
Developer-Friendly Test Cases: Generating Understandable Test Names Based on
Coverage Improvement

Nienke Nijkamp1 , Carolin Brandt1 , Andy Zaidman1

1TU Delft

Abstract
TestCube amplifies existing unit tests and creates
a new test suite with additional coverage for the
source code. The names automatically generated
by TestCube do not give any information on the
behaviour or the coverage improvement of the am-
plified test case. In this paper, we present an ap-
proach to naming these amplified test cases by
representing methods where the coverage is im-
proved. These tests represent the covered meth-
ods on source code level and give the developer
increased readability and understanding of the am-
plified test cases. We conducted a research study
amongst 16 participants with a background in Com-
puter Science. Participants were asked to indi-
cate their agreement with the original test names,
the test names generated by the approach and test
names written by experts. The study found that
participants strongly disagreed with the original
TestCube names, and the names generated by our
approach posed a real improvement to their satis-
faction with the test names. With a few improve-
ments, the test names generated by the approach
will perform as acceptable as the manually written
names.

1 Introduction
Tools for automated test generation have been available

for a few years, however have not yet been widely used by
software developers [1]. One of the leading causes for the
lack of use is the readability of the generated test cases [1].
The readability of tests is the visual appearance of the code in
general. When a test is considered readable, it will be easier
to perform tasks that require understanding it [2]. The name
of a test can be one of the most useful sources of informa-
tion for understanding a test [3], and therefore improving the
name considerably improves the test’s readability. For this
paper, we implement an approach for naming amplified test
cases for TestCube.

TestCube1 is an IntelliJ plugin that uses the test amplifica-
tion process of DSpot [1]. DSpot is a tool that automatically

1https://github.com/TestShiftProject/test-cube

generates unit tests from developer-written tests. We refer to
the tests generated by TestCube and DSpot by the term am-
plified test cases. DSpot generates new assertions from the
manually written test to create amplified test cases for previ-
ously untested scenarios.

The test cases generated by TestCube have generic and un-
clear names, which affects the readability of the test cases.
We examine several existing approaches for naming unit tests
to identify key features of every approach. We use these key
features to implement a naming approach to TestCube. The
first research question aims to summarize and compare ex-
isting approaches [3–5] for naming test cases by developer
friendliness and readability.

RQ1

What are the existing approaches for naming gener-
ated test cases?

The names of the tests created by TestCube need to be im-
proved to enhance the readability of the tests. The existing
approaches have benefits and drawbacks, and we implement
an approach in TestCube. We want to determine whether the
prototype implementation improves the readability for devel-
opers. We call our prototype implementation NATIC, Naming
Amplified Tests by using Improved Coverage.

RQ2

How readable are the test names generated by NATIC
compared to the names generated by TestCube or
names given by experts?

In this paper, we present an approach to naming automat-
ically generated test cases. NATIC takes the coverage im-
provement of every individual amplified test case and creates
unique test names for every test suite. We base this on an ap-
proach proposed by Daka et. al [4] taking different goals for
creating the test names.

We conducted a user study amongst participants with a
background in Computer Science. We evaluated the current
test names, the test names generated by the new approach,
and test names manually written by an expert. The manually
written names are compared in the study for their readabil-
ity, since most manually written names are significantly more

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

readable than generated ones [6].
This paper makes the following contributions:
• An approach to generate understandable names for am-

plified test cases, based on their coverage improvement.
• NATIC, a prototype implementation of the approach as

an extension to TestCube.
• A study evaluating the approach against the original

naming of TestCube, and against test names manually
written by experts.

• A replication package2 that includes (1) the implemen-
tation of NATIC, (2) the conducted research study, and
(3) the data used for evaluation.

