
Master of Science Thesis

Investigating the impact of an optimally configured self-service luggage
check-in system on airport terminal performance

M. Torsij

Master of Science Thesis
Investigating the impact of an optimally configured self-service

luggage check-in system on airport terminal performance

by

M. Torsij
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Thurday November 30th, 2023.

Student number: 4533399
Project duration: October 2022 – November 2023
Thesis committee: Dr. B. F. Santos TU Delft, Chair

Ir. O. Stroosma TU Delft, Examiner
Dr. O. A. Sharpanskykh TU Delft, Supervisor

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Acknowledgements

This master thesis marks the end of my studies here at the Delft University of Technology and is the result of
12 months of work. In the almost seven and a half years in Delft, I have learned more than I could have ever
imagined. I am thankful for all the people that helped facilitate this.

First of all I would like to thank my supervisor Dr. Alexei Sharpanskykh. Even tough this project did not al-
ways go as planned, you guided and motivated me to keep going. I think this is very valuable lesson which
made me a better researcher. Having the opportunity to discuss issues with peers who are also working on
their thesis is very valuable. Therefore I would like to thank Misha and Antonio for our biweekly meetings. I
would also like to express my gratitude towards Benjamin. Even after finishing his thesis he still provided me
with his valuable insights.

Aside from the academic support, I also want to thank my friends. The many cups of coffee on the in the
Fellowship were maybe not always increasing productivity, but were very welcome nonetheless.

Furthermore I want to express my gratitude to Karin. She was always there to support me in all the things I
do. Even in the busy exam period she found the time to meticulously proofread this for me which was of great
help.

At last, I am thankful for my family always supporting me and being there if I need them. Being given the
opportunity to study here and really do what I want to do, is something I will always be grateful for.

M. Torsij
Delft, November 2023

iii

Contents

List of Figures vii

List of Tables ix

List of Abbreviations xi

Introduction xiii

I Scientific Paper 1

II Literature Study
previously graded under AE4020 23

1 Introduction 25

2 Airport Operations 27
2.1 Airport Terminal Design . 27

2.1.1 Airport terminal design process . 27
2.1.2 Airport components . 28
2.1.3 Airport Stakeholders . 29

2.2 Airport Terminal Activities . 29

3 Check-In 31
3.1 Check-In Design . 31
3.2 Self-Service Check-In . 32

3.2.1 Self Check-In Options . 33
3.2.2 State of the Art Self-Service Kiosks . 33

3.3 Next Generation Self-Service Kiosks . 34
3.3.1 Checked luggage check-in kiosks . 34
3.3.2 Cabin luggage check-in kiosks at gate . 34

3.4 Discussion of check-in process . 34

4 Modeling Airport Terminal Operations 35
4.1 Approach to Modeling Airport Terminal Processes . 35
4.2 Preliminary Requirements . 35
4.3 State of the Art of Modeling Airport Terminal Processes . 36

4.3.1 Early Airport Terminal Processes Models. 36
4.3.2 Operational Planning and Design Models . 37

4.4 Discussion of Model Overview . 39

5 Simulation Optimization 41
5.1 Metaheuristics . 42

5.1.1 Finite Parameter Spaces . 42
5.1.2 Large or Infinite Parameter Spaces . 42
5.1.3 Simheuristics . 43

5.2 Other Simulation Optimization Techniques. 44
5.2.1 Response Surface Methodology . 44
5.2.2 Model-based methods . 44
5.2.3 Direct Search Methods . 45

5.3 Discussion of Simulation Optimization Methods . 45

v

vi Contents

6 Agent-based Airport Terminal Operations Model 47
6.1 Introduction to Agent Based Modeling . 47
6.2 AATOM Architecture . 47

6.2.1 Agents . 48
6.2.2 Environment. 48
6.2.3 Interactions . 49

7 Research Proposal 51
7.1 Problem Definition . 51

7.1.1 Research Objective. 51
7.1.2 Preliminary Optimization Technique Trade-Off . 51

7.2 Research Questions . 52
7.2.1 Main Research Question . 52
7.2.2 Sub Questions . 52

8 Research Methodology 55
8.1 Case Study RTHA . 55
8.2 Work Packages . 55
8.3 Planning . 56

III Supporting work 59

1 Extension of AATOM 61
1.1 Model Development . 61

1.1.1 Development of PhysicalObjects . 61
1.1.2 Development of Self-Service Process Activities. 62
1.1.3 Integration with Existing Model . 63

1.2 Implementation of Self-Service Luggage Check-In System in the RTHA Layout 67
1.2.1 Reconfiguring RTHA Layout to Accommodate Kiosks 67

1.3 Verification . 68

2 Simulation Optimization with Simheuristics 71
2.1 Algorithm Trade-Off. 71
2.2 Simheuristics . 72

2.2.1 Integration of tabu search with simheuristic framework 72
2.2.2 Constructing the deterministic version of AATOM . 73
2.2.3 Verification of the deterministic version of AATOM . 74

2.3 Optimization Software . 75
2.3.1 Tabu search class. 76
2.3.2 Main Simheuristic tabu search procedure . 77

3 Additional Results 79
3.1 Results . 79

3.1.1 Configuration optimization experiment . 79
3.1.2 Simheuristic optimization performance . 86

3.2 Statistical tests . 88
3.2.1 Configuration optimization experiment . 88
3.2.2 Gate experiment . 94

Bibliography 97

List of Figures

2.1 The terminal is the bridge between the landside and airside [33] 27
2.2 Graphical representation of the stakeholders of an airport . 29

3.1 Linear facing check-in type [17] . 31
3.2 Flow-through check-in type[17] . 32
3.3 Island configuration check-in type [17] . 32
3.4 Graphical representation of the different check-in methods at Zurich airport [47] 33

4.1 Example cumulative arrival and departure profile [31] . 36
4.2 Example of visualizing passenger flows [46] . 38
4.3 Snapshot of the GUI of the model developed by Verma et al. [45] 38

5.1 Different simulation optimization approaches and their characteristics [3] 41
5.2 Schematic representation of simheuristic simulation optimization approach [16] 43
5.3 Psuedocode for a classic response surface methodology [3] . 44
5.4 Psuedocode for ant colony optimization algorithm [43] . 45
5.5 Psuedocode for a Nelder-Mead simplex method [3] . 45

6.1 Schematic representation of the AATOM architecture[14] . 48

8.1 Lay-out of RTHA in AATOM where possible kiosk locations would be indicated by a green square. 55
8.2 Gantt chart of the planning of the work packages. 57

1.1 RTHA layout without kiosks . 67
1.2 RTHA layout with kiosks . 68
1.3 Drop off kiosk without and with extra wall . 70

2.1 Simheuristics with tabu search . 72
2.2 Moving average graphs . 74
2.3 Moving average graphs . 75
2.4 Moving average graphs . 75

3.1 Waiting times per passenger type for optimized and base config and setting: (dl:0.4, bt sr: 20 s,
do sr 30) . 80

3.2 Waiting times per passenger type for optimized and base config and setting: (dl:0.6, bt sr: 20 s,
do sr 30) . 81

3.3 Waiting times per passenger type for optimized and base config and setting: (dl:0.8, bt sr: 20 s,
do sr 30) . 81

3.4 Waiting times per passenger type for optimized and base config and setting: (dl:0.4, bt sr: 20 s,
do sr 50) . 82

3.5 Waiting times per passenger type for optimized and base config and setting: (dl:0.6, bt sr: 20 s,
do sr 50) . 82

3.6 Waiting times per passenger type for optimized and base config and setting: (dl:0.8, bt sr: 20 s,
do sr 50) . 83

3.7 Waiting times per passenger type for optimized and base config and setting: (dl:0.4, bt sr: 40 s,
do sr 30) . 83

3.8 Waiting times per passenger type for optimized and base config and setting: (dl:0.6, bt sr: 40 s,
do sr 30) . 84

3.9 Waiting times per passenger type for optimized and base config and setting: (dl:0.8, bt sr: 40 s,
do sr 30) . 84

vii

viii List of Figures

3.10 Waiting times per passenger type for optimized and base config and setting: (dl:0.4, bt sr: 40 s,
do sr 50) . 85

3.11 Waiting times per passenger type for optimized and base config and setting: (dl:0.6, bt sr: 40 s,
do sr 50) . 85

3.12 Waiting times per passenger type for optimized and base config and setting: (dl:0.8, bt sr: 40 s,
do sr 50) . 86

List of Tables

5.1 Overview of metaheuristic techniques and their application [43]. 42

7.1 Trade-off table for optimization techniques . 52

2.1 Trade-off table for optimization techniques . 71
2.2 Random variables present in AATOM and their expected value . 73
2.3 CoV of the average queue times for the whole terminal for the deterministic version after 64 runs 75

3.1 Optimal number of self-service kiosks per setting . 79
3.2 Average waiting times per passenger type per configuration for all settings 80
3.3 Ranking comparison between deterministic and stochastic version for setting: (dl:0.4, bt sr: 20

s, do sr: 30 s) . 86
3.4 Ranking comparison between deterministic and stochastic version for setting: (dl:0.6, bt sr: 20

s, do sr 30) . 86
3.5 Ranking comparison between deterministic and stochastic version for setting: (dl:0.8, bt sr: 20

s, do sr 30) . 86
3.6 Ranking comparison between deterministic and stochastic version for setting: (dl:0.4, bt sr: 20

s, do sr 50) . 87
3.7 Ranking comparison between deterministic and stochastic version for setting: (dl:0.6, bt sr: 20

s, do sr 50) . 87
3.8 Ranking comparison between deterministic and stochastic version for setting: (dl:0.8, bt sr: 20

s, do sr 50) . 87
3.9 Ranking comparison between deterministic and stochastic version for setting: (dl:0.4, bt sr: 40

s, do sr 30) . 87
3.10 Ranking comparison between deterministic and stochastic version for setting: (dl:0.6, bt sr: 40

s, do sr 30) . 87
3.11 Ranking comparison between deterministic and stochastic version for setting: (dl:0.8, bt sr: 40

s, do sr 30) . 87
3.14 Ranking comparison between deterministic and stochastic version for setting: (dl:0.8, bt sr: 40

s, do sr 50) . 88
3.12 Ranking comparison between deterministic and stochastic version for setting: (dl:0.4, bt sr: 40

s, do sr 50) . 88
3.13 Ranking comparison between deterministic and stochastic version for setting: (dl:0.6, bt sr: 40

s, do sr 50) . 88
3.15 Guideline for interpreting Vargha-Delaney magnitude . 88
3.16 Results of normality test configuration experiment setting:(dl:0.4, bt sr: 20 s, do sr: 30 s) 89
3.17 Results of normality test configuration experiment setting:(dl:0.6, bt sr: 20 s, do sr: 30 s) 89
3.18 Results of normality test configuration experiment setting:(dl:0.8, bt sr: 20 s, do sr: 30 s) 89
3.19 Results of normality test configuration experiment setting:(dl:0.4, bt sr: 20 s, do sr: 50 s) 89
3.20 Results of normality test configuration experiment setting:(dl:0.6, bt sr: 20 s, do sr: 50 s) 89
3.21 Results of normality test configuration experiment setting:(dl:0.6, bt sr: 20 s, do sr: 50 s) 89
3.22 Results of normality test configuration experiment setting:(dl:0.4, bt sr: 40 s, do sr: 30 s) 90
3.23 Results of normality test configuration experiment setting:(dl:0.6, bt sr: 40 s, do sr: 30 s) 90
3.24 Results of normality test configuration experiment setting:(dl:0.8, bt sr: 40 s, do sr: 30 s) 90
3.25 Results of normality test configuration experiment setting:(dl:0.4, bt sr: 40 s, do sr: 50 s) 90
3.26 Results of normality test configuration experiment setting:(dl:0.6, bt sr: 40 s, do sr: 50 s) 90
3.27 Results of normality test configuration experiment setting:(dl:0.6, bt sr: 40 s, do sr: 50 s) 90
3.28 Results of significance test configuration experiment setting:(dl:0.4, bt sr: 20 s, do sr: 30 s) 91
3.29 Results of significance test configuration experiment setting:(dl:0.6, bt sr: 20 s, do sr: 30 s) 91

ix

x List of Tables

3.30 Results of significance test configuration experiment setting:(dl:0.8, bt sr: 20 s, do sr: 30 s) 91
3.31 Results of significance test configuration experiment setting:(dl:0.4, bt sr: 20 s, do sr: 50 s) 91
3.32 Results of significance test configuration experiment setting:(dl:0.6, bt sr: 20 s, do sr: 50 s) 91
3.33 Results of significance test configuration experiment setting:(dl:0.8, bt sr: 20 s, do sr: 50 s) 91
3.34 Results of significance test configuration experiment setting:(dl:0.4, bt sr: 40 s, do sr: 30 s) 91
3.35 Results of significance test configuration experiment setting:(dl:0.6, bt sr: 40 s, do sr: 30 s) 92
3.36 Results of significance test configuration experiment setting:(dl:0.8, bt sr: 40 s, do sr: 30 s) 92
3.37 Results of significance test configuration experiment setting:(dl:0.4, bt sr: 40 s, do sr: 50 s) 92
3.38 Results of significance test configuration experiment setting:(dl:0.6, bt sr: 40 s, do sr: 50 s) 92
3.39 Results of significance test configuration experiment setting:(dl:0.8, bt sr: 40 s, do sr: 50 s) 92
3.40 Results of magnitude test configuration experiment setting:(dl:0.4, bt sr: 20 s, do sr: 30 s) 92
3.41 Results of magnitude test configuration experiment setting:(dl:0.6, bt sr: 20 s, do sr: 30 s) 92
3.42 Results of magnitude test configuration experiment setting:(dl:0.8, bt sr: 20 s, do sr: 30 s) 93
3.43 Results of magnitude test configuration experiment setting:(dl:0.4, bt sr: 20 s, do sr: 50 s) 93
3.44 Results of magnitude test configuration experiment setting:(dl:0.6, bt sr: 20 s, do sr: 50 s) 93
3.45 Results of magnitude test configuration experiment setting:(dl:0.8, bt sr: 20 s, do sr: 50 s) 93
3.46 Results of magnitude test configuration experiment setting:(dl:0.4, bt sr: 40 s, do sr: 30 s) 93
3.47 Results of magnitude test configuration experiment setting:(dl:0.4, bt sr: 40 s, do sr: 30 s) 93
3.48 Results of magnitude test configuration experiment setting:(dl:0.8, bt sr: 40 s, do sr: 30 s) 93
3.49 Results of magnitude test configuration experiment setting:(dl:0.4, bt sr: 40 s, do sr: 50 s) 94
3.50 Results of magnitude test configuration experiment setting:(dl:0.6, bt sr: 40 s, do sr: 50 s) 94
3.51 Results of magnitude test configuration experiment setting:(dl:0.8, bt sr: 40 s, do sr: 50 s) 94
3.52 Results of normality test for gate experiment . 94
3.53 Results of significance test for gate experiment . 94
3.54 Results of magnitude test for gate experiment . 95

List of Abbreviations

AATOM Agent-Based Airport Terminal Operations Model

BT Bag tag kiosk

BT SR Bag tag kiosk service rate

CI Check-in counter

CoV Coefficient of Variation

DL Demand level

DO Drop-off kiosk

DO SR Drop-off kiosk service rate

GUI Graphical User Interface

IATA The International Air Transport Association

RTHA Rotterdam The Hague Airport

xi

Introduction

The capacity of airport terminals approaches their limits and long queues are becoming more common.
Therefore, airports are looking for ways to increase the capacity. Airport terminals consist of sequential facil-
ities making it important to streamline the individual facilities while closely monitoring the performance of
the airport terminal as a whole. The check-in facility for passengers and luggage is the first facility passenger
encounters. As checking in online is getting more common, a large increase in terms of capacity can be made
by optimizing the self-service luggage check-in system before security. On the other hand at the very end of
airport terminal process, a phenomenon is occurring increasingly often. More passengers are bringing carry-
on luggage due to not wanting to wait at check-in and usually extra charges for bringing checked luggage.
As a result, carry-on luggage has to be checked in at the gate due to limited space onboard the aircraft. This
is a time consuming process, which could have large consequences such as delaying of flights. Therefore by
automating this check-in process of carry-on luggage at the gate, a boarding can decreased thus increasing
performance.

Rotterdam The Hague Airport (RTHA) wants to replace their current self-service luggage check-in system to
create more capacity. RTHA wants to achieve this by implementing a new self-service luggage check-in sys-
tem before security and at the gate. Before implementing this new system however, the configuration needs
to be determined. By means of simulation, different configurations can be tested to investigate the impact of
this system on the airport terminal performance.

This thesis aims to investigate the impact of an optimally configured self-service luggage check-in system
before security and at the gate on airport terminal performance. This is done by combining an agent-based
airport terminal simulator with a Simheuristic simulation optimization framework.

The structure of this thesis report is as follows. In part I, the scientific paper is presented. Part II contains
the literature study that supports this research. Part III is the supporting work which consists of multiple
appendices. In this part, the development of the agent-based model is elaborated upon, the development of
the optimization software is explained more in depth and additional results are presented.

xiii

I
Scientific Paper

1

Investigating the impact of an optimally configured self-service
luggage check-in system on airport terminal performance

M. Torsij,∗

Delft University of Technology, Delft, The Netherlands

Abstract
Rotterdam the Hague Airport (RTHA) is planning to implement a new self-service luggage check-in system
which has a different concept of operations compared to the current self-service system for luggage check-in.
To efficiently develop, evaluate and implement this new system, a simulation optimization model is required
to test different system configurations. The simulation optimization model is required to have a high level of
detail to accurately represent the airport terminal process. An agent-based model will be used as the basis
as that approach provides the necessary level of detail. This model is then combined with the metaheuristic
tabu search algorithm to optimize the new self-service luggage check-in system. To address challenges related
to the large required computational resources to perform simulation optimization with a high level of detail,
the Simheuristic framework will be used. Combining an agent-based model with the Simheuristic framework
is a novel approach to simulation optimization. This approach requires the development of a deterministic
version of the airport terminal model. It was found that implementing an optimally configured self-service
luggage check-in system can improve the performance of the check-in process while not compromising the
performance of the security checkpoint. Additionally, the Simheuristic framework is capable of reducing the
computational resources required.

Keywords: Airport check-in, self-service luggage check-in, agent-based modeling, simheuristics, simulation
optimization

1 Introduction
As of 2022, the airport services market size was valued at $97.87 billion and is projected to grow to $290.23
billion by 2029 [4]. These figures illustrate the immense size and growing potential of the aviation industry.
However, this growth also poses challenges in terms of capacity of airports. A simple solution would be for
airports to keep expanding and add more terminals. More often than not, this is not possible, resulting in the
need to create more capacity without expanding the facility. Development in self-service technology, planning
and operations helps to address the challenges of creating more capacity.

Rotterdam The Hague Airport (RTHA) is the third largest airport of the Netherlands and serves roughly 2
million passenger every year [9]. RTHA is considering to implement a new self-service luggage check-in system
and new gate kiosks to increase overall airport terminal performance. This system has separate bag tag, drop-off
and gate kiosks. The first two are used for checking in luggage before security and the latter is used for bag
tagging carry-on luggage at the gate. The luggage that needs to be checked in before security is referred to
as ’checked luggage’ for the remainder of this paper. This self-service system requires less actions from the
passenger and has a higher service rate [2]. The research objective is to investigate the impact of an optimally
configured self-service luggage check-in system on airport terminal performance.

In order to evaluate the performance of an airport terminal without physical tests, simulations will be performed.
The agent-based modeling and simulation paradigm was found to be most suitable as it provides a high level
of detail, representing all the necessary interactions and dynamics, and is able to model individual passengers
[11]. Therefore, passenger flows can be visualized and individual passenger interactions and behavior can be
modeled and analyzed. A model which is available and fulfills the requirements is AATOM, which stands for
Agent-Based Airport Terminal Operations Model [6]. This model is chosen to serve as the basis for this research.

To determine the optimal configuration for the self-service kiosks using AATOM, a simulation optimization
approach will be used. This approach combines optimization techniques with simulation modeling to evalu-
ate solutions. Simulation optimization is often applied to discrete event simulations and systems of stochastic

∗Msc Student, Sustainable Air Transport, Faculty of Aerospace Engineering, Delft University of Technology

1

nonlinear and/or differential equations [1]. This technique combines a stochastic simulation model and an algo-
rithm to explore the solution space and find an optimal solution. The main downside of using a highly detailed
simulation model such as AATOM for simulation optimization, is the need for multiple simulation runs. Juan
et al. [8] proposes the Simheuristic framework, which decreases this computational time and can potentially
be used in combination with an agent-based model. This framework relies on a simplified or deterministic
version of the simulation model to identify potential good solutions. The full stochastic simulation model is
then used to evaluate these good solutions. In remainder of this paper, these good solutions are referred to as
’elite solutions’. Combining an agent-based model with the Simheuristic framework is a novel approach to a sim-
ulation optimization problem. Therefore, the feasibility of this approach will also be investigated in this research.

This paper is structured in the following way. First, the related work will be discussed in section 2. Second,
a description of the case study will be given in section 3. Next, the methodology used to achieve the research
objective can be found in section 4 and section 5. After that, the experimental setup will be discussed in
section 6 and results of the experiments will be shown in section 7. A discussion will be given in section 8 and
finally, the conclusions following from the experiments will presented in section 9.

2 Related Work
In this section, we review the state of the art for the topics: self-service kiosks, airport terminal models,
Simheuristics and metaheuristic optimization algorithms.

2.1 Next generation self-service kiosks
It is estimated that in the near future 33%-50% of the check-in counters will have self-service capabilities [5].
Additionally, The International Air Transport Association (IATA) introduced the Fast Travel Program in 2007.
This program focuses on self-check-in, self-rebooking and self-bag tagging.

The current generation of self-service luggage check-in kiosks are designed to make the luggage check-in process
completely automatic. To ensure complete automation, extra features such as weighing the luggage and extra
luggage payment options are often available. This is a result of airports designing the self service kiosks to
maximize perceived usefulness instead of perceived ease of use [10]. The kiosks that will be used in this research
simplify the process by having no extra features besides providing the bag tag and drop-off location. The
procedure of the self-service luggage check-in system consists of the following steps:

1. Going to bag tag kiosk

2. Queuing and waiting until a kiosk is free

3. Scanning the boarding pass

4. Waiting for the bag tag to be printed and attach the bag tag

5. Going to the drop-off kiosk

6. Queuing and waiting until a kiosk is free

7. Scanning the boarding pass and placing luggage on belt

Checking in carry-on luggage at the gate is also a growing problem. Bagchain[2], a manufacturer of self-service
kiosks, estimates that manually checking in carry-on luggage at the gate takes between 60 and 90 seconds. This
time can be decreased using a kiosk while at the same time freeing up the gate operator to continue to board
passengers. Important to note is that these bag tag kiosks are movable and can be moved strategically between
gates. The procedure for these kiosks is defined as follows:

1. Going to the gate operator to board

2. Gate operator indicates that carry-on luggage must be checked in

3. Going to the gate kiosk

4. Queuing and waiting until a kiosk is free

5. Scanning the boarding pass

6. Waiting for the bag tag to be printed and attach the bag tag

7. Placing the carry-on luggage at the designated area

2

2.2 Agent-Based Airport Terminal Operations Model (AATOM)
As mentioned in section 1, the modeling technique which will be used to model the airport terminal with self-
service kiosks is agent-based modeling. The AATOM simulator, developed by Janssen et al. [6] deploys this
technique. This is an open-source airport terminal simulator with readily available and calibrated airport ter-
minal components. AATOM follows an activity based architecture, which allows for analysis per activity. This
model can therefore be used to implement the self-service luggage check-in system and evaluate the performance.

