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Abstract: Reducing water use could impact existing sewer systems but this is not currently well 

understood. This work describes a new flow and wastewater quality model developed to investigate 

this impact. SIMDEUM WW® was used to generate stochastic appliance-specific discharge profiles 

for wastewater flow and concentration, which were fed into InfoWorks® ICM to quantify the 

impacts within the sewer network. The model was validated using measured field data from a sewer 

system in Amsterdam serving 418 households. Wastewater concentrations of total suspended solids 

(TSS), chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN) and total phosphorus (TPH) 

were sampled on an hourly basis, for one week. The results obtained showed that the InfoWorks® 

model predicted the mass flow of pollutants well (R-values 0.69, 0.72 and 0.75 for COD, TKN and 

TPH respectively) but, due to the current lack of a time-varying solids transport model within 

InfoWorks®, the prediction for wastewater concentration parameters was less reliable. Still, the 

model was deemed capable of analysing the effects of three water conservation strategies 

(greywater reuse, rainwater harvesting and water-saving appliances) on flow, nutrient 

concentrations, and temperature in sewer networks. Results show through a 62% reduction in sewer 

flow, COD, TKN and TPH concentrations increased by up to 111%, 84% and 75% respectively, 

offering more favourable conditions for nutrient recovery. 

Keywords: sewer design; stochastic sewer modelling; wastewater quality; household discharge; 

reduced water consumption 

 

1. Introduction 

Contemporary water cycle infrastructure has typically been developed to promote public health 

and safety by supplying wholesome drinking water and by transporting wastewater and stormwater 

out of urban areas as quickly as possible. This has led to linear water use (take, use, throwaway) that 
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is sub-optimal on grounds of sustainability. With growing environmental awareness, the idea of a 

circular economy has emerged, and a paradigm shift is required to close the water cycle and re-

classify wastes as resources to recover and reuse. Resource recovery from wastewater is more 

effective at high concentrations. This can be achieved through dewatering processes at treatment 

plants [1–3] but another option is to limit wastewater dilution in the collection process [4]. Limiting 

wastewater dilution can be achieved by reducing domestic drinking water use, separation of 

storm/wastewater systems and preventing groundwater inflow by repairing/replacing broken pipes. 

This reduces nutrient loss from the cycle whilst reduced drinking water demand and wastewater 

transportation volume could save cost by reducing demands on existing infrastructure. Transporting 

more concentrated flow with a smaller pipe/equipment size requirement is also facilitated. Urban 

water cycles could enable resource recovery if considered from this new value proposition. This 

philosophy has prompted the development of a water cycle model to investigate the effects of future 

water use behaviours on the urban water system, and ultimately highlight how these systems could 

deliver enhanced resource recovery. This paper describes the development of a stochastic wastewater 

quality model and the comparison of this model to monitored field data. The sewer model forms part 

of a wider aim to develop an integrated water cycle model using a combination of SIMDEUM® and 

InfoWorks® WS/ICM packages. The integrated model will predict flow and wastewater quality 

changes in both drinking water and wastewater infrastructures, to evaluate the consequences of 

future water use scenarios. 

Water demand and water quality models can be developed as deterministic or stochastic models. 

In a deterministic model, the results are fully based on pre-set parameter values and initial conditions. 

Stochastic models will include randomness and each time the model is used it will produce a different 

output. The advantage of deterministic models is the relative ease of use, whilst stochastic models 

will provide better insight in the system’s dynamics. Because water use at the household level is 

extremely dynamic and follows random patterns, we have chosen to use a stochastic approach for 

this project as it gives a better reflection of reality. 

A number of models have been developed to predict the impacts of various water conservation 

measures on the sewer system. These models have been largely deterministic [5–7] and have tested 

specific impacts of rainwater harvesting (RWH) and greywater reuse (GWR) on wastewater quality. 

Penn et al. [7] reported pollutant concentration increases of 6–42% COD, 7–73% TSS, 9–57% NH4-N 

and 7–52% PO4-P for flow decreases of 8–41%. However, these deterministic approaches model 

domestic wastewater production as a continuous discharge based on averaged data, assuming an 

identical water use pattern for all residents. In reality, individual household wastewater profiles are 

a discontinuous series of discrete points, and hence a stochastic model is needed to model household 

discharges which are more representative of this reality. Penn, et al. [8] published a stochastic 

wastewater generator that does not require a great amount of input data, but which is based on 

empirical sampling, and assumes that the observed flow data (from 15 households) represents the 

flow of the target population. The flow generator was used as an input to a network model that 

assessed ability of flow to move gross solids (GS) in the sewer. GS movement was assessed through 

calculating critical flow required to move solids, but this does not link solids/pollutant generation to 

the discharges themselves. If we are to model water use changes that have not yet been observed, a 

model based on deterministic methods or empirical sampling is insufficient. There is therefore need 

for a stochastic sewer model that is independent of observed data for predicting impacts of changing 

water use. To our knowledge there is currently no sewer model that links unique appliance-discharge 

patterns to the specific water quality attributes produced by household appliances. Developing a 

model with this capability will offer a better understanding of how and when pollutants/nutrients 

build up in sewers, and how various water use changes could affect this in future. 

This paper utilises a more complex stochastic generator than that developed by Penn et al. [8]. 

This tool, SIMDEUM® [9], generates appliance-specific flow patterns based on probability parameters 

linked to appliance usage, household composition, and consumer water use behaviour [10]. Patterns 

produced by SIMDEUM® are specific to each appliance (e.g., toilet, sink and washing machine) which 

makes it possible to investigate explicit water use changes without assuming typical water usage 
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patterns based on historical data. SIMDEUM WW® extends from SIMDEUM® to convert demand 

patterns into wastewater discharges, including thermal and nutrient loads [11]. This conversion is 

achieved through correcting the flow rate or delaying the time of discharge, e.g., toilets can take 

minutes to fill but seconds to discharge. Thermal and nutrient loads from each appliance are 

incorporated into the discharge profile by assigning typical (per use) load to each appliance. 

Bailey et al. [12] developed a stochastic flow model to assess the impact of water conservation 

on the sewer. This model utilised stochastic household discharge patterns (generated with 

SIMDEUM WW®) as input to a sewer network model based in InfoWorks® ICM. The flow model was 

validated using data from an English catchment, provided by Wessex Water (UK-based water utility). 

