodology: in order to discover deeper directories, it is
essential to discover the directories preceding them. Thus, the coverage ratio
already points out how the standard methodology associated with the selected
wordlists may obtain poor results.

5.2.3. Stemming Analysis
Stemming is a linguistic procedure that reduces words to their fundamental or
root form, referred to as the stem, typically by eliminating common prefixes or
suffixes. For instance, stemming transforms plurals into singulars (dogs−→ dog),
converts verbs -ing form into the base form (running −→ run), and more.

Analyzing how stemming impacts the directories in our datasets can help de-
sign better attack approaches: having many directories corresponding to few
common root forms may require a different strategy than having all directories
with different roots.

In our research, we utilized the Porter-Stemmer algorithm [5] to investigate the
impact of stemming on our datasets. Specifically, we analyzed how stemming
can help reduce the directory dictionary (reducing the word embedding com-
plexity in the language model) and what variations there are for the same roots.

5.2. Datasets Analysis 34

Table 5.2 demonstrates how the directory dictionaries for different datasets would
be reduced considering only the root forms of the directories. Stemming seems
to have minimal impact, with an average dictionary reduction of 1.4%.

Dataset

features UNI HOS COM GOV

Unique directories 171215 173394 106097 462812
Unique Roots 168462 171371 104220 457912

Reduction 2753 2023 1877 4900
Reduction (%) 1.61% 1.17% 1.77% 1.06%

Table 5.2: Summary statistics after Stemming process for the four datasets: universities [UNI],
hospitals [HOS], companies [COM], and government [GOV].

To further explore the impact of stemming, Figure 5.3 shows the distribution of
how many roots are base forms of a given number of directories. Here again,
we see how most roots correspond to only one word, with a few cases where
one root corresponds to multiple directories.

1 2 3 4 5 6 7
Number of directories

0

50000

100000

150000

Nu
m

be
r o

f r
oo

ts

(a) Universities.

1 2 3 4 5 6
Number of directories

0

50000

100000

150000
Nu

m
be

r o
f r

oo
ts

(b) Hospitals.

1 2 3 4 5 6
Number of directories

0

20000

40000

60000

80000

100000

Nu
m

be
r o

f r
oo

ts

(c) Companies.

2 4 6 8 10
Number of directories

0

100000

200000

300000

400000

Nu
m

be
r o

f r
oo

ts

(d) Government.

Figure 5.3: Distribution of how many roots correspond to a given number of directories for the four
datasets: universities [UNI], hospitals [HOS], companies [COM], and government [GOV].

In the few cases where different directories correspond to the same root word,
it is mainly due to slight variations in naming conventions, capital/lowercase
letters or singular and plural forms. Here are a couple of examples:

1. “articl” corresponding to “article” in 33.5% of cases, “articles” in 14.4%,
“Article” in 47.3%, “Articles” in 4.7%, and “ARTICLE” in 0.01%.

2. “project” corresponding to “project” in 46.78% of cases , “projects” in 53.13,
“Projected” in 0.04% and “Projects” in 0.04%.

In conclusion, these analyses highlight how the directories are substantially dif-
ferent from each other, with naming conventions or singular/plural forms that
have a marginal impact. Thus, our focus will be on exploiting relations between
directories and subdirectories and the context extrapolated from word embed-
dings without tailored strategies to generate different variations of the same
directory that may represent other valid directories.

5.2. Datasets Analysis 35

5.2.4. Dataset Similarity Analysis
Finally, we assess the dataset’s similarity, analyzing the similarity between each
pair of datasets. We employ two metrics for this purpose:

• The Jaccard similarity between datasets. More specifically, for a given
pair of datasets, we retrieved the unique directories for each of them, and
then we computed the Jaccard similarity of the two sets.

• The number of common paths between the datasets.

The results are illustrated in Figure 5.4.

UNI HOS COM GOV

UN
I

HO
S

CO
M

GO
V

0.013

0.009 0.008

0.012 0.009 0.008

(a) Jaccard similarities between datasets wordlist.

UNI HOS COM GOV
UN

I
HO

S
CO

M
GO

V

947

662 883

1792 2235 3531

(b) Number of common paths.

Figure 5.4: Similarity analysis for the four dataset: universities [UNI], hospitals [HOS], companies
[COM], and government [GOV].

The low Jaccard similarities underscore the first notable result, indicating that
each dataset comprises distinct directories. In other words, the structures of
university websites are substantially different from those of hospital websites.
This observation can be extended to any pair of datasets we used.

Another interesting discovery is the number of common paths among different
datasets. For instance, government and company websites exhibit significant
overlap compared to other datasets. However, when considering the number
of paths presented in Figure 5.1, we can clearly see that these numbers are
marginal compared to the total number of paths for each dataset.

In conclusion, considering the low similarity between datasets and between web
applications belonging to the same datasets, designing a novel methodology for
directory enumeration is a complex and not trivial task.

6
Results

In this chapter, we present the experimental settings, the results, and a discus-
sion of the results obtained.

In the experimental settings, we describe our testbed, the attack simulations
we will conduct, the evaluation metrics, and the validation of the choice of the
Language model architecture.

6.1. Experimental Settings
In the experimental settings, we describe our testbed, the attack simulations
we will conduct, the evaluation metrics, and the validation of the choice of the
Language model architecture.