The architecture of AATOM is structured in three different layers: the strategic layer, the tactical layer and
the operational layer [7]. A graphical representation of the architecture can be found in Figure 1. The strategic
layer is the first layer and consists of the goal, belief and reasoning module. The tactical layer handles the
actuation of the activities. It consists of a lower level belief module, which is connected to the belief module
in the strategic layer, the interpretation module, activity module and navigation module. The final layer is the
operational layer which interacts with the environment and other agents. This layer therefore consists of the
perception and the actuation module.

Figure 1: Schematic representation of the AATOM architecture[7]

All agent-based models have three main elements: agents, environment and interactions. The passengers and
operators are the agents in AATOM. The environment is the terminal and all its physical objects, such as the
check-in counters. The interactions are defined as agent to agent interactions (passenger - check-in operator for
example) or agent to environment interaction (passenger - luggage belt for example).

2.3 Simulation optimization
The usage of an agent-based model with a high degree of stochasticity, such as AATOM, requires a different
optimization approach than a mathematical model for example. When finding an optimal solution for a mathe-
matical model, an objective function can often be evaluated quickly. Additionally, derivative information could
be available which allows for efficient exploration and exploitation of the solution space. For models with a
high degree stochasticity, derivative information may not be available or hard to estimate [1]. Therefore, a
derivative information free optimization procedure most often referred to as simulation optimization can be
used. In simulation optimization, an algorithm is used to explore the solution space and a simulation model is

3

used to evaluate the solution proposed by the algorithm.

For small solution spaces, evaluating every solution and ranking the solutions based on the fitness is the pre-
ferred approach as a true optimal solution is then found. For larger solution spaces this is too computationally
intensive thus requiring an efficient method to explore the solution space. Different approaches to exploring the
solution space are: model-based methods, metaheuristics and response surface methodology [1]. A metaheuris-
tic algorithm was deemed to be most suitable for this research. The increased simplicity and scalalability of
metaheuristics outweighed the decrease in efficiency compared to the other two methods. Many algorithms fall
under metaheuristics such as: iterated local search, tabu search and genetic algorithms [1].

In order to determine which metaheuristic is preferred for this research, different characteristics of the algorithms
were examined in a trade-off. These characteristics include: adaptability, scalability, efficiency and simplicity.
This trade-off can be found in supporting work Appendix 2. Tabu search was deemed to be the best fit for
this research as it is relatively simple while still offering control in terms of the exploration and exploitation of
solutions.

Tabu search is essentially a modified form of neighborhood search where a form of adaptive memory is added.
The adaptive memory of tabu search is referred to as the tabu list. This list tracks recently visited solutions
preventing these solutions to be visited again [1]. Through the tabu list, tabu search offers control in terms of
exploration and exploitation of solutions.

The tabu search procedure starts by evaluating the initial solution, which becomes the best solution s. The
iterative process is started by finding the neighborhood of the best solution s. The neighborhood consists of
solutions that are close to the best solution s. The neighborhood solutions are then evaluated after which the
best solution s′, which is not part of the tabu list, is chosen from the neighborhood. If the chosen solution s′ is
better than best solution s, solution s′ becomes the new best solution s. Additionally, best solution s will also
be added to the tabu list. In the case that best neighborhood solution s′ is not better than best solution s, a
local optimum is found. A new best solution s is then generated to continue the optimization procedure which
is referred to as the perturbation of the best solution. Perturbing a solution can be done in various ways such
as choosing a random solution. The optimization procedure continues until a stop condition is met, which often
is a maximum number of iterations. Psuedocode of the tabu search logic can be found in algorithm 1.

Algorithm 1 Tabu search
1: Choose initial solution in solution space
2: Best solution s ← initial solution
3: Tabu list ← ∅
4: while not stopping criterion do
5: Find neighborhood solutions N(s)
6: Select best solution s’ ∈ N(s) not in Tabu list
7: if fitness s’ > fitness s then
8: s = ’s
9: Add solution s to Tabu list

10: else if fitness s’ < fitness s then
11: Tabu list ← s
12: Choose new random solutions ▷ Perturbation of the solution
13: end if
14: end while

2.4 Simheuristics
To effectively evaluate a solution using AATOM, multiple simulation instances of the same input are required to
get an indication of the fitness of a solution. Bearing in mind that one simulation instance could take between 30
and 60 minutes depending on the number of passengers generated during the simulation, a simulation optimiza-
tion procedure would require large computational resources. Juan et al. [8] proposes a method for reducing the
required computational resources by using a deterministic version of the model and a metaheuristic algorithm
to identify a set of elite solutions. This method assumes that high quality solutions for the deterministic version
are also high quality for the stochastic version for scenarios with moderate variance [8]. After finding the set
of elite solutions, these solutions will be evaluated using the stochastic version of the model to find the optimal
solution. A schematic representation of this procedure can be found in Figure 2.

4

Figure 2: Simheuristic framework [8]

Juan et al. [8] proposes the use of an analytical version of the stochastic model or a surrogate model if available
as the deterministic version. If such a model is not available, as is the case for AATOM, replacing all random
variables by their expected value is proposed. Therefore, if a Simheuristic framework is used in combination
with AATOM, a deterministic version of AATOM must be created.

3 Description of the Case Study
Together with RTHA, Bagchain and TU Delft, this project was set up to help RTHA implement a new self-
service luggage check-in system. The current self-service luggage check-in system is an all-in-one bag tag and
drop-off system and has to be renewed. This section discusses the case study on which this research is applied.
In Figure 3 the layout of RTHA can be found with the kiosks added. The in red squares circled in orange
indicate the old self-service luggage check-in system. This location will be used for the drop-off kiosk of the
new system as there is connection to the luggage handling system. The circled green squares, denoted with the
number 1, are the bag tag kiosks inside the terminal. The circled green squares, denoted with numbers 2 and
3, are the outside bag tag locations. These outside locations were not initially considered as a viable option for
a bag tag location. However, to investigate the effect of having multiple locations, these were added.

5

Figure 3: RTHA terminal in AATOM

The red squares circled with red in Figure 3 are the gate kiosks that will be used to bag tag carry-on luggage
at the gate. The location of these kiosks at each gate were determined together with RTHA.

4 Extending the Agent-Based Model
In the previous version of AATOM, no self-service luggage check-in system was implemented. In this section
the extension of the agent-based model with the self-service luggage check-in system and the verification of this
system is discussed.

4.1 Implementation of kiosks before security
The implementation of the self-service luggage check-in system before security requires the addition of bag tag
and drop-off kiosks to AATOM. These kiosks are part of the environment and observable by the agents. To
decide when an agent needs to utilize the self-service system, the agents get a new characteristic. This new
characteristic is an attribute to track whether or not the agent has checked luggage. The actions that an agent
needs to perform when it utilizes a self-service kiosk are defined in the activities. New activities have been
developed and integrated with AATOM for the bag tag and drop-off kiosks. In the following sections, these
newly developed activities will be discussed. In supporting work Appendix 1, a more in depth explanation of
the implementation and verification of the self-service system can be found.

Bag tag activity

If a passenger is checked in online and has checked luggage, the passenger must utilize the self-service system
and therefore the bag tag activity is added to the goals of that passenger. The bag tag activity consists of
choosing a queue, getting into the queue, waiting until a kiosk is free, start interaction with the kiosk, waiting
at the kiosk (simulating the kiosk processing information) and retrieving the bag tag. As there are multiple
bag tag locations in- and outside the terminal, a bag tag location must be chosen based on the queue. The
mechanism that takes care of choosing the queue first observes the number of passengers in the queue of the
closest bag tag location. If more than 5 passengers are in that queue, the next closest location is checked. In the
case that all locations have queues with more than 5 passengers in them, the queue with the least passengers in
it is chosen. This mechanism was chosen to simulate a passenger quickly scanning which queue is least crowded.
If all queues are seemingly crowded, a more precise observation is made to choose the least busy one.

6

Drop-off activity

The drop-off activity always follows the bag tag activity. The drop off activity consists of getting into the
queue, waiting until a drop-off kiosk is free, starting interaction with the kiosk, waiting at the kiosk (simulating
scanning the bag tag, processing information and dropping of luggage) and leaving the kiosk. A visualization
of the luggage getting on the belt was also added.

4.2 Implementation of gate kiosks
The gate bag tag activity is almost an exact copy of the regular bag tag kiosk. The main difference is that
carry-on luggage is bag tagged instead of checked luggage. The implementation of the gate kiosk also requires
an extension of the gate operator functionality. The gate operator is responsible for deciding whether or not
the passenger must utilize the gate kiosk to check-in its carry-on luggage. Additionally, the gate operator must
have the capability to bag tag carry-on luggage manually in case no gate kiosk is present.

To decide if a piece of carry-on luggage must be checked in, the gate operator tracks how many pieces of carry-on
luggage have boarded the aircraft. If at some point during the boarding process the capacity of the aircraft for
carry-on luggage is reached, the gate operator starts checking-in carry-on luggage. This capacity is dependent
on the aircraft and can be defined per flight in AATOM. In case of a kiosk being present at the gate, the
passenger will need to complete the bag tag activity at the kiosk before it is allowed to board the aircraft type.
When no kiosk is present, the gate operator will manually bag tag that piece of carry-on luggage. Manual
bag tagging is simulated by letting the passenger wait at the gate operator after which the bag tag status and
checked in status of that piece of carry-on luggage is updated.

4.3 Verification of self-service luggage check-in process
To ensure that the self-service system was implemented correctly, several aspects of the self-service system were
tested. The tests were conducted by utilizing the graphical user interface (GUI) of AATOM as well as manual
and automated tests. The verification is done on two levels: the facility level and the terminal level. On the
facility level, only one facility, such a bag tag location, is simulated at a time. On the terminal level, all facilities
are simulated simultaneously.

Self-service luggage check-in before security

By verifying via the GUI that the passengers follow the procedure for the bag tag and drop-off kiosks as discussed
in section 2, it is determined that the self-service luggage system was implemented correctly. The waiting time
which simulates the passengers interacting the kiosks is also verified to be correct via the GUI and tests. Getting
the passengers to queue correctly and to not get stuck required inserting physical objects such as walls. These
physical objects affect the path planning of the passenger to guide the passengers along the desired path.

Gate kiosk

The functionality of the gate kiosk is verified in a similar fashion as the bag tag kiosk before security. The gate
operator is verified to correctly send passengers to the kiosk as well as manual bag tagging by utilizing the GUI.
The tracking of the boarded pieces of large carry-on luggage is also verified via an automated test. The point
in the boarding process where the operator decides to start checking in carry-on luggage is also verified to be
correct.

Complete terminal

As the individual elements of the self-service system are verified, the system as a whole (the terminal) can be
verified. This is done by utilizing the GUI to investigate if no passenger get stuck due to the added kiosks and
queues. Additionally, the passenger flows that emerge are verified to be correct. The flows identified emerging
flows are:

• entrance - check-in - security - gate

• entrance - security - gate

• entrance - bag tag kiosk - drop-off kiosk - security - gate

As all three bag tag locations are implemented, the queue selection process can also be verified. Via the GUI,
the threshold number of passengers queuing at which another queue is chosen is verified to be correct.

7

5 Integration of the Agent-Based Model with Simheuristic Frame-
work

The next step towards the objective of this research is to integrate AATOM with the Simheuristic optimization
framework. To achieve this, a deterministic version AATOM must be constructed and verified. Additionally,
the tabu search algorithm must be integrated with AATOM. In this section, the steps taken to prepare AATOM
for a Simheuristic optimization procedure are explained. A more elaborate explanation of the implementation
of the Simeheuristic framework can be found in supporting work Appendix 2.

5.1 Creating the deterministic version of AATOM
Since there is no deterministic version of AATOM readily available, one must be created. Juan et al.[8] proposes
a method for developing such a deterministic version. By identifying the random variables and replacing them
with their expected value, a stochastic model can be made deterministic. This method can be applied to the
majority of the random variables in AATOM, but poses problems for the deterministic agent generator. The
steps taken to make the agent generator deterministic are explained in the section below.

Deterministic agent generator

The agent generator is responsible for generating the agents during the simulation. During the generation of
the agent the following characteristics need to be determined:

• Arrival time: the time at which the agent is generated

• Check in status: whether or not the agent is checked in online

• Checked luggage status: whether or not the agent has checked luggage

In the stochastic version of AATOM, the arrival times are generated as a Poisson process resulting in expo-
nentially distributed inter-arrival times. Therefore, if we know the rate parameter λ, which is the number of
passengers that will arrive in a certain time window, the expected inter-arrival time will simply be 1

λ . The
check-in and checked luggage status is determined using a uniformly distributed random variables between zero
and one, and a predefined threshold. This threshold represents the percentage of passengers having certain
characteristics such as being checked in online. If the random variable is higher than the specified threshold,
the passenger is not checked in online, if it is lower, the passenger is checked in online. Using the expected value
of this random variable is not possible as it would always result in all passengers being either checked in or not
checked in online. To overcome this issue, instead of deciding during the simulation what the characteristics
are of the passengers, the characteristics are determined before the start of the simulation.

Verification

The verification process of the deterministic version of AATOM consists of four tests. The first test consists of
testing the new deterministic agent generator. The following aspects were tested using manual and automated
tests:

• Test whether correct number of agents are generated (manual test)

• Test whether ratio of checked in passengers and luggage types per passenger are as defined in the inputs
(automated test)

• Test whether arrival intervals are uniformly distributed (manual test)

The second test utilized the coefficient of variation (CoV) of the average waiting times for the separate facilities
(check-in, security, etc.). The CoV resulting from the stochastic version was compared to the CoV resulting
from the deterministic version. This test was used to verify that making a deterministic version of AATOM was
successful. The calculated CoV of the average waiting time after multiple simulation runs must be approaching
zero for the deterministic version. Consequently, the CoV resulting from the deterministic version will be lower
than the CoV of the average waiting times resulting from the stochastic version. The results of this comparison
can be found in Table 1. In this table, CI stands for check-in counters, BT for bag tag kiosk and DO for drop-off
kiosk. The CoV was calculated after 256 simulation runs of the same input. The CoV for the deterministic
version, has not become zero but at least a factor 10 smaller than the stochastic version. The CoV not becoming
zero is most likely caused by the getting stuck prevention function. This function detects when a passenger is
stuck and performs a random movement to resolve this issue.

8

Table 1: CoV of the average queue times for the separate facilities after 256 runs

Version CI1 CI2 CI3 BT DO Security
Stochastic 0.11 0.12 0.14 0.0036 0.014 0.00087
Deterministic 0.00047 0.0019 0.00067 0.00056 0.00047 0.000051

The next test consists of examining whether the average waiting times for each separate facility is similar for
the stochastic and deterministic version. In Table 2, the results of this comparison can be found. The average
waiting times were calculated after 256 simulation runs of the same input. As can be seen, the average waiting
times are similar for both versions of AATOM. This is an indication that the deterministic version of AATOM
can be used to estimate the waiting times per facility.

Table 2: Mean values of the average queue times for the separate facilities after 256 runs

Version CI1 CI2 CI3 BT DO Security
Stochastic 1006.3 914.3 675.5 22.2 63.8 309.8
Deterministic 1127.4 926.2 636.8 23.6 62.5 309.7

With the verification on facility level finished we can look at the whole terminal. The resulting waiting times
per facility can be found in Table 3. The average waiting times are similar except for the waiting times at the
security checkpoint. This is most likely caused by interaction of the different stochastic distributions. Once a
passenger gets further in the terminal, their behavior and moving paths are increasingly influenced by diverse
stochastic processes. This confirms the need for evaluation of elite solutions with the stochastic version as the
deterministic version alone is not able to capture the interaction of stochastic processes.

Table 3: Average waiting time per facility resulting from the whole terminal after 256 runs

Version CI1 CI2 CI3 BT1 BT2 BT3 DO Security
Stochastic 234 192 19 41 59 59 65 480

Deterministic 214 208 22 41 55 55 64 331

The final verification step of the deterministic version of AATOM is investigating whether the outputs of the
deterministic version react logical to input changes. These inputs are in the form of a four digit number where
each digit refers to the number of kiosks at a location. The first digit refers to the number of bag tag kiosks at
location one, the second digit to the number of bag tag kiosks at location two, the third digit to the number of
bag tag kiosks at location three and the final digit to the number of drop-off kiosks. The inputs of AATOM are
explained further in section 5.2.

The inputs for this test are chosen in such a way that a change in output is expected. In Table 4 the output
for each evaluated input can be found. The output is the average waiting time per passenger for each facility.
Comparing the output of simulation setting one to the output of simulation setting two, a decrease in average
waiting times for the bag tag kiosk locations and drop-off location can be seen. This is a result of the number
of kiosks being increased substantially, resulting in a higher throughput of passengers and lowering the waiting
times. This increase in throughput also result in an increased average waiting time at security.

Comparing the output of simulation setting three and four, the number of bag tag kiosks at locations two and
three are swapped. At simulation setting three, bag tag location two has a longer average waiting time than
bag tag location three. For simulation setting four, bag tag location three has a longer average waiting time
than bag tag location two. This is in line with the expected behavior.

Table 4: Average waiting times per passenger resulting from the deterministic version for different settings

Simulation setting BT1 (s) BT2 (s) BT3 (s) DO (s) Security (s)
1 [2,1,1,3] 24.6 45.8 48.4 70.2 340
2 [4,3,3,6] 0 33.3 33.2 62.5 345.2
3 [4,1,3,6] 19.2 45.8 33.7 62.2 346.1
4 [4,3,1,6] 23.6 33.3 42.2 63.4 344.1

9

5.2 Optimization procedure
The final aspect of the Simheuristic simulation optimization procedure that need to be defined is the optmization
procedure. In this section first the relevant decision variables are discussed after which the outputs of AATOM
are discussed together with the fitness function. To conclude this section, the determination of the neighborhood
of a solution and solution perturbation are discussed.

Decision variables

For the simulation optimization procedure using tabu search, AATOM must be prepared for integration.
AATOM must be able to receive inputs as decision variables for evaluation and output waiting times to deter-
mine the fitness. The decision variables of the optimization procedure can be found below.

• Number of bag tag kiosks at location 1

• Number of bag tag kiosks at location 2

• Number of bag tag kiosks at location 3

• Number of drop-off kiosks

Fitness function

After the evaluation of a solution, AATOM outputs the average waiting times at the bag tag kiosk locations,
drop-off kiosk location and security. Using these outputs the fitness of a solution can be determined. The fitness
of a solution is determined using a weighted and linearized function. The objective is to minimize the waiting
times at the bag tag kiosk locations, drop-off kiosk location and security while also minimizing the number of
kiosks. Security is taken into account as this is the first facility after check-in. Optimizing the check-in process
to the point that the security checkpoint can not cope with the passenger in-flow is undesirable. The variables
that are used for the determination of the fitness and their weights can be found in Table 5.

Table 5: Variables of the fitness function and their weights

Variable Weight
Average bag tag waiting time of all locations 0.15

Drop-off waiting time 0.2
Security waiting time 0.2

Number of bag tag kiosks 0.3
Number drop-off kiosks 0.15

The weights were chosen in such a way that, for the bag tag kiosks, reducing the number of kiosks was prioritized
due to the three locations. For drop-off kiosks reducing the waiting time was prioritized since there is only one
location. If this location gets congested, there is no alternative. The remainder of the weight was assigned to
the security waiting time.

The outputs used in the fitness function will be linearized. For the waiting times, multiple simulations were
run for settings which were expected to yield high waiting times. These values serve as the maximum value in
the linearization function while the minimum values are set to zero. Additionally, the minimum and maximum
number of bag tag and drop-off kiosks are constrained by the available space in the terminal. The minimum
and maximum number of bag tag kiosks are set to 4 and 14 respectively. For the drop-off kiosks these values
are set to 2 and 8. The linearization function can be found in Equation 1.

xlinearized =
x− xmin

xmax − xmin
(1)

Neighborhood determination

As mentioned in section 2.3, during each iteration the neighborhood of the current best solution is determined.
The neighborhood of a solution is determined by increasing and decreasing the number of kiosks for each
decision variable by one. This results in a neighborhood of eight solutions for a solution consisting of four
decision variables. To illustrate this, the neighborhood of solution [2,2,2,2] is given as an example:

• [3,2,2,2]: decision variable one increased by one kiosk

10

• [1,2,2,2]: decision variable one decreased by one kiosk

• [2,3,2,2]: decision variable two increased by one kiosk

• [2,1,2,2]: decision variable two decreased by one kiosk

• [2,2,3,2]: decision variable three increased by one kiosk

• [2,2,1,2]: decision variable three decreased by one kiosk

• [2,2,2,3]: decision variable four increased by one kiosk

• [2,2,2,1]: decision variable four decreased by one kiosk

Solution perturbation

The solution perturbation is used when a local minimum, as the fitness value is minimized, is found. This is
done by generating a new random solution that is not part of the tabu list.

6 Experimental Setup
To investigate the effect of an optimally configured self-service luggage check-in system before security and gate
kiosks on the terminal of RTHA, simulations will be performed. The experimental setup will be discussed in
this section.

During the development of the model it was found that running the full terminal process is very computationally
intensive. Therefore, splitting the experiment in two separate ones is proposed. The ’configuration experiment’
consists of finding an optimal configuration for the kiosks before security and investigating the impact of this
kiosk configuration on airport terminal performance. In this experiment the passengers will be simulated from
entering the terminal to leaving the security checkpoint. Removing the passengers after they leave security
reduces the maximum number of passengers in the simulation, thus reducing the computational resources
required. The second experiment, called the ’gate experiment’, investigates the effect of having a bag tag kiosk
at the gate on the total boarding time.

6.1 Configuration Experiment
In the configuration experiment the performance of the terminal with the optimized kiosk configuration is
compared to the performance of the baseline configuration. This baseline configuration has no self-service
luggage check-in system, meaning that all passengers that are not checked in or have checked luggage, have to
utilize regular check-in. The performance will be measured by the waiting times of three passenger types. The
passenger types and facilities they need to go through can be found in Table 6.

Table 6: Passenger types and the facilities they need to go through

Passenger type Optimized configuration Baseline configuration
Checked in online,
Checked luggage Self-service kiosks - Security Regular check-in - Security

Checked in online,
No checked luggage Security Security

Not checked in online Regular check-in - Security Regular check-in - Security

An important setting for this experiment which is yet to be defined, is the flight schedule. The schedule used
in this experiment consists of 7 flights that leave within a time window of approximately an hour. The total
number of simulated passengers is 849 and these passengers start arriving two and a half hours before their
flight. This flight schedule is comparable to a moderately busy morning at RTHA. A peak busy morning could
not be simulated due to limitations in terms of computational resources. Another factor that needs to be taken
into account during the definition of the flight schedule, is the number of passengers that physically fit in a
queue. This limitation will be discussed further in section 8.

The next aspect of the setup of this experiment is the definition of the settings for the tabu search algorithm.
These settings consist of the number of iterations, number of elite solutions that will be evaluated with the
stochastic version and the tabu list length. Fifty iterations of the optimization procedure and a total of four
elite solutions will be evaluated. These settings are constraint by the computational resources available. The

11

final setting that needs to be defined is the tabu list length which is to set 10.

Finally, the constraints for the number of bag tag and drop-off kiosks can be defined. For the bag tag kiosks
inside (location one) a minimum of two and a maximum of six kiosks is determined. This minimum is defined
to ensure that kiosks would be placed inside as this is the preferred location by RTHA. The number of outside
bag tag kiosks (locations two and three) is limited to six. Additionally, the total number of bag tag kiosks of
all locations combines must always be more than three. The number of drop-off kiosks is constrained between
two and eight. The maximum number of drop-off kiosks is limited by the available space in the terminal.