The flow model was extended to include wastewater pollutant concentrations by linking typical 

wastewater quality data to appliance-specific discharges within SIMDEUM WW® and utilising the 

InfoWorks® ICM wastewater quality model [13]. The flow/quality model was used to simulate and 

compare a series of future water use scenarios. The wastewater quality aspect of this model, however, 

has not previously been compared to field data to assess its validity. This paper details a wastewater 

quality monitoring campaign conducted in a small housing estate in Amsterdam with that objective.  

The paper is organised as follows: firstly, we describe the model development and the 

methodology behind the wastewater quality monitoring campaign. Followed by the framing of six 

future water use scenarios that were tested using the model. Then, a description of the Amsterdam-

based catchment used to analyse the model precedes the model predictions and a comparison of 

modelled parameters with the measured data. Finally, we make key conclusions. 

2. Methodology 

A model was developed to simulate the effects of future water use scenarios in sewers. The 

Infoworks® ICM (Sewer Edition; Innovyze Ltd., Oxfordshire, UK) hydraulic and wastewater quality 

model was used to simulate the sewage system. This model was integrated with stochastic discharge 

patterns generated using SIMDEUM® and SIMDEUM WW® [10,14]. The MATLAB® codes behind 

SIMDEUM® were edited to make its outputs compatible with InfoWorks® ICM. Six future water use 

scenarios were framed and simulated using the validated model, allowing flow and concentration 

effects to be evaluated. 

Infoworks® ICM Sewer Edition is an industry standard for 1-dimensional sewer network 

modelling. The software offers accurate analysis of hydraulics and water quality in sewer and 

stormwater networks. The model uses a network of nodes and conduits and solves the flow and mass 

balances for the network, based on water quantity and quality input, fed into the model via the nodes. 

The geometry of the network and the shape of the conduits is defined by geographical input and data 

from the real network. 

2.1. Household Discharge Modelling 

2.1.1. Hydraulic Discharge Model 

The SIMDEUM® software tool was developed in the Netherlands for accurate water demand 

modelling. It can generate household water demand patterns based on statistical and probabilistic 

information about inhabitants and their appliance usage [10]. The SIMDEUM® pattern generator was 

calibrated for use in the studied catchment (Prinseneiland), which is described in Section 2.4.1, details 

of the studied catchment are shown in Section 3. 

2.1.2. Wastewater Quality Loading 

SIMDEUM WW® was used to link each wastewater discharge with an appliance-specific 

wastewater quality profile. SIMDEUM WW® originally included very little detail on pollutant 

discharges, having been used simply to demonstrate the possibility of nutrient discharge modelling 

[11,15]. Therefore, a review of relevant literature [5,15–19] was conducted to find appropriate input 

values for nutrient simulation. These input parameters describe pollutant mass per discharge for each 

household appliance (see Table 1), and the derivation of these parameters is described in Bailey et al. 
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[13]. The nutrient discharge aspect of SIMDEUM WW® has never been validated. Through 

comparison of the wastewater quality model with measured data from this work, the phosphorus 

(TPH) parameters reported in literature were found to be too high. This is due to recent changes in 

EU legislation reducing phosphorus use in detergents [20]. The phosphorus parameters were 

corrected to align with this legislation and are highlighted in bold in Table 1. The phosphorus 

associated with the kitchen tap was approximated as in Comber et al. [21] where it was found to be 

0.03 g person-1 day-1. It was assumed that this much phosphorus enters the sewer through the disposal 

of food scraps. The other value shown in Table 1, i.e., 0.03 g use-1, which depicts quality profile for 

each discharge, was found by calibration based on observed wastewater data and above assumed 

phosphorus value. The phosphorus from toilet use was updated in accordance with Comber et al. 

[21], and assuming, on average, six toilet uses per person, per day. 

Quality of non-potable water sources was quantified using data from Penn et al. [6] (greywater) 

also Ward et al. [22] and Farreny et al. [23] (rainwater)—see supplementary information. This was 

combined with appliance pollutant quantities, shown in Table 1. 

Table 1. Appliance-specific pollutant concentrations for improved SIMDEUM WW® (adapted from 

Bailey et al. [13]). Bold values were defined in this work using observed wastewater data. 

Appliance Temperature (°C) Sewage Quality (g use−1) Ref. 

  COD TKN TPH TSS  

Bath 36 25.90 0.85 0.00 8.88 [5,16] 

Shower 35 12.60 0.49 0.00 4.32 [5,16] 

Bathroom tap 40 1.48 0.04 0.00 0.56 [5,16] 

Kitchen tap 40 7.48 0.35 0.03 4.68 [5,16,21] 

Dish washer 35 30 1.35 0.00 13.20 [5,16] 

Washing machine 

- With GWR 

- With RWH 

(35, 35, 35, 45) 

65.25 0.638 0.00 17.10 [5,16] 

69.40 0.78 0.00 17.88 [6] 

66.29 0.86 0.00 17.72 [22] 

Toilet 

- With GWR 

- With RWH 

23 

11.22 1.99 0.22 3.04 [15,21] 

11.48 2.00 0.22 3.09 [6] 

11.28 2.00 0.22 3.08 [22] 

2.2. Stochastic Sewer Model 

Wastewater flow and quality were simulated through a sewer network using InfoWorks® ICM 

(Sewer Edition; Innovyze Ltd., Oxfordshire, UK). Stochastic household discharge patterns, described 

in Section 2.1, were imported into InfoWorks® ICM to produce time-varying domestic wastewater 

event. Each property has a unique flow and associated wastewater concentration profile as input to 

the sewer; discharges were input with one-minute intervals.  

InfoWorks® ICM incorporates both hydraulic and wastewater quality modelling components. 

The hydraulic component was validated by Bailey et al. [12] using measured flow, depth and velocity 

data. Saint-Venant equations govern hydraulics in InfoWorks® ICM. The wastewater quality model 

runs parallel to the hydraulic model, as described in Bailey et al. [13], but was not validated. The 

concentration of dissolved pollutants and suspended sediment at every node in the sewer network is 

calculated for every time step using the InfoWorks® Network Model. The governing equation at a node 

is given by conservation of mass, Equation (1). Pollutant inflows arrive from incoming conduits and 

any external sources, in this case, wastewater events (household discharges). It is assumed that nodes 

are well-mixed and there is no deposition or accumulation. 

