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Nonlinear ultrasound is important in medical diagnostics because imaging of the higher harmonics

improves resolution and reduces scattering artifacts. Second harmonic imaging is currently stand-

ard, and higher harmonic imaging is under investigation. The efficient development of novel imag-

ing modalities and equipment requires accurate simulations of nonlinear wave fields in large

volumes of realistic (lossy, inhomogeneous) media. The Iterative Nonlinear Contrast Source

(INCS) method has been developed to deal with spatiotemporal domains measuring hundreds of

wavelengths and periods. This full wave method considers the nonlinear term of the Westervelt

equation as a nonlinear contrast source, and solves the equivalent integral equation via the

Neumann iterative solution. Recently, the method has been extended with a contrast source that

accounts for spatially varying attenuation. The current paper addresses the problem that the

Neumann iterative solution converges badly for strong contrast sources. The remedy is linearization

of the nonlinear contrast source, combined with application of more advanced methods for solving

the resulting integral equation. Numerical results show that linearization in combination with a

Bi-Conjugate Gradient Stabilized method allows the INCS method to deal with fairly strong, inho-

mogeneous attenuation, while the error due to the linearization can be eliminated by restarting the

iterative scheme. VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4812863]

PACS number(s): 43.25.Jh, 43.25.Cb, 43.35.Bf, 43.80.Qf [NAS] Pages: 1442–1453

I. INTRODUCTION

In medical diagnostic ultrasound there is a continuing

interest in nonlinear acoustics because it provides various

opportunities to improve image quality.1 Usually, these

improvements are due to the gradual generation of higher

harmonics of the fundamental frequency band occupied by

the emitted signal. For more than a decade, diagnostic so-

nography of tissue is based on the reflections of the second

harmonic instead of the fundamental, because this approach

improves the resolution and reduces the clutter due to near

field and grating lobe artifacts.1–3 More recently, it has been

shown that the performance may be further improved by

using the combined reflections from the third, fourth, and

fifth harmonic.4–6 Untargeted7 and targeted8 microbubbles

are used for contrast enhancement of blood and for molecu-

lar imaging, respectively. The presence of bubbles causes a

strong increase of the nonlinear behavior of the solution, and

imaging of the bubble population is either performed at a

higher harmonic9,10 or at the subharmonic,11 i.e., half the

fundamental frequency. In the context of contrast enhanced

ultrasound, there has also been a recent interest in the phe-

nomenon of self-demodulation,12 which involves the fre-

quency band below the fundamental. Exploitation of the

possibilities of nonlinear acoustics requires the development

of novel imaging modalities and devices. Due to the nonlin-

ear nature of the involved phenomena, this cannot be done

without accurate numerical simulations of the nonlinear

acoustic wave fields that are involved.

Existing methods for the numerical simulation of non-

linear acoustic wave fields fall either in the category of for-

ward wave methods or in the category of full wave

methods.13,14 Forward wave methods start with the pressure

distribution in the plane of the transducer, and march the

field forward in a preferred direction that usually corre-

sponds to the propagation direction of the main part of the

field.15–22 All these methods use the solution of the one-

dimensional (1D) Burgers equation23 to perform the substep

that accounts for the nonlinearity. Many methods, such as

the KZK method,17,21 also subject the acoustic wave equa-

tion to a parabolic approximation. Due to these facts, for-

ward wave methods are inaccurate for fields that (partly)

propagate in directions that deviate from the preferred direc-

tion of propagation, and in particular these methods cannot

deal with scattered wave fields.

Most full wave methods, on the other hand, solve the

relevant basic acoustic equations by way of a Finite

Difference method24–26 or a Finite Element method,27 and

do not involve a preferred direction of propagation. Since

these methods need at least ten points per smallest wave-

length and per shortest period, the number of grid points for

spanning a realistic computational domain soon becomes too

large. The Iterative Nonlinear Contrast Source (INCS)

method28,29 was especially designed to avoid all these prob-

lems. It does not favor a particular direction of propagation,

and since it only requires two points per wavelength or pe-

riod, it can deal with nonlinear ultrasound fields over compu-

tational domains measuring hundreds of wavelengths and
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periods. Originally, the method could handle homogeneous

nonlinear media with frequency power law attenuation.28,30

Recently, the method has been extended to deal with media

with spatially dependent nonlinearity and attenuation,31,32 in

which case its ability to deal with scattered wave fields

becomes opportune.

