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1 Introduction

Swaption pricing is a hot topic in Financial Mathematics. In this thesis, we will analyze
swaptions whose short term interest rates are assumed to follow some a�ne models with di-
mension of factors more than two, so called multiple-factor interest rate models. Considering
there is no analytical swaption price, we attempt to approximate it, and our discussion will
focus on one of these approximation method proposed by Collin-Dufresne and Goldstein.
I implement and develop this method by providing an accurate measure of approximation
errors. Besides, there are several of my innovation and research recommendations on my
last chapter with respect to other methods to price swaptions.

The outline of this thesis is as follows.
In chapter 2, we brie�y review some important concepts in Finance, such as LIBOR,

bonds, swaptions. As a swaption can be regarded as an option on a coupon bond, our general
formula for swaption pricing can be derived. Then, we introduce a density approximation
method by Collin-Dufresne and Goldstein, in short CDG approximation, and propose some
comments.

In chapter 3, we analyze two types of errors of CDG approximation and the intrinsic
estimate of errors of densities. My innovation is to develop a measure of errors of densities
based on this estimate. In experiments with respect to Gamma and Lognormal densities,
we �nd that CDG approximation tends to have good approximation performance when
underlying distributions are nearly Gaussian. Moreover, experiments show that this measure
of errors is accurate.

In chapter 4, we introduce two a�ne interest rate models, Three-factor Gaussian model
and CIR2++ model, and discuss how to price swaptions under these two models respec-
tively using CDG approximation. Experiments will be carried out to see their approximation
performance. Besides, considering pricing swaption requires computation of several prob-
abilities, I develop a measure of errors of swaption price based on our previous measure
of errors of densities. Experiments display that this measure is also accurate on swaption
price, in terms of both absolute errors and relative errors.

In this chapter 5, other swaption pricing methods in literatures that provide di�erent
insights into swaption other than CDG approximation are discussed. My innovation is to
derive these analytical solutions in a di�erent way from existing solutions under one-factor
interest rate models, but equivalent. However, in multi-factor models, there is no analytical
solution, and thus swaption price has to be approximated. In this section, we will discuss
the method by Singleton and Umantsev, and my research recommendations on two potential
accurate measures of errors proposed by myself. Besides, a trick to use this method to price
swaptions under multiple-factor Gaussian models is discussed, also my innovation.
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2 Swaption and CDG Approximation

In this chapter, we will introduce the general swaption pricing formula and one of its approxi-
mation methods proposed by Pierre Collin-Dufresne and Robert Goldstein. For convenience,
we call this approximation method CDG approximation in short.

2.1 Introduction on Swaptions

Before we explain the approximation method for the price of a swaption described in the
paper Collin-Dufresne and Goldstein (2002), I will �rst discuss several concepts in Finance.

Discount factor

The discount factor, denoted by D(t), is the amount at time 0 that is �equivalent� to one
unit of currency payable at time t. It is de�ned by

D(t) = e−
´ t
0
r(s)ds

where r(s) is the process of short term interest rate.
In fact, the present currency per unit is always more valuable than that in the future,

and a simple example is that if you store money in the bank at present, you will get more
in the future because this bank will not only pay you principal but also its interest. That is
the reason why the discount factor is necessary.

Risk-neutral measure

The risk-neutral measure is a probability measure that is equivalent to real probability in
market and makes the discounted stock price martingales.

Let S1(t), ..., Sn(t) be process of n asset price, and p be a probability measure in real
market, a probability measure p̃ is said to be risk neutral if

� p̃ and p are equivalent.

� under p̃, the discounted asset prices D(t)Si(t) are martingales for every i = 1, ..., n.

Let V (t) be the price process of any derivative with maturity T and payo� V (T ). According
to Fundamental Theorem of Asset Pricing, under risk-neutral measure, V (t) can be com-
pletely hedged by assets S1(t), ..., Sn(t) if and only if there exists a unique risk-neutral
measure. In this situation, an investment in a portfolio can become riskless if we choose the
right hedge, and this is the reason why risk-neutral measure is essential in �nancial world.
In this thesis, without speci�c statement, any measure we take is the risk-neutral measure.

Fundamental Theorem of Asset Pricing also implies that the discounted price process
D(t)V (t) is a martingale under the risk neutral measure, so

D(t)V (t) = Ẽt(D(T )V (T )) (1)

where Ẽt(D(T )V (T )) is the conditional expectation of D(T )V (T ) given the information up
to and including time t under the risk-neutral measure.

Formula (1) is also called the risk-neutral pricing formula, and can be rewritten as
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V (t) = Ẽt(
D(T )

D(t)
V (T )) (2)

Bond

In �nance, a bond is a debt security, in which the issuer owes the holder a debt and,
depending on the terms of the bond, is obliged to repay the principal to the holder at
maturity and/or pay interest periodically.

Thus, a bond is a formal contract to repay borrowed money, and can be divided into
two categories, coupon bonds and zero coupon bonds according to whether they will repay
interest before maturity. Coupon bonds pay interest before maturity, while zero coupon
bonds do not. Most bonds are coupon bonds.

A bond has several terms. The nominal, or the principal, of a bond is amount repaid
at the end of the term excluding the interest. The maturity is the time when the issuer of
bonds has to pay nominal. The coupon is the interest rate that the issuer pays to the bond
holders. For instance, a two-year coupon bond with nominal 100 euro, with interest paid
annually with coupon at annual rate 6%. The maturity is this example is two years. At
the end of the �rst year, a bond holder will receive 6 euro as the �rst year interest, and 106
euro, nominal plus the second year interest, at the end of the year. After the maturity, the
issuer has no more obligation to the bond holders.

In academic research, we denote the price at time t of a zero coupon bond with maturity
T and nominal one by B(t, T ) where 0 ≤ t ≤ T . The convention of payment at maturity
equals one is made for computational convenience. Clearly, B(0, T ), the current price of a
bond, is visible in the market, and B(T, T ) = 1. But, for 0 < t < T , B(t, T ) with T �xed is
a stochastic process and of course not observable at time zero. Since a bond is an asset, we
have D(t)B(t, T ) is a martingale, so

B(t, T ) = Ẽt(
D(T )

D(t)
) = Ẽt(e

−
´ T
t
r(s)ds) (3)

For all 0 ≤ t ≤ T .

On the other hand, in literatures, a coupon bond can be interpreted as the sum of zero-
coupon bonds with maturities when coupons are paid. Let CB(T0) be the T0 price of a
coupon bond, we have

CB(T0) =

n∑
i=1

CiB(T0, Ti) (4)

where T1, T2...Tn are coupon-paying time.

The coupon of this underlying coupon bond can be either a �xed rate or a �oating
rate. If the coupon k is �xed , then Ci = kδi, i = 1, 2, 3, ...n − 1, Cn = (kδn + 1), where
δi = Ti − Ti−1, δn = Tn − Tn−1. If the coupon is �oating, then Ci are random variables.
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LIBOR

LIBOR, London Interbank O�ered Rate, is the interest rate at which the bank is prepared
to make a large wholesale deposit with other banks. Alternatively, it is an interest rate at
which banks borrow money from other banks.

However, in academic research, the meaning of LIBOR is more general. Denote LIBOR
at time t for period [T, T + δ] by L(t, T ), where δ is called the tenor of the LIBOR, and
it is usually either 0.25 or 0.5 years. L(t, T ) means the arbitrary free interest rate that is
determined at time t for the time period [T, T + δ].

Since bonds indicate interest rate, we can formulate LIBOR as follows by bonds under
some model.

L(t, T ) =
B(t, T )−B(t, T + δ)

δB(t, T + δ)
(5)

For all 0 ≤ t ≤ T .When t = T , we call it spot LIBOR, and otherwise, forward LIBOR.

Remark: To explain formula (5): If you take a short position of, i.e. sell, size one in a

T -maturity zero-coupon bond and a long position of, i.e. buy, size B(t,T )
B(t,T+δ) in (T + δ)-

maturity zero-coupon bonds at time t. The initial cost is B(t,T )
B(t,T+δ)B(t, T + δ)−B(t, T ) = 0.

At time T , you can invest one to cover the short position, and at time T + δ , repay
B(t,T )
B(t,T+δ) due to long position. The interest rate L(t, T ) is determined by the equation:

investment×(1+duration of investment × interest rate )= repayment, or in symbols:

1 + δL(t, T ) =
B(t, T )

B(t, T + δ)

Then, we have LIBOR formula (5).

Interest Rate Swap

An interest rate swap is a derivative in which one party exchanges a stream of interest
payments for another party's stream of cash �ows.

They can be used by hedgers to manage their �xed or �oating assets and liabilities,
and thus are very popular and highly liquid instruments. There are many types of interest
rate swaps, and the most common one is the Fixed-for-Floating rate swap. In this swap,
a company agrees to pay cash �ows equal to interest at a predetermined �xed rate over a
nominal principle for a number of years. In return, it receives a �oating rate on the same
principle for the same period of time.

The �oating interest rate in most interest swap agreements is LIBOR. Thus, in this
thesis, we only discuss interest rate swap of �xed interest rate for LIBOR under the same
currency.

In terms of the direction of payments, there are two types of swaps: receiver swaps and
payer swaps. The holder of a receiver swap receives a �xed rate and pays a �oating rate.
For the holder of a payer swap, the payments go in the other direction.

We will introduce a type of swaps called T0 ∗ (Tn−T0) swaps, and the payments in such
a receiver swap with nominal K and �xed interest rate k are as follows:
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� Payments will be made and received at Ti = δi, i = 1, ..., n.

� For every elementary period [Ti, Ti+1], i = 0, ..., n− 1, the LIOBR rate is set at time
Ti and the �oating leg KδL(Ti, Ti), spot LIBOR in duration [Ti, Ti + δ], is paid at
Ti+1.

� For the same period the �xed leg Kδk is received at Ti+1.

where δ is constant tensor of the LIBOR.

Swaption

A swaption is an option granting its owner the right but not the obligation to enter into
an underlying swap of interest rate. In short, it is an option on a swap. Corresponding to
payer swaps and receiver swaps, there are payer swaptions and receiver swaptions.

A T0 ∗ (Tn − T0) receiver swaption is a contract which at the exercise date T0 gives the
holder the right to enter into a T0 ∗ (Tn − T0) swap. Since swaption is a type of derivatives
of interest rate, by formula (2), we have the price of a T0 ∗ (Tn − T0) swaption at time t ,
0 ≤ t < T0

Ẽt(
D(T0)

D(t)
(FS(T0))+) (6)

where T0 is the maturity date of the swaption, and FS(T0) is the value of the swap on the
swaption at time T0. For a receiver swaption, we have

FS(T0) = ẼT0
(

n−1∑
i=0

D(Ti+1)

D(T0)
(L(Ti, Ti)− k)Kδ) (7)

2.2 Swaption Interpreted as Option on Coupon Bond

Consider a T0 ∗ (Tn − T0) swaption, this kind of swaption can be interpreted as an option
on a coupon bond, where the strike is equal to the nominal of the contract, and the coupon
rate is equal to the swap rate strike of the swaption. This means problems on swaptions
can be converted into those on coupon bonds.

We will provide its proof in the following part, but before that, I will �rst introduce the
forward measure, which is quite a useful tool for this problem.

Forward measure

Let T be a �xed maturity date. We de�ne the T -forward measure p̃T by

p̃T (A) =
1

B(0, T )

ˆ
A

D(T )dp̃

for all A ∈ F , where A is any subset of Ω in probability space (Ω,F , p̃), and F is its σ-
algebra, p̃ is risk-neutral probability.
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By this de�nition, p̃T is a probability measure equivalent to p̃ for any T since Ẽ( D(T )
B(0,T ) ) =

1
B(0,T ) Ẽ(D(T )

D(0) ) = 1 and D(T )
B(0,T ) > 0, refer to Shreve(2004). Forward measures are quite

popular in Finance, and there are two properties related.
Let w̃(t) be a Brownian motion on the probability space (Ω,F , p̃). Since B(t, T ) is

the price process of an asset, it follows that D(t)B(t, T ) is a martingale under p̃. Then,
according to the Martingale Representation Theorem, there is a volatility process σ∗(t, T )
for the bond , a process in t, T is �xed, such that

d(D(t)B(t, T )) = −σ∗(t, T )D(t)B(t, T )dw̃(t) (8)

Property 1.1. De�ne the process w̃T (t) to be

w̃T (t) =

ˆ t

0

σ∗(u, T )du+ w̃(t) (9)

Then, w̃T (t) is a Brownian motion under T -forward measure p̃T .

De�nition (Forward Price). T -forward price at time t is the strike price of the forward
contract that causes this contract at time t to have value zero. Suppose V (t) is the price of

an asset, then V (t)
B(t,T ) is the T -forward price of V (t) at time t.

Property 1.2. T -forward price is a martingale under T -forward measure p̃.

It implies that

ẼTt (
V (T0)

B(T0, T )
) =

V (t)

B(t, T )

where t ≤ T0 ≤ T .
This gives us a simple formula

V (t) = B(t, T )ẼTt (
V (T0)

B(T0, T )
) (10)

Combining (2) and (10), we get

Ẽt(
D(T0)

D(t)
V (T0)) = B(t, T )ẼTt (

V (T0)

B(T0, T )
) (11)

(11) states the relationship between expectation under risk-neutral measure and that under
forward measure. For the proof of both properties, see Shreve(2004).

Theorem 1.1. LIBOR L(t, Ti), t ≤ Ti, is a martingale under Ti+1−forward measure
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Proof. Let 0 ≤ t < T0 ≤ Ti, by equation (5), de�nition of L(T0, Ti), we have

Ẽ
Ti+1

t (L(T0, Ti)) = Ẽ
Ti+1

t (
B(T0, Ti)−B(T0, Ti+1)

δB(T0, Ti+1)
)

=
1

δ
Ẽ
Ti+1

t (
B(T0, Ti)

B(T0, Ti+1)
)− 1

δ
(12)

By (11), where V (T0) = B(T0, Ti) , we obtain

Ẽ
Ti+1

t (
B(T0, Ti)

B(T0, Ti+1)
) =

1

B(t, Ti+1)
Ẽt(

D(T0)

D(t)
B(T0, Ti))

=
1

B(t, Ti+1)
Ẽt(

D(T0)

D(t)
ẼT0

(
D(Ti)

D(T0)
)) (13)

As T0 > t, information on T0 is more speci�c than that on t, by Tower rule, we have

Ẽt(
D(T0)

D(t)
ẼT0

(
D(Ti)

D(T0)
)) = Ẽt(ẼT0

(
D(Ti)

D(t)
))

= Ẽt(
D(Ti)

D(t)
)

= B(t, Ti) (14)

Combining equation (13) and (14), equation (12) yields

Ẽ
Ti+1

t (L(T0, Ti)) =
1

δ
Ẽ
Ti+1

t (
B(T0, Ti)

B(T0, Ti+1)
)− 1

δ

=
1

δ

B(t, Ti)

B(t, Ti+1)
− 1

δ

=
B(t, Ti)−B(t, Ti+1)

δB(t, Ti+1)

= L(t, Ti)

In addition, we assume L(t, Ti) is bounded and thus ẼTi+1(L(t, Ti)) <∞. This assump-
tion is reasonable, because in real market LIBOR is always a bounded value. Therefore,
LIBOR L(t, Ti) is martingale under Ti+1−forward measure.

�

Theorem 1.2. A swaption is equivalent to an option on coupon bond, where the strike is
equal to the nominal of the contract, and the coupon rate is equal to the swap rate strike
of the swaption.

12



Proof: Consider a T0 ∗ (Tn − T0) payer swap exchanging �xed rate k for �oating rate
LIBOR and its nominal is K, from (7), we have

FS(T0) = ẼT0
(

n−1∑
i=0

D(Ti+1)

D(T0)
(L(Ti, Ti)− k)Kδ)

=

n−1∑
i=0

ẼT0
(
D(Ti+1)

D(T0)
(L(Ti, Ti)− k)Kδ)

=

n−1∑
i=0

B(T0, Ti+1)Ẽ
Ti+1

T0
((L(Ti, Ti)− k)Kδ)

The last step above uses Property 1.1. By Theorem 1.1, we have Ẽ
Ti+1

T0
(L(Ti, Ti)) = L(T0, Ti)

.Thus

FS(T0) =

n−1∑
i=0

B(T0, Ti+1)((L(T0, Ti)− k)Kδ)

=

n−1∑
i=0

B(T0, Ti+1)((
B(T0, Ti)−B(T0, Ti+1)

δB(T0, Ti+1)
− k)Kδ)

= K

n−1∑
i=0

(B(T0, Ti)− (kδ + 1)B(T0, Ti+1))

The last equation can be rewritten as

FS(T0) = KB(T0, T0)−
n∑
i=1

CiB(T0, Ti)

= K −
n∑
i=1

CiB(T0, Ti)

where Ci = kδK,i = 1, 2, 3, ...n− 1; Cn = (kδ + 1)K;

Recall the formula for the coupon bond CB(T0) is

CB(T0) =

n∑
i=1

CiB(T0, Ti) (15)

Therefore, by formula (6), the price of payer swaption at time t with maturity T0 is

Ẽt(
D(T0)

D(t)
(K − CB(T0))+)

13



Thus, this payer swaption can be regarded as a put option on coupon bond CB(T0) with
strike K and maturity T0.

Similarly, consider a T0 ∗ (Tn−T0) receiver swap exchanging �xed rate k for �oating rate
LIBOR and its nominal is K, we have

FS(T0) = ẼT0
(

n−1∑
i=0

D(Ti+1)

D(T0)
(k − L(Ti, Ti))Kδ)

= K

n−1∑
i=0

(−B(T0, Ti) + (kδ + 1)B(T0, Ti+1))

=

n∑
i=1

CiB(T0, Ti)−K

where Ci = kδK,i = 2, 3, ...n− 1; Cn = (kδ + 1)K;

For a receiver swaption, its price at time t with maturity T0 is

Ẽt(
D(T0)

D(t)
(CB(T0)−K)+) (16)

Thus, this receiver swaption can be regarded as a call option on coupon bond CB(T0) with
strike price K and maturity T0.

�

Therefore, the problems on a swaption can always be converted into those on an option
of a coupon bond, as long as this swaption is on exchange of �xed interest rate for LIBOR
under the same currency. For other cases, such as ones on swaption based on interest rate
under di�erent currencies, this theorem may not apply because it contains foreign exchange
rate which turns out to be more complicated.

2.3 Swaption Pricing Formula and CDG Approximation

In this part, we will formulate a formula for swaption pricing, and then, introduce Collin-
Dufresne and Goldstein approximation method.