���

��
= � ���� +

����

��
− � ����

��

 (1)

where: 

�� = mass of suspended sediment or dissolved pollutant in node � (kg) 

��  = flow into node � from link � (m3 s−1) 

�� = concentration in the flow into node � from link � (kg m−3) 

��� = additional mass entering node � from external sources (kg) 
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�� = flow from node � to link � (m3 s−1) 

�� = concentration in the flow from node � to link � (kg m−3) 

The InfoWorks® Conduit Model then calculates the concentration of dissolved pollutants and 

suspended sediment in each conduit. A conduit is a conceptual link of defined length between two 

nodes. One-dimensional flow is assumed in the conduit, as are well-mixed concentrations across each 

section of the conduit. Pollutants are assumed move through the conduit with the local mean flow 

velocity, and dispersion along the conduit is negligible. Wastewater determinants were all treated as 

dissolved pollutants because InfoWorks® ICM software fails to recognise time-varying suspended 

solid input. The authors have been advised that this shortfall will be corrected in a future software 

update. Therefore, wastewater determinants in the model are transported through advection, with 

no erosion, deposition, or accumulation of sediments. The advective mass flow between each element 

is shown in Equation (2). 

�� = �� × �������  (2)

where: 

�� = mass flow through the face due to advection (kg s−1) 

�� = volumetric flow through the face (m3 s−1) 

�������  = ��  if volumetric flow goes from left to right element, ��  otherwise (kg m−3); �� , ��  = 

determinant concentration in respectively the left and right element 

Adjusting to Allow for Mixing in the Sampling Tank 

The sampling campaign, described in Section 2.3.2, generated data on wastewater in the pump 

feed tank rather than wastewater flowing in the sewer system (see Figure 1). As the sewage flows 

into the tank it mixes with the held-up water and thus the samples will reflect a dampened 

wastewater concentration compared to model predictions. The sewer model output was adjusted to 

allow for this mixing to allow comparison of model predictions with sampled concentration data. 

Equation (3) is the derived expression for concentration in the tank (�� ), assuming the volume 

remains approximately constant (average volume of 1.6 m3, midway between high and low levels). 

It also assumes that no reactions occur in the tank and the wastewater has a constant density.  

��(�) = ���,��(�) − ��,�� �1 − �
��

�(�)
�

��
� (3)

where: 

�� = Concentration of pollutant A in the tank (kg m−3) 

��,�� = Concentration of pollutant A into the tank (kg m−3) 

��,� = Initial concentration of pollutant A (kg m−3) 

� = Flowrate into tank (m3 s−1) 

� = Tank volume (m3) 

� = Time (s) 
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Figure 1. Wastewater sampling campaign equipment set up. Portable toilet housing the sampling 

cabinet that draws wastewater from the wet well of the pumping station in Prinseneiland. ISP is the 

level at which the pump switches on, USP is the level where the pump switches off. The tank area is 

2 m2. 

2.3. Methodology for Field Testing 

2.3.1. Data Availability for Validating the Hydraulic Discharge Model 

The Prinseneiland catchment (See section 3.1) has three sources of hydraulic water network data. 

Two water mains supply drinking water to the island; a flow meter was present in each, providing 

live data recording of water demand. Fifty-eight percent of catchment households have a water meter 

recording specific water use, but this is mainly for billing purposes as data is summed over the period 

between physical meter readings. The final data source was provided by pump flow and tank level 

readings, recorded at the wastewater pumping station. Readings are recorded every 2–5 min 

dependant on changes recorded by the level controller. A pump switches on when the tank level 

reaches the programmed high level (above the inlet pipe) and off when the level reaches the 

programmed low level (above the pump). The volumetric flowrate through the pump was measured 

using an ECOFLUX electromagnetic flowmeter (www.krohne.com) (accuracy ± 0.5% of the measured 

value at velocities ≥ 0.4 m s−1 and ± 0.002 m s−1 if velocity is below 0.4 m s−1). The tank level was 

measured using two VEGABAR 52 (www.vega.com) sensors, where the deviation is reported to be 

less than 0.075%. By performing a mass balance on the flow through the pump and the changing level 

in the tank (Equation 4), it was possible to convert these readings into a sewer flow profile (Equation 

5).  

�[��,����] = ��(�)��(���) − �(�)� +
�(����� − ���)�� + �(����� − ���)��

2
 (4)

�� =
∑ �[��,����]

���
�

�
 (5)

where: 

�[��,����] = Volume entering the tank between level sensor readings (m3) 

�� = Pumping capacity (m3 s−1) 

�� = Tank level (m) 

� = Tank area (m2) 

�1, �2 = Level sensors 

� = Sample time (s) 

�� = Wastewater flowrate into the tank (m3 s−1) 

� = Time (s) 
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At the end of August 2019, a wastewater quality campaign was carried out on Prinseneiland to 

collect data necessary for validating the wastewater quality component of the stochastic sewer model. 

The campaign was conducted continuously over 7 days, under dry weather conditions. Wastewater 

was sampled from the pump wet well at the end of the catchment. All Water Services (www.aws-

water.nl) carried out the fieldwork and the wastewater samples were analysed by Eurofins Omegam. 

A vacuum sampling device was used (photographs in the supplementary information). The sampling 

cabinet was placed within a portable toilet at street level to comply with space constraints and protect 

apparatus from damage. The sampling hose was secured at the sewer inlet to the wet well in such a 

way that the end of the hose was approximately 3 cm below the cut-off level of the pump. This 

ensured that the wastewater was as “fresh” as possible when sampled from the tank, and thus most 

representative of the sewer flow. This method meant it was always possible to draw samples from 

the chamber, but during the night where wastewater flow is low, there is the possibility that stagnant 

wastewater is sampled. The sampling cabinet contained 24 1 L bottles into which a 50 mL sub-sample 

was drawn every 3 min, i.e., 20 sub-samples per hour make up the 1 L sample for that hour. The 

sample collection vessels were held at 1–5 °C. Sampling was carried out according to Dutch standard 

‘NEN 6600-1 (NL) Water—Sampling—Part 1: Waste water from March 2009. Every 24 h the 

completed samples were removed from the cabinet and decanted into three separate packages for 

separate analysis (see Table 2), and nitrogen and phosphorus were analysed from the same package. 