The original INCS method28,29 solves a version of the

Westervelt equation.23 The basic observation behind the

method is that for weak to moderate nonlinearity, the quad-

ratically nonlinear term in this equation has a relatively small

influence on the total wave field. In view of this, the nonlinear

term is considered as a nonlinear contrast source that,

together with the primary source, operates in a linear back-

ground medium. Since the Green’s function of this linear

background medium is known, the total field can formally be

found as the convolution of the Green’s function and both

sources. In this way, the problem has been recast into the

form of an integral equation. The convolution is numerically

performed as a multiplication in the wavevector-frequency

domain, and filtering techniques are used to allow for a grid

of only two points per wavelength and per period of the high-

est desired frequency.33 For homogeneous media, the discre-

tized integral equation is efficiently solved by the Neumann

iterative solution.33–37 Some other methods also employ the

benefits of using the wavevector domain. However, unlike

the INCS method, these methods either are not really

omnidirectional38–41 or require a dense sampling in the non-

linear case,42 and none of these methods has a mechanism of

iteratively improving the solution.

To extend the INCS method to inhomogeneous media,

additional contrast sources may be introduced that account

for the difference between the actual medium and the homo-

geneous background medium.31,32,43 However, for stronger

inhomogeneities the influences of these additional contrast

sources need not be small, as opposed to the original nonlin-

ear contrast source, and the Neumann iterative solution may

become slowly convergent or even divergent. When this

occurs, the solution of the integral equation by more

advanced methods,34–36,44 such as over-relaxation methods

or Conjugate Gradient (CG) methods, becomes necessary.

These advanced methods perform significantly better in case

of inhomogeneous media. However, the nonlinear contrast

source in the INCS method prohibits their direct application

because, to the authors’ knowledge, these methods are only

applicable to linear integral equations. If this problem is not

resolved, the INCS methods will not be suitable for dealing

with stronger medium inhomogeneities.

The current paper describes how the INCS method may

be adapted to allow for the application of advanced integral

equation solvers. This will be achieved by linearization of

the nonlinear contrast source with respect to the total wave

field. The rationale behind this linearization is the same as

that behind the INCS method itself, namely, that the total

wave field may be considered as the sum of a linear primary

contribution due to the primary source, and a secondary con-

tribution due to the contrast sources. It is assumed that the

square of the secondary contribution may be neglected. This

effectively linearizes the nonlinear contrast source about

the primary contribution, and enables the application of

advanced methods for solving the remaining integral equa-

tion. Because the linearization reduces the spectral richness

of the original nonlinear contrast source, it causes a system-

atic error that becomes significant for the higher harmonics.

To counteract this effect, after a few iterations the lineariza-

tion about the primary contribution may be replaced by a lin-

earization about the total field obtained until then, and the

scheme may be restarted. This restart strategy will be used to

replenish the spectral content of the linearized contrast

source and, in doing so, reduce the systematic error.

The theoretical developments of this paper are presented

in Sec. II, which describes the basic equations, the INCS

method, and the linearization process. Numerical results for

lossless media and media with inhomogeneous losses are

presented in Sec. III. These results show the influence of the

linearization, the difference in performance between the

Neumann iterative solution and the more advanced Bi-

Conjugate Gradient Stabilized (Bi-CGSTAB) method, and

the effect of the restart strategy. Conclusions on the pre-

sented research are given in Sec. IV.

II. THEORY

A. Wave equation

In this paper it is assumed that the nonlinear propagation

of an acoustic pressure wave field p ¼ pðx; tÞ in a homoge-

neous medium with attenuation is governed by the wave

equation28,30

r2pðx; tÞ � 1

c2
0

@2
t ½mðtÞ �t pðx; tÞ�

¼ �Sprðx; tÞ � b
q0c4

0

@2
t p2ðx; tÞ: (1)

Here c0 and q0 are the ambient speed of sound and the ambi-

ent volume density of mass of the medium. The function

mðtÞ is a causal compliance relaxation or memory

function,45–47 and �t denotes a temporal convolution, i.e.,

mðtÞ �t pðx; tÞ ¼
ð1

0

mðt� t0Þpðx; t0Þdt0: (2)

The relaxation function may be separated into

mðtÞ ¼ dðtÞ þ AðtÞ; (3)

where the Dirac delta function dðtÞ represents the instantane-

ous behavior of the medium, and AðtÞ is a causal relaxation

function that represents the delayed reaction of the homoge-

neous medium on events that occurred in the past. The latter

behavior is associated with the attenuation and the corre-

sponding dispersion of the medium. The relaxation function

formulation enables the modeling of many types of attenua-

tion, among which the frequency power law losses that are

exhibited by many biological tissues.28,30,31,48–50 The coeffi-

cient of nonlinearity b indicates the degree of nonlinear

behavior of the considered medium, and may be written as
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b ¼ 1þ B

2A
; (4)

where B/A is the parameter of nonlinearity of the medium.

The term Sprðx; tÞ represents the primary source that gener-

ates the acoustic wave field. This term combines the source’s

volume density of volume injection rate qðx; tÞ and its vol-

ume density of volume force f ðx; tÞ, according to

Sprðx; tÞ ¼ q0@tqðx; tÞ � r � f ðx; tÞ: (5)

Equation (1) corresponds to the Westervelt equation,23

except from application of the more general attenuation term

instead of the usual thermoviscous loss term, and the intro-

duction of the primary source term. The Westervelt equation

is exact up until the terms of second order in the acoustic dis-

turbance quantities, takes into account the global nonlinear

effects, and neglects local nonlinear effects. Due to its

similarity, the same facts apply to Eq. (1).