2 Background
Writing unit tests for their software is one of the central

tasks for a developer to deliver high-quality software [7]. Unit
tests check the correctness of units of a program in isola-
tion [8]. However, to this day, software developers consider
writing them a laborious, tedious and often difficult task [9].
This can be even more difficult when the entire testing pro-
gram has to change when the code under test is changing.
For this reason, several automated unit test generation tools
exist such as EvoSuite [10] and TestFul [11]. For this pa-
per, we provide an improvement to the test amplification tool
TestCube.

2.1 TestCube
Software developers that want to improve their test suite,

can use automated unit test generation and amplification.
TestCube is an IntelliJ plugin that uses the test amplification
process of DSpot, which improves the original test by trigger-
ing new behaviours and adding new valuable assertions [12].
The result of amplifying an original test case with TestCube
is a test suite with several new test cases. TestCube does still
have a few usability issues, the lack of understandable test
names being an important one [1].

1 // Original Test Case
2 @Test
3 public void testId() {
4 Document doc = Jsoup.parse("<div id=Foo>");
5 Element el = doc.selectFirst("div");
6 assertEquals("Foo", el.id());
7 }
8 // Amplified Test Case
9 @Test

10 public void testId_assSep8() throws Exception {
11 Document doc = Jsoup.parse("<div id=Foo>");
12 Element el = doc.selectFirst("div");
13 assertFalse(doc.hasText());
14 }

Listing 1: Original Test Case and TestCube Amplified Test Case

Listing 1 shows an original test case from example project
jsoup 3, and an amplified test case generated by TestCube.
Line 11 contains the current naming of TestCube.

2doi:10.5281/zenodo.5032953
3https://github.com/jhy/jsoup

2.2 Test Naming
In this paper, we define test names as “good” if they de-

scribe the intent of the test case, and increase the readability
for the developer working with the amplified test cases. Ben-
efits of descriptive names are:

• Ease of identifying which functionality the test checks.

• Documenting the class under test, the names of the tests
can identify the supported functionality of the class.

Several approaches automatically generate names for unit
tests, all using different features of the tests they are nam-
ing. This section compares 3 approaches: NameAssist by
Zhang et al. [3], DeepTC-Enhancer by Roy et al. [5], and the
approach by Daka et al. [4].

From this comparison, we extract the desired features for
the implementation for TestCube. The approach by Daka et
al. does not have a name, we identify this approach as Daka
2017 for the remainder of this paper.

NameAssist by Zhang et al.
NameAssist is an approach proposed by Zhang et al. [3],

that creates descriptive test names using two phases: an anal-
ysis phase and a text generation phase. The approach rates
three key aspects of each test: the action under test, the ex-
pected outcome and the scenario under test. The action under
test is usually the class under test. The expected outcome has
the (single) assertion under test. The scenario under test is
the body of the test. These three aspects are combined in the
text-generation phase.

This approach is not applicable to TestCube for multiple
reasons:

• The description of the test relies on descriptive variable
names, which the amplified test cases do not have.

• The amplified test cases do not just check one assertion,
they check several, therefore the expected outcome has
too little information.

• The question which of the three aspects to use remains
unanswered.

The implementation and documentation of this approach are
not widely available.

Daka 2017 by Daka et al.
Daka et al. propose an approach that extracts coverage

goals from generated test cases and ranks them to generate
a unique test name [4]. The approach relies on the insight
that an individual generated test case might not have a clear
purpose. The context of the test suite does provide sufficient
information to derive descriptive names that link the source
code to the test name. The coverage goals generated from the
test suite are ranked according to how observable their impact
is for the developer:

1. Exception Coverage

2. Method Coverage

3. Output Coverage

4. Input Coverage

Daka 2017 solely focuses on taking a test suite and generating
unique names for the test cases, which is a feature desirable
for the implementation for TestCube.

A study amongst 47 applicants was done by the authors,
in which the applicants were asked to rate their agreement
with generated test names compared to manually written test
names. The applicants agreed similarly with both and dis-
agreed with the generated names less than they did with the
manually written names. These results show the effectiveness
of this approach and suggest that the test names generated are
considered descriptive of the generated test cases.