Sensitivity analysis

To investigate the effect of certain variables on the optimal configuration, a sensitivity analysis will be performed.
Below, the variables which will be used for the sensitivity analysis can be found.

• Percentage of passengers having checked luggage, will be referred to as demand level (DL)

• Service rate of bag tag kiosks (BT SR) (average time a passenger spends interacting with a bag tag kiosk)

• Service rate of drop-off kiosks (DO SR) (average time a passenger spends interacting with a drop-off kiosk)

Using aforementioned variables for sensitivity analysis, settings can be defined for which the Simheuristic simula-
tion optimization procedure will be performed. In Table 7, the 12 settings that will be used for the configuration
experiment can be found.

Table 7: Settings that will used in the configuration experiment

Setting Checked luggage Bag tag service rate [s] Drop-off service rate [s]
1 40% 20 30
2 60% 20 30
3 80% 20 30
4 40% 20 50
5 60% 20 50
6 80% 20 50
7 40% 40 30
8 60% 40 30
9 80% 40 30
10 40% 40 50
11 60% 40 50
12 80% 40 50

Number of simulation runs

During the Simheuristic optimization procedure, no repetitions are required since the deterministic version is
used. When the elite solutions have to be evaluated however, repetitions are required as the stochastic version
is used for this evaluation. This is also the case when the optimized configuration will be compared against the
baseline configuration.

The CoV is analyzed to understand how many simulation runs are necessary. For the elite solution evaluation
the CoV of the fitness of a solution is examined. For the configuration comparison, the CoV of the waiting
times per passenger type is analysed. The results of this analysis can be found in Figure 4.

12

0 100 200 300 400 500
simulation runs

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n

Coefficient of Variation of fitness

(a) Elite solution evaluation

0 100 200 300 400 500
simulation runs

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n

Coefficient of Variation of average waiting times per passenger type

Not checked in online
Checked in online and checked luggage
Checked in online and no checked luggage

(b) Configuration comparison

Figure 4: Results from CoV analysis for the elite solutions evaluation and configuration comparison

From this CoV analysis the number repetitions required for the elite solutions was set to 128 runs as the CoV
has then stabilized. The number of runs required for the configuration comparison was set to 256.

Parallel tabu search optimization

To decrease the time required to run all simulations for this experiment, a server, where up to 256 simulations
can be run in parallel, will be used. To perform this experiment as efficient as possible, the capacity of the
server must be used maximally. Therefore, the Simheuristic simulation optimization software is designed to run
multiple optimization procedures in parallel. This reduces the number of simulation runs during the tabu search
optimization phase from 600 (12 settings times 50 iterations) to 50. The optimization software is discussed more
extensively in supporting work Appendix 2.

6.2 Gate Experiment
For the gate experiment the boarding process of one gate will be simulated. The simulation of the boarding
process will be done for three passenger settings, with and without kiosk, totaling six evaluated settings. The
passenger settings refer to the percentage of passengers bringing carry-on luggage. The passenger settings are
set to: 60%, 70% and 80%. In total 140 passengers will need to board the aircraft. The settings for the service
rate of the gate kiosk and manual bag tagging were obtained from Bagchain[2]. On average a passenger will
spend 30 seconds at the gate kiosks and manual bag tagging will take 75 seconds. The Boeing 737-800 is used
as a reference for the capacity of large carry-on luggage which will be set to 65% [3].

Number of simulation runs

As the stochastic version of AATOM is used for this experiment, the CoV needs to be analyzed to determine
the number of required simulation runs. The CoV of the boarding time is used for this analysis and the results
can be found in Figure 5.

0 100 200 300 400 500
simulation runs

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n

Coefficient of Variation Boarding Time With Kiosk

(a) With kiosk

0 100 200 300 400 500
simulation runs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n

Coefficient of Variation Boarding Time Without Kiosk

(b) Without kiosk

Figure 5: Coefficient of variation plot to determine number of runs for experiment with and without kiosk

For both with and without a kiosk at the gate, 256 simulation instances were deemed to be sufficient.

13

7 Results
The results of the two experiments can be found in this section. Fist the results from the configuration experi-
ment section 7.1 will be discussed and after that the results from the gate experiment in section 7.2.

7.1 Configuration experiment
This experiment is designed to evaluate two outcomes simultaneously: the performance of the Simheuristic
framework and the impact of an optimally configured self-service system on the terminal performance. Two
hypotheses will be tested:

• Hypothesis 1A: The average waiting times resulting from the optimal configuration for passenger types
one and three are lower than the average waiting times for passenger types one and three resulting from
the baseline configuration.

• Hypothesis 1B: The average waiting times resulting from the optimal configuration for passenger type
two will be similar to the average waiting for passenger type two resulting from the baseline configuration.

Simheuristic performance

To examine the performance of the Simheuristic framework we will first look at the best candidate fitness
throughout the simulation procedure. In Figure 6, the fitness of the best candidate for each iteration for
sensitivity analysis setting one can be found. It can clearly be seen that the algorithm searches for a local
minimum and resets when a local minimum is found. Each iteration, the fitness decreases until a local minimum
is found. When this minimum is found, a new random solution is generated which often results in worse fitness.
This indicates that the tabu search algorithm works as expected.

0 10 20 30 40 50
Iteration

0.10

0.15

0.20

0.25

0.30

0.35

Fit
ne

ss
 [-

]

Best candidate fitness for optimization procedure of setting 1

Figure 6: Best candidate fitness during optimization procedure for setting 1

To determine whether the Simheuristic framework can be used in combination with an agent-based model,
the fitness values for the four elite solutions are calculated by both the deterministic and stochastic version
of AATOM. The resulting fitness values are then ranked from lowest to highest to investigate if the ranking
resulting from both versions is comparable. In Table 8 the elite solution ranking for sensitivity analysis setting
nine can be found. The ranking is not the same for both versions. Important to note is that the fitness values
for rank one, two and three are very close. The fitness of rank four is, compared to the others, substantially
worse, which is found by both the stochastic and deterministic version. This gives reason to believe that the
deterministic version can be used to roughly estimate which solutions will perform well.

14

Table 8: Ranking comparison between deterministic and stochastic version for setting: (dl:0.8, bt sr: 40 s, do
sr 30)

Input Rank from Deterministic Version Rank from Stochastic Version
[2,5,5,3] 1 (fitness 0.1021) 3 (fitness 0.1402)
[2,2,5,3] 2 (fitness 0.1021) 1 (fitness 0.1392)
[2,3,2,3] 3 (fitness 0.1038) 2 (fitness 0.1396)
[3,3,4,3] 4 (fitness 0.1320) 4 (fitness 0.1696)

The final aspect of the Simheuristic performance that is investigated is the required computational resources.
As was found in section 6.1, 128 repetitions are required to get an accurate fitness value of a solution using
the stochastic version. Due to the neighborhood size of eight, per iteration of the tabu search procedure 1024
simulations would have to be run when using the stochastic version. This can be done by running 256 simulations
on the server in parallel four times. An iteration of the optimization procedure using the stochastic version is
therefore four times more computationally intensive than the Simheuristic optimization procedure. Additionally,
parallel tabu search simulation optimization is not possible when using the stochastic version. Keeping in mind
that the deterministic version also runs approximately 50% faster on the server, most likely due to the generation
of agents being more spread out, a large gain can be made in terms of required computational resources.

Configuration comparison

As the implementation of the self-service kiosks could not be validated with real world data, the decision has
been made to investigate the relative waiting times per passenger type. Before looking at these waiting times,
we must look at the optimal configuration per setting. The optimal number of bag tag and drop-off kiosks can
be found in Table 9.

Table 9: Optimal number of self-service kiosks per setting

Setting Optimal number of bag tag kiosks Optimal number of drop-off kiosksLoc. 1 Loc. 2 Loc. 3 Total
1 2 3 4 9 3
2 2 0 5 7 3
3 2 4 3 9 3
4 2 0 4 6 3
5 2 2 3 7 3
6 2 0 5 7 4
7 2 3 5 10 3
8 2 0 4 6 3
9 2 2 5 9 3
10 2 2 2 6 3
11 2 2 2 6 3
12 2 0 5 7 4

From the optimal configuration presented above, no effect can be found of changing the service rates and per-
centage of passengers bringing checked luggage on the optimal number of bag tag kiosks. The optimal number
of bag tag kiosks per location also shows that the optimal number of bag tag kiosks inside the terminal is always
two. This is equal to the minimum number of kiosks at this location due to the constraints. This phenomenon
could be caused by the combination of the flight schedule not being busy enough and the queue selection mech-
anism. As a consequence, not enough passengers are generated in a short period of time to force the passengers
to use the inside location requiring more kiosks inside the terminal.

The effect of changing the service rates and percentage of passengers bringing checked luggage on the optimal
number of drop-off kiosks, is limited but apparent. For the setting where the drop-off kiosks have a long service
rate setting and a high percentage of passengers are bringing checked luggage, an extra kiosk is deemed necessary.

To investigate the effect of the optimal configuration on airport terminal performance, the relative waiting
times resulting from the optimal and baseline configuration are compared. The results of this comparison can
be found in Table 10. For each setting, the waiting times are shorter for passenger types one and three while
the waiting time for passenger type two remains equal.

15

Table 10: Relative waiting times per passenger type of optimized configuration vs. base configuration for all
settings

Setting
Waiting time per passenger type of optimized

configuration relative to base configuration
Type 1 Type 2 Type 3

1 -17% -0.6% -9%
2 -21% -2% -12%
3 -22% -2% -16%
4 -19% -1% -10%
5 -15% -4% -14%
6 -23% -6% -19%
7 -18% -1% -11%
8 -25% -3% -17%
9 -24% -3% -18%
10 -17% -0.9% -10%
11 -16% -5% -15%
12 -22% -5% -18%

To investigate the statistical significance of the results, three tests have been conducted. First, a normality test
has been applied to the experiment results to determine whether or not these results are normally distributed.
Based on the normality test, a paired t-test or a Wilcoxon signed rank test is used. The paired t-test is used in
case two normally distributed data sets are compared and the Wilcoxon signed rank test is used when one of
the two or both data sets are not normally distributed. These tests return the probability that both data sets
are sampled from the same statistical distribution. The final test the experiment results have been subjected
to is the Vargha-Delaney A-test. This test is a non-parametric effect magnitude two sample test. It returns
the probability that a randomly sampled observation from one sample is larger than a randomly sampled ob-
servation from the other sample. These tests combined give a complete insight in the statistical significance of
the results. The findings presented above are confirmed by the statistical tests that have been performed, thus
supporting hypothesis 1A and 1B.

Complementary results of the configuration experiment and the results of the statistical tests can be found in
supporting work Appendix 3.

7.2 Gate Experiment
The second experiment that has been conducted is the gate experiment. A hypothesis is formulated for this
experiment: The boarding time of a gate with a bag tag kiosk will be shorter than the boarding
time of a gate without a bag tag kiosk.

The results of the gate experiment in boxplot format can be found in Figure 7. From these figures, the increase
in boarding time without a kiosk becomes apparent as the percentage of passengers carrying large carry-on
luggage increases. Next to this increase, it is important to note that variance of the boarding time for a gate
without kiosk also increases, meaning that the predictability decreases.

16

With kiosk Without kiosk

1500

2000

2500

3000

3500

4000

Bo
ar

di
ng

 ti
m

e
[s

]

Demand level 60%

(a) Result of gate experiment for demand level 60%

With kiosk Without kiosk

1500

2000

2500

3000

3500

4000

Bo
ar

di
ng

 ti
m

e
[s

]

Demand level 70%

(b) Result of gate experiment for demand level 70%

With kiosk Without kiosk

1500

2000

2500

3000

3500

4000

Bo
ar

di
ng

 ti
m

e
[s

]

Demand level 80%

(c) Result of gate experiment for demand level 80%

Figure 7: Boarding times resulting from gate experiment for kiosk and no kiosk configuration for different
demand levels

Table 11 shows that the average boarding time is similar for the 60% setting and shows an increase in average
boarding time for the 70% and 80% setting. The cause of the boarding time not increasing without a kiosk for
the 60% setting is the capacity of carry-on luggage of the aircraft. This capacity is set to 65%, as discussed in
section 6.2, therefore the chance that the maximum capacity of the aircraft is reached is small. This results in
that very little carry-on luggage needs to be checked in.

Table 11: Average boarding time comparison between gate with kiosk and gate without kiosk for different
demand level settings

Demand level Average boarding time
without kiosk [s]

Average boarding time
with kiosk [s]

Relative average boarding time
kiosk vs. no kiosk

60% 1636 1639 0.020%
70% 1875 1641 -13%
80% 2702 1649 -39%

An identical approach to statistical testing is taken for this experiment as for the configuration experiment.
The results from the paired t-tests, Wilcoxon signed rank test and Vargha-Delaney A-test confirm the findings
presented above. The results of this experiment therefore support the hypothesis formulated for this experiment.

Complementary results of the statistical tests of the gate experiment can be found in supporting work Appendix
3.

8 Discussion
To accurately draw conclusions from this research, the implications of the choices made in this research are first
discussed. In this section, a discussion is presented for the model and result validation, assumptions and the
application of Simheuristics on agent-based models.

17

8.1 Limitation of AATOM
The main limitation of AATOM that affected this research is AATOM requiring sufficient space for agents
to queue. If a queue provides space for 20 passengers for example and 21 passengers try to queue, the last
passenger will try to force itself into the queue. This is not possible since there is not enough space and after
a certain amount of time the passenger will try to find another way in. This often results in the passenger
skipping the queue and walking to the exit of the queue. A consequence of this action is that all passengers get
stuck in the queue since the exit is blocked. This could render the simulation useless. For this research, where
the terminal of RTHA is used, there is a limited amount of space in the terminal for queues. Without changing
the queuing mechanism, this phenomenon can only be prevented by reducing the total number of passengers in
the simulation.

8.2 Experiments
Both experiments that have been conducted show promising results which indicate that implementing a self-
service luggage check-in system has a positive effect on airport terminal performance. These experiments
however could be more extensive as they are now constraint by the computational resources available. For
the configuration experiment, to determine an optimal configuration for a peak departing flight schedule, more
passengers should be simulated for each evaluation run. Additionally, more optimization iterations could further
improve the quality of the optimal solution.

For the gate experiment, one aircraft type with fixed carry-on luggage capacity and fixed number of passengers
on the flight is now simulated. To better understand when placing a gate bag tag kiosk at a gate is most
beneficial, different aircraft types with different carry-on luggage capacities, and varying number of passenger
on the flight should be simulated.

8.3 Model and result validation
As mentioned in section 4, real-world data for validation was not available. Even though the concept of op-
erations was validated by a self-service kiosk expert, some remarks have to be made about the validity of the
results. The results presented only hold for the settings which were tested. The results seem promising but there
is no guarantee that the results would be similar when RTHA implements a self-service luggage check-in system.

To have some form of validation, the results of this research have been presented to an airport operations
expert. The results of the gate experiment have been validated to be intuitive and logical. The boarding time
drastically increasing for the gate without a kiosk has been encountered in airports by the airport operations
expert. An increase in boarding time was also expected at the gate with kiosk. This could be a result of the
service rate of both kiosk and gate operator varying per kiosk manufacturer and gate operator. The results
of the configuration experiment were also validated to be intuitive although such large improvements have not
been encountered by the airport operations expert.

8.4 Assumptions
During the implementation of the self-service kiosks in AATOM a queue selection mechanism was developed.
The queue selection process of passenger was developed to act in two stages: a quick global scan to see if a queue
was not crowded and a more thorough scan if all queues were crowded. A different queue selection mechanism
could change the spread of passengers, impacting the optimal configuration.

Another assumption was made during the development of the deterministic version of AATOM. This assumption
regards the interaction of the different random variables in AATOM. In the deterministic version, each random
variable is replaced with its expected value. This resulted in the average results of the waiting per facility for
both the deterministic and stochastic version to be similar. Replacing the random variables however did not
take into account the interaction of the different stochastic processes. From the results it becomes apparent
that for small changes in fitness the deterministic version is unable to rank solutions correctly, which could be a
result of the interaction of random variables. Other methods for developing a deterministic version could result
in a more accurate estimation of a solution.

8.5 Simheuristics for agent-based models
When using agent-based models, computational resources are often the limiting factor. Simheuristics could
decrease the computational resources required if an appropriate deterministic version of the model is available or
could be developed. The development of a deterministic version for an agent-based model is more challenging due

18

to the high level of detail. If a deterministic version is too simplistic it could evaluate solutions incorrectly, which
could result in solutions being incorrectly identified as ’elite’. Other methods for constructing a deterministic
version could be explored. Surrogate modeling is a promising method as it can also be used for other purposes
than the Simheuristic framework. Summarizing, the main limitation of the Simheuristic framework is the need
for a deterministic version which essentially requires the development of an extra simulation model.

9 Conclusions and Recommendations
The objective of this research was to investigate the impact of an optimally configured self-service luggage
check-in system on airport terminal performance. The optimization of the configuration of self-service luggage
check-in kiosks was done using a Simhueuristic framework. Additionally, the effect of having a bag tag kiosk at
the gate on the boarding time was investigated.

From the configuration experiment it has become apparent that, for the settings used and tuning of the tabu
search algorithm, no definitive optimal configuration of the bag tag kiosks could be found. In terms of drop-off
kiosks however, it was found that four kiosks are sufficient for the most demanding setting evaluated. The
implementation of self-service luggage check-in showed a decrease in overall passenger waiting times at check-in
while not increasing the waiting times at security. By carefully implementing a self-service system, the check-in
process can thus be made more efficient while not compromising the performance of the security checkpoint.

The application of Simheuristic simulation optimization using an agent-based model showed promising results
in the configuration experiment. The ranking of the elite solutions indicate that the deterministic version of
AATOM is capable of roughly filtering the elite solutions from the solution space. More research is necessary
however to claim this with certainty. The computational resources required show a substantial decrease when
the Simheuristic framework is applied.

The gate experiment showed that boarding time is related to the percentage of passengers having carry-on
luggage. This experiment also showed that the boarding time can be decreased by having a bag tag kiosk at
the gate. An extra benefit of using a gate kiosk was found in terms of the predictability of the boarding time.
It became more predictable, which could have a positive effect on the turnaround time of an aircraft for example.

For future research it is vital to validate the added self-service luggage check-in system with real-world data.
Data on various airport and passenger characteristics is required to formulate a comprehensive recommen-
dation regarding the implementation of such a system. Additionally, more research on the application of the
Simheuristic framework on agent-based models can be done. This includes utilizing other approaches to develop
the deterministic version of the simulation model, such as surrogate modeling. Finding an approach to making
a deterministic version which has other purposes than usage in combination with the Simheuristic framework,
would increase the value of the deterministic version. The final recommendation we would like to make is to
improve the queuing mechanism of AATOM to make it more robust. This would eliminate the need to prevent
a queue area becoming too crowded by adjusting the flight schedule.

As a final remark we would like to stress that the results only hold for the settings used and assumptions made.
For an effective implementation of the self-service luggage check-in system, airports should collect data on the
luggage types of passengers and service rates of the self-service luggage check-in system. Nonetheless, these
findings could serve as a reference for airports that are looking to efficiently implement a self-service luggage
check-in system. For the terminal layout of RTHA and the flight schedule used in this research, the waiting times
at check-in can be reduced while not compromising the waiting times at the security checkpoint. Additionally,
placing a gate bag tag kiosks at a gate decreases the boarding time and increases predictability. Combining the
findings of this research, it can be concluded that the complete self-service luggage check-in system positively
impacts airport terminal performance.

References
[1] Satyajith Amaran, Nikolaos V. Sahinidis, Bikram Sharda, and Scott J. Bury. Simulation optimization: a

review of algorithms and applications. Annals of Operations Research, 240(1):351–380, May 2016. doi:
10.1007/s10479-015-2019-x.

[2] Bagchain. bagchain gate kiosk. URL: https://bagchain.aero/index.php/bagchain-gate/.

[3] Boeing. Space Bins, 2023. URL: https://www.boeing.com/commercial/737max/space-bins/.

19

[4] Fortune Business Insights. Airport Services Market Size, Share, Growth | Global Report, 2029, 2022. URL:
https://www.fortunebusinessinsights.com/airport-services-market-102855.

[5] International Air Transport Association. Airport development reference manual. IATA, London, 9th ed
edition, 2004.

[6] S. a. M. Janssen, A. Sharpanskykh, R. Curran, and K. G. Langendoen. AATOM - An Agent-based Airport
Terminal Operations Model simulator. SummerSim ’19: Proceedings of the 2019 Summer Simulation
Conference, 2019. Publisher: ACM DL.

[7] Stef Janssen, Anne-Nynke Blok, and Arthur Knol. AATOM - An Agent-based Airport Terminal Operations
Model. Technical report, 2018.

[8] Angel A. Juan, Javier Faulin, Scott E. Grasman, Markus Rabe, and Gonçalo Figueira. A review of
simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems. Op-
erations Research Perspectives, 2:62–72, December 2015. doi:10.1016/j.orp.2015.03.001.

[9] Rotterdam The Hague Airport. Ons verhaal in feiten en cijfers. Technical report, 2021. URL: https://www.
rotterdamthehagueairport.nl/wp-content/uploads/Ons-verhaal-in-feiten-en-cijfers-2021.
pdf.

[10] Nursyuhada Taufik and Mohd Hafiz Hanafiah. Airport passengers’ adoption behaviour towards self-check-
in Kiosk Services: the roles of perceived ease of use, perceived usefulness and need for human interaction.
Heliyon, 5(12):e02960, December 2019. doi:10.1016/j.heliyon.2019.e02960.

[11] Paul Pao-Yen Wu and Kerrie Mengersen. A review of models and model usage scenarios for an airport
complex system. Transportation Research Part A: Policy and Practice, 47:124–140, January 2013. doi:
10.1016/j.tra.2012.10.015.

20

II
Literature Study

previously graded under AE4020

23

1
Introduction

As of 2022, the airport services market size was valued at $97.87 billion and is projected to grow to $290.23
billion by 2029 [?]. These figures illustrate the immense size and growing potential of the aviation industry.
This growth however also poses problems in terms of capacity of airports. A simple solution would be for
airports to just keep expanding and add more terminals for example. More often than not, this is not possible
resulting in the need for creating more capacity without expanding the facility. Development in self-service
technology, planning and operations could be the answer for creating more capacity.

A request was made by Rotterdam The Hague Airport (RTHA) for help with finding a configuration for self-
service kiosks. RTHA is the third airport of the Netherlands and serves roughly 2 million passenger every
year [34]. In order to effectively evaluate the performance of the self-service kiosks by means of simulations,
recommendations can be made to allow for a smooth and efficient implementations of these kiosks. The
simulations will aid in determining the configuration for two types of kiosks: bag tag kiosks (before security
and at the gate) and drop-off kiosks.

The aim of this literature study is to establish a good understanding of how an optimal configuration can
be found for self-service baggage check-in kiosks using simulation and optimization. To achieve this under-
standing in chapter 2 an introduction to airport operations airport terminal processes will be given. Next,
in chapter 3, the check-in process along with the state of the art of self-service technology will be discussed.
To investigate how simulation and optimization can be used for the problem introduced here, in chapter 4
and chapter 5 the state of the art of airport terminal modeling and simulation optimization is established and
discussed. Following this, the simulation technique and model that followed from the airport terminal review
is presented in chapter 6. To conclude this literature study, a research proposal and methodology is given in
chapter 7 and chapter 8.

25

2
Airport Operations

To start investigating how the self-service kiosks introduced in chapter 1 can be optimally configured, first a
good understanding of airport operations must be established. In this chapter, first the steps of the airport
terminal design process, the elements part of an airport terminal and the stakeholders will be discussed. Next,
the processes in a terminal will be discussed. Last, new trends in airport terminal design in order to increase
the capacity and efficiency will be looked at.