Consider a receiver swaption discussed above whose price at time t is denoted as Swn(t),
from (16), we have

14



Swn(t) = Ẽt(
D(T0)

D(t)
(CB(T0)−K)+)

= Ẽt(
D(T0)

D(t)
(CB(T0)1(CB(T0)>K) −K1(CB(T0)>K)))

=

n∑
i=1

CiẼt(
D(T0)

D(t)
1(CB(T0)>K)B(T0, Ti)−K1(CB(T0)>K)))

=

n∑
i=1

CiẼt(
D(T0)

D(t)
1(CB(T0)>K)ẼT0

(
D(Ti)

D(T0)
)−K1(CB(T0)>K)))

=

n∑
i=1

CiẼt(
D(Ti)

D(t)
1(CB(T0)>K))−KẼt(

D(T0)

D(t)
1(CB(T0)>K)) (17)

where P̃Tit on the last line of the equation is the probability conditioned on information at
time t under Ti forward measure. Use Property 1.2 , where V (T0) = B(T0, Ti)1(CB(T0)>K),
we can rewrite (17) as

Swn(t) =

n∑
i=1

CiB(t, Ti)Ẽt
Ti

(1(CB(T0)>K))−KB(t, T0)Ẽt
T0

(1(CB(T0)>K))

=

n∑
i=1

CiB(t, Ti)P̃
Ti
t (CB(T0) > K)−KB(t, T0)P̃T0

t (CB(T0) > K) (18)

Equation (18) is our general receiver swaption pricing formula. It can be interpreted as

stating that the price of a swaption is related to a series of probabilities P̃Tit (CB(T0) > K)
of the underlying coupon bond CB(T0), and thus, we have to approximate these probabil-
ities under each forward measures T0, T1, ...Tn if there is no closed form solutions. In the
year of 2002, Collin-Dufresne and Goldstein worked out an approximation method to solve
this problem, we call it CDG approximation in short. The basic idea of their method is to
use cumulants of the underlying coupon bond CB(T0) to approximate these probabilities,
where the cumulants are obtained by their corresponding moments. In the following part,
we will be present CDG approximation speci�cally.

CDG approximation is based on an assumption that the price of the bond can be written
in the following exponential,

B(t, Ti) = e−B0(Ti−t)−
∑J
j=1 Bj(Ti−t)Xj(t)

where X1(t), ...,XJ(t) are factors of the interest rate, which are all stochastic process sat-
isfying certain stochastic di�erential equations. B0(τ), B1(τ), ..., BJ(τ) are deterministic
functions with variable τ .

Under this assumption, for any positive integerm, we can conclude from (15), the formula
of CB(T0), that(CB(T0))m can be written as sum of exponentials
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(CB(T0))m =

n∑
i1,i2,...,im=1

(Ci1 ...Cim)e−F0−
∑J
j=1Xj(T0)Fj (19)

where any coe�cient Fj =
∑m
k=1Bj(Tik − T0), j = 0, 1, ...J . Note that Fj relies on the

choice of i1, i2, ...,im, where ik ∈ {1, 2, ...n}.

According to Du�e, Pan, and Singleton (2000), the expectation of (CB(T0))m condi-
tioned on information up to time t also has an exponentially a�ne solution

ẼTit (CB(T0))m =

n∑
i1,i2,...,im=1

(Ci1 ...Cim)e−H0(T0−t)−
∑J
j=1Xj(T0)Hj(T0−t) (20)

where the deterministic functions Hj(τ), j = 0, 1, 2...J , satisfy a set of Riccati equations.
Hence, the equation above demonstrates that all moments of coupon bond prices have
analytic solutions within an a�ne framework.

Having known the moments of CB(T0)|F(t) by formula (20), it is easy to calculate
the corresponding cumulants by moments, since there is an one-to-one correspondence be-
tween moments and cumulants. More speci�cally, cumulants can be uniquely determined
by moments with formulas showed in Appendix A, and vice versa. The following is the
introduction of Riccati equations as well as Fourier Inversion Theorem.

Riccati Equations
A Riccati equation is any ordinary di�erential equation of the form: y

′
(x) = q0(x) +

q1(x)y(x) + q2(x)y2(x). It can always be reduced to a second order linear ODE, and thus
the problems of solving Riccati equations can be reduced to solving a second order linear
ODEs. Besides, if a particular solution is known, there is a method for its other solutions.
However, theoretically, a Riccati equation might have no solution or more than one solutions
depending on parameters q0(x), q1(x), q2(x). It is well known that even for a linear ODE,
if the parameters are not all constants, solving this equation is in general rather di�cult.
In CDG approximation, it is required to obtain a unique solution for system of Riccati
equations, and if its solution is not analytical, we have to seek numerical approach, which
might be time consuming.

Fourier Inversion Theorem: Let ϕ be the characteristic function of the distribution F
and suppose that ϕ ∈ L1 1 Then, F has bounded continuous density f given by

f(x) =
1

2π

ˆ +∞

−∞
e−iζxϕ(ζ)dζ

where the characteristic function of a random variable Y is de�ned as ϕ(ζ) = E(eiζy).

1

ϕ ∈ L1 if and only if ϕ is integrable over (−∞,+∞).
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After a short review of Riccati equations and Fourier Inversion Theorem, we will go back
to CDG approximation. Let G(k) to be the characteristic function of the random variable
CB(T0)|F(t) with t and T0 �xed. Using Taylor expansion at the original, or Maclaurin
expansion, we can get

log(G(k)) =

∞∑
j=1

cj
(ik)j

j!

where cj is de�ned as the j-th order cumulant of CB(T0)|F(t).
It follows from Fourier Inversion Theorem that the density function of CB(T0)|F(t) is

ft(y) =
1

2π

ˆ +∞

−∞
e−ikyG(k)dk

=
1

2π

ˆ +∞

−∞
e−ikye

∑∞
j=1 cj

(ik)j

j! dk

=
1

2π

ˆ +∞

−∞
e−ikyeikc1−

k2

2 c2eΛdk (21)

where Λ =
∑∞
j=3 cj

(ik)j

j! .

If the characteristic function G(k) of CB(T0)|F(t) is known, some Fast Fourier Trans-
form techniques can be applied for densities, such as Carr and Madan (1999). However, in
many cases of interest, G(k) is unknown, and thus we have to turn to (21) for a general
discussion.

Collin-Dufresne and Goldstein approximates

Λ ≈
m∑
j=3

cj
(ik)j

j!

where m is an integer and m > 3, they also approximates

eΛ ≈ 1 + Λ +
Λ2

2

In addition, 1 + Λ + Λ2

2 is further approximated by ignoring terms with order higher than
m. 2

Denoted gt(y) as the approximation of density function ft(y). After integration, gt(y)
can be written as

gt(y) =
1√

2πc2
e−

(y−c1)2

2c2 (

m∑
j=0

γj(y − c1)j) (22)

2The order of terms is de�ned based on the order of cumulants in this term. If a term is ci, we de�ne
the order to be i. For a term is cicj , the order is de�ned as i+ j.
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In addition

ˆ ∞
K

gt(y)dy =

m∑
j=0

γjλj (23)

where coe�cient γj is some function of cumulants and λj is the combination of some normal
distribution functions of variable K, nominal of the swaption contract.

Formulas (22) and (23) are the �nal result of CDG approximation that allow us to
access the approximated swaption price. We omits the detailed calculation, because CDG
approximation is a special case of Edgeworth expansion, which will be discussed in section
3.1 speci�cally.

Collin-Dufresne and Goldstein indicate their approximation o�ers an excellent balance
between speed and accuracy if m = 7, alternatively, approximation by the �rst seven cumu-
lants. So, we will only deal with CDG approximation with m = 7 in the rest of my thesis.
Obviously, with di�erent m, even the same coe�cient with the same index would have the
di�erent term. For coe�cients γj and λj when m = 7, refer to Appendix B.

In addition, we can see in CDG approximation, one has to approximate P̃Tit (CB(T0) >
K) under each Ti forward measures i = 0, 1, ..., n. For every such a forward probability,
there is a correspondent expectation ẼTit (CB(T0))m, which contains

(
n+m−1

m

)
di�erent terms

(Ci1 ...Cim)e−H0(T0−t)−
∑J
j=1Xj(T0)Hj(T0−t), and every such term may have to be calculated

separately. For instance, when n = 10 and m = 7,
(

16
7

)
= 11440. Figure 1.1 illustrates

how large number of terms will become as n increases, where we �x m = 7. We can
see that the computation complexity is quite sensible to n, the number of time of swap.
Alternatively, with n goes up, the computation cost will increase sharply. Therefore, a
potential disadvantage of CDG approximation is that the computation may be expensive
in cases when n is quite large, and functions Hj(τ), j = 0, 1...m satisfying certain Raccati
equations, have no analytical solutions, thus have to be calculated numerically by Runge
Kutta method.

However, if Hj(τ) have analytically solutions, the computation is very fast, for instance,
under Three-factor Gaussian interest rate model. Collin-Dufresne and Goldstein claim it
takes less than 0.05 seconds to calculate the swaption price under Three-factor Gaussian
model when n = 20, but in all of their experiments, they set cumulants c6 = c7 = 0 to
save computational cost. The paper by Collin-Dufresne and Goldstein is published in the
year 2002, and we assume that the speed of computes doubles every two years, so in 2012,
the speed is 32 times faster. Considering on that, we are more interested in the accuracy
of CDG approximation, and thus we will never set cumulants c6 = c7 = 0 instead to avoid
losing accuracy while applying CDG approximation in the rest of my thesis.

18



Figure 1.1. Relationship between Number of Items and n with Fixed m=7
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3 Implement to CDG Approximation

3.1 Edgeworth Expansion

CDG approximation is somewhat similar to Edgeworth expansion, but there is a large
di�erence between their ideas. We will �rst introduce Edgeworth expansion, and then make
a comparison with CDG approximation.

Edgeworth expansion is a density approximation method for the distribution of the sum
of large number of standardized3 independent and identical random variables in statistics. It
can be regarded as an improvement to the Central Limit Theorem. The idea was proposed
by Edgeworth at the early of 20th century. However, it was not until the year 1978, that
the fundamental work was done to make the classical formalism rigorous, see Bhayyacharya
and Ghosh (1978).

To further understand this, let Xj j = 1, 2, ..., n be iid random variables with mean µ

and variance σ2. Let Yj =
Xj−µ
σ for each j, and Sn = 1√

n

∑n
j=1 Yj . We have by Central

Limit Theorem

Sn =

∑n
j=1Xj − nµ√

nσ
→ N(0, 1)

as n→∞ . Where N(0, 1) is the standard Normal distribution function and Sn → N(0, 1)
means convergence in distribution.

Actually, in statistics, the distribution of Sn is frequently approximated by the standard
Normal distribution for con�dence intervals of some parameter estimator of X, if n is suf-
�ciently large. However, Edgeworth expansion provides a more accurate approximation in
general for the distribution of Sn using cumulants of Y .

We will discuss Edgeworth Expansion as follows, see Hall (1992).
Let χ(t) to be the characteristic function of Y and χn(t) to be that of Sn. It follows that

χn(t) = E(e
it 1√

n

∑n
j=1 Yj )

= [E(e
it 1√

n
Yj )]n

= [χ(
t√
n

)]n

On the other hand, since Y is standardized, we have c1 = E(Y ) = 0, c2 = V ar(Y ) = 1,
then

χ(
t√
n

) = exp(− 1

2n
t2 +

∞∑
j=3

cj
(it)j

nj/2j!
)

Thus, by Taylor expansion of exponential function eX = 1 +X + 1
2X

2 + ...+ 1
n!X

n + ..., we
have

3A standardized random variable is the one with mean zero and variance one.
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χn(t) = [χ(
t√
n

)]n

= exp(−1

2
t2 +

∞∑
j=3

cjn
(it)j

nj/2j!
)

= e−t
2/2exp(

∞∑
j=1

cj+2
(it)j+2

nj/2(j + 2)!
)

= e−t
2/2(1 +

∞∑
j=1

rj(it)

nj/2
)

where rj is a polynomial with real coe�cients, of degree 3j, depending on c3, c4, ..., cj+2,
but not on n.

As

1

2π

ˆ +∞

−∞
e−itye−t

2/2(it)kdt =
(−1)k

2π

dk

dyk

ˆ +∞

−∞
e−itye−t

2/2dt

= (−1)kHek(y)φ(y) (24)

where φ(y) is the density function of standard Normal distribution, and Hek(y) is the k− th
probabilists' Hermite polynomial. 4

Thus, by inverse Fourier transform, the density function of Sn is

fn(y) =
1

2π

ˆ +∞

−∞
e−ityχn(t)dt

=
1

2π

ˆ +∞

−∞
e−itye−t

2/2(1 +

∞∑
j=1

rj(it)

nj/2
)dt

= φ(y) +

∞∑
j=1

pj(y)

nj/2
φ(y)

= φ(y) +

m∑
j=1

pj(y)

nj/2
φ(y) + o(n−m/2) (25)

where pj is some combination of Hermit polynomial. Besides, it is also a polynomial of
degree 3j, depending on c3, c4, ..., cj+2 similar to rj .

4Probabilists' Hermite polynomials are a classical orthogonal polynomial sequence that arises in proba-

bility, named after Charles Hermite. Hen(y) = (−1)ney2/2 dn

dxn
e−y2/2 by de�nition. There are two valu-

able properties related. One is orthogonal property:
´+∞
−∞ Hem(y) Hen(y)e−y2/2dy =

√
2πn!δnm, where

δnm = 0 if m 6= n and δnm = 1 if m = n. The other is recursion: Hen+1(y) = yHen(y)−He
′
n(y). We list

some of probabilists' Hermite polynomials: He0(y) = 1, He1(y) = y, He2(y) = y2 − 1, He3(y) = y3 − 3y.
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Due to the following property of Hermite polynomial

d

dy
(Hek(y)Φ(y)) = =Hek+1(y)φ(y)

where Φ(y) is the standard Normal distribution function.
The distribution function of Sn is

Fn(y) = Φ(y) +

∞∑
j=1

Pj(y)

nj/2
Φ(y)

= Φ(y) +

m∑
j=1

Pj(y)

nj/2
Φ(y) + o(n−m/2) (26)

where Pj is a polynomial of degree 3j − 1. Besides, Blinnikov and Moessner (1998) have
given a simple algorithm to calculate Pj in higher-order.

We illustrate Edgeworth expansion only for standardized random variables Y , not only
because it is an easier approach, but also because it is more practical in statistics. But, for
random variables without standardizing, Edgeworth expansion still works for density and
distribution function approximation with results similar to (25) and (26).

Although su�ered from some theoretical problems in convergence, Edgeworth expansion
is still a powerful tool in statistics for constructing con�dence bounds in parameters estima-
tion, for instance, the expectation, of some distributions. Edgeworth expansion is a classical
but still hot topic now and there are many research related, such as, Bickel, Götze and Zwet
(1986), Bloznelis and Götze (2000) due to the fact that it is an asymptotic expansion in
many cases of interest. In addition, from (25) and (26), we know its error is o(n−m/2). It
implies n should be su�ciently large in order to keep this expansion accurate.

However, although CDG approximation also deals with cumulants for distribution ap-
proximation in a similar way, the largest di�erence in between is that it approximates the
density or distribution function of a single random variable, instead of sum of iid random
variables. That's to say, CDG approximation is the Edgeworth expansion with n = 1 using
only the �rst seven cumulants and second order Taylor expansion. We know that the power
of Edgeworth expansion depends on the large number of samples n due to its error o(n−m/2),
so it seems that CDG approximation is not asymptotic in general.

Actually, there is another expansion similar to CDG approximation called Gram-Charlier
expansion, which also approximates density functions by cumulants, but they di�er in ar-
rangement of terms and thus the accuracy of truncation. Tanaka (2005) provides a method
to price swaption using Gram-Charlier expansion, in which the third order cumulant ap-
proximation is the best for computational accuracy and e�ciency instead.

Except swaptions, similar approximations based on cumulants are used to price options,
see Jarrow and Rudd (1982), Asian options, see Turnbull and Wakeman (1991), in which
the approximation price is a close-form solution. However, the accuracy of approximation
is rather limited for these cases, see Ju (2001).
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3.2 Assumption Analysis

As a special case of Edgeworth expansion, CDG approximation also su�ers from some conver-
gent problems. In literatures, relevant researches mainly focus on studying when Edgeworth
series of a certain random variable will converge to its distribution and its rate of conver-
gence, see Hall (1992). However, there is something in common among these problems, if
we view them from a di�erent perspective.

In CDG approximation, we calculate the density function using Fourier Inversion Theo-
rem

f(x) =
1

2π

ˆ +∞

−∞
e−itxϕ(t)dt

but replace the characteristic function ϕ(t) through (27)

log(ϕ(t)) =

∞∑
j=1

cj
(it)j

j!
(27)

if there is a Taylor expansion of log(ϕ(t)) on the origin.

Theoretically, CDG approximation requires that the right side of (27) always converges
to log(ϕ(t)) for any t ∈ (−∞,+∞), because the calculation of its correspondent density
function f(x) requires an integration of ϕ(t) over t ∈ (−∞,+∞).

We take it as an assumption of CDG approximation. However, Taylor expansion is a
local expansion at a certain point, and thus condition (27) can only be satis�ed in some
domain |t| < r, where 0 ≤ r ≤ ∞. Note that r is not larger than the radius of convergence
of Taylor series, denoted as R,5right side of (27).

In the following part, we will seek a way to determine its radius r in a more general
Taylor expansion.

De�nition (Holomorphic function). A holomorphic function is a complex function that
is di�erentiable in a neighborhood of every point in its domain.

Taylor Theorem. Suppose a complex function f(x) is holomorphic in the domain D. For

any point x ∈ B(x0, R
′
) ⊆ D, we have f(x) =

∑∞
j=1

f(j)(x0)
j! (x− x0)j .

where B(x0, R
′
) = {x| |x− x0| < R

′} and R′ is an arbitrary real number.

Followed by Taylor Theorem and a property that
∑∞
j=1

f(j)(x0)
j! (x− x0)j is holomorphic

if convergent, we have Lemma 3.1 below.

5Radius of Convergence of Taylor Series

Let
∑∞

j=1 ajx
j be a Taylor expansion of f(x), real or complex, where aj =

f(j)(x0)
j!

. It is true that∑∞
j=1 ajx

j converges within |x| < R , 0 ≤ R ≤ ∞., where R is called the radius of convergence of Taylor

series. By Cauchy-Hadamard formula, R−1 = lim
j→∞

j
√
|aj |. In addition, R−1 = lim

j→∞
|aj+1

aj
| if this limit

exists, and thus, in (27), R = lim
j→∞

| (j+1)cj
cj+1

|.
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Lemma 3.1 Suppose f(x) is holomorphic at x = x0, and x1 is the nearest singular from
x0, then the radius r is |x0 − x1|.

This lemma provides a simple approach to obtain r in (27). Firstly extend the domain
of the random variable t of log(ϕ(t)) into a complex �eld, then �nd out the nearest singular
from origin, and the radius r is the distance in between.

Table 3.1 below displays characteristic functions of di�erent distributions, and their cor-
responding radius r

Characteristic Function ϕ(t) r

Gamma Γ(α, β) (1− it
β )−α β

Normal N(µ, σ2) eitµ−
1
2σ

2t2 ∞

Table 3.1. Characteristic Functions and Radius of Gamma and Normal Distributions

Clearly there is only one singular t = −βi in log(ϕ(t)) of Gamma distribution. Thus its
r = β . But, for Normal distribution, there is no singular, and hence r = ∞. Although
in Gamma distribution, r = β , other than ∞, not satis�ed with our assumption, later
experiments in this chapter show it is still possible to get an accurate approximation for its
density function by CDG approximation.

When Cumulants Determine Unique Distribution

Readers may be interested in such a question: Is it possible that two di�erent distributions
will have the same cumulants, and thus the same CDG approximation? The answer is yes.
In this case, cumulants cannot determine a unique distribution.

The problem when cumulants determine unique distribution is equivalent to the prob-
lem when moments do, since there is also a one-to-one correspondence between cumulants
and moments. Unfortunately, in most cases, moments cannot determine the distribution
uniquely, and there is a classic example.