DeepTC-Enhancer by Roy et al.
DeepTC-Enhancer is an approach proposed by Roy et al.

[5], which generates descriptive identifiers for generated test
cases and test method-level summaries of test case scenar-
ios. DeepTC-Enhancer automatically generates method-level
summaries and renames identifiers. This is achieved by using
existing code summarization approaches and deep learning
techniques shown in Figure 1. This approach addresses the
problem of lack of documentation and the meaningless iden-
tifiers (test and variable names) for generated test cases.

DeepTC-Enhancer changes the variable and test names
and does not rely on the variable names in the source code.
The approach is complex and is not solely aimed at improv-
ing test names. Therefore, it poses a larger challenge to adapt
to TestCube, and it might be a valuable addition to TestCube
in the future.

Figure 1: Overview of DeepTC-Enhancer - Reused from Roy et al.
[5]

Answer to RQ1

NameAssist has characteristics that make it subop-
timal for implementation in TestCube. DeepTC-
Enhancer is effective at naming generated test cases.
However, due to the complex structure of the pro-
gram and the additional functionalities not necessary
for this research, DeepTC-Enhancer will not be im-
plemented to TestCube for this research.
Daka 2017 generates descriptive names according to
developers. Considering that Daka 2017 uses a test
suite as input makes it adaptable to the test suite gen-
erated by TestCube.
We will base the new approach on Daka 2017.

3 NATIC

We use Daka 2017 as the blueprint for our approach, which
has an implementation to Evosuite [10]. We adapt this ap-
proach to fit TestCube. The methods in NATIC are based on
the methods from the Evosuite implementation 4.

The new approach is based on coverage improvement of
the amplified test cases. We call the proposed approach
NATIC, Naming Amplified Tests by using Improved Cover-
age.
NATIC uses the test suite generated by TestCube from an

original test case as input. TestCube only selects the test cases
which improve additional instructions on any line [1], con-
sequently the test suite will not contain tests with identical
coverage improvement. The coverage goals are the names
of the methods in which the coverage is improved. Using the
coverage improvement instead of coverage tells the developer
what the test case contributes to the overall test suite. NATIC
uses these coverage goals as identifiers for every test case,
and generates for every amplified test case in the test suite a
unique name.

3.1 Coverage Goals
TestCube automatically generates a coverage improve-

ment report for every test suite it generates, consisting of an
extended coverage improvement for every amplified test case.
Therefore, for every amplified test case, the methods that are
additionally covered are embedded in this report. NATIC ex-
tracts the methods from the test case report to initialize them
as coverage goals for the remainder of the program (labelled
COVEREDGOALS in Algorithm 1).

3.2 Why Method Coverage?
The name of a test case should describe and summarize

important parts of the test’s body [13]. The methods a test
calls are the most general description of the test’s behaviour.
Developers can quickly identify faults in the method calls if
the name consists of the methods it improves.

Algorithm 1: NATIC
Input: Amplified Test Suite = T

1 forall t ∈ T do
2 goals← COVEREDGOALS({t}, G) \

COVEREDGOALS(T \ {t}, G)
3 name← MERGETEXT(t, goals)
4 LABEL(t, name)

5 forall t ∈ T do
6 if t has no name then
7 C← COVEREDGOALS({t}, G)
8 C← REMOVEDUPLICATEGOALS({t}, G)
9 LABEL(t, UNIQUEGOALS(C))

10 forall T’ ⊂ T where all t ∈ T’ have the same name do
11 FIXAMBIGUOUSNAMES(T’)

4https://github.com/EvoSuite/evosuite/blob/master/client
/src/main/java/org/evosuite/junit/naming/methods/Coverage-
GoalTestNameGenerationStrategy.java

Coverage Improvement
for Methods

TestCube
Implementation NATIC Expert

hasText
outputSettings

dropSlashFromAttribute
Name-mg43-assSep103 testOutputSettingsAndHasText testSetOutputSettingsWithText

clone
doClone filter-mg69-assSep208 testCloneAndDoClone testCloneEmptyElement

documentType testGetChildText-mg30-assSep223 testDocumentType testDocumentTypeIsNull

