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ABSTRACT

Abstract

Treatment plan generation in radiation therapy is a multicriteria optimization problem, in

which multiple, often conflicting, criteria need to be optimized simultaneously. Several meth-

ods can be used to obtain Pareto optimal treatment plans, meaning that no criterion can be im-

proved without deteriorating another criterion. The focus is on the 2-phase ε-constraint (2pεc)

method and the reference point method (RPM), which both automatically generate Pareto op-

timal intensity modulated radiation therapy (IMRT) plans. Although the plans of the 2pεc

method are of high quality, several optimizations need to be performed. For the RPM, only a

single optimization is needed per plan. The aim of this thesis is configure the RPM so that the

resulting treatment plans are of the same quality as the treatment plans generated by the 2pεc

method, and thereby reducing the computation time.

The 2pεc method prioritizes the criteria and assigns goal values to them. Then, each cri-

terion is iteratively optimized and constrained according to a rule (depending on whether the

goal value was met or not). The number of optimizations needed scales linearly with the num-

ber of criteria. A specific configuration of the RPM, namely the lexicographic reference point

method (LRPM), maintains the lexicographic ordering of the criteria.

Both the 2pεc method and the LRPM have been tested on 30 prostate cancer patients and

2 head-and-neck cancer patients. For the 30 prostate cancer patients, all treatment plans gen-

erated by the LRPM were found of similar quality when compared to the plans generated by

the 2pεc method. On average, the computation time of the LRPM was 3 minutes, which is a

speed-up factor of nearly 12. For the 2 head-and-neck cancer patients, the plans of the LRPM

were considered as good as or better than the plans of the 2pεc method with a speed-up factor

for the computation time of 3-4.
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NOTATION

Notation

A brief overview of the mathematical notations used throughout this thesis.

Notation Explanation

m m ∈N represents the number of decision variables

n n ∈N represents the number of criteria

Rm decision space

Rn criterion space

f criterion vector function f : Rm → Rn

X ⊆ Rm feasible set in decision space

Y = f(X) ⊆ Rn feasible set in criterion space

XwP the set of all weakly Pareto optimal points

XP the set of all Pareto optimal points

XpP the set of all properly Pareto optimal points

YwN the set of all weakly nondominated points

YN the set of all nondominated points

YpN the set of all properly nondominated points

[N] index set {1, 2, . . . ,N}

x < y x,y ∈ RN with xi < yi for all i ∈ [N]

x 6 y x,y ∈ RN with xi 6 yi for all i ∈ [N]

x = y x,y ∈ RN with xi = yi for all i ∈ [N]

RN>0 the positive orthant of RN, {x ∈ RN | x > 0}

RN>0 the nonnegative orthant of RN, {x ∈ RN | x > 0}

B(x,η) open ball around xwith radius η > 0

int E interior of a set E

bd E boundary of a set E

E closure of a set E

xi
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CHAPTER 1

Introduction

In this thesis we will dig into the world of multicriteria optimization: an optimization problem in

which multiple criteria (real-valued functions) need to be optimized simultaneously. In every-

day life we are faced with these problems. For simple problems, the human brain automatically

considers the available options and comes up with a decision based on common sense, intui-

tion, previous experiences, chance or a combination of these. As an example, buying a soda

can be considered as a multicriteria optimization problem since multiple criteria, such as the

price and brand, can be decisive for the final purchase. Often, these criteria conflict which, in

this case, means that the soda with the lowest price does not correspond with the top brand

and vice versa. In multicriteria optimization we search for the “best” compromise between

the criteria, however the choice made is often different for various groups of people. In other

words, there is no consensus on what the “best” compromise is.

The problem of choosing the soda that fits you best does not seem that important, however

in other cases making such a choice can literally be a case of life and death. This thesis focuses

on a real-life application of multicriteria optimization, namely in the field of radiation therapy.

Radiation therapy is commonly applied as part of a cancer treatment with the aim to control or

destroy malignant cells (the tumour) while sparing the surrounding healthy tissue as much as

possible. There are a lot of possible treatment plans that have a high probability of controlling

or destroying the malignant cells as desired, but the main difficulty is to select a treatment plan

that minimizes damage to the surrounding healthy tissue in such a way that the quality of life

after the treatment is optimal. Selecting a treatment plan is too complex for the human brain,

hence we need mathematical modeling and programming to tackle these problems.

Currently, treatment plans are automatically generated at the Erasmus MC - Cancer Insti-

tute with an in-house developed approach, called the 2-phase ε-constraint method (see Breedveld

et al. (2007, 2009)). This method has proven to produce treatment plans of high clinical quality,

but requires a lot of computation time. Another method, the reference point method needs signif-

icantly less computation time to produce a treatment plan. However, it is not known whether

1



CHAPTER 1. INTRODUCTION

the reference point method can be configured so that it generates high quality treatment plans.

The research question of this thesis is:

Can the reference point method be configured so that it generates treatment plans that are

of similar clinical quality when compared to the treatment plans generated by the 2-phase

ε-constraint method, and how much reduction in computation time can be realized?

In order to understand why the 2-phase ε-constraint method and the reference point method are

of particular interest, we start with an analysis on multicriteria optimization and multicriteria

methods. From this analysis, we are able to understand the principles of both methods which

will help us to configure the reference point method.

The remainder of this introductory chapter is organized as follows: in Section 1.1 and Sec-

tion 1.2 we get more familiar with the concept of a multicriteria optimization problem. Sec-

tion 1.1 provides an example of a multicriteria optimization problem and Section 1.2 describes

the problems faced in the field of radiation therapy. We conclude this chapter with the outline

of the thesis (Section 1.3).

1.1 Multicriteria optimization

In this section, we informally introduce the concept of a multicriteria optimization problem. In

these problems, multiple quantities have to be optimized simultaneously. More often than not,

the optimum of one quantity does not correspond to the optimum of any of the other quantities.

Compromises between the different quantities have to be made to obtain a solution, however

the opinion on what a “good compromise” is may differ. A multicriteria optimization problem

is best explained with an example.

EXAMPLE 1.1. Suppose that we want to buy a house. For many people, buying a house is the

biggest financial transaction they make during, so making the right decision is important. Sup-

pose that we have found 5 suitable houses and that the final decision will be made according

to their prices and the travel time to work. We prefer a low-priced house with a short travel

time to our work. The data of the 5 houses is gathered in Table 1.1 and is also visualized in

Figure 1.1.

TABLE 1.1: Overview of the criteria and available houses in Example 1.1.

Criterion House A House B House C House D House E

Price (10000 Euros) 13 13 17 19 16

Travel time to work (Minutes) 55 75 65 15 30

Ideally, there would be a house that is not only the cheapest of the alternatives but also has

2



1.1. MULTICRITERIA OPTIMIZATION

the least travel time to our work. Unfortunately, this is not the case as can be seen in Table 1.1

or Figure 1.1. House A and B are the cheapest but House D has the least travel time to work.
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FIGURE 1.1: Visualization of the criterion values in Table 1.1 in a two-dimensional coordinate
system.

There are several observations that should be made here. First, we note that any sensible

human being should choose between Houses A, D or E. House B is not a good alternative since

House A has less travel time to work for the same price. House C would even be a worse choice

than House B since both House A and E are cheaper with less travel time to work. Secondly, we

note that if we only had one criterion the choice would be easy. If we would only be interested

in the cheapest house then we would buy either House A or B, and be indifferent about the

actual choice between these 2 houses. If our only interest would be minimizing the travel time

to work, House D would be the optimal choice.

Which of the choices between House A, D or E is best cannot be said. Some people would

buy House A while others buy House D or E depending on their priorities. Is reducing the

traveling time by 40 minutes worth an increase of 6000 euros in the price of a house? For

some it will (making House D a better alternative than House A), for others it will not (making

House A a better alternative than House D). House E is the best alternative for people who

prefer compromising a bit on both the price and travel time.

In Example 1.1, we have 5 houses to choose from, namely House A-E. We gather all possi-

bilities in the set X, in this case

X = {House A, House B, House C, House D, House E}.

Also, we have two quantities which influence the final decision. In this case, the quantities are:

1. The price of the house,

3



CHAPTER 1. INTRODUCTION

2. The travel time to work.

Notice that the quantities include a unit, the first quantity (price) is expressed in the unit 10000

Euros and the second quantity (travel time) is expressed in the unit minutes. So generally, it

is possible that the quantities involved in a multicriteria optimization problem have different

units. Additionally, it must be specified (per quantity) whether high values or low values are

preferred. In Example 1.1, we prefer low prices and little travel time, so we want to minimize

both quantities.

The data per quantity of the 5 available houses are gathered in the set Y. In this case (see

Table 1.1),

Y = {(13, 55), (13, 75), (17, 65), (19, 15), (16, 30)},

where the first coordinate represents the price (in 10000 Euros) and the second coordinate rep-

resents the travel time to work (in minutes). Since we prefer lower values for both quantities,

our preferences go to the pairs (13, 55), (19, 15) and (16, 30) (see Figure 1.1) representing House

A, D and E.

Mathematically, the Houses A,D and E can be seen as optimal choices. In Chapter 3, sev-

eral mathematical definitions for optimal choices in a multicriteria optimization problem are

formally introduced.

1.2 Radiation therapy

For more than half of all patients diagnosed with cancer, radiation therapy is selected as part of

the treatment∗. Radiation therapy may be used in combination with surgery and/or chemother-

apy. Radiation therapy can also be used alone as cancer treatment.

Radiation therapy uses ionizing radiation to control or destroy malignant cells (the tumour).

The ionizing radiation deposits energy to the cancer cells damaging their DNA (molecules in-

side the cells that carry genetic information). Cancer cells whose DNA are sufficiently dam-

aged, are beyond repair and stop dividing. However, the surrounding healthy tissue is dam-

aged as well in radiation therapy, which should be minimized as much as possible while still

irradiating the tumour sufficiently. The amount of radiation that may safely be delivered to

healthy tissue (the DNA is still damaged, but is repaired over time so that the tissue keeps

functioning as it should) is known for different parts of the body. This information is taken into

account to obtain a high quality treatment plan.

Radiation therapy can be divided into:

1. external beam radiation therapy,

2. brachytherapy,

∗http://www.cancer.gov/cancertopics/factsheet/Therapy/radiation

4
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1.3. OUTLINE OF THE THESIS

3. radioisotope therapy.

The differences concern the position of the radiation source. In external beam radiation therapy

the radiation is directed at the tumour from outside the body. In brachytherapy, the radiation

sources are placed inside or close to the tumour. Radioisotope therapy delivers radioisotopes

though infusion or oral ingestion. The focus of this thesis is on external beam radiation therapy

with X-ray beams (photons), which is the most commonly used form of radiation therapy.

In external beam radiation therapy, the patient is irradiated from certain external directions

forming beams. For every beam direction, a predetermined dose is delivered to the patient.

The directions and the doses are configured in such a way that the radiation beams overlap the

tumour volume, which receives a sufficient dose.

When external beam radiation therapy is selected as part of the treatment for a cancer pa-

tient, a treatment plan has to be developed by a radiation oncologist. This treatment plan needs

to ensure that the tumour receives a sufficient dose while the dose delivered to surrounding

tissue remains at acceptable levels. To achieve this, we need information about the geometrical

shapes of the tumour and the surrounding healthy tissue (mostly organs). To obtain this spatial

information, a CT-scan is made in which the tumour and surrounding organs are delineated.

Mostly, there are around 10 to 20 organs (or other structures) surrounding the tumour. An ex-

ample of a CT-slice can be seen in Figure 1.2, where a tumour is located in the prostate. Healthy

tissues surrounded by the prostate include the rectum, anus, bladder and hips.

After a treatment plan is made and approved, the patient will undergo several radiation

sessions which may last 2 to 10 weeks. In each radiation session, a fraction of the total dose is

delivered. This is done to allow the healthy tissue to recover in between the sessions.

The mathematical details involved in radiation treatment planning are introduced in Chap-

ter 5.

1.3 Outline of the thesis

This thesis consists of two parts. In the first part we discuss the fundamentals of multicriteria

optimization. In the second part, the focus is on the application of multicriteria optimization in

the field of radiation therapy.

Part I introduces the theoretical foundations of multicriteria optimization. We discuss ex-

istence and connectedness for several notions of optimality. Also, some of the many available

methods used in multicriteria optimization are introduced.

Chapter 2 gives an overview of the preliminaries needed for the subsequent chapters. Some

basic results concerning continuity, connectedness, compactness and convexity are gathered for

Euclidean spaces. These notions do not only play an important role in the conventional single

criteria optimization, but also in multicriteria optimization. The results presented in this chap-

ter and many more can be found in Armstrong (1983), Boyd and Vandenberghe (2004), Hiriart-

5



CHAPTER 1. INTRODUCTION

Hip (R) Hip (L)

Rectum

Bladder

Tumour

FIGURE 1.2: CT-slice of a prostate cancer patient. The prostate tumour is surrounded by several
healthy organs including the rectum, bladder and hips.

Uruty and Lemaréchal (1993), Rockafellar (1970) and Rudin (1976). This chapter is finalized

with a recap of Zorn’s Lemma.

In Chapter 3 we present a general setting for multicriteria optimization problems. For these

problems, several notions of optimality are defined. As we have seen in Example 1.1, a multi-

criteria optimization problem generally has multiple “optimal” solutions. Which one of these

alternatives is preferred depends mostly on the decision maker (DM), as subjective motives are

often decisive. The main focus of this chapter is on existence and connectedness results for the

several notions of optimality. Books about these topics include Ehrgott (2005) and Sawaragi

et al. (1985), of which the latter uses a more general setting of multicriteria optimization prob-

lems.

Chapter 4 presents several methods used to “solve” multicriteria optimization problems.

There is a wide range of available methods, most can be found in Mietinnen (1999) as well as

their theoretical properties. We will only discuss the weighted sum method, ε-constraint method,

2-phase ε-constraint method and reference point method.

6



1.3. OUTLINE OF THE THESIS

In Part II of this thesis, the focus is on applying the reference point method for automated

treatment planning in radiation therapy. We consider the 2-phase ε-constraint method as the

golden standard. We will investigate whether the reference point method can be configured in

such a way that it generates treatment plans that are of similar clinical quality as the treatment

plans generated by the 2-phase ε-constraint method.

In Chapter 5, the setting of the multicriteria optimization problems that we encounter in

radiation therapy is described. These multicriteria optimization problems are known as fluence

map optimization.

In Chapter 6 we attempt to configure the reference point method in such a way that it auto-

matically generates high quality treatment plans.

In Chapter 7 we compare the treatment plans generated by the 2-phase ε-constraint method

and the reference point method. We will do so for different patient groups, namely for prostate

cancer patients as well as for head-and-neck cancer patients.

Chapter 8 concludes the thesis. Here, we summarize Part I and discuss whether the reference

point method has the potential to generate treatment plans of similar quality when compared to

the 2-phase ε-constraint method. Also, recommendations on further research are discussed.

7



CHAPTER 1. INTRODUCTION
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Part I

Theory of multicriteria optimization
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CHAPTER 2

Mathematical preliminaries

Before we are able to analyze multicriteria optimization problems, some mathematical background

is needed. More specifically, the concepts of continuity, connectedness, compactness and con-

vexity from real analysis are needed. These concepts are covered in more detail in Arm-

strong (1983), Boyd and Vandenberghe (2004), Hiriart-Uruty and Lemaréchal (1993), Rockafel-

lar (1970) and Rudin (1976) and have a key role in regular single criteria optimization problems.

Although the results we present in this chapter are available in more general settings, our fo-

cus is on finite dimensional Euclidean spaces since these are the only relevant spaces in the

application of multicriteria optimization.

This chapter is concluded with Zorn’s Lemma, which will help us in the next chapter to

guarantee existence of “optimal” solutions for general multicriteria optimization problems.

Zorn’s Lemma is formulated as in Ehrgott (2005).

2.1 Real analysis

Throughout this section, let M,N ∈ N be fixed. We will define the notions of continuity,

connectedness, compactness and convexity as well as some of their properties. Continuity,

connectedness and compactness are defined for Euclidean spaces, that is, a pair (RN,dN) where

dN : RN ×RN → [0,∞) is the Euclidean metric:

dN(x,y) :=
√ ∑
i∈[N]

(xi − yi)2. (2.1.1)

Convexity is defined for subsets of RN and for functions f : E→ R where E ⊆ RN. Also, we

formulate regular single criteria convex optimization problems. These optimization problems

have pleasant properties that we also want to exploit in multicriteria optimization.

11



CHAPTER 2. MATHEMATICAL PRELIMINARIES

2.1.1 Continuity

In this section, we state the definition of continuity for functions f : E → RN, where E ⊆ RM,

alongside some basic properties.

In order to define continuity, we define the open ball around x ∈ Ewith radius η > 0:

B(x,η) := {y ∈ E | dM(x,y) < η}. (2.1.2)

We also need to define open and closed sets as well as the closure of a set. Recall that for a

sequence (xk)k∈N ⊆ Rn, we denote xk → x ∈ Rn if for every η > 0 the open ball B(x,η)

contains infinitely many elements of (xk)k∈N. If such a sequence exists for x ∈ RN, we say that

x is a limit point.

DEFINITION 2.1 (Open/closed set). A set F ⊆ RN is called

• open if for every x ∈ F there is a η > 0 such that B(x,η) ⊆ F.

• closed if RN \ F is open.

For any set F ⊆ RN, its closure (denoted as F) is given by:

F := {x ∈ RN | there is a (xk)k∈N ⊆ F with xk → x}. (2.1.3)

For any set F ⊆ RN it holds that F ⊆ F and F = F if and only if F is closed. The latter is an

alternative and often useful characterization of a closed set, namely a set is closed if and only

if it contains all its limit points. Also, note the dependency on the metric in Definition 2.1.

With these concepts, we are able to define continuity.

DEFINITION 2.2 (Continuity). Let E ⊆ RM. A function f : E → RN is called continuous at x ∈ E
if for all (xk)k∈N ⊆ E with xk → x it holds that f(xk)→ f(x).

The function f is called continuous if f is continuous at every x ∈ E.

Note that this definition needs to be understood in the right context, in this case xk → x

means dM(x, xk)→ 0 and f(xk)→ f(x) means dN(f(x), f(xk))→ 0.

Often, continuity is a convenient property. In our case, we need continuity as it preserves

connectedness and compactness which is mentioned later in this chapter. Also, continuity and

convexity are closely related.

There are more characterizations of continuity. Before mentioning some of these, it is conve-

nient to introduce a notation for the preimage of a set under a function f : E→ RN. For F ⊆ RN

we denote the preimage of F under f as

f−1(F) := {x ∈ E | f(x) ∈ F}. (2.1.4)

Some useful characterizations of continuity are gathered in Proposition 2.1.

12
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PROPOSITION 2.1. The following statements are equivalent for a function f : E→ RN.

1. f is continuous,

2. for every open set O ⊆ RN, the preimage f−1(O) ⊆ E is open,

3. for every closed set G ⊆ RN, the preimage f−1(G) ⊆ E is closed.

Proof. For a proof, see Rudin (1976).

2.1.2 Connectedness

This section is devoted to (path) connected sets. This concept is needed for the next chapter

where we want to prove that certain “solution sets” are connected. Therefore, we need some

properties of (path) connected sets.

We start with defining (path) connectedness of a subset E ⊆ RN.

DEFINITION 2.3 (Path-connected). A set E ⊆ RN is called path connected if for every x1, x2 ∈ E
there is a continuous mapping f : [0, 1]→ E with f(0) = x1 and f(1) = x2.

DEFINITION 2.4 (Connected). A set E ⊆ RN is connected if there are no two nonempty open sets

O1,O2 ⊆ RN such that

E ⊆ O1 ∪O2, E∩O1 6= ∅, E∩O2 6= ∅, E∩O1 ∩O2 = ∅.

The notion of (path) connectedness again depends on the metric, in this case the Euclidean

metric (2.1.1). Path connected sets and connected sets are closely related, to see this we need

the following lemma.

LEMMA 2.2. Let E ⊆ R, then E is connected if and only if it is an interval.

Proof. See Armstrong (1983) for a proof.

Note that for RN with N > 1, a connected set does not need to be a multi-dimensional

interval. Lemma 2.2 implies that the sets in Example 2.1 are connected.

EXAMPLE 2.1. The following sets are connected since they are intervals,

• the real line R = (−∞,∞),

• R>0 := (0,∞),

• R>0 := [0,∞).

The next lemma states that path connectedness is a stronger condition than connectedness.

LEMMA 2.3. If E ⊆ RN is path connected then it is also connected.

13
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Proof. For a proof, see Armstrong (1983).

Next, we treat some basic results concerning connected sets.

LEMMA 2.4. If E ⊆ RN is connected and E ⊆ F ⊆ E, then F is connected.

Proof. See Armstrong (1983) for a proof.

Note that in particular, it holds that if E ⊆ RN is connected then the closure E is also

connected.

Another basic result concerning connected sets is that the Cartesian product of connected

sets is connected.

LEMMA 2.5. If E ⊆ RM and F ⊆ RN are connected then E× F is connected.

Proof. A proof can be found in Armstrong (1983).

Note that this result extends to the case where we construct the Cartesian product of finitely

many connected sets. With Lemma 2.5 we can extend Example 2.1.

EXAMPLE 2.2. Let N ∈N, then the following sets are connected:

• RN, since RN = R×R× . . .×R,

• RN>0, since RN>0 := R>0 ×R>0 × . . .×R>0,

• RN>0, since RN>0 := RN>0,

• RN>0 \ {0}, since RN>0 ⊆ RN>0 \ {0} ⊆ RN>0(= RN>0).

The particular sets in Example 2.2 play a key role in multicriteria optimization and their

connectedness turns out to be of major importance in the next chapter.

Lemma 2.6 shows a useful property, namely that continuous images of a connected sets are

again connected.

LEMMA 2.6. Let M,N ∈N and let E ⊆ RM be connected. If the function f : E→ RN is continuous

then f(E) is connected.

Proof. Suppose f(E) is not connected, then there are two nonempty open O1,O2 ⊆ RN such

that

f(E) ⊆ O1 ∪O2, f(E)∩O1 6= ∅, f(E)∩O2 6= ∅, f(E)∩O1 ∩O2 = ∅.

Taking the preimage in the first condition we obtain

E ⊆ f−1(f(E)) ⊆ f−1(O1 ∪O2) = f
−1(O1)∪ f−1(O2),
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Since f(E)∩O1 6= ∅ there is a y ∈ f(E) and y ∈ O1. Hence we can find a x ∈ E with f(x) = y so

that x ∈ E∩ f−1(O1), which is thus nonempty. Similarly E∩ f−1(O2) 6= ∅. Also,

E∩ f−1(O1)∩ f−1(O2) ⊆ f−1(f(E))∩ f−1(O1)∩ f−1(O2) = f
−1(f(E)∩O1 ∩O2) = ∅.

Since f is continuous the sets f−1(O1) and f−1(O2) are open (Proposition 2.1), hence E is not

connected.

2.1.3 Compactness

In this section, some results concerning compactness in (RN,dN) are provided. Compactness

turns out to be of great importance in multicriteria optimization, in particular in combination

with continuity.

We start by defining an open cover,

DEFINITION 2.5 (Open cover). A collection {Oi}i∈I of open subsets of RN is called an open cover

of a set E ⊆ RN if

E ⊆
⋃
i∈I
Oi.

Here, I is some index set.

Now, we are able to define compactness,

DEFINITION 2.6 (Compactness). A subset E ⊆ RN is called compact if every open cover of E

contains a finite subcover. More explicitly, for every open cover {Oi}i∈I of E, there is a finite subset

J ⊆ I such that

E ⊆
⋃
j∈J
Oj.

Note that every finite set is compact which follows directly from the finiteness of the set.

One of the basic results concerning compact sets is that closed subsets of a compact set are

compact.

LEMMA 2.7. Suppose E is closed, F is compact and E ⊆ F ⊆ RN. Then E is compact.

Proof. See Rudin (1976) for a proof.

Similar to connectedness, a continuous function maps compact sets to compact sets.

LEMMA 2.8. Let M,N ∈ N and E ⊆ RM be compact. If f : E → RN is a continuous function then

f(E) is compact.

Proof. Let {Oi}i∈I be an open cover of f(E), that is

f(E) ⊆
⋃
i∈I
Oi.
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Since the preimages f−1(Oi) are open for all i ∈ I (Proposition 2.1) it holds that

E ⊆ f−1(f(E)) ⊆ f−1

(⋃
i∈I
Oi

)
=
⋃
i∈I
f−1(Oi),

so {f−1(Oi)}i∈I is an open cover of E. The compactness of E implies that there is a finite subset

J ⊆ I such that

E ⊆
⋃
j∈J
f−1(Oj),

hence

f(E) ⊆ f

⋃
j∈J
f−1(Oj)

 =
⋃
j∈J
f
(
f−1(Oj)

)
⊆
⋃
j∈J
Oj.

We may conclude that f(E) is compact.

While the above results hold for general metric spaces, the next famous result is restricted

to Euclidean spaces. This theorem, known as the Heine-Borel Theorem, characterizes compact

sets in Euclidean spaces.

THEOREM 2.9 (Heine-Borel). A set E ⊆ RN is compact if and only if E is closed and bounded.

Proof. A proof of this theorem can for instance be found in Rudin (1976).

Recall that a set E ⊆ RN is bounded if there is a x ∈ RN and r ∈ R>0 such that for all y ∈ Ewe

have dN(x,y) < r. As a consequence of Heine-Borel we have the following convenient result

which states that a continuous function on a compact set attains its minimum and maximum.

THEOREM 2.10. If E ⊆ RM is a nonempty compact set and f : E→ R is continuous then f attains its

minimum and maximum on E.

Proof. See Rudin (1976). Note that this follows directly from the Heine-Borel Theorem, as f(E)

is compact (Lemma 2.8) it is closed and bounded.

2.1.4 Convexity

Convexity is important in the field of optimization. Also in analysis the notion of convexity is

useful, in particular its relation with connectedness and continuity.

Let us start by defining convexity for subsets of RN.

DEFINITION 2.7 (Convex set). A set E ⊆ RN is called convex if for all x1, x2 ∈ E and α ∈ [0, 1] it

holds that

αx1 + (1 −α)x2 ∈ E.

As an immediate consequence, note that convex sets are always (path) connected.
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COROLLARY 2.11. If E ⊆ RN is convex then it is (path) connected.

Proof. For every x1, x2 ∈ E we define f : [0, 1] → E by f(α) = αx1 + (1 − α)x2 which is well

defined due to the convexity of E. The map f is continuous and satisfies f(0) = x1 and f(1) = x2.