6.1.1. Attack Testbed
Our testbed aims to be as comprehensive as possible to test the standard and
the novel attack methodologies proposed in this project.

Before setting up what offline simulations to conduct, we split our datasets into
training, validation and testing sets. Specifically, we performed a 70-10-20 split
ratio. Note that the split is done from a domain perspective, and then the paths
associated with each domain are split accordingly. By doing this, all the data
of a given web application will appear either in training, validation or test set,
avoiding possible data snooping [4].

This dataset split is essential for our novel approaches: the Language model
necessitates a large number of samples to be trained with (we achieve this by
using the paths from all the web applications assigned to the training set from
every dataset, and we do the same with the validation set), and the probabilistic
approach needs the prior knowledge to build the weighted training/wordlist tree
which is essential for the dynamical decision-making strategy.

Additionally, the testing environment is based on offline simulations utilizing the
virtual reconstructed filesystems of the web applications assigned to the testing
set. This choice allows us to conduct multiple attack simulations with different
attack methodologies and parameters without harming real web applications
launching real-time directory brute-force attacks.

Finally, since attacks can virtually send unlimited requests, we decided to set
a requests budget of 100,000 requests that each attack simulation can spend
before termination. This choice aligns with our goal of maximizing successful
responses while minimizing the request volume.

36

6.1. Experimental Settings 37

6.1.2. Language Model Validation
The choice of an appropriate language model is vital for the performance of the
LM-based approach. Through the training set, the Language model can learn
meaningful associations between directories, extrapolating the context.

The validation of the best hyperparameters that help achieve this can signifi-
cantly impact the results that we will obtain with this methodology in the simula-
tions. We employed a grid-search validation over the following hyperparameters
to select the model:

• Input data manipulation. Firstly, we identified hyper-parameters correlated
with the training samples: the maximum length a path can have and the
minimum frequency that a directory must have not to be discarded and
marked as ”Unknown.” For the former, defined as max_depth, we chose
[5, 10] as possible values. For the latter, defined as min_freq, we chose
[3, 5] as possible values.

• LM architecture. Secondly, we identified hyper-parameters related specif-
ically to the neural network architecture. Specifically, these parameters
are: embedding_size [ES] = [128, 256, 512], n_layers [NL] (number of
layers in the LSTM) = [2, 3, 4], dropout_rate [DR]=[0.2, 0.4, 0.6].

In the training, we have also used an early stopping mechanism, as described
in Section 4.5 with a patience of 10 epochs. We used the Adam [10] optimizer
and the CrossEntropy loss function in the learning phase.

Then, we selected the model that obtained the lowest loss in the validation set
during the training phase as a metric for selecting the best model.

Lastly, we decided to test an additional parameter that can define the perfor-
mance of the LM attack methodology. This parameter, defined as topPredicts
introduced in Algorithm 4, is the number of predictions the Language model out-
puts each time a new HTTP response is received. We tested the values [100,
250, 500, 750, 1000, 2000, 5000, 10000] for this parameter.

6.1.3. Evaluation Metrics
We decided to utilize two evaluation metrics:

• Average Successful Responses. This metric represents the average
amount of successful responses received during the attack simulations
(each response is associated with a newly discovered directory) over a
testing dataset that consists of multiple web applications

• Mean efficiency ratio in bins. This involves calculating the mean of the
total number of directories successfully discovered for each web applica-
tion tested within a specific range of requests. The ranges of requests we
consider are [0-100, 101-1000, 1001-10000, 10001-50000, and 50001-
100000]. This metric allows us to evaluate the efficiency of our dynamic
decision-making strategy and how the two novel approaches perform com-
pared to the standard attack methodology.

In the evaluation of the attacks, we did not consider the execution time as a
metric for the following reasons:

• The execution time depends on several implementation factors, such as
the number of threads used in each attack and the programming language
with which the attack is implemented.

• The time between a request being sent and a response being received
can vary between web applications.

• Our testing environment comprises offline simulations. Thus, the execu-
tion time would not be meaningful.

6.2. Experimental Results 38

6.2. Experimental Results
This section presents an analysis of the topPredicts parameter and an overview
of the results obtained in the two metrics we selected.

6.2.1. K Top-Predictions Analysis
Testing the parameter topPredicts of the LM-based approach has revealed an
interesting trend.

Figure 6.1 shows the average successful responses received in the general
testing dataset (considering all the web applications assigned to the testing set)
at the varying of topPredicts.

0 20000 40000 60000 80000 100000
Total Requests

0

25

50

75

100

125

150

175

Su
cc

es
sf

ul
 R

es
po

ns
es

topPredicts: 100
topPredicts: 250
topPredicts: 500
topPredicts: 750
topPredicts: 1000
topPredicts: 2000
topPredicts: 5000
topPredicts: 10000

Figure 6.1: Evolution of average successful responses for different topPredicts values.

The average number of successful responses received decreases as the num-
ber of the most probable predictions generated each time increases.

Moreover, while a smaller topPredicts value results in a higher initial average
number of successful responses, the simulations terminate before exhausting
the requests budget since the attacks have no more requests to send.

This trend highlights a crucial aspect when selecting an appropriate value for
this parameter to maximize the outcomes and entirely use the pre-set request
budget.