Table 1: Examples of test names used as objects for the survey

3.3 Finding Unique Names
An amplified test can contain multiple coverage goals, and

multiple amplified tests can have the same coverage goal. If
there is exactly one coverage goal for the test, the test name
will have this coverage goal. Finding unique goals per test
is a matter of taking the complement of the coverage goals
covered by a test, and goals covered in all the tests (labelled
goals in Algorithm 1). If a test covers the same method multi-
ple times, the duplicate method names are removed (labelled
REMOVEDUPLICATEGOALS in Algorithm1).

3.4 Resolving Ambiguities
Every test should have a name, however the name might

not be unique. For each non-unique name we take all tests
that result in this name (T’). FIXAMBIGUOUSNAMES adds
numerical suffixes to the test names if there are still duplicates
after identifying unique goals and removing duplicate goals.

4 Experimental Setup
In this section we illustrate the research study we did to

evaluate NATIC. We compare the test names generated by the
TestCube Implementation, Expert written names, and
the test names generated by NATIC. We asked the participants
to rate their agreement with these various test names.

4.1 Subjects
We recruited participants by publishing the link to the

survey on various platforms (Twitter, LinkedIn, etc.). After
agreeing to data collection and participating in the study, the
participants were asked whether they have a background in
Computer Science. For this question, we specified a back-
ground in Computer Science as being able to understand
source code and unit tests.

16 participants took part in the study.

4.2 Treatments
We considered three treatments: test names gener-

ated by the current TestCube implementation (TestCube
Implementation), names generated by our method-
coverage based approach (NATIC) and names written by ex-
perienced software developers/testers (Expert).

The experienced software developers/testers were a Com-
puter Science bachelor student and a PhD student with ex-
tensive programming experience and knowledge of software
testing. We showed the experts the original test case, and the
amplified test case without a name. Using this information
the experts derived the manually written test names.

Figure 2: Example Question Research Study

4.3 Tasks

The participants were asked to rate their agreement for ev-
ery amplified test case for these topics:

Appropriate Name: Given the original test case, the ampli-
fied test cases and their names, indicate your level of agree-
ment with whether the name is an appropriate name for the
test.

Behaviour: Given the original test case, the amplified test
cases and their names, indicate your level of agreement with
whether the name gives you information on the behaviour of
the test.

Coverage Improvement: Given the original test case, the
amplified test cases and their names, indicate your level of
agreement with whether the name gives you information on
the coverage improvement of the test.

4.4 Objects
We obtained the test names used in the study from running

TestCube on the open-source HTML parser jsoup. We took
the following steps to select and extract the test names:

• Download TestCube5 and jsoup6.

• Select 3 original unit test cases to be amplified. Any type
of unit test that can be amplified in TestCube works for
this research study.

• The result from the amplification consists of the
amplified test cases with their names, TestCube
Implementation or NATIC, and the test case’s cover-
age improvement.

• For every amplified test case, all 3 types of names exist,
and the survey randomly assigned tests to one type of
name.

Table 1 gives examples of the names used in the study.
The Expert names were written by experienced Java

developers. We added this metric because the TestCube
Implementation names were trivial compared to the NATIC
names, therefore the comparison would not have added a lot
of insight for the study. The experienced Java developers had
access to the original test case, the amplified test case and
the coverage improvement, and derived test cases from this
information.

4.5 Procedure
The study was performed as an online survey, which was

hosted by Microsoft Forms. Every participant got the same
sample of 25 test cases, which were amplified test cases from
3 original test cases. The participants were given the tasks
from Section 4.3 (see example Figure 2), and at the final ques-
tion, they could add feedback to either the survey or the test
names. The order of the types of test names was randomized.
With 25 test cases and 3 tasks, a total of 75 questions were an-
swered for every participant in the study. The processed data
leads to the distributions shown in Figures 3, 4, 5. For every
test case, the participants were allowed to add one answer, in
a 5-point Likert-scale (Strongly disagree, Disagree, Neutral,
Agree, Strongly agree). The evaluation of each type of name
is added to the y-axis of the chart in percentages.