Samples were preserved on site according to Dutch standard ‘NEN-EN-ISO 5667-3 (s) Water—

Sampling—Part 3: Conservation and treatment of water samples’ and were delivered daily to the 

analysis laboratory under cooling. 

Table 2. Wastewater quality parameters analysed and specific methodology associated with each 

parameter. 

Parameter 

Sampled 

Parameter 

Description 

Method (Eurofins 

Omegam) 

Limit of 

Determination 

(mg l−1) 

Required 

Sample Volume 

(ml Sample−1) 

Measurement 

Uncertainty (+/−)  

COD (mg l−1) 
Chemical oxygen 

demand 
Conforms to NEN 6633 5.00 100 15% 

TKN (mg l−1) 
Total Nitrogen-

Kjeldahl 

Conforms to NEN-ISO 

5663 
1.00 100 13% 

TPH (mg l−1) Total Phosphorus 
Own method based on 

NEN-EN-ISO 15681_2 
0.05 50 12% 

TSS (mg l−1) 
Total suspended 

solids 

Conforms to NEN-EN 

872 and NEN 6499 
1.00 750 16% 

2.3.2. Quality of Sampling and Analysis Work 

AWS are accredited according to the requirements as laid down in NEN-EN-ISO/IEC 17025: 2005 

and Dutch Accreditation Council (RvA) regulations under number L599. Eurofins Omegam 

laboratory in Amsterdam (who carried out the sample analysis) is also accredited by RvA. 

2.3.3. Wastewater Quality Parameters 

The parameters analysed and the procedures followed by the laboratory are shown in Table 2. 

2.4. Model Validation 

2.4.1. Procedure for Model Calibration  

The SIMDEUM® model was calibrated by adjusting input variables describing household 

occupancy, home–presence, and specific details of household water use in the area. Households are 

characterised as either a single, dual, or family occupancy. Average occupancy and family size are 

also defined. The household data was derived from census data from the local government of the 

study area. Home presence data is culture and area-specific, and details typical times that people rise, 

go to work and go to bed. These data were obtained from the Netherlands Institute for Social 
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Research (SCP) that conducts a five-year time-budget survey. Comparison of the model output with 

monitored catchment data showed a local deviation from the national survey data on wake-up time, 

so this was adjusted on a case-specific basis. Household water use data is available from local water 

companies and should be input to the model to describe typical water use for each household 

appliance. The specific model adaptions made for the studied catchment are detailed in Section 3.2. 

2.4.2. Procedure for Model Validation 

Validation of the model was conducted by assessing the model performance over an average 

week. Dry weather flow data was selected at various points of the year (2 weeks from each season) 

to produce an average water use pattern of the catchment in order to compare with the model. The 

goodness of fit of model output was evaluated by computation of the Nash–Sutcliffe efficiency (���) 

and the root mean squared error (����). The similarity of the flow patterns was evaluated with the 

correlation coefficient (�). The equations for ���, ���� and � are found below in Equations (6–

8). 

��� = 1 −
∑ (���� − ����)��

���

∑ (���� − �̅)��
���

 (6)

���� =  �
1

� − 1
�(���� − ����)�

�

���

 (7)

 � (�, �) =
∑(� − �̅)(� − ��)

�∑(� − �̅)� ∑(� − ��)�
 (8)

where: 

���� = Observed parameter  

���� = Simulated parameter 

�̅, �� = Sample mean of parameters �, � 

2.5. Impact Assessment for Water Conservation Technologies 

The development and validation of the sewer model allow it to be used to predict the effect of 

future scenarios. Table 3 describes the future scenarios that were developed for testing in the 

Prinseneiland catchment. These scenarios were based on total area reform (100% implementation). 

Water use scenarios include “Eco”, which involves an upgrade of household appliances (such as 1 L 

flush toilets and water-saving showers) and ‘GWR’/‘RWH’, which utilise greywater or rainwater feed 

for toilet flushing and washing machines. Greywater and rainwater feed quality data are found in 

the supplementary material. Each scenario has been presented using future population statistics 

supplied by the Municipality of Amsterdam (Gemeente Amsterdam), as outlined in Table 4. The ‘(a)’ 

scenarios are the maximum bound for occupation in the catchment, and the “(b)” scenarios explore 

the effect of a continued rise in single occupancy households, thus provides a minimum occupancy 

bound. 

Table 3. Future scenario description. 

Scenario Demand (L cap−1 d−1) Description 

1—Baseline 112 Present-day scenario—validated hydraulic model 

2a—Eco, max. occupancy 42 Water-saving appliances such as 1 L flush toilets 

and water-saving showers (as presented by 

Agudelo and Blokker [24])  
2b—Eco, min. occupancy 44 

3a—GWR, max. occupancy 67 Greywater reuse utilised for toilet flushing and 

washing machines 3b—GWR, min. occupancy 68 

4a—RWH, max. occupancy 67 Rainwater harvesting utilised for toilet flushing 

and washing machines 4b—RWH, min. occupancy 68 
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Table 4. Population statistics for present and future scenarios (based data and projections obtained 

from Gemeente Amsterdam). 

 Single Dual Family Family Size Occupancy 

Baseline 58% 23% 19% 3.4 1.7 

(a) Max. 55% 21% 24% 3.5 1.8 

(b) Min. 91%  4%  5% 3.1 1.1 

(a) Amsterdam projected population statistics, (b) Reduction in average occupancy to 1.1. 

SIMDEUM® generates household discharge patterns based on the specific usage and discharge 

characteristics of household appliances. Figure 2 shows how these household micro-components 

vary between the scenarios. Differences in drinking water demand and discharge occur through the 

use of non-potable water sources (not included in water demand) or outdoor use (does not enter the 

sewer). In the case of greywater reuse and rainwater harvesting, household appliances were held at 

baseline water consumption. Water was only redirected to appliances, i.e., no internal mass balance 

for water movement was incorporated into the model. It is assumed that there will always be 

sufficient water in a storage tank to allow these appliance discharges. 