2.1. Airport Terminal Design
The airport terminal acts as bridge between the landside, where passengers arrive via personal or public
transport, and the airside. A graphical representation of the airport terminal, landside and airside can be
found in Figure 2.1. In this section the factors that must taken into account while designing an airport as well
as the components of which an terminal exist will be discussed.

Figure 2.1: The terminal is the bridge between the landside and airside [33]

2.1.1. Airport terminal design process
As terminals are very expensive to build, errors during the design could be very costly. Therefore, design pro-
cesses and standards have been developed to ensure a design that adequately designed in terms of capacity
and cost. An example of a typical design process is given by Odoni and de Neufville [32]:

• Forecasting traffic levels for peak hours

• Specification of Level of Service (LoS) standards

• Flow analysis and determination of servers and space requirement

• Configuration of servers and space

The design process mostly comes down to determining the demand, then specifying the Level of Service
(LoS), determining server and space requirements and configuring the server and space. The LoS refers to

27

28 2. Airport Operations

the amount of space per passenger and is defined by the International Air Transport Association (IATA).

In addition to high costs when a terminal is under- or over-designed, it could lead to efficiency problems
which cause delays and insufficient LoS. According to Schultz and Fricke [35], passenger and baggage han-
dling make up 8% of the causes of delays for example.

2.1.2. Airport components
As mentioned in the previous section, the last step of the airport terminal design process is the configuration
of the servers and space. To determine an optimal configuration, the components of which an airport ter-
minal consists must be well understood. Below, an overview and description of the most important airport
components is given as described by Kazda and Caves [17].

Landside kerb
The landside kerb is used by cars, taxis and other road vehicles and are often separated by kerbs. Surveillance
is necessary to ensure that cars do not stay longer than permitted while dropping off passengers.

The ticketing lobby
The ticketing lobby is part of the check-in concourse and consists of queues, a counter and space behind the
counter for the staff. Tickets can be bought here.

The check-in concourse
The check-in concourse is made up of elements part of the check-in process. This includes check-in and/or
drop-off counters. It is also becoming more common to also provide a self-service check-in and baggage
drop-off option.

The check-in counters
The check-in counters are located in the check-in concourse and are the full service option for passengers to
check-in and check-in baggage.

The out-going baggage handling system
The out-going baggage handling system is often installed under the floor or out of sight of passengers. The
system ensures that baggage arrives at the correct aircraft after it is checked in by the passenger. This system
has the baggage that is checked-in at the full-service and self-service check-in as input.

Outbound passport control
Here the passports of passengers are checked and if all is good, the passenger can continue to the security
screening.

Security screening of passengers
The security checkpoint where the passengers are screened come in many different configurations. They
almost always consist of the following elements: a walk-though detection device, an X-ray machine for hand
luggage checking and space for manual searches.

The departure lounge
Here passengers can wait for the flight to start boarding.

Retail facilities
These are stores in the terminal and act as entertainment and are an extra form of revenue for the airport.
The activities that are not directly related to the airport terminal such as visiting these retail facilities are also
referred to as discretionary activities.

2.2. Airport Terminal Activities 29

2.1.3. Airport Stakeholders
When designing an airport terminal, many stakeholders are involved in the process. In Figure 2.2, a graphical
representation can be found of all the stakeholders [24].

Figure 2.2: Graphical representation of the stakeholders of an airport

The airport manager is in charge of managing the stakeholders. Airport management can either be a priva-
tized organization, a governmental body, or a mix of the two. This illustrates that many parties are involved
in the decision making process at airports.

2.2. Airport Terminal Activities
Next to the design process and the airport terminal components it is important to understand the airport ter-
minal activities. A distinction can be made between baggage and passenger handling and departing, transfer-
ring and arriving passengers. For this research, only the departing passenger process and the corresponding
baggage process will be discussed as this is the only moment when self-service kiosks will be used.

Check in
For the traditional passenger check in process the air ticket and passport/ID should be submitted at the
counter. Nowadays only the passport/ID is sufficient to allow the passenger to be checked-in and to hand
over the boarding pass. Additionally, the luggage that has to be checked-in is weighed and, if the weight limit
is not exceeded, transported away by the baggage handling system. When the weight limit is exceeded, an
additional fee needs to be payed. Next, a receipt is attached to the luggage with the weight and destination
on it. To speed up the process, automatic self service check-in kiosks are becoming more and more popular
which will be discussed more in depth in chapter 3.

Security checkpoint
At security, passengers and their cabin luggage are checked. After security, the passengers will continue onto
the airside of the terminal and go the gate when it is time to board the aircraft.

Passport control
During the passport control, the identity of the passenger is checked and it is made sure that no illegal activ-
ities take place.

30 2. Airport Operations

Boarding the aircraft
During boarding, the boarding pass and ID of the passenger is checked one final time and most of the time,
the passenger can then board the aircraft. Sometimes however, the operator responsible for boarding can ask
the passenger to check-in the cabin luggage such due to a lack of cabin space. When this occurs, the boarding
process is disrupted which can cause problems in terms of delays.

3
Check-In

The check-in process of which self-service kiosks are part of is incorporated in the research field introduced
in chapter 1. Therefore, it is important to have a good understanding of the complete check-in process and
its components. In this chapter first the design of current full-service check-in options will be discussed.
Next, the self-check-in process along with the state-of-the-art of the kiosks will be discussed. Last, the next
generation of self-service kiosks and the use of bag tag kiosks at the gate will be discussed.

3.1. Check-In Design
The check-in counters can be placed at public places such as train stations or in car parks but they are most
commonly situated after the entry of the terminal [17]. The check-in must accommodate conveyor belts in
addition to desks which results in different configurations being available. Some common configurations of
check-in counters will be discussed below.

Figure 3.1: Linear facing check-in type [17]

In Figure 3.1, a linear facing type is shown which allows passengers to move through the line of desks after
checking in. This lay-out is the most common configuration.

31

32 3. Check-In

Figure 3.2: Flow-through check-in type[17]

Figure 3.2 shows the flow-through lay-out which allows the passengers to pass through to security away from
the queue.

Figure 3.3: Island configuration check-in type [17]

The final lay-out option is the island configuration and is shown in Figure 3.3. For this type, the counters wrap
around the belts which run in the direction of the passenger flow.

The flow-through and island configuration allow passengers to go to security more efficient and offers a more
logical path. This results in less confusion and a better experience for passengers. The International Air
Transport Association (IATA) [12] therefore recommends the island configuration.

3.2. Self-Service Check-In
Normal check-in remains important, it is estimated however that 33-50% of check-in counters will be self-
service of which half is designed for passengers with baggage [12]. Additionally, regular check-in can create
dissatisfaction when waiting times increase [47]. A solution to this is the use of more self-service devices dur-
ing check-in. In 2007 the IATA launched the Fast Travel Program. In this program, the three most important
aspects are considered to be self-check-in, self-flight rebooking and self-bag tagging [1].

The IATA [12] mentions a problem which could occur when airports decide to operate self-service kiosks.
Operating self-service kiosks could result to a requirement to operate more regular check-in desks. To coun-
teract this, the IATA introduced the concept of common use terminal equipment (CUTE) was introduced.
CUTE enables airlines to share check-in counters and kiosks to optimally utilize the space in the terminal.
The IATA also encourages the use of CUTE in terminal design. Therefore, self-service kiosks should be shared
and be able to be used for multiple airlines.

Determining the location of these self-service kiosks is very important since locating the kiosks is closely
related to the facility layout problem. Problems that fall under the facility layout problem are characterized by

3.2. Self-Service Check-In 33

the objective to optimally locate the facilities that make up a system [37]. Therefore, when implementing such
kiosks is important to optimally place them and preferable first test configurations by means of simulation.

3.2.1. Self Check-In Options
Nowadays, a passenger has multiple choices in terms of check-in methods. A graphical representation of the
different check-in methods at Zurich airport can be found in Figure 3.4.

Figure 3.4: Graphical representation of the different check-in methods at Zurich airport [47]

As can be seen in the figure above, the route for a passenger to be checked-in via self-service facilities can
vary. The process can be completed using a kiosk for checking-in and dropping off which can be done on the
airport or at a railway station for example. The passenger can also choose to check-in by phone call, mobile
check-in or web check-in. When this is the case, the passenger does not have to use a self-service kiosk
anymore for checking-in, but may need it for dropping off baggage. This can be done at separate baggage
drop kiosks.

3.2.2. State of the Art Self-Service Kiosks
Current self-service kiosks can completely eliminate the need for airport personnel. Below, the steps the
passenger has to go through on a self-service kiosk are given according to IATA [12].

• Passenger approaches self service check-in kiosk with physical ticket or e-ticket details.

• Passenger inserts ticket or e-ticket details.

• Biometric passenger data captured. (optional)

• Biometric data analyzed. (optional)

• Airline/passenger profiling questions asked and passengers answers given.

• Optional passenger places passport on the screen.

• Passport data validated from central database.

• Baggage license plate label printed and affixed to baggage by passenger.

• Passenger asked to place baggage item(s) onto conveyor system. (optional)

• Confirmation of number of pieces of luggage. If 0-1 items of luggage per passenger step 7 else step 5.

• Process ends for baggage.

34 3. Check-In

The steps above describe the entire self check-in process. In some cases, the passenger is already checked-
in online or via mobile as is discussed in the previous section. When a passenger is already checked-in, the
passenger must complete the following process to check-in their baggage.

• Passenger approaches self service bag tag/drop-off kiosk with physical ticket or e-ticket details.

• Passenger inserts boarding pass or e-boarding pass.

• Airline/passenger profiling questions asked and passengers answers given.

• Baggage license plate label printed and affixed to baggage by passenger.

• Optional passenger asked to place baggage item(s) onto conveyor system.

• Confirmation of number of pieces of luggage. If 0-1 items of luggage per passenger step 7 else step 5.

• Process end for baggage.

Some kiosks have extra features such payment options when bags are overweight and extra luggage buy op-
tions. Additionally, the process of receiving the bag tag and dropping off the baggage can separated by means
of a separate bag tag and drop-off kiosk.

3.3. Next Generation Self-Service Kiosks
Current self-service kiosks are designed to make the check-in process completely automatic and are part of
the check-in concourse. This has as a result that airports design the self-service kiosks to maximize perceived
usefulness instead perceived ease of use [40].

3.3.1. Checked luggage check-in kiosks
Bagchain is a manufacturer of self-service kiosks and has as its goal to make the self-service baggage drop-off
easier and more straightforward [4]. By including no extra features other than printing the bag tag at the bag
tag printer and dropping off luggage at the drop-off kiosk. Bagchain aims for the self-service kiosks to have
a high degree of perceived ease of use. In cases that the bag tag can not be printed, when the passenger has
not bought any checked luggage for example, the passenger will be redirected to a service point. This limits
the average time spent at a kiosk. Additionally, Bagchain offers mobile kiosks such that these can be placed
strategically and are movable.

3.3.2. Cabin luggage check-in kiosks at gate
Next to self-service options before security, Bagchain has proposed to place bag tag kiosks at the gate to
check-in cabin luggage if necessary. Bagchain [4] estimates that manually checking in cabin luggage can take
between 60 and 90 seconds which can be drastically decreased by using a kiosk.

3.4. Discussion of check-in process
In light of the problem introduced in chapter 1, the following conclusions can be drawn from the literature
presented in this chapter. As the trend is clearly heading towards more self-service options in the airport, it
is important to extensively investigate the implementation of them. Passenger needs do not indicate more
functions for example but want an easier to use kiosk. Additionally, determining the location of the kiosks
must carefully be done to ensure optimal performance of the terminal. In the following two chapters, the
possible methods that could aid in the efficient implementation of these kiosks will be discussed.

4
Modeling Airport Terminal Operations

In order to investigate the impact of implementing new elements in an airport terminal such as the Bagchain
kiosks, modeling the airport terminal first is preferred [25]. When developing a model it is important to take
into account the reusability and extensibility in order to limit reprogramming [32]. Therefore, in this chapter,
the state of the art of airport terminal modeling will be analyzed and discussed.

Using the distinction between models as proposed by Wu et al. [48], this chapter will have the following
outline. First, a general approach to modeling airport terminal processes will be given. Next, some early
models and their capabilities will be discussed after which models will be discussed with a similar purpose as
will be relevant for this research.

4.1. Approach to Modeling Airport Terminal Processes
In order to effectively develop an airport terminal model, a method is proposed by [48]. This method relies on
first defining the Concept of Operations (CONOPS). As the majority of airport terminal models are developed
with software, the IEEE Information Technology CONOPS Std 1362-1998 (R2007) [2] is used. This CONOPS
standard provides guidelines on how to develop usage scenarios and how requirements can be drawn from
them. From this CONOPS, a set of criteria is determined which can be used when designing a model [48]:

• Modeling objective

• Operational policy and constraints

• Model capabilities

• Users

When the CONOPS for a model is defined, one must investigate what data is required as input in terms of
traffic forecast. An extensive list is provided by Tosic [41] and some examples are: design period number of
passengers (total) and arrival/departure ratio or volume for different passenger types, etc. This illustrates
large amount of data required to accurately perform simulations.

4.2. Preliminary Requirements
In order to make an accurate assessment of the state of the art of airport terminal models which are relevant
for this research, a preliminary set of requirements will be stated in this section. To generate this set of require-
ments the problem stated in chapter 1 must be analyzed. The objective is to find an optimal configuration for
self-service kiosks in an airport terminal. Optimal can be defined with respect to several performance metrics
such as queue length and waiting times for passengers. Therefore it must be possible to extract this data from
the model. Additionally, since the effect of placing the self-service kiosks in the terminal is important, the
airport terminal model must be holistic. Visualizing passenger flows could also aid in investigating the effect
of implementing the self-service kiosks on the passenger flow dynamics. To achieve is however, passengers
must be modeled individually requiring a high level of detail [48]. A final requirement can be defined for the

35

36 4. Modeling Airport Terminal Operations

modeling language. Many systems both have qualitative and quantitative aspects. This is also the case for
an airport terminal. Quantitative aspects are number based, for example time or number of passengers in an
airport terminal. Qualitative aspects are for example reasoning and coordination of passengers. The model-
ing method and language must therefore be able to cope with a combination of qualitative and quantitative
aspects.

4.3. State of the Art of Modeling Airport Terminal Processes
To investigate what modeling techniques are common for certain applications, the state of the art needs to
established. To provide a complete overview, first early airport terminal models and the modeling techniques
they rely on will be explored. Next, models which have a similar goal as the proposed research here will be
discussed along with the used techniques.

4.3.1. Early Airport Terminal Processes Models
Early models were predominantly capacity models and had the purpose of determining whether a terminal
could handle (future) passenger forecasts. In this section, the development of these model type is discussed.

Queue modeling
One of the first efforts made to model a process in an airport terminal made use of a queue model. This was a
deterministic queue model on which many other models were later based [31]. This model elaborated upon
graphically representing cumulative arrival and departure profile from the service facility. Let A(t) and D(t)
be the arriving and departing passengers from a facility respectively for (0, t). The amount of passengers in a
queue at time t can then be as depicted in Equation 4.1.

Q(t) = A(t)−D(t) (4.1)

This relation can also be visualized using cumulative arrival and departure profile mentioned earlier. An
example graph can be found in Figure 4.1.

Figure 4.1: Example cumulative arrival and departure profile [31]

This model however fails to generate important metrics such as minimum and maximum waiting times for
passengers. It also fails to consider uncertainty in the arrival problem of passengers.

These shortcomings can be eliminated by using a stochastic queuing model. Such a model does not assume
a cumulative arrival function, but instead it uses multiple arrival functions per flight along with probabilities.
A stochastic queuing model for evaluating passenger process times and resource allocation was presented by
Bevilacqua and Ciarapica [6]. In this research a simulation run is performed by using Monte Carlo simula-
tions until a steady-state is reached. This steady-state is then evaluated for common check-in configuration
and a dedicated carrier check-in configuration.

To extend these models and create a more holistic airport terminal simulation, different facilities can be
linked to create a complete system. Models such as described by Dunlay and Park [7] consider such linked
facilities where the departure profile of one facility is used as the arrival profile of the next facility. A certain
offset is taken into account to include walking from one facility to the next.

4.3. State of the Art of Modeling Airport Terminal Processes 37

Statistical approach
Another approach taken for the development of capacity models is a statistical approach. Kim et al. [19]
developed a mathematical model which used probability density functions on dwell times to estimate the
number of passengers arriving at an airport terminal at various times. By making this probability function
time dependent the dwell times could be accurately estimated. This let to this research providing significant
insights in how dwell times differ for different airports.

Similarly, a method was proposed for analytically approximating maximum passenger delay for airport cor-
ridors and service facilities by means of a multicommodity flow model [38]. Relations were derived between
flow rates and width of corridors. Multiple objective functions could applied to this system [38]. An example
of a objective could be to minimize the maximum time a passenger spends in the flow model (terminal). This
model is considered to be holistic since it has linked facilities, similar to the model proposed by Dunlay and
Park [7].

4.3.2. Operational Planning and Design Models
Similar to the capacity models, operational planning and design models evaluate metrics such average queue
length and passenger waiting times. The goal and model capabilities differ however from the previously
discussed models. These types of models are used to investigate what the impact is of changing, adding or
removing resources such that the daily airport operations can be evaluated. This goal requires a higher level
of detail and therefore the previously discussed models can not be used for this purpose. In this section, the
development of this model type is analyzed and discussed.

Agent based models
An early effort to develop a operational planning and design model was made by means of a discrete event
agent based model [8]. This model evaluates passenger flows in an airport terminal while taking into account
flight schedules, service rates, resources and passenger characteristics. To accomplish this, a network pro-
gram called CARN (Conditional Analysis for Random Networks) was created. The passengers move through
the nodes of the network as if they are facilities with each node having a certain service rate distribution.
As a result, it was found that passenger delays resulting in passengers missing flights was well correlated to
congestion. Based on the method proposed Eilon and Mathewson [8] a great effort was made to develop Air-
port Landside Simulation Model (ALSIM) reviewed by Tosic [41]. Additionally, Lui et al. [27] also adopts the
method proposed by Eilon and Mathewson [8]. The goal of this model was to evaluate physical and opera-
tional plans to ensure that the New York JFK could accommodate a large new type of aircraft.

All these models adopt a macroscopic approach which results in simulations that can be evaluated by the
performance of the global system. Therefore, to evaluate the influence of operational and resource changes
is for individual passengers, a microscopic approach is necessary. A simulation of Ataturk airport used the
ProModel simulation package to take a more microscopic approach [20]. A similar microscopic simulation
for Kansai airport [39]. Using the microscopic approach, passenger flows can be visualized as can be seen in
Figure 4.2.

38 4. Modeling Airport Terminal Operations

Figure 4.2: Example of visualizing passenger flows [46]

Next to visualizing the passenger flow, which allowed for emergence of flow patterns, the use of agent based
modeling for airport terminal process modeling was taken a step further by evaluating different performance
metrics separately [46]. This has as an advantage that the performance of facilities can be evaluated sepa-
rately while modeling the complete terminal.

It is argued that the entire airport terminal process is based on individual passenger behavior [35]. Therefore,
in order to optimize this, the individual passenger behavior must be modeled accurately. Schultz and Fricke
[35] proposed a stochastic approach to agent based modeling to model the processes in an airport terminal.
This stochastic approach was implemented for passenger movements at the operational level and at the tac-
tical level. This allows agents to act with environmental anticipation and enables the capability of passengers
making tactical decisions and route finding [35]. The results of the simulation pointed out that there is a need
for a significant change of the common flow-oriented design method of airport terminals.

The final model that will be discussed is an agent based model that aims to evaluate different operational
policies [45]. The policies that are evaluated concern changing the passenger flows through the entrance of
the terminal and setting up self-service check-in kiosks. For this research it was argued that inter-passenger
relations did not have to be modeled since only the system behavior was relevant resulting in a simpler model
[45]. The passenger flows were visualized with a GUI displayed in Figure 4.3 which aided in the evaluation of
the different policies.

Figure 4.3: Snapshot of the GUI of the model developed by Verma et al. [45]

4.4. Discussion of Model Overview 39

Other approaches
Next to agent based approaches, other approaches have been explored. Manataki and Zografos [29] have
proposed a system dynamics based method for example. The model proposed was used to effectively answer
the same question as the models discussed above which includes aiding with making decisions on opera-
tional concepts. The method used relies on nodes representing different airport processes and the links be-
tween them representing the passenger flows. The nodes or facilities are modeled using the building blocks
of system dynamics modeling: stocks, flow and converters. This type of modeling approach has as a main
advantage that it can be easily applied to a multitude of airports since (almost) all airports have the same
service facilities. Manataki and Zografos [29] therefore argue that not the layout, but the topology or the way
the facilities are connected are important.

Another approach that has been taken to evaluate the airport terminal is the use of a fuzzy model.Kyildi and
Karashin [23] have proposed a model which uses this approach to perform an analysis for the check-in unit
for a airport. The fuzzy network establishes the link between performance metrics and the variables on which
they are dependent using IF-THEN statements. Since a relationship is established, one can easily trace back
a delay to the main contributing factor.

4.4. Discussion of Model Overview
Taking into account the aim of this research, an operational planning and design type and therefore the mod-
els and techniques used for that purpose are most relevant. Wu and Mengersen [48] concluded that the main
differences between operational planning and design models and capacity planning type models are the de-
tail level which results in the following differences:

• Individual passenger versus passenger group interactions

• Spatial detail and passenger movement interaction differences

• Visualization differences

As discussed earlier, Verma et al. [45] has developed model with a similar objective as this research. How-
ever, contrary to that research, there must be the opportunity to investigate the effect of placing the kiosks
at different on a passenger level. Therefore, to investigate this as accurately as possible, individual passen-
ger interactions must be modeled and visualized. These requirements lead to an agent based model with
stochastic approach and microscopic detail level being favorable. The main downside to this high level of
detail approach is that it can provide misleading results which requires detailed validation to be prevented.

This approach must be paired with modeling language that satisfies the earlier defined requirement. This
requirement stated that the language must cope with both qualitative and quantitative aspects. An example
of such a language is Temporal Trace Language (TTL) [36].

Developing a model that satisfies all requirements from scratch is a lengthy and complex process when car-
ried out properly. Therefore it is out of the scope of this research. Expert validation and comparisons between
predicted and recorded traffic patterns is for example needed [48]. Therefore it is recommended to extend an
existing easily extendable model which is available. In chapter 6 a detailed overview will be given of such a
model and how it can be extended for the purpose of this research.

5
Simulation Optimization

Optimization of a certain problem can be performed in many different ways depending on the type of model.
When finding an optimal solution for a mathematical model for example, an objective function can easily
be evaluated and derivative information is available which allows for efficient exploration and exploitation
of the parameter space. For an agent-based model with a high degree of stochasticity as will be the case for
this research, this derivative information may not be available or hard to estimate [3]. Therefore, a derivative
free optimization or black-box optimization method needs to be used. These methods are also referred to as
simulation optimization and will be discussed in depth in this chapter. A general introduction to simulation
optimization will first be given after which different simulation optimization techniques will be discussed.

Simulation optimization is often applied to discrete event simulations and systems of stochastic nonlinear
and/or differential equations [3]. To get a better understanding of the simulation optimization problem it
can be categorized by the following categories [43]:

• Continuous vs. discrete: whether or not the variables considered by the problem are discrete or con-
tinuous.

• Constrained vs. unconstrained: whether or not constraints apply to the decision variables.

• Mono-objective vs. multi-objective: whether the problem considered aims to optimize a single or mul-
tiple objective functions. Methods exist that allow for rewriting multiple objective functions to one
weighted objective function. These methods are Pareto and naive methods [28].