4.6 Threats to Validity - Responsible Research
Construct Validity

The survey was distributed through several platforms, and
the only validation of the participants’ expertise was their an-
swer regarding it. We did not distinguish between students
and professional software developers regarding their back-
ground in Computer Science. This risk is mitigated through
existing research stating the lack of difference in results from
Software Engineering students and professional software de-
velopers [14].

5https://github.com/TestShiftProject/test-cube
6https://github.com/jhy/jsoup

Internal Validity
Despite increasing the readability of the test cases by

adding understandable names to them, the variable names
were generated by TestCube. This could affect the readabil-
ity of the overall test cases and therefore the understanding
of the test case. To mitigate this threat would mean possibly
tainting the results of the study, and was not beneficial to the
study.

Another threat could be ’cheaters’ to the survey, partici-
pants entering random data and with that skewing the results.
This was mitigated by checking the response time for all par-
ticipants. Cheaters take a significantly smaller time to answer
questions in a survey [15], and the participants in our study
all took at least the estimated 20 minutes to answer all the
questions.

External Validity
The methods and tests from jsoup might not reflect larger,

more complex test cases. However, TestCube generates the
same type of tests for every kind of test that is fed into it, so
that the experiment can be replicated with larger test cases
and still give the same output.

5 Results
In this section, we illustrate the results from the research

study we illustrated in Section 4. This sections contains the
agreement percentages for the TestCube Implementation,
Expert, and NATIC test names. The participants of the re-
search study had the option to add free-text responses, which
contains additional feedback.

Strongly disagree Disagree Neutral Agree Strongly agree
0

20

40

60

80

E
va

lu
at

io
n

fo
rT

es
tN

am
e

in
%

Appropriate Name

Behaviour

Coverage Improvement

Figure 3: Distribution for TestCube Implementation

5.1 TestCube Implementation
The distribution in Figure 3 represents the results from the

survey for the current TestCube generated test names. Over-
all answers for these test names resulted in a high level of
(some) disagreement (either Disagree or Strongly disagree).
For the appropriate name, the level of some disagreement was
91%, for information on the behaviour of the test the level of

(some) disagreement was 80%, and for information on cover-
age improvement it was 91%. This indicates that participants
considered the test names not appropriate nor informative.

Strongly disagree Disagree Neutral Agree Strongly agree

20

40

60

E
va

lu
at

io
n

fo
rT

es
tN

am
e

in
%

Appropriate Name

Behaviour

Coverage Improvement

Figure 4: Distribution for Expert

5.2 Expert
The distribution in Figure 4 represents the results from the

survey for the test names manually written by experts. The
agreement with these names is significantly higher than the
TestCube implemented names. The Expert names get 83%
for some level of agreement (either Agree or Strongly agree)
on whether the name is appropriate, 80% on information on
the behaviour of the test, and 79% on the information of cov-
erage improvement of the test. These are high acceptance
rates, the participants liked and understood these test names.

Strongly disagree Disagree Neutral Agree Strongly agree

10

20

30

40

50

E
va

lu
at

io
n

fo
rT

es
tN

am
e

in
%

Appropriate Name

Behaviour

Coverage Improvement

Figure 5: Distribution for NATIC

5.3 NATIC
The distribution in Figure 5 represents the results from

the survey for the test names generated by NATIC. The two

Figure 6: Likert agreement for each of the tests from NATIC

previous distributions showed a clear (dis)agreement distribu-
tion. The results for NATIC were slightly more spread. Since
the preference for test names from this approach was more
spread, a breakdown per test can be found in Figure 6.