B. INCS method

The current paper considers the numerical solution of

Eq. (1) by means of the INCS method.28,29 This method is

primarily designed to deal with weakly to moderately non-

linear behavior as encountered with, for example, diagnostic

ultrasound. In this case, the influence of the nonlinear term is

relatively small, and the total wave field may be considered

as a combination of a linear primary contribution and a

lesser, nonlinear secondary contribution. To facilitate this

point of view, Eq. (1) is rewritten as

r2pðx; tÞ � 1

c2
0

@2
t ½mðtÞ �t pðx; tÞ�

¼ �Sprðx; tÞ � Snl½pðx; tÞ�; (6)

where

Snl½pðx; tÞ� ¼ b

q0c4
0

@2
t p2ðx; tÞ; (7)

is the nonlinear term of Eq. (1). If Snl½pðx; tÞ� were absent,

Eq. (6) would be a linear wave equation, and the primary

source Sprðx; tÞ would generate a linear wave field. This is

the assumed linear primary contribution to the total wave

field. With the INCS method, Snl½pðx; tÞ� gets the role of a

separate source. This source is called a contrast source and it

accounts for the difference between the linear and the non-

linear case, i.e., it generates the nonlinear correction wave

field that forms the secondary contribution to the total wave

field. The nonlinear contrast source depends on the total

wave field itself, and is distributed over the entire space.

Since the wave operator at the left-hand side of Eq. (6)

applies to a linear medium, both the primary source and the

nonlinear contrast source may be thought to operate in a lin-

ear background medium. This implies that the fields of the

primary source and the contrast source may be computed

using the same techniques that apply to a linear medium.

Now suppose that the Green’s function of the background

medium, i.e., the function Gðx; tÞ that satisfies

r2Gðx; tÞ � 1

c2
0

@2
t ½mðtÞ �t Gðx; tÞ� ¼ �dðxÞdðtÞ; (8)

is known. In the lossless case, the closed form expression

of the Green’s function in the space-time domain is known

to be51

Gðx; tÞ ¼ dðt� kxk = c0Þ
4p kxk ; (9)

where kxk is the length of x. In case of attenuation, the

Green’s function may most conveniently be presented in the

space-frequency domain as

Ĝðx; xÞ ¼ exp½�cðxÞ kxk�
4p kxk ; (10)

where cðxÞ ¼ aðxÞ þ jbðxÞ, with aðxÞ being the attenua-

tion coefficient and bðxÞ being the phase coefficient. These

functions account for the attenuation and the dispersion of

the medium, respectively, and may be chosen to model

power law attenuation as encountered in biological tis-

sue.28,30,31,52 Because the Green’s function describes the

spatiotemporal impulse response of the relevant linear back-

ground medium, the solution of Eq. (6) may formally be

written as

pðx; tÞ ¼ Gðx; tÞ �x;t fSprðx; tÞ þ Snl½pðx; tÞ�g; (11)

in which �x;t denotes the spatiotemporal convolution

Gðx; tÞ �x;t fSprðx; tÞ þ Snl½pðx; tÞ�g

¼
ð
T

ð
D

Gðx� x0; t� t0Þ

� fSprðx0; t0Þ þ Snl½pðx0; t0Þ�gdx0dt0: (12)

Here, T and D are the relevant temporal and spatial domains

of interest. Denoting the convolution of the Green’s function

and the primary source by pð0Þðx; tÞ, Eq. (11) may be rewrit-

ten as

pðx; tÞ ¼ pð0Þðx; tÞ þ Gðx; tÞ �x;t Snl½pðx; tÞ�: (13)

The terms pð0Þðx; tÞ and Gðx; tÞ �x; t Snl½pðx; tÞ� are the linear

primary contribution due to the primary source and the non-

linear secondary contribution due to the contrast source,

respectively. Since the nonlinear contrast source depends on

the total acoustic pressure field pðx; tÞ, Eq. (13) is an integral

equation.

The main observation behind the INCS method is that for

weakly to moderately nonlinear behavior the secondary contri-

bution due to the contrast source is relatively small. In that

case, an intuitive way to obtain increasingly accurate approxi-

mations of the total pressure wave field is to compute the linear

primary field contribution pð0Þðx; tÞ, using this to obtain a first

approximation for the contrast source Snl½pðx; tÞ�, then

compute a first approximation of the total field pðx; tÞ, and

successively repeat the last two steps. This results in the

Neumann iterative solution
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pð0Þðx; tÞ ¼ Gðx; tÞ �x;t Sprðx; tÞ; (14)

pðjÞðx; tÞ ¼ pð0Þðx; tÞþGðx; tÞ�x;t Snl½pðj�1Þðx; tÞ�
ðj� 1Þ; (15)

where the notation pðjÞðx; tÞ is used to indicate the jth itera-

tion. The most involving task in the numerical evaluation of

the scheme is the spatiotemporal convolution, which is effi-

ciently performed with the Filtered Convolution method.33

The method first filters out all spatial and temporal frequen-

cies above the highest frequencies of interest. This enables

sampling at only two points per shortest period or shortest

wavelength, without introducing aliasing. Then the resulting

four-dimensional discrete convolution is performed using

Fast Fourier Transforms.