Therefore, E is path connected hence also connected (Lemma 2.3).

In words, a set is convex if the line segment between any two points remains in the set itself.

Actually in R, a set E is convex if and only if it is (path) connected if and only if it is an interval.

Another basic results concerning convex sets is that the intersection of arbitrary many convex

sets is again convex.

PROPOSITION 2.12. For any family of convex sets {Ei}i∈I the set

⋂
i∈I
Ei

is convex.

Proof. Clear from the definition, see also Rockafellar (1970).

The notion of convexity is not only defined for sets but also for functions. Convex sets and

convex functions are closely related, see Rockafellar (1970).

DEFINITION 2.8 ((Strictly) convex function). Let E ⊆ RN be convex and let f : E → R be a

function. Then f is called

• convex if for all x1, x2 ∈ E and α ∈ [0, 1] it holds that

f(αx1 + (1 −α)x2) 6 αf(x1) + (1 −α)f(x2).

• strictly convex if for all x1, x2 ∈ E with x1 6= x2 and α ∈ (0, 1) it holds that

f(αx1 + (1 −α)x2) < αf(x1) + (1 −α)f(x2).

Note that the convexity of the set E guarantees that for every x1, x2 ∈ E and α ∈ [0, 1] we

have αx1 + (1 − α)x2 ∈ E, so that applying the function f to this element is a well defined

operation. Also note that every strictly convex function is convex.

Examples of convex functions that we will encounter are linear combinations of convex

functions and the maximum of a convex function.

LEMMA 2.13. Suppose E ⊆ RN is convex and fi : E → R is (strictly) convex for i ∈ [N]. for any

λ ∈ RN>0 \ {0} it holds that

1. the function
∑
i∈[N] λifi(x) is (strictly) convex,
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2. the function maxi∈[N]{λifi(x)} is convex.

Proof. See Boyd and Vandenberghe (2004) for a proof.

On an open domain, convexity turns out to be a stronger condition than continuity which

is often a useful property.

THEOREM 2.14. Let E ⊆ RN be open and let f : E→ R be convex, then f is continuous.

Proof. A proof of this fundamental result can be found in Rockafellar (1970).

Note that this theorem is false for a closed domain since f may be discontinuous at the

boundary points while maintaining convexity.

Another pleasant property of convex functions is that any local minimum is a global minimum.

. Recall that if E ⊆ RN is the domain of a function f : E→ R, then a point x̂ ∈ E is called

• a local minimum if there exists a η > 0 such that f(x̂) 6 f(x) for all x ∈ E∩B(x̂,η),

• a global minimum if f(x̂) 6 f(x) for all x ∈ E.

LEMMA 2.15. Let E ⊆ RN be a closed and convex set and let f : E→ R be convex. Then

1. any local minimum of f is a global minimum,

2. the solution set {x̂ ∈ E | f(x̂) = infx∈E f(x)} is closed and convex.

Proof. A proof can be found in Hiriart-Uruty and Lemaréchal (1993).

This property is exploited in single criteria minimization problems. When looking for the

minimum of a convex function, it suffices to find a local minimum.

For strictly convex functions the solution set has the following useful property.

LEMMA 2.16. Let E ⊆ Rn be convex and let f : E→ R be a strictly convex function, then the solution

set {x̂ ∈ E | f(x̂) = infx∈E f(x)} consists of at most one point.

Proof. See Rockafellar (1970) or Boyd and Vandenberghe (2004) for a proof.

This property is often used to guarantee uniqueness of a solution. We will also resort to this

lemma in the next chapter.

Convex optimization

A lot of theory is known for the single criteria optimization problems, see Hiriart-Uruty and

Lemaréchal (1993), Rockafellar (1970) and Boyd and Vandenberghe (2004). An important sub-

class is nonlinear convex optimization, which focuses on optimization problems of the form

min
x∈X

f0(x)

subject to gj(x) 6 0 j ∈ [q],
(2.1.5)
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where q ∈N, X ⊆ RM and for which the nonlinear objective function f0 : Rm → R is convex and

the nonlinear convex functions gj : Rm → R are convex for all j ∈ [q]. Some of the advantages

of convex optimization problems (2.1.5) are mentioned in Lemma 2.15 and Lemma 2.16. As a

consequence, algorithms searching for a local minimum can be used to find the actual global

minimum.

In this thesis, the method used for solving the nonlinear convex optimization problems

is based on the primal-dual interior-point method, see Breedveld (2013, chap. 11.8) and Wright

(1997). We will not discuss this method into further detail.

2.2 Zorn’s Lemma

In this section, Zorn’s Lemma is formulated according to Ehrgott (2005). We first define some

binary relations and the concept of a partially ordered set.

Let E be a set. A binary relation on E is a collection of ordered pairs of elements of E. We

denote a binary relation on E as �⊆ E× E. The binary relations needed for Zorn’s Lemma are

mentioned in Definition 2.9. We use the notation x1 � x2 for x1, x2 ∈ E if (x1, x2) ∈�.

DEFINITION 2.9 (Reflexivity, antisymmetry, transitivity and totality). A relation � on a set E is

called

• reflexive if x1 � x1 for all x1 ∈ E,

• antisymmetric if x1 � x2 and x2 � x1 imply x1 = x2 for all x1, x2 ∈ E,

• transitive if x1 � x2 and x2 � x3 imply x1 � x3 for all x1, x2, x3 ∈ E,

• total if x1 � x2 or x2 � x1 for all x1, x2 ∈ E.

With these relations we are able to define partially ordered sets and totally ordered sets.

DEFINITION 2.10 (Partially/totally ordered set). Let � be a binary relation on a set E. The pair

(E,�) is called

• a partially ordered set if � is reflexive, antisymmetric and transitive.

• a totally ordered set if � is antisymmetric, transitive and total,

A partially ordered set (E,�) is called inductively ordered if every totally ordered subset of (E,�)
(also called a chain in E) has a lower bound.

If A ⊆ E, then a lower bound l of A of a totally ordered set (E,�) satisfies l ∈ A and l � x for

all x ∈ A. An example of partially ordered sets are given in Example 2.3.
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EXAMPLE 2.3. For every N ∈ N, the pair (RN>0,6) is partially ordered. Here the relation 6 is

given by

x 6 x ′ if and only if xi 6 x
′
i, for all i ∈ [N],

where x = (x1, . . . , xN), x ′ = (x ′1, . . . , x ′N) ∈ RN>0.

Zorn’s Lemma can now be formulated.

THEOREM 2.17 (Zorn’s Lemma). If a partially ordered set (E,�) is inductively ordered, then E con-

tains a minimal element with respect to �, that is, there is a x̂ ∈ E such that x � x̂ implies x̂ � x for all

x ∈ E.

Often, Zorn’s Lemma is formulated differently as is the definition of inductively ordered.

Usually, in Definition 2.10 the word lower is replaced by upper and in Zorn’s Lemma the word

minimal is replaced with maximal. However, for every relation �we can define a relation �∗ by

x2 �∗ x1 if and only if x1 � x2,

where x1, x2 ∈ E. Zorn’s Lemma is formulated as in Theorem 2.17 since this is the context in

which Zorn’s Lemma will be applied.

Example 2.3 states that the pairs (RN>0,6) are partially ordered for every N ∈ N. This

observation will be important in the next chapter.
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CHAPTER 3

Multicriteria analysis

Some fundamental concepts and properties of multicriteria analysis will be covered in this

chapter. We first introduce a mathematical description of a multicriteria optimization problem.

Where in a regular single criteria optimization problem only one objective function needs to be

optimized, multiple objective functions (or criteria) need to be optimized simultaneously in a

multicriteria optimization problem. These functions are often conflicting, which means that an

improvement of one of the objectives leads to a deterioration of another.

Because of the often conflicting nature of the objective functions, there is no such concept as

an “optimal” solution in contrast to solutions of single criteria optimization problems. Instead,

compromises (or trade-offs) have to be made between the objective functions, so there are no

unique “optimal” solutions to (non-trivial) multicriteria optimization problems. In this chapter,

we will introduce several notions of optimality and show how they are related to each other.

After this basic framework of multicriteria optimization has been set, we will obtain ana-

lytical results concerning these notions of optimality. More specifically, we investigate the ex-

istence and connectedness of the optimality notions.

Before continuing, we note that the notation and terminology used in the literature varies

quite a bit. To mention some, Chankong and Haimes (1983), Ehrgott (2005), Mietinnen (1999)

and Sawaragi et al. (1985) each use different notations and terminology. To avoid confusion,

it is important to clarify the notation and terminology used in this thesis. The notation is cov-

ered in the Notation section of this thesis (of which we repeat the most important ones), the

terminology is discussed in this chapter and is according to Ehrgott (2005). The results derived

in this chapter can be found in Ehrgott (2005) and Sawaragi et al. (1985), of which the latter

presents the results in a more general context.

3.1 Multicriteria optimization framework

This section introduces the basic framework of multicriteria optimization. First, we introduce

the general form of a multicriteria optimization problem along with the terminology involved.
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Then, we define notions of optimality which are most common in practice. Examples will be

given to get more familiar with the optimality notions. We will see that we may have a rather

large set of points which are all considered “optimal”. On the other hand, it may be that a

multicriteria optimization problem does not contain any “optimal” point.

3.1.1 Formulation multicriteria optimization problem

The functions in a multicriteria optimization problem that need to be optimized are referred

to as criteria (often called objectives as well in the literature). A decision vector is a real vector in

which each entry represents a decision variable. We reservem ∈N and 1 < n ∈N as the num-

ber of decision variables and the number of criteria respectively. Furthermore, the corresponding

Euclidean spaces Rm and Rn are called the decision space and the criterion space respectively.

An index set that will be used extensively in this thesis is {1, 2, . . . ,N} for some N ∈ N,

therefore we introduce the following notation

[N] := {1, 2, . . . ,N}.

The n criteria are denoted as fi : Rm → R for i ∈ [n]. These criteria are combined in

the criterion vector function f : Rm → Rn given by f(x) = (f1(x), . . . , fn(x)), a function from

the decision space to the criterion space. An important, and often strict subset of the decision

space, is the feasible set which is the set of all possible points which satisfy the constraints of the

multicriteria optimization problem. The feasible set thus consists of all candidate solutions to

the optimization problem and is denoted by X ⊆ Rm. The corresponding set Y = f(X) ⊆ Rn

then represents the feasible set in the criterion space:

X := {x ∈ Rm | x is a feasible decision vector},

Y := {f(x) ∈ Rn | x ∈ X}. (3.1.1)

We refer to both X ⊆ Rm and Y ⊆ Rn as feasible sets, since it is clear that X corresponds to the

feasible set in the decision space and Y to the feasible set in the criterion space.

Now we can define a multicriteria optimization problem. Assume that all the criteria need

to be minimized simultaneously (this assumption can be made without loss of generality since

maximization can be achieved by negating the associated criteria). For a criterion vector func-

tion f : Rm → Rn and a feasible set X ⊆ Rm, the corresponding multicriteria minimization

problem is denoted as:

min
x∈X

f(x). (3.1.2)

It is unclear how to interpret the minimum in (3.1.2) since the minimum is taken over a

subset of Rn, where n > 1. The problem is that for certain outcomes we cannot determine

which one is preferred (which is no issue in one dimension). For example, if n = 2, and the
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two outcomes (1, 2) and (2, 1) are feasible then it is unclear which is better. As in Example 1.1,

subjectivity determines which outcome is preferred.

A multicriteria optimization problem (3.1.2) can thus have more than one solution. How-

ever, there are also outcomes for which we can decide which one is preferred (for example, if

n = 2, then (1, 1) is preferred over (2, 2)). This enables us to mathematically define optimality

for multicriteria optimization problems of the form (3.1.2). In the next part we will discuss

the most common notions of optimality. Examples will be given to clarify how the notions are

related.

3.1.2 Notions of optimality

As mentioned before, an “optimal” point is often not unique. The optimality notions serve

to reduce the feasible set (all candidate solutions) to a set of “optimal” points. For this set of

points, we are unable to objectively decide which one is best.

Before defining the notions of optimality, it is convenient to define generalized (in)equalities

for vectors. For two vectors x = (x1, x2, . . . , xn),y = (y1,y2, . . . ,yn) ∈ Rn we denote,

• x < y if and only if xi < yi for all i ∈ [n],

• x 6 y if and only if xi 6 yi for all i ∈ [n],

• x = y if and only xi = yi for all i ∈ [n].

In two dimensions, the inequalities are depicted in Figure 3.1.
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FIGURE 3.1: Vector inequalities in R2. In (a) the set of all x ∈ R2 with x < y is shown and in (b)
the set of all x ∈ R2 with x 6 y is shown.

Now, we can define the optimality notion which is most relevant in practice, namely the

notion of Pareto optimal and nondominated points.
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DEFINITION 3.1 (Pareto optimal/nondominated point). A feasible point x̂ ∈ X is called Pareto

optimal if there is no x ∈ X such that f(x) 6 f(x̂) and fj(x) < fj(x̂) for at least one j ∈ [n]. The set of

all Pareto optimal points is denoted as XP:

XP := {x̂ ∈ X | x̂ is Pareto optimal}.

A feasible point ŷ ∈ Y is called nondominated if there is a x̂ ∈ XP such that ŷ = f(x̂). The set of all

nondominated points is denoted as YN:

YN := f(XP) = {f(x̂) ∈ Y | x̂ ∈ XP}.

Nondominated points thus have the property that an improvement in one of the criteria

must lead to a deterioration in at least one of the other criteria. If, for example, all the outcomes

of a multicriteria optimization problem (3.1.2) are given by

f(x1) = (2, 2),

f(x2) = (1, 2),

f(x3) = (2, 1),

then x1 is not Pareto optimal and f(x1) is a dominated point (that is, f(x1) ∈ Y \ YN) since

(1, 2) 6 (2, 2) and 1 < 2. Here, points x2 and x3 are Pareto optimal and f(x1) and f(x2) are

nondominated∗.

Next, we define weakly Pareto optimal and weakly nondominated points which are closely re-

lated to the notions in Definition 3.1 (as one may have suspected).

DEFINITION 3.2 (Weakly Pareto optimal/weakly nondominated point). A feasible point x̂ ∈ X
is called weakly Pareto optimal if there is no x ∈ X such that f(x) < f(x̂). The set of all weakly Pareto

optimal points is denoted as XwP:

XwP := {x̂ ∈ X | x̂ is weakly Pareto optimal}.

A feasible point ŷ ∈ Y is called weakly nondominated if there is a x̂ ∈ XwP such that ŷ = f(x̂). The

set of all weakly nondominated points is denoted as YwN:

YwN := f(XwP) = {f(x̂) ∈ Y | x̂ ∈ XwP}.

In words, a weakly nondominated point is characterized by the property that not every

∗In the literature, for example in Chankong and Haimes (1983), Ehrgott (2005), Mietinnen (1999) and Sawaragi
et al. (1985), the same term for optimal point in both the decision and criterion space is used. We decided to use
the terminology in Ehrgott (2005), which distinguished optimal points in the decision and criterion space avoiding
confusion between two different types of points.
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criteria can be improved. For example, suppose all the outcomes are

f(z1) = (2, 2, 2),

f(z2) = (1, 2, 2),

f(z3) = (1, 1, 1),

then z1 is not weakly Pareto optimal and f(z1) is not weakly nondominated since (1, 1, 1) <

(2, 2, 2). While both z2 and z3 are weakly Pareto optimal and f(z2) and f(z3) are both weakly

nondominated, the only Pareto optimal point is z3 and f(z3) is the only nondominated point

since (1, 1, 1) 6 (1, 2, 2) and 1 < 2.

The last notion of optimality we introduce is called proper Pareto optimality. This notion

takes the trade-offs between the criteria into account. A trade-off is a measure for the ratio of

change in criteria values for two different decision vectors.

DEFINITION 3.3 (Trade-off). Let i, j ∈ [n] with i 6= j and x1, x2 ∈ X such that fj(x1) 6= fj(x2), then

the trade-off between fi and fj is given by

Λi,j(x
1, x2) :=

fi(x
1) − fi(x

2)

fj(x2) − fj(x1)
.

Note that Λi,j(x1, x2) = Λi,j(x
2, x1) and Λi,j(x1, x2)Λj,i(x

1, x2) = 1 for x1, x2 ∈ X (in case

the trade-offs are well defined). If, in addition, x1, x2 ∈ XP and f(x1) 6= f(x2) then there is a

pair i, j ∈ [n] (i 6= j) for which Λi,j(x1, x2) > 0. With the trade-offs, a decision maker (DM) can

compare the ratios of change between the criteria for two feasible decision vectors.

Now, we can define proper Pareto optimality. In words, the properly Pareto optimal set

consists of those Pareto optimal decision vectors for which the trade-offs are bounded.

DEFINITION 3.4 (Properly Pareto optimal, properly nondominated). A feasible point x̂ ∈ X is

called properly Pareto optimal if it is Pareto optimal (x̂ ∈ XP) and there exists anM ∈ R>0 such that

for all i ∈ [n] and x ∈ X with fi(x) < fi(x̂) there is at least one j ∈ [n] with fj(x̂) < fj(x) and

Λi,j(x̂, x) =
fi(x̂) − fi(x)

fj(x) − fj(x̂)
6M.

The set of all properly Pareto optimal points is denoted as XpP:

XpP := {x̂ ∈ X | x̂ is properly Pareto optimal}.

A feasible point ŷ ∈ Y is called properly nondominated if there is an x̂ ∈ XpP such that ŷ = f(x̂). The

set of all properly nondominated points is denoted as YpN:

YpN := f(XpP) = {f(x̂) ∈ Y | x̂ ∈ XpP}.
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Now that the notions of optimality are introduced, remark how they are related. First, note

that if a feasible point in the criterion space cannot be improved in any coordinate without

deteriorating in at least one of the others it certainly cannot be improved in all coordinates. So,

from Definition 3.1 and Definition 3.2 we may conclude that all Pareto optimal (nondominated)

points are also weakly Pareto optimal (weakly nondominated). Secondly, note that a properly

Pareto optimal point (Definition 3.4) is necessarily Pareto optimal. The same holds for a prop-

erly nondominated point. Summarized, the following inclusions hold:

XpP ⊆ XP ⊆ XwP,

YpN ⊆ YN ⊆ YwN. (3.1.3)

Next, we provide some examples to get more familiar with these notions of optimality.

First, we show that the inclusions (3.1.3) can be strict for Pareto optimal and weakly Pareto

optimal points. In fact, it may occur that XP and YN are empty (no Pareto optimal and nondom-

inated points) while XwP and YwN are rather large (a lot of weakly Pareto optimal and weakly

nondominated points). Such a situation is sketched in Example 3.1.

EXAMPLE 3.1. Suppose that the feasible set is X = R \ {0}. Consider the criteria f1, f2 : R → R

given by:

f1(x) = max(1, x+ 1),

f2(x) = max(2, 2 − x). (3.1.4)

The criteria are plotted in Figure 3.2.
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FIGURE 3.2: The two criteria (3.1.4). The feasible set is X = R \ {0} and the decision space is R.

First, we identify the feasible set in the criterion space. When x < 0 we have f1(x) = 1 and
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f2(x) = 2 − x, while for x > 0 we have f1(x) = x+ 1 and f2(x) = 2. When we substitute y1 for

f1(x) and y2 for f2(x), observe that the feasible set Y in the criterion space R2 is given by

Y = {(1,y2) ∈ R2 | y2 > 2}∪ {(y1, 2) ∈ R2 | y1 > 1}.

The feasible set Y ⊆ R2 in the criterion space is depicted in Figure 3.3. Next, we identify the

0 2 4 6 8 10
0

2

4

6

8

10

y1

y2

FIGURE 3.3: The feasible set Y = f(X) in the criterion space, where the criteria are given by
(3.1.4). Note that (y1,y2) = (1, 2) is not feasible since x = 0 is not a feasible decision variable.

weakly Pareto optimal, Pareto optimal and proper Pareto optimal set.

Observe from Figure 3.3 that if a feasible point can be improved in y1 it cannot be improved

in y2 and vice versa. For example, every point (1,y2) ∈ Y (where y2 > 2) can be improved (in

f2(x)) by the feasible point
(
1, 2 + y2

2

)
. This means that every feasible point is weakly Pareto

optimal (weakly nondominated), so

XwP = X,

YwN = Y.

Figure 3.3 also shows that for every feasible point, either y1 or y2 can be improved but not

both. This means that there are no Pareto optimal or nondominated points, so

XP = ∅,

YN = ∅.

Since there are no Pareto optimal or nondominated points it follows directly from the inclu-
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sions (3.1.3) that there are no proper Pareto optimal or proper nondominated points, so

XpP = ∅,

YpN = ∅.

In Example 3.1 the criteria are not conflicting making it somewhat trivial. However, it shows

that it is theoretically possible that the sets XwP \XP and YwN \ YN can be rather large, meaning

that there are a lot weakly Pareto optimal points which are not Pareto optimal. In Example 3.1,

there are no Pareto optimal points while all feasible points are weakly Pareto optimal.

In the following example we show that it is also possible for the properly Pareto optimal set

to be empty while the Pareto optimal set is rather large.

EXAMPLE 3.2. Let X = (0,∞) and suppose that the criteria f1, f2 : R→ R are given by:

f1(x) = −x,

f2(x) = −
1
x

. (3.1.5)

Similarly as in Example 3.1, the feasible set Y in the criterion space is determined:

Y = {(y1,y2) ∈ R2 | y1 < 0, y2 = 1/y1}. (3.1.6)

Both the criteria and the feasible set Y are visualized in Figure 3.4.
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FIGURE 3.4: (a) The two criteria (3.1.5) and (b) the feasible set Y (3.1.6) in the criterion space.

Now, we will identify the optimal sets. In this example, note that f1 is strictly decreasing

and f2 is strictly increasing on the feasible set X = (0,∞) (Figure 3.4). Therefore, the Pareto

optimal set is X (and the nondominated set is Y). From the inclusions (3.1.3) it then follows that
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the weak Pareto optimal set is also X (and the weakly nondominated set is Y),

XwP = XP = X,

YwN = YN = Y.

Next, we show that none of the Pareto optimal points x̂ ∈ XP are properly Pareto optimal.

LetM ∈ R>0 and define x := (M+ 1)/x̂ ∈ X, then we have

Λ1,2(x̂, x) =
f1(x̂) − f1(x)

f2(x) − f2(x̂)
=

−x̂+ x

− 1
x +

1
x̂

= xx̂ =M+ 1 > M.

So for every M ∈ R>0 we can always find an x ∈ X such that the trade-off Λ1,2(x, x̂) is larger

thanM. We may conclude that there are no proper Pareto optimal points (or proper nondomi-

nated points), so

XpP = ∅,

YpN = ∅.

Example 3.2 shows it is possible to have a lot of Pareto optimal points which are not prop-

erly Pareto optimal. However, under certain conditions (including convexity of the criteria),

this cannot happen which is shown later on in this chapter. Note that criterion f2 in Exam-

ple 3.2 is not convex.

In the next example, almost all Pareto optimal points are also properly Pareto optimal.

EXAMPLE 3.3. Let X = [0, 1] and let the criteria f1, f2 : R→ R be given by:

f1(x) = 1 − x,

f2(x) = 1 −
√

1 − x2. (3.1.7)

Here, the feasible set Y in the criterion space is a quarter of the unit circle with center (1, 1):

Y = {(y1,y2) ∈ R2 | (y1 − 1)2 + (y2 − 1)2 = 1, 0 6 y1,y2 6 1}. (3.1.8)

The criteria and the set Y are depicted in Figure 3.5.

Next, we determine the optimal sets beginning with the weakly Pareto optimal set. For the

same reason as in Example 3.2 (f1 is strictly decreasing and f2 is strictly increasing) we may

conclude that the Pareto optimal set is X (and the nondominated set is Y). Combined with the
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FIGURE 3.5: (a) The two criteria (3.1.7) and (b) the feasible set Y (3.1.8) in the criterion space.

inclusions (3.1.3), we have

XwP = XP = X,

YwN = YN = Y.

More complicated in this example, is identifying the properly Pareto optimal points. All

points in X = [0, 1] are candidate points since all of these points are Pareto optimal. Thus, we

need to check whether the trade-offs are bounded (see Definition 3.4). Consider the following

cases:

• x̂ = 0, which is not properly Pareto optimal. LetM ∈ R>0, for L =M+ 1 define

x := 2L/(L2 + 1) ∈ X.

Then the trade-off

Λ1,2(x̂, x) =
f1(x̂) − f1(x)

f2(x) − f2(x̂)

=
x

1 −
√

1 − x2

=
2L

(L2 + 1)(1 −
√

1 − ( 2L
L2+1)

2)

=
2L

(L2 + 1)(1 − L2−1
L2+1)

= L > M,
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is not bounded by any M ∈ R>0. We may conclude that x̂ = 0 is not properly Pareto

optimal and (1, 0) is not properly nondominated.

• x̂ = 1 is not properly Pareto optimal either. LetM ∈ R>0, for L =M+ 1 define

x := (L2 − 1)/(L2 + 1) ∈ X. Then the trade-off

Λ2,1(x̂, x) =
f2(x̂) − f2(x)

f1(x) − f1(x̂)

=

√
1 − x2

1 − x

=

√
1 − (L

2−1
L2+1)

2

1 − L2−1
L2+1

=
2L
L2+1

2
L2+1

= L > M,

is not bounded by anyM ∈ R>0. Consequently, x̂ = 1 is not properly Pareto optimal and

(0, 1) is not properly nondominated.

• 0 < x̂ < 1, are all properly Pareto optimal. Fix such a x̂ ∈ (0, 1), then we need to verify

that the trade-offs Λ1,2 and Λ2,1 are bounded.

To check if Λ1,2 is bounded, we only need to check those x ∈ X for which f1(x) < f1(x̂)

and f2(x̂) < f2(x) (see Definition 3.4). These inequalities hold for x ∈ (x̂, 1], see Figure 3.5.

So, we need to check if the trade-off

Λ1,2(x̂, x) =
f1(x̂) − f1(x)

f2(x) − f2(x̂)

=
x− x̂√

1 − x̂2 −
√

1 − x2
,

is bounded for all x ∈ (x̂, 1]. The trade-off Λ1,2 is well defined for all x ∈ (x̂, 1], and is a

decreasing function of x. The only problem that might occur is that the trade-off becomes

unbounded if x ↓ x̂. We thus need to check if this limit exists. With l’Hôpital’s rule:

lim
x↓x̂

Λ1,2(x̂, x) = lim
x↓x̂

x− x̂√
1 − x̂2 −

√
1 − x2

= lim
x↓x̂

√
1 − x2

x

=

√
1 − x̂2

x̂
, if x̂ 6= 0.