• Status vs. dynamic: For static optimization the possible solutions are evaluated at the end of each
iteration. For Dynamic optimization the possible solutions can be tuned during the evaluation process.

Different simulation optimization approaches have different application. In Figure 5.1, different approaches
and their characteristics can be found.

Figure 5.1: Different simulation optimization approaches and their characteristics [3]

For this literature review, gradient-based methods and Lipschitizian will not be discussed due to these meth-
ods only having the ability to solve continuous optimization problems and requiring derivative information

41

42 5. Simulation Optimization

(or an estimation of it). Response surface methodology however will be covered since, with some modifica-
tions, response surface methodology can be used for discrete simulation optimization problems [5].

5.1. Metaheuristics
In order to provide a comprehensive overview of the metaheuristic algorithms used for simulation optimiza-
tion, a distinction will be made between finite and large or infinite parameter spaces. These metaheuristic
algorithms are often the driving force behind simulation optimization. Additionally, a simheuristic approach
to simulation optimization will be discussed in this section.

5.1.1. Finite Parameter Spaces
For finite parameter spaces the number of solutions is relatively small and fixed. The main goal is to structure
or rank the different simulation runs [3]. Due to the finite parameter space, there is no emphasis on explo-
ration and solutions simply need to be compared to find the optimal one.

An optimization technique which can be used when dealing with a relatively small and finite parameter space
is ranking and selection. A review of different ranking and selection procedures was done by Kim et al. [18].
The basic principle behind ranking and selection is to minimize the number of simulation runs to select while
trying to guarantee that the selected solution is the best with a certain probability.

5.1.2. Large or Infinite Parameter Spaces
When the parameter space becomes larger or infinite it is not sufficient to essentially compare all solutions
to find the best solution as was done in ranking and selection. Methods that can be used in case of a large
or infinite parameter space must strike a balance between exploration and exploitation. The algorithm must
explore different areas while still exploiting promising areas. This must be done while being efficient resulting
in a not excessive computational burden.

Algorithms
The algorithms that fall under metaheurisics for a large or infinite parameter space are simulated annealing,
ant colony optimization and tabu search. An extensive review of metaheuristic optimization methods was
done by van der Horst [43]. The results from this overview can be found in Table 5.1.

Table 5.1: Overview of metaheuristic techniques and their application [43].

Metaheuristic technique Application Algorithms

Single solution based
Continuous and discrete optimization,
Combinatorial optimization

Simulated annealing,
Tabu search,
Variable neighbourhood search,
Iterated local search,
GRASP method

Evolutionary computation

Combinatorial optimization,
Constrained optimization,
Multi and single objective optimization,
Continuous optimization

Genetic algorithm, Evolution
strategy, Differential evolution,
Coevolutionary algorithms,
Scatter search with path relinking,

Swarm intelligence
Global optimization,
Combinatorial optimization

Particle swarm optimization,
Ant colony optimization

The single solution based algorithms rely on a starting point (an initial solution) and moving away from this
starting point. The algorithms that fall under single solution based technique can be applied to both contin-
uous and discrete problems. The next technique displayed in Table 5.1 is evolutionary computation which
also falls under model-based methods. The search space is explored and exploited using pairing, mutating,
crossing and selection which are evolutionary principles [43]. This technique can be used for both multi and
single objective optimization. Moreover, this technique is mostly used on continuous and constrained opti-
mization problems. The final technique is swarm intelligence which also falls under model-based methods
and metaheuristics just as evolutionary computation. This technique uses principles which can be found in
nature and specifically large insect swarms and distincts itself from evolutionary computation by not resam-

5.1. Metaheuristics 43

pling [43]. This technique is able to find a global optimum. All discussed metaheuristic techniques can be
applied to combinatorial problems.

5.1.3. Simheuristics
When choosing a metaheuristic algorithm the computational power required must be taken into account. It
could for example be beneficial to choose a less accurate algorithm which requires less computational power
if the problem is very complex. This is especially the case when the simulation model contains stochastic-
ity. To further decrease the computational power required Juan et al. [16] proposed a method to reduce this
computational burden with a method called simheuristics. Additionally, using a simheuristic framework al-
lows for deterministic optimization techniques to be used for optimization problems where stochasticity is
involved.

This method can be paired with many metaheuristic optimization algorithms and relies on using a simpli-
fied (deterministic model). The metaheuristic algorithm is used to find a good solutions when evaluating the
objective function with results from the deterministic model. It is argued that a solution that performs well
when evaluated with the deterministic model, will also be a good solution when using the stochastic model
[16]. A pool of ’elite’ solutions can be formed using a metaheuristic algorithm from the determinstic model
until a stopping criterion is reached. This pool of ’elite’ solutions is then intensively evaluated in order accu-
rately rerank the solutions [16]. In Figure 5.2, schematic representation of the simheuristic approach can be
found.

Figure 5.2: Schematic representation of simheuristic simulation optimization approach [16]

Simheuristics have been applied by Grasas et al. [9] in order to use iterated local search on a stochastic
combinatorial problem. Usually, this metaheuristic is only applicable to deterministic problems but with
simheuristics it could be extended to a stochastic problem. The research presents several applications of the

44 5. Simulation Optimization

framework such as: vehicle routing, scheduling and inventory routing [9].

5.2. Other Simulation Optimization Techniques
Next to the metaheuristic simulation optimization approaches discussed earlier, there are several other sim-
ulation optimization techniques. In this section response surface methodology, model-based methods and
direct search methods will be discussed.

5.2.1. Response Surface Methodology
Response surface methodology is also a method to use for simulation optimization. This method is typically
useful in continuous optimization problems but can be applied to discrete optimization problems as well [5].
This method relies on approximating the underlying simulation by focusing on the input-output relationship
[3]. This is also known as meta or surrogate modeling. Pseudocode for a classic response surface methodology
algorithm can be found in Figure 5.3.

Figure 5.3: Psuedocode for a classic response surface methodology [3]

A response surface methodology can be applied in two ways for simulation optimization approaches [3]:

• Multiple surrogate models are built for certain regions which are then used to guide the search.

• One surrogate model is built for the entire parameter space which is then used to pick solutions.

5.2.2. Model-based methods
Model-based methods rely on building a probability distribution for the solution space. This is done to guide
the search through the parameter space for an optimal solution [3]. An example of such a method is ant
colony optimization discussed in subsection 5.1.2. This method both falls under model-based methods and
metaheuristics. This algorithm relies on the real-world behavior of ants and their pheromones. When a path
or solution is used many times, pheromones build up resulting in this solution being more likely to be used.
The pheromone build up results in the aforementioned probability distribution. Pseudo code for an ant
colony optimization algorithm can be found in Figure 5.4.

5.3. Discussion of Simulation Optimization Methods 45

Figure 5.4: Psuedocode for ant colony optimization algorithm [43]

Other model based methods fall under estimation of distribution algorithms which belong to the evolution-
ary computation field [3]. For this method, instead of generating a new solution from a genetic operator, a
new solution is generated by sampling from the inferred probability solution over the solution space [3].

5.2.3. Direct Search Methods
The last simulation optimization technique that will be discussed in this chapter fall under direct search
methods. These methods can be defined as an examination of trial solutions [3]. These trial solutions are
generated by a certain strategy. This strategy determines which solution will be evaluated next as a function
of earlier results [11]. Direct search methods build on the derivative free optimization ideas which is ben-
eficial to simulation optimization since derivative information is often no available. An extensive review of
direct search methods is given by Kolda et al. [22].

The two most popular direct search methods are pattern search and Nelder-Mead simplex method. These
methods are very interesting due their simplicity and ability to not be affected by derivative information not
being present. Pattern search was elaborated upon by Trosset [42] and more information on the Nelder-
Mead simplex method is given by Nelder and Mead [30]. Additionally, the convergence for these methods in
a simulation optimization setting is also investigated and described by Lucidi and Sciandrome [26]. Pseudo
code for Nelder-Mead simplex method can be found in Figure 5.5.

Figure 5.5: Psuedocode for a Nelder-Mead simplex method [3]

Since the trial solutions are generated by a certain strategy and then compared, this method is difficult to
scale and use with large parameter spaces. Also direct search methods can be affected by noise, effective
sampling schemes to control the noise are required [3].

5.3. Discussion of Simulation Optimization Methods
None of the simulation optimization methods discussed above is better than the other. Some however will be
better for certain applications depending on the simulation optimization problem that needs to be solved. As

46 5. Simulation Optimization

discussed earlier, a simulation optimization problem can be categorized using the following categories [43]:

• Continuous vs. discrete

• Constrained vs. unconstrained

• Mono-objective vs. multi-objective

• Static vs. dynamic

Additionally, the computational time must also be taken into account. When complexity is high of the to be
solved problem, it could be beneficial to choose a less accurate method which requires less computational
power. A less accurate solution for an accurate real world model is more valuable than an optimal solution
for a oversimplified model. For a metaheuristic approach, an algorithm can be paired with simheuristics to
decrease the computational power required. A preliminary trade-off will be performed in chapter 7 using
the results from the review performed in this chapter. This trade-off will determine whether a ranking and
selection, metaheuristic, response surface methodology, model-based method or direct search method will
be used for this research. A metaheuristic algorithm with a simheuristic framework will also be taken into
account for the trade-off.

6
Agent-based Airport Terminal Operations

Model

Following from chapter 4, an agent based model with a stochastic and microscopic approach was deemed
to be the best approach. Additionally, the usage of the Temporal Trace Language was a viable option. De-
veloping such a model from scratch however is very complex. Therefore it is preferred to extend an existing
and proven model. The Agent-Based Airport Terminal (AATOM) Operations Model simulator is such a model
which is extendable and available. This model utilizes the LEADSTO language which can be defined as sub-
language of TTL [36]. In this chapter, an introduction will be given on agent-based modeling along with the
advantages and disadvantages. An introduction to AATOM and its architecture will be given.

6.1. Introduction to Agent Based Modeling
There is a large difference between macroscopic modeling approaches and microscopic agent based mod-
eling approaches. Instead of describing the overall global system characteristics, the global system system
characteristics are generated from the actions of the individual agents [21]. These agents are the active com-
ponents or decision makers. In this section, first the basic principle and architecture utilized by agent based
models will be discussed. After that, the advantages and disadvantages of agent based modeling will be dis-
cussed.

Agent based models almost always use a structure where the following three elements must be defined: the
agents, the environment and the interactions [21]. The agents are the active components or decision makers.
Heterogeneity of agents is possible when designing these agents meaning that they can have different char-
acteristics such as sex, age, etc. These agents are simulated in an environment which comprises of other ele-
ments which are not active, for example resources. In order to accurately simulate real life processes agents
must be able to interact with each other and the environment [21]. These interactions result in the overall
outcome and carefully designing these is therefore crucial.

The architecture described above comes with its advantages and disadvantages [21]. The bottom-up ap-
proach allows for analysis on agent level as well as the macroscopic level instead of just the macroscopic
level. Additionally, having the possibility to define all three elements gives a high degree of freedom. This
freedom however poses also a problem. It could be unclear what should included in the model and what
should be abstracted by a probability distribution [21]. Problems have also been found with reproduction,
the large size of a simulation and validation.

6.2. AATOM Architecture
The model deploying the agent modeling approach discussed above is the AATOM simulator developed by
Janssen et al. [13]. As this simulator will be used for this research, an introduction to the architecture, agents,
environment and interactions will be given in this section.

47

48 6. Agent-based Airport Terminal Operations Model

The three different layers of which the simulator comprises are: the strategic layer, the tactical layer and the
operational layer [14]. The strategic layer is the first layer and consists of the goal, belief and reasoning mod-
ule. The tactical layer takes care of the actuation activities. It consists of a lower level belief module, which is
connected to the belief module in the strategic layer, the interpretation module, activity and navigation mod-
ule. The last layer is the operational layer which interacts with the environment and other agents. This layer
therefore has the perception module and actuation module. The exact structure and connections between
the different module is visualized in Figure 6.1.

Figure 6.1: Schematic representation of the AATOM architecture[14]

As was discussed in the introduction to agent based modeling, AATOM utilizes agents, environment and
interactions. In the following sections these will be discussed in more detail.

6.2.1. Agents
In AATOM the following three agents are used to simulate: passengers, operators and an orchestrating agent
[14]. These agents can have characteristics such as inbound or outbound passengers and a certain flight. The
same holds for operators which can be security or check-in operators. Next to these characteristics, agents
have different attributes which for example is, in the passenger case, a boolean which tracks whether or not
a passenger is checked in. The passenger and operator agent are so called human agents. The orchestrating
agent does not have to be a human agent and can be implemented to steer other agents and make adjust-
ments in the environment [14].

6.2.2. Environment
The environment also consists of multiple types similar to the agents. These types are: area, flight and physi-
cal object [14]. Areas are accessible by agents and are used to separate the terminal in a check-in area, secu-
rity, etc. Another important environment type is the flight type. This type is used to define different flights
that can be linked to passengers, gates and check-in desks among others. The last type of environment is the
physical object. The physical object includes walls, desks and all other physical objects which can typically
be found in an airport terminal. The self-service kiosks which will be developed for this research will also be
of the physical object type for example.

6.2. AATOM Architecture 49

6.2.3. Interactions
The last element but arguably the most important are the interactions between agent and environment and
between agents. For AATOM the following interactions are defined between agents and the environment [14]:

• Check-in operator (agent) and flight (environment)

• Security operator (agent) and sensor (environment)

And the following interactions are defined between agents [14]:

• Operator and passenger

• Operator and operator

7
Research Proposal

At this point, an introduction to the many different airport terminal processes and specifically the process
check-in has been given. Additionally, the state-of-the-art of airport terminal modeling and simulation opti-
mization techniques was given. From this, a problem definition can be derived along with a research objec-
tive, question and sub questions. These will discussed and elaborated upon in this chapter.

7.1. Problem Definition
Following from the literature presented earlier in this report a research objective can formed. In this section
first a research gap will be identified after which a research objective will be presented.

From chapter 3 it follows that self-service options are becoming more and more important and is encour-
aged to be implemented. It has also become clear that user experience and location of the self-service kiosks
is critical to these kiosks being a success. As a result, new types of kiosks were developed which are movable
and are easier to use making it attractive for airports. To efficiently implement these kiosks, simulations can
greatly aid the process of investigating the impact on the performance of the terminal as has been shown in
chapter 4. In research done so far, little models emphasize on the influence of self-service kiosks on airport
terminal performance resulting in little knowledge on how to configure these kiosks. Combining such simu-
lations with optimization could result in a powerful tool for airports to determine optimal configurations.

The following research gap was established from the literature review: A new generation of self-service kiosks
are more intuitive to use and more flexible in terms of locating them. Using a microscopic agent based simu-
lation approach together with optimization techniques could aid airports in determining an optimal config-
uration.

7.1.1. Research Objective
With the problem definition and research gap established the following research objective can be formed:

To determine an optimal configuration of self-service luggage kiosks for checked luggage before security and
cabin luggage at the gate using a simulation optimization approach.

7.1.2. Preliminary Optimization Technique Trade-Off
Now that the problem is defined, a preliminary trade-off of optimization techniques can be performed. Since
the exact number of locations where the self-service kiosks can be located is currently unknown, the size of
the parameter space is also not known. Therefore an effort will be made to score the techniques discussed in
chapter 5 although the knowledge on how different algorithms compare for simulation optimization is lack-
ing [3]. The emphasis during this trade-off will lie on the scalability and adaptability of the algorithms due to
the not known size of the parameter space.

Following from chapter 5, ranking and selection can automatically be disregarded as it is only viable for fi-
nite/small parameter spaces. This is the case since comparing and ranking is too slow for large parameter

51

52 7. Research Proposal

spaces Therefore, the options that remain and efficiently explore and exploit the parameter space are: meta-
heuristics, response surface methodology, model-based methods and direct search methods.
In order to perform an effective trade-off, scores (1,2,3) will be awarded to the different techniques for dif-
ferent categories. These categories include: efficiency, adaptability, scalability and simplicity. Metaheuristic
approaches get a good score for adaptability and scalability since many different algorithms are available.
Additionally, metaheuristic approaches can be paired with a simheuristic framework further increasing the
efficiency. Response surface methodology excels in efficiency once a metamodel is created to map the input
to output relation. This has as a consequence however that it is difficult to adapt which would require re-
training the metamodel. Model based methods are not very simple to implement and difficult to scale due
to these methods being very dependent on the parameter space being known. This has a benefit however
in terms of efficiency. The final method is direct search method which is easy implement and can be easily
tailored to different problems as it is a sequential examination of trial solutions. The strategy the generates
these solutions however may not be easily scalable which leads to a low score for this category. An overview
of the scores given can be found in Table 7.1.

Table 7.1: Trade-off table for optimization techniques

Technique Adaptability Scalability Efficiency Simplicity Total
Metaheuristics 3 3 2 3 11
Model-based methodology 1 2 3 1 7
Response Surface Methodology 1 2 3 2 8
Direct search methods 3 1 2 3 9

From this trade-off can be concluded that a metaheuristic approach would strike a good balance between
the different categories. Metaheuristics with a simheuristic framework would further increase the efficiency
although this decreases the simplicity since a deterministic model must be developed. Therefore, a meta-
heuristic approach with a simheuristic framework seems to be the preferred optimization method.

7.2. Research Questions
Following from the problem description and the identified research gap, a research question can be formed.
In this section the main research question along with the sub questions will be presented.

7.2.1. Main Research Question
How can an optimal configuration be determined for self-service kiosks in an airport terminal for checking
in luggage before security and checking in cabin luggage at the gate?

7.2.2. Sub Questions
How are self-service kiosks involved in airport terminal processes?

• How are self-service kiosks before security involved in the airport terminal process?

• How are self-service kiosks at the gate involved in the airport terminal process?

How can self-service kiosks be modeled in an airport terminal simulator?

• What is the concept of operations for self-service kiosks before security?

• What is the concept of operations for self-service kiosks at the gate?

• Which passenger flows must be modeled?

• How can the interactions resulting from the addition of self-service kiosks be modeled?

• How can the modeled self-service kiosk be verified?

What data is necessary for modeling self-service kiosks?

• Which regulations are imposed on self-service kiosks?

7.2. Research Questions 53

• What parameters and data must collected in order to model the self-service kiosks?

Which metaheuristic algorithm is appropriate for the problem?

• How is the parameter space defined resulting from the case study?

• How can an appropriate optimization method be selected?

• How does a simheuristic approach influence the accuracy and computational burden of the solution?

• What accuracy is required?

How is an optimal configuration defined?

• Which performance metrics must be optimized?

• What weights should be given to the different performance metrics in the objective function?

What is the effect of adding self-service kiosks in an airport terminal on passenger flow dynamics?

• Which performance metrics can be used to understand the effect of self-service kiosks on the passenger
flow dynamics?

• What can be understood from the simulation visualization in terms of passenger flow dynamics?

What recommendations can be given airports wanting to implement self-service kiosks in terminals?

• What recommendations can be given for the configuration of self-service kiosks before security?

• What recommendations can be given for the configuration of self-service kiosks at the gate?

8
Research Methodology

Following the research proposal, the research methodology will be presented. First, the case study for Rot-
terdam The Hague Airport (RTHA) will be discussed. After that, the research methodology will be concluded
with the work packages of which this research will comprise along with the corresponding planning.

8.1. Case Study RTHA
As mentioned in chapter 1, a request was made by Rotterdam The Hague Airport (RTHA) for help with finding
a good configuration for self-service kiosks. RTHA is the third airport of the Netherlands and serves roughly
2 million passenger every year [34]. In this section a preliminary case study will be described.

RTHA recently implemented a new lay-out of the terminal where the passenger check-in self-service kiosks
are removed and a new split self-service baggage check-in system will be implemented. A split self-service
baggage check-in system refers to a separate bag tag and drop-off kiosk. In order to place these new kiosks
tactically, the TU Delft and RTHA will collaborate using simulation and optimization together. Using the
experience RTHA has configuring airport terminals possible locations will be identified beforehand to reduce
the problem size and determine the parameter space. The possible locations will be indicated by a green
square in the current terminal lay-out as illustrated by Figure 8.1. These locations are determined yet however.

Figure 8.1: Lay-out of RTHA in AATOM where possible kiosk locations would be indicated by a green square.

As mentioned before, next to the possible locations, the performance metrics which should be taken into
account by the optimization algorithm have to be determined. These metrics will also determined together
with RTHA. Examples of performance metrics include: average queue length, average queue time and average
walking distance per passenger.

8.2. Work Packages
In this section the work packages that will form the thesis will be given.

55

56 8. Research Methodology

• Work package 1 - Development of self-service kiosks in AATOM: In this work package the self-service
kiosks (bag tag kiosks and drop-off kiosk before security and bag tag kiosks at the gate) will be developed
in AATOM. This will be done in a test environment which can be compiled and tested quickly.

• Work package 2 - Implementing self-service kiosks in RTHA layout: Once the kiosks are implemented
as objects that can be placed in AATOM along with the interactions, the kiosks can be added to the
RTHA lay-out. This is necessary since the kiosks have to be tested in order to determine whether they
operate as expected in a more elaborate simulation scenario. The final activity for this work package
is defining the traffic scenario. Only departing passengers will be considered during when defining the
traffic scenario

• Work package 3 - Implementation of metaheuristic optimization algorithm: Next a trade-off will be
performed to determine the appropriate metaheuristic algorithm. Once the metaheuristic algorithm is
determined, it can be implemented .

• Work package 4 - Implementation of simheuristic framework: In order to implement a simheuristic
framework, a deterministic version of AATOM must be developed. This is necessary due to the stochas-
ticity being located in the objective function of the optimization problem. Constructing the determin-
istic model will consist of determining where the stochasticity is located in the model and replacing it
with a deterministic value. This deterministic copy must then be saved such that it can be accessed by
the simulation optimization algorithm during the optimization process.

• Work package 5 - Integration of simulation optimization: The last step before preliminary simulation
results can be presented is the integration of the metaheuristic optimization algorithm with the AATOM
simulator in the simheuristic framework. The use of the deterministic and stochastic version of AATOM
must carefully controlled to ensure the correct version is used at each point in the optimization process.

• Work package 6 - Data collecting: This work package in which the data necessary for the simulations
will be collected, can be executed in parallel to the previous packages. This is the case since the service
rate can take any value for the development and testing of the simulation and optimization. To better
understand which data is necessary for AATOM to simulate successfully the research by Janssen et al.
[15] can be used.

• Work package 7 - Analysis of simulation optimization results: Once the AATOM simulator with self-
service kiosks and simulation optimization integration is completed, the optimization runs can be
started. The analysis of the results of the optimization runs will include validating and preparing the
results for presentation to RTHA.

• Work package 8 - Reporting: Reporting will be done during and after every work package in order to
accurately document the process and findings.

• Work package 9 - Thesis defense preparation: Once the thesis is handed-in and green light has been
given, the defense of thesis preparation will start. This also includes preparing a thesis presentation.

8.3. Planning
In Figure 8.2 a Gantt chart of the planning of the research can be found. A certain time period is assigned to
reporting in the Gantt chart in Figure 8.2. This time can be used throughout the whole process to ensure that
everything is accurately documented.

8.3. Planning 57

Figure 8.2: Gantt chart of the planning of the work packages.

III
Supporting work

59

1
Extension of AATOM

In this appendix, the steps taken to extend AATOM with the self-service luggage check-in system are dis-
cussed. These steps include the implementation of the self-service process in AATOM and the RTHA layout
and the verification process.

1.1. Model Development
In this section the model development is more elaborated upon. A more technical insight will be give on how
the implementation was programmed.

1.1.1. Development of PhysicalObjects
The first step of developing the self-service kiosks in AATOM is to define the kiosks as physical objects. A
physical object can be observed and interacted with by the passengers. The two types of kiosks which are
implemented are bag tag kiosks and drop-off kiosks.