C. Linearization of the contrast source

The Neumann iterative solution in Eqs. (14) and (15)

is a particular way to solve the integral equation in

Eq. (13).33–37 In case of homogeneous media, as considered

until now, the only term in the contrast source is Snl½pðx; tÞ�.
As long as the influence of this term is small, as in the case

of weakly to moderately nonlinear behavior, the Neumann

iterative solution is expected to converge quite fast. This

behavior is confirmed in practice.28,29

However, in case of inhomogeneous media the situation

may become more complex. For example, in media with in-

homogeneous losses the propagation of the acoustic pressure

wave field is governed by the wave equation31,32,43

r2pðx; tÞ � 1

c2
0

@2
t ½mðx; tÞ �t pðx; tÞ�

¼ �Sprðx; tÞ � Snl½pðx; tÞ�; (16)

with

mðx; tÞ ¼ dðtÞ þ AbgðtÞ þ DAðx; tÞ
¼ mbgðtÞ þ DAðx; tÞ: (17)

Here, the relaxation function AbgðtÞ represents the attenua-

tion in the homogeneous background medium, and the relax-

ation function DAðx; tÞ accounts for the difference in the

loss between the actual medium and the background

medium. A straightforward application of the INCS method

in Sec. II B requires knowledge of the Green’s function of

the linear but inhomogeneous background, i.e., the function

Gðx; tÞ that satisfies

r2Gðx; tÞ � 1

c2
0

@2
t ½mðx; tÞ �t Gðx; tÞ� ¼ �dðxÞdðtÞ:

(18)

In general, it will not be possible to find the required Green’s

function in closed form, and the numerical solution of the

equation above may be as involving as generating the

Neumann iterative solution itself. One way to overcome this

difficulty is to return to a homogeneous background medium

by writing Eq. (16) as

r2pðx; tÞ � 1

c2
0

@2
t ½mbgðtÞ �t pðx; tÞ�

¼ �Sprðx; tÞ � Snl½pðx; tÞ� � Sat½pðx; tÞ�; (19)

with

Sat½pðx; tÞ� ¼ � 1

c2
0

@2
t ½DAðx; tÞ �t pðx; tÞ�: (20)

This term is an additional contrast source that accounts for

the inhomogeneous losses of the medium,31,32,43 and can

easily be incorporated in the INCS method as described in

Sec. II B. In this case the counterpart of Eq. (13) becomes

pðx; tÞ ¼ pð0Þðx; tÞ þ Gðx; tÞ
�x;tfSnl½pðx; tÞ� þ Sat½pðx; tÞ�g; (21)

in which Gðx; tÞ satisfies Eq. (8) with mðtÞ ¼ mbgðtÞ.
Equation (21) may in principle be solved with a scheme

that is similar to the Neumann iterative solution in Eqs. (14)

and (15).

The above approach offers a straightforward way to

account for various medium behaviors that deviate from a

linear homogeneous background medium. However, the con-

tributions of the additional contrast sources, as opposed to

the original nonlinear contrast source Snl½pðx; tÞ�, need not
always be small. As a consequence the Neumann iterative

solution in Eqs. (14) and (15) may become slowly conver-

gent or even divergent. Fortunately, there exist more

advanced methods,34–36 like over-relaxation methods, CG

methods, etc., for solving integral equations of the form

pðx; tÞ ¼ pð0Þðx; tÞ þ Gðx; tÞ �x;t Scs½pðx; tÞ�; (22)

where Scs½pðx; tÞ� represents all the relevant contrast sources.

In case of medium inhomogeneities, these advanced methods

usually offer a better convergence than the Neumann iterative

solution, as demonstrated for the linear case.34–36,44

Unfortunately, the application of these methods in the nonlin-

ear context of the INCS method is prohibited because, to

the authors’ knowledge, these methods are only suited for the

solution of linear integral equations. This implies that in Eq.