For the NATIC test names, the level of (some) agreement
regarding appropriate name was 54%, for the information on
behaviour 57%, and for the information on coverage improve-
ment 81%. The participants agreed that the test names give
information on the coverage improvement.

5.4 Free-text Responses
All participants could give some additional feedback on

the names given to the tests. Most responses concerned the
length of the survey, participants perceived the survey as
repetitive and too long. Some participants had additional tips
for naming the tests:

• ”I usually name my tests after the direct actions, the tests
do. When I found myself disagreeing with names it was
often because the name was related to the action that
was taken by the test indirectly.”

• ”The test names which talked more about the function of
the test were more helpful than either the ones that just
listed the improvements in coverage or the ones that had
a random name of a string.”

These participants needed more information than just the
coverage improvement and suggested additional input param-
eters, like the input to the test or the action taken by the test.

Answer to RQ2

The results from the experiment indicate that the
names generated by NATIC are effective at indicating
the coverage improvement of an amplified test case
and with some additional constraints are effective at
generating appropriate names and give information
on the amplified test case.

6 Discussion
From the individual results per test in Figure 6, we can

see that Test 5 and Test 9 (see Listing 2) have a particularly
high disagreement rating. These test names have a common
denominator, they were the only test names from NATIC that
had more than 2 goals in their name. From the results of the
other test names, we may assume that participants liked the
shorter names better. Test 1 and Test 3 (see Listing 2) had par-
ticularly high agreement rates, which aligns with the assump-
tion that more than 2 goals negatively impacts the agreement
with the test names.

1 // Test 1
2 // Improves Coverage in: hasParent
3 @Test
4 public void testHasParent() throws Exception {}
5

6 // Test 3
7 // Improves Coverage in: toString, outerHtml
8 @Test
9 public void testToStringAndOuterHtml() throws

Exception {}
10

11 // Test 5
12 // Improves Coverage in: rewindToMark,

cacheString, consumeCharacterReference
13 @Test
14 public void testRewindToMarkAndCache
15 StringAndConsumeCharacterReference() throws

Exception {}
16

17 // Test 9
18 // Improves Coverage in: padding, isWhitespace,

indent, siblingIndex, nodenames,
outerHtmlHead, ...

19 @Test
20 public void testPaddingAndIsWhitespaceAnd
21 IndentAndSiblingIndex() throws Exception {}

Listing 2: Test Names Generated by NATIC

The participants of the study collectively disagreed with
the names given by the TestCube Implementation. The

Expert implementation had a higher agreement rating than
NATIC.

Based on the results from Section 5.3 and the distribution
shown in Figure 6 we formulate the following hypothesis:
The test names generated by NATIC should contain at most
2 coverage goals. Future research has to be done to confirm
this hypothesis.

7 Conclusions and Future Work
Amplified test names generated by TestCube need under-

standable and descriptive names. Benefits of ”good” names
are the ease of identifying the functionality the test checks
and documenting the class under test.

In this paper, we have presented an approach, NATIC,
which is based on the Daka 2017 approach [4], however al-
ters the selection of goals and only takes covered methods as
goals. NATIC uses the test suite generated by TestCube from
an original test case as input, and the names of the methods
in which the coverage is improved as coverage goals. NATIC
generates a unique test name for every amplified test case in
the suite.

The research study showed that the generated names were
a great improvement compared to the current naming from
TestCube, and with additional constraints on the amount of
goals in the names, could compare to manually written test
names.

Currently NATIC only generates names for amplified test
cases. To further improve the readability of the body of the
test cases, we would add descriptive variable names to the
amplified test cases.

References
[1] C. Brandt and A. Zaidman, “Developer-friendly test am-

plification,” 2021.
[2] E. Daka, J. Campos, G. Fraser, J. Dorn, and W. Weimer,

Modeling Readability to Improve Unit Tests. ESEC/FSE
2015, New York, NY, USA: Association for Computing
Machinery, 2015.

