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[1] Numerical groundwater flow models often have a very high number of model cells
(greater than a million). Such models are computationally very demanding, which is
disadvantageous for inverse modeling. This paper describes a low-dimensional
formulation for groundwater flow that reduces the computational burden necessary for
inverse modeling. The formulation is a projection of the original groundwater flow
equation on a set of orthogonal patterns (i.e., a Galerkin projection). The patterns
(empirical orthogonal functions) are computed by a decomposition of the covariance
matrix over an ensemble of model solutions. Those solutions represent the behavior of the
model as a result of model impulses and the influence of a chosen set of parameter values.
For an interchangeable set of parameter values the patterns yield a low-dimensional
model, as the number of patterns is often small. An advantage of this model is that the
adjoint is easily available and most accurate for inverse modeling. For several synthetical
cases the low-dimensional model was able to find the global minimum efficiently, and
the result was comparable to that of the original model. For several cases our model even
converged where the original model failed. Our results demonstrate that the proposed
procedure results in a 60% time reduction to solve the groundwater flow inverse problem.
Greater efficiencies can be expected in practice for large-scale models with a large number
of grid cells that are used to compute transient simulations.
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1. Introduction

[2] Groundwater modelers are challenged to simulate the
natural system by using numerical models. Nowadays, these
models consist of large model networks that describe reality
in more and more detail. As a consequence, the computa-
tional demands are increased, which is especially undesir-
able for inverse modeling. Here we adjust a set of variables
(e.g., parameter values) such that they decrease the differ-
ence (objective function value) between the measured and
the computed heads (i.e., inverse modeling). Extensive
reviews of inverse models in geohydrology are given by
Carrera and Neuman [1986], Cooley [1985], and Yeh
[1986]. Several techniques compute sensitivities (i.e., first
derivatives of heads with respect to a single estimate
variable) [Cooley, 1985; Cooley and Hill, 1992; Hill,
1990; Mehl and Hill, 2003] to find an approximate gradient
of the objective function. Other, more sophisticated and
efficient techniques use the adjoint method [Courant and
Hilbert, 1953; Townley and Wilson, 1985] to find the exact
gradient for all estimate variables simultaneously. Beside
these optimization methods there are different methods

of assigning parameter values. Most common they are
applied according to predefined zones as another, recently
developed technique applies parameter values according to
influence functions (i.e., representer functions) [Bennett,
1992; Valstar et al., 2004]. Other recently developed
geostatistical techniques generate hundreds of possible
solutions with different structures of the estimate variables
to address the notion of uncertainty of the solutions
[Delay et al., 2001; Ginn and Cushman, 1990; McLaughlin
and Townley, 1996]. It is beyond the scope of this paper
to compare the differences between the mentioned tech-
niques, as this paper describes a different approach that
could affect the time efficiency of those techniques
positively.
[3] Roughly, the time efficiency can be increased by

(1) using a more time-efficient solver [Mehl and Hill,
2001], (2) applying a coarse grid and/or a locally refined
grid [Mehl and Hill, 2003; Wen et al., 2003; Bennett et
al., 1996], and/or (3) formulating a low-dimensional
model that is capable of simulating the important behavior
of the original model [Cazemier et al., 1998; Hoffman
Jørgensen and Sørensen, 2000; Krysl et al., 2001; Newman,
1996; Park and Cho, 1996]. For groundwater hydrology
Vermeulen et al. [2004] obtained such a model by selecting
a set of patterns (i.e., empirical orthogonal functions (EOF))
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that are most representative of the behavior of the original
model. Recently, Delay et al. [2001] have used EOF
analysis to determine the uncertainty of a stochastic inver-
sion method. In this paper, the EOFs can be seen as a
description of the subspace where a possible solution of the
original model exists. For hydrological models, it appears
that in many directions of the original space the solution is
constant. The shape of a well drawdown (its direction in
space) will not change dramatically for a change in its
amplitude: it will not move around the model domain. This
phenomenon makes it possible to project the original partial
differential equation upon a given set of patterns, in order to
create a low-dimensional model. Because often, the number
of patterns is small, such a model reduces the computation
time needed (with approximately 2–3 orders of magnitude
[Vermeulen et al., 2004]). This makes the reduced model
suitable for inverse modeling problems [Park et al., 1999],
where the model needs to be evaluated recurrently to find
the set of variables with the minimal valued objective
function.
[4] In our previous work [Vermeulen et al., 2004], the

patterns are representative for the model behavior for one
particular set of parameter values. In this paper, the patterns
are extended such that they include the sensitivity with
respect to different sets of parameter values. The set of
parameter values can now be sequentially perturbed, while
the set of patterns remains constant and yields a reduced
model, over and over again, which is accurate for that
combination of parameter values. Another advantage of
the reduced model is that its adjoint, which is used to obtain
the gradient of the objective function, is easily available (in
contrast to that of the original model).
[5] To make this paper self-contained, we first describe

the method to create a reduced model via the Galerkin
projection in section 2. Section 3 then explains the process
of inverse modeling using a reduced model. Finally,
section 4 describes the performance and the resulting reduc-
tion in computation time for a realistic three-dimensional
inverse modeling problem.

2. Methodology

2.1. Formulation of Groundwater Flow

[6] Three-dimensional groundwater flow, with a uniform
density and viscosity, can be described by Darcy’s law and
the equation of continuity. This yields the following partial
differential equation (PDE) [McDonald and Harbaugh,
1988]:

@
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¼ �gq ð1Þ

where a, b, g are estimate variables (dimensionless), Cx,
Cy, Cz are the harmonic hydraulic conductances [L2T�1]
along the x, y, z direction, respectively (elaborated along
the x direction in section A1), f is the hydraulic head [L],
S is the storage coefficient (dimensionless), t is time [T],
and q is a fluid source/sink term [LT�1]. One way to solve
(1) is to use the finite difference approach to discretize the
equation for a mesh of grid cells (nm) in space and time
and to solve the entire set of nm equations.