So the trade-off Λ1,2 is bounded byM =
√

1 − x̂2/x̂ provided that x̂ 6= 0 (which is the case

since x̂ ∈ (0, 1)).
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Similarly, we find that Λ2,1 is bounded by M = x̂/
√

1 − x̂2 provided that x̂ 6= 1 (which is

the case since x̂ ∈ (0, 1)).

We may conclude that

XpP = (0, 1),

YpN = Y \ {(1, 0), (0, 1)}.

Note that in the previous 3 examples, the decision space is one-dimensional. In practice,

the decision space often is a multi-dimensional interval. Consequently, the feasible sets look

differently. Therefore, we give an example where both the decision and criterion space is two-

dimensional.

EXAMPLE 3.4. Consider the feasible set X = [0, 20]× [0, 10] and criteria f1, f2 : R2 → R given

by:

f1(x1, x2) =
1
2
x1 + x2 + 1,

f2(x1, x2) = max
(

2, 8 − x1,
1
2
x1 − 2

)
. (3.1.9)

The criteria are shown in Figure 3.6.
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FIGURE 3.6: The two criteria (3.1.9), (a) shows f1 and (b) shows f2. The feasible set in the
decision space R2 is given by X = [0, 20]× [0, 10].

First, we determine the feasible set Y in the criterion space which is more complicated than

in the previous examples. For a fixed x2 ∈ [0, 10], we eliminate the x1-variable in the criteria

y1 = f1(x1, x2) and y2 = f2(x1, x2). Then x1 = 2y1 − 2x2 − 2 and x1 ∈ [0, 20] if and only if

y1 ∈ [1+ x2, 11+ x2]. Substituting x1 in y2 gives y2 = max(2, 10− 2y1 + 2x2,y1 − x2 − 3). So, for
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a fixed x2 ∈ [0, 10] the feasible set Yx2 in the criterion space is given by:

Yx2 = {(y1,y2) ∈ R2 | y1 ∈ [1 + x2, 11 + x2], y2 = max(2, 10 − 2y1 + 2x2,y1 − x2 − 3)}.

In Figure 3.7, the set Yx2 is depicted in the criterion space for several values of x2.
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FIGURE 3.7: The sets Yx2 for x2 ∈ {0, 5, 10}. Observe that the set Yx2 shifts horizontally as x2
increases.

The feasible set Y in the criterion space is then given by the union over x2 ∈ [0, 10] of the

sets Yx2 :

Y =
⋃

x2∈[0,10]

Yx2 ,

and is shown in Figure 3.8.

Next we identify the (weakly) nondominated set using Figure 3.8. For points on the lower

left part of the feasible set Y, it is impossible to improve both criteria. In Figure 3.8, this is on the

line segments between the points (1, 8),(4, 2) and (4, 2), (15, 2) in the criterion space. The union

of these line segments thus represent the weakly nondominated set YwN. The nondominated

set YN, is just the line segment which connects the points (1, 8) and (4, 2) in the criterion space.

In set notation:

YwN = {(y1,y2) ∈ R2 | y1 ∈ [1, 15], y2 = max(2, 10 − 2y1)},

YN = {(y1,y2) ∈ R2 | y1 ∈ [1, 4], y2 = 10 − 2y1}.
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FIGURE 3.8: The feasible set Y in the criterion space. Observe that the set of (weakly) nondom-
inated points is located on the lower left part of the feasible set.

The corresponding (weakly) Pareto optimal points are given by

XwP = ([0, 6]× {0})
⋃ ⋃

x2∈[0,10]

[6, 8]× {x2}

 ,

XP = [0, 6]× {0}.

Furthermore, it can be verified that the trade-offs are bounded since both criteria are linear,

so all the Pareto optimal points are also properly Pareto optimal:

XpP = XP,

YpN = YN.

Example 3.4 shows that the (weakly) nondominated set is easy to identify once the feasible

set Y in the criterion space is known explicitly. Namely, the (weakly) nondominated points are

located on the (lower left) edge of Y. Mathematically this means that we expect the weakly

nondominated points to be on the boundary of Y. Actually, this must be the case. To prove this,

it is convenient to represent the (weakly) nondominated set as follows

YwN = {ŷ ∈ Y | there is no y ∈ Y such that y < ŷ}

YN = {ŷ ∈ Y | there is no y ∈ Y with y 6= ŷ such that y 6 ŷ}. (3.1.10)

Now, the statement can be proven.

PROPOSITION 3.1. YwN ⊆ bd Y.
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Proof. If ŷ /∈ bd Y = Y \ int Y then we must have ŷ ∈ int Y. Hence, there is a η > 0 such that

B(ŷ,η) ⊆ Y. Take h = (η/2, . . . ,η/2) ∈ B(0,η)∩Rn>0 and let y = ŷ−h ∈ B(ŷ,η). Now, we have

found a y ∈ Y such that y < ŷ. This means ŷ /∈ YwN.

Remark. Immediate consequences of Proposition 3.1 are

1. YN ⊆ bd Y, since YN ⊆ YwN.

2. YN = YwN = ∅, if Y is an open set.

We can even say more about the location of (weakly) nondominated points, namely that

they are located at the lower left part the feasible set Y. To express this mathematically, it is

convenient to introduce the following notation (see also in the Notation section) for integers

N ∈N:

RN>0 := {x ∈ RN | x > 0},

RN>0 := {x ∈ RN | x > 0},

which are the nonnegative and positive orthants of RN, see Figure 3.9 for the two-dimensional

case. With this notation, stating that the (weakly) nondominated points are located at the lower
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FIGURE 3.9: The nonnegative and positive orthants in R2. In (a) the set R2
>0 is shown and in

(b) the set R2
>0 is shown.

left part the feasible set Y can be expressed as follows:

YwN = (Y + Rn>0)wN,

YN = (Y + Rn>0)N.
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Now that we are familiar with the definitions of optimality, we can analyze them further.

First, we investigate under which circumstances we can guarantee the existence of (weakly)

Pareto optimal points (as we have seen in Example 3.1, this is not trivial). Then, we investigate

connectedness properties of the optimal sets.

3.2 Existence of optimal points

In this section, we provide sufficient conditions which guarantee the existence of optimal points

for multicriteria optimization problems of the form:

min
x∈X

f(x).

An optimal point for such a multicriteria optimization problem can be interpreted in various

ways of which some have been discussed in the last section. Here, the focus is on the existence

of weakly Pareto optimal points (Definition 3.2) and Pareto optimal points (Definition 3.1). In

other words, we focus on providing conditions that guarantee nonemptyness of the optimal

sets XwP, YwN, XP and YN. Later on in this chapter we also consider the existence of properly

Pareto optimal points.

We start with investigating nonemptyness the existence of weakly Pareto optimal points.

After that, we do the same for Pareto optimal points.

3.2.1 Existence of weakly Pareto optimal points

Here, we search for conditions that guarantee nonemptyness of the weakly Pareto optimal set

and the weakly nondominated set, XwP and YwN, respectively. It is convenient to consider the

set of weakly nondominated points YwN first. Then, by the basic principles of continuity and

compactness (see Chapter 2), results are derived for the Pareto optimal set XwP.

We prove that nonemptyness and compactness of the feasible set Y in the criterion space

guarantees the existence of weakly nondominated points.

THEOREM 3.2. If the feasible set Y ⊆ Rn in the criterion space is a nonempty compact set then

YwN 6= ∅.

Proof. This proof is by contradiction. Obviously, if Y = ∅ then YwN = ∅, which is why we need

the condition that Y is nonempty.

Suppose YwN = ∅. This means that for every y ′ ∈ Y there is a y ∈ Y such that y < y ′, so

Y ⊆
⋃
y∈Y

(y+ Rn>0). (3.2.1)

Since Rn>0 is open (and thus, y+ Rn>0 is open for every y ∈ Y), the collection of sets {y+
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Rn>0}y∈Y in (3.2.1) is an open cover of Y. The compactness of Y implies that there is a k ∈ N

such that

Y ⊆
⋃
i∈[k]

(yi + Rn>0), (3.2.2)

for some y1, . . . ,yk ∈ Y.

Now, fix a j0 ∈ [k]. We then have yj0 ∈ Y and so yj0 ∈
⋃
i∈[k](y

i + Rn>0). Certainly, it holds

that yj0 /∈ yj0 + Rn>0 so there must be at least one j1 ∈ [k] \ {j0} such that yj0 ∈ yj1 + Rn>0 which

implies yj1 < yj0 .

For j1 ∈ [k] \ {j0} we also have yj1 ∈ Y. The same reasoning as above implies that there must

be at least one j2 ∈ [k] \ {j0, j1} such that yj1 ∈ yj2 + Rn>0 and so yj2 < yj1 . Due to the finiteness

of the set [k], this argument can be repeated and we arrive at the following chain of inequalities:

yjk < yjk−1 < . . . < yj2 < yj1 < yj0 . (3.2.3)

But now, yjk ∈ Y and yjk /∈
⋃
i∈[k](y

i + Rn>0) which contradicts the compactness of Y.

Now that we have established Theorem 3.2, we impose a continuity assumption on the

criterion vector function f to guarantee the existence of weakly Pareto optimal decision vectors.

COROLLARY 3.3. If the feasible set X ⊆ Rm in the decision space is a nonempty and compact set and

the criterion vector function f : Rm → Rn is continuous, then XwP 6= ∅.

Proof. Since X is nonempty, so is Y = f(X). Also Y must be compact due to the compactness of

X and continuity of f (Lemma 2.8). Theorem 3.2 now implies that YwN = f(XwP) is nonempty

so that XwP 6= ∅.

As we have seen in Example 3.1, it may happen that there are a lot of weakly Pareto optimal

points while there are no Pareto optimal points. Important to notice (in Example 3.1) is that the

feasible set X = R \ {0} is not compact, however there are plenty of weakly Pareto optimal

points. The condition that the feasible set X is compact in Corollary 3.3 thus is not necessary

for the existence of weakly Pareto optimal points. Similarly, the condition that the feasible set

Y in the criterion space is compact in Theorem 3.2 is not a necessary condition for the existence

of weakly nondominated points.

3.2.2 Existence of Pareto optimal points

We now focus on existence results for Pareto optimal points. Again, we will first derive exis-

tence results for the nondominated set YN and then impose conditions on the criterion vector

function f to obtain existence results for the Pareto optimal set XP.

Furthermore, once we have found a sufficient condition for the existence of nondominated

points we will investigate if we can impose less restrictive sufficient conditions. This has been
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studied by numerous mathematicians. Here, we present results of Borwein (1983), Hartley

(1978) and Corley (1980)†, where Hartley’s result is actually a special case of Corley’s.

First of all, notice that the proof used in the last section does not work in this case. In order

to use the same argument as in the proof of Theorem 3.2, assume YN = ∅ and cover Y as

follows,

Y ⊆
⋃
y∈Y

(y+ Rn>0 \ {0}). (3.2.4)

But now, the sets y+ Rn>0 \ {0} are not open. So (3.2.4) does not provide us with an open cover

hence we cannot use the compactness of Y to reduce its coverage by a finite union.

However, the condition that Y is compact and nonempty is still sufficient to guarantee exis-

tence of a nondominated point. This is proved in Theorem 3.4.

THEOREM 3.4. If the feasible set Y ⊆ Rn in the criterion space is a nonempty compact set then YN 6= ∅.

Proof. In this proof we use an appropriate continuous mapping and Theorem 2.10.

Define the mapping U : Y → R by

U(y) =
∑
i∈[n]

yi. (3.2.5)

Since Y is a nonempty compact set and the mapping (3.2.5) is continuous, we may apply Theo-

rem 2.10. So U attains its minimumM ∈ R on the set Y, meaning that there is a ŷ ∈ Y such that

U(ŷ) =M.

We claim that ŷ ∈ YN. Suppose not, then there is a y ∈ Y such that y 6 ŷ and yj < ŷj for at

least one j ∈ [n]. Consequently ∑
i∈[n]

yj <
∑
i∈[n]

ŷj,

hence U(y) < U(ŷ) =M. Since y ∈ Y andM is the minimum of U over Y, we have a contradic-

tion. It thus must be that ŷ ∈ YN.

Note that this proof also works for Theorem 3.2. As in the previous section, we can conclude

that XP 6= ∅ if X is a nonempty compact set and f is continuous.

The remainder of this section is devoted to impose less restrictive sufficient conditions that

guarantee existence of Pareto optimal and nondominated points. To do so, we introduce Rn>0-

compactness and Rn>0-semicompactness for sets which should be seen as weaker forms of com-

pactness.

DEFINITION 3.5 (Rn>0-(semi)compactness). Let Y ⊆ Rn then Y is called

1. Rn>0-compact if (y− Rn>0)∩ Y is compact for all y ∈ Y.

†In these articles, the results are provided in a more general setting.
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2. Rn>0-semicompact if every open cover of Y of the form

{Oi}i∈I = {Rn \ (yi − Rn>0)}i∈I

has a finite subcover. Here, I is an index set and yi ∈ Y for all i ∈ I.

To get a idea of the relations between these different concepts, consider the next proposition.

PROPOSITION 3.5. Let Y ⊆ Rn, then

Y is compact ⇒ Y is Rn>0-compact ⇒ Y is Rn>0-semicompact.

Proof. The implications can be proven as follows:

• Suppose Y is compact. Then for all y ∈ Y, the set (y− Rn>0) ∩ Y is a closed subset of Y.

Lemma 2.7 implies that all of these sets must be compact. Hence Y is Rn>0-compact.

• Suppose Y is Rn>0-compact. We need to show that every open cover of Y of the form

{Oi}i∈I = {Rn \ (yi − Rn>0)}i∈I

has a finite subcover. Here, I is an index set and yi ∈ Y for all i ∈ I.

Let yk ∈ Y be arbitrary, then

Y ⊆
⋃
i∈I
Oi if and only if

(
(Rn \Ok)∩ Y

)
⊆

⋃
i∈I\{k}

Oi.

Note (Rn \Ok) ∩ Y = (yk − Rn>0) ∩ Y. Since yk ∈ Y and Y is Rn>0-compact there exists a

finite J ⊆ I such that (
(yk − Rn>0)∩ Y

)
⊆
⋃
j∈J
Oj.

Therefore Y can be covered as:

Y ⊆
⋃

j∈J∪{k}

Oj.

We may conclude that Y is Rn>0-semicompact.

The following result is due to Hartley (1978).

THEOREM 3.6 (Hartley). If the feasible set Y ⊆ Rn in the criterion space is a nonempty Rn>0-compact

set then YN 6= ∅.
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Proof. The proof is similar to the proof of Theorem 3.4.

Y is nonempty, so we can take a y ∈ Y and define the set

Y ′ := (y− Rn>0)∩ Y. (3.2.6)

Since Y is Rn>0-compact we know that Y ′ is compact. Define the function U as in (3.2.5), only

now with domain Y ′. We can proceed as in the proof of Theorem 3.4 and may conclude YN 6=
∅.

Actually, Borwein (1983) states that Theorem 3.6 also holds when you have only one y ∈ Y
for which (y− Rn>0)∩ Y is compact.

THEOREM 3.7 (Borwein). If the feasible set Y ⊆ Rn in the criterion space is nonempty and there is a

y ∈ Y such that (y− Rn>0)∩ Y is compact, then YN 6= ∅.

Proof. Straightforward, the proof given for Theorem 3.6 remains valid with Y ′ as in (3.2.6).

So if a nonempty compact subsection of Y can be found, then we may conclude that YN

is nonempty. It is also possible to guarantee the existence of nondominated points when Y is

nonempty and Rn>0-semicompact. We will prove this with Zorn’s Lemma. As an intermediate

result, we show that under these conditions the pair (Y,6) is inductively ordered.

LEMMA 3.8. If the feasible set Y ⊆ Rn in the criterion space is a nonempty Rn>0-semicompact set then

(Y,6) is inductively ordered.

Proof. We prove by contradiction.

Suppose (Y,6) is not inductively ordered. Then there exists a chain Y ′ = {yi | i ∈ I} in Y

with no lower bound. This implies that

⋂
i∈I

(
(yi − Rn>0)∩ Y

)
= ∅, (3.2.7)

since any element in this set would be a lower bound.

Since the set (3.2.7) is empty, it holds that for every y ∈ Y there is a yi ∈ Y ′ such that

y /∈ yi − Rn>0. Define the collection of open sets {Oi}i∈I = {Rn \ (yi − Rn>0)}i∈I then {Oi}i∈I is

an open cover of Y,

Y ⊆
⋃
i∈I
Oi.

Because Y is Rn>0-semicompact there exists a finite J ⊆ I such that

Y ⊆
⋃
j∈J
Oj.
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Notice that for every two sets in {Oi}i∈I we have

Oj ⊆ Ok if and only if yk 6 yj.

Since Y ′ is totally ordered, ({Oi}i∈I,⊆) must be as well.

Combining these observations, we know that ({Oj}j∈J,⊆) is a finite totally ordered set so

there must be a minimal set, say Ol in {Oj}j∈J, such that

Y ⊆ Ol = Rn \ (yl − Rn>0).

But now, yl /∈ Y while yl ∈ Y ′ which is absurd.

The crucial part of the proof of Lemma 3.8 is that a finite totally ordered set (nonempty) has

a minimal element. The following result is now easily verified and is due to Corley (1980).

THEOREM 3.9 (Corley). If the feasible set Y ⊆ Rn in the criterion space is a nonempty Rn>0-semicompact

set then YN 6= ∅.

Proof. Lemma 3.8 implies that (Y,6) is inductively ordered. Zorn’s Lemma implies that Y

contains a minimal element ŷ ∈ Y. It must be that ŷ ∈ YN since otherwise there would be a

y ∈ Y \ {ŷ} with y 6 ŷ contradicting the minimality of ŷ in Y.

Note that the conditions for Theorem 3.9 are less restrictive than the conditions in Theo-

rem 3.4, Theorem 3.6 and Theorem 3.7, but may be harder to check.

As mentioned before, XP 6= ∅ if X is a nonempty compact set and f is continuous. However,

a less restrictive condition can be imposed on the criteria function f while the result remains

true. For this matter, we introduce the concept Rn>0-semicontinuity for functions.

DEFINITION 3.6 (Rn>0-semicontinuity). A function f : Rm → Rn is called Rn>0-semicontinuous

if the sets

f−1 (y− Rn>0
)
= {x ∈ Rm | f(x) ∈ y− Rn>0}

are closed for all y ∈ Rn.

With this concept, a similar statement as Lemma 2.8 can be proven.

LEMMA 3.10. If the feasible set X ⊆ Rm in the decision space is a nonempty compact set, and the

criterion vector function f : Rm → Rn is Rn>0-semicontinuous then the feasible set Y ⊆ Rn in the

criterion space is Rn>0-semicompact.

Proof. This proof is similar to the proof of Lemma 2.8.

Now, we also have less restrictive conditions that guarantee existence of Pareto optimal

points.
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COROLLARY 3.11. If the feasible set X ⊆ Rm in the decision space is a nonempty compact set and the

criterion vector function f : Rm → Rn is Rn>0-semicontinuous, then XP 6= ∅.

Proof. By Lemma 3.10, Y = f(X) is Rn>0-semicompact. Since Y is also nonempty, we may use

Theorem 3.9 which implies that YN is nonempty. Hence XP 6= ∅.

Since the inclusions (3.1.3) hold in general, Corollary 3.11 also imposes less restrictive con-

ditions for the existence of weakly Pareto optimal and weakly nondominated points as is men-

tioned in the next remark.

Remark. If the feasible set X ⊆ Rm in the decision space is a nonempty compact set and the

criterion vector function f : Rm → Rn is Rn>0-semicontinuous, then XwP, XP, YwN and YN are

nonempty.

3.3 Connectedness of the optimal sets

In this section, the aim is to obtain results on connectedness of the Pareto optimal and non-

dominated set. Again, we will first focus on the nondominated set. We investigate to what

extent a weighted sum scalarization can generate parts of the nondominated set. A weighted sum

scalarization of a multicriteria optimization problem

min
x∈X

f(x),

is given by

min
x∈X

∑
i∈[n]

λifi(x) = min
x∈X

λT f(x), (3.3.1)

with respect to the decision space and given by

min
y∈Y

∑
i∈[n]

λiyi = min
y∈Y

λTy, (3.3.2)

with respect to the criterion space. Here, λ = (λ1, . . . , λn) and λT denotes its transpose.

Since we are minimizing the criteria, it only makes sense to use λ = (λ1, . . . , λn) ∈ Rn>0 \ {0}.

For a geometric interpretation of the single criterion optimization problem (3.3.1), see Fig-

ure 4.1. For a fixed λ ∈ Rn>0 \ {0}, we define the set

WS(λ, Y) := {ŷ ∈ Y | λT ŷ 6 λTy for all y ∈ Y}. (3.3.3)
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We also define the following sets:

WS(Y) :=
⋃

λ∈Rn>0

WS(λ, Y),

WS0(Y) :=
⋃

λ∈Rn>0\{0}

WS(λ, Y). (3.3.4)

The sets (3.3.4) turn out to have some key properties that we will need to prove the connected-

ness of the optimal sets. These properties are given in the next section.

3.3.1 Weighted sum scalarization

The question rises what the relation between the (weakly, properly) nondominated set and the

setsWS(Y) andWS0(Y) is. More specifically:

• Are the points of WS(Y) and WS0(Y) weakly nondominated, nondominated or even

properly nondominated?

• Are all of the weakly nondominated, nondominated or properly nondominated points

included in the setsWS(Y) andWS0(Y)?

We start with a simple observation.

LEMMA 3.12. For the feasible set Y ⊆ Rn, it holds thatWS0(Y) ⊆ YwN.

Proof. Let ŷ ∈ Y. Suppose ŷ /∈ YwN, then there exists a y ∈ Y such that y < ŷ. This implies

∑
i∈[n]

λiyi <
∑
i∈[n]

λiŷi, for all λ ∈ Rn>0 \ {0}.

So ŷ /∈WS(λ, Y) for all λ ∈ Rn>0 \ {0} hence ŷ /∈WS0(Y).

This means that for every ŷ ∈ Y for which there is a λ ∈ Rn>0 \ {0} so that ŷ is the solution to

problem (3.3.2), we have ŷ ∈ YwN.

The converse does not need to hold unless we impose a convexity condition on the set Y.

Actually, it is sufficient for the lower left part of Y to be convex, a property which is called

Rn>0-convexity.

DEFINITION 3.7 (Rn>0-convexity). Let Y ∈ Rn be a set, then Y is called Rn>0-convex if the set

Y + Rn>0 is convex.

Note that if Y ⊆ Rn is convex then it is definitely Rn>0-convex. This follows since both sets

Y and Rn>0 are convex hence their sum is also convex.

THEOREM 3.13. If the feasible set Y ⊆ Rn is Rn>0-convex then YwN ⊆WS0(Y).
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Proof. See Ehrgott (2005) for a proof.

Next, we investigate which conclusions can be drawn if λ ∈ Rn>0. For the set WS(Y), a

straightforward observation can be made.

LEMMA 3.14. For the feasible set Y ⊆ Rn, it holds thatWS(Y) ⊆ YN.

Proof. Let ŷ ∈ Y. Suppose ŷ /∈ YN then there is a y ∈ Y such that y 6 ŷ and yj < ŷj for at least

one j ∈ [n]. Consequently,

∑
i∈[n]

λiyi <
∑
i∈[n]

λiŷi, for all λ ∈ Rn>0.

So ŷ /∈WS(λ, Y) for all λ ∈ Rn>0 hence ŷ /∈WS(Y).

Lemma 3.14 thus means that for every ŷ ∈ Y for which there is a λ ∈ Rn>0 so that ŷ is the

solution to problem (3.3.2), we have ŷ ∈ YN. Note the difference with Lemma 3.12. Apparently,

if λ > 0 we can guarantee that solving problem (3.3.2) generates a nondominated point, while

solving problem (3.3.2) for some λ ∈ Rn>0 \ {0} only guarantees a weakly nondominated point.

Actually, when λ > 0 we can guarantee that the solution of problem (3.3.2) is a properly

nondominated point.

THEOREM 3.15. For the feasible set Y ⊆ Rn, it holds thatWS(Y) ⊆ YpN.

Proof. For ŷ ∈ Y with ŷ ∈ WS(Y), we know ŷ ∈ YN by Lemma 3.14. It thus remains to show

that all trade-offs are bounded.

We claim that for an arbitrary λ ∈ Rn>0, all trade-offs are bounded by

Mλ := (n− 1) max
k,l∈[n]

λk
λl

.

Note thatMλ > 0 since n > 1 and λ ∈ Rn>0. IfMλ would not be a suitable bound, then there is

an i ∈ [n] and y ∈ Y with yi < ŷi such that for all j ∈ [n] with ŷj < yj we have

ŷi − yi
yj − ŷj

> Mλ.

This implies

ŷi − yi > (yj − ŷj)Mλ

= (n− 1)(yj − ŷj) max
k,l∈[n]

λk
λl

> (n− 1)(yj − ŷj)
λj

λi
.
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Note that the above does not only hold for those j ∈ [n] with ŷj < yj but for all j ∈ [n] \ {i} since

ŷi − yi > 0. So
λi
n− 1

(ŷi − yi) > λj(yj − ŷj), for all j ∈ [n] \ {i}.

Summing up these n− 1 inequalities leads to

λi(ŷi − yi) >
∑

j∈[n]\{i}

λj(yj − ŷj).

Or ∑
i∈[n]

λiŷi >
∑
i∈[n]

λiyi.

But then ŷ /∈ YN. The boundMλ is thus suitable and we may conclude ŷ ∈ YpN.

Again, if the feasible set is also Rn>0-convex then the converse of Theorem 3.15 holds as

well.

THEOREM 3.16. If the feasible set Y ⊆ Rn is Rn>0-convex, then YpN ⊆WS(Y).

Proof. See Ehrgott (2005) for a proof.

Summarizing the above results, if the feasible set Y ⊆ Rn is Rn>0-convex then

WS(Y) = YpN ⊆ YN ⊆ YwN =WS0(Y). (3.3.5)

Another fundamental result that we need is the following.

THEOREM 3.17 (Hartley). If the feasible set Y ⊆ Rn is nonempty, Rn>0-compact and Rn>0-convex,

then

WS(Y) ⊆ YN ⊆WS(Y). (3.3.6)

Proof. A proof can be found in Hartley (1978).