 

Figure 2. Outline of appliance demand and discharge for each of the future scenarios. 

3. Catchment Used for Model Analysis 

3.1. Description of the Modelled Catchment 

Prinseneiland is a small housing estate located in Amsterdam, which is the capital and most 

populous municipality of the Netherlands. A map of Prinseneiland is found in Figure 3. There are 

418 domestic households and 55 other premises (offices, ateliers, storage buildings) located in the 

housing estate.  

The sewer system is a looped and combined network (i.e., stormwater and wastewater). 

Concrete sewer pipes, measuring 684 m (400–600 mm diameter and 1:1961 to 1:133 slope, the average 

slope was 1:615), lead to a pumping station where wastewater is pumped away from the housing 

estate for treatment. Flow and level monitors at the pumping station provide data for model 

validation every 2–5 min.  

Thirty-second time steps were used in calculations and simulations were conducted for 5 days. 

Wastewater quality modelling parameters remained as the default with the exception of the 

temperature model parameters in which the heat transfer coefficient was 4 × 10−5 m s−1, and the 

equilibrium water temperature was 23 °C, to align with the warm weather at the time of sampling. 
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Figure 3. Map of modelled catchment—Prinseneiland, NL (Waternet, Amsterdam). 

3.2. Model Calibration Details 

The SIMDEUM® model was calibrated by changing input variables describing household 

occupancy, home–presence data and specific details of household water use in the area. The average 

household size in Prinseneiland is 1.7 people household−1, where single, dual occupancy and family 

households are divided 58%, 23% and 19% respectively (see Table 4). This information was put into 

SIMDEUM® along with the data shown in Figure 4, which details the typical distribution of water 

use between household appliances (micro-components) on Prinseneiland. The split of water use 

between appliances was determined by applying a scale factor to the micro-component statistics for 

the whole of Amsterdam [25], as in Figure 4. Water and wastewater flow into and away from the 

island were monitored by the local water company, Waternet. The model output was compared with 

measured demand data from the island, and it was found that inhabitants seemed to rise an hour 

later than the Dutch average. The home presence schedules were therefore updated to give an 

average wake up time of 8 am (9 am for stay-at-home adults and seniors). 

 

Figure 4. Appliance-specific water use in Amsterdam, Netherlands [25] and the derived appliance 

usage of Prinseneiland assuming the Amsterdam average micro-component trend. 
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4. Results and Discussion 

4.1. Calibration and Validation of the Stochastic Sewer Flow Model 

Figure 5 shows the drinking water flow measured on entrance to the modelled catchment, 

demonstrating about a one-hour delay between clean water entering the catchment and the sewer 

flow leaving the catchment. This is due to a combination of time in flow and hold up time of water 

used in household appliances before discharge. Figure 5 also shows that in the early hours of the 

morning this delay extends to almost two hours, which is likely due to the longer hold-up derived 

from increased use of dishwashers and washing machines. The water balance between drinking 

water and wastewater data in Prinseneiland revealed an average excess of 1.3 m3 day−1 in the 

wastewater. This excess is likely due to infiltration to the sewer and runoff from the street and 

represents approximately 2% of the dry-weather flow. This external inflow to the system could also 

explain some of the difference between drinking water and wastewater flows, particularly at night 

when flow is low. 

Once SIMDEUM® had been calibrated as described in Section 2.4.1, the model represented the 

sewer system described in Section 3 reasonably well. Comparison of the model output with the sewer 

flow data can be seen in Figure 6 along with the model evaluation statistics (correlation coefficient, 

Nash-Sutcliff coefficient and the root mean squared efficiency, ����).  

 

Figure 5. Comparison of the mean drinking water and wastewater flow in the studied catchment. 

 

Figure 6. Performance of stochastic sewer model when compared to measured sewer flow data. 

The model under-predicts the sewer flow during working hours, this is due to the assumption 

that the housing estate is purely domestic. There is an average discrepancy of 10 m3 between the 

hours of 10:00 and 18:00, which can be explained by the metered usage of the business premises. Nine 

percent of the registered properties on Prinseneiland are business addresses and these vary in 

function from warehouses to offices. These businesses were not modelled as they are not easy to 
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describe well, and this study primarily investigates the impacts of varying water use on domestic 

wastewater. 

4.2. Sampling Wastewater for Quality Analysis 

To confirm that the wastewater quality model provides a good representation of real life, a week-

long wastewater sampling campaign was carried out, described in Section 2.4.2. The sampling 

campaign began on a Thursday at 11 am and ran through until the following Thursday at 11 am. 

These results have been reordered to represent a Monday–Friday profile for ease of analysis—but it 

should be noted that the Thursday and Friday measurements were taken the week before the 

Monday—Wednesday measurements. The weekends have not been modelled due to the limited 

capacity of SIMDEUM® to describe weekend water use. Weekend water use is less strongly linked to 

a daily routine and SIMDEUM® has yet to be developed to incorporate this difference. The results of 

the sampling campaign are shown in Figures 7–9. Figure 7 shows how the measured wastewater flow 

over the sampling week compared to the measured wastewater flow used to validate the hydraulic 

model, see Section 4.1. There was heavy rainfall from 20:35 until 21:05 on the Tuesday evening of the 

sampling campaign; this explains the flow peak shown in Figure 7 (indicated by an arrow) and its 

deviation from the calibration flow.  Figure 8;  Figure 9 show the hourly measurements of 

wastewater concentration that were taken for total suspended solids (TSS), chemical oxygen demand 

(COD), total Kjeldahl nitrogen (TKN) and total phosphorus (TPH).  

 

Figure 7. Wastewater flow over sampling week compared to flow data used for model validation. 

 

Figure 8. Hourly concentration of suspended solids and chemical oxygen demand (COD) in 

wastewater over sampling week. 
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Figure 9. Hourly concentration of total Kjeldahl nitrogen (TKN) and total phosphorus (TPH) in 

wastewater over sampling week. 

There was a good correlation between TSS and COD (R = 0.82) and a reasonable correlation 

between TKN and TPH (R = 0.55) but the correlation with suspended solids is weak (R = 0.38 for TKN 

and R = 0.20 for TPH). This indicates that the bulk of the COD is combined within the suspended 

solids but the TKN and TPH are present in a more dilute form. It is also notable that there is a 

reasonable correlation between the flowrate and the concentration of TSS and COD (R = 0.78 and R = 

0.73 respectively). This seems to indicate that higher pollutant concentrations are produced at peak 

flow, but it is more likely that accumulated solids are washed through the system during high flow. 