[7] In many situations, the model becomes more reliable
when a value for a, b, g can be found that reduces the
difference between a set of measurements fz and its corre-
sponding simulated valued f. A quantity that determines
this difference is the sum of weighted squared residuals:

J ¼ 1

nz

Xnz
i¼1

Xnt
k¼1

fz
i x; y; z; kð Þ � fi x; y; z; k;a; b; gð Þ

� �2ci ð2Þ

where J is the objective function [L2], fi
z(x, y, z, k) is the ith

measurement out of nz for time step k located at position
(x, y, z), and ci is the weighting factor for measurement i.
There are several ways to find the optimal values for the
estimate variables that minimize J [Carrera and Neuman,
1986; Cooley, 1985; Tarantola, 1987; Press et al., 1992].
In this paper, we use a reduced model to reduce the
computation time of this minimization problem.

2.2. Reduced Model

[8] In this section we describe the creation of a model
structure that consists of two parameters; a) spatial
patterns and b) a reduced model to obtain corresponding
coefficients.
2.2.1. Model Structure
[9] Assume that f can be expressed as a linear combi-

nation that can be written by the following equation:

f̂ x; y; z; k;a; b; gð Þ ¼
Xnp
i¼1

pi x; y; z;fj Lj

� �� �
ri a; b; g; kð Þ ð3Þ

where f̂ is the approximated hydraulic head [L], pi is the ith
pattern value out of np (dimensionless), and ri is the ith
time-dependent coefficient [L]. It should be noticed that ri
depends on the current values for the estimate variables a,
b, g and pi depends on f which is computed for several sets
of estimate variables Lj 2 {aj, bj, gj}. It seems
disadvantageous that the patterns need to be computed in
advance, but for the actual model simulation, this only
concerns a limited number of coefficients ri. For this reason
the following ordinary differential equation is defined that
describes dr/dt:

F Cx að Þ;Cy að Þ;Cz að Þ; bS
� �

r � dr

dt
¼ �gq: ð4Þ

This equation contains a linear function F that depends on
the system properties of the original model (Cx, Cy, Cz, S)
and the estimate variables a, b. The function describes the
internal relation of the coefficients ri. The variable q is a
reduced forcing term [LT�1] comparable to q (1). For inverse
modeling, the function F is recomputed for each perturba-
tion of a and/or b. Thereafter, the actual simulation of dr/dt
and the evaluation of the objective function (2) yield a
reduction in CPU time as this type of model has less
dimensions than the original model describing (1).
2.2.2. Pattern Identification (EOFs)
[10] Patterns (empirical orthogonal functions) are the

eigenvectors of a covariance matrix that is computed from
an ensemble of snapshot vectors [Park and Cho, 1996; Park
et al., 1999; Hoffman Jørgensen and Sørensen, 2000;
Vermeulen et al., 2004]. Snapshots are specific result
vectors Fi

j that are obtained by the original model given
a set of estimate variables Lj. They are scaled such that
kFi

jk = 1.0 because the variation that exists within each
snapshot is more important than its amplitude [Newman,
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1996]. The collection of snapshot vectors (ns
j) are then

collected in a matrix %j = [F1
j , F2

j , . . ., Fns
j
j]. This matrix

contains the behavior of the original model toward model
impulses (e.g., wells, recharge, rivers) for a certain set of
estimate variables Lj. The original model is computed again
for different sets of estimate variables and the total collection
of snapshot vectors (ns = ns

1 + ns
2 + . . . + ns

j) becomes the
matrix D = [%1, %2, . . ., %j] with dimension [nm � ns].
[11] Instead of solving the eigenvalue problem [Press et

al., 1992] for the very high dimensional covariance matrix
Ch = DDT with dimension [nm � nm], the eigenvalue
problem is solved for a reduced covariance matrix, defined
as Cr = DTD with dimension [ns � ns] [Krysl et al., 2001].
The eigenvectors V of Ch can be obtained by applying
[Golub and van Loan, 1989, p. 430]

V ¼ DG +�1
2: ð5Þ

This equation results from a decomposition of DTD and
obtains the acquired eigenvectors V more efficiently and are
equal to those decomposed directly from Ch. Eventually, a
pattern pi becomes the normalized eigenvector kvik = 1.0,
and its corresponding relative importance ji is given by

ji %ð Þ ¼ LiPns
j¼1 Lj

� 100 ð6Þ

where li is the ith eigenvalue of Cr and/or Ch. Experiences
suggested that in order to achieve reliable results, one
should use at least such a number of patterns that the
expected variance je =

Pnp
i¼1ji 
 99.9%. The collection

of pattern vectors pi are then stored within a projection
matrix P = [p1, p2, . . ., pnp] with dimension [nm � np].
This matrix can be interpreted as a description of a high-
dimensional coordinate system that is defined by a limited
amount of perpendicular axes/patterns (PTP = I i.e.,
orthogonality). It describes/spans the behavior of the
model in the state space. This typical information is used
to construct a numerical model (4) that can operate only
within the numerical space, described by the set of
patterns.
2.2.3. Reduced Model via a Galerkin Projection
[12] The Galerkin projection method finds an expression

for F (4) by substituting the hydraulic head f (1) by f̂ (3),
yielding
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It can be written in matrix notation, whereby the second-
order differential of the pattern derivative of space can be
computed in advance (more extensively described by
Vermeulen et al. [2004, p. 61]), so

U Að Þr� BSP
dr

dt
¼ �;q ð8Þ

where the matrix U [nm � np] is a function of the vector A,
the matrix S [nm � nm] and vector q [nm � 1] are influenced
by the vectors B, ;, respectively. Equation (8) still operates
within Rnm , although the dimension of r is np, so there are
more equations (original dimensions) than unknown vari-
ables (i.e., more necessary dimensions than variables to

describe the model behavior). All superfluous equations can
be eliminated by multiplying (projecting) each term in (8)
by the projection matrix PT:

PTU Að Þ|fflfflfflffl{zfflfflfflffl}
N Að Þ

r� PTBSP|fflfflffl{zfflfflffl}
M Bð Þ

dr

dt
¼ �PT;q|fflffl{zfflffl}

q ;ð Þ

: ð9Þ

This low-dimensional ODE operates within Rnp and is
solved for each time step k with an implicit Euler scheme
for the time derivative of r:

N Að Þ � 1

Dt
M Bð Þ

� �
rk ¼ � 1

Dt
M Bð Þrk�1 � q

k
;ð Þ: ð10Þ

The reduced model consists of two time-independent
matrices N and M, both with a low dimension [np � np],
and a low-dimensional time-dependent vector q

k
with

dimension [np � 1]. For the actual simulation, only qk
needs to be obtained recurrently.

2.3. Inverse Modeling

[13] The computed coefficients ri (10) are used to recon-
struct f̂ for the measurement locations. This results in an
approximate objective function Ĵ :

Ĵ ¼ 1

nz

Xnz
i¼1

Xnt
k¼1

fz
i x; y; z; kð Þ � f̂ x; y; z; k;a; b; gð Þ

� �
ci

h i2
: ð11Þ

[14] A popular method to minimize the objective function
Ĵ is to compute the gradient rĴ for each estimate variable
in which Ĵ declines at a certain location in parameter space
(i.e., the current values of A, B, ;). The gradient can be
obtained by perturbing the nu estimate variables indepen-
dently (i.e., by means of a finite difference approximation)
and calculating the gradient of the objective function. This
requires nu + 1 normal simulations with the model (i.e., a
forward run). However, the gradient can be most efficiently
obtained by the adjoint method [Courant and Hilbert,
1953]. This requires one forward run with (10), and one
reverse simulation (i.e., one adjoint run) that leads to a
reduced adjoint state variable L (dimensionless) (elaborated
in Appendix B). rĴ is obtained by

rĴ ¼ DĴ
DA

¼
Xnt
k¼1
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k
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Notice that the exchange of the variables A, B, ; appears in
the dimensions of the original model, prior to the projection
with PT (equation (14) is elaborated in section A2). This is
disadvantageous for the final efficiency (see section 4.3.3),
but currently unavoidable. Once rĴ is known, there are
various methods to search along that gradient to reach a
minimum (i.e., a line search). In this paper we implemented
variable metric method (quasi-Newton) [Press et al., 1992].
The method uses information from the gradient to obtain an
estimate of the second-order derivative of the objective
function (often addressed as the Hessian). This Hessian
adjusts the gradient, and from the acquired minimum along
that renewed direction, the inverse modeling sequence
reiterates. The entire process can be enumerated as follows
(Figure 1): (1) The original model is evaluated for specific
situations (snapshots) that represent the model behavior and
the influence of the estimate variables. (2) From the
snapshots a set of orthogonal patterns (EOFs) is computed.
(3) A number of patterns is selected to fulfill the expected
model variance (je) and with that set of patterns a reduced
model is created. (4) The time-dependent coefficients
obtained by one single forward simulation, are then used

for the adjoint run (backward run), to compute the reduced
adjoint state variable; this variable provides the gradient of
the objective function. (5) The reduced model is simulated
several times to search along the obtained gradient toward
a minimum of the objective function (i.e., a line search).
(6) Finally, it depends on the progress of the inverse
modeling whether one needs to proceed to step 3 (gradient
loop, h), 2 (pattern loop, k) and/or 1 (snapshot simulation
loop, m).

3. Application to a Synthetical Problem

[15] In the following sections the methodology is illus-
trated by a one-dimensional synthetic model. In section 4 a
real-world three-dimensional case is considered.

3.1. Problem Description

[16] A one-dimensional synthetic model was considered
that estimated the variable a (affects the transmissivity) that
varies within two predefined zones (Figure 2). The zones
were defined by the grid cells Z1 2 {1, . . ., 50} and Z2 2
{52, . . ., 101}. The well rate varied randomly (�50 � q �
50 m3 day�1) for the period 10 � t � 1000 days, and was
kept constantly (q = �15 m3 day�1) for the succeeding
period 1000 < t � 2000 days. The model was simulated
with A � B � ; = 1 and Dt = 10 days for each time step,
yielding nt = 200 time steps in total. A set of synthetic
measurements were obtained by recording f at all time
steps for the grid cells 25 and 76.

3.2. Snapshot Simulation

[17] In the following section the snapshots are determined
for the estimate variable a. The procedure will be identical
for the variables b, g.
[18] First, the sensitivity of a can be expressed by

simulating the original model with different values for a
[Park and Cho, 1996]. A simple approach is to define a
lower and upper boundary for each estimate variable (i.e.,
snapshot boundary values). These are not the true bound-
aries of the variable, but they determine a range for which
the snapshots are currently representative. For example,
these snapshot boundary values can be defined as

aS
i ¼ exp ln aið Þ � di½ � ð17Þ

where di is a step size that determines the width of the
snapshot boundary for the estimate variable ai. The log
transformation is applied for reasons of convenience, as
the estimate variable ai is also log-transformed for the
optimization process.

Figure 1. Methodology for inverse modeling using a
reduced model. Numbers refer to steps described in the text.

Figure 2. Synthetic problem under consideration: 101 grid cells along a single row with an extraction
well positioned in the middle and a Dirichlet boundary condition on both edges. Each grid cell is
dimensioned by Dx = Dy = 10 m with T = 100 m2 d�1 and S = 0.21. The model is divided into two zones,
Z1 and Z2, and two observation wells, f1

z and f2
z, with one observation within each zone.