Theorem 3.17 implies that for a nonempty, Rn>0-compact and Rn>0-convex set Y ⊆ Rn the

gap between the sets YN and YpN is not large. In fact, every nondominated point is the limit

point of some sequence of properly nondominated points. This also leads to the next result.

COROLLARY 3.18. If the feasible set Y ⊆ Rn in the criterion space is a nonempty, Rn>0-compact and

Rn>0-convex set, then YpN 6= ∅.

Proof. Suppose YpN = ∅. Since Y is nonempty, Rn>0-compact and Rn>0-convex we know by

Theorem 3.17 that∅ ⊆ YN ⊆ ∅, so that YN = ∅. The latter is in contradiction with Theorem 3.6,

which states YN 6= ∅ since Y is nonempty and Rn>0-compact.

45



CHAPTER 3. MULTICRITERIA ANALYSIS

3.3.2 Connectedness of the optimal sets

Before we can introduce the connectedness results, we need conditions for the feasible set X

and the criterion function f which assure that Y = f(X) is Rn>0-convex, so that we can utilize

the results from the last section. We also need another result concerning connected sets which

is presented in Warburton (1983).

LEMMA 3.19. If the feasible set X ⊆ Rm is convex and the criterion function f : X → Rn is given by

f(x) = (f1(x), . . . , fn(x)), for which fi : X→ R is convex for all i ∈ [n]. Then the feasible set Y ⊆ Rn

in the criterion space is Rn>0-convex.

Proof. We need to show that the set f(X) is Rn>0-convex, that is, f(X) + Rn>0 is convex. Let

z1, z2 ∈ f(X) + Rn>0, then there are y1,y2 ∈ f(X) and r1, r2 ∈ Rn>0 such that

z1 = y1 + r1,

z2 = y2 + r2.

Since y1,y2 ∈ f(X) there are x1, x2 ∈ X such that f(x1) = y1 and f(x2) = y2. Now

αz1 + (1 −α)z2 = αy1 + (1 −α)y2 +αr1 + (1 −α)r2

= αf(x1) + (1 −α)f(x2) +αr1 + (1 −α)r2

= f(αx1 + (1 −α)x2) +
(
αf(x1) + (1 −α)f(x2) − f(αx1 + (1 −α)x2)

)
+
(
αr1 + (1 −α)r2).

Since for every i ∈ [n] the function fi is convex, we have

αfi(x
1) + (1 −α)fi(x

2) − fi(αx
1 + (1 −α)x2) > 0.

This implies that αf(x1) + (1 −α)f(x2) − f(αx1 + (1 −α)x2) ∈ Rn>0. Also αr1 + (1 −α)r2 ∈ Rn>0

since Rn>0 is a convex set. Define

rα :=
(
αf(x1) + (1 −α)f(x2) − f(αx1 + (1 −α)x2)

)
+
(
αr1 + (1 −α)r2),

and observe that rα ∈ Rn>0.

So, we have

αz1 + (1 −α)z2 = f(αx1 + (1 −α)x2) + rα ∈ f(X) + Rn>0.

We may conclude that f(X) is Rn>0-convex.

Now that we have sufficient conditions for f(X) to be Rn>0-convex we state the next theorem

from Warburton (1983) concerning connectedness and preimages.
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THEOREM 3.20. Let V ⊆ Rm be compact and W ⊆ Rn be connected. Suppose that h : V ×W → R

is a continuous function and denote for every w ∈W the set

S(w) := {v̂ ∈ V | h(v̂,w) = min
v∈V

h(v,w)}.

If S(w) is connected for all w ∈W then ⋃
w∈W

S(w)

is connected.

Proof. A proof can be found in Warburton (1983).

Now, the connectedness results can be presented. We start with the connectedness of the

weakly Pareto optimal set.

THEOREM 3.21. If the feasible set X ⊆ Rm in the decision space is a convex and compact set, and if

the criteria fi : Rm → R are convex for all i ∈ [n], then XwP is connected.

Proof. If X = ∅, this is straightforward. Therefore, assume that we deal with a nonempty

feasible set X.

Since the fi are convex on Rm, they are also continuous on Rm due to Theorem 2.14.

Therefore f is continuous, and since X is compact, we may conclude that Y = f(X) is com-

pact (by Lemma 2.8). Since X is convex and the fi are convex, it follows that Y is Rn>0-convex

by Lemma 3.19.

Now, by combining Lemma 3.12 and Theorem 3.13, we conclude that YwN = WS0(Y). Or

equivalently,

XwP =
⋃

λ∈Rn>0\{0}

{x̂ ∈ X | λT f(x̂) = min
x∈X

λT f(x)}.

The idea is to apply Theorem 3.20 with V = X, W = Rn>0 \ {0} and h : X×Rn>0 \ {0} → R

given by h(x, λ) = λT f(x). Observe that indeed, X is compact, Rn>0 \ {0} is connected (Exam-

ple 2.2) and h is continuous. Now we can write

XwP =
⋃

λ∈Rn>0\{0}

{x̂ ∈ X | h(x̂, λ) = min
x∈X

h(x, λ)}.

By defining for every λ ∈ Rn>0 \ {0} the set

S(λ) := {x̂ ∈ X | h(x̂, λ) = min
x∈X

h(x, λ)},

the set of weakly Pareto optimal points can be denoted by

XwP =
⋃

λ∈Rn>0\{0}

S(λ).
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Before we can conclude that XwP is connected, we need to verify that the set S(λ) is con-

nected for all λ ∈ Rn>0 \ {0}. For every such a λ, define the function h̃λ : X→ R by

h̃λ(x) = h(x, λ) = λT f(x).

Since X is a nonempty compact set, and h̃λ is continuous, it attains it minimum on X (due to

Theorem 2.10). So S(λ) is equal to

S(λ) = {x ∈ X | h(x̂, λ) = inf
x∈X

h(x, λ)}.

Now, X is closed (by compactness), convex and h̃λ is convex (by Lemma 2.13), hence Lemma 2.15

implies that S(λ) is convex. By Corollary 2.11, S(λ) is connected.

All conditions of Theorem 3.20 are now satisfied, hence we may conclude that XwP is con-

nected.

Next, we prove the connectedness of the properly Pareto optimal set.

COROLLARY 3.22. If the feasible set X ⊆ Rm in the decision space is a convex and compact set, and if

the criteria fi : Rm → R are convex for all i ∈ [n], then XpP is connected.

Proof. This proof is similar to the proof given for Theorem 3.21. The only difference is that we

now apply Theorem 3.15 and Theorem 3.16. Since Y is again Rn>0-convex, we may conclude

YpN =WS(Y) or

XpP =
⋃

λ∈Rn>0

{x̂ ∈ X | λT f(x̂) = min
x∈X

λT f(x)}.

We again resort to Theorem 3.20, however we now haveW = Rn>0. The theorem can still be

applied since Rn>0 is convex hence connected (see also Example 2.2).

Finally, we want to obtain a connectedness result for the Pareto optimal set. We start with

the following observation.

LEMMA 3.23. Suppose x̂ ∈ XwP is the unique solution of (3.3.1) for some λ ∈ Rn>0 \ {0} then x̂ ∈ XP.

Proof. If x̂ /∈ XP then there must be a x ∈ X such that f(x) 6 f(x̂) and fj(x) < fj(x̂) for at least

one j ∈ [n]. So certainly

λT f(x) 6 λT f(x̂).

But now x ∈ X solves (3.3.1) and x 6= x̂ contradicting the uniqueness. Hence x̂ ∈ XP.

Combining Lemma 3.23 and a more restrictive condition for the criteria, namely strict con-

vexity, we can guarantee that the set of Pareto optimal points is connected.

THEOREM 3.24. If the feasible set X ⊆ Rm in the decision space is a convex and compact set, and if

the criteria fi : Rm → R are strictly convex for all i ∈ [n], then XP is connected.
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Proof. Since the assumptions in Theorem 3.21 are satisfied, XwP is connected. We show that

with the conditions in this theorem, it holds that

XP = XwP,

which is sufficient to prove connectedness for XP.

Since it is always holds true that XP ⊆ XwP, we only need to show the other inclusion. To

that end, let x̂ ∈ XwP. The analog of Theorem 3.13 in the decision space (explicitly given in

Theorem 4.1) implies that there must be a λ̂ ∈ Rn>0 \ {0} such that x̂ ∈ XwP solves (3.3.1).

Also, the objective function λ̂T f(x) in the weighted sum scalarization (3.3.1) is strictly con-

vex because of the strict convexity of the criteria and Lemma 2.13. Hence, Lemma 2.16 implies

that x̂ ∈ XwP uniquely solves (3.3.1).

Combining these observations, we note that Lemma 3.23 is applicable. We may conclude

that x̂ ∈ XP and so, XP is connected.

Now that we have derived connectedness results for the solution concepts in the decision

space, we can immediately conclude that the optimal sets in the criterion space must be con-

nected as well.

COROLLARY 3.25. If the feasible set X ⊆ Rm in the decision space is a convex and compact set, and if

the criteria fi : Rm → R are convex for all i ∈ [n], then the sets XwP, XpP, YwN and YpN are connected.

If, in addition, the criteria fi : Rm → R are strictly convex for all i ∈ [n], then XP and YN are also

connected.

Proof. Since f is continuous (Theorem 2.14) and the image of a connected set under a continuous

mapping is again connected (Lemma 2.6), this corollary is justified.

Actually, for the connectedness of YN it is sufficient that the criteria are convex.

COROLLARY 3.26. If the feasible set X ⊆ Rm in the decision space is a convex and compact set, and if

the criteria fi : Rm → R are convex for all i ∈ [n], then YN is connected.

Proof. If X = ∅, this is straightforward. Therefore, assume X 6= ∅.

From Corollary 3.25 we have that YpN is connected. Since Y is a nonempty compact and

Rn>0-convex set, we may certainly apply Theorem 3.17. This theorem states

WS(Y) ⊆ YN ⊆WS(Y).

Together with Theorem 3.15 and Theorem 3.16 we have

YpN ⊆ YN ⊆ YpN,
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so that the connectedness of YN follows from Lemma 2.4.

Note that from Corollary 3.26 we may not conclude that under the same assumptions the

set XP is connected, since the preimage of a connected set under a continuous function is not

necessarily connected.

Notice that all these proofs still work if we replace the convexity condition of the criterion

functions fi : Rm → R by fi being both (strictly) convex and continuous on X ⊆ Rm which

may be more easily to verify in practice.

3.4 Conclusions on existence and connectedness of the optimal sets

In this chapter we explored the fundamental concepts and properties of multicriteria optimiza-

tion. More specifically, we investigated multicriteria optimization problems of the form

min
x∈X

f(x),

where X ⊆ Rm is the feasible set and f : Rm → Rn is the criteria vector function.

The main conclusions for multicriteria optimization problems on existence and connected-

ness of the weakly Pareto optimal set XwP, weakly nondominated set YwN, Pareto optimal set

XP, nondominated set YN, properly Pareto optimal set XpP and properly nondominated set YpN

are gathered in the next summary.

SUMMARY. If the feasible set X ⊆ Rm in the decision space is a nonempty convex and compact

set, and if either

1. the criteria fi : Rm → R are convex for all i ∈ [n] or

2. the criteria fi : X→ R are convex and continuous for all i ∈ [n],

then

I XwP, XP, XpP, YwN, YN and YpN are nonempty,

II XwP, XpP, YwN, YN and YpN are connected,

III XP is connected if, in addition, all the criteria are strictly convex.

In practice, the most common notion of optimality is Pareto optimality and nondominance.

It is desired to have the nonemptyness and connectedness property for both the set of Pareto

optimal points and the set of nondominated points (of which the latter is more important).

Sufficient conditions for the decision space X and the criteria fi (i ∈ [n]) have been imposed

which ensure these properties. This makes checking upon them worthwhile.
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Multicriteria methods

In this chapter, several methods are presented that generate Pareto optimal solutions for a

multicriteria optimization problem

min
x∈X

f(x) = min
x∈X

(f1(x), . . . , fn(x)).

In the literature, for example in Ehrgott (2005) and Mietinnen (1999), plenty of multicriteria

methods are mentioned and analyzed. We will focus on a few of these multicriteria methods.

We start with the weighted sum method which we already used in Chapter 3 to identify both

the weakly and properly nondominated set.

Also, the ε-constraint method is presented as a multicriteria method. In particular, we present

the 2-phase ε-constraint (2pεc) method, which involves solving a sequence of ε-constraint prob-

lems. The 2pεc method is of major importance in this thesis since it is in clinical use at the

Erasmus MC - Cancer Institute to automatically generate treatment plans for cancer patients,

see Breedveld et al. (2007, 2009). This particular application is discussed in more depth in

Chapter 5 and Chapter 6.

Finally, the reference point method (RPM) is presented. The RPM was originally developed

by Wierzbicki (1986) and is often used as an interactive technique. We do not focus on inter-

active techniques, but instead use the RPM formulation in Ogryczak and Kozłowski (2009). In

Chapter 6, we attempt to configure the RPM for the application in radiation therapy.

Of these methods, the weighted sum and ε-constraint method are common approaches for

solving multicriteria optimization problems of the form:

min
x∈X

f(x).

The basic idea behind all multicriteria methods is to design a scalarization of the criterion vector

function f : Rm → Rn, say by a utility function U : Rn → R. This utility function should
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represent the preferences of the decision maker (DM) concerning the outcomes in the criterion

space. Without loss of generality, we assume that low values of the utility function represent

more preferable outcomes than high values of the utility function. Then, the single criterion

optimization problem

min
x∈X

U(f(x)), (4.0.1)

is solved to obtain a preferable solution. Assuming that the criteria are convex, we make sure

that the optimization problem (4.0.1) is also convex. This means that the single criterion opti-

mization problem (4.0.1) falls into the class nonlinear convex optimization, thus having the pleas-

ant properties mentioned in Chapter 2.

The mapping U should be chosen carefully, as we want the solution of minimization prob-

lem (4.0.1) to be a (weakly) Pareto optimal point. For utility functions, it is common to in-

troduce additional scalar or vector parameters which generate different Pareto optimal points

when adapted.

4.1 Weighted sum method

In this section, the weighted sum method is explained. In Chapter 3 we investigated which

optimal points can be found by solving a weighted sum problem:

min
x∈X

∑
i∈[n]

λifi(x), (4.1.1)

where λ ∈ Rn>0 \ {0}. It turns out that it is convenient for the feasible set Y in the criterion space

to be Rn>0-convex, a condition that is satisfied when the feasible set X in the decision space is a

convex set and the criteria fi : X → R are convex for all i ∈ [n] (Lemma 3.19). The results are

summarized in Theorem 4.1.

THEOREM 4.1. Suppose that x̂ ∈ X is the optimal solution of (4.1.1) then

• x̂ ∈ XpP if λ ∈ Rn>0,

• x̂ ∈ XwP if λ ∈ Rn>0 \ {0},

• x̂ ∈ XP if λ ∈ Rn>0 \ {0} and x̂ is the unique optimal solution.

If in addition, X is convex and fi : X→ R is convex for all i ∈ [n] then

• there is a λ ∈ Rn>0 such that x̂ solves (4.1.1) if x̂ ∈ XpP ,

• there is a λ ∈ Rn>0 \ {0} such that x̂ solves (4.1.1) if x̂ ∈ XwP.

Proof. This is due to Lemma 3.23 and the analogies of Lemma 3.12, Theorem 3.13, Theorem 3.15

and Theorem 3.16 in terms of the decision space.
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The weighted sum method is the most well known scalarization method in multicriteria

optimization and also one of the easiest to understand. In Figure 4.1 the basic principle of the

weighted sum method is illustrated graphically.
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FIGURE 4.1: Illustration of the weighted sum method where Y ⊆ R2 and (λ1, λ2) = (2, 3).
The dotted lines represent the indifference curves of the objective function values. With these
parameters, the solution of (4.1.1) is given by f(x̂) = ŷ ∈ YN.

Without Y being Rn>0-convex, the weighted sum method may fail to generate a solution. In

Example 3.2 note that Y is not R2
>0-convex and that the weighted sum is theoretically unable to

find any solution (meaning that minx∈X
∑
i∈[n] λifi(x) = −∞ for all λ ∈ Rn>0 \ {0}).

Before applying the weighted sum method in practice, it is thus important that feasible set

Y is Rn>0-convex. The latter may be hard to verify in practice, however Lemma 3.19 provides a

sufficient condition. It namely suffices that the feasible set X in the criterion space is convex as

well as all criteria, which can be verified more easily. Applying the weighted sum method for

feasible sets Y, which are not Rn>0-convex, may result into extremities.

4.2 ε-Constraint method

Another multicriteria method is called the ε-constraint method. This method focuses on min-

imizing one of the criteria while keeping the others constrained. For these criteria, upper

bounds are provided which are the additional parameters in the ε-constraint method.

The main idea of the ε-constraint method is that we minimize a criterion fj for some j ∈ [n]

while providing feasible upper bounds εk for the other criteria. The latter means that

⋂
k∈[n]\{j}

{y ∈ Y | yk 6 εk} 6= ∅.
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Then the ε-constraint method is formulated as follows:

min
x∈X

fj(x)

subject to fk(x) 6 εk k ∈ [n] \ {j}.
(4.2.1)

The ε-constraint method thus can be used when feasible upper bounds are known. Figure 4.2

illustrates the basic principle of the ε-constraint method.
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FIGURE 4.2: Illustration of the ε-constraint method where Y ⊆ R2. The nondominated point
ŷa is the solution of minimizing f2(x) subject to f1(x) 6 εa1 . Similarly, minimizing f2(x) subject
to f1(x) 6 εb1 leads to the nondominated point ŷb.

Solving (4.2.1) generally only leads to a weak Pareto optimal solution of a multicriteria

optimization problem. If, in addition, the solution of (4.2.1) is unique then Pareto optimality

can be guaranteed.

THEOREM 4.2. Suppose that x̂ ∈ X is an optimal solution of the ε-constraint problem (4.2.1), then

• x̂ ∈ XwP,

• x̂ ∈ XP if the optimal solution x̂ is unique.

Proof. These results can be proven by contradiction.

• Suppose x̂ /∈ XwP, that is, there is an x ∈ X such that f(x) < f(x̂). We have

fj(x) < fj(x̂),

fk(x) 6 fk(x̂) 6 εk, for all k ∈ [n] \ {j},

54



4.2. ε-CONSTRAINT METHOD

which contradicts the optimality of x̂ in the ε-constraint problem (4.2.1). So, x̂ must be

weakly Pareto optimal.

• Suppose x̂ /∈ XP meaning that there is an x ∈ X such that f(x) 6 f(x̂) and fl(x) < fl(x̂) for

at least one l ∈ [n]. Consider the next cases.

– If l = j in (4.2.1), we have

fl(x) < fl(x̂),

fk(x) 6 fk(x̂) 6 εk, for all k ∈ [n] \ {j},

which contradicts the optimality of the solution x̂ in (4.2.1).

– If l 6= j in (4.2.1) then we have

fj(x) 6 fj(x̂),

fk(x) 6 fk(x̂) 6 εk, for all k ∈ [n] \ {j, l},

fl(x) < fl(x̂) 6 εl.

So x solves the ε-constraint problem (4.2.1). Uniqueness implies that x = x̂, but then

f(x) = f(x̂) which contradicts that there is a l ∈ [n] with fl(x) < fl(x̂).

We may conclude that x̂ ∈ XP.

Another way to verify Pareto optimality is the following: if we assume that there is a param-

eter vector ε = (ε1, . . . , εn) ∈ Rn for which an x̂ ∈ X exists such that it solves the ε-constraint

method (4.2.1) for every j ∈ [n] then x̂ must be Pareto optimal. Actually, these statements are

equivalent.

THEOREM 4.3. Let x̂ ∈ X, then x̂ ∈ XP if and only if there is a parameter vector ε ∈ Rn such that x̂

solves (4.2.1) for every j ∈ [n].

Proof. Both implications are proven by contraposition.

“⇒” Suppose that there is a j ∈ [n] for which x̂ does not solve (4.2.1) and note that ε = f(x̂)

imposes feasible upper bounds. Since x̂ does not solve (4.2.1), there must be a x ∈ X for which

fj(x) < fj(x̂) and fk(x) 6 εk = fk(x̂) for all k ∈ [n] \ {j}, hence x̂ /∈ XP.

“⇐” Suppose x /∈ XP then there is a x ∈ X and j ∈ [n] with fj(x) < fj(x̂) and fk(x) 6 fk(x̂)

for all k ∈ [n] \ {j}. Now, if ε ∈ Rn is a feasible upper bound then x̂ does not solve (4.2.1). If

ε ∈ Rn is a infeasible upper bound then (4.2.1) has no solutions. Either way, x̂ can never solve

(4.2.1) for j ∈ [n].
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Appropriately chosen parameters ε ∈ Rn thus enable us to find all Pareto optimal solu-

tions without any additional conditions. In particular, the ε-constraint method is able to find

all Pareto optimal solution when Y is not Rn>0-convex (as in Example 3.2) in contrast to the

weighted sum method. However, to find the right parameters ε ∈ Rn in Theorem 4.3 for gen-

erating a Pareto optimal point x̂ ∈ XP one must set ε = f(x̂). In other words, you can only

choose the right parameters if you already know the Pareto optimal point you would like to

find. So Theorem 4.3 should only be used to check whether an already obtained feasible point

x ∈ X is Pareto optimal or not.

The main advantage of the ε-constraint method is that every Pareto optimal point can be

found without imposing any additional assumptions. The disadvantage of this method is that

it is unclear how to choose feasible upper bounds. This problem can solved by introducing

the sequential use of the ε-constraint method. An example of such an extension is the 2-phase

ε-constraint method which, in addition, uses certain predefined thresholds for the criteria that

are considered sufficiently low.

4.2.1 2-Phase ε-constraint method

The 2-phase ε-constraint (2pεc) method sequentially uses the ε-constraint method to solve a

multicriteria optimization problem. The basic idea of the 2pεc method is to steer towards a

desired solution. To achieve this, the 2pεc method assigns predefined goal values (or aspiration

points) to the criteria and sorts these by priority. The 2pεc method thus repeatedly solves an

optimization problem of the form (4.2.1) and gradually adds feasible upper bounds εi (i ∈ [n])

for subsequent optimizations.

Before the 2pεc method can be applied to a multicriteria optimization problem, the criteria

need to be prioritized and goal values need to be assigned to each priority. This information

is gathered in a prioritized list, which we refer to as a wish-list. A general wish-list is given in

Table 4.1. Here, n 6 p ∈ N and σ : [p] → [n] imposes the prioritized structure of the criteria.

TABLE 4.1: General wish-list for the 2pεc method.

Priority Criterion Goal value

1 fσ(1)(x) b1

2 fσ(2)(x) b2
...

...
...

n fσ(n)(x) bn
...

...
...

p fσ(p)(x) bp

Every criterion should appear at least once in the wish-list. If the same criterion appears mul-
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tiple times in Table 4.1, the corresponding goal values should be strictly descending since the

criteria are minimized. Obviously, two consecutive priorities always concern different criteria.

The 2pεc method consists of two phases. In the first phase, the goal values in Table 4.1

are met as well as possible (in order of priority). In the second phase, every criterion is fully

minimized (in order of priority) to obtain the final solution.

With Table 4.1, the first phase starts by solving the following ε-constraint problem,

min
x∈X

fσ(1)(x). (4.2.2)

Suppose that x̂ ∈ X solves (4.2.2). We then define the next upper bound for fσ(1)(x),

ε1 := max(b1, δfσ(1)(x̂)), (4.2.3)

where δ > 1 is a relaxation parameter. If ε1 = b1, the goal value b1 is not only feasible but

also leaves sufficient space for the lower prioritized criteria to meet their goal values as well

as possible. If, on the other hand, ε1 = δfσ(1)(x̂) the goal value b1 was not feasible or did not

leave sufficient space for the subsequent priorities.

Depending on the result of the first optimization, a second ε-constraint problem is solved

min
x∈X

fσ(2)(x)

subject to fσ(1)(x) 6 ε1.
(4.2.4)

Similarly as ε1, the upper bound ε2 for fσ(2) is then defined as

ε2 := max(b2, δfσ(2)(x̂)), (4.2.5)

which depends on the solution x̂ ∈ X of (4.2.4) and goal value b2. This process is repeated until

all p priorities in Table 4.1 have been processed.

In the second phase, the criteria are minimized to their fullest in order of their priorities in

Table 4.1. The ε-constraint problems in the second phase utilizes the upper bounds obtained

from the first phase. The ε-constraint problem

min
x∈X

fσ(1)(x)

subject to fσ(k)(x) 6 εk, k ∈ [p] \ {1}.
(4.2.6)

is solved to initialize phase two. The solution x̂ ∈ X of (4.2.6) is used to set a new upper bound

for fσ(1),

ε̄1 := min(ε1, δfσ(1)(x̂)). (4.2.7)

Note that the new upper bound ε̄1 (4.2.7) cannot be worse than the upper bound ε1, obtained
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in the first phase (4.2.3).

This process continues till the last ε-constraint problem in the 2pεc method,

min
x∈X

fσ(p)(x)

subject to fσ(k)(x) 6 ε̄k, k ∈ [p− 1],
(4.2.8)

is solved. The solution x̂ ∈ X of (4.2.8) is then the final solution of the 2pεc method.

Note that Theorem 4.2 and Theorem 4.3 also hold for the 2pεc method since the last opti-

mization in the 2pεc method is an ε-constraint problem. Also, some ε-constraint minimization

problems may not be necessary to process. For instance, if the result of previous optimization

already turns out to be lower than the implied goal. Also, we ignore a priority if the relaxation

already has been applied to the corresponding criterion since we then know that the criterion

cannot be improved by much, and may prevent other priorities in meeting their goal values as

well as possible.

We conclude this section with an example which illustrates the basic principle of the 2pεc

method graphically.

EXAMPLE 4.1. In this example we consider a simplified version of Example 3.4. Suppose that

the feasible set is X = [0, 20] and the criteria f1, f2 : R→ R are given by

f1(x) =
1
2
x+ 1,

f2(x) = max
(

2, 8 − x,
1
2
x− 2

)
. (4.2.9)

Also, suppose we use the wish-list in Table 4.2.

TABLE 4.2: Wish-list for Example 4.1.

Priority Criterion Goal value

1 f1(x) 10

2 f2(x) 4

3 f1(x) 2

With the data in Table 4.2 we can apply the 2pεc method. In this example, we use δ = 1.1

as a fixed relaxation parameter.

First phase; illustrated in Figure 4.3.