[3] B. Zhang, E. Hill, and J. Clause, “Towards auto-
matically generating descriptive names for unit tests,”
in 2016 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 625–636,
2016.

[4] E. Daka, J. M. Rojas, and G. Fraser, “Generating unit
tests with descriptive names or: Would you name your
children thing1 and thing2?,” in Proceedings of the 26th
ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2017, (New York, NY,
USA), p. 57–67, Association for Computing Machinery,
2017.

[5] D. Roy, Z. Zhang, M. Ma, V. Arnaoudova,
A. Panichella, S. Panichella, D. Gonzalez, and
M. Mirakhorli, “Deeptc-enhancer: Improving the read-
ability of automatically generated tests,” in Proceedings
of the 35th IEEE/ACM International Conference on
Automated Software Engineering, ASE ’20, (New York,

NY, USA), p. 287–298, Association for Computing
Machinery, 2020.

[6] G. Grano, C. De Iaco, F. Palomba, and H. C. Gall,
“Pizza versus pinsa: On the perception and measura-
bility of unit test code quality,” in 2020 IEEE Interna-
tional Conference on Software Maintenance and Evolu-
tion (ICSME), pp. 336–347, 2020.

[7] J. Link, Unit testing in Java: how tests drive the code.
Elsevier, 2003.

[8] M. d’Amorim, C. Pacheco, T. Xie, D. Marinov, and
M. D. Ernst, “An empirical comparison of automated
generation and classification techniques for object-
oriented unit testing,” in 21st IEEE/ACM Interna-
tional Conference on Automated Software Engineering
(ASE’06), pp. 59–68, 2006.

[9] Y. Cheon and G. T. Leavens, “A simple and practical
approach to unit testing: The jml and junit way,” in Eu-
ropean Conference on Object-Oriented Programming,
pp. 231–255, Springer, 2002.

[10] G. Fraser and A. Arcuri, “Evosuite: Automatic test
suite generation for object-oriented software,” in Pro-
ceedings of the 19th ACM SIGSOFT Symposium and
the 13th European Conference on Foundations of Soft-
ware Engineering, ESEC/FSE ’11, (New York, NY,
USA), p. 416–419, Association for Computing Machin-
ery, 2011.

[11] L. Baresi and M. Miraz, “Testful: automatic unit-
test generation for java classes,” in 2010 ACM/IEEE
32nd International Conference on Software Engineer-
ing, vol. 2, pp. 281–284, 2010.

[12] B. Danglot, O. L. Vera-Pérez, B. Baudry, and M. Mon-
perrus, “Automatic test improvement with dspot: a
study with ten mature open-source projects,” Empirical
Software Engineering, vol. 24, no. 4, pp. 2603–2635,
2019.

[13] B. Zhang, E. Hill, and J. Clause, “Automatically gen-
erating test templates from test names (n),” in 2015
30th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pp. 506–511, 2015.

[14] I. Salman, A. T. Misirli, and N. Juristo, “Are students
representatives of professionals in software engineer-
ing experiments?,” in 2015 IEEE/ACM 37th IEEE In-
ternational Conference on Software Engineering, vol. 1,
pp. 666–676, 2015.

[15] F. Rogers and M. Richarme, “The honesty of online
survey respondents: Lessons learned and prescriptive
remedies,” Decision Analyst, Inc White Papers, pp. 1–
5, 2009.

	Introduction
	Background
	TestCube
	Test Naming
	NameAssist by Zhang et al.
	Daka 2017 by Daka et al.
	DeepTC-Enhancer by Roy et al.

	NATIC
	Coverage Goals
	Why Method Coverage?
	Finding Unique Names
	Resolving Ambiguities

	Experimental Setup
	Subjects
	Treatments
	Tasks
	Objects
	Procedure
	Threats to Validity - Responsible Research
	Construct Validity
	Internal Validity
	External Validity

	Results
	TestCube Implementation
	Expert
	NATIC
	Free-text Responses

	Discussion
	Conclusions and Future Work