4 of 13

W06003 VERMEULEN ET AL.: INVERSE MODELING USING MODEL REDUCTION W06003



[19] For the synthetical problem we defined the lower and
upper snapshot boundary values as a � d = 1.0. Several
snapshot simulations were computed by sequentially per-
turbing one variable and keeping the others at their lower
boundary. This yielded a nu + 1 set of estimate variables (L)
defined by L1 2 {a1

S = 0.36; a2
S = 0.36}, L2 2 {a1

S = 0.36;
a2
S = 2.72}, L3 2 {a1

S = 2.72; a2
S = 0.36}. Mathematically,

this method has a drawback: the pattern identification
technique (section 2.2.2) is sensitive to any correlation in
the snapshots [Cazemier et al., 1998]. This occurs when a
specific variable affects a limited zone and generates almost
identical values for f for the remaining zones. The Latin
hypercube sampling (LHS) method reduces this correlation
[Iman and Shortencarier, 1984]. It divides the range of each
estimate variable into i nonoverlapping intervals on the
basis of equal probability. One value is randomly selected
from each interval with respect to the probability density in
the interval. For the synthetic problem, the LHS method
generated nu = 2 sets of estimate variables valued by L1 2
{a1

S = 0.41, a2
S = 1.43} and L2 2 {a1

S = 0.94, a2
S = 0.52}.

These were used to compute two snapshot simulations.
[20] A single snapshot simulation i captured the influence

of q (i.e., the boundary condition and the computation of

drawdown by a single well) with respect to the variables in
Li. A snapshot for the boundary condition was computed as
the steady state solution, whereby q = 0.0 m3 day�1. This
snapshot F1(Li) represents the gradient through the system
caused by the boundary condition on both ends of the
model (Figure 3). Thereafter, the extraction rate for the
well increased instantaneously up to q = 50 m3 day�1 and
4 snapshots were recorded at intermediate time intervals t
(t1 = 10, t2 = 40, t3 = 350, t4 = 5000 days) until a new
steady state situation was reached. The chosen time
intervals were not by definition the best as different
combinations improved or worsened the reduced model
at the end. The most important point is that the record
frequency was high initially and decreased as time elapsed.
Eventually, these snapshots were captured for each com-
bination of estimate variables defined by L1 and L2,
yielding ns = nu � 5 = 10 snapshots as indicated in
Figure 3. Prior to the pattern identification, the snapshot
F1(Li) is subtracted from the corresponding snapshots
(Fj(Li); j 2 {2, . . ., 5}), such that they reflect the influence
of the well solely with respect to each combination of
variables (see Figure 4).

3.3. Resulting Patterns

[21] The collection of ns = 10 snapshots yielded 9
patterns with eigenvalues ji > 0.0%. The maximal
explained variance for a pattern is 84.27%, and it declined
rapidly as together the five major patterns explained >99.9%
(Figure 5). Within the spatial structure of p1 and p2 the
solution of F is still recognizable. All other patterns (ji �
5%) describe the numerical space of a solution that does not
clearly reflect a hydrological phenomenon (see Figure 6).

3.4. Accuracy of ĴJJ
[22] This section describes the sensitivity of the surface of

Ĵ with respect to the snapshot simulation and the chosen
number of patterns. The section ends with a description of
the consequences for inverse modeling.
3.4.1. Surface of ĴJJ
[23] In Figure 7 the surface of the objective function J

(2) is depicted. The minimum of the objective function
(min(J ) = 0.34 � 10�4 m2) is located at ln(A) = 0.0. The
surface of the approximate objective function Ĵ (11)
computed with np = 9 patterns is accurate for a significant

Figure 3. Selected snapshot vectors Fi(Lj) for two
combinations of the estimate variable a computed with
the original model.

Figure 4. Adjusted snapshot vectors di(Lj) for two
combinations of the estimate variable a.

Figure 5. Five major pattern vectors pi(j
e = 99.927%)

with their corresponding relative importance ji.
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area around the minimum of the function (see Figure 8).
Although the minimum value is increased (min(Ĵ ) =
0.59 � 10�1 m2), its location is almost identical to min(J ).
It is remarkable that the resemblance between the functions
exceeds approximately 3 times the range of the snapshot
boundary values for the estimate variables (see section 3.2).
When a1, a2 were forced toward more extreme values
(�3.0 
 ln(ai) 
 +3.0), the difference between J and Ĵ
increased, but the shape of the surface remained mostly
similar. This can be seen more clearly in a cross section of
the objective function for ln(a2) = 0.0 (see Figure 9, lines a
and b).
3.4.2. Influence of the Snapshot Simulations
[24] Most of the exactness of Ĵ can be traced back to

the snapshot simulations (section 3.2) as they form the real
bases on which the reduced model is founded. The chosen

snapshot boundary values (17) are herein most determined
as one can see by expanding di = 4.0. It will increase the
number of patterns and the range of resemblance, but
eventually it increases the difference at the minimum,
(min(Ĵ ) = 1.59 m2; see Figure 9, line c). For this
synthetical problem this does not seem to be a problem,
but numerical experiences for more complex systems with
many estimate variables showed that di 
 2.0 yielded
unreliable objective functions. For such a wide range of
parameter values, the assumed linear relation over d is not
valid anymore.
[25] It is unlikely that the initial value A

0 is equal to the
optimal value. Whenever the initial snapshot simulation
(di = 1.0) is computed around ln(a1) = �4.0 and ln(a2) =
0.0, the shape of Ĵ is only accurate for the interval �6.0 �
ln(a1) � 1.0 (Figure 9, line d). The location of min(Ĵ ) has
been even shifted in case ln(a1) = +4.0, ln(a2) = 0.0 and di =
1.0 (Figure 9, line e). These outcomes limit a reduced model
to a certain bandwidth to estimate A. Therefore the reduced
model need to be updated after a minimum for the current
reduced model is achieved (snapshot simulation loop, m).
3.4.3. Influence of the Number of Patterns
[26] The efficiency of a reduced model increases with a

decrease in the number of patterns (np) [Vermeulen et al.,
2004]. Therefore it is a challenge to reduce np such that the
resulting approximate objective function is still accurate
enough.
[27] As most of the variance occurs near the well, the

variance is less near a measurement location. This offers the
possibility of neglecting some tiny patterns without severely
affecting the shape of the objective function. In Figure 10
the surface of Ĵ is depicted (np = 5; je = 99.927%); thus
each pattern in Figure 6 is ignored. The surface shape still

Figure 6. Four minor pattern vectors pi (j
e = 0.073%)

with their corresponding relative importance ji.