This could be a consequence of sampling the wastewater downstream, where the highest 

concentration of COD/suspended solids occurs in the morning peak flow and the evening peak flow, 

but this is not necessarily the case upstream. This is discussed further in Section 4.3. TKN 

concentration also peaks with the morning surge in flow but then drops early afternoon, before 

steadily increasing throughout the evening until the next morning. TPH follows a very similar pattern 

to TKN but has a second evening peak in concentration. This is likely due to phosphorus sources now 

being restricted for the toilet and kitchen sink discharges, whereas the nitrogen is discharged more 

often. 

4.3. Model Comparison with Sewer Quality Data 

Figure 10 shows a comparison of the modelled mass flow compared to the observed data 

(calculated as the product of the measured concentration and the measured wastewater flowrate). 

The shaded areas represent the sampling error associated with each parameter, highlighted in Table 

2. As indicated in Section 4.2, there was heavy rainfall from 20:35 to 21:05 on the Tuesday evening of 

the sampling campaign, and this is reflected in the concentration peak on the second evening of the 

plots in Figure 10 (indicated by an arrow). Apart from this, the model represents the observed mass 

flow reasonably well, as the timing and magnitude of the mass flow profiles are in alignment with 

the measured values. The predicted mass flow overnight is, on average, higher than the observed 

mass flow, and the observed morning peak is higher than predicted. This confirms the hypothesis, in 

Section 4.2, that these flow peaks likely include accumulation of solids rather than higher 

concentration discharges from households. This build-up of suspended solids has not been accounted 

for in this version of the model as time-varying solid generation is not available in InfoWorks® (see 

Section 2.2). 
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Figure 10. Mass flow of COD (a), TKN (b) and TPH (c) predicted by the model compared to the mass 

calculated from measured concentration and measured flow rate at the wastewater pumping station. 

The correlation coefficient (CC) and Nash–Sutcliff coefficient (N–S) are given for each plot. 

Figure 11 shows the comparison of the predicted and measured nutrient concentration. The 

modelled tank concentrations were calculated according to Equation 3. This also supports the 

conclusion that the discrepancy between the modelled wastewater concentration and the observed is 

due to the lack of differential solids transport modelling in the network. The model predicts 

concentration to be highest during the night as most water use at night is from toilets, but this cannot 

be confirmed by the measured data. Following the design of the sampling campaign, the high 

concentration wastewater produced at night would only be accounted for during the first few 3-min 

sub-samples of the peak flow the following morning. The subsequent sub-samples are likely to be 

diluted substantially, leading to a morning peak in a lower concentration than the more concentrated 

night flows. SIMDEUM WW® appears to be performing well as a wastewater generator, but as the 

solids transport has not been adequately modelled within the sewer system (InfoWorks® ICM), the 

concentration cannot be aligned with the measured data. The modelled TKN and TPH follow the 

measured concentration data better than the COD, this is likely due to their lower correlation with 

suspended solids, and hence, dilute modelling is more appropriate here. 
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Figure 11. Wastewater flow (a) and modelled COD (b), TKN (c) and TPH (d) concentration in 

comparison with the measured concentration. 
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4.4. Variability of the Model 

To address the variability of the stochastic model, each weekday was evaluated on factors of 

flow and nutrient mass—see Figure 12, where each day is compared to the first simulated day. The 

sample point for comparison was the final pipe of the network, before the pumping station. The 

stochastic model results are relatively consistent as the gradient of the line of best fit, m, for each day 

is close to 1. Correlation between Day 1 of the simulation and the subsequent days is very high for 

flowrate but the correlation is less strong for the nutrient mass flow. COD showed the smallest 

variability followed by TKN and then TPH. This is thought to be due to TKN and TPH being linked 

more strongly to appliances that follow a less strict daily usage pattern, e.g., kitchen taps, 

dishwashers and washing machines. Whereas the toilet and shower use (more strongly linked to 

COD generation) happen at similar times of day. Elias-Maxil [26] assessed the variability in 

SIMDEUM® with over 200 simulations and concluded that the pattern generator reaches a steady 

state after 75 simulations, i.e., the variability approaches zero. As the studied catchment includes 418 

households, this confirms that the variability at the outfall is low. 

 

Figure 12. (a) Variation in stochastic modelled flow over 5 days, (b) Flow variation over 5 days 

compared to Day 1, (c) COD mass flow variation over 5 days compared to Day 1, (d) TKN mass flow 

variation over 5 days compared to Day 1, (e) TPH mass flow variation over 5 days compared to Day 

1. 

4.5. Future Scenario Testing 

Six future scenarios (Section 2.5) were tested using the stochastic flow and wastewater quality 

model to observe the effects of different water conservation technologies on flow and wastewater 

concentration. Increased wastewater concentration can offer benefits for resource recovery, whilst 

reducing household water use is beneficial for water security and sustainability reasons.  

Figure 13 shows the results from this simulation, analysed over a 5-day period (Monday–

Friday). It can be seen in Figure 13a, that the effect of Eco (2a/2b) and GWR (3a/3b) scenarios is the 

dramatic reduction in the morning peak. The sewer system experiences a much narrower range of 
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flowrates in these scenarios, which warrants smaller pipe diameters. Penn, et al. [27] stated that for a 

1–6 mm diameter solid, the critical shear is 0.867–1.42 Pa, respectively, so without reducing pipe 

diameters, these water use scenarios may struggle to transport larger solids (see Figure 13b).  

Figure 13c–f shows the consequence on wastewater quality parameters, and there is little impact 

of population changes between the scenarios (a and b scenarios). RWH produces a very similar 

situation to the baseline as it is simply replacing potable sources with a non-potable alternative. The 

impact of this scenario is better addressed by evaluating the impact on the drinking water system, as 

it will likely increase water residence time in the distribution network, which may compromise water 

quality. The Eco scenario produces the highest concentration of wastewater, although the range of 

concentrations is similar to the baseline/RWH scenarios. GWR produces wastewater at 

concentrations between the other two scenarios but in a much narrower range. This scenario could, 

therefore, be preferable for resource recovery as there is a narrower operating range for treatment 

units. However, GWR is the poorest performing water use scenario in terms of wastewater 

temperature, as shower and bath water do not directly enter the sewer, hence sewer temperature 

reduces. This model has been demonstrated as a useful tool for analysis of various resource recovery 

options for future urban water planning.  