Suppose X is Lognormal distributed and its probability density f is

f(x) =
1√
2π
x−1e−0.5(logx)2 , x > 0

We can construct another probability density fa based on f

fa(y) = f(y)(1 + a ∗ sin(2πlogy))

where −1 ≤ a ≤ 1, and y > 0. Then, f and fa have the same moments, and thus have the
same cumulants. See Feller (1971).

We provide two theorems about when moments can determine unique distributions. All
of them are su�cient but not necessary, so even moments satisfy neither of theorems above,
it is still possible that its corresponding distribution is unique.

Theorem 3.1 let F be a distribution function on (−∞,+∞), F is uniquely determined by
its moments if
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∑
n

µ
−1/2n
2n =∞

where µi is the i-th moment of F .

Theorem 3.2: F is uniquely determined by its moments whenever

∑
n

µ2nt
n/(2n)!

converges in some interval: |t| < t0 where t0 > 0.

Remark: The general idea of proof of both theorems is to see when moments can determine
a unique characteristic function, since there is a one-to-one correspondence in distribution
and characteristic function. See Feller (1971).

Theorem 3.1 and Theorem 3.2 coincide in the way that both theorems state that its 2n-th
moments cannot increase too fast as n increases if the distribution is uniquely determined.
But it seems that Theorem 3.1 is too strong thus we prefer Theorem 3.2 in most situations.

Actually, there is no close relationship between this moment property and our assumption
(27). We will show in next part that cumulants, or moments, from Gamma distribution can
determine a unique distribution, while those from Lognormal distribution cannot, which sat-
is�es neither conditions in Theorem 3.1 nor Theorem 3.2. Unfortunately, most distributions
cannot be determined uniquely by cumulants, and it is true that two di�erent distributions
with the same cumulants would lead to the same distribution by CDG approximation if
their cumulants exist and are �nite. This is a �aw of CDG approximation, and obviously,
of Edgeworth expansion as well.

3.3 Error Analysis

In this part, we will discuss sources of errors of CDG approximation and an indication of
their magnitude.

There are two types of errors originated from two sources. The �rst type is from the

assumption of log(G(k)) =
∑∞
j=1 cj

(ik)j

j! , for any t ∈ (−∞,+∞) as we talked previously.
The second type of errors is truncation errors.

To understand the origin of the second type of errors, in (21)

ft(y) = (
1

2π
)

ˆ +∞

−∞
e−ikyeikc1−

k2

2 c2eΛdk

where Λ =
∑∞
j=3 cj

(ik)j

j! , we approximate

Λ ≈
7∑
j=3

cj
(ik)j

j!
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eΛ =

∞∑
n=0

Λn

n!
≈ 1 + Λ +

Λ2

2

and cut o� terms with order higher than seven.
Collin-Dufresne and Goldstein propose an indication of magnitude for this truncation

errors. Let gt(y) to be the approximation of the density function ft(y), we have

gt(y) = (
1

2π
)

ˆ +∞

−∞
e−

k2

2 c2−ik(y−c1) ×

[1 + (− ic3
3!
k3 +

c4
4!
k4 +

ic5
5!
k5 − c6

6!
k6 − ic7

7!
k7) +

1

2
(− c23

(3!)2
k6 − 2ic3c4

3!4!
k7)]dk

De�ne Z = y−c1√
c2
, then gt(y) can be written as:

gt(Z) = (
1

2π
)

ˆ +∞

−∞
e−

k2

2 c2−ikZ
√
c2 × [1 + (− ic3

3!
k3 +

c4
4!
k4 +

ic5
5!
k5 − c6

6!
k6 − ic7

7!
k7)

+
1

2
(− c23

(3!)2
k6 − 2ic3c4

3!4!
k7)]dk

= (
1

2π
)

ˆ +∞

−∞
e−l

2−ilZ × [1 + (− ic3

3!c
3/2
2

l3 +
c4

4!c
4/2
2

l4 +
ic5

5!c
5/2
2

l5 − c6

6!c
6/2
2

l6 − ic7

7!c
7/2
2

l7)

+
1

2
(− c23

(3!)2c
6/2
2

l6 − 2ic3c4

3!4!c
7/2
2

l7)]dl (28)

where l =
√
c2k. Compute the integration in (28) by formula from (24), we can get

gt(Z) =
1√
2π
e−

Z2

2 (1 +

7∑
i=3

π(i))

where

π(3) = (
c3

3!c
3/2
2

)He3(Z)

π(4) = (
c4

4!c
4/2
2

)He4(Z)

π(5) = (
c5

5!c
5/2
2

)He5(Z)

π(6) = (
c6

6!c
6/2
2

+
1

2
(
c3

3!c
3/2
2

)2)He6(Z)
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π(7) = (
c7

7!c
7/2
2

+ (
c3

3!c
3/2
2

)(
c4

4!c
4/2
2

))He7(Z)

in which Hei(Z) is the i-th probabilists' Hermite polynomials.

De�nition (Scaled Cumulant). De�ne ci
i!c
i/2
2

as the i-th scaled cumulant, where i is a

positive integer and i > 2.

Dufresne and Goldstein imply that from π(3) to π(7), it can be concluded that scaled
cumulants can be taken as an indication of accuracy of CDG approximation, since they
indicate truncation errors: The faster they decay, the better the approximation is. However,
they do not provide more explanation. We will discuss it more speci�cally as follows.

Consider the Edgeworth expansion for ft(Z), which is similar to (28), we can �nd that
ft(Z) and gt(Z) share the same term π(i), i ≤ 7. So, ft(Z) can be written as

ft(Z) =
1√
2π
e−

Z2

2 (1 +

∞∑
i=3

π(i))

where the order of each term in each π(i) is i.6

De�ne ert(Z) = ft(Z) − gt(Z) to be the truncation error of CDG approximation, we
have

ert(Z) =
1√
2π
e−

Z2

2 (

∞∑
i=7

π(i)) (29)

Generally, it seems that if scaled cumulants ci
i!c
i/2
2

decay fast with i increases, where

decay means convergence to zero, then π(i) will also decrease fast in absolute value. In this
situation, the truncation error ert(Z) will be small compared with the true density ft(Z).
This implies scaled cumulants can be an indication of accuracy of the truncation error.
Therefore, Collin-Dufresne and Goldstein propose to take scaled cumulants as an indication
of the error of CDG approximation.

Compared with Jarrow and Rudd (1982), Turnbull and Wakeman (1991) and Tanaka
(2005), all of which seem not provide any error estimation, CDG approximation is superior
in this way. However, Dufresne and Goldstein's error estimation is neither precise nor
mathematically solid.

To be more speci�c, �rstly, �scaled cumulants decay fast� is not mathematically precise.
Second, there is neither theoretically rigorous proof nor convincing experiments to show
that the faster scaled cumulants decay, the more accurate the CDG approximation is. In
fact, it seems not possible to get a theoretical bound of error because CDG approximation
is generally not asymptotic. Even it is asymptotic on some special cases, we only have seven
cumulants and thus still need experiments to see how large the truncation error is.

Therefore, we have to analyze errors by experiments and my work is to try to develop
an accurate measure of errors of swaption price based on Collin-Dufresne and Goldstein's

6If a term is ci

i!c
i/2
2

, we de�ne the order to be i. For a term ci

i!c
i/2
2

cj

j!c
j/2
2

, the order is de�ned as i+ j.
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indication of errors, and see whether it is accurate in experiments. In addition, we will see
the performance of CDG approximation on several probability distributions.

Measure of Error

Dufresne and Goldstein do not provide a measure to measure how fast the scaled cumulants
decay. Instead, I de�ne a measure l as follows

l = log|sc7
sc3
| (30)

where sci is the i-th scaled cumulant, and | sc7sc3
| is the absolute value of sc7sc3

.

We choose | sc7sc3
| because | sc7sc3

| is a combination of all �ve scaled cumulants.

|sc7
sc3
| = |sc4

sc3
| ∗ |sc5

sc4
| ∗ |sc6

sc5
| ∗ |sc7

sc6
|

It is clear | sc7sc3
| can indicate the speed that scaled cumulants decay: the faster they decay, the

smaller | sc7sc3
| is. So, it corresponds with Dufresne and Goldstein's error estimation, but more

mathematically precise. In addition, we prefer log| sc7sc3
| over | sc7sc3

| for visual convenience, since
| sc7sc3
| might be very too small, for instance 0.0001. Obviously, smaller log| sc7sc3

| also means
faster decay of scaled cumulants.

Of course, there are many other measures that can also describe the speed that scaled
cumulants decay, such as | sc4sc3

|. Later experiments show that l is an accurate measure of
errors of densities and distribution functions, and thus on the rest of my thesis, we will use
this measure l to measure the speed of scaled cumulants decay.

3.4 Approximation Performance

In this part, we will carry out experiments to see the overall performance of CDG approxi-
mation on di�erent probability densities, such as Normal, Gamma and Log-normal densities.
Besides, our measure l will be evaluated to see whether it is accurate in estimating errors.

Normal Distribution

Let a random variable X to be normally distributed, that is, X ∼ N(µ, σ), we can write
X = U + σµ, where U has a standard Normal distribution.

It is easy to get its cumulants directly from its characteristic function instead of calcu-
lating them by moments. Since its characteristic function is

E(eitx) = E(eit(u+µ)) = eitµ−σ
2t2/2

then, we have

log(E(eitx)) = itµ− σ2t2/2 (31)

It shows that the �rst cumulant of a Normal distribution is µ, and the second is σ2, while
other cumulants of order higher than two are all zeros. Hence, there is no truncation error in
CDG approximation. Besides, we already know the radius r = ∞ in Normal distributions,
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in other words, (31) holds for any t ∈ (−∞,+∞). Therefore, there should be absolutely no
errors between the CDG approximated density function of a Normal distribution and the
true density function.

In our next few experiments, we will choose several Normal density functions with dif-
ferent parameters, and compare the CDG approximated densities with the true ones. Ex-
periment results are displayed as follows.

Example 1: µ = 1, σ = 0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-1-0.8-0.6-0.4-0.200.20.40.60.81

Varible X
Difference

Normal density function f(x) with mu=1 eta=0.1

Example 2: µ = 1, σ = 1

-1 -0.5 0 0.5 1 1.5 2 2.5 3-1-0.8-0.6-0.4-0.200.20.40.60.81 Normal density function f(x) with mu=1 eta=1

Difference

Varible X
Example 3: µ = 10, σ = 1

8 8.5 9 9.5 10 10.5 11 11.5 12-1-0.8-0.6-0.4-0.200.20.40.60.81 Normal density function f(x) with mu=10 eta=1

Varible X
Difference

Conclusion:
As what we expected, in Normal distributions, the approximation errors of density func-

tions are always zero no matter what values of parameters are. In addition, obviously, if we
compare CDG approximated Normal distribution functions with the true ones, there is also
no error.
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By intuition, it seems that a random variable with distribution close to Normal may tend
to have good CDG approximation performance. In fact, this is one of the nice property of
Edgeworth expansion. In the following part, we will test this rule of CDG approximation
on Gamma and Lognormal distributions.

Gamma Distribution

Suppose X is Gamma distributed, or, X ∼ Γ(α, β) where α > 0, β > 0, then its density
function is

f(x) = βα

Γ(α)x
α−1e−βx

where x > 0, and Γ(α) =
´∞

0
yα−1e−ydy

It is not di�cult to compute the n-th moment of X

E(xn) =

ˆ ∞
−∞

xnf(x)dx

=
βα

Γ(α)

ˆ ∞
−∞

xn+α−1e−βxdx

=
βα

Γ(α)

ˆ ∞
−∞

1

βn+α
yn+α−1e−ydy

=
1

βnΓ(α)

ˆ ∞
−∞

yn+α−1e−ydy

=
Γ(n+ α)

βnΓ(α)
(32)

As Γ(α+1) = αΓ(α) and Γ(1) = 1, so if α is a positive integer, then we have Γ(α) = (α−1)!
It follows that

E(xn) =
1

βn
(n+ α− 1)(n+ α− 2)...α

The cumulants are calculated by moments, with formulas of their relationship showed in
Appendix A. Besides, by Theorem 3.2,

∑
µ2nt

n/(2n)! converges in some interval (−t0, t0),
where

t0 = lim
n→∞

(2n+ 2)!µ2n

(2n)!µ2n+2
= β2 > 0

Therefore, moments of a Gamma distribution uniquely determine its distribution.
Next, we will see CDG approximation performance on Gamma distributions by Matlab

experiments. In those experiments, in order to make a comparison between true densities
of Gamma distributions and their approximated density functions, we calculate their errors
in two ways, di�erence and relative di�erence.7 Note that the performance of CDG ap-
proximation is mainly showed by relative di�erences other than di�erences, and the reason
behind is that the swaption price for approximation is a combination of several probabilities,

7Let f(x) be the true density function, and g(x) is its approximation by CDG approximation. The
di�erence is de�ned as f(x)− g(x), and relative di�erence is |f(x)− g(x)|/f(x).
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with approximation accuracy determined more by relative di�erences of densities. Usually,
in Statistics, small relative errors of densities would result in small errors of probabilities,
both absolute errors and relative errors. Therefore, we will focus more on their relative
di�erences.

In addition, we will only plot in the domain of variable X where the true density is not
almost zero. In fact, we can �nd that in this almost-zero-density domain, the absolute error
is also very close to zero, although there might be large relative errors due to too small true
density of X. We make this setting is to avoid large relative errors on the tail. The results
are illustrated as follows.

Example 1: α = 50, β = 1

30 35 40 45 50 55 60 65 70-4-3-2
-101
234
x 10-4

Variable X
Difference

Gamma density function f(x) with parameters alpha 50 beta 1

30 35 40 45 50 55 60 65 7000.010.020.030.040.050.06

Variable X

Gamma density function f(x) with alpha=50 beta=1

Relative Differen
ce

sc = [ 0.0471 0.0050 0.0006 0.0001 0.0000 ], l = −8.6713
where sci is the i-th scaled cumulant.

Example 2: α = 30, β = 1

15 20 25 30 35 40 45 50-1-0.8-0.6-0.4-0.200.20.40.60.81 x 10-3

Variable X

Gamma density function f(x) with parameters alpha 30 beta 1
Difference
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15 20 25 30 35 40 45 5000.020.040.060.080.10.120.14
Relative Differen
ce

Gamma density function f(x) with alpha=30 beta=1

Variable X
sc = [ 0.0609 0.0083 0.0012 0.0002 0.0000 ], l = −7.6497

Example 3: α = 10, β = 1

0 5 10 15 20 25-0.015-0.01-0.0050
0.0050.01 Gamma density function f(x) with parameters alpha 10 beta 1

Varible X
Difference

0 5 10 15 20 2500.10.20.30.40.50.60.70.8

Variable X
Relative Differen
ce

Gamma density function f(x) with alpha=10 beta=1

sc = [ 0.1054 0.0250 0.0063 0.0017 0.0005 ] , l = −5.4525

Example 4: α = 5, β = 1

0 5 10 15-0.06-0.04-0.020
0.020.040.06 Gamma density function f(x) with parameters alpha 5 beta 1

Difference
Varible X

32



0 5 10 1500.20.40.60.81
1.21.4

Variable X
Relative Differen
ce

Gamma density function f(x) with alpha=5 beta=1

sc = [ 0.1491 0.0500 0.0179 0.0067 0.0026 ], l = −4.0662

Example 5: α = 2, β = 1

0 1 2 3 4 5 6 7 8 9 10-0.5-0.4-0.3-0.2-0.100.1
0.20.30.4
0.5 Gamma density function f(x) with parameters alpha 2 beta 1

Varible X
Difference

0 1 2 3 4 5 6 7 8 9 1001
23
45
67 Gamma density function f(x) with parameters alpha=2 beta=1

Relative Differen
ce

Varible X
sc = [ 0.2357 0.1250 0.0707 0.0417 0.0253 ], l = −2.2336

Example 6: α = 10, β = 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-0.06-0.04-0.020
0.020.040.06 Gamma density function f(x) with parameters alpha 10 beta 5

Varible X
Difference
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 500.10.20.30.40.50.60.7

Variable X
Relative Differen
ce

Gamma density function f(x) with alpha=10 beta=5

sc = [ 0.1054 0.0250 0.0063 0.0017 0.0005 ], l = −5.4525

Example 7: α = 5, β = 5

0 0.5 1 1.5 2 2.5 3-0.4-0.3-0.2-0.10
0.10.2
0.3 Gamma density function f(x) with parameters alpha 5 beta 5

Difference
Varible X

0 0.5 1 1.5 2 2.5 300.20.40.60.81
1.21.4

Variable X

Gamma density function f(x) with alpha=5 beta=5

Relative Differen
ce

sc = [ 0.1491 0.0500 0.0179 0.0067 0.0026 ], l = −4.0662

Conclusion:

1. The faster the scaled cumulants decay, and the more accurate the approximation is, see
from the �rst �ve examples. Example 1 shows the most accurate result with relative
di�erence about 0.01 and the fastest decay of scaled cumulants with l = −8.6713,
followed by Example 2 with relative di�erence around 0.02 and l = −7.6497, then
Example 3, with relative di�erence around 0.2 and l = −5.4525 . The approximation
performance in Example 5 is worst with relative di�erence around 1, due to rather
slow decay of scaled cumulants with l = −2.2336. In other words, the smaller l is,
the more accurate CDG approximation is. It shows that our measure l is accurate
in cases of Gamma distributions. Besides, the accuracy becomes less sensitive to l
as it decreases. For instance, while l decreases from -5.4525 to -7.6497, relative error
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decreases rapidly from 0.2 to 0.02. However, when l decreases from -7.6497 to -8.6713,
relative error only decreases from 0.02 to 0.01.

2. With respect to parameter in�uence on density approximation performance, the larger
the α is, the more accurate the approximation is, while β has little a�ection on it.
By comparing Example 3 and Example 6, or Example 4 and Example 7, in any pair
of which, α keeps the same, only β di�ers, we can �nd that the scaled cumulants are
exactly the same in any pair, and the relative errors are also at the same level. The
property that β has no a�ection on scaled cumulants can be proved theoretically, see
Appendix D.

Previously, we indicate that a random variable with distribution close to Normal tends to
have good approximation performance. Then, we will study when a Gamma distribution
looks like a Normal distribution.

We know that while α = 1, a Gamma distribution is an Exponential distribution, that
is, Γ(1, β) = Exp(β). Besides, a random variable with Gamma distribution Γ(α, β) is the
sum of α iid random variables distributed with Exp(β) if α is an integer. According to
Central Limit Theorem, if α is su�ciently large, Γ(α, β) can be approximated by a Normal
distribution. This also implies that larger α is, the closer a Gamma distribution is to a
Normal distribution.

In addition, experiments show that the larger the α is, the more accurate the approxi-
mation is, thus it is true that a Gamma distribution close to Normal will have good CDG
approximation result.

Lognormal Distribution

Suppose random variable X is lognormal distributed with parameters µ and σ, then its
density function is:

f(x) =
1

xσ
√

2π
e−

(Inx−µ)2

2σ2 , x > 0

Commonly, it is more convenient to write X = eµ+σU , where random variable U is standard
Normal distributed.

It is well known that the expectation of X is

E(x) = E(eµ+σu) = eµ+σ2/2

Thus, the n-th moment of a lognormal distribution is:

E(xn) = E(enµ+nσu) = enµ+σ2n2/2

In the following part, Matlab experiments will be carried out to see performance of CDG
approximation on density functions of Lognormal distributions. The experimental results
are displayed below.