Figure 7. Surface of the objective function J (m2) for a1,
a2 computed with the original Modflow model. The arrows
represent the gradient rJ .

Figure 8. Surface of the approximate objective function
Ĵ (m2) for a1, a2 computed with the reduced model (di = 1,
L1 2 {a1

S = 0.41, a2
S = 1.43} and L2 2 {a1

S = 0.94, a2
S =

0.52}, np = 9, je = 100%). The arrows represent the
gradient rĴ .
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shows a strong resemblance with J , but min(Ĵ ) = 6.5 m2

and is located at ln(a1) = 0.095, ln(a2) = �0.083. Never-
theless, with half the number of patterns the optimal value is
closely to its final minimum. From this point, more patterns
can be added to improve the estimation (pattern loop, k).
There is a limitation, however, as with the amount of
patterns (np = 3; je = 99%) one decreases the accuracy
and reliability of the Ĵ (see Figure 11).
3.4.4. Optimization Experiments
[28] This section extends the number of estimate variables

for the one-dimensional synthetical problem (section 3.1) to

9 (see Figure 12). The rate for each well varied randomly
and for each observation well a set of measurements was
obtained by recording f for all time steps. For 12 test cases
(simulations 1–12) the initial estimate variables (ai

0) were
varied randomly and corresponding snapshots were com-
puted as described in section 3.2. It yielded ns = 9 � 4 � 9 =
324 snapshots. The optimization procedure as outlined in
section 2.3 was used to estimate the optimal value for those
estimate variables.
[29] In Table 1 the results of the optimization are given.

Both the original and the reduced model succeeded in
getting the correct optimal values for the estimate variables
(simulations 1–3). Their initial values (ai

0) are within close
reach (0.09–10) of their optimal values (kAk = 1). They
needed approximately h = 9–19 gradient iterations. More
gradient iterations (h = 22–32) were necessary for the
reduced model as the reach of ai

0 increases (simulations 4
and 5). For specific values of ai

0 the original model was
more sensitive to local minimum, as the reduced model
succeeded in finding the global minimum (simulations 6–
8). In this case, the reduced model has the benefit of the lack
of detail in the objective function. Another example is given
in simulation 9, where both models fail to find the global
minimum. Whenever the reduced model starts the inverse
modeling for this case, by rejecting initially the minor
patterns (i.e., their lumped contribution to the explained
model variance is less than 1%), it proceeds eventually
toward the global minimum, see simulation 10. Unfortu-
nately, this is not a rule of thumb as this strategy can work
the other way around, compare simulations 11 and 12. In
the end, it can be said that the reduced model is capable of
finding an optimal solution for realistic values of a (0.01–
100.0). Beyond that, the method may fail, just like the

Figure 9. Cross section of the objective functions J and
Ĵ versus a1 for different values for a1

S and a2
S that were

used to compute snapshots and collect these patterns such
that je = 100%.

Figure 10. Surface of the approximate objective function
Ĵ (m2) for a1, a2 computed with the reduced model (di = 1,
L1 2 {a1

S = 0.41, a2
S = 1.43} and L2 2 {a1

S = 0.94, a2
S =

0.52}, np = 5, je = 99.9%). The arrows represent the
gradient rĴ .

Figure 11. Surface of the approximate objective function
Ĵ (m2) for a1, a2 computed with the reduced model (di = 1,
L1 2 {a1

S = 0.41, a2
S = 1.43} and L2 2 {a1

S = 0.94, a2
S =

0.52}, np = 3, je = 99%). The arrows represent the gradient
rĴ .
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original model, but it may also succeed although the
procedure is more ambiguous.

4. Application to a Real-World Case

4.1. Introduction

[30] This section examines to what extent the reduced
model can reduce the computation time needed for inverse
modeling. For this purpose we consider a three-dimensional
problem was considered with a realistic parameterization
based on a situation in the southern province (Noord-
Brabant) in the Netherlands.

4.2. Description of the Original Model

[31] The model area is approximately 30 km2 translated
into nm = 34,224 grid cells (92 rows and 93 columns)
divided over 4 model layers. The model layers 1, 2, and 3
have a closed boundary condition (Neumann boundary).
Model layer 4 has an open boundary condition (Dirichlet
boundary). The underground is characterized by a detailed
distribution of transmissivities that vary between 0–50
(Figure 13), 0–33, 330–540 and 625–1370 m2 day�1 for
the model layers 1–4, respectively. The resistance for the
aquitards in between varies between 15–175, 280–520 and
310–1000 days. The top of the hydrological system is
characterized by an area that has an intense surface water
system (modeled by a linear relationship between f and

the water level) and a surrounding area with a free-floating
water table. The distribution of precipitation was computed
by detailed land survey images. There are 10 indepen-
dent extraction wells, distributed throughout the district
(Figure 13). The model was simulated over a period of
nt = 200 time steps (Dt = 10 days), and a transient solution
is given for model layer 1 for time step 100 in Figure 14.
The estimate variable a was optimized for three zones in
model layer 4, for two zones in model layer 3, and for one
zone in model layer 2. This yielded 6 estimate variables
(nu = 6). Furthermore, nz = 35 observation wells were
selected that were measured for each time step (Figure 14).