 

Figure 13. (a) Effect of scenarios on the flowrate at the catchment outfall, (b–f) Cumulative frequency 

of the shear stress achieved, COD, Temperature, TKN and TPH concentration in wastewater at the 

catchment outfall over 5 day (respectively). 

Bailey et al. [13] concluded that this model over-predicts phosphorus concentrations, but with 

the results from the sampling campaign, and the changes made in the estimated wastewater 

composition due to the removal of phosphorus in detergents (Section 2.1.2), the model now predicts 

in line with reality. Daily pollutant load produced per capita in these scenarios ranged from 86–122 

g COD, 8–12 g TKN and 0.8–1.2 g TPH—these values align with independently published values 

[21,28–30]. 
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5. Conclusions 

A new stochastic wastewater flow and quality model has been developed to address the impacts 

of water use changes on wastewater flow concentration. The hydraulic model was tested and 

validated in previous work. This paper presents the validation of the wastewater quality model using 

measured data. The model was used to investigate the impact of three water-saving strategies 

(greywater recycling, rainwater harvesting and installation of smart water appliances) on water 

quantity and quality in the sewer network. 

The results obtained lead to the following key findings: 

1. Stochastic sewer model wastewater quality validation: The predicted mass flows of COD, TKN 

and TPH compared well with the corresponding observed data values. The same, however, 

cannot be said for the COD, TKN and TPH concentrations. These concentrations were treated as 

dilute pollutants as InfoWorks® does not currently incorporate differential solids transport, 

leading to the misalignment of the predicted and measured concentration data. High 

concentration flows are produced by the stochastic generator during the night but only washed 

through the system in the morning. As the concentrations were measured at a downstream point 

in the network, there was a lag time in transporting suspended solids which was not accounted 

for in the network model. 

2. Implications for three water-saving strategies on the quantity and quality of flow in the receiving 

sewer network: It was found that wastewater flow can be reduced by up to 62% with 

concentrations of COD, TKN and TPH increasing by up to 111%, 84% and 75% respectively with 

the installation of water-saving appliances. In addition, it was found that the use of water-saving 

appliances and greywater recycling dramatically reduced the peak flows, whereas rainwater 

harvesting produced similar flow and concentration results in the baseline case. The greywater 

recycling case produced the most consistent wastewater concentrations and the lowest 

wastewater temperature. 

3. Proposals for future work: This will involve incorporation of the time-varying component for 

suspended solids entry to the sewer system, and differential solids transport in the sewer. This 

advancement will be combined with a drinking water simulation to create a comprehensive 

urban water model for observing effects of future water use scenarios on the entire system. This 

project will ultimately highlight a future vision for the urban water cycle and support 

recommendations for optimal resource recovery within drinking and wastewater systems. 

Supplementary Materials: Supplementary Materials: The following are available online at 

www.mdpi.com/2073-4441/12/4/1187/s1 

Author Contributions: Conceptualization, O.B., L.Z. and J.H.; Data curation, O.B.; Formal analysis, O.B. and 

L.Z.; Funding acquisition, J.P.v.d.H. and T.A.; Investigation, O.B.; Methodology, O.B. and L.Z.; Software, O.B., 

L.Z. and M.B.; Supervision, T.A. and J.H.; Validation, O.B. and L.Z.; Visualization, O.B. and J.H.; Writing—

original draft, O.B.; Writing—review and editing, O.B., L.Z., J.P.v.d.H., Z.K., M.B., T.A. and J.H. All authors have 

read and agreed to the published version of the manuscript. 

Funding: This study was conducted as part of the Water Informatics Science and Engineering (WISE) Centre for 

Doctoral Training (CDT), funded by the UK Engineering and Physical Sciences Research Council, Grant No. 

EP/L016214/1. Olivia Bailey is supported by a research studentship from this CDT. Funding was also obtained 

from the Topsector Water & Maritime TKI Watertechnology Program of the Dutch Ministry of Economic Affairs 

and Climate Change (No. 2016TUD003, project New Urban Water Transport Systems), water utility Waternet, 

drinking water companies Brabant Water, Limburg and Evides, water authority De Dommel, Amsterdam 

Institute for Advanced Metropolitan Solutions and Royal Haskoning DHV Consultancy. 

Acknowledgments: The authors thank Waternet, the water utility of the city of Amsterdam, for providing 

expertise, data, and access to the sewer networks for field tests. 

Conflicts of Interest: The authors declare no conflict of interest. 

  



Water 2020, 12, 1187 19 of 20 

References 

1. Diamantis, V.; Verstraete, W.; Eftaxias, A.; Bundervoet, B.; Vlaeminck, S.E.; Melidis, P.; Aivasidis, A. 

Sewage pre-concentration for maximum recovery and reuse at decentralized level. Water Sci. Technol. 2013, 

67, 1188–1193, doi:10.2166/wst.2013.639. 

2. Mezohegyi, G.; Bilad, M.R.; Vankelecom, I.F.J. Direct sewage up-concentration by submerged aerated and 

vibrated membranes. Bioresour. Technol. 2012, 118, 1–7, doi:10.1016/j.biortech.2012.05.022. 

3. Bianchini, A.; Bonfiglioli, L.; Pellegrini, M.; Saccani, C. Sewage sludge drying process integration with a 

waste-to-energy power plant. Waste Manag. 2015, 42, 159–165, doi:10.1016/j.wasman.2015.04.020. 

4. Verstraete, W.; Vlaeminck, S.E. ZeroWasteWater: Short-cycling of wastewater resources for sustainable 

cities of the future. Int. J. Sustain. Dev. World Ecol. 2011, 18, 253–264, doi:10.1080/13504509.2011.570804. 

5. Parkinson, J.; Schütze, M.; Butler, D. Modelling the impacts of domestic water conservation on the 

sustainability of the urban sewerage system. J. Chart. Inst. Water Environ. Manag. 2005, 19, 49–56. 