Bag tag kiosks
The bag tag kiosk is used to provide bag tags with information such as the flight. There are two types of bag
tag kiosks: bag tag kiosks before security and bag tag kiosks at the gates. These kiosks can respectively be used
to bag tag luggage that can not be taken into the cabin and carry-on luggage. The main difference between
these kiosks in the simulator is that the bag tag kiosk at the gate has an extra attribute: the gate where it is
located. Both bag tag kiosks have the following attributes:

• servingPosition: The position where the passenger needs to be to operate the bag tag kiosk.

• agentAtKiosk: The passenger which is at the kiosk. Is null if no passenger is using the bag tag kiosk.

• isOpen: A boolean which indicates whether a kiosk is open or not.

Drop-off kiosks
The second kiosk which is part of the self-service baggage check-in process, is the drop-off kiosk. This kiosk
can be used once the passenger has attached a bag tag to the to be checked in piece of baggage. The drop-off
kiosk has the following attributes:

• servingPosition: The position where the passenger needs to be to operate the bag tag kiosk.

• agentAtKiosk: The passenger which is at the kiosk. Is null if no passenger is using the bag tag kiosk.

• isOpen: A boolean which indicates whether a kiosk is open or not.

• luggageInSystem: The baggage which is currently on the belt.

• toBeRemoved: The baggage that reached the end of the belt and needs to be removed.

• moveLuggageVector: The vector indicating the direction of travel for the baggage on the belt.

61

62 1. Extension of AATOM

As can be seen above, the first three attributes are identical to the bag tag kiosk. The last three enable the vi-
sualization of luggage being transported on the belt. Once a piece of baggage reaches the end of the belt, the
piece of luggage is destroyed by AATOM. In reality, the luggage will have entered the luggage handling system.

Once a piece baggage is placed on the belt, it is not in possession of the passenger anymore. This entails that
the piece luggage is removed from the luggage list of the passenger. The visualization of luggage on the belt is
handled by the update function of the drop-off kiosk. The pseudo code for this function can be found below:

Algorithm 1 Update function drop-off kiosk

1: for Luggage in luggage on belt do
2: if Luggage is not close to end position of belt then
3: Update luggage position
4: else if Luggage is close to end position of belt then
5: Set luggage to be removed ▷ Luggage will be removed once it reached the end of the belt
6: end if
7: end for
8: for Luggage that needs to be removed do
9: Remove luggage from luggage on belt

10: Destroy luggage ▷ Luggage now in luggage system
11: end for

1.1.2. Development of Self-Service Process Activities
Next to the physical objects, the corresponding activities must be defined. The activities are part of the goal
module which ensures that the passengers perform all necessary tasks before boarding the aircraft. Two new
activities were added: the bag tag and drop-off activity.

Bag tag activity
The bag tag activity is performed at the bag tag kiosk. Both the bag tag activity before security and at the
gate are the same with the one difference that the activity before security bag tags checked luggage and the
activity at the gate bag tags carry on baggage. The bag tag activity has the following attributes to ensure
correct functionality:

• servingKiosk: The kiosk which will be used to bag tag the baggage.

• bagTagTimeDist: Statistical distribution from which the service rate will be sampled.

When the next activity for the passenger is a bag tag activity, first the nearest queue for a bag tag kiosk is found.
The passenger must choose which queue to go to as there are multiple bag tag locations. The passenger then
enters the queue and waits until a kiosk becomes available. At the kiosk the the pieces of baggage are bag
tagged in the update function. Pseudo code for this function can be found below:

Algorithm 2 Update function bag tag activity

1: if Distance from passenger to kiosk ≤ 0.3 then
2: for luggage in passenger.luggage do
3: if luggage type = checked AND not bag tagged then ▷ Only baggage that is not carry on
4: Waiting time ← value drawn from bagTagTimeDist ▷ Service rate
5: Luggage ← bag tagged = True
6: end if
7: end for
8: if Waiting time is over then
9: Free up kiosk for next passenger

10: End activity
11: end if
12: end if

1.1. Model Development 63

Another important process within the bag tag activity is the queue selection process. There are three possible
locations identified at RTHA for kiosks. Each of these locations will have their own queue which the passen-
ger needs to go through before the kiosk can be utilized. The passenger needs to consider the distance to
the queue and number of passengers in the queue in order to make a decision. At first, the passenger will
choose the closest queue with less than five passengers in it. If a queue has more five passengers in it, the
passenger will not consider the queue as an option. It could be possible however that all queues have five or
more passengers in them. In that case the passenger will select the queue with the least passengers in it.

An extra check has been added to ensure that the to be evaluated queue is not a queue for the drop-off kiosks.
Due to the close proximity of the kiosks and queues in terminal, a passenger could choose the queue at the
drop-off kiosk as the bag tag kiosk queue. This resulted in passengers entering and eventually blocking the
drop-off queue rendering the simulation unusable. Therefore this check is important as it ensures that this
error can not occur.

Pseudo code of the queue selection function can be found in Algorithm 3.

Drop-off activity
The drop-off activity is set up in a similar way as the bag tag activity. The passenger enters a queue and waits
until a kiosk is free to drop off the baggage. The attributes this activity has are also similar to the ones for the
bag tag activity and can be found below:

• servingKiosk: The kiosk which will be used to bag tag the baggage.

• dropOffTimeDist: Statistical distribution from which the service rate will be sampled.

The pseudo code for the update function for the drop off activity can be found below:

Algorithm 4 Update function drop-off activity

1: if Distance from passenger to kiosk ≤ 0.3 then
2: for luggage in passenger.luggage do
3: if luggage type = checked AND bag tagged AND not checked in then ▷ Only baggage that is not

carry on
4: Waiting time ← value drawn from dropOffTimeDist ▷ Service rate
5: Luggage ← checked in = true
6: Add luggage to luggage on the belt collection
7: end if
8: end for
9: if Waiting time is over then

10: Free up kiosk for next passenger
11: End activity
12: end if
13: end if

1.1.3. Integration with Existing Model
The next step is to integrate the self-service luggage check-in process into the existing model. To achieve this,
the activities must be added into the goal and planning module. Additionally, the gate operator activity must
also be updated. The functionality for deciding whether or not the passenger must check in their cabin lug-
gage must be added. The final step taken to integrate the self-service luggage check-in system is the updated
agent generator.

Goal and planning module
The goal and planning module are updated such that the newly developed activities can also completed by
passengers. When a passenger can use the self-service system, the bag tag and drop-off activity must be
added to the goal and planning module in that particular order. The order of the goal and planning module
is important as is this is also the order passengers will perform activities.

64 1. Extension of AATOM

Algorithm 3 Queue selection function

1: List of bag tag kiosks ← bag tag kiosks
2: List of queues ← all queues in terminal
3: List of drop-off kiosks ← drop-off kiosks
4:

5: Closest queuing area ← null
6: Number of passengers in closest queue ← 1e6
7: Distance to closest queue ← 1e6

▷ Check for queues which have less to five passengers in them
8: for Bag tag kiosk in list of bag tag kiosks do
9: for Queue in list of all queues in terminal do

10: Get distance kiosk to queue
11: Get distance passenger to queue
12: Get number of passengers in Queue
13: if Distance kiosk to queue < 3 AND Queue is not drop-off queue then
14: if Distance passenger to queue < distance to closest queue AND Number passengers in Queue <

5 then
15: Closest queuing area ← Queue
16: Number of passengers in closest queue ← Number of passengers in Queue
17: Distance to closest queue ← Distance passenger to Queue
18: end if
19: end if
20: end for
21: end for

▷ No queue with less than five passengers is found
22: if Closest queuing area == null then
23: for Bag tag kiosk in list of bag tag kiosks do
24: for Queue in list of all queues in terminal do
25: Get distance kiosk to queue
26: Get distance passenger to queue
27: Get number of passengers in Queue
28: if Distance kiosk to queue < 3 AND Queue is not drop-off queue then
29: if Distance passenger to queue < distance to closest queue AND Number passengers in

Queue < Number of passengers in closest queue then
30: Closest queuing area ← Queue
31: Number of passengers in closest queue ← Number of passengers in Queue
32: Distance to closest queue ← Distance passenger to Queue
33: end if
34: end if
35: end for
36: end for
37: end if

1.1. Model Development 65

Passengers can only utilize the self-service option when they are checked in online and have luggage with
them which requires check-in. The goal and planning modules are created per passenger when the passen-
ger is generated. During the generation of the agent a check is performed to determine which passenger can
utilize the self-service system. During this check the attributes of the passenger are checked and the correct
goals are assigned to the passenger.

The bag tag activity at the gate required another approach. During the generation of a passenger it is not
yet known if a passenger must check-in their carry-on luggage. Whether or not a passenger must check-in
its carry-on luggage is dependent on the number of passengers on the flight bringing carry-on luggage and
the capacity of the aircraft. Ideally, the bag tag activity at the gate is added to the goal and planning module
of a passenger during the simulation. To do so is very computationally expensive however. An alternative
method was found by giving every passenger the bag tag activity at the gate. The gate operator, which will
be discussed in the next section, then decides whether or not the goal must fulfilled. The bag tag activity is
located in the goal module after the gate activity and before the boarding activity.

Gate operator activity
The gate operator is responsible for performing a final check of the documents before the passenger can
board the aircraft. In some cases however, the passenger must check-in their carry-on luggage due to the
limited amount space available on the aircraft. The gate operator will count the number of pieces of carry-on
luggage that are brought on board and will start checking these in when the maximum capacity is reached.
The attributes of this activity are:

• agentToCheck: The passenger the operator will check.

• agentHasLargeCarryOn: Tracker whether a passenger has large carry on luggage.

• alreadyInstructed: List of agents which are already instructed by the operator.

The pseudo code for this process can be found in Algorithm 5.

66 1. Extension of AATOM

Algorithm 5 Update function gate operator activity

1: if Flight leaves < 10 minutes then
2: Stop the boarding process
3: end if
4:

5: if agentToCheck == null then
6: agentToCheck ← random agent
7: agentHasLargeCarryOn = false ▷ Tracker to determine size of carry on luggage
8: end if
9:

10: if agentToCheck != null then
11: if agentToCheck not in alreadyInstructed then ▷ Agent not instructed
12: if agentToCheck not sitting AND agentToCheck is close to operator then
13: if agentToCheck.getLuggage.getSizeCabinLuggage == true then
14: this.numLargeCarryOnBoarded += 1 ▷ Update large carry on luggage counter
15: agentHasLargeCarryOn ← true
16: end if
17: end if
18:

19: if waiting time of agenToCheck is over AND agentToCheck already instructed then ▷ Manual bag
tagging complete

20: agentToCheck ← boarded = true
21: agentToCheck ← null
22: end if
23:

24: if numLargeCarryOnBoarder > capacity AND agentHasLargeCarryOn AND agentToCheck not al-
ready instructed then

25: if kiosk is initialized then
26: if kiosk is open then ▷ Bag tagging with kiosk
27: Send agent to kiosk for bag tagging
28: Add agentToCheck to alreadyInstructed
29: agentToCheck = null
30:

31: else ▷ Manual bag tagging
32: Bag tag manually by communicating to wait
33: Add agentToCheck to alreadyInstructed
34:

35: end if
36:

37: else
38: Bag tag manually by communicating to wait
39: Add agentToCheck to alreadyInstructed
40: end if
41:

42: else
43: agentToCheck ← boarded = true
44: Add agentToCheck to alreadyInstructed
45: agentToCheck ← null
46: end if
47: end if
48:

49: else ▷ No luggage to be checked in
50: boarding = true ▷ Agent has boarded the aircraft
51: agentToCheck = null
52: end if

1.2. Implementation of Self-Service Luggage Check-In System in the RTHA Layout 67

Agent Generator
The previous version of the agent generator was only able to generate passengers with checked luggage if the
passengers were not checked in online. With the self-service luggage check-in system implemented however,
passengers can check in luggage when the passenger is checked in online.

With the agent generator updated, the following combinations of passenger check-in and luggage status are
possible:

• Passenger checked in online with luggage that needs to be check in.

• Passenger checked in online without luggage that needs to be check in.

• Passenger not checked in online with luggage that needs to be check in.

• Passenger not checked in online without luggage that needs to be check in.

1.2. Implementation of Self-Service Luggage Check-In System in the RTHA
Layout

To perform experiments in the RTHA layout, this layout must first be prepared for these the kiosks. In this
section the reconfiguration of the RTHA layout and the new agent generator.

1.2.1. Reconfiguring RTHA Layout to Accommodate Kiosks
Reconfiguring the layout of RTHA in the simulator consisted of changing the queuing areas and finding a
suitable location for the kiosks. In Figure 1.1 the initial layout can be found.

Figure 1.1: RTHA layout without kiosks

After reconfiguration the queue areas and placing the kiosks in the RTHA layout the simulator is as depicted
in Figure 1.2. Important to note is that the simulator is also extended with an outside area to be able to place
kiosks there as well.

68 1. Extension of AATOM

Figure 1.2: RTHA layout with kiosks

The gate kiosks also have a small queue in case that multiple passenger must utilize the kiosk right after each
other.

1.3. Verification
To verify AATOM with the newly added facilities, multiple tests have been carried out. The verification was
performed on two levels: facility level and terminal level. The verification process utilized two testing meth-
ods: testing via the GUI and manual testing. The GUI was used to verify that the correct passenger flows
emerged for example. Manual testing allowed verifying that the variables were updated to the correct values.
In this section first the verification of each facility is discussed. After that, the verification of the complete
terminal will be discussed. This section will be concluded with a section on the changes which resulted from
the verification.

Verification of bag tag process
The type of test will be denoted after each aspect that is tested. For the verification process of the bag tag
kiosks and the corresponding activity the following aspects where tested:

• The agent correctly identifies and finds the closest free kiosk (GUI)

• The agent initiates the bag tagging process and after the waiting time is over, the bag tag status of the
luggage is correctly updated (Manual testing)

• The agent leaves the kiosk which becomes free again (Manual testing)

• The agent queues correctly (GUI)

• The agent does not get stuck (GUI)

Verification of drop-off process
The verification of the drop-off kiosks and the corresponding activity is done by testing the aspects listed
below:

• The agent correctly identifies and finds the closest free kiosk (GUI)

1.3. Verification 69

• The agent initiates the luggage drop-off and after the waiting time is over, the checked in status of the
luggage is correctly updated (Manual testing)

• The agent leaves the kiosk which becomes free again (Manual testing)

• The agent queues correctly (GUI)

• The agent does not get stuck (GUI)

Verification of gate kiosks
In order to verify the bag tag kiosks at the gate and the corresponding activity the following aspects where
tested:

• The agent correctly identifies and finds the closest free kiosk (GUI)

• The agent initiates the bag tagging process and after the waiting time is over, the bag tag status of the
luggage is correctly updated (manual test)

• The agent leaves the kiosk which becomes free again (manual test)

• The agent correctly queues (GUI)

• The agent does not get stuck (GUI)

• Manual bag tagging works correctly (GUI)

Additionally, the added decision making process of the gate operator was tested. The aspects which were
tested can be found below:

• The gate operator correctly tracks the number of large pieces of cabin luggage (manual test)

• The gate operator sends passengers to kiosk (if present) when capacity of aircraft is reached (GUI and
manual test)

• The gate operator correctly bag tags and checks in luggage when no kiosk is present (manual test)

Verification of terminal
Now that the facilities are thoroughly tested separately, the whole terminal can be tested. Below the aspects
can be found which were tested:

• No agents get stuck (GUI)

• The desired passenger flow emerge. The flows are: entrance - check-in - security, entrance - bag tag
kiosk - drop-off kiosk - security, entrance - security (GUI)

• The agents choose the correct bag tag queue (GUI and manual test)

Changes due to bugs found during verification
Following from the verification process, some bugs were found which required fixing. The first main bug
which arose was the bug which caused agents to queue incorrectly. Agents were passing to queue instead of
going through as this was the shortest path. By setting a temporary or intermediate goal, the agents are forced
to go through the queue. Another bug that was found during verification was agents running into each other
when trying to leave the kiosk. By adding a wall this could be fixed since it physical objects affect the path
planning of agents. In Figure 1.3 the old and new situation can be found.

70 1. Extension of AATOM

(a) Without extra wall (b) With extra wall

Figure 1.3: Drop off kiosk without and with extra wall

The final bug that was found occurred at the gate. The gate operator calls each agent one by one in order to
let the agent board. To determine which agent to call, the gate operator activity has a function which chooses
a random agent in the gate area. This function however did not work correctly since it tried to call an agent
which was going to the kiosk and thus already had visited the gate operator. By building in an extra check
which prevents trying to call an agent twice, this bug was fixed.

2
Simulation Optimization with

Simheuristics

In this appendix, the Simheuristic simulation optimization procedure is elaborated upon. First the algorithm
trade-off is presented where the metaheuristic algorithm is chosen. Next, Simheuristics is discussed more in
depth. This includes the integration of the Simheuristic framework with AATOM and the construction of the
deterministic version. Last, the optimization software is discussed.

2.1. Algorithm Trade-Off
To determine the algorithm that will be used for optimizing the configuration of the kiosks, a trade-off is per-
formed. This trade-off is similar to the trade-off performed in chapter 7 and will be applied to the algorithms
that fall under metaheuristics. The criteria that will be used during the trade-off are the same as used in
chapter 7: adaptivity, scalability, efficiency and simplicity. Efficiency and simplicity refer to how efficient the
algorithm can navigate the parameter space and how easy it is to implement the algorithm. The adaptivity
refers to whether the algorithm can be used to be more exploring or exploiting the solution space and scala-
bility if the algorithm can easily be applied to problems with different solutions space sizes.

In Table 2.1, the results of the trade-off can be found. As was also identified in the trade-off done by van der
Horst [43], the single solution based methods are the most simple and scalable. The genetic algorithm on the
other hand excels in efficiency but is much more challenging to implement successfully. Finally, tabu search
is more efficient and more adaptable than the other single solution based methods due to the tabu list. This
tabu list prevents previously visited solutions to be visited again making it more efficient whilst also providing
control of the exploration and exploitation characteristics.

Table 2.1: Trade-off table for optimization techniques

Technique Adaptability Scalability Efficiency Simplicity Total
Simulated Annealing 2 3 1 3 9
Tabu Search 3 3 2 3 10
Iterated Local Search 2 3 1 3 9
Variable Neighborhood Search 1 3 1 3 8
GRASP 1 3 1 3 8
Genetic Algorithms 2 2 3 1 8

From the trade-off above it can be concluded that tabu search is the best option for this research. Due to the
computational resources required for one simulation a Simheuristic framework will be used. The implemen-
tation of this framework will be discussed in the next section.

71

72 2. Simulation Optimization with Simheuristics

2.2. Simheuristics
The agent-based model used for simulating the passengers in the airport terminal has a stochastic nature.
Therefore multiple simulation runs need to be performed to determine the average fitness of a certain so-
lution. This requires substantial computational resources. Therefore a reduction in number of simulation
runs while still finding a good enough solution is desired. A simheuristic framework could aid in reducing the
necessary number of simulation runs while optimizing the solution. The Simheuristic framework has been
discussed before in chapter 5. In this section the implementation of this framework for the kiosk location op-
timization problem will be discussed. First the integration of the tabu search algorithm with the framework
will be discussed. The process of constructing the deterministic version of AATOM is discussed will also be
discussed in this section.

2.2.1. Integration of tabu search with simheuristic framework
The tabu search algorithm will be used to identify promising solutions when evaluated with the deterministic
version of AATOM. This deterministic version of AATOM will be explained in the next section.

Figure 2.1: Simheuristics with tabu search

As can be seen in Figure 2.1, the tabu search algorithm is responsible for identifying promising solutions using
the deterministic version. A solution is promising when it deemed to be a local optimum.

2.2. Simheuristics 73

2.2.2. Constructing the deterministic version of AATOM
The Simheuristic framework requires the development of a deterministic version of AATOM. As suggested by
Juan et al. [16], when no analytical model is available, a deterministic version of the model can be constructed
by replacing the random variables with their expected values. AATOM contains many random variables to
model stochastic processes. Additionally, the generation of agents is of stochastic nature and needs to be
made deterministic. In this section, the steps taken to construct the deterministic version of AATOM will be
discussed as well as the verification.

Replacing the random variables
Before the random variables can be replaced, first the random variables must be identified. This is done
by going through all classes of the project and identifying which values are sampled from a distribution. In
Table 2.2, an overview of the identified random variables can be found.

Table 2.2: Random variables present in AATOM and their expected value

Class Variable Distribution Expected Value
Passenger Checkpointdroptime Normal(µ,σ) µ

Passenger Checkpointcollecttime Normal(µ,σ) µ

BasicPassengerDecisionMaking t-ps_dist Normal(µ,σ) µ

BasicPassengerDecisionMaking t-r_dist Gamma(a,b) a
b

BasicPassengerDecisionMaking t-s_dist Gamma(a,b) a
b

BasicPassengerDecisionMaking t-us_dist Normal(µ,σ) µ

BasicOperatorShopActivity waitingtime Normal(µ,σ) µ

BasicOperatorGateTDCActivity waitingtime Normal(µ,σ) µ

BasicOperatorGateTDCActivity manualBagTagtime Normal(µ,σ) µ

BasicOperatorCheckInActivity waitingtime Normal(µ,σ) µ

BasicOperatorBorderControlActivity waitingtime Normal(µ,σ) µ

BasicLuggageCheckActivity timeDistribution Normal(µ,σ) µ

BasicETDCheckActivity waitingDistribution Normal(µ,σ) µ

BasicETDCheckActivity etdDistribution Normal(µ,σ) µ

BasicToiletActivity maleTime LogNormal(µ,σ) eµ+
1
2 σ

BasicToiletActivity femaleTime LogNormal(µ,σ) eµ+
1
2 σ

BasicShopBrowseActivity shopTimeDist Normal(µ,σ) µ

BasicRegionalCheckpointActivity dropDist Normal(µ,σ) µ

BasicRegionalCheckpointActivity collectDist Normal(µ,σ) µ

BagTagPrinter bagTagTimeDist Normal(µ,σ) µ

BagTagPrinterGate bagTagGateTimeDist Normal(µ,σ) µ

DropOffKiosk dropOffTimeDist Normal(µ,σ) µ

Constructing a deterministic agent generator
The agent generator does not allow for simply replacing all random variables with their expected value. The
agent generation is responsible for the calculation of the arrival times and the determination of the passenger
characteristics. The arrival times are calculated according to a Poisson distribution and the passenger types
are generated uniformly according to a distribution defined per flight. Additionally, luggage types and loca-
tion where passengers are generated are also determined randomly according to a uniform distribution. To
steps taken to make this process deterministic are discussed below.

In the stochastic version of AATOM the passenger types and arrival times are calculated before the simu-
lation is started. The passenger types refer to whether the passenger is traveling for leisure, business, etc.
Based on the passenger type, the passenger arrives in one of three time windows between the earliest and
latest time a passenger can arrive. These time windows are all the same size. Currently, for each passenger
type, 20% arrives in the first window, 60% arrives in the second window and the remaining 20% arrives in the
third window. Knowing this distribution and the size of the flight for which passengers need to be generated,
the passengers per arrival window can easily be calculated. Since the inter arrival times are exponentially
distributed as the generation of the passengers is a Poisson process, the inter arrival times are expected to

74 2. Simulation Optimization with Simheuristics

have a value of the time window in seconds divided by the number of passengers to be generated in this time
window. Using this method to calculate the inter arrival times, the times at which passengers are generated
is made deterministic.