4.3. Results

4.3.1. Snapshot Simulation
[32] The driving forces within the model were the bound-

ary conditions (Dirichlet boundary and surface water),
precipitation and the extraction wells. To isolate the effects
of these driving forces, each snapshot simulation contained
a steady state solution with only the boundary conditions.
Subsequently a transient impulse response with 9 time steps
was computed for the precipitation (Dtk+1 = 2Dtk with Dt1 =
10 days), and 10 transient impulse responses were computed
for each well, independently (Dt1 = 10, Dt2 = 20, Dt3 = 50,
Dt4 = 500 days). This yielded 1 + 9 + (4 � 10) =
50 snapshots for each snapshot simulation. Each of
them was carried out with another set of estimate variables

Figure 12. Synthetic problem under consideration: 101 grid cells along a single row with a Dirichlet
boundary condition on both edges. Each grid cell is dimensioned by Dx = Dy = 10 m with T = 100 m2 d�1

and S = 0.21. The model is divided into nine zones (Z1 � Z9), each containing an observation well (fi
z)

and an injection and/or extraction well (qi).

Table 1. Several Initial Values for the Estimate Variable a and the Corresponding Objective Function Value (J 0) and Its Value After h
Gradient Iterations of a for the Original Model (J ) and the Reduced Model (Ĵ )a

Simulation

Initial Values for the Estimate Variables a

J 0, m2 J , m2(h)

Ĵ , m2 (h/np)

a1
0 a2

0 a3
0 a4

0 a5
0 a6

0 a7
0 a8

0 a9
0 m = 1 m = 2 m = 3

1 0.098 0.11 0.29 1.70 0.94 2.54 0.06 1.65 0.89 534.22 0.004(10) 0.009(9/40) - -
2 1.35 3.39 0.20 2.03 0.08 2.80 0.23 4.31 4.26 101.85 0.006 (12) 0.01(15/35) - -
3 0.67 0.76 12.0 0.90 3.74 4.01 10.78 0.84 0.09 48.68 0.008 (12) 0.06(19/35) - -
4 15.3 3.97 0.38 0.64 0.10 0.41 1.20 1.60 8.99 44.82 0.008 (26) 10.51(6/34) 0.01 (20/35) -
5 0.51 0.63 63.0 0.84 9.02 10.1 52.6 0.74 0.02 115.3 0.001 (22) 3.49(20/34) 0.04 (12/32) -
6 0.17 7.65 0.07 3.24 0.01 5.58 0.09 11.4 11.2 410.46 12.36 (6)b 0.30 (20/38) 0.004 (3/37) -
7 94.1 9.95 0.20 0.48 0.02 0.23 1.37 2.18 38.9 101.89 12.40 (9)b 0.69 (20/34) 0.004 (6/36) -
8 4.45 2.05 102.9 1632 10.96 0.88 373.5 281.7 7.38 66.77 15.29 (22)b 10.05 (20/19) 6.67 (10/33) 0.002 (20/34)
9 0.17 0.01 0.11 0.03 5.80 6.72 0.01 14.37 70.2 831.84 15.31 (9)b 11.86 (11/41) 7.94 (14/29) 7.70 (4/33)b

10 0.17 0.01 0.11 0.03 5.80 6.72 0.01 14.37 70.2 831.84 15.31 (9)b 12.03 (14/18)c 0.79 (20/17)d 0.009 (4/39)
11 3.36 4.28 1066 6.00 103.4 118.7 859.2 5.17 0.06 62.73 13.78 (12)b 45.93 (14/10)c 9.94 (15/15)d 3.12 (20/35)b

12 3.36 4.28 1066 6.00 103.4 118.7 859.2 5.17 0.06 62.73 13.78 (12)b 5.45 (20/24) 2.82 (7/38) 0.007 (20/37)

aThe reduced model is based upon a number of patterns (np) that describe je = 100% of the model variance, unless stated otherwise.
bLocal minimum.
cHere je = 99.9%.
dHere je = 99.99%.
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Li 2 {a1
S, . . ., a6

S} that was generated by the LHS method
(section 3.2). Eventually the total number of snapshots
was ns = 6 � 50 = 300, which is 1.5 times the number
of total time steps for a single forward model simulation
(nt = 200).
4.3.2. Accuracy of the Estimated Variables
[33] First, the estimate variables were obtained using the

original model. Within h = 14 gradient loops, it resulted in a

wide range of estimate variables values (Table 2) with
min(J ) = 0.00051 m2 (see Figure 15).
[34] Second, the estimate variables were obtained by a

reduced model (see Figure 16 and Table 2). For the first
snapshot loop (m = 1; di = 1.0) a reduced model was
constructed with je = 99.9%; np = 36 that was able to
reduce the objective function and estimate the variables
toward the proper direction. After h = 5 gradient loops the

Figure 13. Distribution of transmissivity (m2 d�1) for model layer 1 and location of pumping wells
within model layers 1 (circles), 2 (diamonds), 3 (squares), and 4 (crosses).