If our budget is constrained, it may be preferable to set topPredicts to a lower
number, as the model achieves the highest number of successful responses
using fewer requests. Conversely, larger values such as 500, 750, and 1000

6.2. Experimental Results 39

are more suitable when the budget permits a comprehensive search.

6.2.2. Average Successful Responses Results
Table 6.1 presents the comprehensive results derived from our experiments,
considering different datasets, wordlists, and attack methodologies. The LM-
based attack surpasses all other baseline methods across all datasets, thereby
underscoring the superiority of the Language model-based technique over stan-
dard and probabilistic attack methodologies.

Interestingly, the LM’s performance is not uniformly distributed across all datasets.
For example, the LM encounters difficulties with websites related to universities
and companies, while it exhibits robustness with websites associated with hos-
pitals and government entities.

The probabilistic-based method demonstrates a good performance improve-
ment over standard directory brute-force attacks. This is probably due to the
enforced request budget that limits the discovery of the standard attacks.

Regarding the standard methodologies, the breadth-first strategy emerges as a
better attack strategy than the depth-first.

Lastly, it is interesting to note how requests budget affects the results obtained
from different wordlists. The standard and the probabilistic approaches achieve
almost the same results using the smallest wordlist big_wfuzz. This happens
because, in the simulations, the attacks come to exhaust the possible requests
to be sent before reaching the set budget. In contrast, in the other three wordlists,
we can see how the results change depending on the attack methodologies:
here, the strategy by which it is decided which request to send is crucial in get-
ting better or worse results before exhausting the requests budget.

Wordlist Dataset
UNI HOS COM GOV ALL
Breadth

big_wfuzz 28.0 22.0 27.0 35.0 35.0
directory-list_dirbuster 8.0 10.3 9.6 11.8 10.5
megabeast_wfuzz 10.5 11.6 11.0 12.4 11.7
top_10k_github 21.3 42.6 26.8 27.0 28.6

Depth
big_wfuzz 28.0 22.0 27.0 33.0 33.0

directory-list_dirbuster 0.5 0.5 0.7 0.4 0.5
megabeast_wfuzz 2.6 2.9 2.7 2.7 2.7
top_10k_github 10.1 10.1 10.1 10.0 10.1

Probability
big_wfuzz 28.0 22.0 27.0 34.5 34.5

directory-list_dirbuster 14.0 13.1 11.1 17.3 25.4
megabeast_wfuzz 12.5 13.9 11.8 13.8 13.8
top_10k_github 23.4 42.9 26.1 27.1 26.7

train-set 31.9 60.4 27.6 30.8 42.5
LM

train-set 90.0 175.0 89.0 128.0 175.0

Table 6.1: Average successful responses for each approach achieved for different test-sets at the
varying of the datasets. In bold the best results.

6.2. Experimental Results 40

6.2.3. Mean Efficiency Ratio Results
The second metric considered, the mean efficiency ratio, can give us valuable
insight into the efficiency of the requests sent in the early, mid, and late stages
of directory brute-force attacks.

This analysis can, in particular, show how the dynamical decision-making strate-
gies in both proposed approaches compare to the sequential sending of re-
quests employed by the standard attack methodology.

Figures 6.2, 6.3, 6.4, 6.5 and 6.6 present a comprehensive overview of the
mean efficiency ratio considering different datasets, wordlists and attackmethod-
ologies.

In the early stages (1-100, 101-1000) of the attack simulations, the probabilistic
approach emerges as the most efficient approach in the vast majority of cases.
Specifically considering the 1-100 and 101-1000 bins, the probabilistic approach
is more efficient than the depth-first approach in 100% of the cases, the breadth-
first approach in 94% of the cases, and the LM-based approach in 81% of the
cases.

On the other hand, the LM-based approach is generally less efficient than the
probabilistic approach in the early stages, except for some cases with equal or
slightly better efficiency. However, this approach manages to be more consis-
tent in the middle (1001-10,000) or later (10001-50000, 50000-100000) stages
of the attack, outperforming other attack methodologies. This is also validated
by correlating the results from the previous metric. Specifically considering the
10001-50000 and 50001-10000 bins (related to 90% of the total requests sent)
the LM-based approach outperforms the other three attack methodologies in
terms of efficiency in 100% of the cases.

1-1
00

10
1-1

00
0

10
01

-10
00

0

10
00

1-5
00

00

50
00

1-1
00

00
0

Requests Bins

0.000

0.025

0.050

0.075

0.100

0.125

0.150

M
ea

n
Ef

fic
ie

nc
y

Ra
tio

Attack Methodology
LM
breadth
depth
probability

(a) big_wfuzz.

1-1
00

10
1-1

00
0

10
01

-10
00

0

10
00

1-5
00

00

50
00

1-1
00

00
0

Requests Bins

0.000

0.025

0.050

0.075

0.100

0.125

0.150

M
ea

n
Ef

fic
ie

nc
y

Ra
tio

Attack Methodology
LM
breadth
depth
probability

(b) top_10k_github.

1-1
00

10
1-1

00
0

10
01

-10
00

0

10
00

1-5
00

00

50
00

1-1
00

00
0

Requests Bins

0.000

0.025

0.050

0.075

0.100

0.125

0.150

M
ea

n
Ef

fic
ie

nc
y

Ra
tio

Attack Methodology
LM
breadth
depth
probability

(c) megabeast_wfuzz.