(22) the contrast source Scs½pðx; tÞ� must be linear in pðx; tÞ.
Although contrast sources like Sat½pðx; tÞ� that represent the

medium inhomogeneities are usually linear in pðx; tÞ, in the

current situation Scs½pðx; tÞ� is nonlinear because it also con-

tains the nonlinear contrast source Snl½pðx; tÞ�.
To overcome this restriction of the INCS method, now the

nonlinear contrast source will be linearized. This linearization

is based on the same observation that underlies the INCS

method itself, i.e., that the total acoustic wave field pðx; tÞ
may be considered as a combination of a linear primary contri-

bution pð0Þðx; tÞ and a secondary contribution ~pðx; tÞ, i.e.,

pðx; tÞ ¼ pð0Þðx; tÞ þ ~pðx; tÞ: (23)

Under the assumption that ~p2ðx; tÞ may be neglected,

p2ðx; tÞ can be approximated by
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p2ðx; tÞ � ½pð0Þðx; tÞ�2 þ 2pð0Þðx; tÞ~pðx; tÞ
¼ �½pð0Þðx; tÞ�2 þ 2pð0Þðx; tÞpðx; tÞ: (24)

Using this result in Eq. (7), the linearized version of Eq. (21)

becomes

pðx; tÞ ¼ pð0Þðx; tÞ þ Gðx; tÞ
�x;tfSnew

nl ½pðx; tÞ� þ Sat½pðx; tÞ�g; (25)

where

Snew
nl ðx; tÞ ¼ b

q0c4
0

@2
t f�½pð0Þðx; tÞ�2 þ 2pð0Þðx; tÞpðx; tÞg:

(26)

The primary wave field pð0Þðx; tÞ that appears in these

equations is easily computed as the zero-order term of

the Neumann iterative solution. Since all contrast sources in

Eq. (25) are linear in pðx; tÞ, this integral equation may be

solved by any appropriate method.

D. Restart strategy

For a given wave field pðx; tÞ, omission of the square

of ~pðx; tÞ in Eq. (24) causes a reduction of the spectral

width of the nonlinear contrast source. It may be shown

that this increasingly disturbs the harmonics of higher

order. However, in the Appendix it is explained that, as far

as the linearization process is concerned, the primary wave

field pð0Þðx; tÞ may be replaced by any other known field

that forms a close approximation to the total wave field

pðx; tÞ. This implies that the adverse effect of the lineariza-

tion may be counteracted by replacing, say after J itera-

tions, pð0Þðx; tÞ by pðJÞðx; tÞ in Eq. (26), and restarting the

scheme. Since the spectral content of pðJÞðx; tÞ is much

wider than that of pð0Þðx; tÞ, this restart strategy will

replenish the spectral content of the linearized contrast

source and thus reduce the systematic error due to

linearization.

III. NUMERICAL RESULTS

Several numerical studies will be presented that show

the consequences of linearizing the contrast source, using

the Bi-CGSTAB method53 as an alternative method (besides

the Neumann iterative solution) for solving the resulting in-

tegral equation, and applying the restart strategy for elimi-

nating the systematic error.

The Bi-CGSTAB method solves the discrete version of

the integral equation

L½uðx0; t0Þ; x; t� ¼ f ðx; tÞ; (27)

where L½u; x; t� is a known integral operator, f ðx; tÞ is a

known function, and uðx0; t0Þ is the unknown function to be

found. This implies that Eq. (25) should be recast in the

form of Eq. (27). This is achieved by taking

uðx0; t0Þ ¼ pðx0; t0Þ, f ðx; tÞ ¼ pð0Þðx; tÞ, and

L½uðx0; t0Þ; x; t� ¼uðx; tÞ�
ð
T

ð
D

Gðx� x0; t� t0Þ

�fSnew
nl ½uðx0; t0Þ�þ Sat½uðx0; t0Þ�gdx0dt0:

(28)

In all cases, the acoustic wave field is generated by a

source that generates a Gaussian modulated surface pressure

pðtÞ ¼ P0 exp½�ð2t=twÞ2�sinð2pf0tÞ; (29)

with a pressure amplitude P0 ¼ 1 MPa, a center frequency

f0 ¼ 1 MHz, and a pulse width tw ¼ 3=f0. In the numerical

studies that involve a three-dimensional (3D) beam, the

source is a 40 element phased array transducer, with

elements measuring w ¼ 0:45 mm (width in the x direction)

by h ¼ 10 mm (height in the y direction), and a pitch

d ¼ 0:50 mm. Elevation focusing is simulated to account for

the effect of an acoustical lens. Unless noted otherwise, the

transducer radiates in homogeneous lossless water with

q0 ¼ 998 kg m�3, c0 ¼ 1482 m s�1, and b ¼ 3:52.

The discretization of the INCS method is 2 points per

wavelength and 2 points per period, both relating to a wave

having a maximum frequency of interest of ðhþ 0:5Þf0,

where h is the order of the highest harmonic considered29

(h ¼ 5 in Secs. III A–III C, and h ¼ 3 in Sec. III D).

Whenever an individual harmonic of order h is needed,

this is obtained by filtering the total wave field with an

eighth order Butterworth filter with cutoff frequencies

ðh 6 0:4Þf0; for the fundamental one should take h ¼ 1.