Example 1: µ = 1, σ = 0.05
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2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2-2.5-2-1.5-1-0.500.511.522.5 x 10-3

Variable X
Difference

Lognormal density function f(x) with mu=1 eta=0.05

2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.200.0010.0020.0030.0040.0050.0060.0070.0080.0090.01 Lognormal density function f(x) with mu=1 eta=0.05

Relative Differen
ce

Variable X
sc = [0.0250 0.0017 0.0001 0.0000 0.0000], l = −9.9934

Example 2: µ = 2, σ = 0.05

6 6.5 7 7.5 8 8.5 9-1-0.8-0.6-0.4-0.200.20.40.60.81 x 10-3
Difference

Variable X

Lognormal density function f(x) with mu=2 eta=0.05

6 6.5 7 7.5 8 8.5 900.0010.0020.0030.0040.0050.0060.0070.0080.0090.01
Relative Differen
ce

Variable X

Lognormal density function f(x) with mu=2 eta=0.05

sc = [0.0250 0.0017 0.0001 0.0000 0.0000], l = −10.1596

Example 3: µ = 1, σ = 0.1
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2 2.5 3 3.5-0.015-0.01-0.0050
0.0050.010.015

Difference
Varible X

Lognormal density function f(x) with parameters mu=1 eta=0.1

2 2.5 3 3.500.010.020.030.040.050.06 Lognormal density function f(x) with parameters mu=1 eta=0.1

Varible X
Relative Differen
ce

sc = [0.0503 0.0068 0.0011 0.0002 0.0000], l = −7.2652

Example 4: µ = 2, σ = 0.1

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10-5-4-3
-2-10
123
4 x 10-3

Difference
Lognormal density function f(x) with parameters mu=2 eta=0.1

Varible X

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 1000.010.020.030.040.050.060.070.080.09

Variable X
Relative Differen
ce

Lognormal density function f(x) with mu=2 eta=0.1

sc = [0.0503 0.0068 0.0011 0.0002 0.0000], l = −7.2652

Example 5: µ = 1, σ = 0.3
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1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6-0.4-0.3-0.2-0.10
0.10.2
0.3 Lognormal density function f(x) with parameters mu=1 eta=0.3

Varible X
Difference

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6012
345
678
9

Variable X
Relative Differen
ce

Lognormal density function f(x) with mu=1 eta=0.3

sc = [0.1583 0.0685 0.0356 0.0209 0.0134], l = −2.4667

Example 6: µ = 2, σ = 0.3

2 4 6 8 10 12 14 16 18 20-0.2-0.15-0.1-0.050
0.050.10.15

Varible X
Difference

Lognormal density function f(x) with parameters mu=2 eta=0.3

2 4 6 8 10 12 14 16 18 2002
46
810

12

Variable X
Relative Differen
ce

Lognormal density function f(x) with mu=2 eta=0.3

sc = [0.1583 0.0685 0.0356 0.0209 0.0134], l = −2.4667

Example 7: µ = 0, σ = 0.01
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0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 1.06-10-8-6
-4-20
246
810

Difference
Varible X

Lognormal density function f(x) with parameters mu=0 eta=0.01

0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05 1.0601
23
45
67 Lognormal density function f(x) with parameters mu=0 eta=0.01

Varible X
Relative Differen
ce

sc = [0.0050 0.0001 0.0000 -0.0000 0.0068], l = 0.3020

Conclusion:

1. Generally, the faster the scaled cumulants decay, or the smaller the measure l is,
the more accurate the approximation is. We can see from Example 1 to Example 7,
the speed of decay of scaled cumulants becomes slower with measure l increases, and
the corresponding density approximation becomes less accurate. In Example 1, the
relative di�erence is about 0.001 with l = −9.9934, and in Example 3, the relative
error is around 0.01 with l = −7.2652. While in Example 5, the relative di�erence
turns into around 1 with l = −2.4667. It implies that our measure l is also accurate
in cases of Lognormal distributions, as in Gamma distributions.

2. The accuracy of CDG approximation is determined majorly by parameter σ. In gen-
eral, the smaller σ is, the more accurate the approximation is. On the other hand, µ
a�ects little on scaled cumulants, and thus in�uences little on CDG approximation.
For instance, by comparing Example 1 and Example 2, in which σ = 0.05, only µ
di�ers, we can only observe a slight di�erence in measure l, while their relative errors
are almost the same. The reason behind is that it is σ instead of µ that makes a
Lognormal distribution look like Normal. However, we can learn from Example 7 that
too small σ might lead to bad approximation.

Remark: Too small σ tends to make the second cumulant c2 = E(X2)−E(X)2 quite small,

where E(xn) = E(enµ+nσu) = enµ+σ2n2/2. It is clear that if c2 is tiny, it is quite possible
that the scaled cumulants of higher order will be large, since the n-th scaled cumulant is
cn

n!c
n/2
2

by de�nition. For instance, in Example 7, sc7 = 0.0068, which is even larger than

sc3 = 0.0050. Thus, σ cannot be too small if we expect an accurate approximation. In
�gure 3.1, we plot the curve that describes the relationship between σ, standard derivation
of log(X) and measure l, when µ = 0.
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0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1-12-10-8
-6-4
-20
2

Standard Derivation
Scaled Cumulan
ts Measure L

Relationship between Measure L and Standard Derivation

Figure 3.1. Relationship Between Measure l and σ

We will explore when a Lognormal distribution looks like Normal. Let X be a random
variable of Lognormal distribution, we can write X = eµ+σU , where U is standard Normal

distributed. By Taylor expansion, we have X = eµ(1 + σU + σ2

2 U
2 + ...). If σ is small, then

X ≈ eµ(1+σU), which implies X looks like a Normal distribution. Generally, the smaller σ
is, the better the CDG approximation is, and the closer X is to a Normal distribution. Thus,
a lognormal distribution tends to have good approximation performance when it resembles
a Normal distribution.

However, it does not necessary mean σ = 0.01 is closer to Normal than σ = 0.05 since
the above explanation is based on the general situation. Anyway, we are more interested
in researching when a Lognormal distribution has good CDG approximation than when it
looks like Normal.

Conclusion

In the experiments of Normal, Gamma and Lognormal distributions, there is one thing
in common: Our measure l is accurate in estimating the accuracy of CDG approximation
within the same type of distributions. However, when the types of distributions are di�erent,
it is not always the case, although in general it is. For instance, in the second example of
Gamma distributions, l = −7.6497, with relative di�erence around 0.02, while in the third
example of Lognormal distributions, l = −7.2652, but with relative di�erence about 0.01, a
little more accurate than the former one. This is reasonable, because measure l is a general
accurate measure.

Another interesting �nding is that if a distribution is close to Normal, it tends to have
good approximation performance by CDG approximation.

In next chapter, we will use CDG approximation to price a swaption, which is a combi-
nation of several probabilities with more complicated distributions.

Remark: Although we discussed CDG approximation on densities instead of on distribution
functions, however, in Statistics, a good approximation on densities with small relative er-
rors would usually lead to good approximation on their corresponding distribution functions
also small in relative errors. Besides, since a distribution function is an increasing function
from 0 to 1, it is natural that small relative errors usually bring about small absolute errors
of distribution functions. This is true to CDG approximation, based on our experiment
results on Gamma and Lognormal distribution functions (partly reported on Appendix C).
On Appendix C, we plot errors of CDG approximation on several Lognormal distribution
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functions. In addition, we illustrate in Appendix E that CDG approximation dominates
over Normal approximation of density functions of random variables.
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4 Swaption Pricing by CDG Approximation

In this chapter, we will use Collin-Dufrersne and Goldstein approximation to price swaptions,
with the pricing formula (17), to see its approximation performance. Collin-Dufresne and
Goldstein (2002) only show two accurate cases, one under Three-factor Gaussian model, and
the other under CIR2++ model, but not analyze them in detail. Instead, we will provide
more speci�c analysis and intensive insight. We assume the interest rate in formula (17)
follows some a�ne model with number of factors more than one.

4.1 A�ne Term Structure Interest Rate Models

An a�ne interest rate model is the model where its short-term interest rate is a stochastic
process and an a�ne function of factors. Term structure means the parameters of this
interest rate model are calibrated from the yield curve available from the real market, where
the yield curve is the relation between long term interest rate and the time to maturity.

Let x1(t), x2(t),...xn(t) be factors of an a�ne model, satisfying certain stochastic di�er-
ential equations and boundary conditions.

dxi(t) = βi(t, x1, x2, ...xn)dt+ γi(t, x1, x2, ...xn)dw̃(t)

for any 1 ≤ i ≤ n. Let r(t) be the interest rate at time t, an a�ne interest rate model
assumes

r(t) = δ0(t) +

n∑
i=1

δi(t)xi(t)

where δi(t) is a deterministic function for any i.

The above is the general n-factor model. The simplest type is a one-factor model, which
only contains one factor, and it is more convenient to write it in this form

dr(t) = β(t, r(t))dt+ γ(t, r(t))dw̃(t)

There are many kinds of a�ne interest rate models, and the most common ones are Hull-
White model and CIR model.

Hull-White model

In the Hull-White model, described by John Hull and Allen White in 1990, the evolution of
the interest rate is given by

dr(u) = (a(u)− b(u)r(u))du+ σ(u)dw̃(u) (33)

where a(u), b(u), and σ(u) are nonrandom positive functions of time. σ(u) is called the
volatility.

Equation (33) with the initial condition r(t) = r0 has an analytical solution.

r(T ) = e−
´ T
t
b(v)dvr0 +

ˆ T

t

e−
´ T
u
b(v)dva(u)du+

ˆ T

t

e−
´ T
u
b(v)dvσ(u)dw̃(u) (34)
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It is obvious that r(T ) is Normal distributed, and its variance can be calculated by Ito
isometry

Ẽ(

ˆ T

t

∆(u)dW̃ (u))2 = Ẽ(

ˆ T

t

∆2(u)du)

where ∆(u) = e−
´ T
u
b(v)dvσ(u) in our calculation. Then, we have

r(T ) ∼ N(e−
´ T
t
b(v)dvr +

ˆ T

t

e−
´ T
u
b(v)dva(u)du,

ˆ T

t

e−2
´ T
u
b(v)dvσ2(u)du)

When parameters a, b and σ are all constants, we can get

r(T ) ∼ N(e−b(T−t)r0 +
a

b
(1− e−b(T−t)), σ

2

2b
(1− e−2b(T−t))) (35)

In this situation, Hull-White model is called Vasicek model. In long term, when T goes to

in�nity, we have lim
T→∞

r(T ) ∼ N(ab ,
σ2

2b ), which does not rely on the initial interest rate r0.

In literatures, ab is called the long term mean level, and σ2

2b called long term variance.
Hull-White model is frequently used in �nancial world, due to its advantage that the

interest rate has Normal distribution with expectation and variance known. However, there
is a positive probability that the interest rate is negative in the model, and this is one of
the principal objections to the Hull-White model. Anyway, if we model a net interest rate,
Hull-White model may still apply, because a net interest rate allows negative value, which
is de�ned to the interest rate after eliminating the e�ect of in�ation.

CIR model

CIR model, short for Cox-Ingersoll-Ross interest rate model, was introduced in 1985 by
John Cox, Jonathan Ingersoll and Stephen Ross as an extension of the Vasicek model. In
this model, the interest rate is given by the stochastic di�erential equation

dr(u) = (a− br(u))du+ σ
√
r(u)dw̃(u) (36)

where a, b, and σ are all positive constants.
Given an initial condition r(t) = r0, the interest rate r(T ) follows a non-central chi-

squared distribution with distribution function

Ft(x) = χ2(cTx, v, λT )

where

cT =
4b

σ2(1− exp(−b(T − t)))

v = 4a/σ2

λT = cT r0exp(−b(T − t)))
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and χ2(x, v, λ) is the non-central chi-squared distribution with degree of freedom v and
non-centrality parameter λ.

Besides, many of its properties can be determined. For instance, the mean and variance
of r(T ) conditioned on initial value r(t) = r0.

Ẽt(r(T )) = e−b(T−t)r0 +
a

b
(1− e−b(T−t))

Ṽ art(r(T )) =
σ2

b
r0(e−b(T−t) − e−2b(T−t)) +

aσ2

2b2
(1− 2e−b(T−t) + e−2b(T−t))

It follows the long term expectation and variance

lim
T→∞

Ẽt(r(T )) =
a

b

lim
T→∞

Ṽ art(r(T )) =
aσ2

2b2

Unlike the interest rate in Hull-White model, the interest rate in the CIR model can never
be negative. This is because when the interest rate approaches zero, the term σ

√
r(u)dw̃(u)

also approaches zero. With the volatility disappearing, the behavior of the interest rate near
zero depends on the drift term a − br(u), and this is a > 0 when r(u) = 0. The positive
drift prevents the interest rate from crossing zero into negative territory. Besides, we have
Feller Condition that tells whether r(u) will hits zero or not.

Feller Condition

Feller condition says CIR process r(u) will never hits zero, if and only if a ≥ 1
2σ

2. On
the other hand, if 0 < a < 1

2σ
2, r(u) hits zero repeatedly but after each hit it becomes

positive again. Under some circumstances, it is convenient to approximation r(u) as Nor-
mal if it never hits zero. However, if it hits zero, in general, it can not be regarded as Normal.

Opposite to Hull-White model, the advantage of CIR model is that the interest rate is
always non-negative, but there is no explicit formula for its solution 8, and thus there might
be some inconvenience in computation.

4.2 CDG Approximation under Three-factor Gaussian Model

In this part, we will make a speci�c description of CDG approximation under three-factor
Gaussian model with factor dynamics as follows

dxi(u) = −αixi(u)du+ σidw̃i(u) (37)

and
8Strickly speaking, non-central chi-squared distribution function is not in closed form by de�nation

because it is sum of in�nite number of functions. Thus, Shreve (2004) says 'there is no explicit formula'.
However, in some literatures, for instance, Brigo and Mercurio (2006), the solution of CIR is considered to
be analytical.
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dw̃i(u)dw̃j(u) = ρijdu

r(u) = δ0 +

3∑
i=1

xi(u) (38)

where αi, σi for any i = 1, 2, 3 and δ0 are all positive constants.

Three-factor Gaussian model can actually be proved to be equivalent to three-factor Hull-
White model with parameters all constants. However, the formulation with Gaussian model
leads to less complicated formulas and it is easier to implement in practice although we may
lose some insight and intuition on the nature and the interpretation of the three factors.
The outline of this section is as follows: �rst formulate the bond price under three-factor
Gaussian model, then calculate the moments of coupon bond under forward measure.

Recall the zero coupon bond price CB(T0) =
∑n
i=1 CiB(T0, Ti) in chapter two, we have

to generate the formula for each bond price B(T0, Ti) under three-factor Gaussian model
and the following lemmas and theorems are necessary.

Lemma 4.2.1. If X is a lognormal distributed variable, then its expectation is

E(X) = eµ+ 1
2σ

2

where µ and σ are the mean and standard variance of variable logX respectively.

Then, we have the following lemma and theorems, see Brigo and Mercurio (2006).

Lemma 4.2.2. For each t, T , the random variable de�ned as

I(t, T ) =

ˆ T

t

[x1(u) + x2(u) + x3(u)]du

conditioned on information at t is normally distributed with mean M(t, T ) and V (t, T )
given by

M(t, T ) = Bα1
(T − t)x1(t) +Bα2

(T − t)x2(t) +Bα3
(T − t)x3(t)

and

V (t, T ) =
∑
i,j

σiσjρij
αiαj

[(T − t)−Bαi(T − t)−Bαj (T − t) +Bαi+αj (T − t)]

where

45



Bαi(τ) =
1− e−αiτ

αi

Proof. Similar to Hull-White model, in there-factor Gaussian model, processes x1(u), x2(u),
x3(u) are all normally distributed. Thus, their sum x1(u) + x2(u) + x3(u) is also Normal.
The proof of this lemma is straightforward.

�

Note that V (t, T ) and be written as V (T − t) since it can be regarded as function of
T − t.

Theorem 4.4.1. The price of at time t of a zero-coupon bond maturing at time T is

B(t, T ) = e−A(T−t)−
∑3
i=1 Ci(T−t)xi(t)

where

Ci(τ) = Bαi(τ) (39)

A(τ) = δ0τ −
1

2
V (τ) (40)

Proof. Combine Lemma 4.2.1 and Lemma 4.2.2, and bond formula B(t, T ) = Ẽt(e
´ T
t
r(u)du),

the proof is almost immediate.

�

We have discussed the T forward measure in the section 2.2, under which, dynamics
of factors changes. We will state the following theorem without proof under three-factor
Gaussian model .

Theorem 4.4.2. The processes x1(u), x2(u), x3(u) under the T forward measure evolve
according to

dxi(u) = (−αixi(u)−
3∑
j=1

σiσjρij
1− e−αj(T−u)

αj
)du+ σidw̃i

T (u)

for any i = 1, 2, 3. where the correlation of Brownian motions will not change. Equivalently,
dw̃i

T (u)dw̃j
T (u) = dw̃i(u)dw̃j(u) = ρij .

�
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If the Brownian motion terms are mutually independent, the above equations have less
complicated forms.

dxi(u) = (−αixi(u)− 1− e−αi(T−u)

αi
σ2
i )du+ σidw̃i

T (u)

Obviously, interest rate xi(u) still follows the general Hull-White model under T -forward
measure, and thus it is also normally distributed at time u = T0 given initial value xi(t) = x0

xi(T0) ∼ N(e−αi(T0−t)x0−(1−e−αi(T0−t))
σ2
i

α2
i

+
σ2
i

2α2
i

e−αi(T−T0)− σ2
i

2α2
i

e−αi(T+T0−2t),
σ2
i

2αi
(1−e−2αi(T0−t)))

(41)

This can be used for Monte Carlo simulation in our next experiments. Besides, with this
assumption of independence of Brownian motions, V (τ) can be simpli�ed as

V (τ) =

3∑
i=1

σ2
i

α2
i

[τ − 2Bαi(τ) +B2αi(τ)]

Then, we will turn to the formula for the moments. suppose Fi, i = 1, 2, 3 all to be
constants, the expectation of products of zero-coupon bond prices at time t can be computed
using Lemma 4.1.1, Theorem 4.1.1 and Theorem 4.1.1, under the T forward measure.

ẼTt (e−
∑3
i=1 Fixi(T0)) = eM(T0−t)−

∑3
i=1Ni(T0−t)xi(t) (42)

where

Ni(τ) = Fie
−αiτ

M(τ) =
∑
i,j

σiσjρij
αj

Fi[Bαi(τ)− e−αj(T−T0)Bαi+αj (τ)] +

∑
i≥j

σiσjρijFiFjBαi+αj (τ)

If the Brownian motions are mutually independent, we have

M(τ) =

3∑
i=1

σ2
i

αi
Fi[Bαi(τ)− e−αi(T−T0)B2αi(τ)] +

1

2

3∑
i=1

σ2
i F

2
i B2αi(τ)

This formula (42) above allows us to compute all the moments of a coupon bond under three-
factor model. Together with the general swaption pricing formula (17), we are capable of
obtaining the swaption price by CDG approximation.
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Besides, in order to evaluate the accuracy of CDG approximation by experiments, we
need the Monte Carlo swaption price, which is usually taken as the true value of swaption. In
the following part, we will discuss variance reduction techniques for Monte Carlo simulation.