1-1
00

10
1-1

00
0

10
01

-10
00

0

10
00

1-5
00

00

50
00

1-1
00

00
0

Requests Bins

0.000

0.025

0.050

0.075

0.100

0.125

0.150

M
ea

n
Ef

fic
ie

nc
y

Ra
tio

Attack Methodology
LM
breadth
depth
probability

(d) directory-list_dirbuster.

Figure 6.2: Mean Efficiency Ratio of the four approaches on different bins for Universities
dataset [UNI] and 4 wordlists: big_wfuzz [BW], top_10k_github [GH], megabeast_wfuzz [MW],

and directory-list_dirbuster [DB].

6.2. Experimental Results 41

1-1
00

10
1-1

00
0

10
01

-10
00

0

10
00

1-5
00

00

50
00

1-1
00

00
0

Requests Bins

0.000

0.025

0.050

0.075

0.100

0.125

0.150

M
ea

n
Ef

fic
ie

nc
y

Ra
tio

Attack Methodology
LM
breadth
depth
probability

(a) big_wfuzz.

1-1
00

10
1-1

00
0

10
01

-10
00

0

10
00

1-5
00

00

50
00

1-1
00

00
0

Requests Bins

0.000

0.025

0.050

0.075

0.100

0.125

0.150

M
ea

n
Ef

fic
ie

nc
y

Ra
tio

Attack Methodology
LM
breadth
depth
probability

(b) top_10k_github.

1-1
00

10
1-1

00
0

10
01

-10
00

0

10
00

1-5
00

00

50
00

1-1
00

00
0

Requests Bins

0.000

0.025

0.050

0.075

0.100

0.125

0.150

M
ea

n
Ef

fic
ie

nc
y

Ra
tio

Attack Methodology
LM
breadth
depth
probability

(c) megabeast_wfuzz.

1-1
00

10
1-1

00
0

10
01

-10
00

0

10
00

1-5
00

00

50
00

1-1
00

00
0

Requests Bins

0.000

0.025

0.050

0.075

0.100

0.125

0.150

M
ea

n
Ef

fic
ie

nc
y

Ra
tio

Attack Methodology
LM
breadth
depth
probability

(d) directory-list_dirbuster.

Figure 6.3: Mean Efficiency Ratio of the four approaches on different bins for Hospitals dataset
[HOS] and 4 wordlists: big_wfuzz [BW], top_10k_github [GH], megabeast_wfuzz [MW], and

directory-list_dirbuster [DB].

1-1
00

10
1-1

00
0

10
01

-10
00

0

10
00

1-5
00

00

50
00

1-1
00

00
0

Requests Bins

0.000

0.025

0.050

0.075

0.100

0.125

0.150

M
ea

n
Ef

fic
ie

nc
y

Ra
tio

Attack Methodology
LM
breadth
depth
probability

(a) big_wfuzz.

1-1
00

10
1-1

00
0

10
01

-10
00

0

10
00

1-5
00

00

50
00

1-1
00

00
0

Requests Bins

0.000

0.025

0.050

0.075

0.100

0.125

0.150

M
ea

n
Ef

fic
ie

nc
y

Ra
tio

Attack Methodology
LM
breadth
depth
probability

(b) top_10k_github.

1-1
00

10
1-1

00
0

10
01

-10
00

0

10
00

1-5
00

00

50
00

1-1
00

00
0

Requests Bins

0.000

0.025

0.050

0.075

0.100

0.125

0.150

M
ea

n
Ef

fic
ie

nc
y

Ra
tio

Attack Methodology
LM
breadth
depth
probability

(c) megabeast_wfuzz.

1-1
00

10
1-1

00
0

10
01

-10
00

0

10
00

1-5
00

00

50
00

1-1
00

00
0

Requests Bins

0.000

0.025

0.050

0.075

0.100

0.125

0.150

M
ea

n
Ef

fic
ie

nc
y

Ra
tio

Attack Methodology
LM
breadth
depth
probability

(d) directory-list_dirbuster.

Figure 6.4: Mean Efficiency Ratio of the four approaches on different bins for Companies
dataset [COM] and 4 wordlists: big_wfuzz [BW], top_10k_github [GH], megabeast_wfuzz [MW],

and directory-list_dirbuster [DB].

6.2. Experimental Results 42

1-1
00

10
1-1

00
0

10
01

-10
00

0

10
00

1-5
00

00

50
00

1-1
00

00
0

Requests Bins

0.000

0.025

0.050

0.075

0.100

0.125

0.150

M
ea

n
Ef

fic
ie

nc
y

Ra
tio

Attack Methodology
LM
breadth
depth
probability

(a) big_wfuzz.

1-1
00

10
1-1

00
0

10
01

-10
00

0

10
00

1-5
00

00

50
00

1-1
00

00
0

Requests Bins

0.000

0.025

0.050

0.075

0.100

0.125

0.150

M
ea

n
Ef

fic
ie

nc
y

Ra
tio

Attack Methodology
LM
breadth
depth
probability

(b) top_10k_github.

1-1
00

10
1-1

00
0

10
01

-10
00

0

10
00

1-5
00

00

50
00

1-1
00

00
0

Requests Bins

0.000

0.025

0.050

0.075

0.100

0.125

0.150

M
ea

n
Ef

fic
ie

nc
y

Ra
tio

Attack Methodology
LM
breadth
depth
probability

(c) megabeast_wfuzz.