A. 1D homogeneous configuration

First, a 1D homogeneous configuration is considered, in

which the source is located at z ¼ 0 mm and the pressure at

z ¼ 100 mm is computed. This distance is shorter than the

shock formation distance �z ¼ 150 mm for a monofrequency

signal with frequency f0.

Figure 1 shows the frequency spectra of the pressure

pulses, as obtained for successive iterations under different

scenarios. These spectra are compared to the spectrum of the

solution of the Burgers equation,23 which in the 1D case pro-

vides the exact solution under the same conditions that apply

for the Westervelt equation.54

The top panel of Fig. 1 shows the behavior of the original

INCS method, i.e., using the Neumann iterative solution with-

out linearization of the contrast source. This scheme converges

quickly, and the results for iterations j � 5 are visually indistin-

guishable from the result of the Burgers solution. Results in the

center panel apply to the combination of the Neumann iterative

solution and a linearized contrast source. In this case, the

scheme converges a little slower, and the differences between

the successive iterations become visually indistinguishable for

iterations j � 6. Moreover, this converged result does not coin-

cide with the Burgers result. The bottom panel shows the

behavior of the combination of the Bi-CGSTAB method and a

linearized contrast source. This scheme converges even quicker

as the original INCS method, with successive iterations being

visually indistinguishable for j � 4. However, the converged

result again does not coincide with the Burgers result.
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Upon comparing the different schemes, three observa-

tions may be made. First, while the linearization seems to

have an adverse effect on the convergence of the Neumann

iterative solution, this effect is more than compensated by

using the more advanced Bi-CGSTAB method. So a scheme

with linearization may run even faster as the original INCS

method. Second, both schemes with linearization converge

to the same result, which does not entirely coincide with the

Burgers result. Thus linearization causes a systematic error

that is independent of the applied method for solving the in-

tegral equation. Third, after convergence has been obtained,

linearization only seems to have a noticeable effect on the

fourth and higher harmonics and, since these are small, will

have a small effect on the total nonlinear wave field.

FIG. 1. Spectra of the iterations obtained for the 1D case by (top) the

Neumann iterative solution without linearization, (center) the Neumann iter-

ative solution with linearization, and (bottom) the Bi-CGSTAB method with

linearization. The thick solid line indicates the result obtained from the

Burgers equation, and j is the iteration number.

FIG. 2. The relative error in the harmonics obtained for the 1D case by (top)

the Neumann iterative solution without linearization, (center) the Neumann

iterative solution with linearization, and (bottom) the Bi-CGSTAB method

with linearization. The error is determined with respect to the solution of the

Burgers equation.
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The observations made above are confirmed by Fig. 2,

which for each scenario shows the development of the rela-

tive error in the harmonics. The relative error in the hth har-

monic of the jth iteration is in this case defined as

Error ¼ jp̂
ðjÞðhf0Þ � p̂Bðhf0Þj
jp̂Bðhf0Þj

: (30)

Here, p̂ðjÞðhf0Þ indicates the spectral component of the jth
iteration at the single frequency hf0, and p̂Bðhf0Þ denotes the

corresponding spectral component of the Burgers solution.

Notice that in the center and bottom panels the errors for the

highest iterations are the same, indicating that the systematic

error is caused by the linearization and not by the choice of

the method for solving the integral equation.

B. 3D homogeneous configuration with an unsteered
beam

Here, a 3D homogeneous configuration is considered, in

which a phased array at z ¼ 0 mm generates an unsteered

beam, i.e., with a beam axis that makes an azimuthal angle

of 0	 with the z axis and an elevation angle of 90	 with the y
axis. The transducer is focused at (x, y, z)¼ (0, 0, 35 mm),

including elevation focusing. A computational domain with

a size of X�Y�Z¼ 30 mm� 20 mm� 50 mm is used.

The left part of Fig. 3 shows the beam patterns in the

plane y ¼ 0 mm, for several harmonics. These results are

obtained by the Neumann iterative solution in combination

with a linearized contrast source. The scheme is iterated up

to j ¼ 7 (convergence), and the outcome is filtered to obtain

the individual harmonics. Figure 3 clearly shows the typical

features of the higher harmonic beam patterns that are gener-

ated by nonlinear propagation, such as the decrease of the

focal width and the shift of the onset of the beams.

The right part of Fig. 3 depicts the patterns of the rela-

tive errors in the harmonics on the left. In these plots, the rel-

ative error in the hth harmonic is defined as

Error ¼
jmax

t
½phðx; tÞ� �max

t
½pN

h ðx; tÞ�j

jmax
t
½pN

h ðx; tÞ�j
: (31)

FIG. 3. (Color online) The unsteered

beam patterns (left) and the relative

errors (right) of the harmonics,

obtained for the 3D case by the

Neumann iterative solution with linea-

rization. The error is determined with

respect to the solution of the Neumann

iterative solution without linearization

of the contrast source. Both schemes

are iterated up to j ¼ 7 (convergence).