Standard Variance Reduction Techniques

From the swaption formula (18) in chapter two

Swn(t) =

n∑
i=1

CiB(t, Ti)P̃
Ti
t (CB(T0) > K)−KB(t, T0)P̃T0

t (CB(T0) > K)

we can conclude that the price of swaption is quite sensitive to the probability P̃Tnt (CB(T0) >

K) and P̃T0
t (CB(T0) > K). Thus, it might be necessary to increase the e�ciency of Monte

Carlo simulation by reducing the variance of simulation estimator CB(T0). These methods
are called Variance Reduction Techniques, and we will discuss two kinds of them: Control
Variates and Antithetic Variates. See Glasserman (2003).

Control Variates

Suppose random variable Y is the simulation estimator, we take a variable X such that
its expectation E(X) is known. De�ne a variable

Z = Y − b(X − E(X))

where b is

b =
Cov(X,Y )

V ar(X)

Then, Z is unbiased control estimator of Y , or E(Y ) = E(Z), but V ar(Z)
V ar(Y ) = 1−ρ2

XY , where

ρXY is the correlation between X and Y . The idea of this variance reduction technique is to
replace Y by Z for simulation. It is obvious the higher the correlation is in absolute value,
the better the Variance Reduction Technique works.

In our case of swaption simulation, we have to calculate P̃Tt (CB(T0) > K) = ẼTt (1CB(T0)>K).

Let Y = 1(CB(T0)>K) and X = CB(T0)
B(T0,T ) , so from Property 1.2 in chapter two, we have

ETt (X) = CB(t)
B(t,T ) . In addition, the parameter b above is estimated by

b̂ =

∑n
i=1(Xi − X̂)(Yi − Ŷ )∑n

i=1(Xi − X̂)2

where X̂ is the expectation of simulations of X, and Ŷ is that of Y .

In practice, we �nd that this technique is not quite useful for our swaption price. This
is because by the nature of our target variable Y = 1(CB(T0)>K), it is di�cult to �nd a
variable X, which has known expectation and high correlation with Y .
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Antithetic Variates

Suppose we have to calculate the expectation E(Y ) of the random variable Y by Monte

Carlo simulation, we can create another variable Ỹ such that Y and Ỹ have the same
distribution. De�ne

Z =
Y + Ỹ

2

Then, Z is the unbiased estimator of Y , because

E(Z) =
1

2
(E(Y ) + E(Ỹ )) = E(Y )

Besides,

V ar(Z) =
1

2
V ar(Y ) +

1

2
V ar(Y )Cor(Y, Ỹ )

≤ V ar(Y )

where Cor(Y, Ỹ ) is the correlation between Y and Ỹ .

Obviously, the key idea of this method is to �nd a variable Ỹ with the same distribution
as Y , but their correlation should be as negatively small as possible. In our swaption pricing,
we sample xi from state variables Xi(T0), i = 1, 2, 3, whose distribution is Normal. Then,
use x1,x2, x3 to calculate Monte Carlo price of the underlying coupon bond CB(T0), set
Y = 1(CB(T0)>K). Let x̃i to be symmetric to xi, or

x̃i = 2µxi − xi
where µxi is the expectation of Xi(T0). By x̃1,x̃2, x̃3, we have another price of coupon bond,

C̃B(T0), and set Ỹ = 1(C̃B(T0)>K). Clearly, Y and Ỹ have the same distribution, because

the densities of the state variable Xi(T0) at xi and at x̃i are exactly the same. In addition,

we can see that the correlation between Y and Ỹ is negative.
In our experiments, this variance reduction technique is quite powerful compared with

Monte Carlo simulation without any variance reduction. With this method, if we simulate
5 million samples for each state variable by Monte Carlo, then the standard deviation of
the swaption prices by Monte Carlo is less than 1× 10−5, with order o(10−7). Without this
technique, the standard error of swaption price will be more than 1×10−4. In Schrager and
Pelsser (2006), they simulate 500,000 samples, less number than our samples, for each state
variable to price swaptions the same as ours.
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4.3 Numerical Results Under Three-factor Gaussian Model

In this section, our attention will be paid to the performance of CDG approximation for
swaption pricing under Three-factor Gaussian model, and the accuracy of a measure for its
error. Collin-Dufresne and Goldstein (2002) only show an accurate case, but not analyze it
in detail. Instead, we will provide more speci�c analysis and intensive insight.

We will start by experiment 4.1, which prices a T0 ∗ (T2 − T0) receiver swaption at time
t = 0, with maturity of swaption T0 = 1 year, and tensor δ = 0.5 year. Experiment results
are displayed in four tables, from Table 4.1.1 to Table 4.1.4.

The parameters of swaption from (37) and (38) are given in Table 4.1.1, where xi rep-
resents xi(t), the initial value of this factor. k is the swap rate. We set t = 0 so the price
of swaption is current. For convenience, let all three factors to be mutually independent, so
ρij = 0 if i 6= j.

Table 4.1.2 compares the swaption price by CDG approximation, with that by Monte
Carlo simulation. The Monte Carlo price is obtained using the exact Normal distribution of
each factor xi(T0) from (41). The number of simulation for each factor under each forward
measure is all 5 million with Antithetic Variates, and we take values by Monte Carlo method
to be the true values.

Table 4.1.3 illustrates the probabilities PTit (CB(T0) > K) under di�erent forward mea-
sures T1,..,Tn respectively, where the �rst row of this table indicates their forward measures.

At last, the scaled cumulants are showed in Table 4.1.4, with sci on the �rst row indi-
cating the i-th scaled cumulant, and forward measures are displayed on the �rst column.
The last column shows values of our measure of error l de�ned in (30), corresponded with
probabilities under di�erent forward measures.

Experiment 4.1

Consider a T0 ∗ (T2 − T0) receiver swaption, with maturity of swaption T0 = 1 year and
tensor δ = 0.5 year. The parameters are given below

α1 α2 α3 σ1 σ2 σ3 x1 x2 x3 δ0 k
1 0.7 0.5 0.06 0.05 0.05 0.02 0.02 0.01 0.03 0.05

Table 4.1.1 Parameters of One-Year Swaption under Hull-White model

Experiment Result:

Swaption Price by

Monte Carlo

0.0208

Swaption Price by CDG

Approximation

0.0207

Absolute Error 0.0001
Relative Error 0.59%

Table 4.1.2 Swaption Price Approximation
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T0 T1 T2

Monte Carlo 0.5427 0.5539 0.5616

CDG 0.5415 0.5525 0.5603

Absolute

Error

0.0012 0.0014 0.0013

Table 4.1.3 Probability Approximation under Di�erent Forward Measures

sc3 sc4 sc5 sc6 sc7 Meaure
T0 0.02384931 0.00151864 0.00011341 0.00000937 0.00000048 -10.82

T1 0.02384938 0.00151865 0.00011341 0.00000937 0.00000059 -10.61

T2 0.02384944 0.00151866 0.00011341 0.00000938 0.00000086 -10.23

Table 4.1.4 Scaled Cumulants under Di�erent Forward Measures

Conclusion:
In experiment 4.1, CDG approximation has excellent results. The scaled cumulants,

illustrated on Table 4.1.4, decay very fast, with measure of error less than -10. This leads
to accurate probabilities approximation, displayed on Table 4.1.3, with absolute errors no
more than 0.0014 under each forward measure. It is displayed on Table 4.1.2 that the ab-
solute error of CDG approximation for swaption is 0.0001, and the relative error is 0.59%
compared with swaption price by Monte Carlo.

Next, we will try to price a three-year swaption, extending the number of swap times
from previous two to six, to see whether it is still possible to generate accurate result by
CDG approximation.

Experiment 4.2

Consider an T0 ∗ (T6 − T0) receiver swaption, with maturity of swaption T0 = 1 year and
tensor δ = 0.5 year.

α1 α2 α3 σ1 σ2 σ3 x1 x2 x3 δ0 k
1 0.7 0.5 0.05 0.03 0.03 0.02 0.02 0.01 0.03 0.05

Table 4.2.1 Parameters of Five-Year Swaption under Hull-White model

Experiment Result:

Swaption Price by

Monte Carlo

0.0405

Swaption Price by CDG

Approximation

0.0402

Absolute Error 0.0003
Relative Error 0.67%

Table 4.2.2 Swaption Price Approximation
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T0 T1 T2 T3 T4 T5 T6

Monte

Carlo

0.7263 0.7327 0.7369 0.7398 0.7422 0.7436 0.7445

CDG 0.7227 0.7289 0.7332 0.7361 0.7382 0.7397 0.7408

Absolute

Error

0.0035 0.0038 0.0037 0.0037 0.0040 0.0038 0.0037

Table 4.2.3 Probability Approximation under Di�erent Forward Measures

sc3 sc4 sc5 sc6 sc7 Meaure
T0 0.02737426 0.00200378 0.00017212 0.00001637 0.00000170 -9.68

T1 0.02737447 0.00200381 0.00017212 0.00001636 0.00000173 -9.67

T2 0.02737462 0.00200383 0.00017212 0.00001636 0.00000179 -9.63

T3 0.02737473 0.00200384 0.00017212 0.00001637 0.00000161 -9.74

T4 0.02737481 0.00200386 0.00017212 0.00001636 0.00000162 -9.73

T5 0.02737486 0.00200386 0.00017213 0.00001637 0.00000175 -9.66

T6 0.02737491 0.00200387 0.00017213 0.00001636 0.00000174 -9.67

Table 4.2.4 Scaled Cumulants under Di�erent Forward Measures

Conclusion:
In experiment 4.2, the performance of CDG approximation is also excellent. The scaled

cumulants, illustrated on Table 4.2.4, decay very fast, with measure of error on average
about -9.7. This results in accurate probabilities approximation, displayed on Table 4.2.3,
with absolute errors a little more than 0.0035 under each forward measure. It is displayed
on Table 4.2.2 that the absolute error of CDG approximation for swaption is 0.0003, and
the relative error is 0.67% compared with swaption price by Monte Carlo.

Actually, CDG approximation can be highly accurate no matter the number of swap
times is small or large. Then, readers may be interested in how to choose right parameters
to display excellent CDG approximation and we will discuss it next.

In the forward probability PTt (CB(T0) > K) that CDG method deal with, we have

CB(T0) =

n∑
i=1

CiB(T0, Ti)

where Ci = kδK, i = 2, 3, ...n − 1;Cn = (kδ + 1)K. In real world, kδK is usually much
smaller than K, and thus Cn is much larger than other Ci, i = 1, 2, ...n − 1. If n, number
of swap times, is also small, we have

CB(T0) ≈ CnB(T0, Tn)

Besides, for the same reason, we have by swaption pricing formula (17)
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Swn(t) =

n∑
i=1

CiB(t, Ti)P̃
Ti
t (CB(T0) > K)−KB(t, T0)P̃T0

t (CB(T0) > K)

≈ CnB(t, Ti)P̃
Tn
t (CB(T0) > K)−KB(t, T0)P̃T0

t (CB(T0) > K)

≈ CnB(t, Ti)P̃
Tn
t (CnB(T0, Tn) > K)−KB(t, T0)P̃T0

t (CnB(T0, Tn) > K)(43)

Obviously, we only use (43) to analyze our experiments, but do not use it to price swaption,
because (43) only exists when the times of swap and the swap rate is small.

We notice that B(T0, Tn) is lognormal distributed in a three-factor Gaussian model, and
thus can get idea from experiments on Lognormal distributions on the third chapter that
the volatility σ of B(T0, Tn), de�ned as the standard deviation of logB(T0, Tn) can be used
to adjust the accuracy of CDG approximation according to Figure 3.1 also on the third
chapter, and this adjustment turns to be quite e�ective in practice.

To be more speci�c, according to (40) and (41), the volatility σ keeps the same even
its forward measure changes. For Experiment 4.1, σ = 0.0479, and for Experiment 4.2,
σ = 0.0558. From Figure 3.1, the optimal σ is about 0.045, which is a�ected little by the
other parameter µ, so volatilities σ in both experiments are very close to the optimal σ. In
the next experiment, Experiment 4.3, we will try to rise volatility σ2 , σ3, so that σ will rise
to 0.0856. Intuitively, it will lead to less accurate CDG approximation.

Experiment 4.3

Consider a T0 ∗ (T2 − T0) receiver swaption, with maturity of swaption T0 = 1 year and
tensor δ = 0.5 year. The parameters are given below

α1 α2 α3 σ1 σ2 σ3 x1 x2 x3 δ0 k
1 0.7 0.5 0.06 0.10 0.10 0.02 0.02 0.01 0.03 0.05

Table 4.3.1 Parameters of One-Year Swaption under Hull-White model

Experiment Result:

Swaption Price by

Monte Carlo

0.0378

Swaption Price by CDG

Approximation

0.0385

Absolute Error 0.0006
Relative Error 1.69%

Table 4.3.2 Swaption Price Approximation

T0 T1 T2

Monte Carlo 0.5465 0.5659 0.5799

CDG 0.5397 0.5587 0.5725

Absolute

Error

0.0068 0.0072 0.0074
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Table 4.3.3 Probability Approximation under Di�erent Forward Measures

sc3 sc4 sc5 sc6 sc7 Meaure
T0 0.04270354 0.00487562 0.00065360 0.00009706 0.00001548 -7.92

T1 0.01599799 0.00487571 0.00065362 0.00009706 0.00001547 -7.92

T2 0.01599732 0.00487579 0.00065364 0.00009706 0.00001548 -7.92

Table 4.3.4 Scaled Cumulants under Di�erent Forward Measures

Conclusion
As we expected, Experiment 4.3 shows relatively less accurate CDG approximation.

The scaled cumulants decay relatively slow with measure -7.92. The errors of forward
probabilities are about 0.0070 on average, and the approximation of the swaption price
demonstrates absolute error about 0.0006, and relative error around 1.69% displayed on
Table 4.3.2.

Measure of Errors of Swaption Price

Our next task is to develop an accurate measure of errors of swaption price based on our
previous measure l of errors of densities.

There is something in common observed in previous three experiments: the smaller value
l is, the more accurate the CDG approximation is on forward probabilities. In Experiment
4.1, l is less than -10, and the absolute errors of probabilities are about 0.0013 illustrated in
Table 4.1.3. In Experiment 4.2, l is about -9.5, with error around 0.0035. In Experiment 4.3,
l is about -7.9, with errors more or less than 0.0070. This implies that our measure l is also
accurate in cases where the underlying variable CB(T0) is the sum of several lognormals.

In addition, by analyzing swaption price formula (17) and its coe�cient C1,...,Cn, among

which Cn is much larger than other Ci, i = 1, 2, ...n−1, we �nd that P̃Tnt (CB(T0) > K) and

P̃T0
t (CB(T0) > K) have much more weight than other forward probabilities P̃Tit (CB(T0) >
K), i = 1, 2, ...n−1 in determining the swaption price. So, in order to make CDG approxima-
tion accurate, we should make probabilities under both forward measures well approximated,
and thus consider to choose L as the measure of swaption errors de�ned as follows

L = l0 + ln = log|sc
T0
7

scT0
3

|+ log|sc
Tn
7

scTn3

| (44)

where l0 is our previous measure l under T0 forward measure and scT0
i is the i − th scaled

cumulant also under T0 forward measure. For instance, in Experiment 4.1, L = −10.82 −
10.23 = −21.05.

Note that the di�erence between l0, ln and other measures li, i = 1, 2...n − 1 are in-
signi�cant, from previous three experiments. Empirically, if l0 and ln are both small, other
li should also be small. We expect the smaller value L is, the more accurate the CDG
approximation on swaption price is, just like our previous measure l on densities. Clearly,
measure L of errors of swaption price is accurate based on Experiment 4.1, 4.2 and 4.3,
where Experiment 4.1 and Experiment 4.2 show much smaller errors in swaption price than
Experiment 4.3, both absolute errors and relative errors. In Experiment 4.1, L = −21.05
with the absolute error of swaption price about 0.0001 and relative error 0.59%, while in
Experiment 4.3, L = −15.84 with the absolute error around 0.0006 and relative error 1.69%.
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In order to evaluate measure L more generally, we need to collect more data, including
values of measure L and swaption price errors, both absolute errors and relative errors.
We will price several swaptions with the same parameters as in Experiment 4.1 except the
parameter σ3 since di�erent σ3 will lead to di�erent value of L . The data is illustrated
in Table 4.4, where the second row demonstrates the Monte Carlo swaption price with the
same number of simulations as in our pervious experiments. The absolute errors and rela-
tive errors are showed on the third row, with relative errors in the brackets. The values of
measure L are on the last row.

σ3 σ3 = 0.07 σ3 = 0.10 σ3 = 0.12 σ3 = 0.15

Swaption Price 0.0248 0.0321 0.0376 0.0464

Errors 0.0001 (0.57%) 0.0005 (1.60%) 0.0009 (2.43%) 0.0016 (3.44%)

Measure L -19.20 -17.21 -16.06 -14.52

Table 4.4

Luckily, from Table 4.4, we also see that the smaller value measure L is, the smaller
errors are. So far, we have obtained seven swaption price, including three from Experiment
4.1, 4,2, and 4.3. The relationship between values of measure L and errors of these swaption
price is plotted in Figure 4.1 and Figure 4.2, with Figure 4.1 dealing with absolute errors,
and Figure 4.2 with relative errors.

Figure 4.1 Relationship Between Absolute Errors of Swaptions and Measure L
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Figure 4.2 Relationship Between Relative Errors of Swaptions and Measure L

Conclusion:
From Figure 4.1 and Figure 4.2, we �nd that as what we expected, in general, the smaller

value measure L is, the smaller the absolute errors and relative errors are although there
is no guarantee smaller L will de�nitely result in smaller errors of both types. It implies
our measure L is accurate in general. Besides, the trend can potentially be �tted by some
smoothed functions with increasing slopes.

Furthermore, there is an interesting phenomenon that the trend of absolute errors coin-
cides with that of relative errors almost perfectly. That's, if the absolute error of a swaption
is smaller than that of another swaption, then its relative error is also smaller, see Figure 4.3.
The direct application of this rule is that in the analysis of swaption price errors, absolute
errors can be an estimator of relative errors, and vice versa.

Figure 4.3 Relationship Between Absolute Errors and Relative Errors

In addition. we will analyze the reason behind this interesting phenomenon that absolute
errors and relative errors coincide. Let Swn be the true swaption price, and swn be the
CDG approximated price. So the absolute error is |Swn − swn| and the relative error is
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|Swn−swn|
Swn . In general, a small �uctuation of Swn in percentage would lead to large violation

of |Swn− swn| in percentage, because the absolute error is much smaller. Thus, the trend

of |Swn−swn|Swn is primarily e�ected by that of |Swn−swn|. This explains why absolute errors
coincide with relative errors in trend. For instance, in Experiment 4.1, Swn = 0.0208,

|Swn − swn| = 0.0001, |Swn−swn|Swn = 0.59%, while in Experiment 4.3, Swn = 0.0378,

|Swn− swn| = 0.0006, |Swn−swn|Swn = 1.69%.

Two Reasons Why Measure L Accurate Only In General

We will explore reasons why measure L is accurate only generally such that there is no
guarantee smaller L would lead to smaller errors.

We can learn from any plot of errors of Lognormal distribution functions in Appendix
C, that the place of the variable X on the axis can in�uence the errors within the same
distribution function. In other words, at di�erent places, errors can be quite di�erent.
Similarly, for a general distribution function, the place of the variable is also an in�uence.
However, it is usually di�cult to predict at which place the errors are small, especially for
absolute errors.