Figure 14. Computed hydraulic head f (m) for time step 100 and location of observation wells within
model layers 1 (circles), 2 (diamonds), 3 (squares), and 4 (crosses).
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objective function became stable and another snapshot
simulation was performed (m = 2; di = 1.0) around the
current values of the estimate variables. Notice that the
objective function was initially enlarged (h = 6), as
the current location in parameter space was not a mini-
mum anymore for the updated reduced model (je =
99.99%; np = 63). Nevertheless, the objective function
decreased significantly after h = 10 gradient loops, and the
estimate variables were close to their optimal values. A
final snapshot simulation was carried out (m = 3; di = 0.5),
and the final reduced model (je = 100.0%; np = 103)
yielded almost identical values for the estimated variables
as found with the original model. As the estimate variables
did not change significantly within this third snapshot
simulation loop, the inverse modeling was terminated.
4.3.3. Time Efficiency
[35] All computations for this paper have been carried

out on a Pentium 4(R) (2.40 GHz) processor and a
single forward or backward run with the original model
consumed approximately to

s = 100.0 s (nt = 200) (see
Figure 17). It took approximately to

r = 2 � to
s = 200.0 s

to compute rJ , and the entire parameter optimalization
with the original model took approximately 14 � 200 =
2800 s.
[36] The time it takes the reduced model to compute

rĴ (tr
r) depends on the number of patterns involved. It

can be calculated as the sum of the time taken to construct
a reduced model (tr

p), twice the simulation time of the
reduced model (i.e., forward and adjoint run; 2 � tr

s) and
the time to compute @N/@A (tr

a) (14). The total time is
mostly dominated by tr

a that is almost quadratic related
to np as it involves two nested ‘‘do loops’’ over np (see
Figure 17). As the inverse modeling took np = 36 patterns for
the first snapshots simulation loop (m = 1), 63 and 103 for the
following snapshot simulation loops (m = 2,3), the final
computation time can be computed as 5� 60 s + 5� 100 s +
2 � 195 s = 1190 s (see Table 2 and Figure 18). Hence the
total inverse modeling, described in section 4.3.2, resulted in
a final time reduction (1.0 � tr

r/to
r) of 1.0 – 1190/2800 �

100% � 60%.

5. Conclusions

[37] This paper describes a new reduced model for
inverse modeling of groundwater flow. The proposed model
consists of a linear combination of a set of patterns and

Table 2. Number of Snapshot Simulation Loops (m) and Gradient

Loops (h) for Inverse Modeling of Six Unknown Estimate

Variables a for the Original Model (OM) and the Reduced Model

(RM)

m/h a1 a2 a3 a4 a5 a6 J , m2

OM 0/0 1.0 1.0 1.0 1.0 1.0 1.0 27.47
OM 0/14 0.13 7.40 0.05 19.80 0.22 0.22 0.00051
RM 0/0 1.0 1.0 1.0 1.0 1.0 1.0 27.34
RM 1/5 0.06 8.46 0.005 3.31 0.08 0.14 8.33
RM 2/10 0.14 6.65 0.05 19.52 0.21 0.21 0.59
RM 3/12 0.14 7.39 0.05 20.10 0.23 0.21 0.024

Figure 15. Graph of the progress of a1, . . ., a6 and J
versus the number of gradient loops h to computerJ using
the original model.

Figure 16. Graph of the progress of a1, . . ., a6 and Ĵ
versus the number of gradient loops h to computerĴ using
the reduced adjoint variable lll.

Figure 17. Graph of the CPU consumption for different
processes for inverse modeling versus the number of
patterns (np).
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time-varying coefficients. The patterns (i.e., empirical
orthogonal functions) depend both on the response of the
hydraulic head f with respect to model impulses (e.g.,
well, rivers) and system properties (e.g., horizontal/vertical
conductances, storage coefficients). These fields of system
properties could be defined by zones as done in this paper
and/or by stochastic simulation. By selecting the dominant
patterns, we have rewritten the original PDE into another
one that operates within the numerical space that is
described by the selected patterns. Simulating this type
of model yields a reduction in CPU time as the number of
state variables is small. Since the patterns are based upon
different parameter values, the resulting reduced model
accurately simulates a wide range for those parameter
values. Another advantage is that the adjoint of the
reduced model can be obtained fairly easily.
[38] It is not possible to quantify a general rate of

efficiency for the proposed procedure, as it depends strongly
on the application. For example, the efficiency increases
whenever the estimate variable appears to be only the
storage coefficient and/or the recharge/well rate. The latter
could really benefit the optimization program MODMAN
[Greenwald, 1998], which answers groundwater manage-
ment questions that maximizes or minimizes a user-defined
objective function. The efficiency increases even more
when the number of time steps in the original model is
increased (see Figure 18). This makes this type of inverse
modeling highly suitable for long transient simulations. On
the other hand, the method is strongly sensitive with respect
to the number of patterns (i.e., the complexity of the
problem). Such a model may possess many degrees of
freedom (e.g., nonlinearity between the hydraulic head
and external boundary values and/or model impulses that
act independently) that will increase the computation time
of the adjoint dramatically. Comparable to other inverse
modeling techniques this could be disadvantageous, even
though such nonlinearities may not affect the objective
function at all.
[39] In future research we intend to focus on the possi-

bility to update the estimate variables in the reduced model.

This will truly increase the final efficiency as it will
eliminate the necessity to construct a reduced model each
time an estimate variable changes.

Appendix A: Derivation of the Harmonic
Conductances

A1. Harmonic Conductance

[40] In (1) the harmonic hydraulic conductance Cx as a
function of a along the x direction is specified. In this paper
a finite difference approximation is used to solve (1), and
for a location i within a mesh of grid cells, Cx(a)i is
computed as

Cx að Þi¼ Dxi þ Dxiþ1ð Þ= Dxi

aTð Þi
þ Dxiþ1

aTð Þiþ1

� �
ðA1Þ

where T is the transmissivity [L2T] that is affected by the
estimate variable a. The computation for Cy is identical for
the y direction.