1-1
00

10
1-1

00
0

10
01

-10
00

0

10
00

1-5
00

00

50
00

1-1
00

00
0

Requests Bins

0.000

0.025

0.050

0.075

0.100

0.125

0.150

M
ea

n
Ef

fic
ie

nc
y

Ra
tio

Attack Methodology
LM
breadth
depth
probability

(d) directory-list_dirbuster.

Figure 6.5: Mean Efficiency Ratio of the four approaches on different bins for Government
dataset [GOV] and 4 wordlists: big_wfuzz [BW], top_10k_github [GH], megabeast_wfuzz [MW],

and directory-list_dirbuster [DB].

1-1
00

10
1-1

00
0

10
01

-10
00

0

10
00

1-5
00

00

50
00

1-1
00

00
0

Requests Bins

0.000

0.025

0.050

0.075

0.100

0.125

0.150

M
ea

n
Ef

fic
ie

nc
y

Ra
tio

Attack Methodology
LM
breadth
depth
probability

(a) big_wfuzz.

1-1
00

10
1-1

00
0

10
01

-10
00

0

10
00

1-5
00

00

50
00

1-1
00

00
0

Requests Bins

0.000

0.025

0.050

0.075

0.100

0.125

0.150

M
ea

n
Ef

fic
ie

nc
y

Ra
tio

Attack Methodology
LM
breadth
depth
probability

(b) top_10k_github.

1-1
00

10
1-1

00
0

10
01

-10
00

0

10
00

1-5
00

00

50
00

1-1
00

00
0

Requests Bins

0.000

0.025

0.050

0.075

0.100

0.125

0.150

M
ea

n
Ef

fic
ie

nc
y

Ra
tio

Attack Methodology
LM
breadth
depth
probability

(c) megabeast_wfuzz.

1-1
00

10
1-1

00
0

10
01

-10
00

0

10
00

1-5
00

00

50
00

1-1
00

00
0

Requests Bins

0.000

0.025

0.050

0.075

0.100

0.125

0.150

M
ea

n
Ef

fic
ie

nc
y

Ra
tio

Attack Methodology
LM
breadth
depth
probability

(d) directory-list_dirbuster.

Figure 6.6: Mean Efficiency Ratio of the four approaches on different bins for general dataset
[ALL] and 4 wordlists: big_wfuzz [BW], top_10k_github [GH], megabeast_wfuzz [MW], and

directory-list_dirbuster [DB].

6.3. Results Discussion 43

6.3. Results Discussion
In this section, we discuss the results obtained, analyse what improvements
have been made, and provide possible use cases and explanations of the novel
approaches.

6.3.1. Results Analysis
The twomethodologies proposed demonstrate significant enhancements in both
metrics evaluated. Among the two conventional strategies, the breadth-first
technique proves to be superior.

The probabilistic method enhances the performance of the breadth-first approach
in 65% of cases when considering the four default wordlists. In the remaining
cases it achieves equivalent or marginally lower results. Depth-first strategies
are surpassed in 100% of instances. Specifically, when considering the breadth-
first approach, the probability-based method using the train-set wordlist exhibits
the following average improvements: University +141%, hospital +281%, com-
panies +85%, government +78%, and ALL +159%.

The primary advantage of the probabilistic method is its ability to generate suc-
cessful responses using a limited number of requests, which significantly out-
performs all other methods. The efficiency metric also supports this choice.

The Language-based approach surpasses the standard approach in 100% of
the simulations and emerges by far as the best attack methodology. The LM-
based model approach demonstrates the following average improvements over
the breadth-first baselines: University +582%, hospital +1004%, companies
+499%, government +639%, and ALL +969%.

These results highlight how an attacker can leverage prior knowledge to boost
the performance of standard directory brute-force attacks.

When considering the relative improvements of the two proposed novel ap-
proaches, the probabilistic approach performs better in University and Hospi-
tal datasets, and the LM-based approach performs exceptionally in the hospital
dataset.

This discrepancy may be due to the more significant heterogeneity of web ap-
plications contained in companies and government: companies of government
sites in different sectors may deal with different topics and have more diverse
folders among the various web applications, compared to universities and hos-
pitals that might instead have more similar folders and structure.

6.3.2. Exploiting The Context
In a directory brute-force attack, the improvements shown by the novel ap-
proaches show how an essential component that allows dynamically selecting
which request to send is the context to which the directories belong.

The capacity of embeddings to extrapolate the context from web application
paths and generalize is crucial for predicting possible existing directories. In
particular, the results underscore how the Language Model (LM) approach ef-
fectively leverages the context derived from embeddings to yield significantly
superior results compared to other methods.

This can be observed by presenting two examples: given two directories ”article”
and ”about”, we employ Cosine similarity to measure the top 10 directories with
the highest cosine similarity, indicating belonging to a similar context.

1. article: (’stories’, 0.48), (’academics’, 0.43), (’press-release’, 0.39), (’press-
releases’, 0.38), (’video’, 0.32), (’authors’, 0.32), (’spotlight’, 0.32), (’arti-
cles’, 0.31), (’case’, 0.3), (’impact’, 0.29).

6.3. Results Discussion 44

2. about: (’locations’, 0.79), (’about-us’, 0.75), (’research’, 0.75), (’programs’,
0.74), (’conditions’, 0.7), (’services’, 0.68), (’resources’, 0.68), (’alumni’,
0.68), (’careers’, 0.67), (’contact’, 0.66).