1. The first priority in Table 4.2 is to minimize f1 to the goal value 10. So, we start by solving

min
x∈[0,20]

f1(x). (4.2.10)
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FIGURE 4.3: The first phase of the 2pεc method. (a) The feasible set Y, (b) after solving (4.2.10)
the upper bound ε1 = 10 is added for f1, (c) the upper bound ε2 = 4 is added for f2 due to
minimization problem (4.2.11) and (d) the upper bound for f1 is tightened to 3.3 because of
minimization problem (4.2.12).

The optimal solution of (4.2.10) is x̂1 = 0 which corresponds to ŷ1 = (1, 8). Criterion f1

can thus be minimized to 1, but since the goal value is 10, we set the following upper

bound:

ε1 = max(10, 1δ) = 10.

2. According to the wish-list (Table 4.2) the following step is to minimize f2 to the goal value

4. At the same time, the condition f1(x) 6 ε1 needs to be satisfied. Therefore, we solve
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the ε-constraint problem
min
x∈[0,20]

f2(x)

subject to f1(x) 6 10.
(4.2.11)

The minimization problem (4.2.11) has multiple optimal solutions, namely x̂2 ∈ [6, 8]

leading to ŷ2 ∈ [4, 5]× {2}. Regardless of that optimal solution we set the upper bound

ε2 = max(4, 2δ) = 4.

3. The last priority is to minimize f1 to a goal value of 2 while the condition f2(x) 6 ε2 is

satisfied. We solve
min
x∈[0,20]

f1(x)

subject to f2(x) 6 4.
(4.2.12)

x̂3 = 4 is the optimal solution of (4.2.12) so that ŷ3 = (3, 4). The goal value of 2 for f1 is

thus not feasible. In this case we get a new upper bound for f1 namely

ε1 = max(2, 3δ) = 3.3.

Now, the first phase of the 2pεc method has been processed. As a result we obtained the upper

bounds

ε1 = 3.3,

ε2 = 4,

for f1 and f2 respectively. These upper bounds will be utilized in the second phase.

Second phase; illustrated in Figure 4.4.

4. The second phase should start with minimizing f1 to its fullest. However, this is unneces-

sary (in this case) since we already applied a relaxation to f1 (last step in the first phase).

Therefore, we skip minimizing f1 to its fullest.

5. Next, f2 is minimized to its fullest. The ε-constraint problem

min
x∈[0,20]

f2(x)

subject to f1(x) 6 3.3,
(4.2.13)

needs to be solved. This leads to the optimal solution x̂5 = 4.6 so that ŷ5 = (3.3, 3.4). We

set the new upper bounds for f2 of

ε̄2 = min(ε2, 3.4δ) = 3.74.
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FIGURE 4.4: The second phase of the 2pεc method. (a) Shows the situation after the first phase
and (b) shows the result after minimization problem (4.2.13) which determines the final solu-
tion.

6. The last optimization (minimizing f1 to its fullest) is again redundant, so we have ŷ6 = ŷ5.

The 2pεc method thus produces the Pareto optimal solution x̂ = 4.6 which corresponds

with criterion values ŷ = (3.3, 3.4). Four ε-constraint problems (thus four optimizations) were

needed to obtain the final solution.

4.3 Reference point method

In this section we describe the reference point method (RPM). Originally, the RPM uses a single

reference point specified by the DM (Wierzbicki, 1986). A reference point is a vector containing

aspiration points for each criterion. The reference point may be a feasible or infeasible point in

the criterion space, and represents a preferable solution (according to the DM). The RPM then

searches for a (weakly) nondominated point close to this reference point.

In Granat and Makowski (2000) and Ogryczak and Kozłowski (2009), the standard RPM is

extended by introducing more reference points. In our application (Chapter 6), we will apply

the RPM with multiple reference points. Therefore, we discuss the extension of the RPM in this

section. First, the principle of the RPM is explained. Then, the corresponding minimization

model is presented. Also, the additional parameters in the RPM are analyzed and we will

provide an example. Finally, results concerning the (weak) Pareto optimality of the RPM are

presented.
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4.3.1 Principle of the RPM

For the RPM, the focus is on the feasible set Y in the criterion space. The basic idea is to specify

a parametric curve (or preferred path) in the criterion space which reflects the preferences of

the DM. In the RPM, such a path is constructed by specifying p ∈ N reference points in the

criterion space. These reference points r1, . . . , rp ∈ Rn impose a hierarchy. Reference point r1

is the most important to attain, thus has the highest priority. If r1 is attainable, r2 is the second

most important reference point to be attained, thus has the second highest priority. Reference

point rp is the least important point to be attained, thus has the lowest priority. Certainly, the

criteria should only improve so rp < rp−1 < . . . < r2 < r1.
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FIGURE 4.5: Illustration of the RPM. Two different paths, γa (imposed by reference points
r1, r2, r3 and r4) and γb (imposed by reference points s1, s2 and s3), lead to different preferred
solutions, ŷa and ŷb respectively.

A (two-dimensional) geometric interpretation of the RPM is provided in Figure 4.5. For a set

of specified reference points, the preferred path is constructed by linear interpolation between

the points as we can observe in Figure 4.5. For path γa, the preferred solution ŷa is just the

intersection of path γa and the nondominated set YN. However, a path does not necessarily

intersect YN, as is the case of path γb in Figure 4.5. In this case, the preferred solution should

be one of the extremities of the nondominated set YN. This can be achieved by setting the

indifference curves as in Figure 4.6.

So, in the RPM a preferred path γ is constructed which reflects the preferences of the DM.

For every point on the path γ, the indifference curves are similar as in Figure 4.6. Every point

on the path (and thus every indifference curve) corresponds with some value z ∈ R. For every

two points y1,y2 ∈ Rn with y1 < y2 on the path we assign values z1, z2 ∈ R with z1 < z2. The

solution is then a feasible point ŷ ∈ Y for which the value of z ∈ R is minimal.
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FIGURE 4.6: Indifference curve for the point (f1(x), f2(x)) = (5, 5) on the preferred path γ. The
area under the indifference curve represents the area in which we want to find the solution.

To formalize this basic idea, consider a general reference list given in Table 4.3. The preferred

TABLE 4.3: General reference list for the RPM.

Priority Reference point f1(x) f2(x) · · · fn(x)

1 r1 r1
1 r1

2 · · · r1
n

2 r2 r2
1 r2

2 · · · r2
n

...
...

...
...

...

p rp r
p
1 r

p
2 · · · r

p
n

path is a parametric curve γ : R → Rn: every value of z ∈ R corresponds to a unique point

on the preferred path. Lowering the value of z represents moving from r1 to rp in the criterion

space, so that all criteria fi are improved. Path γ(z) = (q1(z), . . . ,qn(z)) is defined (where

qi : R→ R) as a piecewise continuous curve through reference points rj (γ(vj) = rj):

qi(z) =


r
p
i +β1g

p
i (z− vp) z 6 vp

r
j
i + g

j
i(z− vj) vj < z 6 vj−1, j ∈ [p] \ [1]

r1
i +β2g

2
i(z− v1) v1 < z,

(4.3.1)

where

g
j
i =

r
j−1
i − rji
vj−1 − vj

, i ∈ [n], j ∈ [p] \ [1]. (4.3.2)

and with parameters 0 < β2 6 1 and β1 > 1. Here, parameter β1 represents an additional

increase of the DMs satisfaction when better outcomes than rp are generated. Parameter β2
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represents the dissatisfaction in the case that outcomes are worse than r1.

For every value of z, we are interested in the feasible points satisfying fi(x) 6 qi(z) (for

example the area in Figure 4.6). For convex programming, the functions qi(z) need to be con-

cave. This can be achieved by choosing the vj in parametrization (4.3.1) such that the gji (4.3.2)

decrease, gpi > . . . > g2
i. An algorithm to achieve this is to choose an initial pair vp and vp−1

(vp < vp−1), and then choose the other vj according to:

vj−1 > vj + (vj − vj+1) max
i∈[n]

r
j−1
i − rji

r
j
i − r

j+1
i

, j ∈ [p− 1] \ [1]. (4.3.3)

Now, we can write

qi(z) = min
j∈[p+1]

(
r
j
i + g

j
i(z− vj)

)
,

where we introduced g1
i := β2g

2
i, g

p+1
i := β1g

p
i for all i ∈ [n] for convenience. Also, vp+1 := vp

and rp+1 := rp . Consequently, we can formulate the convex minimization model:

min
x∈X

z

subject to fi(x) 6 r
j
i + g

j
i(z− vj) i ∈ [n], j ∈ [p+ 1].

(4.3.4)

These are the basics of the RPM. However, the minimization model of the RPM is more

general than (4.3.4) which is shown in the next section.

4.3.2 RPM minimization model

In this section, we formally introduce the minimization model of the RPM. As mentioned be-

fore, the RPM uses a reference list (Table 4.3) to obtain a preferable solution.

The first step from minimization model (4.3.4) to the minimization model of the RPM is to

rewrite the inequalities fi(x) 6 qi(z) as si(fi(x)) 6 z. Here, the si : R → R are the inverse

functions of qi, which are well defined since the qi are strictly increasing (gji > 0 for all i ∈ [n]

and j ∈ [p+ 1]). In the RPM the functions si are referred to as partial achievement functions and

can be written as

si(fi(x)) =


vp +α1w

p
i (fi(x) − r

p
i ) fi(x) < r

p
i

vj +w
j
i(fi(x) − r

j
i) r

j
i < fi(x) 6 r

j−1
i , j ∈ [p] \ [1],

v1 +α2w
2
i(fi(x) − r

1
i) r1

i < fi(x),

(4.3.5)

where

w
j
i =

vj−1 − vj

r
j−1
i − rji

, i ∈ [n], j ∈ [p] \ [1]. (4.3.6)

For convenience, introduce w1
i := α2w

2
i for an α2 > 1 and wp+1

i := α1w
p
i for a parameter

64



4.3. REFERENCE POINT METHOD

α1 with 0 < α1 6 1. The parameters α1 and α2 can be interpreted in a similar way as the

parameters β1 and β2 in the last section. Note that in particular it holds that si(r
j
i) = vj for all

i ∈ [n] and j ∈ [p] and that the partial achievement functions can be written as

si(fi(x)) = max
j∈[p+1]

(
vj +w

j
i(fi(x) − r

j
i)
)

,

where vp+1 := vp and rp+1 := rp. An equivalent (convex) minimization model of (4.3.4) is thus

given by:
min
x∈X

z

subject to vj +w
j
i(fi(x) − r

j
i) 6 z i ∈ [n], j ∈ [p+ 1].

(4.3.7)

Next, we use the partial achievement functions to introduce a small change in the indifference

curves (see Figure 4.6). Therefore, let ai : Rm → R be given by ai(x) = si(fi(x)) for all i ∈ [n].

A scalarizing achievement function S : Rn → R is defined as:

S(a1, . . . ,an) = max
i∈[n]

ai +
∑
i∈[n]

ρiai, (4.3.8)

where ρi > 0 (i ∈ [n]) represent sensitivity parameters. The RPM minimizes the scalarizing

achievement function subject to the inequalities ai(x) 6 z. The corresponding (convex) mini-

mization model for the RPM is given by:

min
x∈X

z+
∑
i∈[n]

ρiai

subject to ai 6 z i ∈ [n]

vj +w
j
i(fi(x) − r

j
i) 6 ai i ∈ [n], j ∈ [p+ 1].

(4.3.9)

Note that z represents maxi∈[n] ai and ai(x) = si(fi(x)). If all criteria are linear, the convex

minimization model of the RPM (4.3.9) becomes linear. Notice that the RPM uses predeter-

mined information provided by the DM, similarly as for the 2pεc method. Whereas the 2pεc

method uses a wish-list, the RPM uses a reference list. A reference list consists of p ∈ N refer-

ence points r1, . . . , rp which are sorted by priority.

The main difference between both methods is that the wish-list prioritizes goal values per

criterion, while the reference list prioritizes per reference point (which is a vector). Another

difference is that the RPM only needs one optimization instead of several.

The next part explains how the addition of the term 1
n

∑
i∈[n] ρiai in the scalarizing achieve-

ment functions influences the indifference curve in Figure 4.6.
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4.3.3 Sensitivity parameters and trade-offs in the RPM

For a preferred path γ : R→ Rn given by

γ(z) = (s−1
1 (z), . . . , s−1

n (z)),

where s−1
i denotes the inverse of the partial achievement function si, the indifference curves

for ẑ ∈ R with no sensitivity parameters (ρ = 0) are given by

ẑ = max
i∈[n]

si(fi(x)).

See Figure 4.6 as an example.

The addition of 1
n

∑
i∈[n] ρiai in the scalarizing achievement function (in 4.3.9) changes

the indifference curve, but does not change the preferred path. In Figure 4.7 an example of an

indifference curve is shown in a two-dimensional criterion space. In Figure 4.7, the tangents of
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f1(x)
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θ1,2

θ2,1

FIGURE 4.7: Indifference curves of (4.3.8) in the criterion space for two criteria. The square
point represents a point on the preferred path. For ρ = 0 the dashed lines represent the indif-
ference curve, while for ρ > 0 the indifference curve is given by the solid lines. Note that the
area in which we look for the solution has extended for ρ > 0.

angles θ1,2, θ2,1 can be calculated as follows:

tan(θ1,2) =
∂S|{a16a2}

∂f1

/
∂S|{a16a2}

∂f2
, tan(θ2,1) =

∂S|{a1>a2}

∂f2

/
∂S|{a1>a2}

∂f1
. (4.3.10)

The angles do not only depend on ρ but also on the reference points, and thus on the location
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on the preferred path. More explicitly, for j ∈ [p+ 1] we have

tan(θj1,2) =
w
j
1

w
j
2

· ρ1

1 + ρ2
, tan(θj2,1) =

w
j
2

w
j
1

· ρ2

1 + ρ1
(4.3.11)

=



α2
r
j−1
2 − rj2

r
j−1
1 − rj1

· ρ1

1 + ρ2
j = 1,

r
j−1
2 − rj2

r
j−1
1 − rj1

· ρ1

1 + ρ2
j = [p] \ [1],

α1
r
j−1
2 − rj2

r
j−1
1 − rj1

· ρ1

1 + ρ2
j = p+ 1,

=



α2
r
j−1
1 − rj1

r
j−1
2 − rj2

· ρ2

1 + ρ1
j = 1,

r
j−1
1 − rj1

r
j−1
2 − rj2

· ρ2

1 + ρ1
j = [p] \ [1],

α1
r
j−1
1 − rj1

r
j−1
2 − rj2

· ρ2

1 + ρ1
j = p+ 1.

So, increasing ρ1 increases the angle θ1,2 which expands the area in which solutions are

more in favour of f1. At the same time, θ2,1 decreases shrinking the area in which f2 is more

favoured.

In general, the indifference curves for ẑ ∈ R with sensitivity parameters (ρ > 0) are given

by

ẑ =
∑
i∈[n]

ρisi(fi(x)) + max
i∈[n]

si(fi(x)).

The angles involved can be gathered in a matrix

Θj =



∅ θ
j
1,2 θ

j
1,3 · · · θj1,n

θ
j
2,1 ∅ θ

j
2,3 · · · θj2,n

θ
j
3,1 θ

j
3,2 ∅ · · · θj3,n

...
...

...
. . .

...

θ
j
n,1 θ

j
n,2 θ

j
n,3 · · · ∅


.

where θji,k denotes the angle of fi with respect to fk. These satisfy

tan(θji,k) =



α2
r
j−1
k − rjk

r
j−1
i − rji

· ρi
1 + ρk

j = 1,

r
j−1
k − rjk

r
j−1
i − rji

· ρi
1 + ρk

j = [p] \ [1],

α1
r
j−1
k − rjk

r
j−1
i − rji

· ρi
1 + ρk

j = p+ 1,

for i,k ∈ [n] (i 6= k) and j ∈ [p + 1]. So in the general case, the reference points r1, . . . , rp,

parameters α1,α2 and the sensitivity parameters ρ1, . . . , ρn determine n(n− 1) angles per line

segment on the preferred path.

Sensitivity can thus be introduced by setting ρ > 0, which essentially determines predefined
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trade-offs between the criteria. The RPM with ρ > 0 will deviate from the preferred path when

favourable trade-offs are available.

4.3.4 Example of the RPM

In this section, we give an example of a multicriteria optimization problem on which the RPM

is applied.

EXAMPLE 4.2. Suppose that the feasible set is X = [0, 8]. Also, suppose that we have two

criteria f1, f2 : R→ R given by:

f1(x) = x
√
x, f2(x) = (x− 4)2 + 2. (4.3.12)

In Figure 4.8 the criteria and nondominated set YN are illustrated. Note that the Pareto optimal
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FIGURE 4.8: (a) The two criteria and (b) the nondominated set YN.

points lie in the interval [0, 4]. The feasible set Y is the curve

Y = {(y1,y2) ∈ R2 | 0 6 y1 6 16
√

2, y2 = (y
2/3
1 − 4)2 + 2},

of which the set of all nondominated solutions YN is

YN = {(y1,y2) ∈ Y | y1 ∈ [0, 8]}.

Suppose that we use the reference list in Table 4.4. Reference point (10, 14) has the highest

priority, this means that it as important for f1 to reach a value of 10 as it is for f2 to reach the

value 14. If the first reference point is attainable, the solution is steered to the second reference

point (2, 6). This continues until the feasible set Y and infeasible set intersect.
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TABLE 4.4: Reference list in Example 4.2.

Priority Reference point f1(x) f2(x)

1 r1 10 14

2 r2 2 6

3 r3 1 2

4 r4 0 0

The strictly decreasing sequence (vj)
p
j=1 ∈ R is initialized by vp = 0, vp−1 = 1 and further

determined by the algorithm (4.3.3), where we take equality signs. Both α1 and α2 are set to

1. In Figure 4.9, the solutions are shown for sensitivity parameters ρ = (0, 0) and ρ =
(1

2 , 10
)

respectively.
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FIGURE 4.9: (a) The nondominated solution ŷa in case ρ = (0, 0) and (b) the nondominated
solution ŷb when ρ =

(1
2 , 10

)
.

The preferred path is constructed based solely on the reference list in Table 4.4. The param-

eter vector ρ however, can be configured independently of the reference list.

Different choices of ρ can lead to different solutions as shown in Table 4.5. Observe from

Table 4.5 that increasing ρ1 can lead to a lower criterion value of f1. The same holds for increas-

ing ρ2. Note that scaling ρ may produce a different solution as can be seen in Table 4.5 for the

entries
(1

2 , 1
2

)
and (1, 1).

4.3.5 Pareto optimality of the RPM

This section presents results about the (weak) Pareto optimality of the RPM. Essentially, the

RPM involves minimizing a scalarizing achievement function S : Rn → R of the form (4.3.13).
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TABLE 4.5: Solutions generated by the RPM by varying ρ (and with the reference list in Ta-
ble 4.4).

ρ ŷ1 ŷ2

(0, 0) 2.55 6.55(1
2 , 0
)

2.55 6.55(
0, 1

2

)
2.66 6.32(1

2 , 1
2

)
2.55 6.55

(1, 1) 2.66 6.32(
10, 1

2

)
1 11(1

2 , 10
)

5.71 2.65

This function depends on the reference points and the vector parameter ρ,

S(y) = max
i∈[n]

(
max
j∈[p+1]

(
vj +w

j
i(yi − r

j
i)
))

+
∑
i∈[n]

ρi max
j∈[p+1]

(
vj +w

j
i(yi − r

j
i)
)

. (4.3.13)

Here, we introduced w1
i := α2w

1
i, w

p+1
i := α1w

p
i , vp+1 := vp and rp+1 := rp for the sake of

notation.

The minimization model of the RPM is then given by

min
x∈X

S(f(x)). (4.3.14)

So the RPM minimization model (4.3.14) is a special case of the more general form

min
x∈X

U(f(x)).

The same can be noted for the weighted sum and the ε-constraint method. To prove (weak)

Pareto optimality for the RPM it is convenient to consider this general class of minimization

models with utility function U : Rn → R.

DEFINITION 4.1 (Strictly, strongly increasing). A utility function U : Rn → R is called

• strictly increasing if U(y1) < U(y2) whenever y1 < y2 (y1,y2 ∈ Rn),

• strongly increasing if U(y1) < U(y2) whenever y1 6 y2 and y1
j 6= y2

j for at least one j ∈ [n]

(y1,y2 ∈ Rn).

THEOREM 4.4. Consider minimization model (4.0.1).

1. Let the utility function U : Rn → R be strictly increasing. If x̂ ∈ X is an optimal solution of

minimization model (4.0.1) then x̂ ∈ XwP.
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2. Let the utility function U : Rn → R be strongly increasing. If x̂ ∈ X is an optimal solution of

minimization model (4.0.1) then x̂ ∈ XP.

Proof. The statements can be proved by contraposition.

1. Suppose x̂ /∈ XwP, then there is an x ∈ X with f(x) < f(x̂). Since U : Rn → R is strictly

increasing we have to concludeU(f(x)) < U(f(x̂)), that is, x̂ ∈ X is not an optimal solution

of minimization model (4.0.1).

2. Suppose x̂ /∈ XP, then there is a x ∈ X with f(x) 6 f(x̂) and fj(x) < fj(x̂) for at least one

j ∈ [n]. Since U : Rn → R is strongly increasing we have U(f(x)) < U(f(x̂)), so x̂ ∈ X is

not an optimal solution of (4.0.1).

Properties of the specific scalarizing achievement function (4.3.13) are gathered in Lemma 4.5.

LEMMA 4.5. For the scalarizing achievement function S : Rn → R given by (4.3.13) the following

statements hold:

1. if ρ = 0, then S(y) is strictly increasing,

2. if ρ > 0, then S(y) is strongly increasing.

Proof. This can be shown using elementary calculus.

1. Let y1,y2 ∈ Rn with y1 < y2. Since wji > 0 for all i ∈ [n] and j ∈ [p+ 1] we have

vj +w
j
i(y

1
i − r

j
i) < vj +w

j
i(y

2
i − r

j
i), for all i ∈ [n] and j ∈ [p+ 1].

Hence

max
j∈[p+1]

(
vj +w

j
i(y

1
i − r

j
i)
)
< max
j∈[p+1]

(
vj +w

j
i(y

2
i − r

j
i)
)

, for all i ∈ [n],

so that

max
i∈[n]

(
max
j∈[p+1]

(
vj +w

j
i(y

1
i − r

j
i)
))

< max
i∈[n]

(
max
j∈[p+1]

(
vj +w

j
i(y

2
i − r

j
i)
))

.

Since ρ = 0, this just reads S(y1) < S(y2).

2. Let y1,y2 ∈ Rn with y1 6 y2 and y1
k < y

2
k for some k ∈ [n]. Then certainly

max
i∈[n]

(
max
j∈[p+1]

(
vj +w

j
i(y

1
i − r

j
i)
))

6 max
i∈[n]

(
max
j∈[p+1]

(
vj +w

j
i(y

2
i − r

j
i)
))

,
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since wji > 0 for all i ∈ [n] and j ∈ [p+ 1]. Also

ρi · max
j∈[p+1]

(
vj +w

j
i(y

1
i − r

j
i)
)
6 ρi · max

j∈[p+1]

(
vj +w

j
i(y

2
i − r

j
i)
)

, for all i ∈ [n],

since ρ > 0. Furthermore, for k ∈ [n] a strict inequality holds:

ρk · max
j∈[p+1]

(
vj +w

j
i(y

1
i − r

j
i)
)
< ρk · max

j∈[p+1]

(
vj +w

j
i(y

2
i − r

j
i)
)

,

because of the assumption y1
k < y2

k. Combining these observations, we may conclude

S(y1) < S(y2).

Note that ρ > 0 is also a necessary condition for the scalarizing achievement function of the

form (4.3.13) to be strongly increasing. A direct consequence is given in Corollary 4.6.

COROLLARY 4.6. Let x̂ ∈ X be the optimal solution of (4.3.14) then

1. x̂ ∈ XwP if ρ = 0,

2. x̂ ∈ XP if ρ > 0.

Proof. Follows directly from Lemma 4.5 and Theorem 4.4.

Summarized, the RPM is guaranteed to be Pareto optimal if ρ > 0, while only weak Pareto

optimality can be guaranteed when ρ = 0. Actually, when ρk = 0 for some k ∈ [n] and ρi > 0

for the other i ∈ [n] \ {k} only weak Pareto optimal solutions can be guaranteed.
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Application in radiation therapy
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CHAPTER 5

Multicriteria optimization and

Radiation Therapy

In this chapter, we discuss a setting in which we encounter multicriteria optimization problems

in radiation therapy. The aim of radiation therapy is to control or destroy the tumour cells while

sparing the surrounding healthy tissue as much as possible. As mentioned in Chapter 1, the

focus of this thesis is on external beam radiation therapy with X-ray beams (photons).

In external beam radiation therapy, the patient is positioned on a couch and is irradiated

from several directions with external X-ray beams. The irradiations from the several directions

overlap at the tumour volume so that a sufficient dose (measured in Gray (Gy)) can be deliv-

ered while avoiding the surrounding healthy tissue as much as possible. The X-ray beams are

generated by a device called a linear accelerator (linac), which is placed on an arm (the gantry),

which can rotate around the patient. In the linac, electrons are accelerated by subjecting them

linearly through a series of oscillating electric potentials. At the end of the linac, the electrons

are decelerated by (mostly) a tungsten alloy generating the X-ray beam. Placed after the X-ray

is a device called a collimator, which shapes the beam of radiation.

For the treatment device, there are two sets of physical parameters that need to be config-

ured:

1. the number of external beams and their directions,

2. the shapes and intensities of their fields.

In case that the intensities are non-uniform (optimized per patient), we refer to the treatment

as intensity modulated radiation therapy (IMRT). Currently at the Erasmus MC - Cancer Institute,

a novel algorithm called iCycle is used for determining these two sets of parameters, see Breed-

veld et al. (2012). The 2-phase ε-constraint (2pεc) method (Section 4.2.1), which can be applied

when the number of beams and beam directions are fixed, has a key role in iCycle.
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Configuring the treatment device is called treatment planning. There are two types of treat-

ment planning:

• forward planning (trial-and-error process),

• inverse planning (automated planning).

Forward planning is a technique where the dosimetrist manually configures the parame-

ters, such as the number of radiation beams and at which angles these beams are positioned.