6. Penn, R.; Hadari, M.; Friedler, E. Evaluation of the effects of greywater reuse on domestic wastewater 

quality and quantity. Urban Water J. 2012, 9, 137–148, doi:10.1080/1573062X.2011.652132. 

7. Penn, R.; Schütze, M.; Friedler, E. Modelling the effects of on-site greywater reuse and low flush toilets on 

municipal sewer systems. J. Environ. Manag. 2013, 114, 72–83, doi:10.1016/j.jenvman.2012.10.044. 

8. Penn, R.; Schütze, M.; Gorfine, M.; Friedler, E. Simulation method for stochastic generation of domestic 

wastewater discharges and the effect of greywater reuse on gross solid transport. Urban Water J. 2017, 14, 

846–852, doi:10.1080/1573062X.2017.1279188. 

9. Watershare. Availabe online: https://www.watershare.eu/tool/water-use-info/ (accessed on 1 March 2020). 

10. Blokker, E.J.M.; Vreeburg, J.H.G.; van Dijk, J.C. Simulating Residential Water Demand with a Stochastic 

End-Use Model. J. Water Resour. Plan. Manag. 2010, 136, 19–26, doi:10.1061/(ASCE)WR.1943-5452.0000002. 

11. Pieterse-Quirijns, E.J.; Agudelo-Vera, C.M.; Blokker, E.J.M. Modelling sustainability in water supply and 

drainage with SIMDEUM®. In Proceedings of the CIBW062 Symposium. Melbourne, Australia, 8-10 

September 2019. 

12. Bailey, O.; Arnot, T.C.; Blokker, E.J.M.; Kapelan, Z.; Vreeburg, J.; Hofman, J.A.M.H. Developing a stochastic 

sewer model to support sewer design under water conservation measures. J. Hydrol. 2019, 573, 908–917, 

doi:10.1016/j.jhydrol.2019.04.013. 

13. Bailey, O.; Arnot, T.C.; Blokker, E.J.M.; Kapelan, Z.; Hofman, J.A.M.H. Predicting impacts of water 

conservation with a stochastic sewer model. Water Sci. Technol. 2019, 80, 2148-2157 

doi:10.2166/wst.2020.031. 

14. Blokker, E.J.M. Stochastic Water Demand Modelling. In Hydraulics in Water Distribution Networks; IWA 

publishing: London, UK, 2011. 

15. Blokker, E.J.M.; Agudelo-Vera, C.A. Doorontwikkeling Simdeum: Waterverbruik over de dag, Energie voor 

Warmwater en Volume, Temperatuur en Nutriënten in Afvalwater; Report BTO 2015.210(s), KWR Water 

Research Institute, Nieuwegein Netherlands, 2015. 

16. Parkinson, J.N. Modelling Strategies for Sustainable Domestic Wastewater Management in a Residential 

Catchment; Imperial College for Science, Technology and Medicine: London, UK, 1999. 

17. Butler, D.; Friedler, E.; Gatt, K. Characterising the quantity and quality of domestic wastewater inflows. 

Water Sci. Technol. 1995, 31, 13. 

18. Siegrist, R.; Witt, M.; Boyle, W. Characterisation of rural household wastewater. J. Environ. Eng. ASCE 1976, 

102, 533-548. 

19. Surendran, S. Grey-water reclamation for non-potable re-use. J. CIWEM 1998, 12, 406-413. 

20. The European Parliament and the Council of the European Union; Regulation (EU) No 259/2012 on the use of 

phosphates and other phosphorus compounds in consumer laundry detergents and consumer automatic 

dishwasher detergents;  

Available on: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32012R0259 (accessed on 1 

March 2019), 2012. 

21. Comber, S.; Gardner, M.; Georges, K.; Blackwood, D.; Gilmour, D. Domestic source of phosphorus to 

sewage treatment works. Environ. Technol. 2013, 34, 1349–1358, doi:10.1080/09593330.2012.747003. 

22. Ward, S.; Memon, F.A.; Butler, D. Harvested rainwater quality: The importance of building design. Water 

Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2010, 61, 1707-1714. 



Water 2020, 12, 1187 20 of 20 

23. Farreny, R.; Morales-Pinzón, T.; Guisasola, A.; Tayà, C.; Rieradevall, J.; Gabarrell, X. Roof selection for 

rainwater harvesting: Quantity and quality assessments in Spain. Water Res. 2011, 45, 3245–3254, 

doi:10.1016/j.watres.2011.03.036. 

24. Agudelo, C.; Blokker, E.J.M. How Future Proof Is Our Drinking Water Infrastructure; Report BTO 2014.011; 

KWR Water Research Institute, Nieuwegein Netherlands 2014. 

25. Waternet, Average Water Use. Available online: https://www.waternet.nl/en/our-water/our-tap-

water/average-water-use/ (accessed on 1 March 2020). 

26. Elias-Maxil, J.A. Heat Modelling of Wastewater in Sewer Networks: Determination of Thermal Energy Content 

from Sewage with Modeling Tools; Technische Universiteit Delft: Delft, The Netherlands, 2015. 

27. Penn, R.; Schütze, M.; Friedler, E. Assessment of the effects of greywater reuse on gross solids movement 

in sewer systems. Water Sci. Technol. 2014, 69, 99–105, doi:10.2166/wst.2013.555. 

28. Henze, M.; Loosdrecht, M.C.M.v.; Ekama, G.A.; Brdjanovic, D. 3 Wastewater Characterization. In Biological 

Wastewater Treatment—Principles, Modelling and Design; IWA Publishing: London, UK, 2008. 

29. Tchobanoglous, G.; Burton, F.L.; Stensel, H.D. Wastewater Engineering: Treatment, Disposal, and Reuse, 3rd 

ed.; Revised by Tchobanoglous, G.; Burton, F.L. ; McGraw-Hill: London, UK, 1991. 

30. Arildsen, A.L.; Vezzaro, L. Revurdering af Person Ækvivalent for Fosfor—Opgørelse af Fosforindholdet i Dansk 

Husholdningsspildevand i Årene fra 1990 til 2017. Kgs; Danmarks Tekniske Universitet (DTU): Lyngby, 

Denmark, 2019. 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