In order to determine the luggage types and checked in status per passenger, the stochastic version of AATOM
must be investigated. In order to determine whether or not a passenger is checked in online, the generator
first checks if passenger’s flight does not leave within an hour. If the passenger’s flight does leave within an
hour, the passenger must be checked in online otherwise it will not make the flight. If the passenger arrives
earlier, a random variable is generated using a uniform distribution between 0 and 1. If this value is lower
than the threshold of 0.6, the passenger is not checked in online. In other words, of the passengers that arrive
at the airport with more than an hour until the flight leaves, 60% is not checked in online.

In a similar fashion, the luggage of the passenger is generated using a uniformly distributed random variable.
A threshold value is again used to control the ratio of passenger bringing checked luggage for example.

By determining the luggage types and checked in status per bucket and then generating them with the ap-
propriate inter arrival times, this process can be made deterministic. The passenger type will also be taken
into account and will be generated deterministically while adhering to the passenger distributions. Arrays are
constructed containing the following information per passenger: passenger type, luggage type and checked
in status using the predetermined distributions. These arrays are then shuffled deterministically (using a cer-
tain fixed seed) and can be used for passenger generation. This is done per passenger bucket to ensure that
every passenger status combination is represented appropriately.

2.2.3. Verification of the deterministic version of AATOM
In addition to the verification steps explained in the paper, the moving average of the separate facilities and
the CoV of the facilities was when the whole terminal was simulated were checked. Additionally, the verifica-
tion steps of the deterministic agent generator is discussed here.

Verification of deterministic facilities
The moving average of resulting from the deterministic version is expected to be a straight line as (almost)
the same output should be given each time. The output of the stochastic version is expected fluctuate more.
In Figure 2.2, Figure 2.3 and Figure 2.4 this can be seen.

0 50 100 150 200 250
Simulation runs

900

950

1000

1050

1100

Ti
m

e
[s

]

Check-in area 1 average queue time

Deterministic version
Stochastic version

(a) Moving average of CI1 queue times

0 50 100 150 200 250
Simulation runs

870

880

890

900

910

920

Ti
m

e
[s

]

Check-in area 2 average queue time

Deterministic version
Stochastic version

(b) Moving average of CI2 queue times

Figure 2.2: Moving average graphs

2.3. Optimization Software 75

0 50 100 150 200 250
Simulation runs

640

660

680

700

720

740

760

Ti
m

e
[s

]
Check-in area 3 average queue time

Deterministic version
Stochastic version

(a) Moving average of CI3 queue times

0 50 100 150 200 250
Simulation runs

22.2

22.4

22.6

22.8

23.0

23.2

23.4

23.6

Ti
m

e
[s

]

Bag tag area average queue time

Deterministic version
Stochastic version

(b) Moving average of BT area queue times

Figure 2.3: Moving average graphs

0 50 100 150 200 250
Simulation runs

62.6

62.8

63.0

63.2

63.4

63.6

63.8

64.0

Ti
m

e
[s

]

Drop-off area average queue time
Deterministic version
Stochastic version

(a) Moving average of DO area area queue times

0 50 100 150 200 250
Simulation runs

309.70

309.75

309.80

309.85

309.90
Ti

m
e

[s
]

Security area average queue time
Deterministic version
Stochastic version

(b) Moving average of Security area queue times

Figure 2.4: Moving average graphs

The CoV of the separate facilities when the whole terminal is simulated resulting fro the deterministic version
can be found in Table 2.3. The CoV of the facilities resulting from the whole terminal simulation is similar to
the CoV of the facilities resulting from the separate facility simulations.

Table 2.3: CoV of the average queue times for the whole terminal for the deterministic version after 64 runs

CI1 CI2 CI3 BT1 BT2 BT3 DO Security
0.0032 0.0012 0.0009 0.00056 0.0033 0.011 0.0021 0.011

2.3. Optimization Software
Due to the missing of real-world data and to investigate the effect of the input variables on the optimal con-
figuration, a sensitivity analysis is performed. To do this efficiently and to utilize the available resources on
the server, it is desired that the optimization procedures are run in parallel. This reduces the number of simu-
lation runs on the server from 600 to 50. In this section the program developed for this tabu search in parallel
will be discussed.

The optimization program is developed using Python. A method must therefore be found and developed to
communicate to AATOM using Python. To achieve this, AATOM is stored as a Jar file which can be run from
Python using the subprocess package. Inputs can be passed onto AATOM using a text file which is constructed
before a simulation run is started. Multiple simulations can be run parallel using the built in experimenter
in AATOM. This experimenter checks the number of sets of inputs which are given in the input text file and
assigns one simulation with a set of inputs to each computational core. If two sets of inputs are given for

76 2. Simulation Optimization with Simheuristics

example, two simulations will be run using two cores in total. Once a simulation is finished, AATOM outputs
the results in a text file which can be read using Python.

2.3.1. Tabu search class
The tabu search class is developed to perform a single tabu search optimization procedure for a certain
setting. This class has attributes to track the best candidates, elite solutions and evaluated solutions. An
overview of the most important attributes can be found below:

• Best candidate: Tracker of the best candidate

• Setting: Demand level and service rates of the kiosks

• Tabu list: The tabu list

• Fitness log: Fitness for each solution evaluated with the deterministic version

• Elite solutions: Found elite solutions

• Evaluated solutions: All evaluated solutions

• Neighborhoods: List of all evaluated neighborhoods

• Best candidates log: List of the best candidates for each iteration

• Elite fitness log: Fitness for each solution evaluated with the stochastic version

By defining the attributes above per tabu search object, a structured method can be used to used link the
correct results to a setting. Additionally, by looping through the list of tabu search objects, all steps of a tabu
search iteration can be performed per setting. This will be elaborated upon in subsection 2.3.2.

The tabu search class has functions which can be used in the main tabu search program. These functions are
used to perform the steps of a tabu search iteration. The functions are discussed in more detail below.

get neighborhood solutions
This function is used to get the neighborhood of a certain solution. The neighborhood is determined and
added to the list of solutions which need to be evaluated.

add parameters best candidate
In the case that a local minimum is found and the solution needs to be perturbed or the initial solution needs
to be evaluated, this function is used. This function writes the inputs of the current best candidate solution
to a text file which can used as input by AATOM.

add parameters neighborhood
This function writes the inputs for all solutions in the to be evaluated neighborhood to the input text file. For
each neighborhood a maximum of eight sets of inputs is written.

get fitness
This function is used to update the fitness log after an iteration. It checks if a new solutions have been eval-
uated for which no fitness has been calculated yet. If such a solution is found, this function will calculate
the fitness and append it to the fitness log. The fitness log consists of dictionaries which are used as a link
between solution and fitness.

get new best candidate
At the end of an iteration, this function is used to determine if a solution in the neighborhood is better than
the current best candidate. If so, the best candidate is updated. If this is not the case, a local minimum is
found and a new random best candidate is chosen.

add parameters elite solutions
Once the tabu search algorithm has identified the elite solutions, four of these elite solutions are then eval-
uated using the stochastic version of AATOM. This function is used to create the text file which contains the
inputs of the to be evaluated elite solution.

2.3. Optimization Software 77

get fitness elite solutions
This is the final function which is part of the tabu search class. This function is used to update the elite fitness
log after an evaluation run. It checks which solution has been evaluated and updates the elite fitness log. The
log consists of dictionaries which form the link between the input solution and corresponding list of fitness
values. A fitness value list is used as an elite solution is evaluated 128 times.

2.3.2. Main Simheuristic tabu search procedure
As the tabu search class is now explained, the main code for the Simeheuristic tabu search procedure can be
discussed. The purpose of this code is to initialize a tabu search object for each setting, run the tabu search
optimization procedure with the deterministic version of AATOM and evaluate the resulting elite solutions
with the stochastic version of AATOM. Therefore the Simheuristic tabu search procedure can be divided into
three phases: the initialization phase, the iterative optimization phase and elite solution evaluation phase.

During the initialization phase, for each of the to be optimized settings, an optimization procedure in the
form of a tabu search object is created. Then, an initial solution is randomly generated and set as the best
solution for each optimization procedure. To conclude the the initialization phase, the initial solutions of all
optimization procedures are evaluated simultaneously.

Next, the iterative optimization phase starts. During each iteration of this phase, the following steps are taken.
First, for each optimization procedure, the neighborhood of the best solution is determined and the inputs
for the solutions in neighborhood are added to the input file. Once the inputs of the neighborhood solu-
tions for all optimization procedures are added to the input text file, the deterministic version of AATOM can
evaluate all neighborhoods in parallel. After the simulations are finished, the fitness is determined for all
evaluated neighborhood solutions. Per optimization procedure, the best neighborhood solution is compared
to the best solution to determine whether a better solution is found. If for one of the optimization procedures
a local minimum is found, the best solution is perturbed and evaluated for that optimization procedure.

The final phase starts once the iterative optimization phase is finished. From the iterative optimization phase
a set of elite solutions follow. The four best elite solutions will be evaluated with the stochastic version of
AATOM in order to accurately determine which solution is the best. Once the four elite solutions are evalu-
ated per optimization procedure, the Simheuristic tabu search procedure is finished resulting in an optimal
solution per optimization procedure.

The pseudocode of the parallel Simheuristic simulation optimization can be found below in Algorithm 6.

78 2. Simulation Optimization with Simheuristics

Algorithm 6 Parallel Simheuristic tabu search

1: Settings ← the 12 predefined settings
2: for setting in settings do
3: ts ← tabu search object initialized with setting
4: optimization procedures ← ts
5: end for
6: ▷ Evaluation of initial solutions
7: for setting in settings do
8: Optimization procedure ← tabu search object initialized with setting
9: end for

10:

11: for Optimization procedure in optimization procedures do
12: Add parameters of best candidate to the input text file
13: end for
14:

15: Run the deterministic AATOM simulator using the input text file
16:

17: for Optimization procedure in optimization procedures do
18: Get the fitness of each evaluated initial solution
19: end for
20: ▷ Start of tabu search
21: while not max number of iterations reached do
22: for Optimization procedure in optimization procedures do
23: Get the neighborhood of current best solution
24: Add parameters of the neighborhood to the input text file
25: end for
26:

27: Run the deterministic AATOM simulator using the input text file
28:

29: for Optimization procedure in optimization procedures do
30: Get the fitness of each evaluated solution
31: Get the next best candidate
32: end for
33: ▷ In case of a perturbation of the best candidate
34: if No new best candidate is found for one of the optimization procedures then
35: for Each optimization procedure where no new best candidate is found do
36: Add parameters of perturbed solution
37: end for
38:

39: Run the deterministic AATOM simulator using the input text file
40:

41: for Optimization procedure in optimization procedures do
42: Get the fitness of each evaluated initial solution
43: end for
44: end if
45: end while
46: ▷ Evaluation of elite solutions
47: for Optimization procedure in optimization procedures do
48: Add parameters of two best elite solutions 128 times to input text file (total 256)
49:

50: Run the stochastic AATOM simulator using the input text file
51:

52: Add parameters of third and fourth best elite solutions 128 times to input text file (total 256)
53:

54: Run the stochastic AATOM simulator using the input text file
55:

56: Get the fitness of each evaluated elite solution
57: end for

3
Additional Results

In this appendix additional results and the results from the statistical tests for both the configuration and gate
experiment can be found.

3.1. Results
Complimentary results to the results in the paper can be found in this section. The optimal configuration
is first discussed in more detail. After that, additional results on the impact of the optimal configuration on
airport terminal performance will be shown.

3.1.1. Configuration optimization experiment
From the results in Table 3.1, it becomes clear that the outdoor kiosks are favored as discussed in the paper.
A check has been performed to verify that all kiosk locations are used at some point in the simulation. This
means that there is always a moment during the simulation that the queues of location two and three reach
the threshold resulting in passengers deciding to go to location one. The flight schedule however is most
likely not busy enough to result in a sustained flow of passengers to location one. Therefore the number of
bag tag kiosks at location one is a result of the constraint for the number of kiosks at location one.

Table 3.1: Optimal number of self-service kiosks per setting

Setting
Optimal number of bag tag kiosks

Optimal number of drop-off kiosks
Loc. 1 Loc. 2 Loc. 3 Total

1 2 3 4 9 3
2 2 0 5 7 3
3 2 4 3 9 3
4 2 0 4 6 3
5 2 2 3 7 3
6 2 0 5 7 4
7 2 3 5 10 3
8 2 0 4 6 3
9 2 2 5 9 3

10 2 2 2 6 3
11 2 2 2 6 3
12 2 0 5 7 4

In Table 3.2, the waiting times for each passenger type and kiosk location can be found for both the optimized
and base configuration. As can be seen, the waiting times for passenger types one and two increase for the
base configuration as the demand level increases. The demand level is defined as the percentage of passen-
gers bringing checked luggage. This increase in waiting time is as expected. For the optimized configuration,
this increase in waiting is less apparent which is logical as passengers are spread out across multiple facilities.

79

80 3. Additional Results

Table 3.2: Average waiting times per passenger type per configuration for all settings

Setting
Base configuration average

waiting times per passenger type [s]
Optimized configuration average

waiting times per passenger type [s]
Type 1 Type 2 Type 3 Type 1 Type 2 Type 3

DL:0.4, BT sr:20, DO sr:30 951 695 951 788 691 863
DL:0.6, BT sr:20, DO sr:30 977 696 977 771 684 855
DL:0.8, BT sr:20, DO sr:30 1019 698 1019 791 683 851
DL:0.4, BT sr:20, DO sr:50 950 689 950 771 680 850
DL:0.6, BT sr:20, DO sr:50 964 682 964 816 658 830
DL:0.8, BT sr:20, DO sr:50 1027 698 1027 793 653 828
DL:0.4, BT sr:40, DO sr:30 940 682 940 768 672 840
DL:0.6, BT sr:40, DO sr:30 1006 688 1006 756 667 837
DL:0.8, BT sr:40, DO sr:30 1027 698 1027 784 674 847
DL:0.4, BT sr:40, DO sr:50 942 687 942 784 681 849
DL:0.6, BT sr:40, DO sr:50 971 687 971 811 656 823
DL:0.8, BT sr:40, DO sr:50 1022 701 1022 800 665 833

In the boxplots below, the waiting times resulting from 256 runs for each passenger type, configuration and
setting can be found.

1, optimized config 1, base config 2, optimized config 2, base config 3, optimized config 3, base config
200

400

600

800

1000

1200

To
ta

l w
ai

tin
g

tim
e

[s
]

Bag tag and drop off kiosks high service rate, 40% of passengers bringing checked luggage

Figure 3.1: Waiting times per passenger type for optimized and base config and setting: (dl:0.4, bt sr: 20 s, do sr 30)

3.1. Results 81

1, optimized config 1, base config 2, optimized config 2, base config 3, optimized config 3, base config
200

400

600

800

1000

1200
To

ta
l w

ai
tin

g
tim

e
[s

]

Bag tag and drop off kiosks high service rate, 60% of passengers bringing checked luggage

Figure 3.2: Waiting times per passenger type for optimized and base config and setting: (dl:0.6, bt sr: 20 s, do sr 30)

1, optimized config 1, base config 2, optimized config 2, base config 3, optimized config 3, base config
200

400

600

800

1000

1200

To
ta

l w
ai

tin
g

tim
e

[s
]

Bag tag and drop off kiosks high service rate, 80% of passengers bringing checked luggage

Figure 3.3: Waiting times per passenger type for optimized and base config and setting: (dl:0.8, bt sr: 20 s, do sr 30)

82 3. Additional Results

1, optimized config 1, base config 2, optimized config 2, base config 3, optimized config 3, base config
200

400

600

800

1000

1200

To
ta

l w
ai

tin
g

tim
e

[s
]

Bag tag kiosk high service rate and drop off kiosk low service rate, 40% of passengers bringing checked luggage

Figure 3.4: Waiting times per passenger type for optimized and base config and setting: (dl:0.4, bt sr: 20 s, do sr 50)

1, optimized config 1, base config 2, optimized config 2, base config 3, optimized config 3, base config
200

400

600

800

1000

1200

To
ta

l w
ai

tin
g

tim
e

[s
]

Bag tag kiosk high service rate and drop off kiosk low service rate, 60% of passengers bringing checked luggage

Figure 3.5: Waiting times per passenger type for optimized and base config and setting: (dl:0.6, bt sr: 20 s, do sr 50)

3.1. Results 83

1, optimized config 1, base config 2, optimized config 2, base config 3, optimized config 3, base config
200

400

600

800

1000

1200
To

ta
l w

ai
tin

g
tim

e
[s

]

Bag tag kiosk high service rate and drop off kiosk low service rate, 80% of passengers bringing checked luggage

Figure 3.6: Waiting times per passenger type for optimized and base config and setting: (dl:0.8, bt sr: 20 s, do sr 50)

1, optimized config 1, base config 2, optimized config 2, base config 3, optimized config 3, base config
200

400

600

800

1000

1200

To
ta

l w
ai

tin
g

tim
e

[s
]

Bag tag kiosk low service rate and drop off kiosk high service rate, 40% of passengers bringing checked luggage

Figure 3.7: Waiting times per passenger type for optimized and base config and setting: (dl:0.4, bt sr: 40 s, do sr 30)

84 3. Additional Results

1, optimized config 1, base config 2, optimized config 2, base config 3, optimized config 3, base config
200

400

600

800

1000

1200

To
ta

l w
ai

tin
g

tim
e

[s
]

Bag tag kiosk low service rate and drop off kiosk high service rate, 60% of passengers bringing checked luggage

Figure 3.8: Waiting times per passenger type for optimized and base config and setting: (dl:0.6, bt sr: 40 s, do sr 30)

1, optimized config 1, base config 2, optimized config 2, base config 3, optimized config 3, base config
200

400

600

800

1000

1200

To
ta

l w
ai

tin
g

tim
e

[s
]

Bag tag kiosk low service rate and drop off kiosk high service rate, 80% of passengers bringing checked luggage

Figure 3.9: Waiting times per passenger type for optimized and base config and setting: (dl:0.8, bt sr: 40 s, do sr 30)

3.1. Results 85

1, optimized config 1, base config 2, optimized config 2, base config 3, optimized config 3, base config
200

400

600

800

1000

1200
To

ta
l w

ai
tin

g
tim

e
[s

]

Bag tag and drop off kiosks low service rate, 40% of passengers bringing checked luggage

Figure 3.10: Waiting times per passenger type for optimized and base config and setting: (dl:0.4, bt sr: 40 s, do sr 50)

1, optimized config 1, base config 2, optimized config 2, base config 3, optimized config 3, base config
200

400

600

800

1000

1200

To
ta

l w
ai

tin
g

tim
e

[s
]

Bag tag and drop off kiosks low service rate, 60% of passengers bringing checked luggage

Figure 3.11: Waiting times per passenger type for optimized and base config and setting: (dl:0.6, bt sr: 40 s, do sr 50)

86 3. Additional Results

1, optimized config 1, base config 2, optimized config 2, base config 3, optimized config 3, base config
200

400

600

800

1000

1200

To
ta

l w
ai

tin
g

tim
e

[s
]

Bag tag and drop off kiosks low service rate, 80% of passengers bringing checked luggage

Figure 3.12: Waiting times per passenger type for optimized and base config and setting: (dl:0.8, bt sr: 40 s, do sr 50)

3.1.2. Simheuristic optimization performance
In the tables below, the ranking resulting from the stochastic and deterministic version can be found for each
evaluated setting. As discussed in the paper, when the fitness values are close together the ranking resulting
from the deterministic version is not the same as the ranking resulting from the stochastic version. For larger
differences in fitness value, the ranking is the same indicating that the deterministic version can be used for
roughly estimating the fitness of a solution.

Table 3.3: Ranking comparison between deterministic and stochastic version for setting: (dl:0.4, bt sr: 20 s, do sr: 30 s)

Input Rank from Deterministic Version Rank from Stochastic Version
[2,0,5,3] 1 (fitness 0.1005) 4 (fitness 0.1388)
[2,3,4,3] 2 (fitness 0.1016) 1 (fitness 0.1389)
[2,5,2,3] 3 (fitness 0.1017) 3 (fitness 0.1399)
[2,2,3,3] 4 (fitness 0.1017) 2 (fitness 0.1405)

Table 3.4: Ranking comparison between deterministic and stochastic version for setting: (dl:0.6, bt sr: 20 s, do sr 30)

Input Rank from Deterministic Version Rank from Stochastic Version
[2,0,4,3] 1 (fitness 0.1016) 3 (fitness 0.1388)
[2,2,3,3] 2 (fitness 0.1016) 4 (fitness 0.1388)
[2,3,5,3] 3 (fitness 0.1018) 2 (fitness 0.1397)
[2,0,5,3] 4 (fitness 0.1018) 1 (fitness 0.1374)

Table 3.5: Ranking comparison between deterministic and stochastic version for setting: (dl:0.8, bt sr: 20 s, do sr 30)

Input Rank from Deterministic Version Rank from Stochastic Version
[2,2,4,3] 1 (fitness 0.1021) 3 (fitness 0.1392)
[2,4,3,3] 2 (fitness 0.1022) 1 (fitness 0.1391)
[2,0,4,3] 3 (fitness 0.1022) 2 (fitness 0.1391)
[2,3,5,3] 4 (fitness 0.1028) 4 (fitness 0.1403)

3.1. Results 87

Table 3.6: Ranking comparison between deterministic and stochastic version for setting: (dl:0.4, bt sr: 20 s, do sr 50)

Input Rank from Deterministic Version Rank from Stochastic Version
[2,0,4,3] 1 (fitness 0.1016) 1 (fitness 0.1384)
[2,4,2,3] 2 (fitness 0.1022) 3 (fitness 0.1392)
[2,3,3,3] 3 (fitness 0.1023) 4 (fitness 0.1397)
[2,5,0,3] 4 (fitness 0.1041) 2 (fitness 0.1389)

Table 3.7: Ranking comparison between deterministic and stochastic version for setting: (dl:0.6, bt sr: 20 s, do sr 50)

Input Rank from Deterministic Version Rank from Stochastic Version
[2,3,5,3] 1 (fitness 0.1075) 2 (fitness 0.1446)
[2,2,3,3] 2 (fitness 0.1077) 1 (fitness 0.1436)
[2,1,0,3] 3 (fitness 0.1092) 3 (fitness 0.1455)
[3,1,3,3] 4 (fitness 0.1377) 4 (fitness 0.1750)

Table 3.8: Ranking comparison between deterministic and stochastic version for setting: (dl:0.8, bt sr: 20 s, do sr 50)

Input Rank from Deterministic Version Rank from Stochastic Version
[2,0,4,4] 1 (fitness 0.1613) 4 (fitness 0.1991)
[2,0,5,4] 2 (fitness 0.1618) 1 (fitness 0.1967)
[2,2,4,4] 3 (fitness 0.1619) 2 (fitness 0.1979)
[2,1,3,4] 4 (fitness 0.1619) 3 (fitness 0.1981)

Table 3.9: Ranking comparison between deterministic and stochastic version for setting: (dl:0.4, bt sr: 40 s, do sr 30)

Input Rank from Deterministic Version Rank from Stochastic Version
[2,2,4,3] 1 (fitness 0.1015) 2 (fitness 0.1384)
[2,3,5,3] 2 (fitness 0.1016) 1 (fitness 0.1384)
[2,4,3,3] 3 (fitness 0.1018) 4 (fitness 0.1395)
[2,5,4,3] 4 (fitness 0.1019) 3 (fitness 0.1385)

Table 3.10: Ranking comparison between deterministic and stochastic version for setting: (dl:0.6, bt sr: 40 s, do sr 30)

Input Rank from Deterministic Version Rank from Stochastic Version
[2,3,5,3] 1 (fitness 0.1017) 3 (fitness 0.1384)
[2,0,5,3] 2 (fitness 0.1038) 2 (fitness 0.1384)
[2,0,4,3] 3 (fitness 0.1038) 1 (fitness 0.1395)
[2,2,0,3] 4 (fitness 0.1041) 4 (fitness 0.1398)

Table 3.11: Ranking comparison between deterministic and stochastic version for setting: (dl:0.8, bt sr: 40 s, do sr 30)

Input Rank from Deterministic Version Rank from Stochastic Version
[2,5,5,3] 1 (fitness 0.1021) 3 (fitness 0.1402)
[2,2,5,3] 2 (fitness 0.1021) 1 (fitness 0.1392)
[2,3,2,3] 3 (fitness 0.1038) 1 (fitness 0.1396)
[3,3,4,3] 4 (fitness 0.1320) 4 (fitness 0.1696)

88 3. Additional Results

Table 3.14: Ranking comparison between deterministic and stochastic version for setting: (dl:0.8, bt sr: 40 s, do sr 50)

Input Rank from Deterministic Version Rank from Stochastic Version
[2,5,4,4] 1 (fitness 0.1617) 4 (fitness 0.1989)
[2,3,5,4] 2 (fitness 0.1621) 3 (fitness 0.1985)
[2,2,3,4] 3 (fitness 0.1633) 2 (fitness 0.1981)
[2,0,5,4] 4 (fitness 0.1635) 1 (fitness 0.1960)

Table 3.12: Ranking comparison between deterministic and stochastic version for setting: (dl:0.4, bt sr: 40 s, do sr 50)

Input Rank from Deterministic Version Rank from Stochastic Version
[2,5,4,3] 1 (fitness 0.1023) 3 (fitness 0.1395)
[2,3,5,3] 2 (fitness 0.1027) 2 (fitness 0.1394)
[2,2,4,3] 3 (fitness 0.1029) 4 (fitness 0.1405)
[2,2,2,3] 4 (fitness 0.1033) 1 (fitness 0.1382)

Table 3.13: Ranking comparison between deterministic and stochastic version for setting: (dl:0.6, bt sr: 40 s, do sr 50)

Input Rank from Deterministic Version Rank from Stochastic Version
[2,4,3,3] 1 (fitness 0.1076) 3 (fitness 0.1446)
[2,4,4,3] 2 (fitness 0.1078) 2 (fitness 0.1442)
[2,4,0,3] 3 (fitness 0.1087) 4 (fitness 0.1449)
[2,2,2,3] 4 (fitness 0.1094) 1 (fitness 0.1438)

3.2. Statistical tests
In this section, the results from the statistical tests performed for the configuration and gate experiment can
be found. For both experiments, first the normality of each to be tested data set is determined. If two nor-
mally distributed data sets are compared, a t-test is used, otherwise a Wilcoxon signed rank test is used. As
a final test, a Vargha-Delaney magnitude test is done to test what the probability is that a randomly selected
observation from one sample is larger than a randomly selected observation from the other sample [44].