Decibel values apply to the maximum

field amplitude relative to a pressure of

1 Pa.
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Here, phðx; tÞ is the hth harmonic obtained with the

described method. The error is determined with respect to

pN
h ðx; tÞ, which is the hth harmonic of the Neumann iterative

solution without linearization of the contrast source,

obtained for iteration j ¼ 7 (convergence). The harmonics

are extracted from the total signal by filtering. As before, it

is observed in the figure that in general the errors increase

for increasingly higher harmonics. A comparison of the rela-

tive errors in Fig. 3 with those in the center panel of Fig. 2

reveals that in the 3D case and the 1D case the systematic

errors due to linearization are quite comparable. For the

beams considered here, it may be observed that accurate

results are obtained up until the third harmonic, while the

error is high from the fourth harmonic onwards.

C. 3D homogeneous configuration with a steered
beam

As the next case, a 3D homogeneous configuration is con-

sidered, in which the phased array at z ¼ 0 mm generates a

steered beam with a beam axis that makes an azimuthal angle

of 45	 with the z axis and an elevation angle of 90	 with the y
axis. The transducer is focused at (x, y, z)¼ (35, 0, 35 mm),

including elevation focusing. A trapezoidal computational do-

main with a size of X�Y� Z¼ 30 mm� 20 mm� 50 mm is

used, having the same angles with respect to the y and z axes

as the beam axis.

Figure 4 shows the beam profiles along the beam axis

and along the line (y, z)¼ (0, 35 mm), for several harmonics.

The results are in full correspondence with the results in

Secs. III A and III B, and it may be concluded that lineariza-

tion works equally well for a steered and an unsteered beam.

D. 3D configuration with inhomogeneous attenuation

Finally, the 3D inhomogeneous configuration of Fig. 5 is

considered. The background medium is lossless water. The

two spherical inclusions of radius R ¼ 2 mm have the same

q0, c0, and b as the background, but show a frequency power

law attenuation48–50 a ¼ af b with a ¼ 1:56 Np cm�1 MHz�b

and b ¼ 1:05. Such losses can occur in bone, and may be con-

sidered extremely high in a biomedical context. The trans-

ducer is the same phased array as before, being located at

z ¼ 0 mm, and generating an unsteered beam that is focused

at (x, y, z)¼ (0, 0, 35 mm), including elevation focusing. A

computational domain with a size of X� Y�Z¼ 30 mm

� 20 mm� 50 mm is used.

Figure 6 shows the beam patterns in the plane y ¼ 0 mm

for several harmonics. The results are obtained by the Bi-

CGSTAB method in combination with a linearized contrast

source. The scheme is iterated up to j ¼ 7 (convergence),

and the outcome is filtered to obtain the individual harmon-

ics. A comparison of the results with those in the left column

of Fig. 3 shows that the originally symmetric beam patterns

are deformed by the lossy inclusions. Note that the deforma-

tion becomes more prominent for the higher harmonics,

although the overlap between the inclusions and the higher

harmonic beams decreases. This effect may be explained

by the nonlinear origin of the higher harmonics, which

makes that a slight disturbance in the fundamental becomes

enhanced in the higher harmonics.

Figure 7 shows several snapshots of the total nonlinear

wave field in the plane y ¼ 0 mm. The results are again

obtained by using j ¼ 7 iterations of the Bi-CGSTAB method

combined with a linearized contrast source. The snapshot at

FIG. 4. Axial profiles (top) and profiles along the line (y, z)¼ (0, 35 mm)

(bottom) of the harmonics of a steered beam. The profiles are obtained

for the 3D case by the Neumann iterative solution without (solid line) and

with (dashed line) linearization. Both schemes are iterated up to j ¼ 7 (con-

vergence). In the top panel, r ¼ ðx2 þ z2Þ1=2
is the distance along the beam

axis.

FIG. 5. The inhomogeneous configuration.
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t ¼ 14:3 ls shows the wave field just after its emission by the

transducer. At t ¼ 22:9 ls, the reflection from the front of the

left inclusion is visible, and at t ¼ 25:0 ls the reflections

from both the front and the back of the left inclusion can be

observed. The maximally focused wave field is shown in the

snapshot for t ¼ 34:3 ls. At t ¼ 42:9 ls, the reflection from

the front of the right inclusion is visible.

In the present case, the volume and the contrast of

the lossy inclusions cause the Neumann iterative solution

(not shown) to strongly diverge, while the Bi-CGSTAB

method still yields convergent results. This fact demonstrates

the usefulness of the linearization approach.

E. 1D homogeneous configuration and restart
strategy

Finally, the configuration of Sec. III A is revisited to

study the effect of restarting the relevant iterative scheme.