The other reason is that swaption price is the combination of several forward probabil-
ities, and accurate CDG approximation on probabilities does not necessary mean accurate
swaption price although they usually do. However, in practice, the di�erence among for-
ward probabilities in the same swaption is usually very small under Three-factor Gaussian
model, and thus CDG method has similar approximation performance on them uniformly,
see Experiment 4.1 where the relative errors of forward probabilities are all around 0.0012.
This is the reason why accurate CDG approximation on probabilities can lead to accurate
swaption price in general under Three-factor Gaussian model.

More research is suggested to analyze these two reasons intensively. If successful, then
we may be able to work out a more accurate measure of errors of swaption price. In fact,
the swaption price is a complicated system, a�ected by several factors. As far as I know,
most relevant researches are concentrating on how to approximate accurate probabilities,
and then rely on experiments to see whether the swaption price is accurate approximated.
In addition, we propose to collect much more swaption price so we have more points that
describe the relationship between errors and measure L. The trend may be �tted by some
statistical regression models. Then, we can better assess the power of our measure L.

In practice, we suggest to set value of L less than -19, so absolute errors would be less
than 0.0004, and relative errors less than 1%. Furthermore, our result on swaptions within
Three-factor Gaussian model can be extended to cases within any Multi-factor Gaussian
model, because a zero-coupon bond B(t, T ) within any of these models is still Lognormal
distributed, for instance, Four-factor Gaussian model, refer to Langetieg (1980). Thus, our
result is valuable and can be potentially widely applied.

4.4 CDG Approximation under CIR2++ Model

In this part, we will discuss CDG approximation under two-factor CIR model, in academics,
called CIR2++ model, which is an extension of one-factor CIR model. Recall the stochastic
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di�erential equation of one-factor CIR model for interest rate is dr(u) = (a − br(u))du +
σ
√
r(u)dw̃(u). In CIR2++, its dynamics is similar.

dxi(u) = (ai − bixi(u))du+ σi
√
xi(u)dw̃i(u)

i = 1, 2, and

r(u) = δ +

2∑
i=1

xi(u)

where the Brownian motions w̃1(u) and w̃2(u) are independent. ai, bi, σi for any i = 1, 2
and δ are all positive constants such that 2ai > σ2

i .

The bond price B(t, T ) is obtained in di�erent way with Three-factor Gaussian model,
since it is di�cult to acquire its price by the distribution of its CIR factors, which are
non-central chi-square distributed. We have the following theorem.

Theorem 4.4.3. The price of at time t of a zero-coupon bond maturing at time T is

B(t, T ) = e−A(T−t)−
∑2
i=1 Ci(T−t)xi(t)

where

Ci(τ) =
2(eγiτ − 1)

(bi + γi)(eγiτ − 1) + 2γi

A(τ) = −δτ +

2∑
i=1

(
2ai

γi − bi
τ − 2ai

σ2
i

log[
(bi + γi)(e

γiτ − 1) + 2γi
2γi

])

and we de�ne γi =
√
b2i + 2σ2

i .

Proof. Assume the bond price can be written as

B(t, T ) = f(t, x1, x2) = e−A(T−t)−C1(T−t)x1(t)−C2(T−t)x2(t)

where A(τ) and C(τ) are deterministic functions and A(0) = C(0) = 0. It follows that

ft(t, x1(t), x2(t)) = [A
′
(T − t) + C

′

1(T − t)x1(t) + C
′

2(T − t)x2(t)]f(t, x1(t), x2(t))

fxi(t, x1(t), x2(t)) = −Ci(T − t)f(t, x1(t), x2(t))

fxixi = C2
i (T − t)f(t, r(t))

For i ∈ {1, 2}, where ′ denotes di�erentiation with respect to τ = T − t.
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Then, the discounted bond price has di�erential

d(B(t, T )D(t)) = −r(t)D(t)f(t, x1, x2)dt+D(t)df(t, x1, x2)

= D[−rfdt+ ftdt+ fx1
dx1 + fx2

dx2

+
1

2
fx1x1

dx1dx1 + fx1x2
dx1dx2 +

1

2
fx2x2

dx2dx2]

= D[−(δ + x1 + x2)f + ft + (a1 − b1x1)fx1

+(a2 − b2x2)fx2
+

1

2
σ2

1x1fx1x1
+

1

2
σ2

2x2fx2x2
]dt

+D[σ1

√
x1(t)fx1

dw̃1 + σ2

√
x2(t)fx2

dw̃2]

Because under the risk-neutral probability, the price of a discounted bond is a martingale,
and thus the dt term of d(B(t, T )D(t)) should always be zero, then, we have

−(δ + x1 + x2)f + ft + (a1 − b1x1)fx1

+(a2 − b2x2)fx2
+

1

2
σ2

1x1fx1x1
+

1

2
σ2

2x2fx2x2

= f [−(δ + x1 + x2) +A
′
+ C

′

1x1 + C
′

2x2 − (a1 − b1x1)C1

−(a2 − b2x2)C2 +
1

2
σ2

1x1C
2
1 +

1

2
σ2

2x2C
2
2 ]

= f [(−δ +A
′
− a1C1 − a2C2) + (−1 + C

′

1 + b1C1 +
1

2
σ2

1C
2
1 )x1

+(−1 + C
′

2 + b2C2 +
1

2
σ2

2C
2
2 )x2

= 0 (45)

As (42) must hold for all x1 and y1, the term C
′

1 + b1C1 + 1
2σ

2
1C

2
1 multiplying x1 must be

zero. Similarly, the term C
′

2 +b2C2 + 1
2σ

2
2C

2
2 multiplying x2 must be zero, and the remaining

term −δ + A
′ − a1C1 − a2C2 must also be zero. This leads to a system of three ordinary

di�erential equations.

C
′

i = −biCi −
1

2
σ2
iC

2
i + 1 (46)

A
′

= δ + a1C1 + a2C2 (47)

where i ∈ {1, 2}.The solutions to the above equations (46)-(47) with initial condition A(0) =
C1(0) = C2(0) = 0 are

Ci(τ) =
2(eγiτ − 1)

(bi + γi)(eγiτ − 1) + 2γi

A(τ) = −δτ +

2∑
i=1

(
2ai

γi − bi
τ − 2ai

σ2
i

log[
(bi + γi)(e

γiτ − 1) + 2γi
2γi

])
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where we de�ne γi =
√
b2i + 2σ2

i .

�

So far, we have obtained the exact formula of the bond priceB(t, T ) = e−A(T−t)−
∑2
i=1 Ci(T−t)xi(t)

under CIR2++ model. Note that the products of bond price with di�erent maturities will
take the form

B(T0, T1)B(T0, T2)...B(T0, Tn) = eF0−F1x1(T0)−F2x2(T0)

Our next step is to calculate the conditional expectation ẼTt (eF0−F1x1(T0)−F2x2(T0)), where
F0, F1, F2 are all constants. We will only give formula and general procedure for it, For
detailed explanation, refer to Du�e, Pan, and Singleton(2000), and Collin-Dufresne and
Goldstein(2002).

The conditional expectation of eF0−F1x1(T0)−F2x2(T0) under T - forward measure can be
written as

ẼTt (eF0−F1x1(T0)−F2x2(T0)) =
1

B(t, T )
eM(T0−t)−N1(T0−t)x1(t)−N2(T0−t)x2(t) (48)

where the functions M(τ), N1(τ) and N2(τ) satisfy the following Riccati equations

M
′
(τ) = −δ −

2∑
i=1

aiNi(τ)

N
′

i (τ) = 1− biN(τ)− σ2
i

2
N2
i (τ)

with initial conditions M(t) = F ∗0 and Ni(t) = F ∗i , i ∈ {1, 2}, where F ∗0 = F0 −A(T − T0),
F ∗i = Fi + Ci(T − T0),

Solving the Riccati equations above, we have

M(τ) = F ∗0 − δτ +

2∑
i=1

(
2ai

γi − bi
τ − 2ai

σ2
i

log[
(F ∗i − λi,−)eγiτ − (F ∗i − λi,+)

2γ
σ2
i ])

Ni(τ) =
F ∗i (λi,+e

γiτ − λi,−) + 2
σ2
i
(eγiτ − 1)

F ∗i (eγiτ − 1)− (λi,−eγiτ − λi,+)

where λ+ = −b+γ
σ2 and λ− = −b−γ

σ2 .

Formula (48) is used to calculate moments of a coupon bond under CIR2++ interest
rate model. Under T forward measure, we have the di�erential equations of factors

Theorem 4.4.4. The processes x1(u), x2(u) under the T forward measure evolve according
to

dxi(u) = (ai − (bi + σ2Ci(T − u))xi(u))du+ σi
√
xi(t)dw̃i

T (u) (49)

where i ∈ {1, 2}, and dw̃1
T (u)dw̃2

T (u) = dw̃1(u)dw̃2(u) = 0. See Brigo and Mercurio
(2006). This formula can be applied for Monte Carlo simulation.
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Simulation

It is well known that the CIR process is non-central chi-square distributed, and there is an
exact method to simulate its samples. The idea of this simulation method is to reduce the
sampling of a non-central chi-square to sampling of an ordinary chi-square, including gener-
ating random variables from standard Normal distribution or Poisson distribution depending
on the value of parameter 4a

σ2 . For more detail, see Glasserman (2003).
However, this exact simulation method is quite slow in computation, according to Alfonsi

(2005), in which several time discretization schemes of simulation for CIR model are analyzed
together with this exact simulation method, and one of the conclusions is that it is more
than ten times slower than any other time discretization schemes included. In �nancial
world, usually, the number of samples by Monte Carlo required is very large, and thus we
prefer time discretization schemes. In the following section, we will introduce Euler scheme,
the simplest but popular time discretization scheme.

Euler Scheme

In mathematics and computational science, Euler scheme, named after Leonhard Euler, is
a numerical procedure for solving SDE with a given initial value.

Consider a Ito stochastic di�erential equation

dXt = f(Xt, t)dt+ g(Xt, t)dW (t)

For a small time step ∆t, we have

Xt+∆t = Xt +

ˆ t+∆t

t

f(Xs, s)ds+

ˆ t+∆t

t

g(Xs, s)dW (s)

≈ Xt +

ˆ t+∆t

t

f(Xt, t)ds+

ˆ t+∆t

t

g(Xt, t)dW (s)

= Xt + f(Xt, t)∆t+ g(Xt, t)(Wt+∆t(t)−Wt(t))

Or with t = n∆t, it is more common to write Euler Scheme as

Xn+1 = Xn + f(Xn, n)∆t+ g(Xn, n)∆Wn

This is called Euler scheme. The scheme is consistent with the Ito de�nition of an integral
and can only be used for an Ito di�erential equations. It is well known in Finance, without
speci�c explanation, all SDE are assumed to be Ito. Thus, Euler Scheme is quite useful for
Monte Carlo simulation in Finance.

However, in the Euler scheme of CIR model, see (36)

rn+1 = rn + (a− brn)∆t+ σ
√
rn∆Wn (50)
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rn can take negative values since the Brownian motion increment is not bounded from below,
and thus

√
rn in (50) is not well-de�ned. To solve this problem, one can take Deelstra and

Delbaen scheme, which replaces
√
rn by

√
rn1(rn>0), see Deelstra and Delbaen (1998), or

replace the whole (50) by rn+1 = |(a− brn)∆t+ σ
√
rn∆Wn|, see Diop (2003). But a much

better scheme is called E(0) scheme in Alfonsi (2005), which is exactly the Milstein scheme

rn+1 = ((1− b

2
∆t)
√
rn +

σ∆Wn

2(1− b
2∆t)

)2 + (a− σ2

4
)∆t (51)

where 4a > σ2, then r can never be negative.

With respect of how to access the accuracy of these numerical schemes, we will introduce
the de�nition of two types of order convergence.

De�nition (strong order of convergence)

The strong order of convergence is j if there exists a positive constant K and a positive
constant ∆ such that for �xed T = N∆t

E(|XT −XN |) ≤ K(∆t)j

for all 0 < ∆t < ∆. Where XT is the true value of stochastic process at time T, and XN is
its approximated value.

De�nition (weak order of convergence)

The strong order of convergence is j if there exists a positive constant K and a positive
constant ∆ such that for �xed T = N∆t

|E[h(XT , t)]− E[h(XN , t)]| ≤ K(∆t)j

for all 0 < ∆t < ∆ and for all functions h with polynomial growth.
Both types of order convergence are used to measure the accuracy of numerical scheme,

and it is obvious, the higher order of convergence, the better the numerical scheme is. In
fact, the strong order of Euler scheme is 0.5, and its weak order is 1.0. On the other hand,
Milstein scheme leads to more accurate solution with the same time step, with both strong
order and weak order 1.0, but this scheme usually takes more time than Euler scheme. There
is also a set of schemes called Taylor schemes which originates from Taylor expansion, with
more accurate solution than that by Milstein scheme. In general, the higher order the
scheme is, the more computation time will take with the same time step. So, there is a
balance for it.

In Alfonsi (2005), by comparing several time discretization schemes for CIR process,
including D-D (Deelstra-Delbaen scheme) and Diop (Diop scheme), it is concluded that E(0)
scheme is the best with respect to the order of convergence of both types and computational
cost. To be more speci�c, E(0) scheme dominates over D-D and Diop in speed of convergence
of both type, but there is almost no di�erence in computation cost. So, we will use E(0)
scheme for CIR simulation. For schemes of higher order for CIR process, second and third
order, see advanced research by Alfonsi (2010).
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4.5 Numerical Results Under CIR2++ Model

In this section, our attention will be paid to the performance of CDG approximation for
swaption pricing under CIR2++ model. Collin-Dufresne and Goldstein only show an ac-
curate case, but not analyze it in detail, as what they do under Three-factor Gaussian
model.

Experiments will be carried out to compare swaption price by CDG approximation and
by Monte Carlo. The results are all illustrated in tables, with the same meaning as these
under Three-factor Gaussian model.

The Monte Carlo price is obtained using E(0) scheme with time discretization formula
(51) for each factor xi(T0) with di�erential equation (49). To reduce the time discretization
bias, we choose a small time step: dt = 1 ∗ 10−3 and short maturity T0 = 1. The number
of simulations is all one million for each factor under each forward measure, so the order of
error is o(10−6). We price swaption in Experiment 4.4 by Monte Carlo two times and both
of them showed the same accuracy up to the digit 10−5. In Schrager and Pelsser (2006),
they simulate 500,000 samples for CIR2++ model. In Singleton and Umantsev (2002), they
use Euler scheme for CIR2++ model with time step dt = 4∗10−3 from 0 to maturity T0 = 5,
and Monte Carlo path is 100,000 without any variance reduction techniques. Clearly, our
Monte Carlo price of swaption is more accurate. We consider the Monte Carlo value to be
the true value.

Experiment 4.4.

Consider a T0 ∗ (T2 − T0) receiver swaption, with maturity of swaption T0 = 1 year and
tensor δ = 0.5 year. The parameters are given below

α1 α2 b1 b2 σ1 σ2 x1 x2 δ0 k
0.01 0.02 0.3 0.5 0.1 0.1 0.04 0.05 0.01 0.1

Table 4.4.1 Parameters of One-Year Swaption under Hull-White model

Experiment Result:

Swaption Price by

Monte Carlo

0.0123

Swaption Price by CDG

Approximation

0.0127

Absolute Error 0.0004
Relative Error 3.25%

Table 4.4.2 Swaption Price Approximation

T0 T1 T2

Monte Carlo 0.6366 0.6431 0.6465

CDG 0.6385 0.6446 0.6490

Absolute

Error

0.0019 0.0015 0.0025
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Table 4.4.3 Probability Approximation under Di�erent Forward Measures

sc3 sc4 sc5 sc6 sc7 Meaure
T0 -0.07074529 0.00894448 -0.00087905 0.00003272 0.00002030 -8.16
T1 -0.07082351 0.00897032 -0.00088476 0.00003496 0.00002040 -8.15
T2 -0.07088556 0.00899081 -0.00088926 0.00003396 -0.00004137 -7.45

Table 4.4.4 Scaled Cumulants under Di�erent Forward Measures

In this experiment, the parameters of two CIR factors x1(u) and x2(u) satisfy 2a ≥ σ2

respectively. According to Feller condition, both factors will never hit zero. Then, obviously,
4a > σ2, so we can use (51) to simulate Monte Carlo samples.

The performance of CDG approximation is good: from Table 4.4.2, the absolute error of
swaption is 0.0004 and the relative error is 3.25%, although less accurate than Experiment
4.1 and Experiment 4.2 under Three-factor Gaussian model. This is because the scaled
cumulants decay less faster with measure L = −15.61 showed in Table 4.4.4. Unlike Three-
factor Gaussian model, in practice, it is much di�cult to �nd a case under CIR2++ with
fast decay of scaled cumulants, and thus Collin-Dufresne and Goldstein implies it is more
di�cult to acquire accurate swaption price under CIR2++ model than under Three-factor
Gaussian model.

We illustrate this experiment in order to show it is possible to obtain accurate swaption
price by CDG approximation. Due to time restriction, and the fact that the simulation
of CIR2++ model is rather time consuming, we cannot provide more experimental data.
Since the scaled cumulants generally decay less faster under CIR2++ model than that under
Three-factor Gaussian model, we can guess that it is less likely to acquire accurate swaption
price under CIR2++ interest rate model. In order to assess the power of our measure L,
we need to collect more swaption price, and plot the relationship between L and errors of
swaption price like what we have done previously, to see whether the trend is similar to that
under Three-factor Gaussian model. It is highly recommended to study that.
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5 Other Methods for Swaption Pricing

In this chapter, we will introduce other swaption pricing methods under a�ne interest rate
models that provide di�erent insights into swaption other than CDG approximation. In
some one-factor interest rate models, there are analytical swaption price, such as Vasicek
model and CIR model. Actually, Jamshidian (1989) shows that under one certain condition,
the swaption price can be converted into the sum of several options on zero-coupon bonds,
and if there is an analytical solution for such an option, there is an analytical swaption price.
My innovation is to derive these analytical solutions in a di�erent form, but equivalent to
these on literatures. However, in multi-factor models, there is no analytical solution, and
thus swaption price has to be approximated. In this section, we will discuss the method by
Singleton and Umantsev (2002) and two measures of errors proposed by myself that might
be potentially accurate. However, both measures have not been realized yet, and they are
my research recommendation. Besides, a trick is proposed by myself to price swaptions
under multiple-factor Gaussian models by Singleton and Umantsev method.

5.1 Formulas for One-Factor Models

In this part, I will �rst introduce my derivation of the analytical solution for the swaption,
then discuss the solution in existing literatures, which is in a di�erent form, at last show
they are equivalent.

Recall the receiver swaption pricing formula (17) in the second chapter

Swn(t) =

n∑
i=1

CiB(t, Ti)P
Ti
t (CB(T0) > K)−KB(t, T0)PT0

t (CB(T0) > K))

It is already known under one-factor interest rate model, we can write CB(T0) as

CB(T0) =

n∑
i=1

CiB(T0, Ti)

=

n∑
i=1

Cie
−A(Ti−T0)−C(Ti−T0)r(T0)

where Ci for any i are all positive. A(τ), C(τ) are deterministic functions.