In both instances, we observe that the words determined as similar by the em-
beddings represent the sameword but with slight variations, such as ’about’ with
’about-us’ or ’article’ with ’articles’. Additionally, we find other words that
relate to the context created by the word under consideration, such as ’authors’
or ’stories’ for ’article’.

These two examples demonstrate how language models can leverage embed-
dings to extrapolate the context and attest to their capability to predict valid di-
rectories that adhere to recurring patterns. Regarding this, it is also interesting
to report some predicted subdirectories given two distinct paths:

1. path: /campus-life-events/calendar : [“05”, “06”, “08”, “11”, “may”, “jun”]
are some of the most probable subdirectories predicted, which are corre-
lated to days or months of a calendar.

2. path: /media. [“press-releases”, “news”] are some of the most probable
subdirectories predicted. These two words are correlated to the same
context of “media”, and the corresponding paths “/media/press-releases”
and “/media/news” are also URL paths of the training dataset.

Again, these examples show the power of exploiting the context to enhance the
directory enumeration process through a dynamic and smart approach that max-
imizes directory discoveries while reducing the number of requests needed.

7
Conclusion

The current directory brute-force attacks are widely recognized for their ineffi-
ciency. This is primarily due to their reliance on standard brute-force strategies
and strong dependency on a wordlist. These two components lead to a mas-
sive number of requests being sent for a relatively small number of successful
discoveries that are entirely dependent on the selected wordlist for the attack.

In this study, we explored the possibility of leveraging prior knowledge to en-
hance the efficiency and effectiveness of these attacks. To this end, we intro-
duced two novel attack methodologies where prior knowledge is a pivotal com-
ponent: a probabilistic approach that primarily exploits information between di-
rectories and subdirectories and a Language model-based approach where a
Language model is employed to predict probable directories.

We collected a novel dataset comprising approximately 600 different web ap-
plications from different domains (universities, hospitals, companies, and gov-
ernment web applications) and more than 1 million URLs. We then used this
dataset to extensively test our novel approaches.

The results of our experiments underscored the superiority of our proposed
methods. The LM-based approach outperformed the standard directory brute-
force methodologies in every scenario, registering an average performance in-
crease of 969%. Moreover, the probabilistic approach proved to be effective
and employable in scenarios where the requests budget is limited and the at-
tack has to be stealthy.

7.1. Future Works
Unfortunately, during our testing phases, the results we obtained led us to choose
another approach based on a language model, which ended up being the sec-
ond improved approach of this project. The research in this thesis project estab-
lishes a foundation for numerous potential directions for future exploration. The
application of Artificial Intelligence in crafting sophisticated attacks is a rapidly
evolving and expanding field in cybersecurity, particularly with the swift advance-
ment of Artificial Intelligence.

Future work could focus on improving our LM-based architecture by using ad-
vanced models such as attention mechanisms [39], or even Large Language
Models [7]. These models’ augmented comprehension of context and seman-
tics could considerably refine the procedure of predicting web application struc-
tures and directories.

Furthermore, since directory predictions can be limited by the language in which

45

7.1. Future Works 46

a web application is developed, there is potential for exploring the use of pre-
trained and cross-lingual embeddings [40, 44] to extrapolate the context and
predict directories without having more language restrictions.

Another possible research direction that could provide a significant contribution
is developing a languagemodel explicitly trained on directories and files typically
associated with vulnerabilities. By fine-tuning the model on these vulnerabilities,
the model could aid in preemptively identifying potential security risks, thereby
contributing to more proactive cybersecurity measures to secure web applica-
tions.

These areas of future work hold the potential to significantly influence the devel-
opment of more secure web applications and present new security challenges
to the usage of language models.

7.1.1. Seq2Seq Approach
After presenting some possible research directions that can follow up on the
research in this project, it can also be helpful to report some other experiments
we have conducted with other approaches.

Specifically, we experimented with using another neural architecture instead
of the language model called Seq2Seq [37]. This model consists of two main
components:

• Encoder: a RNN layer (in our case specifically a LSTM) that processes
input sequence and returns the internal state representing the context.

• Decoder: another RNN layer (LSTM also in this case for our test case) that
uses the internal state provided by the encoder and predicts the following
sequences to the input sequence as output.

We chose this type of architecture because it suited our goal. Both models
would be trained on the prior knowledge collected. During an attack, the encoder
would be responsible for extrapolating the context from the URL given to it as
input, while the decoder would use the extrapolated context to predict possible
directories that would form new URLs.

The intuition behind this idea is simple: suppose we have a web application
that has “login” and “/user/register” as valid directories. The Seq2Seq model
gets fed with multiple paths, and the encoder is responsible for extrapolating the
context from these paths. Then, the decoder can use this context to understand
what possible directories may be in the web application, considering the context
extrapolated so far. In this case, if we successfully discover “login”, the context
will likely lead the decoder to predict that also “register” is a valid directory in the
web application, even if it is located in different areas or depths in the application
filesystem. This ability to adapt the context feeding the valid paths discovered
during the attack can be valuable to accurately predict directories and paths that
are unseen in prior knowledge.