A2. First Derivative of the Harmonic
Conductance

[41] In (14) the first derivative of the harmonic conduc-
tance Cx with respect to the estimate variable a is used to
compute the second-order differential for the pattern deriv-
ative of space. With finite differences this is expressed as

@Nl;k

@A
¼
Xnp
m¼l

Xnp
j¼k

Xnm
i¼1

pm;iDx
�1
i

� @Cx;i

@ai

pj;i � pj;iþ1

1
2
Dxi þ Dxiþ1

� @Cx;i�1

@ai�1

pj;i � pj;i�1

1
2
Dxi þ Dxi�1

 !
ðA2Þ

wherein

@Cx;i

@ai

¼ @Cx;i

@Ti
� @Ti
@ai

þ @Cx;i

@Tiþ1

� @Tiþ1

@aiþ1

ðA3Þ

using (A1) this yields

@Cx;i

@ai

¼ Dxi Dxi þ Dxiþ1ð Þ

T 2
i

Dxi
Ti
þ Dxiþ1

Tiþ1

� �2 � Ti

exp aið Þ

þ Dxiþ1 Dxi þ Dxiþ1ð Þ

T 2
iþ1

Dxi
Ti
þ Dxiþ1

Tiþ1

� �2 � Tiþ1

exp aiþ1ð Þ ðA4Þ

For the sake of simplicity C(a)x,i is denoted as Cx,i, and
@T/@a is equal to T/exp(a) as the estimate variable a is
log transformed.

Appendix B: Derivation of the Reduced Adjoint
State Variable

[42] In (12) the reduced adjoint state variable L is
introduced in order to compute the gradient of the objective
function (rĴ ) with respect to the estimate vectors A, B, ;.
In order to derive L, we write equation (9) as

Nr�M
dr

dt
þ q ¼ 0:0: ðB1Þ

Figure 18. Graph of the efficiency, defined as the ratio of
computation times required to compute the gradient of the
objective function using the original and reduced model for
different number of patterns (np) versus the number of time
steps within a simulation.
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Then the objective function Ĵ is defined as

Ĵ ¼ r	 þ lllT Nr�M
dr

dt
þ q

� �
ðB2Þ

where r. [L2] represents the sum of the squared residuals
between nz measurements fz and f̂:

r	 ¼
Xnz
i¼1

fz
i � f̂i

� �
ci

h i2
ðB3Þ

with

f̂i ¼
Xnp
i¼1

piri ðB4Þ

This definition of r. is necessary to include the state
variable r of the reduced model in the following expansion.
To find an expression for DĴ , a first-order Taylor series
expansion is applied for the variables L, r and A in (B2),
yielding

@Ĵ
@Ĵ

DĴ ¼ lllT Nr�M
@r

@t
þ q|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

¼0

2
664

3
775þ @lllT

@lllT
DlllT Nr�M

@r

@t
þ q|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

¼0

2
664

3
775

þ lllT Nr�M
@r

@t
þ q|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

¼0

2
664

3
775þ @r	

@r
Dr

þ lllT Nr�M
@r

@t
þ q|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

¼0

2
664

3
775þ lllT N

@r

@r
Dr�M

@r
@t

@r
Drþ q

" #

þ lllT @N

@A
DAr� @M

@B
DB

@r

@t
þ

@q

@;
D;

� �
ðB5Þ

simplifies to

DĴ ¼ @r	

@r
Drþ lllT NDr� 1

@t
MDr

� �

þ lllT @N

@A
D Ar � @M

@B
D B

@r

@t
þ

@q

@;
D;

� �
ðB6Þ

The reduced adjoint state variable L
T is solved by letting

@r	

@r
Drþ lllTNDr� lllT 1:0

@t
MDr ¼ 0:0 ðB7Þ

which yields a simple expression as Dr can be removed,
and LT is solved backward in time by an implicit Euler
scheme:

N� 1

Dt
M

� �T

lllk ¼ � 1

Dt
Mlllkþ1 �

@r	k
@rk

ðB8Þ

where

@r	k
@rk

¼ @r	k
@f̂k

� @f̂k

@rk
ðB9Þ

with

@r	k
@f̂k

¼ 2
Xnz
i¼1

ci fz
i;k � f̂i;k

� �
ðB10Þ

@f̂k

@rk
¼ �

Xnp
j¼1

pj ðB11Þ

yields a np-dimensional vector. An important difference
between (10) and (B8) is the transpose sign T on the left-
hand side of the equation.

Notation

i, j, k, l, m counters.
a, b, g estimate variables.
x, y, z cartesian coordinate.

T transmissivity.
C harmonic hydraulic conductance.
S storage coefficient.
t time.
q fluid source/sink term.
q reduced source/sink term.
f hydraulic head.
f̂ approximated hydraulic head.
fz hydraulic head measurement.
c weighting factor.
%j collection of snapshots corresponding a set of

estimate variables.
D set of snapshots in matrix notation.
Ch covariance matrix DDT.
Cr reduced covariance matrix DTD.
G eigenvectors of Cr.
+ eigenvalues of Cr and Ch.

P, V set of patterns in matrix notation.
pi ith pattern in scalar format.
+ reduced adjoint state variable.
li ith eigenvalue in scalar format.
ji relative importance of the ith pattern.
je expected variance.
U second-order differential of the pattern deriva-

tive of space.
N, M matrices involving the reduced model in state

space notation.
ri ith time-dependent coefficient in scalar format.
r. sum of the projected sum of squared residuals

between nz measurements fz and f̂.
J objective function original model.
Ĵ objective function reduced model.
F linear function.
Zi definition of the ith zone.
Li definition of the ith set of nu estimate variables
di step size to determine the width of the

snapshot boundary for the ith estimate vari-
able.

nm number of grid cells.
nt number of simulation time steps.
np number of patterns.
ns number of snapshots simulations.
nz number of hydraulic head measurements.
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nu number of unknown estimate variables.
m number of snapshot simulation loops.
k number of pattern loops.
h number of gradient loops.
r gradient.

to
s , tr

s simulation time of the original and reduced
model.

to
r, tr

r time to compute rJ and rĴ .
tr
p time to compute the patterns.
tr
a time to compute @N/@A.
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