Since there is only one random variable r(T0) in CB(T0), we can written CB(T0) =
f(r(T0)). Assume for any τ > 0

C(τ) > 0

then CB(T0) is a decreasing function with respect to r(T0). Thus, there must exist a value
r∗, such that CB(T0) > K only when r(T0) < r∗. So, PTt (CB(T0) > K) = PTt (r(T0) < r∗).
Moreover, it is clear that r∗ does not rely on T−forward measure and it satis�es
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n∑
i=1

Cie
−A(Ti−T0)−C(Ti−T0)r∗ = K (52)

Therefore, the swaption formula (17) can be rewrite as

Swn(t) =

n∑
i=1

CiB(t, Ti)P
Ti
t (r(T0) < r∗)−KB(t, T0)PT0

t (r(T0) < r∗)) (53)

Then, the only problem left behind is: how to calculate the value of r∗. The answer is to
solve equation (52) numerically, and there are mainly two methods for it: Bisection method
and Newton�Raphson method.

Bisection method

The bisection method is a root-�nding method which repeatedly bisects an interval and then
selects a subinterval in which a root must lie for further processing. It is a very simple and
robust method, but it is also relatively slow. The following is the procedure for our problem.

Step 1. Set xl = 0, xu = 0.2, then f(xl) − K > 0, f(xu) − K < 0. Set er as the
maximum error.

Step 2. Let x = 1
2 (xl + xu). if f(x)−K > 0, xl = x. if f(x)−K < 0, xu = x.

Step 3. Repeat step 2 until xu− xl < er.
Step 4. Return r∗ = xu+xl

2 as the solution of equation f(x)−K = 0.

where CB(T0) = f(r(T0)) as we discussed before.

Newton�Raphson method

Newton method is a fast and powerful iteration method for �nding approximation to the
root. However, it might fail in some situations. For our problem, Newton method always
works since f(r(T0)) satis�es all of its assumption includes f

′
(x) 6= 0. The following is the

procedure.
Step 1. Set starting point x0 = 0.1. Set er as the maximum error.

Step 2. xn+1 = xn − f(xn)−K
f ′ (xn)

until |f(xn+1)−K| < er

Step 3. Return r∗ = xn+1 as the solution of equation f(x)−K = 0.

where CB(T0) = f(r(T0)) .

Having obtained the boundary value r∗, our next procedure is to calculate PTt (r(T0) <
r∗), for each T = T0, T1, ...Tn respectively. If the distribution of random variable r(T0) is
known under forward measures, then PTt (r(T0) < r∗) has an analytical solution, and so does
the swaption price (53).

In the general Hull-White model, where the interest rate is normal distributed under any
forward measure, PTt (r(T0) < r∗) is known under this model. However, under this model,
the assumption C(τ) > 0 is not always satis�ed. Thus there might be no analytical solution
for the swaption price, and a general and e�cient method for it is to construct a trinomial
tree to approximate the evolution of the interest rate process, see Brigo and Mercurio (2006).
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But if the interest rate follows a Vasicek model, one-factor Hull-White model with constant
parameters, then C(τ) > 0 for any τ . In this case, its swaption has a close-form solution.

In one-factor CIR model, the assumption C(τ) > 0 is always satis�ed and the interest
rate is non-central chi-squared distributed under any forward measure. Thus, there is an
analytical swaption price. In the following section, we will derive its swaption price under
both Vasicek model and one-factor CIR model.

Analytical solution for swaption under Vasicek model

In this model, we have

dr(t) = (a− br(t))dt+ σdw̃(t) (54)

where parameters, a, b and volatility σ all constants.

Then, let B(t, T ) = f(t, r(t)), it is easy to compute

d(D(t)B(t, T )) = Df(−r +A
′
+ C

′
r − aC + bCr +

1

2
C2σ2)dt−DCfσdw̃(t)

where D, f , r, A, C are short for discount factor D(t), f(t, r(t)), r(t), A(T − t), C(T − t)
respectively.

By Property 1.1 in the second chapter, we have

dw̃T (t) = σC(T − t)dt+ dw̃(t)

Thus, (54) can be rewritten as

dr(t) = (a− br(t)− σ2

b
(1− e−b(T−t)))dt+ σdw̃T (t) (55)

Obviously, interest rate r(t) in equation (55) still follows the general Hull-White model
under T -forward measure, and thus its distribution is also normally distributed

r(T0) ∼ N(e−b(T0−t)r0+(1−e−b(T0−t))(
a

b
−
σ2

b2
)+

σ2

2b2
e−b(T−T0)−

σ2

2b2
e−b(T+T0−2t),

σ2

2b
(1−e−2b(T0−t)))

(56)

where r0 = r(t) is the initial condition mentioned above for di�erential equation of interest
rate.

Therefore, under T forward measure

PT
t (r(T0) < r∗) = N(r∗, e−b(T0−t)r0+(1−e−b(T0−t))(

a

b
−
σ2

b2
)+

σ2

2b2
e−b(T−T0)−

σ2

2b2
e−b(T+T0−2t),

σ2

2b
(1−e−2b(T0−t)))

where N(x, µ, σ2) is a Normal distribution at x with expectation µ and variance σ2. This
implies the exact solution for swaption is
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Swn(t) =

n∑
i=1

CiB(t, Ti)N(r∗, e−b(T0−t)r0 + (1− e−b(T0−t))(
a

b
−
σ2

b2
) +

σ2

2b2
e−b(Ti−T0) −

σ2

2b2
e−b(Ti+T0−2t),

σ2

2b
(1− e−2b(T0−t)))

−KB(t, T0)N(r∗, e−b(T0−t)r0 + (1− e−b(T0−t))(
a

b
−
σ2

b2
) +

σ2

2b2
−
σ2

2b2
e−2b(T0−t),

σ2

2b
(1− e−2b(T0−t)))

Analytical solution for swaption under one-factor CIR model

Like Vasicek model, there is also an analytical solution of the swaption price, and its deriva-
tion is similar to that under Vasicek model.

Recall in CIR model

dr(t) = (a− br(t))dt+ σ
√
r(t)dw̃(t) (57)

where parameters, a, b and volatility σ all constants.

Then, we have

d(D(t)B(t, T )) = Df(−r +A
′
+ C

′
r − aC + bCr +

1

2
C2σ2r)dt−DCfσ

√
rdw̃(t)

Again by Property 1.1, under T forward measure

dw̃T (t) = σC(T − t)
√
r(t)dt+ dw̃(t)

It implies that

dr(t) = (a− (b+ σ2C(T − t))r(t))dt+ σ
√
r(t)dw̃T (t) (58)

The interest rate r(t) in (58) is also non-central chi-squared distributed, and

PTt (r(T0) < r∗) = χ2(q(t, T0, T )r∗, v, δ(t, T0, T ))

where χ2(x, v, λ) is the non-central chi-squared distribution with degree of freedom v and
non-centrality parameter λ.

q(t, T0, T ) = 2(
2h

σ2exp(h(T0 − t)− 1)
+
b+ h

σ2
+ C(T − T0))

δ(t, T0, T ) =
16r0e

h(T0−t)h2

q(t, T0, T )σ4exp(2h(T0 − t)− 2)

and

h =
√
b2 + 2σ2
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See Brigo and Mercurio (2006). This implies the exact solution for swaption

Swn(t) =
n∑

i=1

CiB(t, Ti)χ
2(q(t, T0, Ti)r

∗, v, δ(t, T0, Ti))−KB(t, T0)χ
2(q(t, T0, T0)r

∗, v, δ(t, T0, T0))

�

We have derived analytical formula for swaption under both Vasicek model and one-
factor CIR model. As a conclusion, under assumption C(τ) > 0 for any τ , we can derive
swaption formula (53). If the distribution of the interest rate r(T0) is known under forward
measure, then the swaption price has an analytical solution.

Actually, there is another formula for swaption price under one-factor interest rate models
presented in literatures. This formula converts the swaption price into sum of several zero-
coupon bonds. Suppose r∗ is the best solution of the following equation

n∑
i=1

Cie
−A(Ti−T0)−C(Ti−T0)r∗ = K

The payo� of a receiver swaption at time T0 can be written as

[

n∑
i=1

Cie
−A(Ti−T0)−C(Ti−T0)r(T0) −

n∑
i=1

Cie
−A(Ti−T0)−C(Ti−T0)r∗ ]+

If for any τ

C(τ) > 0

Then, according to Jamshidian decomposition, see Jamshidian(1989), the payo� can be
rewritten as

n∑
i=1

Ci[e
−A(Ti−T0)−C(Ti−T0)r(T0) − e−A(Ti−T0)−C(Ti−T0)r∗ ]+

So the price of the swaption becomes equivalent to the value of a portfolio of call options
on zero-coupon bonds. That's

Swn(t) =

n∑
i=1

CiZBC(t, T0, Ti, e
−A(Ti−T0)−C(Ti−T0)r∗) (59)

where ZBC(t, T0, Ti,K) is the price at time t of a call option on a zero-coupon bond
B(T0, Ti) with strike K and option maturity T0.
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Comparing the procedures of deriving swaption formula (53) and (59), we observed that
both swaption formulas are under the same assumption, C(τ) > 0 for any τ , and r∗ in both
have the same meaning. In fact, (53) and (59) can be proved to be exactly the same formula,
and the only di�erence lies in their forms.

Recall in section 2.3, (17) demonstrated the relationship between a coupon bond price
and forward probabilities. We will rewrite it in short as

Swn(t) = Ẽt(
D(T0)

D(t)
(CB(T0)−K)+)

=

n∑
i=1

CiB(t, Ti)P̃
Ti
t (CB(T0) > K)−KB(t, T0)P̃T0

t (CB(T0) > K) (60)

where CB(T0) =
∑n
i=1 CiB(T0, Ti)

Obviously, from the derivation of the formula above, it still holds even we change the
value of its parameters Ci for i = 1, 2, ...n. Let Ci = 0, i 6= j , Cj = 1, and K∗ =
e−A(Tj−T0)−C(Tj−T0)r∗ , then the swaption price in (60) becomes the price of a zero coupon
bond displayed as follows

ZBC(t, T0, Tj ,K
∗) = Ẽt(

D(T0)

D(t)
(B(T0 − Tj)−K∗)+)

= B(t, Tj)P̃
Tj
t (B(T0, Tj) > K∗)−K∗B(t, T0)P̃T0

t (B(T0, Tj) > K∗)

= B(t, Tj)P̃
Tj
t (r(T0) < r∗)−K∗B(t, T0)P̃T0

t (r(T0) < r∗)

where the transformation on the last step uses C(τ) > 0 by assumption. Then, it is straight-
forward to show that two formulas (53) and (59) are equivalent.

To be honest, I found formula (53) when I was trying to formulate one-factor swaption
price. Later, I read (59) in literatures with the same assumption. Luckily, they di�er some
way in forms, but can be proved to be equivalent.

5.2 Methods for Multiple-Factor Models

Under one-factor interest rate models, there might be analytical solutions for swaptions,
however, in multi-factor models, it is a completely di�erent story. We quote from Collin-
Dufresne and Goldstein (2002) that �Unfortunately, closed-form solutions for swaptions ap-
parently do not exist for multiple-factor a�ne models. Even in the simplest of models,
where it is assumed that future bond price are lognormally distributed, the future value of
such a portfolio of bonds would be described by a probability density composed of a sum of
lognomral, which has no known analytical solution. It seems unlikely that exact closed-form
solutions would ever be found for swaption prices.�. Thus, it is essential to �nd e�cient
algorithm to price such a swaption.
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Literature Review

There are several methods to approximation method and we will take a quick review of
literatures related.

Brace and Musiela (1995) obtain a formula in terms of multi-dimensional Gaussian in-
tegral for multi-factor Gaussian models. In this formula, the integral has to be computed
numerically because the function to be integrated can only be obtained by solving solu-
tions of equations numerically. This approach for swaption pricing is fast and e�cient when
the factor dimension is two. However, for dimension higher than two, it often becomes
numerically very burdensome.

Munk (1999) extends result from Wei (1997) and shows that the price of a European
swaption is approximately proportional to the price of a European option on a zero coupon
bond with maturity equal to the stochastic duration of the coupon bond, where the stochastic
duration is de�ned to be the time to maturity of a zero-coupon bond having the same relative
volatility as the coupon bond.

There is another swaption approximation method proposed by Singleton and Umantsev
(2002) which approximate the exercise boundary with a linear function of factors, including
least squares. This reduces the exercise of probability to the form that of a caplet. However,
it seems not to provide an e�cient estimation of the magnitude the pricing error.

Besides, Tanaka (2005) provides a swaption pricing method very similar to CDG approx-
imation. It also calculates cumulants of the underlying coupon bond, but use Gram-Charlier
expansion instead for the density. He demonstrates that the third order cumulant approx-
imation is optimal, while in CDG approximation, the order is seven. Unfortunately, there
is still no estimation of the pricing error. Assefa (2007) extends the application of CDG
approximation into swaption under multi-factor quadratic Gaussian model, and works out
similar results.

Other research includes Schrager and Pelsser (2006) in which the approximation method
is based on approximating a�ne dynamics for the forward swap rate under the swap measure.
This approximation also reduces price of a swaption to that of a caplet and may lead to the
analytical conditional characteristic function of the forward swap rate directly. In this case,
it is convenient to compute its density using some Fast Fourier Transform technique, such
as Carr and Madan (1999).

Singleton and Umantsev Model

In this section, we will discuss the model by Singleton and Umantsev (2002). Singleton's
innovation comes from the observation that the boundary of factors looks linear. In fact, I
also �nd similar linear property independently while analyzing the mathematical property
of the coupon bond. Singleton's work is highly valuable, but he seems not to provide an
e�ective measure to indicate how large the swaption error is, although his error analysis is
intensive. I try to analyze the error in di�erent way, and provide two potentially accurate
measures of errors, which is my research recommendation.

Let us �rst review Singleton and Umantsev's model. In m-factor models, a bond price
can be written as

B(T0, Ti) = e−A(Ti−T0)−
∑m
j=1 Cj(Ti−T0)Xj(T0)
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Thus

CB(T0) =

n∑
i=1

CiB(T0, Ti)

=

n∑
i=1

Cie
−A(Ti−T0)e−

∑m
j=1 Cj(Ti−T0)Xj(T0) (61)

Singleton approximates the boundary of inequality CB(T0) > K, or

CB(T0) = K (62)

by

a1X1(T0) + a2X2(T0) + ...+ amXm(T0) = b (63)

Then, the calculation of probability PTit (CB(T0) > K) is converted to the computation of
PTit (a1X1(T0) + ...+amXm(T0) < b), which has closed form conditional characteristic func-
tion, see Du�e, Pan, and Singleton (2000), and thus this probability can be easily computed
by some Fast Fourier Transformation methods.

The parameters a1,...,am and b in (63) are determined by �tting linear equation (63)
through 2m−1 points on the boundary by the method of least squares. Suppose m = 2
and the density of X2(T0) is negligible outside of the interval [xl, xp], then the two points
required on the boundary are calculated by endpoints of this interval xl, xu and equation
(62). For m > 2, one must �nd 2m−1 vertices of a cube of dimension m− 1, together with
equation (62) to obtain these 2m−1 boundary points.

To be more speci�c, suppose we have endpoints x1,...,xm−1 for their correspondent fac-
tors X1(T0),...,Xm−1(T0), estimated based on their univariate probability distributions. Let
xm to be a unknown value of factor Xm(T0) such that (x1, ..., xm−1, xm) is a boundary
point. Then, xm is the solution of equation (62), or

n∑
i=1

Cie
−A(Ti−T0)e−

∑m−1
j=1 Cj(Ti−T0)xje−Cm(Ti−T0)xm = K (64)

This equation can be solved numerically by Newton method.

Remark: one assumption that I think is necessary for Singleton and Umantsev Model is

Cj(τ) > 0

for any τ > 0 and any j = 1, 2, ...m.
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Under this assumption, CB(T0) is a monotony decreasing function with respect to the
factor Xj(T0) for any j, if other factors are all �xed. Thus, it guarantees there is a unique
solution xm in (64). On the other hand, if this assumption is not satis�ed, it is possible
that there is more than one solutions of the equation above, and thus the boundary might
not be approximated linearly. Luckily, it is known that in both Gaussian model and CIR
model of multiple factors, Cj(τ) is always positive. Although Singleton and Umantsev do
not mention this assumption in their paper, but the interest rate model they use for exper-
iments, CIR2++, satisfy this assumption.

So far, we have discussed the general idea of model by Singleton and Umantsev, in which
the boundary points are from the endpoints of each interval or cube. Since these boundary
points are on the domain where their joint density is low, and thus a potential better way
to improve the accuracy of the linear boundary approximation is to collect boundary points
on domain with high joint density. So, it is strongly recommended that more study should
concentrate on this, as well as the optimal number of boundary points required.

Error Analysis

Singleton and Umantsev �nd the error of the linear boundary approximation can be ex-
pressed as a di�erence of two strictly positive terms each on the order of r̄ × Tn × var(r),
where r̄ and var(r) are the average value of variance of the underlying rate. As indicated
in their paper, the error is greater for volatile rates and long swap or bond maturities.
However, they do not provide a measure of errors to show how magni�cent errors are.

I try to analyze error in di�erent way and provide an indication of errors presented as
follows.

It is clear that if the boundary, whose equation is CB(T0) = K, is absolutely linear,
then its intersection with any linear subspace should also be linear. In this case, for any
�xed positive integers α, β, the solutions of the system of equations (65) and (66) compose
a straight line. We call it the boundary intersection.

CB(T0) = K (65)

Xj(T0) = υj , j 6= α, j 6= β (66)

whereXk(T0) = υk is on the domain on which the density of variableXk(T0) is not negligible.
Let x = Xα(T0), y = Xβ(T0). Equations (65)-(66) can be combined to be

F (x, y) =

n∑
i=1

C
′

ie
−A(Tl−T0)e−Cα(Ti−T0)x−Cβ(Ti−T0)y −K = 0 (67)

where C
′

i is de�ned to be

C
′

i = CiΠj 6=α,βe
−Cj(Ti−T0)vj

Since
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Fx(x, y) + Fy(x, y)
dy

dx
= 0

we have

dy

dx
= −Fx(x, y)

Fy(x, y)

= −
∑n
i=1 C

′

iCβ(Ti − T0)e−A(Ti−T0)e−Cα(Ti−T0)x−Cβ(Ti−T0)y∑n
i=1 C

′
iCα(Ti − T0)e−A(Ti−T0)e−Cα(Ti−T0)x−Cβ(Ti−T0)y

= θ(x, y) (68)

If the boundary is linear, θ(x, y) should be a constant θ for any x and y, and the su�cient
condition for this is

Cβ(τ)

Cα(τ)
= θ (69)

for any τ > 0, where θ is a constant.
In �nancial world, x and y are generally very small, and thus e−A(Ti−T0)e−Cα(Ti−T0)x−Cβ(Ti−T0)y

in (68) variates little, which makes dy
dx almost a constant. Naturally, the boundary intersec-

tion, on which the joint density of factors is not negligible, can indicate whether boundary
can be approximated linearly more or less, just like if we observe waves on the shore, we
can estimate how strong the waves are in the sea. This idea also looks similar to the idea
in Singleton and Umantsev's method, in which only endpoints are used to �t the whole real
boundary by linear regression. To be speci�c, the more the boundary intersections resemble
lines, the better the boundary is linearly approximated in a general sense, and then the
more likely Singleton's method will be accurate.

When the number of factors is two, the boundary is just a curve, so we can plot the
boundary directly use (68) to see whether it is approximately linear. It implies that our
analysis may be highly e�ective on these two-factor cases. In the following part, I will
provide two potential accurate measures of errors based on our analysis.