However, the initial dissatisfying results we obtained using it and the idea of
employing a language model that would have integrated seamlessly with the
algorithm already implemented for the probabilistic approach led us to discard
this architecture to focus on the language model approach.

References

[1] Ayham Alomari et al. “Deep reinforcement and transfer learning for ab-
stractive text summarization: A review”. In:Computer Speech & Language
71 (2022), p. 101276.

[2] Yazan Ahmad Alsariera et al. “Ai meta-learners and extra-trees algorithm
for the detection of phishing websites”. In: IEEE access 8 (2020), pp. 142532–
142542.

[3] Diego Antonelli et al. Leveraging AI to optimize website structure discov-
ery during Penetration Testing. 2021. arXiv: 2101.07223 [cs.CR].

[4] Daniel Arp et al. “Dos and don’ts of machine learning in computer secu-
rity”. In: 31st USENIX Security Symposium (USENIX Security 22). 2022,
pp. 3971–3988.

[5] Steven Bird, Ewan Klein, and Edward Loper.Natural language processing
with Python: analyzing text with the natural language toolkit. ” O’Reilly
Media, Inc.”, 2009.

[6] Philip Bontrager et al. “Deepmasterprints: Generating masterprints for dic-
tionary attacks via latent variable evolution”. In: 2018 IEEE 9th Interna-
tional Conference on Biometrics Theory, Applications and Systems (BTAS).
IEEE. 2018, pp. 1–9.

[7] Yupeng Chang et al. “A survey on evaluation of large language models”.
In: ACM Transactions on Intelligent Systems and Technology (2023).

[8] Kyunghyun Cho et al. “On the properties of neural machine translation:
Encoder-decoder approaches”. In: arXiv preprint arXiv:1409.1259 (2014).

[9] Michael Chui et al. “The state of AI in 2023: Generative AI’s breakout year”.
In: (2023).

[10] P Kingma Diederik. “Adam: A method for stochastic optimization”. In: (No
Title) (2014).

[11] Gerard Verweij Dr. Anand S. Rao. Sizing the prize. What’s the real value
of AI for your business and how can you capitalise? Tech. rep. Pricewa-
terhouseCoopers (PwC), 2020.

[12] Peng Gao et al. “Enabling efficient cyber threat hunting with cyber threat
intelligence”. In: 2021 IEEE 37th International Conference on Data Engi-
neering (ICDE). IEEE. 2021, pp. 193–204.

[13] Abdulrahman Al-Hababi and Sezer C Tokgoz. “Man-in-the-middle attacks
to detect and identify services in encrypted network flows using machine
learning”. In: 2020 3rd International Conference on Advanced Communi-
cation Technologies and Networking (CommNet). IEEE. 2020, pp. 1–5.

[14] RazaHasan et al. “Artificial intelligence basedmodel for incident response”.
In: 2011 International Conference on Information Management, Innova-
tion Management and Industrial Engineering. Vol. 3. IEEE. 2011, pp. 91–
93.

[15] Ying He et al. “AI Based Directory Discovery Attack and Prevention of
the Medical Systems”. In: 2022 Computing in Cardiology (CinC). Vol. 498.
IEEE. 2022, pp. 1–4.

47

https://arxiv.org/abs/2101.07223

References 48

[16] Sepp Hochreiter. “The vanishing gradient problem during learning recur-
rent neural nets and problem solutions”. In: International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems 6.02 (1998), pp. 107–
116.

[17] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In:
Neural computation 9.8 (1997), pp. 1735–1780.

[18] Mohammad Mehdi Hosseini and Masood Parvania. “Artificial intelligence
for resilience enhancement of power distribution systems”. In: The Elec-
tricity Journal 34.1 (2021), p. 106880.

[19] Armand Joulin et al. “Bag of tricks for efficient text classification”. In: arXiv
preprint arXiv:1607.01759 (2016).

[20] Nektaria Kaloudi and Jingyue Li. “The ai-based cyber threat landscape: A
survey”. In: ACM Computing Surveys (CSUR) 53.1 (2020), pp. 1–34.

[21] Nabeel Sabir Khan, Adnan Abid, and Kamran Abid. “A novel natural lan-
guage processing (NLP)–based machine translation model for English to
Pakistan sign language translation”. In: Cognitive Computation 12 (2020),
pp. 748–765.

[22] Yuanzhang Li et al. “A feature-vector generative adversarial network for
evading PDF malware classifiers”. In: Information Sciences 523 (2020),
pp. 38–48.

[23] Yunji Liang et al. “Behavioral biometrics for continuous authentication in
the internet-of-things era: An artificial intelligence perspective”. In: IEEE
Internet of Things Journal 7.9 (2020), pp. 9128–9143.

[24] Qian Liu et al. “You impress me: Dialogue generation via mutual persona
perception”. In: arXiv preprint arXiv:2004.05388 (2020).

[25] Yinhan Liu et al. “Roberta: A robustly optimized bert pretraining approach”.
In: arXiv preprint arXiv:1907.11692 (2019).

[26] TomasMikolov et al. “Efficient estimation of word representations in vector
space”. In: arXiv preprint arXiv:1301.3781 (2013).

[27] Yisroel Mirsky et al. “The threat of offensive ai to organizations”. In: Com-
puters & Security 124 (2023), p. 103006.

[28] Edmilson Morais et al. “Speech emotion recognition using self-supervised
features”. In: ICASSP 2022-2022 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE. 2022, pp. 6922–
6926.