Figure 8 shows the development of the relative error in

the harmonics, as obtained for the combination of the

Bi-CGSTAB method and a linearized contrast source. This

scenario is the same as for the bottom panel of Fig. 2, except

FIG. 6. (Color online) The beam patterns of the harmonics, obtained

for the 3D inhomogeneous configuration by the Bi-CGSTAB method

with linearization. The scheme is iterated up to j ¼ 7 (convergence).

Decibel values apply to the maximum field amplitude relative to a pres-

sure of 1 Pa.

FIG. 7. (Color online) Snapshots of the total nonlinear wave field, obtained

for the 3D inhomogeneous configuration by the Bi-CGSTAB method with

linearization. The scheme is iterated up to j ¼ 7 (convergence). Decibel val-

ues apply to the rectified instantaneous field value relative to a pressure of

1 Pa.
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that now the linearization about pð0Þðx; tÞ is only used up to

iteration J, and the subsequent iterations are performed with

a linearization about pðJÞðx; tÞ.
The top panel of Fig. 8 applies to a restart after iteration

j ¼ 7. As expected, for iterations j 
 7 the graphs are identi-

cal to the ones at the bottom of Fig. 2. Between iterations

j ¼ 4 and j ¼ 7, the errors stay at an almost constant value,

indicating that the systematic error due to the linearization

about pð0Þðx; tÞ has been arrived at. After iteration j ¼ 11,

the relative errors stabilize at values that are visually indis-

tinguishable from zero. This shows that the systematic error

due to the linearization about pð7Þðx; tÞ is negligible for all

the considered higher harmonics.

The bottom panel of Fig. 8 applies to a restart after itera-

tion j ¼ 3, which is motivated by the fact that in the top

panel there are virtually no developments between iterations

j ¼ 4 and j ¼ 7. Now the relative errors stabilize at vanish-

ingly small values after iteration j ¼ 7. This is exactly the

same number of iterations needed by the Neumann iterative

solution without linearization to reach a vanishingly small

error (see the top panel of Fig. 2). It may thus be observed

that for the case considered, the restart strategy effectively

eliminates the systematic error, while the resulting iterative

scheme is as efficient as the original INCS method.

IV. CONCLUSIONS

Linearization of the contrast source term opens a way to

apply advanced methods for solving the integral equation of

the INCS method and, in turn, to deal with media showing

strong inhomogeneities in, e.g., the attenuation.

Numerical results show that the approach works equally

well for unsteered and steered beams, i.e., it does not affect

the full-wave character of the INCS method. From numerical

results it may also be deduced that linearization causes an

adverse effect on the convergence rate of the applied solu-

tion scheme, which however may be counteracted by choos-

ing an integral equation solver with better convergence

properties. In the considered example, a scenario involving

the Bi-CGSTAB method and a linearized contrast source

converges even faster than a scenario involving the

Neumann iterative solution without a linearized contrast

source. The linearization causes a systematic error. This

error is independent of the chosen integral equation solver,

and mainly affects the higher harmonics. The error may

effectively be eliminated by restarting the applied iterative

scheme with a linearization that is based on the result from

the forgoing iterations. In terms of iterations, combining the

Bi-CGSTAB method with a linearized contrast source and a

restart strategy seems as efficient as the original INCS

method. Now that the validity of the linearization approach

has been verified, a further extension of the INCS method to

deal with media with several inhomogeneous medium pa-

rameters, seems opportune.

APPENDIX: LINEARIZATION ABOUT AN ARBITRARY
STARTING FIELD

Equations (24)–(26) employ the linearization of p2ðx; tÞ
about the linear primary contribution pð0Þðx; tÞ, i.e., the field

caused by the primary source Sprðx; tÞ in the linear back-

ground medium. However, the linearization process may

also be performed about any other known field pstartðx; tÞ
that forms a close approximation of the total field pðx; tÞ. In

that case

pðx; tÞ ¼ pstartðx; tÞ þ ~pðx; tÞ; (A1)

and it is assumed that

p2ðx; tÞ � ½pstartðx; tÞ�2 þ 2pstartðx; tÞ~pðx; tÞ
¼ �½pstartðx; tÞ�2 þ 2pstartðx; tÞpðx; tÞ: (A2)

Using this result in Eq. (7), the linearized version of Eq. (21)

becomes

pðx; tÞ ¼ pð0Þðx; tÞ þ Gðx; tÞ
�x;tfSnew

nl ½pðx; tÞ� þ Sat½pðx; tÞ�g; (A3)

where

FIG. 8. The relative error in the harmonics obtained for the 1D case by using

the Bi-CGSTAB method, a linearized contrast source, and a restart of the

scheme after: (top) Seven iterations and (bottom) three iterations. The error

is determined with respect to the solution of the Burgers equation.
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Snew
nl ðx; tÞ ¼ b

q0c4
0

@2
t f�½pstartðx; tÞ�2þ2pstartðx; tÞpðx; tÞ�g:

(A4)

Since all contrast sources in Eq. (A3) are linear in pðx; tÞ,
this integral equation may again be solved by any appropri-

ate method.
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