The computer then performs an optimization to determine the other degrees of freedom re-

sulting in a dose distribution. If the dosimetrist is not satisfied with the dose distribution,

the parameters are reconfigured (manually) and a new optimization takes place, resulting into

another dose distribution. This process continues until the dosimetrist is satisfied with the

treatment plan. The quality of this treatment plan is highly dependent on the experience and

skills of the dosimetrist, and the time needed to obtain a satisfying treatment plan is mostly too

long .

Inverse planning is a technique in which a treatment plan is generated based on goals set on

the criteria, such as target coverage or sparing. An optimization takes place resulting in a dose

distribution that meets the predetermined goals as well as possible. If the dose distribution is

not to the dosimetrist’s liking, the goals are modified and another optimization follows. The

dosimetrist, who functions as the decision maker (DM), has the iterative task of determining

feasible and optimal goals for the criteria. The wish-list was designed to quantify and automate

this task, and thereby allowing fully automated treatment planning.

Our study is to investigate whether the RPM (Section 4.3) can automatically generate treat-

ment plans of similar quality when compared to the treatment plans generated by the 2pεc

method (our focus is thus on inverse planning). To compare these methods, we assume that

the number of beams and beam directions are fixed. In our case, configuring the treatment

device for an IMRT plan corresponds with optimizing the intensities of the beams (the remain-

ing physical parameters are fixed). The intensity profiles are also called fluence maps and are

represented by two-dimensional nonnegative functions. The process in which the intensity

profiles are optimized is called fluence map optimization, which is explained in the next section.

This chapter is concluded with a description of tools used to evaluate a treatment plan. We are

unable to evaluate the treatment plans ourselves, this can only be done by physicians.

5.1 Fluence map optimization

Here, we explain fluence map optimization into more depth. As the other physical parameters

of the treatment device are assumed to be fixed, the fluence map determines the IMRT plan.

In the mathematical model we use a rectangular grid for each of the apertures of the colli-

mator for a fixed beam angle. The number of rectangles on the grid (also called bixels) depends
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on several parameters such as the size of the aperture, beam angle and geometry of the region

under the beam. Every bixel is represented as a two-dimensional point. Letmi ∈N denote the

number of bixels for beam i, then we usually have mi = O(102). If the total number of beams

is N ∈N, then we have a total number of

m =
∑
i∈[N]

mi,

bixels. Each bixel bi corresponds to a small intensity element xi, called a beamlet, subdivid-

ing the IMRT beam. The fluence map is thus represented by m beamlet intensities or beamlet

weights. The fluence vector

x = (x1, x2, . . . , xm) ∈ Rm>0,

consisting of the beamlet weights is the unknown variable which we want to optimize. The

feasible set X thus consists of all possible configurations of the beamlet weights.

In order to sufficiently irradiate the tumour while sparing the surrounding healthy tissue

as much as possible, we need to calculate the absorbed dose at each location in the patient.

The latter is modeled using a CT-scan of the patient, from which the tumour and surrounding

healthy organs, called organs at risk (OAR), are delineated. After the delineation, the region

of treatment (tumour and surrounding healthy tissue which get affected by the irradiation) is

discretized into three-dimensional cubes called voxels. Each voxel is represented as a three-

dimensional point. Let l ∈ N denote the number of voxels used to discretize the region of

treatment. The absorbed dose of a voxel vi is denoted as di, which depends linearly on the

beamlet weights:

di =
∑
j∈[m]

hijxj, for i ∈ [l].

In Figure 5.1, the irradiation on a voxel is sketched. Here, hij represents the (nonnegative)

amount of dose absorbed at the ith voxel per unit intensity emission from the jth beamlet. Gath-

ering the doses of the voxels in a vector, the dose calculation formula becomes

d = Hx,

where

• the vector d ∈ Rl>0 denotes the dose distribution vector,

• the matrix H ∈ Rl×m>0 denotes the dose deposition matrix,

• the vector x ∈ Rm>0 denotes the fluence vector.

The dose deposition matrix H is calculated with the algorithm in Storchi and Woudstra (1996)

and depends on various parameters, for example the beam position.
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voxel i

beamlet j beamlet k

hij hik

FIGURE 5.1: Irradiation on a voxel. The irradiation on voxel i due to beamlets j and k and
corresponding elements hij and hik of the dose deposition matrix.

The dose distribution vector d can be utilized to formulate the criteria for fluence map

optimization which should be minimized simultaneously. Typical criteria which we will use

include

• the logarithmic tumour control probability (LTCP) (Breedveld et al. (2012) and Alber and

Reemtsen (2007)),

• the maximum dose,

• the minimum dose,

• the mean dose,

• the generalized mean dose.

Suppose V ⊆ [l] is the index set for which the corresponding voxels vi are in the tumour,

OAR or structure at interest. Then, the LTCP, maximum, minimum, mean and generalized

mean dose (for |p| > 1) are given by:

LTCP(d) =
1
M

∑
i∈V

exp (−α(di −D
p)) , (5.1.1)

MAX(d) = max
i∈V

di, (5.1.2)

MIN(d) = min
i∈V

di, (5.1.3)

MEAN(d) =
1
M

∑
i∈V

di, (5.1.4)

GMEANp(d) =

(
1
M

∑
i∈V

d
p
i

) 1
p

, (5.1.5)

whereM is the number of elements in V and di is the dose delivered to voxel vi.

In the LTCP, the parameter α is the cell sensitivity and Dp is the prescribed dose. Basically,

the LTCP gives an exponential penalty for doses di lower than the prescribed dose Dp. Note
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that the LTCP equals 1 when the doses di are equal to the prescribed dose Dp (homogeneous

dose distribution). We use the LTCP as criteria for the tumour, and aim for values below 1 giv-

ing the tumour a higher dose di (than the prescribed dose Dp) which increase the probability

of a successful treatment. When generating a treatment plan, minimizing the LTCP has the

highest priority.

Note that for p = 1 the generalized mean equals the mean dose, for p = ∞ it is the max-

imum dose and for p = −∞ it is the minimum dose. We explicitly mention the mean and

maximum/minimum dose since they are commonly used. If the generalized mean is used as

a criterion for an OAR or additional structure, it needs to hold that p > 1 (and for the tumour

p 6 −1).

Now, we can formulate a general multicriteria optimization problem which we encounter

in radiation therapy. Let G1,G2, . . . ,Gn : Rl → R be of the type (5.1.1) - (5.1.5), corresponding

to the tumour and OARs. The associated multicriteria optimization problem is then given by

min
x∈X

(G1(d)),G2(d), . . . ,Gn(d))

subject to d = Hx.
(5.1.6)

Or, in standard form
min
x∈X

(f1(x), f2(x), . . . , fn(x)), (5.1.7)

where the criteria f1, f2, . . . , fn : X → R are given by fi(x) = Gi(Hx) (i ∈ [n]). The feasible

beamlet weights are bounded so that the feasible set X is a nonempty multi-dimensional inter-

val (and thus compact and convex). The LTCP (5.1.1) and mean dose (5.1.4) are continuous and

convex. The generalized mean dose (5.1.5) is also continuous and convex since d = Hx > 0.

The maximum (5.1.2) and minimum (5.1.3) can also be represented by continuous and convex

functions as follows, when dealing with the maximum dose we add a decision variable, say t,

representing the maximum:

t = max
i∈V

di(x),

and add the convex inequalities

t > di(x), for all i ∈ V ,

to the multicriteria optimization problem (5.1.7). For the minimum dose, we similarly intro-

duce a new decision variable s:

s = min
i∈V

di(x),

and add the convex inequalities

s 6 di(x), for all i ∈ V ,
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to the multicriteria optimization problem (5.1.7). Note that these inequalities are indeed convex

since di(x) depends linearly on x.

For the fluence map optimization (5.1.7), where functions (5.1.1) - (5.1.5) are used as crite-

ria, we may conclude that most properties (except connectedness of the Pareto optimal set),

summarized in Section 3.4, indeed hold in our application.

5.2 Evaluation treatment plan

Solving the multicriteria optimization problem (5.1.7) results into a set of beamlet weights

which configure the treatment device. The question whether these beamlet weights represent

a high quality treatment plan is hard to answer. Tools to help evaluating the treatment plan

are: Solving the multicriteria optimization problem (5.1.7) results into a set of beamlet weights

which configure the treatment device. The question whether these beamlet weights represent a

high quality treatment plan is hard to answer. Tools to help evaluating the treatment plan are:

1. the criterion values f(x̂) (these are of the type (5.1.1) - (5.1.5)), where x̂ ∈ X is the optimal

set of beamlet weights,

2. the cumulative dose volume histogram (DVH) associated with the optimal beamlet weights,

3. the dose distribution associated with the optimal beamlet weights.

A cumulative DVH serves to summarize the three-dimensional dose distributions in a two-

dimensional plot. In a cumulative DVH, a line is plotted for each volume (tumour, OAR or

additional structure), see Figure 5.2 for an example. Along the horizontal axis, the dose is set (in

Gray) and the volume (in percentage of the total volume of the structure) is set on the vertical

axis. For every structure, the corresponding DVH curve represents the percentage receiving

greater than or equal to a certain dose value. For instance, the line for every structure starts at

(0, 100), since 100% of the volume receives a dose greater or equal to 0 Gy. This percentage will

decrease as the dose increases. The DVH curves monotonically decrease until they intersect the

horizontal axis, and the corresponding dose value represents the maximum dose delivered to

the associated volume.

We also look at the dose distribution, projected on the CT-slices, since the criterion values

and the cumulative DVH do not provide any spatial information. We may know the mean dose

delivered to an OAR as well as the cumulative DVH, but we do not know which parts of the

organ receive a low or high dose. A dose distribution is a representation of the variation of

dose around the tumour, visualized with isodose lines. The tissue on an isodose line receives

the same dose. For an example, see Figure 5.3.

To demonstrate these tools, we give an example where we calculate a treatment plan using

the 2pεc method with 3% relaxation (as is done in the current practice).
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EXAMPLE 5.1. In this example, we consider a head-and-neck cancer patient with a unilateral

(one-sided) tumour. The tumour is irradiated with 6 external beams with fixed angles. To

generate a treatment plan, we use the 2pεc method with 3% relaxation. The wish-list in Ta-

ble 5.1 is used. In this wish-list, there are also some constraints that exclude undesired sets

of beamlet weights from the feasible set X. For example, the maximum dose delivered to the

tumour is 49.22 Gy. Additional shells around the tumour have been delineated in the CT-slices

for a steep fall-off of the dose outside the tumour (known as dose conformality). Furthermore,

the maximum dose on the cord should be no more than 48 Gy and for the remaining tissue of

the patient (unspecified tissue), the dose should be 49.22 Gy or less. These 5 constraints must

be satisfied at all times in contrast to the criteria. The constraints are gathered in the vector

inequality g(x) 6 0 and are added to the minimization problem. For the treatment plan, the

highest priority is to lower the LTCP value of the tumour to 0.5. The other priorities involve

surrounding OARs, namely the salivary glands (both parotids glands and the submandibular

glands (SMGs)). Saving the saliva production of these glands is highly important. Therefore,

the second highest priority is to reduce the mean dose delivered to the right parotid gland to

39 Gy. This process continues until we obtain a Pareto optimal solution.

For the tumour, a LTCP value of 0.5 is also sufficient which means that a maximum of 0.5

is set in the case that lower values are feasible. The results of applying the 2pεc method are

gathered in Table 5.2. Observe that the goal value for the LTCP of 0.5 is attained for the tumour.

The most important OAR (the right parotid gland) is likely to be spared since it receives a mean

dose of only 3.43 Gy. One the left side, which is where the tumour is located, the mean dose

delivered to the OAR is higher (23.52 Gy to the left parotid gland and 39.79 Gy to the left SMG).

The right SMG is irradiated with a mean dose of 10.96 Gy.

Next, we compute the cumulative DVH associated with the treatment plan. The DVH is

shown in Figure 5.2. Note that in the DVH, it is desirable that the curves corresponding to the

OARs are as steep as possible since the intersection of this curve with the dose-axis represents

the maximum dose delivered to that OAR. The curve corresponding with the tumour should

be horizontal as long as possible before rapidly decreasing to the dose-axis, since we want to

irradiate the whole tumour (100% of its volume) with a high dose while limiting the maximum

dose at the same time.

For the spatial information, we consider Figure 5.3 which depicts the dose distribution.

Note that the volume close to the tumour receives high doses while the volume further away

from the tumour receives a lower dose.
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TABLE 5.1: Wish-list for the head-and-neck cancer patient.

Constraints

Number Volume Type Limit

1 Tumour max 49.22 Gy

2 Tumour Shell 1 cm max 34.5 Gy

3 Tumour Shell 4 cm max 36 Gy

4 Cord max 48 Gy

5 Unspecified Tissue max 49.22 Gy

Criteria

Priority Volume Type Goal value

1 Tumour LTCP 0.5 (also a sufficient value)

2 Parotid (R) mean 39 Gy

3 Parotid (L) mean 39 Gy

4 SMG (R) mean 39 Gy

5 SMG (L) mean 39 Gy

6 Parotid (R) mean 20 Gy

7 Parotid (L) mean 20 Gy

8 SMG (R) mean 20 Gy

9 SMG (L) mean 20 Gy

10 Parotid (R) mean 10 Gy

11 Parotid (L) mean 10 Gy

12 SMG (R) mean 10 Gy

13 SMG (L) mean 10 Gy

TABLE 5.2: Criterion values of the treatment plan generated with the 2pεc method.

Volume Type 2pεc method

Tumour LTCP 0.5

Parotid (R) mean 3.43 Gy

Parotid (L) mean 23.52 Gy

SMG (R) mean 10.96 Gy

SMG (L) mean 39.79 Gy
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FIGURE 5.2: The cumulative DVH of the treatment plan generated by the 2pεc method.
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Parotid (R)

SMG (R) SMG (L)

Parotid (L)

Tumour

FIGURE 5.3: The dose distribution in a CT-slice of the patient. Here, blue corresponds with low
doses and red with high doses. The thin lines represent isodose lines and the thick lines are the
delineations of the OARs and the tumour. Since the tumour is positioned at the left side, the
left parotid gland and left SMG are much harder to spare than the glands at the right side (note
that in medical imaging, the left side of the patient is at the right side of the CT-slice and vice
versa).
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CHAPTER 6

Configuring the RPM for treatment

planning

In this chapter we configure the RPM for the fluence map optimization (Section 5.1). Currently,

the 2-phase ε-constraint (2pεc) method (Section 4.2.1) with δ = 1.03 is in clinical use at the

Erasmus MC - Cancer Institute to generate treatment plans (Breedveld et al. (2007, 2009)). Per

patient group, such as prostate or head-and-neck cancer patients, a wish-list is constructed

to generate a Pareto optimal treatment plan. Our aim is to mimic the 2pεc method with the

reference point method (RPM), as described in Section 6.3.

As a side-note, our intention is not to obtain the same treatment plan but to configure the

RPM in such a way that the treatment plan found is of similar quality (judged by physicians)

when compared to the treatment plan generated by the 2pεc method. Also, the weighted sum

method (Section 4.1) is not suitable for treatment planning, as different patients in the same

patient group need different parameters λ ∈ Rn>0 \ {0} for a high quality treatment plan (the

trade-offs in a high quality treatment plan can differ significantly between patients).

Difficulties that arise when attempting to mimic the 2pεc method with the RPM are the

relaxation parameter and the fact that the location and shape of the nondominated set YN is

different for each patient (also for patients in the same patient group). This is because of differ-

ences in

1. the size, shape and location of the tumour,

2. the size, shape and location of the surrounding organs,

3. the number of beams and their directions.

For example, some head-and-neck cancer patients have a unilateral (one-sided) tumour while

others have a bilateral (two-sided) tumour (extensions in the lymph nodes).

85



CHAPTER 6. CONFIGURING THE RPM FOR TREATMENT PLANNING

For a specific configuration of the RPM, which we refer to as the lexicographic reference point

method (LRPM), the information in the wish-list is utilized to construct a suitable reference list.

Also, the sensitivity parameters in the RPM method are used, where we intend to use a uniform

set of parameters per patient group.

6.1 Comparing the 2pεc method and the RPM

In this section we compare the principles of the 2pεc method with those of the RPM. In Exam-

ple 4.1 and Example 4.2 these principles are depicted.

Although we know how the solution is steered in the criterion space for both methods,

there are some differences between the methods. The first observation that should be made is

that the input data differs, as the 2pεc method uses a wish-list (Table 4.1) while the RPM uses a

reference list (Table 4.3). In other words, the 2pεc method prioritizes goal values per criterion

while the RPM prioritizes vectors (reference points), in which goal values are specified for each

criterion. Secondly, we should note that both methods use different parameters. The 2pεc

method uses a relaxation parameter δ > 1, while the RPM uses parameters 0 < α1 6 1 6 α2

and ρ = (ρ1, . . . , ρn) > 0.

Because of these differences, it turns out to be difficult to mimic the 2pεc method with the

RPM. In the 2pεc method, it is crucial to note that it is impossible to know beforehand for

which priorities the relaxation will be applied. In fact, the 2pεc method needs to perform mul-

tiple optimizations to detect if a certain criterion needs to be relaxed or not in the subsequent

optimizations. However, this cannot be done in the RPM since this method consists of a single

optimization in which all reference points need to be specified, the reference points cannot be

changed while the optimization is in progress.

The 2pεc can be interpreted in the same way as the RPM (Figure 4.5 and Figure 4.6). The

path belonging to the 2pεc method consists of horizontal and vertical parts since we optimize

per criterion while keeping the others constrained. However, it is not clear where these hor-

izontal and vertical parts will be located since this depends on the relaxation parameter and

the nondominated set YN. However, when no relaxation is used (δ = 1) the path of the 2pεc

method is always the same (meaning it does not depend on YN). To illustrate this, consider the

wish-list in Table 6.1. Additionally, suppose that we have the constraints

f1(x) 6 11,

f2(x) 6 8.

For the wish-list in Table 6.1, the paths with and without relaxation of the 2pεc method in the

criterion space for two different nondominated sets are depicted in Figure 6.1.

Only if δ = 1, the 2pεc method can be interpreted as a uniform path (the same for every
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TABLE 6.1: Example of a simple wish-list.

Priority Criterion Goal value

1 f1(x) 10

2 f2(x) 6

3 f1(x) 1

4 f2(x) 2

0 2 4 6 8 10
0

2
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8

f1(x)

f2(x)

(a)

0 2 4 6 8 10
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f2(x)

(b)
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f2(x)

(c)
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f2(x)

(d)

Y

Y

Y

Y

γ γ

γ γ

relaxation relaxation

yδ=1.5^ yδ=1.5^

yδ=1^yδ=1^

FIGURE 6.1: Illustration of the paths with and without relaxation using the wish-list in Ta-
ble 6.1. In (a) and (b) the paths with relaxation parameter δ = 1.5 are illustrated for two dif-
ferent nondominated sets while (c) and (d) show the paths with no relaxation for these cases.
Note that the paths in (a) and (b) are different while the paths in (c) and (d) are the same.

nondominated set YN). Therefore, our first attempt to configure the RPM is based on this uni-
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form path, which we describe in the next section. Recall that in practice, the 2pεc method is

applied with a 3% relaxation (δ = 1.03).

6.2 Approximation non relaxed 2pεc method with the RPM

In this section, we attempt to approximate the 2pεc method (without relaxation) with the RPM.

To mimic the constraints

fi(x) 6 εi, for i ∈ [n],

we set ρ = 0 in the RPM (so that the indifference curves are as in Figure 4.6).

Also, we make the following assumptions in the remainder of this section for convenience.

A.1 Every criterion is bounded over the feasible set X ⊆ Rm (the beamlet weights).

A.2 The wish-list for the 2pεc method is given by

TABLE 6.2: Wish-list for the 2pεc method.

Priority Criterion Goal value

1 f1(x) b1

2 f2(x) b2

3 f3(x) b3
...

...
...

n− 2 fn−2(x) bn−2

n− 1 fn−1(x) bn−1

n fn(x) bn

We thus consider the case that the criteria only appear once in the wish-list (Table 6.2). We

can thus choose bounds for the criteria, fmin
i , fmax

i ∈ R for i ∈ [n], satisfying

fmin
i 6 bi 6 f

max
i ,

and

fmin
i 6 min

x∈X
fi(x),

max
x∈X

fi(x) 6 f
max
i .

In our application, the criteria are of the form (5.1.1) - (5.1.5) so we can take a minimum value of

0 or fmin
i = 0 for all i ∈ [n]. fmax

i can be set to a maximum constraint for the associated criterion

or to the maximum allowed tumour dose.
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TABLE 6.3: Ideal reference list for the RPM. Here, the value levels (vj)2n
j=1 suffice v2n > v2n−1 and the condition given by (4.3.3).

Priority Value
level

Reference
point

f1(x) f2(x) f3(x) · · · fn−2(x) fn−1(x) fn(x)

1 v1 r1 b1 fmax
2 fmax

3 · · · fmax
n−2 fmax

n−1 fmax
n

2 v2 r2 b1 b2 fmax
3 · · · fmax

n−2 fmax
n−1 fmax

n

3 v3 r3 b1 b2 b3 · · · fmax
n−2 fmax

n−1 fmax
n

...
...

...
...

...
...

. . .
...

...
...

n− 2 vn−2 rn−2 b1 b2 b3 · · · bn−2 fmax
n−1 fmax

n

n− 1 vn−1 rn−1 b1 b2 b3 · · · bn−2 bn−1 fmax
n

n vn rn b1 b2 b3 · · · bn−2 bn−1 bn

n+ 1 vn+1 rn+1 fmin
1 b2 b3 · · · bn−2 bn−1 bn

n+ 2 vn+2 rn+2 fmin
1 fmin

2 b3 · · · bn−2 bn−1 bn

n+ 3 vn+3 rn+3 fmin
1 fmin

2 fmin
3 · · · bn−2 bn−1 bn

...
...

...
...

...
...

. . .
...

...
...

2n− 2 v2n−2 r2n−2 fmin
1 fmin

2 fmin
3 · · · fmin

n−2 bn−1 bn

2n− 1 v2n−1 r2n−1 fmin
1 fmin

2 fmin
3 · · · fmin

n−2 fmin
n−1 bn

2n v2n r2n fmin
1 fmin

2 fmin
3 · · · fmin

n−2 fmin
n−1 fmin

n
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The ideal reference list, which produces the same solution as the 2pεc method with no

relaxation, is given in Table 6.3. We set α1 and α2 to 1 in the RPM. These parameters are irrele-

vant since the last reference point r2n in Table 6.3 can never be improved and the first reference

point r1 is always attainable for f2, . . . , fn. The idea is that the first n reference points (r1, . . . , rn)

mimic the first phase of the 2pεc method and the last n reference points (rn+1, . . . , r2n) mimic

the second phase of the 2pεc method.

Unfortunately, the RPM cannot be applied with the ideal reference list in Table 6.3 since

rj+1 ≮ rj for j ∈ [2n− 1]. One way to get around this issue is to perturb the ideal reference list.

To achieve this, choose values fmin
i , fmax

i ∈ R for i ∈ [n] and ξ > 0 small with

fmin
i + (n− 1)ξ < bi,

bi + (n− 1)ξ < fmax
i ,

fmin
i 6 min

x∈X
fi(x),

max
x∈X

fi(x) 6 f
max
i .

Now, we can construct the reference list in Table 6.7, which can be used in the RPM. The

reference list in Table 6.7 approximates the wish-list in Table 6.2 of the 2pεc method. Note that

in general, we have p priorities in the wish-list and n criteria which results in p+ n reference

points to approximate the wish-list. The approximation should improve as ξ→ 0.

We illustrate this approximation with an example in radiation therapy.

EXAMPLE 6.1. Consider the same patient as in Example 5.1, only now with the wish-list in

Table 6.4. Since we have already seen in Example 5.1 that a LTCP value of 0.5 is feasible for the

tumour, we can use this as a constraint instead (including the LTCP in combination with the

RPM results into difficulties, see Section 6.4). The associated reference list is given by Table 6.5.

Here, fmax
i = 49.22 is set to the maximum tumour dose and fmin

i = 0 is the ideal mean dose

delivered to each OAR (note that the ideal situation in which f(x) = 0 is always infeasible). In

the RPM, we set α1 and α2 to 1 and ρ = 0. The value levels are determined by algorithm (4.3.3)

initialized by v16 = 0 and v15 = 1.

The resulting criterion values are summarized in Table 6.6. Observe from Table 6.6 that the

treatment plan generated by the RPM improves for smaller ξ as it gets closer to the criterion

values of the treatment plan generated by the 2pεc method (with no relaxation). For ξ = 2, the

treatment plan of the RPM and the 2pεc method are nearly identical.

However, if ξ is taken smaller than 2 in the reference list (Table 6.5), the solver has difficulty

solving the corresponding minimization model of the RPM (4.3.9). This is an issue since the

clinical wish-lists at the Erasmus MC - Cancer Institute consist of even more criteria (mostly

between 10-25) and more priorities (mostly between 10-30). To understand why we encounter

this problem, consider the simple multicriteria optimization problem in Example 6.2.
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TABLE 6.4: Wish-list for the head-and-neck patient.

Constraints

Number Volume Type Limit

1 Tumour max 49.22 Gy

2 Tumour Shell 1 cm max 34.5 Gy

3 Tumour Shell 4 cm max 36 Gy

4 Cord max 48 Gy

5 Unspecified Tissue max 49.22 Gy

6 Tumour LTCP 0.5

Criteria

Priority Volume Type Goal value

1 Parotid (R) mean 39 Gy

2 Parotid (L) mean 39 Gy

3 SMG (R) mean 39 Gy

4 SMG (L) mean 39 Gy

5 Parotid (R) mean 20 Gy

6 Parotid (L) mean 20 Gy

7 SMG (R) mean 20 Gy

8 SMG (L) mean 20 Gy

9 Parotid (R) mean 10 Gy

10 Parotid (L) mean 10 Gy

11 SMG (R) mean 10 Gy

12 SMG (L) mean 10 Gy
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TABLE 6.5: Reference list constructed from the wish-list in Table 6.4.