Measure ψ of Errors

In Singleton and Umantsev (2002), it is suggested that the user of their method can assess
the quality of the resulting approximation by replacing one of the endpoints of each interval
with the middle point to �t the boundary by linear model (63) to determine new parameters
a1,...,am and b, and then compute the swaption price. If the swaption price is substantially
di�erent from the original price, then this method is not accurate in this case. However,
there is still no measure of errors.

Followed by the Singleton's idea that the linear boundary is �tted by the least square
method, I proposed to collect more points on boundary and use the averaged �distances� of
these points to the �tted linear boundary as a measure of error. Obviously, these points are
on the boundary where the joint density of interest rate factors is not negligible.
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To understand more formally, suppose xi = (xi1, x
i
2, ...x

i
m) is such a point, where m is

the number of interest rate factors, i = 1, 2, ...N , and N is the number of points collected.
Let lxi to be the distance of this point to linear boundary. We de�ne the measure ψ to be

ψ =
1

N

N∑
i=1

(lxi ∗ w(xi)) (70)

where w(xi) is a certain weight function of the point xi.

We expect that the more accurate the Singleton and Umantsev's method is, the smaller
ψ is. Intuitively, this measure must combine with such a weight function that the higher
density a point is, the more weight this point take, because each point on the boundary has
di�erent joint density, which will a�ect the accuracy of Singleton and Umantsev's method
extensively. Then, our di�culty becomes how to �nd such a weight function to make our
measure accurate. In order to realize it, we may try several weight function based on the
density function until we �nd an accurate measure. and it is strongly recommended to study
them. For the parameter N , intuitively, it is required that N should be su�cient large as to
keep this measure accurate, however, large N will cost additional computation time, because
for each point, we have to solve equation (64), and thus it is interesting to �nd an optimal
value of it to make a balance between speed and accuracy.

Measure ς of Errors

Although measure ψ has the potential to be an accuracy measure, but from the knowledge
of Statistics, we know that number of points N required may grow signi�cantly with number
of factors m, and it may become relatively slow in calculation. Thus, we are interested in
searching for an another measure that is much faster in computation.

In pervious part of error analysis, I propose a idea that boundary intersections can be
used to indicate whether boundary can be approximately linear or not. That's, the geometric
structure of boundary, whether it is nearly linear, can be re�ected by several curves called
boundary intersections. We can take the curvature as a measure. To be more speci�c, for
any α, β ∈ {1, 2, ..m}, we have a boundary intersection which satis�es equation (65)-(66).

Let x = Xα(T0), y = Xβ(T0) and suppose x is negligible outside the interval [vxl, vxu].
The length of this boundary intersection within this interval can be determined by the
following steps.

� Step 1. Let x = vxl, and solve equation (67), we have y = vyl, such that (vxl, vyl) is
an endpoint of this boundary intersection.

� Step 2. Choose vx1, which is near to the vxl, and we can get another point, denoted
by (vx1, vy1) , also on the boundary intersection by equation (68). That's

vy1 − vyl = (vx1 − vxl)
dy

dx
|x=vxl,y=vyl

= (vx1 − vxl)θ(vxl, vyl)

so
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vy1 = (vx1 − vxl)θ(vxl, vyl) + vyl

� Step 3. Repeat procedures similar to Step 2, we can access points (vx1, vy1)...(vxu, vyu)
and the computation is very fast.

� Step 4. The length of the boundary intersection, denoted by lα,β is calculated by these
points

lα,β =
∑
i

√
(vxi − vxi−1)2 + (vyi − vyi−1)2

On the other hand, we have the intersection of linear function that is used to approxi-
mates boundary, which satis�es equations (63) and (66), with length denoted by l

′

α,β , where
we only consider its length within interval x ∈ [vxl, vxu].

Obviously, for a m factor interest model, we have
(
m
2

)
number of lα,β of that kind de�ned

above. I propose to de�ne the measure of errors ς to be

ς =
1(
m
2

) ∑
α,β

l
′

α,β

lα,β

The advantage of this measure ς is that it is much faster than the previous measure ψ in
computation, because it is not required to solve equation CB(T0) = K numerically, however,
the accuracy of this measure still need to be veri�ed by experimental data.

Intuitively, in a general sense, for measure ς , the smaller it is, the more �linear� the
boundary is, and thus the more accurate the Singleton's method is. It is recommended
to verify this idea by mathematical experiments, and conclude whether ς is an accurate
measure. In order to realize it, we should compare this measure with errors of swaptions
under the a certain a�ne model of interest rate but with di�erent parameters to see whether
ς grows with error increases. If it is true, then we can try to extend this measure for the
general a�ne models to see what will happen.

Another natural advantage is that it may be quite e�ective when the interest rate follows
two-factor models. One may think about improving this measure by putting the joint density
of these curves into consideration similar to what we do with measure ψ, because it is of
in�uence intuitively.

Our research for measures is worthwhile because if any of the above measures is proved
to be accurate, then the theoretical gap in Singleton and Umantsev (2002) can be �lled, and
Singleton and Umantsev's method can become more applicable in practice.

5.3 Trick In Dealing with Multi-factor Gaussian Models

In this section, we will explore when the factor boundary is absolutely linear in multi-factor
Gaussian models, since in this situation, this model will cause no error in swaption pricing.
This leads to a prospective nice idea that re-calibrating parameters of Gaussian models to
�t this condition if parameters from this re-calibration also �t market data well.

Before our discussion, we will introduce two theorems.
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Theorem 5.1: The boundary of factors is linear if
Cβ(τ)
Cα(τ) is constant for any α, β and

τ > 0.

Proof: Let Ci(τ) = aif(τ) for any i = 1, 2, ...n where ai are all constants. So

CB(T0) =

n∑
i=1

Cie
−A(Ti−T0)e−

∑m
j=1 Cj(Ti−T0)Xj(T0)

=

n∑
i=1

Cie
−A(Ti−T0)e−

∑m
j=1 ajf(Ti−T0)Xj(T0)

=

n∑
i=1

Cie
−A(Ti−T0)e−f(Ti−T0)

∑m
j=1 ajXj(T0)

=

n∑
i=1

Cie
−A(Ti−T0)e−f(Ti−T0)Y (T0)

where Y (T0) =
∑m
j=1 ajXj(T0).

Let b be the solution of the equation

n∑
i=1

Cie
−A(Ti−T0)e−f(Ti−T0)b = K

Thus, the boundary equation CB(T0) = K is equivalent to

Y (T0) = b

or

m∑
j=1

ajXj(T0) = b

This proves that the boundary of factors is linear.

�

Theorem 5.2: Under multi-Gaussian models, the swaption price has absolute linear
boundary if αi = αj for any i, j.

Proof: In multi-Gaussian models

Ci(τ) =
1− e−αiτ

αi

If αi = αj for any i, j, it is obvious that Ci(τ) = Cj(τ). Thus, the boundary is linear
by the previous theorem.

�
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This theorem implies, under a m factor Gaussian model, if

α1 = α2 = ... = αm

then the swaption price in this model would have no error. The only source of error is from
calibration of parameters of this Gaussian model by market data.

Calibration means �tting the parameters of the model to the current market data. Usu-
ally, parameters are calibrated to �t the current yield curve, implied volatility of bonds or
some derivatives, or other data that are available in the market. The general idea of model
calibration is to �nd the optimal values of parameters such that this model is �closest� to
the market data under a certain measure, for instance, l2 measure. However, in this random
world, the data from the real market can be interpreted as these randomly simulated from
a certain �model�, and thus the optimal parameters that �t the market best might not be
the best to �t the trend illustrated by these market data.

My idea is that if parameters calibrated from the markets show that a1, ..., am are very
close to each other, we can make α1 = α2 = ... = αm, then re-calibrate market data with
ai all �xed. If the interest rate model with parameters re-calibrated also �ts these market
data well, then adopt the new parameters, otherwise, use the original ones. This approach
can be frequently seen in references in the �eld of Time Series.

When m is small, for instance m = 3, my approach might be quite useful. However, it
is obvious that this approach becomes infeasible if m is large.

On the other hand, in terms of CIR models, the condition of linear boundary lead to a
complicated equation, and a su�cient condition for linear boundary is that α1 = α2 = ... =
αm and σ1 = σ2 = ... = σm. Of course, this condition is too strong to make any sense in
practice.
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Recommendations

There are several of my recommendations in this thesis, and I will summarize part of them.

� Although our measure of errors of density functions is displayed to be accurate in
experiments of Gamma and Lognormal distributions, it is still recommended to study
whether this measure is accurate on other types of distributions, such as Beta distri-
butions, to make a more general conclusion.

� One theoretical gap is that there may be no theoretical error bounds of CDG ap-
proximation on density functions. We recommend researches for that because they
may provide another way to estimate errors other than by experiments, especially in
a situation where the underlying distribution is complicated.

� We have plotted the relationship of measure L and swaption price errors under Three-
factor Gaussian model. However, more swaption prices are suggested to be collected,
so the trend can be better displayed. Some smoothed functions can be used to �t this
trend.

� We have analyzed the in�uence of parameters on CDG approximation accuracy under
Three-factor Gaussian model when swap rate k and number of time of swaps n are
small. It is highly recommended to research on parameter in�uence when k and n are
large.

� It is recommended to plot the relationship between measure L and swaption price
errors under CIR2++ model, to see whether it coincides with that under Three-factor
Gaussian model.
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Appendix

Appendix A

Relationship Between Cumulants and Moments

c1 = µ1

c2 = µ2 − µ2
1

c3 = µ3 − 3µ1µ2 + 2µ3
1

c4 = µ4 − 4µ1µ3 − 3µ2
2 + 12µ2

1µ2 − 6µ4
1

c5 = µ5 − 5µ1µ4 − 10µ2µ3 + 20µ2
1µ3 + 30µ1µ

2
2 − 60µ3

1µ2 + 24µ5
1

c6 = µ6 − 6µ1µ5 − 15µ2µ4 + 30µ2
1µ4 − 10µ2

3 + 120µ1µ2µ3 − 120µ3
1µ3

+30µ3
2 − 270µ2

1µ
2
2 + 360µ4

1µ2 − 120µ6
1

c7 = µ7 − 7µ1µ6 − 21µ2µ5 − 35µ3µ4 + 140µ1µ
2
3 − 630µ1µ

3
2 + 210µ1µ2µ4 − 1260µ2

1µ2µ3

+42µ2
1µ5 + 2520µ3

1µ
2
2 − 210µ3

1µ4 + 210µ2
2µ3 + 840µ4

1µ3 − 2520µ5
1µ2 + 720µ7

1

where µi is the i-th moment, and ci is the i-th cumulant. This above relationship applies
to any distributions. See Gardiner(1983)

Appendix B

The relevant coe�cients λi and γi are provided by Pierre Collin-Dufresne and Robert
Goldstein as follows

λ0 = N(
c1 −K√

c2
)

λ1 =
1√

2πc2
e
− (K−c1)2

2c2 c2

λ2 = c2N(
c1 −K√

c2
) +

1√
2πc2

e
− (K−c1)2

2c2 c2(K − c1)

λ3 =
1√

2πc2
e
− (K−c1)2

2c2 [c2(K − c1)2 + 2c22]

λ4 = 3c22N(
c1 −K√

c2
) +

1√
2πc2

e
− (K−c1)2

2c2 [c2(K − c1)3 + 3c22(K − c1)]

λ5 =
1√

2πc2
e
− (K−c1)2

2c2 [c2(K − c1)4 + 4c22(K − c1)2 + 8c32]

λ6 = 15c32N(
K − c1√

c2
) +

1√
2πc2

e
− (K−c1)2

2c2 [c2(K − c1)5 + 5c22(K − c1)3 + 15c32(K − c1)]

λ7 =
1√

2πc2
e
− (K−c1)2

2c2 [c2(K − c1)6 + 6c22(K − c1)4 + 24c32(K − c1)2 + 48c42]
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γ0 = 1 +
3

c22
(
c4
4!

)− 15

c22
(
c6
6!

+
1

2

c23
(3!)2

)

γ1 = − 3

c22
(
c3
3!

) +
15

c32

c5
5!
− 105

c42
(
c7
7!

+
c3c4

(3!)(4!)
)

γ2 = − 6

c32
(
c4
4!

) +
45

c42
(
c6
6!

+
1

2

c23
(3!)2

)

γ3 =
3

c22
(
c3
3!

)− 10

c42

c5
5!

+
105

c52
(
c7
7!

+
c3c4

(3!)(4!)
)

γ4 =
1

c42
(
c4
4!

)− 15

c52
(
c6
6!

+
1

2

c23
(3!)2

)

γ5 =
1

c52
(
c5
5!

)− 21

c62
(
c7
7!

+
c3c4

(3!)(4!)
)

γ6 =
1

c62
(
c6
6!

+
1

2

c23
(3!)2

)

γ7 =
1

c72
(
c7
7!

+
c3c4

(3!)(4!)
)

where λi for any i is written in terms of normal distribution, for which there are excellent
approximations without the need of numerical integration.

Appendix C

Errors of CDG approximation on Lognormal distribution functions with parameters given
in section 3.4.

Illustration 1. µ = 1, σ = 0.05

2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3-1.5-1
-0.50
0.51
1.5 x 10-4

Variable X
Difference

Lognormal Distribution Function with mu=1 and sigma=0.05

2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.300.51
1.52
2.5 x 10-3

Variable X

Lognormal Distribution Function with mu=1 and sigma=0.05

Relative Differen
ce
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sc = [0.0250 0.0017 0.0001 0.0000 0.0000], l = −9.9934

Illustration 2. µ = 1, σ = 0.1

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8-1.5-1
-0.50
0.51
1.5 x 10-3 Lognormal Distribution Function with mu=1 and sigma=0.1

Variable X
Difference

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8012
345
678
9 x 10-3 Lognormal Distribution Function with mu=1 and sigma=0.1

Relative Differen
ce

Variable X
sc = [0.0503 0.0068 0.0011 0.0002 0.0000], l = −7.2652
We illustrate these errors in order to show that the CDG approximation have the same

approximation performance on distribution functions as on density functions.

Appendix D

Theorem: Scaled cumulants in a Gamma distribution will not be a�ected by its parameter
β.

Proof: As have been discussed. In Gamma distribution Γ(α, β), the i− th moment mi is

mi =
α(α+ 1)...(α+ i− 1)

βi

=
f(α, i)

βi

where function f(α, i) is only determined by parameters α and i.

Interestingly, from Appendix A, we observe that the i− th cumulant ci can be written as

ci =
g(α, i)

βi

where function g(α, i) is composed of functions f(α, 1),...,f(α, i), but incorrelated with
paramter β.

Thus, by de�nition of scaled cumulants, we have
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scj =
cj

j!c
j/2
2

=
g(α, j)

j!gj/2(α, 2)

where scj is the j − th scaled cumulant of a Gamma distribution, j ≥ 3.

It proves that the scaled cumulants in a Gamma distribution will not be a�ected by
parameter β.

�

Appendix E

Comparison of CDG Approximation and Normal Approximation

As a special case of Edgeworth expansion, which is much more accurate than just ap-
proximating a random variable with a Normal distribution, CDG approximation also shares
this nice property. In fact, approximating a random variable with a Normal distribution is
equivalent to CDG approximation using only the �rst two cumulants, because for a Normal
distribution, all its cumulants are zero except the �rst two cumulants as we have discussed.

We will illustrate two examples, one from Gamma distribution, the other from Lognormal
distribution, to compare their density approximation by Normal and by CDG approxima-
tion.

Gamma distribution with parameters α = 50, β = 1

30 35 40 45 50 55 60 65 7000.010.020.030.040.050.06

Variable X
Density Functio
n

Comparison of Normal and CDG approximation in Gamma Distribution
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Note that: the blue curve is the true density function of this Gamma distribution, the red
one is the CDG approximated density function, and the green is the Normal approximated
density function. The same applies to the Lognormal distribution.

Lognormal distribution with parameters µ = 1, σ = 0.1

2 2.5 3 3.50
0.5
1

1.5 Comparison of Normal and CDG approximation in Lognormal Distribution

Density Functio
n

Variable X
Conclusion: It is obvious in both cases, CDG approximation is better than Normal approx-
imation, even when the true density is very close to Normal.

Appendix F (Other Valuable Swaption Pricing Methods)

Three swaption pricing models other than CDG approximation are brie�y introduced in
this section, which are currently widely used in practice. They are Black-76, LIBOR market
model and swap market model. These models are based on di�erent assumptions from CDG
approximation, at least not assume the interest rate to be a�ne. However, they can lead to
analytical swaption price.

De�nition (Forward swap rate).Forward swap rate is the value of swap rate that
makes the initial value of the swap equal to zero. Let RNn (t) be the t time forward swap
rate of Tn ∗ (TN − Tn) swap. We have its formula as follows

RNn (t) =
B(t, Tn)−B(t, TN )∑N

i=n+1 δB(t, Ti)

Black-76 Formula

The Black-76 formula resembles the famous Black-Scholes formula and quote prices in terms
of the implied Black volatilities. It has been used by the market for a long time due to simple
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formula and easy calibration, however, it does not have any explicit coherent underlying
model.

The Black-76 formula for a Tn ∗ (TN − Tn) payer swaption Swn(t) with swap rate k is
as follows

Swn(t) = SNn (t)(RNn (t)N(d1)− kN(d2))

where

d1 =
1

σ
√
Tn − t

(In(
RNn (t)

k
) +

1

2
σ2(Tn − t))

d2 = d1 − σ
√
Tn − t

SNn (t) =

N∑
i=n+1

δB(t, Ti)

and the constant σ is known as the Black volatility.

Swap Market Model

Swap market model was introduced by Brace, Gatarek, and Musiela in 1997. It bases on
the assumption that forward swap rate is log-normal distributed.

Assume for each positive integer pairs (l,m) such that n ≤ l < m ≤ N

dRml (t) = Rml (t)σl,m(t)dWm
l (t)

where Wm
l is Brownian motion under Qml measure, that is, using Sml (t) as the numeraire.

Then, the Tn ∗ (TN − Tn) payer swaption price is

Swn(t) = SNn (t)(RNn (t)N(d1)− kN(d2))

where

d1 =
1

Mn,N
(In(

RNn (t)

k
) +

1

2
M2
n,N )

d2 = d1 −Mn,N

M2
n,N =

ˆ Tn

t

||σn,N (s)||2ds

Remark: ||.|| is the L2 norm. It is clear that formula by swap market model is similar to
one by Black-76 formula, while the major di�erence is the volatility σn,N (s).
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LIBOR Market Model

LIBOR market model assumes LIBOR forward rate has a log-normal distribution. That's

dL(t, Li−1) = L(t, Li−1)σi(t)dW
i(t)

for any n ≤ i ≤ N , where W i is Brownian motion under Ti forward measure.
Then, it is possible to price LIBOR derivatives in closed form solutions. LIBOR market

model is powerful in pricing caps, �oors and Bermudan swaptions. However, for swaptions
in our case, the solution may have no easy form, and we will skip it.

The assumption of the LIBOR market model originates from the fact that L(t, Li−1)
is a martingale under Ti forward measure. The swap market model is not consistent with
LIBOR Market model in general, because under the assumption of swap market model,
the LIBOR rate will not be lognormal distributed under forward measure. But empirical
evidence seems to reject the swap market model in favor of the LIBOR market model. See
De Jong, J.Driessen and A.Pelsser (2000). For detailed description of these three models,
refer to Bjork (2003).
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