[29] Steve Morgan. Cybercrime To Cost The World 8 Trillion Annually In 2023
— cybersecurityventures.com. https://cybersecurityventures.com/
cybercrime-to-cost-the-world-8-trillion-annually-in-2023/.
[Accessed 07-05-2024]. 2022.

[30] Sungyup Nam et al. “Recurrent gans password cracker for iot password
security enhancement”. In: Sensors 20.11 (2020), p. 3106.

[31] AdamPauls andDan Klein. “Faster and smaller n-gram languagemodels”.
In: Proceedings of the 49th annual meeting of the Association for Compu-
tational Linguistics: Human Language Technologies. 2011, pp. 258–267.

[32] Jeffrey Pennington, Richard Socher, and Christopher D Manning. “Glove:
Global vectors for word representation”. In: Proceedings of the 2014 con-
ference on empirical methods in natural language processing (EMNLP).
2014, pp. 1532–1543.

[33] Dan Petro and Ben Morris. “Weaponizing machine learning: Humanity
was overrated anyway”. In: DEF CON 25 (2017).

https://cybersecurityventures.com/cybercrime-to-cost-the-world-8-trillion-annually-in-2023/
https://cybersecurityventures.com/cybercrime-to-cost-the-world-8-trillion-annually-in-2023/

References 49

[34] Fabio Petroni et al. “Language Models as Knowledge Bases?” In: Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP). Ed. by Kentaro Inui et al.
Hong Kong, China: Association for Computational Linguistics, Nov. 2019,
pp. 2463–2473. doi: 10.18653/v1/D19-1250. url: https://aclantholog
y.org/D19-1250.

[35] RobinMSchmidt. “Recurrent neural networks (rnns): A gentle introduction
and overview. arXiv 2019”. In: arXiv preprint arXiv:1912.05911 (1912).

[36] Tobias Schnabel et al. “Evaluation methods for unsupervised word em-
beddings”. In: Proceedings of the 2015 conference on empirical methods
in natural language processing. 2015, pp. 298–307.

[37] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to sequence
learning with neural networks”. In: Advances in neural information pro-
cessing systems 27 (2014).

[38] Khoa Trieu and Yi Yang. “Artificial intelligence-based password brute force
attacks”. In: (2018).

[39] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural
information processing systems 30 (2017).

[40] Ivan Vulić and Marie-Francine Moens. “Monolingual and cross-lingual in-
formation retrieval models based on (bilingual) word embeddings”. In: Pro-
ceedings of the 38th international ACM SIGIR conference on research
and development in information retrieval. 2015, pp. 363–372.

[41] Kevin Williams. ’Cyber-physical attacks’ fueled by AI are a growing threat,
experts say — cnbc.com. https://www.cnbc.com/2024/03/03/cyber-
physical-attacks-fueled-by-ai-are-a-growing-threat-experts-
say.html. [Accessed 07-05-2024]. 2024.

[42] Dali Zhu et al. “DeepFlow: Deep learning-based malware detection by
mining Android application for abnormal usage of sensitive data”. In: 2017
IEEE symposium on computers and communications (ISCC). IEEE. 2017,
pp. 438–443.

[43] Jinhua Zhu et al. “Incorporating bert into neural machine translation”. In:
arXiv preprint arXiv:2002.06823 (2020).

[44] Will Y Zou et al. “Bilingual word embeddings for phrase-based machine
translation”. In:Proceedings of the 2013 conference on empirical methods
in natural language processing. 2013, pp. 1393–1398.

https://doi.org/10.18653/v1/D19-1250
https://aclanthology.org/D19-1250
https://aclanthology.org/D19-1250
https://www.cnbc.com/2024/03/03/cyber-physical-attacks-fueled-by-ai-are-a-growing-threat-experts-say.html
https://www.cnbc.com/2024/03/03/cyber-physical-attacks-fueled-by-ai-are-a-growing-threat-experts-say.html
https://www.cnbc.com/2024/03/03/cyber-physical-attacks-fueled-by-ai-are-a-growing-threat-experts-say.html

	Acknowledgments
	Abstract
	Introduction
	Context
	Artificial Intelligence
	Offensive AI

	Motivation
	Contribution
	Report Structure

	Background
	NLP
	Language Models
	Overview
	Embedding

	Related Works

	Threat model
	Attack Description
	Automated Tools
	Wordlists
	Selected Wordlists Similarity

	Attack Methodology
	Overview
	Tree Reconstruction
	Standard Approach
	Depth-First
	Breadth-First

	Probability Based Approach
	Approach
	Algorithm

	Language-Model Based Approach
	Approach
	Model Architecture
	Training and Validation
	Algorithm

	Datasets
	Data Description
	Source Of Data
	Datasets Collected
	Preprocessing Of Data

	Datasets Analysis
	Dataset Properties
	Selected Wordlists Coverage Analysis
	Stemming Analysis
	Dataset Similarity Analysis

	Results
	Experimental Settings
	Attack Testbed
	Language Model Validation
	Evaluation Metrics

	Experimental Results
	K Top-Predictions Analysis
	Average Successful Responses Results
	Mean Efficiency Ratio Results

	Results Discussion
	Results Analysis
	Exploiting The Context

	Conclusion
	Future Works
	Seq2Seq Approach

	References