Priority Reference point Parotid (R) Parotid (L) SMG (R) SMG (L)

1 r1 39 + 3ξ 49.22 49.22 + ξ 49.22 + 2ξ

2 r2 39 + 2ξ 39 + 3ξ 49.22 49.22 + ξ

3 r3 39 + ξ 39 + 2ξ 39 + 3ξ 49.22

4 r4 39 39 + ξ 39 + 2ξ 39 + 3ξ

5 r5 20 + 3ξ 39 39 + ξ 39 + 2ξ

6 r6 20 + 2ξ 20 + 3ξ 39 39 + ξ

7 r7 20 + ξ 20 + 2ξ 20 + 3ξ 39

8 r8 20 20 + ξ 20 + 2ξ 20 + 3ξ

9 r9 10 + 3ξ 20 20 + ξ 20 + 2ξ

10 r10 10 + 2ξ 10 + 3ξ 20 20 + ξ

11 r11 10 + ξ 10 + 2ξ 10 + 3ξ 20

12 r12 10 10 + ξ 10 + 2ξ 10 + 3ξ

13 r13 3ξ 10 10 + ξ 10 + 2ξ

14 r14 2ξ 3ξ 10 10 + ξ

15 r15 ξ 2ξ 3ξ 10

16 r16 0 0 0 0

TABLE 6.6: Criterion values of several treatment plans.

Volume Type 2pεc method
(δ = 1)

RPM
(ξ = 3)

RPM
(ξ = 2)

Parotid (R) mean 4.27 Gy 4.85 Gy 4.27 Gy

Parotid (L) mean 24.05 Gy 25.89 Gy 24.02 Gy

SMG (R) mean 13.53 Gy 13.56 Gy 13.54 Gy

SMG (L) mean 39.00 Gy 38.64 Gy 39.02 Gy
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TABLE 6.7: Input list for the RPM approximating the 2pεc method with the prioritized list in Table 6.2. Here, the value levels (vj)2n
j=1 suffice

v2n > v2n−1 and the condition given by (4.3.3).

Priority Value
level

Reference
point

f1(x) f2(x) f3(x) · · · fn−2(x) fn−1(x) fn(x)

1 v1 r1 b1 + (n− 1)ξ fmax
2 fmax

3 + ξ · · · fmax
n−2 + (n− 4)ξ fmax

n−1 + (n− 3)ξ fmax
n + (n− 2)ξ

2 v2 r2 b1 + (n− 2)ξ b2 + (n− 1)ξ fmax
3 · · · fmax

n−2 + (n− 5)ξ fmax
n−1 + (n− 4)ξ fmax

n + (n− 3)ξ

3 v3 r3 b1 + (n− 3)ξ b2 + (n− 2)ξ b3 + (n− 1)ξ · · · fmax
n−2 + (n− 6)ξ fmax

n−1 + (n− 5)ξ fmax
n + (n− 4)ξ

...
...

...
...

...
...

. . .
...

...
...

n− 2 vn−2 rn−2 b1 + 2ξ b2 + 3ξ b3 + 4ξ · · · bn−2 + (n− 1)ξ fmax
n−1 fmax

n + ξ

n− 1 vn−1 rn−1 b1 + ξ b2 + 2ξ b3 + 3ξ · · · bn−2 + (n− 2)ξ bn−1 + (n− 1)ξ fmax
n

n vn rn b1 b2 + ξ b3 + 2ξ · · · bn−2 + (n− 3)ξ bn−1 + (n− 2)ξ bn + (n− 1)ξ

n+ 1 vn+1 rn+1 fmin
1 + (n− 1)ξ b2 b3 + ξ · · · bn−2 + (n− 4)ξ bn−1 + (n− 3)ξ bn + (n− 2)ξ

n+ 2 vn+2 rn+2 fmin
1 + (n− 2)ξ fmin

2 + (n− 1)ξ b3 · · · bn−2 + (n− 5)ξ bn−1 + (n− 4)ξ bn + (n− 3)ξ

n+ 3 vn+3 rn+3 fmin
1 + (n− 3)ξ fmin

2 + (n− 2)ξ fmin
3 + (n− 1)ξ · · · bn−2 + (n− 6)ξ bn−1 + (n− 5)ξ bn + (n− 4)ξ

...
...

...
...

...
...

. . .
...

...
...

2n− 2 v2n−2 r2n−2 fmin
1 + 2ξ fmin

2 + 3ξ fmin
3 + 4ξ · · · fmin

n−2 + (n− 1)ξ bn−1 bn + ξ

2n− 1 v2n−1 r2n−1 fmin
1 + ξ fmin

2 + 2ξ fmin
3 + 3ξ · · · fmin

n−2 + (n− 2)ξ fmin
n−1 + ξ(n− 1) bn

2n v2n r2n fmin
1 fmin

2 fmin
3 · · · fmin

n−2 fmin
n−1 fmin

n
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EXAMPLE 6.2. Consider the settings in Example 4.2, that is, with feasible set X = [0, 8] and

criteria

f1(x) = x
√
x, f2(x) = (x− 4)2 + 2.

Suppose we use the wish-list in Table 6.8. Let fmax
2 = 14 and fmin

i = 0 for i ∈ [2]. Then we

TABLE 6.8: The wish-list used for the 2 criteria.

Priority Criterion Goal

1 f1(x) 10

2 f2(x) 10

3 f1(x) 2

4 f2(x) 2

can construct the reference list in Table 6.9 for the RPM. The associated paths are depicted in

TABLE 6.9: Reference list.

Priority Reference point f1(x) f2(x)

1 r1 10 + ξ 14

2 r2 10 10 + ξ

3 r3 2 + ξ 10

4 r4 2 2 + ξ

5 r5 ξ 2

6 r6 0 0

Figure 6.2.

For the RPM, we set α1 and α2 to 1, ρ = 0 and determine the value levels by algorithm

(4.3.3) initialized by v6 = 0 and v5 = 1. The 2pεc method (δ = 1) results in the nondominated

point (f1(x̂), f2(x̂)) = (2, 7.82), and the results of the RPM for different values of ξ are presented

in Table 6.10. Observe that the solutions generated by the RPM approximate the solution of the

2pεc method very well and that they improve as ξ → 0. However, the number of iterations

needed for the optimization tends to grow rapidly for smaller ξ. We quantify the complexity

of the problem beforehand with parameter ∆ defined by

∆ :=

max
i∈[2]
j∈[7]

w
j
i

/
min
i∈[2]
j∈[7]

w
j
i

 . (6.2.1)

The reason that ∆ increases as ξ → 0 is that for every two consecutive reference points rj

and rj+1, there is an criterion fi for which rji − r
j+1
i = ξ. Looking at the algorithm for the value
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FIGURE 6.2: The paths of both the non relaxed 2pεc method (γ2pεc) and the RPM (γRPM with
ξ = 1). The corresponding nondominated solutions are ŷ2pεc and ŷRPM respectively.

TABLE 6.10: Solutions of the RPM for different values of ξwith the reference list in Table 6.9.

ξ f1(x) f2(x) ∆ Iterations

1 2.52 6.62 2.94 · 102 21

0.9 2.48 6.70 5.82 · 102 32

0.8 2.44 6.78 1.22 · 103 31

0.7 2.40 6.87 2.72 · 103 36

0.6 2.35 6.97 6.70 · 103 32

0.5 2.31 7.08 1.89 · 104 54

0.4 2.25 7.21 6.50 · 104 36

0.3 2.20 7.34 3.07 · 105 46

0.2 2.14 7.48 2.60 · 106 196

0.1 2.07 7.64 9.25 · 107 17657

0.09 2.06 7.66 1.58 · 108 8334

0.08 2.06 7.68 2.88 · 108 63426

0.07 2.05 7.70 5.68 · 108 78

0.06 2.04 7.71 1.24 · 109 50582

2pεc 2 7.82

levels, (4.3.3), we note that these grow rapidly. As a result we see that for the values wji (4.3.6),

the ratio of the largest and smallest of the wji becomes large as well.

This configuration of the RPM causes the solver to have numerical/convergence issues.

Even for a simple multicriteria optimization problem as in Example 6.2 we encounter these
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issues, making this configuration of the RPM unsuitable for our application. Summing up the

issues:

1. the path in the criterion space alters in (almost) vertical and (almost) horizontal parts.

Therefore, there is too much focus on minimizing one of the criteria which can result into

bad trade-offs,

2. we approximate the 2pεc method with no relaxation while in practice we use δ = 1.03,

3. the minimization model of the RPM (4.3.9) requires a lot of computation time or cannot be

handled by the optimizer at all. This is caused by the many sharp turns in the preferred

path which causes the weights wji (4.3.6) to grow too rapidly.

We may conclude that the configuration of the RPM explained in this section is not appli-

cable in radiation therapy. The optimizer is generally unable to handle the associated mini-

mization model (4.3.9). Even if the optimizer does converge towards a treatment plan, there is

a significant risk of having undesired trade-offs. In the next section, we adapt the path in the

criterion space in order to deal with these issues.

6.3 Lexicographic reference point method

In order to improve the configuration of the RPM, a smoother preferred path of the RPM is

needed. In this section, we describe a specific configuration of the RPM, called the lexicographic

reference point method (LRPM), which smooths out the preferred path of the RPM described in

Section 6.2. Also, the LRPM utilized the sensitivity parameters ρ = (ρ1, . . . , ρn) of the RPM

(Section 4.3.3).

To illustrate the smoothing of the preferred path, we reconsider Example 6.2.

EXAMPLE 6.3. We use the same settings as in Example 6.2. However, we now construct the

preferred path of the LRPM which is a smoother path than the one in Example 6.2. The path

of the LRPM is depicted in Figure 6.3. The corresponding reference list that we applied here is

given in Table 4.4 and actually, we already analyzed this path of the LRPM in Example 4.2. The

value for ∆ (6.2.1) for the preferred path γLRPM is 4 (independent of the value for ρ) which is

low when compared to the values in Table 6.10.

The preferred path of the LRPM should be able to deal with large-scale problems, and also

maintain the prioritized structure (lexicographic ordering) induced by the wish-list. The algo-

rithm that selects the reference points which lead to a smooth preferred path can be generalized

in the case of n criteria. In our application, we also want to assign the same priority to different

criteria. These demands are processes in Algorithm 6.1, which automatically determines the

reference list from a predetermined wish-list. Basically, Algorithm 6.1 consists of three main

loops:
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FIGURE 6.3: The paths of both the non relaxed 2pεc method (γ2pεc) and the LRPM (γLRPM).
The path of the LRPM uses the midpoints of the linear segments of γ2pεc as reference points.

1. In the first loop, the goal values of the wish-list are used as aspiration points. Each dif-

ferent priority in the wish-list adds a reference point to the reference list. At the end of

the loop, a row of zeros is added representing full minimization of the criteria (in our

application).

2. In the second loop, aspiration points in between already defined aspiration points are

filled in by linear interpolation.

3. In the third loop, the remaining undefined aspiration points are filled in. These are lo-

cated at the upper triangle of the reference list. These aspiration points are determined

by putting them on the linear line of the two largest reference points which are already

defined after the second loop.

It should be mentioned that the choice of value levels v1, v2, . . . does not affect the optimal

criterion values f(x̂) ∈ Y, as long as the convexity condition (4.3.3) is satisfied. The value levels

should thus not be seen as parameters in the RPM, but rather as scalars that assure convexity

of minimization model (4.3.9).

Note that in Algorithm 6.1, we do not take upper bounds fmax
i into account which reduces

the number of reference points. Moreover, the number of inequalities of the form

vj +w
j
i(fi(x) − r

j
i) 6 ai,

in the minimization model of the RPM (4.3.9) is reduced as well as the complexity of the model.

The LRPM thus uses a smooth preferred path with a small number of reference points while re-

taining the lexicographic ordering. Therefore, the LRPM is suitable for the large-scale problems
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Algorithm 6.1: Reference list of the LRPM.

Data: The wish-list with p ∈N priorities and n ∈N (n > 1) criteria;
Result: Reference list R := (rji)i,j;

R := ∅;
i := 1;
while i 6 p do

add new row j of length n to reference list R;
gather entries with the same priority i in index set K;
for k ∈ K do

set rjk := bk, where bk is the goal value of priority k in the wish-list;
end
set i := i+ length(K);

end
add row of zeros of length n to reference list R;
for i ∈ [n] do

for every empty aspiration point rji do
if there are nonempty aspiration points rj1i and rj2i with rj2i < r

j
i < r

j1
i then

fill in rji by linear interpolation between rj1i and rj2i ;
set w := j2−j

j2−j1
then rji := wr

j1
i + (1 −w)rj2i ;

end
end

end
for i ∈ [n] do

for every empty aspiration point rji do
find largest entry rj1i in the column;
set rji on the linear interpolation line between rj1i and rj1+1

i ;
r
j
i := r

j1
1 + (j1 − j)(r

j1
i − rj1+1

i );
end

end

which we encounter in practice.

Concerning the other parameters that configure the RPM:

1. α1 and α2 are set to 1 in the LRPM since the preferred path does not need an additional

bend below the last reference point (the origin) or above the first reference point r1,

2. ρ = (ρ1, . . . , ρn) are set manually, although chosen uniformly per patient group.

Next, we apply the LRPM on an example in radiation therapy.

EXAMPLE 6.4. Here, we use the same settings as in Example 6.1 but now with the LRPM. The

constraints in the wish-list (Table 6.4) are added to the RPM minimization model (4.3.9) as

g(x) 6 0. For the criteria we construct the reference list by applying Algorithm 6.1.

After the first loop in Algorithm 6.1 and adding the row of zeros, the reference list is as

in Table 6.11. The second loop in Algorithm 6.1 then fills in the aspiration points in between
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TABLE 6.11: Reference list after first loop.

Priority Reference point Parotid (R) Parotid (L) SMG (R) SMG (L)

1 r1 39 ∅ ∅ ∅
2 r2 ∅ 39 ∅ ∅
3 r3 ∅ ∅ 39 ∅
4 r4 ∅ ∅ ∅ 39

5 r5 20 ∅ ∅ ∅
6 r6 ∅ 20 ∅ ∅
7 r7 ∅ ∅ 20 ∅
8 r8 ∅ ∅ ∅ 20

9 r9 10 ∅ ∅ ∅
10 r10 ∅ 10 ∅ ∅
11 r11 ∅ ∅ 10 ∅
12 r12 ∅ ∅ ∅ 10

13 r13 0 0 0 0

already defined aspiration points, see Table 6.12. Finally, the third loop in Algorithm 6.1 com-

TABLE 6.12: Reference list after second loop.

Priority Reference point Parotid (R) Parotid (L) SMG (R) SMG (L)

1 r1 39 ∅ ∅ ∅
2 r2 34.25 39 ∅ ∅
3 r3 29.5 34.25 39 ∅
4 r4 24.25 29.5 34.25 39

5 r5 20 24.25 29.5 34.25

6 r6 17.5 20 24.25 29.5

7 r7 15 17.5 20 24.25

8 r8 12.5 15 17.5 20

9 r9 10 12.5 15 17.5

10 r10 7.5 10 12.5 15

11 r11 5 20/3 10 12.5

12 r12 2.5 10/3 5 10

13 r13 0 0 0 0

pletes the reference list in Table 6.13. Due to assigning aspiration points on the same linear
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TABLE 6.13: Complete reference list.

Priority Reference point Parotid (R) Parotid (L) SMG (R) SMG (L)

1 r1 39 43.75 48.5 53.25

2 r2 34.25 39 43.75 48.5

3 r3 29.5 34.25 39 43.75

4 r4 24.25 29.5 34.25 39

5 r5 20 24.25 29.5 34.25

6 r6 17.5 20 24.25 29.5

7 r7 15 17.5 20 24.25

8 r8 12.5 15 17.5 20

9 r9 10 12.5 15 17.5

10 r10 7.5 10 12.5 15

11 r11 5 20/3 10 12.5

12 r12 2.5 10/3 5 10

13 r13 0 0 0 0

segment as others, some of the inequalities

vj +w
j
i(fi(x) − r

j
i) 6 ai,

are the same. In this example, we only need to implement 19 of these inequalities and the

value for ∆ (6.2.1) is 27.436. Consequently, the solver did not have any issues when solving the

corresponding minimization model (4.3.9).

Next, we demonstrate that the LRPM is capable of approximating the criterion values for

both the relaxed (δ = 1.03) and non relaxed (δ = 1) 2pεc method, which are gathered in Ta-

ble 6.14.

TABLE 6.14: Criterion values for the 2pεc method with and without relaxation.

Volume Type 2pεc method (δ = 1.03) 2pεc method (δ = 1)

Parotid (R) mean 3.43 Gy 4.27 Gy

Parotid (L) mean 23.52 Gy 24.05 Gy

SMG (R) mean 10.96 Gy 13.53 Gy

SMG (L) mean 39.79 Gy 39.00 Gy
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Applying the LRPM for different sensitivity parameters,

ρ1 = (3, 2, 3.5, 0.5),

ρ2 = (0.5, 3, 0.5, 2.5),

results into the criterion values in Table 6.15. For different sensitivity parameters, the LRPM is

TABLE 6.15: Criterion values of the treatment plan generated with the 2pεc method.

Volume Type LRPM (with ρ1) LRPM (with ρ2)

Parotid (R) mean 3.35 Gy 4.19 Gy

Parotid (L) mean 23.49 Gy 24.01 Gy

SMG (R) mean 11.05 Gy 13.34 Gy

SMG (L) mean 39.81 Gy 39.02 Gy

able to generate nearly identical treatment plans as the 2pεc method. This indicates that the

choice of sensitivity parameters is important for the treatment plan.

6.4 Discussion of the 2pεc method and the LRPM

In this section, we discuss some of the characteristics of both the 2pεc method and the LRPM

in order to provide a quick overview of both methods. Difficulties with applying the LRPM

arise when sufficient conditions are given to the criteria.

First, some key characteristics of the 2pεc method:

• n criteria with a wish-list,

• multiple optimizations to generate a Pareto optimal treatment plan,

• fixed relaxation parameter δ,

• different criteria should have different priorities,

• repeated feedback with automated DM (wish-list) after each optimization,

• integration of sufficient goals.

Next, we look at the characteristics of the LRPM:

• n criteria with a reference list (constructed with the wish-list and Algorithm 6.1),

• single optimization to generate a Pareto optimal treatment plan,

• sensitivity parameters ρ1, . . . , ρn (manually chosen),
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• different criteria can have the same priority,

• no feedback,

• no integration of sufficient goals.

The most important similarity between both methods is that the wish-list is utilized as in-

put. Another similarity is that both methods produce a Pareto optimal treatment plan. As a

consequence, we cannot deterministically tell which of the treatment plans is better. A gain in

one criteria (for example, a lower mean dose for the parotid glands) means a deterioration in at

least one of the other criteria (for example, a higher mean dose for the submandibular glands).

The main differences between both methods are the number of optimizations needed to

generate the treatment plan and the additional parameters of the method. Because the 2pεc

method optimizes per criterion, it can be verified whether the goal value is feasible or not. De-

pending on the result, a suitable constraint is set (feedback) before processing to subsequent

optimizations. When the goal value is infeasible, the relaxation parameter is applied to set a

suitable constraint. The LRPM on the other hand, only consist of one optimization and there-

fore no feedback from the wish-list can be provided. This is also the reason why the LRPM has

different parameters (ρ1, . . . , ρn), which introduce sensitivity in a different manner than the

2pεc method (see Section 4.3.3 for the interpretation of the sensitivity parameters of the RPM).

For the LRPM, it is easy to implement the same priority for different criteria (see first loop

in Algorithm 6.1), the goal values are just set in the same reference point. In the 2pεc method

however, there is no good way to integrate the same priority for different criteria since it is

based on the ε-constraint method (Section 4.2). Currently, we perform a weighted sum opti-

mization with equal weights instead of an ε-constraint optimization when we encounter such

a situation. However, there are no good heuristics to incorporate equal priorities in the 2pεc

method.

If, after performing an optimization in the 2pεc method, the goal value turns out feasible

it can also be decided to set a sufficient constraint. For example, if a sufficient value of 0.5 is

given for the LTCP of the tumour (criterion f1) and 0.4 turns out to be feasible (after solving

an ε-constraint problem), then a constraint of f1(x) 6 0.5 is set. In the LRPM, sufficient values

for criteria cannot be integrated. If we want to incorporate a sufficient value for 0.5 for f1, then

we would ideally set all rj1 to 0.5 upward of a certain j ∈ N. However, subsequent aspiration

points for a criterion cannot be the same in the RPM (explained in Section 4.3.1). This can be

approximated by setting rj1 = 0.5 and rj+k1 = 0.5 − kξ for k ∈ N and ξ > 0 small. This again

leads to a large ratio (6.2.1) of the largest and smallest of the values wji (4.3.6) (if the partial

achievement function s1 remains convex). Another possibility would be to simply add the

constraint

f1(x) > 0.5,
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however the minimization problem looses its convexity when adding this constraint (since the

LTCP (5.1.1) is a nonlinear convex function).

In the clinical wish-lists however, the first priority is often to minimize the LTCP to some

value (say 0.5) which is also sufficient. Since this is the first priority, we can “solve” this issue

by doing the following:

1. First we solve the ε-constraint problem

min
x∈X

f1(x).

subject to g(x) 6 0
(6.4.1)

Depending on the optimal solution x̂ ∈ Xwe set ε1 = max(b1, δf1(x̂)) where b1 is the goal

value and δ = 1.03.

2. For the remaining criteria we construct the minimization model (4.3.9) of the LRPM (as

discussed in Section 6.3). Furthermore, we add the constraints

g(x) 6 0,

f1(x) 6 ε1,

to minimization model (4.3.9), where ε1 is obtained from step 1.

So, we first replicate the first optimization of the 2pεc method and, depending on this results,

we construct the minimization model of the LRPM for the remaining criteria with the addition

of a constraint for the first criterion.

Of course, we could also construct a linear partial achievement function for the LTCP of the

tumour. However, a small difference in the LTCP (say 0.1) can lead to a significant difference for

the quality of tumour irradiation. By replicating the first optimization in the 2pεc method, we

ensure the same quality of tumour irradiation when generating the Pareto optimal treatment

plans.

103



CHAPTER 6. CONFIGURING THE RPM FOR TREATMENT PLANNING

104



CHAPTER 7

Results

In this chapter, we apply the lexicographic reference point method (LRPM) (Section 6.3) as

an alternative for the 2-phase ε-constraint (2pεc) method for automated treatment planning.

Treatment plans generated by the 2pεc method are considered the golden standard, and will

be compared to the treatment plans generated by the LRPM with the evaluation tools explained

in Section 5.2 (criterion values, cumulative dose volume histograms and dose distributions).

We consider two patient groups:

1. prostate cancer patients,

2. head-and-neck cancer patients.

For both patient groups, we want to apply the LRPM with uniformly chosen sensitivity pa-

rameters ρ1, . . . , ρn. It turns out that this is feasible for the group of prostate cancer patients.

However, the variety in size and location of tumours in the head-and-neck region (Voet et al.,

2013) makes it hard to choose a uniform set of sensitivity parameters for that whole patient

group. For example, in case of a unilateral (one-sided) tumour, either the left or right salivary

glands can be spared with high probability while for bilateral (two-sided) tumours, both the

left and right salivary glands should have the same probability (more or less) to be spared. It

thus depends on the location of the tumour which trade-offs are favourable in a treatment plan.

In our study, we consider head-and-neck cancer patients with a bilateral tumour.

To enable comparison of the treatment plans we use the same beam setup (number of beams

and beam angles) for all patients. We use 23 beams placed in an equi-angular setup to mimic

VMAT-like (volumetric modulated arc therapy) dose distributions. Per beam angle, the number

of beamlets is O(102). For all patients, VMAT plans have been calculated with both the 2pεc

method and the LRPM. In VMAT, the patient is continuously irradiated by a single arc rotation

of the treatment device.
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7.1 Prostate cancer patients

For our study on the group of prostate cancer patients, we have randomly selected a sample

of 30 prostate cancer patients. For these patients, the same wish-list is used. The VMAT plans

generated by the 2pεc method with a 23 equi-angular beam setup were regarded as high quality

(Voet et al., 2014).

The wish-list, used to automatically generate the treatment plans with the 2pεc method, in

Table 7.1 was established by physicians, dosimetrists and physicists (Voet et al., 2014).

TABLE 7.1: Wish-list for prostate cancer patients.

Constraints

Number Volume Type Limit

1 Tumour (prostate) max 104% of prescribed dose

2 Tumour (seminal vesicles) max 104% of prescribed dose

3 Tumour Shell 50 mm max 60% of prescribed dose

4 Rectum max 104% of prescribed dose

5 Hips (L + R) max 40 Gy

6 Unspecified Tissue max 104% of prescribed dose

7 Tumour (prostate) LTCP 0.5

8 Tumour (seminal vesicles) LTCP 0.5

Criteria

Priority Volume Type Goal value

1 Rectum gmean12 40% of prescribed dose

2 Rectum gmean8 25% of prescribed dose

3 Rectum mean 33% of prescribed dose

4 External Ring max 40% of prescribed dose

5 Tumour Shell 5 mm max 93% of prescribed dose

6 Anus mean 10% of prescribed dose

7 Tumour Shell 15 mm max 70% of prescribed dose

8 Tumour Shell 25 mm max 50% of prescribed dose

9 Bladder mean 60% of prescribed dose

10 Hip (L + R) mean 25% of prescribed dose

11 Unspecified Tissue mean 10 Gy

For prostate cancer patients, the tumour has two different dose prescriptions:

− the part of the tumour located in the prostate,
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− the part of the tumour located in the seminal vesicles.

The part of the tumour in the prostate is prescribed a higher dose (78 Gy) than the part of

the tumour in the seminal vesicles (72.2 Gy), see Voet et al. (2014). In practice, it feasible to

constrain both the LTCPs of the tumour to 0.5 (so the LTCPs of the tumour are no criteria) due

to the 23 equi-angular beam setup and the maximum constraints in the wish-list (Table 7.1).

Looking at the criteria in the wish-list, the highest priority is to minimize the generalized mean

for the rectum which should lead to a minimal amount of volume of the rectum that receives

high doses. Minimizing on the external ring structure serves to minimize the entrance dose (the

dose absorbed below the surface of the skin). The tumour shells (5, 15 and 25 mm around

the tumour) are added to achieve a large decrease in dose outside the tumour. Other criteria

involve the anus, bladder, hips and the other unspecified tissue (body). Note that the hips (left

and right) are given the same priority in the wish-list and that the last priority serves to remove

as much of the unnecessary dose inside the patient as possible.

Next, we test both the 2pεc method and the LRPM on a patient with prostate cancer. For

the resulting treatment plans, we compare the criterion values, DVHs and visualize the dose

distributions. Then, we present the results for the sample of 30 prostate cancer patients. For

the VMAT plans generated by the LRPM (as described in Section 6.3), we used a uniform set of

sensitivity parameters.

7.1.1 Example prostate cancer patient

Here, we consider a prostate cancer patient for whom two VMAT plans have been calculated,

one is generated by the 2pεc method and the other by the LRPM. Both methods utilize the

wish-list in Table 7.1.

The criterion values for the VMAT plans are presented in Table 7.2. Observe that both

the gmean12 and gmean8 of the rectum are in favour of the LRPM. Also, the maximum dose

delivered to the external ring and the 5 and 15 mm tumour shells are in favour of the LRPM.

The mean doses delivered to both the rectum and the anus are in favour of the 2pεc method.

There is also a noticeable difference in the mean doses of the hips, which are in favour of the

2pεc method.

Remember that both treatment plans are Pareto optimal, so the improvement for the LRPM

in some of the criteria must lead to a deterioration somewhere else. For instance, the LRPM

gives a better result for the generalized mean of the rectum but the mean dose of the rectum,

anus and the hips are in favour of the 2pεc method. The LRPM offers a different trade-off

between the criteria than the 2pεc method.

Next, we compare the cumulative DVHs of both treatment plans, see Figure 7.1. Notice

that for both treatment plans, the DVH curves of the tumour (prostate and seminal vesicles)

are nearly identical, which is due to the constraints in the wish-list (Table 7.1). In the DVHs, it
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TABLE 7.2: The criterion values for the prostate cancer patient.

Volume Type 2pεc method LRPM

Rectum gmean12 62.2 Gy 61.7 Gy

Rectum gmean8 57.6 Gy 57.0 Gy

Rectum mean 27.9 Gy 28.1 Gy

External Ring max 28.7 Gy 26.6 Gy

Tumour Shell 5 mm max 76.1 Gy 75.6 Gy

Anus mean 21.6 Gy 22.2 Gy

Tumour Shell 15 mm max 59.8 Gy 59.0 Gy

Tumour Shell 25 mm max 49.2 Gy 49.4 Gy

Bladder mean 39.3 Gy 38.9 Gy

Hip (L) mean 18.9 Gy 19.7 Gy

Hip (R) mean 17.0 Gy 19.1 Gy

Unspecified Tissue mean 8.0 Gy 8.2 Gy

becomes clear what the differences between both treatment plans are. The high doses delivered

to the rectum (high priority) are less for the LRPM than for the 2pεc method, however there is

also a clear deterioration in the mean doses of the hips (low priority).

Finally, to visualize which dose is delivered to which part of an organ at risk (OAR), we

depict the dose distributions in Figure 7.2. The dose distribution explain why it is difficult to

lower the generalized mean dose delivered to the rectum: the rectum is close to the tumour.

The isodose lines are relatively close to each other between the rectum and the tumour which

represents a steep dose fall-off (high dose conformality). The main visible differences between

the dose distributions in Figure 7.2 are the isodose lines around the rectum, bladder and hips.

From the dose distributions, we may conclude that the mean dose received by the rectum and

hips are slightly in favour of the treatment plan generated by the 2pεc method, and the mean

dose received by the bladder is slightly in favour of the treatment plan generated by the LRPM.

The dose distributions show, in addition, which part of the OARs receive a high or low dose.

For example, the volume of the rectum closest to the tumour gets irradiated the most while the

volume of the rectum further away from the tumour receives a lower dose.

7.1.2 Sample of 30 prostate cancer patients

For a uniform set of sensitivity parameters, the LRPM is applied to generate VMAT plans for

30 prostate cancer patients. Also, the VMAT plans were calculated for the 2pεc method (golden

standard) in order to compare the results.

We will not show the DVHs and dose distributions for all these patients, instead we present
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the results in several plots in which evaluation criteria are shown for both the 2pεc method and

the LRPM. The selected evaluation criteria of interest:

1. rectum V75Gy, the amount of volume (%) of the rectum receiving at least 75 Gy,

2. rectum V60Gy, the amount of volume (%) of the rectum receiving at least 60 Gy,

3. rectum mean dose,

4. anus mean dose,

5. tumour V95% (prostate), the amount of volume (%) of the prostate receiving at least 95%

of the prescribed dose,

6. tumour V95% (seminal vesicles), the amount of volume (%) of the seminal vesicles receiv-

ing at least 95% of the prescribed dose,

7. bladder V65Gy,

8. bladder mean dose,

9. tumour shell 15 mm maximum dose,

10. tumour shell 25 mm maximum dose,

11. left hip maximum dose,

12. right hip maximum dose.

The evaluation criteria are shown in Figure 7.3, Figure 7.4 and Figure 7.5.

A point in each of these plots represents a criterion value for the two treatment plans: the

value on the horizontal axis corresponds to the evaluation criterion of the treatment plan gen-

erated by the 2pεc method. Similarly, the value on the vertical axis corresponds to the LRPM

for a particular evaluation criterion. Points under the solid line (identity line) are in favour of

the treatment plan generated by the LRPM and for points above the solid line, the 2pεc method

has a better result.

From Figure 7.3 we observe that the volume of the rectum receiving high dose is less for

the LRPM since the points in the V75Gy- and V60Gy-plots are below the identity line. This is

no coincidence, as we tuned the sensitivity parameters so that the highest priority in the wish-

list (Table 7.1) are in favour of the LRPM. For the rectum, the LRPM reduces the V75Gy by

0.52± 0.24, where 0.52 is the mean of the differences and 0.24 is the standard deviation. The

mean ȳ is defined as

ȳ :=
1
n

∑
i∈[n]

yi,
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and the standard deviation as

std(y) :=

√√√√ 1
n− 1

∑
i∈[n]

(yi − ȳ).

The LRPM also reduces the rectum V60Gy by 0.54± 0.31. The mean dose of the rectum however,

is sometimes in favour of the 2pεc method and sometimes in favour of the LRPM. The LRPM

differed by −0.08± 0.53 for the mean dose of the rectum (the 2pεc method gives better results

on average). Also for the mean dose of the anus, the LRPM differed by −0.16± 0.49 making

the results of the 2pεc method slightly better on average.

In Figure 7.4 it is shown that the quality of the irradiation on the tumour is high for both

plans. For most patients, the prostate tumour V95% is slightly improved for the LRPM (namely

0.05± 0.05). Looking at the scale of the axis, we observe that all patients have a prostate tumour

V95% of at least 99.1%. This means that for all patients, 99.1% of the prostate tumour received at

least 95% of the prescribed dose. For 10 patients, the tumour had two different dose prescrip-

tions (prostate and seminal vesicles tumour, see Section 7.1). For these patients, the V95% for the

seminal vesicles is at least 99.1%. The LRPM slightly improved the V95% of the seminal vesicles

by 0.02± 0.05. For the bladder, we observe that in most cases, both the V65Gy and mean dose

are in favour of the 2pεc method. The LRPM differed by −1.38± 1.29 for the bladder V65Gy

and −1.90± 1.79 for the mean dose of the bladder.

In Figure 7.5 the differences for the tumour shells are sometimes in favour of the 2pεc

method and sometimes in favour of the LRPM. The LRPM differed by −0.13 ± 2.13 for the

maximum dose of the 15 mm shell and −1.12± 2.37 for the maximum dose of the 25 mm shell.

Keep in mind that the tumour shells serve to realize a steep dose fall-off outside the tumour

(dose conformality), and are not actual organs. The differences for the maximum dose on the

hips tend to be in favour of the 2pεc method and are sometimes quite large. The LRPM differed

by −0.88± 1.74 for the maximum dose of the left hip and −1.00± 1.89 for the maximum dose

of the right hip.

We kept track of the computation times for all 30 patients. We observed that, on average,

the LRPM reduces the computation time from 34.9 to 3.0 minutes. This is an average speed-up

factor of nearly 12.

All treatment plans were found clinically acceptable. For all patients, the tumour irradiation

for both the 2pεc method and the LRPM were of similar high quality. For high prioritized

criteria, the LRPM performed better while the 2pεc method gives better results for the lower

prioritized criteria. These differences were found neither clinically nor statistically relevant

(Heijmen et al., 2014). Furthermore, the computation time of the LRPM is nearly 12 times faster

(on average) when compared to the 2pεc method.
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7.2 Head-and-neck cancer patients

In this section we consider 2 head-and-neck cancer patients. As mentioned before, generating

a treatment plan for head-and-neck cancer patients is complex due to the differences in tumour

size and location as well as the sizes of the surrounding organs. For this reason, we selected

two patients with a bilateral tumour. We again use a 23 equi-angular beam setup combined

with a fixed wish-list (Voet et al., 2013), for which the treatment plans generated by the 2pεc

method are of high quality.

The wish-list used is similar to the one in Table 7.3. Observe that, in contrast to the wish-list

TABLE 7.3: Wish-list for head-and-neck patients.

Constraints

Number Volume Type Limit

1 Tumour max 107% of the prescribed dose

2 Cord max 38 Gy

3 Unspecified Tissue max 107% of the prescribed dose

Criteria

Priority Volume Type Goal value

1 Tumour LTCP 0.4 (also a sufficient value)

2 Parotids/SMGs mean 39 Gy

3 Parotids/SMGs mean 20 Gy

4 Oral cavity mean 39 Gy

5 Cord/Brainstem max 38 Gy

6 External Ring max 90% of the prescribed dose

7 Larynx/swallowing muscles mean 75% of the prescribed dose

8 Tumour Shell 1 cm max 75% of the prescribed dose

9 Parotids/SMGs mean 10 Gy

10 Tumour Shell 4 cm max 40% of the prescribed dose

11 Parotids/SMGs mean 2 Gy

for prostate cancer patients (Table 7.1), the LTCP of the tumour is added as a criterion instead

of a constraint. Due to the complexity of the head-and-neck cases, it cannot be guaranteed that

the goal value of 0.4 is feasible (because of other constraints and the overlap of the tumour

with surrounding organs). A way to deal with the first priority in the LRPM is explained in

Section 6.4, namely to first perform an ε-constraint optimization on the LTCP and, depending

on the results, add an extra constraint in the minimization model of the LRPM (4.3.9), which

then optimizes the other criteria. For head-and-neck cancer patients, the LRPM thus needs 2
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optimizations (instead of 1) to generate a treatment plan. Other features in the wish-list for

head-and-neck cancer patients (Table 7.3), is that the same criteria (same volume and type)

appears multiple times and that there are several equal priorities involved.

A high priority is to spare the salivary glands (parotid glands and submandibular glands

(SMGs)). Other criteria involve the oral cavity, cord, brainstem, larynx and shell structures. We

also consider 4 swallowing muscles:

1. musculus constrictor superior (MCS),

2. musculus constrictor medius (MCM),

3. musculus constrictor inferior (MCI),

4. musculus constrictor cricopharyngeus (MCP).

For the 2 patients, the criterion values for both treatment plans (of the 2pεc method and the

LRPM) are shown in Table 7.4. Both patients were treated with 46 Gy prescribed to the tumour.

Note that for patient I, less OARs are given as criteria than for patient II. A certain OAR can be

outside the region of treatment (depending on the location and size of the tumour) or, a large

part of the OAR overlaps with the tumour so that the OAR cannot be spared anyhow. Observe

that the differences for the criteria can be quite large, especially for lower prioritized criteria.

For both patients, the mean dose delivered to the parotid glands is less for the 2pεc method but

within a margin of 2 Gy. In return, the LRPM has generated a treatment plan for patient I with

a lower maximum dose/generalized mean dose on the tumour shells plus additional sparing

on both the cord and brainstem. The maximum dose of the cord is reduced with almost 8 Gy,

and the maximum dose of the brainstem with more than 10 Gy. For Patient II, the LRPM gives

an improvement of more than 5 Gy in mean dose for the right SMG as well as improvements

for the cord, larynx, swallowing muscles, esophagus and right cochlea. The maximum dose of

the cord is reduced with more than 6 Gy, the mean dose of the larynx is reduces by 4 Gy and the

mean doses of the swallowing muscles (MCS, MCM, MCI and MCP) is reduced significantly

(7 Gy for the MCM, 11 Gy for the MCI and 14 Gy for the MCP). Also the mean dose delivered

to the esophagus is halved, so that the mean dose is only 18 Gy. At last, the maximum dose on

the right cochlea is improved by more than 7 Gy.

For both patients, the generated treatment plans are quite different. A slight deterioration

(less than 2 Gy) in the mean dose of the parotid glands (highest priority) leads to major im-

provements for lower prioritized criteria. We thus expect to observe significant differences in

both the cumulative DVHs and dose distributions.

For patient I, the DVHs are shown in Figure 7.6 and the dose distributions in Figure 7.7.

For the DVHs of patient I (Figure 7.6), we observe that the parotid glands and left SMG are

in favour of the 2pεc method (which is confirmed in Table 7.4). The LRPM gives better results

for the other OARs in Figure 7.6. For the OARs not shown in Figure 7.6, the differences in DVH
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TABLE 7.4: The criterion values for the 2 head-and-neck cancer patients.

Patient I Patient II

Volume Type 2pεc method LRPM 2pεc method LRPM

Tumour LTCP 0.4 0.4 0.4 0.4

Parotid (L) mean 16.1 Gy 17.3 Gy 28.5 Gy 30 Gy

Parotid (R) mean 17.4 Gy 18.9 Gy 22.4 Gy 24.2 Gy

SMG (L) mean 34.1 Gy 35.1 Gy 44.0 Gy 43.8 Gy

SMG (R) mean 35.6 Gy 35.1 Gy 37.7 Gy 32.6 Gy

Tumour Shell 0.5 cm max 43.7 Gy 41.9 Gy 43.7 Gy 42.8 Gy

Tumour Shell 1.5 cm max 35.6 Gy 33.1 Gy 36.8 Gy 34.6 Gy

Tumour Shell 3 cm gmean15 20.5 Gy 18.3 Gy 21.3 Gy 22.5 Gy

Tumour Shell 4 cm gmean15 16.1 Gy 15.2 Gy 16.2 Gy 18.9 Gy

Oral cavity mean 27.9 Gy 28.1 Gy 29.8 Gy 25.1 Gy

Cord max 24.6 Gy 16.4 Gy 26.7 Gy 20.6 Gy

Brainstem max 17.7 Gy 7.2 Gy 30 Gy 29.4 Gy

External Ring max 34.1 Gy 29.3 Gy 39.1 Gy 33.6 Gy

Larynx mean ∅ ∅ 34.7 Gy 30.4 Gy

MCS mean ∅ ∅ 47.8 Gy 47.3 Gy

MCM mean ∅ ∅ 41.6 Gy 34.6 Gy

MCI mean ∅ ∅ 34.6 Gy 23.3 Gy

MCP mean ∅ ∅ 34.6 Gy 20.1 Gy

Esophagus mean ∅ ∅ 36.1 Gy 18.0 Gy

Cochlea (L) max ∅ ∅ 30 Gy 30 Gy

Cochlea (R) max ∅ ∅ 30 Gy 22.8 Gy

Unspecified Tissue mean 10.0 Gy 10.1 Gy 9.3 Gy 9.4 Gy

curves were minimal. The DVH curves for the tumour are nearly identical for both treatment

plans.

For patient I, observe from the dose distributions of both treatment plans (Figure 7.7) that

the isodose lines near the parotid glands are more favourable for the 2pεc method. It can also

be observed that the mean dose of the oral cavity is in favour of the LRPM (more blue, less red)

and that the cord is more spared in the dose distribution of the LRPM.

For patient II, the dose distributions for both plans are depicted in Figure 7.8 and the DVHs

are shown in Figure 7.9 and Figure 7.10.

For patient II, both plans are quite different as may be expected from the criterion values in

Table 7.4. For the dose distributions (Figure 7.8), observe that the differences around the cord

and MCM are significant. The dose distribution for the LRPM leads to less irradiation on the
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cord and MCM while still irradiating the tumour sufficiently.

Not only the dose distributions of both plans are quite different, also the DVHs show an

interesting trade-off. In Figure 7.9, both parotid glands receive a slightly higher mean dose for

the LRPM. However, both SMGs (especially the right SMG) are more spared in the treatment

plan generated by the LRPM. Also, the DVH curves of the cord and oral cavity are in favour

of the LRPM. Figure 7.9 also shows that the DVH curves for the tumour are nearly identical.

Most differences in the DVH curves in Figure 7.10 are significant. Only the DVH curve of

the tumour shell (4 cm) is in favour of the 2pεc method which can also be observed from the

dose distributions in Figure 7.8. The DVH curves of the larynx, esophagus, right cochlea and

swallowing muscles are all in favour of the LRPM, mostly with a significant improvement.

For patient I, the plans were found to be of similar quality and for patient II, the treatment

plan of the LRPM was favoured. The LRPM reduced the computation time from 133.2 to 42.1

minutes (speed-up factor of 3.2) for patient I, and from 294.6 to 67.0 minutes (speed-up factor

of 4.4) for patient II.
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FIGURE 7.1: The DVHs of both the 2pεc method (solid lines) and the LRPM (dashed lines). (a)
shows the tumour, rectum and left hip and in (b) the anus, bladder and right hip are shown.
The differences for the other criteria in the DVH were minimal.
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FIGURE 7.2: The dose distributions of the treatment plans generated by (a) the 2pεc method
and (b) the LRPM. The thick solid lines are delineations of the OARs and additional structures.
The thin solid lines represent isodose lines. Blue corresponds with low doses and red with high
doses.
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FIGURE 7.3: Evaluation criteria of the 2pεc method plotted against the LRPM. (a) shows the
rectum V75Gy, (b) the rectum V60Gy, (c) the rectum mean dose and (d) the anus mean dose.

117



CHAPTER 7. RESULTS

99 99.2 99.4 99.6 99.8 100
99

99.2

99.4

99.6

99.8

100

Tumour V95%
 (prostate)

2pεc method

LR
PM

99.1 99.2 99.3 99.4 99.5 99.6
99.1

99.2

99.3

99.4

99.5

99.6

Tumour V95%
(seminal vesicles) 

LR
PM

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80
Bladder V65Gy

LR
PM

10 20 30 40 50 60 70 80
10

20

30

40

50

60

70

80
Bladder mean dose

LR
PM

2pεc method

2pεc method 2pεc method

(a) (b)

(c) (d)

FIGURE 7.4: Evaluation criteria of the 2pεc method plotted against the LRPM. (a) shows the
tumour V95% for the prostate, (b) the tumour V95% for the seminal vesicles, (c) the bladder
V65Gy and (d) the bladder mean dose.
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FIGURE 7.7: Dose distribution of both treatment plans for head-and-neck cancer patient I. In
(a) the dose distribution of the 2pεc method is shown and (b) shows the dose distribution of
the LRPM.
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FIGURE 7.8: Dose distribution of both treatment plans for head-and-neck cancer patient II. In
(a) the dose distribution of the 2pεc method is shown and (b) shows the dose distribution of
the LRPM. Note the difference near the MCM.
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FIGURE 7.9: The DVHs of both the 2pεc method (solid lines) and the LRPM (dashed lines) for
head-and-neck cancer patient II. (a) shows the salivary glands and in (b) the tumour, oral cavity
and cord are shown.
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CHAPTER 8

Conclusions and further research

In this chapter, we first summarize the results of the theory (Part I), then we answer the research

question about the applicability of the reference point method (RPM) in radiation therapy. Fi-

nally, we discuss further research on this work.

8.1 Summary of the theory

In Part I of this thesis, the concept of multicriteria optimization was introduced. In a multicrite-

ria optimization problem, multiple real-valued functions need to be optimized simultaneously.

These functions (or criteria) often conflict, meaning that optimizing a single criterion results in

non-optimal solutions for the other criteria. Mathematically, there is often a whole set of Pareto

optimal solutions. Deciding whether a particular Pareto optimal solution is better than another

is of subjective nature.

The analysis of general multicriteria optimization problems was done in Chapter 3. The

main findings concerned existence and connectedness of Pareto optimal and nondominated

points. Both properties can be guaranteed if the decision space is a nonempty compact set and

the criteria are continuous and convex, although the criteria need to be strictly convex for the

connectedness of Pareto optimal points.

In Chapter 4, multicriteria methods are discussed. These are methods, which often have ad-

ditional parameters, that generate a Pareto optimal point by solving a single criterion optimiza-

tion problem. Our focus was on the weighted sum method, ε-constraint method and the RPM.

The weighted sum method can generate every Pareto optimal point by varying the parameters

of the method, provided that the feasible set in the criterion space is Rn>0-convex. When this

property is missing, the weighted sum method should not be applied. The ε-constraint method

minimizes one criterion while keeping the others constrained. An extension of this method, the

2-phase ε-constraint (2pεc) method allows to steer the solution, by assigning goal values to the

criteria and sorting these by priority (gathered in the wish-list), towards a desired part of the
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nondominated front. The 2pεc method solves a sequence of ε-constraint problems to obtain

the final Pareto optimal solution. Additional steering of the solution is done with a relaxation

parameter. Finally, we investigated the RPM which also imposes a prioritized structure of the

criteria. Instead of assigning goal values to certain criteria, aspiration points are specified for

every criterion per priority (gathered in the reference list). In contrast to the 2pεc method, the

RPM needs a single optimization to obtain a Pareto optimal solution. The RPM connects the

reference points creating a preferred path in the criterion space. This path is followed until

we intersect the infeasible set. At the same time, the additional sensitivity parameters serve to

locate Pareto optimal solutions with desired trade-offs.

8.2 Research question

In Part II, it is shown that treatment planning in radiation therapy involves solving a multi-

criteria optimization problem, known as fluence map optimization. In the current practice at

the Erasmus MC - Cancer Institute, the 2pεc method is applied to obtain an optimal fluence

map. Per patient group (such as prostate cancer patients), a uniform wish-list, constructed by

physicians, dosimetrists and physicists, is used together with the 2pεc method (with a fixed

relaxation of 3%) to generate high quality treatment plans.

In our study, we investigated the applicability of the RPM to generate high quality treat-

ment plans in radiation therapy. The RPM reduces the computation time since it requires a

single optimization instead of several. This brings us to our research question:

Can the reference point method be configured so that it generates treatment plans that are

of similar clinical quality when compared to the treatment plans generated by the 2-phase

ε-constraint method, and how much reduction in computation time can be realized?

In Section 6.2, it becomes clear that we can theoretically approximate the wish-list by a

reference list in the case that the 2pεc method is used without relaxation. Solving the asso-

ciated minimization model of the RPM however, turned out to be rather difficult. Even for a

one-dimensional decision space, a two-dimensional criterion space and a short wish-list (Ex-

ample 6.2), the minimization models of the RPM were hard to solve. Also, the relaxation in the

2pεc method is essential for the quality of the treatment plan, so the configuration of the RPM

in Section 6.2 did not suffice.

Smoothing the preferred path in Section 6.2 led to a minimization model for the RPM suit-

able for long wish-lists while still maintaining the prioritized structure. This was introduced in

Section 6.3, where we presented the lexicographic reference point method (LRPM). The LRPM

automatically generates a reference list (Algorithm 6.1) for a fixed wish-list. The sensitivity

parameters for the LRPM were configured manually and have an essential role for the quality

of the treatment plan.
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In Chapter 7, we tested the LRPM for 30 prostate cancer patients and 2 head-and-neck

cancer patients. For all test cases, both the 2pεc method and the LRPM were applied to generate

treatment plans. As both plans are Pareto optimal but different, a trade-off between the criteria

must have been made.

For the 30 prostate cancer patients, the automatically generated VMAT plans of the LRPM

were clinically acceptable. The LRPM performed better on the high priorities (as we tuned it)

and worse for lower priorities. High doses delivered to the rectum were reduced when com-

pared to the VMAT plans of the 2pεc method. The differences in mean doses of the rectum and

anus were minimal but in favour of the 2pεc method, and the differences for the tumour shells,

bladder and hips (lower priorities) were also in favour of the 2pεc method. The differences

were found neither clinically nor statistically relevant. Concerning the computation time, we

observed a speed-up factor of nearly 12 for the LRPM.

For the 2 head-and-neck cancer patients, the LRPM performed worse for the mean doses of

the parotids glands (within a margin of 2 Gy), which are the highest prioritized organs at risk,

but improved several of the lower priorities (maximum doses of the cord and brainstem and/or

the mean doses of the larynx, swallowing muscles and esophagus). The treatment plans of the

LRPM were found as good or better (for head-and-neck cancer patient II) as the treatment plans

of the 2pεc method. For the computation time, we observed a speed-up factor of 3-4. Recall

that the 2 head-and-neck cancer patients suffered from a bilateral tumour and that the set of

uniform sensitivity parameters performed poorly for unilateral cases. Also, the sample size of

2 is too small to draw a conclusion on the quality of the fixed sensitivity parameters.

8.3 Further research

The possibilities of the LRPM have not been tested extensively, but the results obtained so far

are promising. The recommendations for further research mainly concern the configuration of

the LRPM.

• Sensitivity parameters of the LRPM.

In this study, the sensitivity parameters in the LRPM were chosen by a trial-and-error

process. For a fixed case, several sensitivity parameters were tested. The most reasonable

set of parameters were picked and tested on another case, the parameters were adapted

until we were satisfied with both results. The associated parameters were then tested on

another case and so on.

This trail-and-error process is time intensive, for the prostate cancer patients 12 param-

eters needed to be tuned and 21 for the head-and-neck cancer patients. Moreover, the

final choice of parameters is not optimal. We are looking for an automated method to

settle the sensitivity parameters. One idea is to generate a lot of treatment plans (for a
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specific patient group) with the 2pεc method and use this data to deterministically set

the sensitivity parameters.

• Subdivision of patient groups.

For the head-and-neck cancer patients, a uniform set of sensitivity parameters was used.

Both patients suffered from a bilateral (two-sided) tumour. The same set of sensitivity

parameters was tested on unilateral (one-sided) cases and compared to the 2pεc method.

The results were poor, which led to the idea of dividing the head-and-neck cancer patients

into subgroups (based on tumour anatomy). For each subgroup, we aim for a uniform

set of sensitivity parameters.

• Algorithm for the reference list.

Algorithm 6.1 automatically generates the reference list for a fixed wish-list. However,

the algorithm may not be advanced enough. For instance, the reference list does not

incorporate upper bounds for the criteria. Introducing upper bounds leads to more refer-

ence points which increases the complexity of the minimization problem associated with

the LRPM. Whether such an extended reference list is an issue for the solver, needs to be

tested.

• Solvers for a single criterion optimization model.

Whether we apply the 2pεc method, the LRPM or any other multicriteria method to gen-

erate treatment plans, they all need to solve single criterion minimization problem(s).

Speeding up the solver for these problems reduces the computation time. Although the

current solver (Breedveld, 2013, chap. 11.8) is optimized for radiation therapy, research

on alternative solvers is done. This research may also be synergistic with research on

the algorithm for the reference list. Solvers that can cope well with the complexity of

the single criterion minimization model of the LRPM, may allow larger (more advanced)

reference lists.
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