For the normality, t-test and Wilcoxon signed rank test a threshold p-value of 0.05 is used. For the normality
test, if the resulting p-value is lower than the threshold, the null hypothesis is rejected. The null hypothesis
states that the data set is normally distributed. For the t-test and Wilcoxon signed rank test, the null hypoth-
esis states that both data sets are sampled from the same statistical distribution.

The Vargha-Delaney magnitude test is interpreted using the guidelines as proposed by Hess and Kromrey
[10]. The guidelines can be found in Table 3.15.

Table 3.15: Guideline for interpreting Vargha-Delaney magnitude

test result <0.147 0.147 <test result <0.33 0.33 <test result <0.474 0.474 <test result
Large Medium Small Negligible

3.2.1. Configuration optimization experiment
For the configuration experiment, first the results from the normality tests are shown. Based on this test
result, a t-test or Wilcoxon signed rank test is conducted. Last a magnitude test is done to get a complete idea
of the statistical significance of the results. The goal of these tests is to investigate whether the impact of the
kiosks on airport terminal performance is significant.

Normality test
For the normality test a p-value threshold of 0.05 is used.

3.2. Statistical tests 89

Table 3.16: Results of normality test configuration experiment setting:(dl:0.4, bt sr: 20 s, do sr: 30 s)

Passenger type
P-value normality test
optimized kiosks configuration

P-value normality test
base configuration

1 0.076 0.083
2 0.074 0.43
3 0.048 0.083

Table 3.17: Results of normality test configuration experiment setting:(dl:0.6, bt sr: 20 s, do sr: 30 s)

Passenger type
P-value normality test
optimized kiosks configuration

P-value normality test
base configuration

1 0.0015 0.41
2 0.0012 0.81
3 0.000046 0.41

Table 3.18: Results of normality test configuration experiment setting:(dl:0.8, bt sr: 20 s, do sr: 30 s)

Passenger type
P-value normality test
optimized kiosks configuration

P-value normality test
base configuration

1 0.67 0.88
2 0.64 0.83
3 0.73 0.88

Table 3.19: Results of normality test configuration experiment setting:(dl:0.4, bt sr: 20 s, do sr: 50 s)

Passenger type
P-value normality test
optimized kiosks configuration

P-value normality test
base configuration

1 3.6 e-38 0.25
2 2.1 e-38 0.14
3 7.8 e-39 0.25

Table 3.20: Results of normality test configuration experiment setting:(dl:0.6, bt sr: 20 s, do sr: 50 s)

Passenger type
P-value normality test
optimized kiosks configuration

P-value normality test
base configuration

1 0.39 0.030
2 0.75 0.068
3 0.91 0.030

Table 3.21: Results of normality test configuration experiment setting:(dl:0.6, bt sr: 20 s, do sr: 50 s)

Passenger type
P-value normality test
optimized kiosks configuration

P-value normality test
base configuration

1 0.39 0.030
2 0.75 0.068
3 0.91 0.030

90 3. Additional Results

Table 3.22: Results of normality test configuration experiment setting:(dl:0.4, bt sr: 40 s, do sr: 30 s)

Passenger type
P-value normality test
optimized kiosks configuration

P-value normality test
base configuration

1 0.53 0.52
2 0.56 0.51
3 0.53 0.52

Table 3.23: Results of normality test configuration experiment setting:(dl:0.6, bt sr: 40 s, do sr: 30 s)

Passenger type
P-value normality test
optimized kiosks configuration

P-value normality test
base configuration

1 0.59 2.7 e-28
2 0.62 4.3 e-11
3 0.43 2.7 e-28

Table 3.24: Results of normality test configuration experiment setting:(dl:0.8, bt sr: 40 s, do sr: 30 s)

Passenger type
P-value normality test
optimized kiosks configuration

P-value normality test
base configuration

1 0.99 7.1 e-34
2 0.97 1.3 e-6
3 0.58 7.1 e-34

Table 3.25: Results of normality test configuration experiment setting:(dl:0.4, bt sr: 40 s, do sr: 50 s)

Passenger type
P-value normality test
optimized kiosks configuration

P-value normality test
base configuration

1 0.0068 0.0023
2 0.0038 0.12
3 0.034 0.0023

Table 3.26: Results of normality test configuration experiment setting:(dl:0.6, bt sr: 40 s, do sr: 50 s)

Passenger type
P-value normality test
optimized kiosks configuration

P-value normality test
base configuration

1 0.21 9.1 e-5
2 0.14 0.00062
3 0.92 9.1 e-5

Table 3.27: Results of normality test configuration experiment setting:(dl:0.6, bt sr: 40 s, do sr: 50 s)

Passenger type
P-value normality test
optimized kiosks configuration

P-value normality test
base configuration

1 0.21 9.1 e-5
2 0.14 0.00062
3 0.92 9.1 e-5

Statistical significance test
Based on the results from the normality tests, a t-test or Wilcoxon signed rank test is chosen. For each passen-
ger type, the p-value has been calculated for the sets of waiting times from the optimized and base configura-
tion. For each setting it becomes apparent that the decrease in waiting time for passenger type one and three

3.2. Statistical tests 91

is significant. The waiting time for passenger type two does not experience a significant change in value. A
p-value threshold of 0.05 is used for these tests.

Table 3.28: Results of significance test configuration experiment setting:(dl:0.4, bt sr: 20 s, do sr: 30 s)

Passenger type Test P-value
1 t-test 1.2 e -31
2 t-test 0.72
3 Wilcoxon signed rank test 2.35 e-13

Table 3.29: Results of significance test configuration experiment setting:(dl:0.6, bt sr: 20 s, do sr: 30 s)

Passenger type Test P-value
1 Wilcoxon signed rank test 2.2 e-22
2 Wilcoxon signed rank test 0.31
3 Wilcoxon signed rank test 1.05 e-17

Table 3.30: Results of significance test configuration experiment setting:(dl:0.8, bt sr: 20 s, do sr: 30 s)

Passenger type Test P-value
1 t-test 5.75 e-47
2 t-test 0.12
3 t-test 5.63 e-36

Table 3.31: Results of significance test configuration experiment setting:(dl:0.4, bt sr: 20 s, do sr: 50 s)

Passenger type Test P-value
1 Wilcoxon signed rank test 3.77 e-21
2 Wilcoxon signed rank test 0.074
3 Wilcoxon signed rank test 1.00 e-16

Table 3.32: Results of significance test configuration experiment setting:(dl:0.6, bt sr: 20 s, do sr: 50 s)

Passenger type Test P-value
1 Wilcoxon signed rank test 1.32 e-18
2 Wilcoxon signed rank test 0.029
3 Wilcoxon signed rank test 6.15 e-20

Table 3.33: Results of significance test configuration experiment setting:(dl:0.8, bt sr: 20 s, do sr: 50 s)

Passenger type Test P-value
1 Wilcoxon signed rank test 1.88 e-22
2 Wilcoxon signed rank test 8.90 e-6
3 Wilcoxon signed rank test 2.11 e-22

Table 3.34: Results of significance test configuration experiment setting:(dl:0.4, bt sr: 40 s, do sr: 30 s)

Passenger type Test P-value
1 t-test 1.72 e-37
2 t-test 0.27
3 t-test 8.34 e-20

92 3. Additional Results

Table 3.35: Results of significance test configuration experiment setting:(dl:0.6, bt sr: 40 s, do sr: 30 s)

Passenger type Test P-value
1 Wilcoxon signed rank test 9.74 e-23
2 Wilcoxon signed rank test 0.0082
3 Wilcoxon signed rank test 8.92 e-22

Table 3.36: Results of significance test configuration experiment setting:(dl:0.8, bt sr: 40 s, do sr: 30 s)

Passenger type Test P-value
1 Wilcoxon signed rank test 1.10 e-22
2 Wilcoxon signed rank test 0.012
3 Wilcoxon signed rank test 4.46 e-22

Table 3.37: Results of significance test configuration experiment setting:(dl:0.4, bt sr: 40 s, do sr: 50 s)

Passenger type Test P-value
1 Wilcoxon signed rank test 3.39 e-20
2 Wilcoxon signed rank test 0.56
3 Wilcoxon signed rank test 6.23 e-14

Table 3.38: Results of significance test configuration experiment setting:(dl:0.6, bt sr: 40 s, do sr: 50 s)

Passenger type Test P-value
1 Wilcoxon signed rank test 7.59 e-21
2 Wilcoxon signed rank test 0.0026
3 Wilcoxon signed rank test 6.61 e-22

Table 3.39: Results of significance test configuration experiment setting:(dl:0.8, bt sr: 40 s, do sr: 50 s)

Passenger type Test P-value
1 t-test 6.53 e-44
2 t-test 0.00025
3 t-test 2.82 e-39

Magnitude test
Below the results from the Vargha-Delaney magnitude test can be found. The guidelines used to interpret
these results can be found Table 3.15. For each setting, the waiting times of passenger types one and three
experience a large to medium to large difference in magnitude. For passenger type two, this difference is
small or negligible.

Table 3.40: Results of magnitude test configuration experiment setting:(dl:0.4, bt sr: 20 s, do sr: 30 s)

Passenger type Result magnitude test
1 0.079
2 0.48
3 0.20

Table 3.41: Results of magnitude test configuration experiment setting:(dl:0.6, bt sr: 20 s, do sr: 30 s)

Passenger type Result magnitude test
1 0.038
2 0.46
3 0.13

3.2. Statistical tests 93

Table 3.42: Results of magnitude test configuration experiment setting:(dl:0.8, bt sr: 20 s, do sr: 30 s)

Passenger type Result magnitude test
1 0.023
2 0.43
3 0.063

Table 3.43: Results of magnitude test configuration experiment setting:(dl:0.4, bt sr: 20 s, do sr: 50 s)

Passenger type Result magnitude test
1 0.041
2 0.44
3 0.15

Table 3.44: Results of magnitude test configuration experiment setting:(dl:0.6, bt sr: 20 s, do sr: 50 s)

Passenger type Result magnitude test
1 0.11
2 0.42
3 0.11

Table 3.45: Results of magnitude test configuration experiment setting:(dl:0.8, bt sr: 20 s, do sr: 50 s)

Passenger type Result magnitude test
1 0.031
2 0.33
3 0.038

Table 3.46: Results of magnitude test configuration experiment setting:(dl:0.4, bt sr: 40 s, do sr: 30 s)

Passenger type Result magnitude test
1 0.045
2 0.46
3 0.15

Table 3.47: Results of magnitude test configuration experiment setting:(dl:0.4, bt sr: 40 s, do sr: 30 s)

Passenger type Result magnitude test
1 0.045
2 0.46
3 0.15

Table 3.48: Results of magnitude test configuration experiment setting:(dl:0.8, bt sr: 40 s, do sr: 30 s)

Passenger type Result magnitude test
1 0.012
2 0.41
3 0.047

94 3. Additional Results

Table 3.49: Results of magnitude test configuration experiment setting:(dl:0.4, bt sr: 40 s, do sr: 50 s)

Passenger type Result magnitude test
1 0.086
2 0.48
3 0.20

Table 3.50: Results of magnitude test configuration experiment setting:(dl:0.6, bt sr: 40 s, do sr: 50 s)

Passenger type Result magnitude test
1 0.075
2 0.39
3 0.053

Table 3.51: Results of magnitude test configuration experiment setting:(dl:0.8, bt sr: 40 s, do sr: 50 s)

Passenger type Result magnitude test
1 0.030
2 0.37
3 0.039

3.2.2. Gate experiment
For the gate experiment, first the results from the normality tests are shown. Based on this test result, a t-
test or Wilcoxon signed rank test is conducted. Last a magnitude test is done to get a complete idea of the
statistical significance of the results.

Normality test
In Table 3.52 the results from the normality test for each setting can be found.

Table 3.52: Results of normality test for gate experiment

P-value of normality test
kiosk setup

P-value of normality
no kiosk setup

60% large carry on luggage 0.11 0.70
70% large carry on luggage 0.076 0.000020
80% large carry on luggage 0.55 0.83

Statistical significance test
Using the results from the normality tests, a t-test or Wilcoxon signed rank test is used. This tests are used to
determine whether there is a significant difference in boarding time for the configuration with and without
kiosk. For the 60% setting no significant difference can be found in terms of boarding time. For the 70% and
80% setting a significant difference is found.

Table 3.53: Results of significance test for gate experiment

Test P-value
60% large carry on luggage t-test 0.78
70% large carry on luggage Wilcoxon signed-rank test 6.2 e-23
80% large carry on luggage t-test 3.0 e-120

Magnitude test
The results of the Vargha-Delaney magnitude test can be found in Table 3.54. The guidelines used to interpret
these results can be found Table 3.15. From the results it becomes clear that if the percentage of passengers
carrying carry-on luggage increases, the result of the Vargha-Delaney magnitude decreases.

3.2. Statistical tests 95

Table 3.54: Results of magnitude test for gate experiment

Result magnitude test
60% large carry on luggage 0.50
70% large carry on luggage 0.24
80% large carry on luggage 0.00032

Bibliography

[1] Overcoming hurdles as Fast Travel moves forward apace | Airlines. URL https://airlines.iata.org/
analysis/overcoming-hurdles-as-fast-travel-moves-forward-apace.

[2] IEEE Guide for Information Technology - System Definition - Concept of Operations (ConOps) Docu-
ment. IEEE Std 1362-1998, pages 1–24, December 1998. doi: 10.1109/IEEESTD.1998.89424. Conference
Name: IEEE Std 1362-1998.

[3] Satyajith Amaran, Nikolaos V. Sahinidis, Bikram Sharda, and Scott J. Bury. Simulation optimization: a
review of algorithms and applications. Annals of Operations Research, 240(1):351–380, May 2016. ISSN
1572-9338. doi: 10.1007/s10479-015-2019-x.

[4] Bagchain. bagchain gate kiosk. URL https://bagchain.aero/index.php/bagchain-gate/.

[5] Russell R. Barton and Martin Meckesheimer. Chapter 18 Metamodel-Based Simulation Optimization. In
Shane G. Henderson and Barry L. Nelson, editors, Handbooks in Operations Research and Management
Science, volume 13 of Simulation, pages 535–574. Elsevier, January 2006. doi: 10.1016/S0927-0507(06)
13018-2.

[6] M. Bevilacqua and F. E. Ciarapica. Analysis of check-in procedure using simulation: A case study. In 2010
IEEE International Conference on Industrial Engineering and Engineering Management, pages 1621–
1625, December 2010. doi: 10.1109/IEEM.2010.5674286. ISSN: 2157-362X.

[7] William J. Dunlay and Chang-Ho Park. Tandem-Queue Algorithm for Airport User Flows. Transportation
Engineering Journal of ASCE, 104(2):131–149, March 1978. doi: 10.1061/TPEJAN.0000697. Publisher:
American Society of Civil Engineers.

[8] Samuel Eilon and Stephen Mathewson. A Simulation Study for the Design of an Air Terminal Building.
IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(4):308–317, July 1973. ISSN 2168-2909. doi:
10.1109/TSMC.1973.4309241. Conference Name: IEEE Transactions on Systems, Man, and Cybernetics.

[9] Alex Grasas, Angel A Juan, and Helena R Lourenço. SimILS: a simulation-based extension of the iter-
ated local search metaheuristic for stochastic combinatorial optimization. Journal of Simulation, 10(1):
69–77, February 2016. ISSN 1747-7778. doi: 10.1057/jos.2014.25. Publisher: Taylor & Francis _eprint:
https://doi.org/10.1057/jos.2014.25.

[10] Melinda Hess and Jeffrey Kromrey. Robust Confidence Intervals for Effect Sizes: A Comparative Study of
Cohen’s d and Cliff’s Delta Under Non-normality and Heterogeneous Variances. Paper Presented at the
Annual Meeting of the American Educational Research Association, January 2004.

[11] Robert Hooke and T. A. Jeeves. "Direct Search" Solution of Numerical and Statistical Problems. Journal
of the ACM, 8(2):212–229, April 1961. ISSN 0004-5411, 1557-735X. doi: 10.1145/321062.321069.

[12] International Air Transport Association. Airport development reference manual. IATA, London, 9th ed
edition, 2004. ISBN 978-92-9195-086-7.

[13] S. a. M. Janssen, A. Sharpanskykh, R. Curran, and K. G. Langendoen. AATOM - An Agent-based Airport
Terminal Operations Model simulator. SummerSim ’19: Proceedings of the 2019 Summer Simulation
Conference, 2019. Publisher: ACM DL.

[14] Stef Janssen, Anne-Nynke Blok, and Arthur Knol. AATOM - An Agent-based Airport Terminal Operations
Model. Technical report, 2018.

[15] Stef Janssen, Régis van der Sommen, Alexander Dilweg, and Alexei Sharpanskykh. Data-Driven Analysis
of Airport Security Checkpoint Operations. Aerospace, 7(6):69, June 2020. ISSN 2226-4310. doi: 10.3390/
aerospace7060069. Number: 6 Publisher: Multidisciplinary Digital Publishing Institute.

97

https://airlines.iata.org/analysis/overcoming-hurdles-as-fast-travel-moves-forward-apace
https://airlines.iata.org/analysis/overcoming-hurdles-as-fast-travel-moves-forward-apace
https://bagchain.aero/index.php/bagchain-gate/

98 Bibliography

[16] Angel A. Juan, Javier Faulin, Scott E. Grasman, Markus Rabe, and Gonçalo Figueira. A review of
simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems.
Operations Research Perspectives, 2:62–72, December 2015. ISSN 2214-7160. doi: 10.1016/j.orp.2015.03.
001.

[17] Antonín Kazda and Robert E. Caves. Airport design and operation. Advances in Mergers and Acquisitions
; Volume 14. Emerald, Bingley, third edition. edition, 2015. ISBN 978-1-78441-869-4 1-78441-869-2 978-
1-5231-1347-7 1-5231-1347-2.

[18] Seong-Hee Kim and Barry L. Nelson. Recent advances in ranking and selection. In 2007 Winter Simula-
tion Conference, pages 162–172, December 2007. doi: 10.1109/WSC.2007.4419598. ISSN: 1558-4305.

[19] Wonkyu Kim, Yonghwa Park, and Byung Jong Kim. Estimating hourly variations in passenger volume at
airports using dwelling time distributions. Journal of Air Transport Management, 10(6):395–400, Novem-
ber 2004. ISSN 0969-6997. doi: 10.1016/j.jairtraman.2004.06.009.

[20] A.S. Kiran, T. Cetinkaya, and S. Og. Simulation modeling and analysis of a new international terminal. In
2000 Winter Simulation Conference Proceedings (Cat. No.00CH37165), volume 2, pages 1168–1172 vol.2,
December 2000. doi: 10.1109/WSC.2000.899081.

[21] Franziska Klügl and Ana L. C. Bazzan. Agent-Based Modeling and Simulation. AI Magazine, 33(3):29–29,
September 2012. ISSN 2371-9621. doi: 10.1609/aimag.v33i3.2425. Number: 3.

[22] Tamara G. Kolda, Robert Michael Lewis, and Virginia Torczon. Optimization by Direct Search: New
Perspectives on Some Classical and Modern Methods. SIAM Review, 45(3):385–482, 2003. ISSN 0036-
1445. Publisher: Society for Industrial and Applied Mathematics.

[23] R. Koray Kyld and M. Karasahin. The capacity analysis of the check-in unit of Antalya Airport using the
fuzzy logic method. Transportation Research Part A: Policy and Practice, 42(4):610–619, May 2008. ISSN
0965-8564. doi: 10.1016/j.tra.2008.01.004.

[24] Claudia Lehmann. Exploring Service Productivity: Studies in the German Airport Industry. Springer
Fachmedien Wiesbaden, Wiesbaden, 2019. ISBN 978-3-658-23035-7 978-3-658-23036-4. doi: 10.1007/
978-3-658-23036-4.

[25] Andrew C. Lemer. Measuring performance of airport passenger terminals. Transportation Research Part
A: Policy and Practice, 26(1):37–45, 1992. Publisher: Elsevier.

[26] Stefano Lucidi and Marco Sciandrone. On the Global Convergence of Derivative-Free Methods for Un-
constrained Optimization. SIAM Journal on Optimization, 13(1):97–116, January 2002. ISSN 1052-6234.
doi: 10.1137/S1052623497330392. Publisher: Society for Industrial and Applied Mathematics.

[27] Rogers Lui, Ravinder Nanda, and James J. Browne. International passenger and baggage processing at
john f. kennedy international airport. IEEE Transactions on Systems, Man, and Cybernetics, (2):221–225,
1972. Publisher: IEEE.

[28] Sean Luke. Essentials of Metaheuristics. 2009.

[29] Ioanna E. Manataki and Konstantinos G. Zografos. A generic system dynamics based tool for airport
terminal performance analysis. Transportation Research Part C: Emerging Technologies, 17(4):428–443,
August 2009. ISSN 0968-090X. doi: 10.1016/j.trc.2009.02.001.

[30] J. A. Nelder and R. Mead. A Simplex Method for Function Minimization. The Computer Journal, 7(4):
308–313, January 1965. ISSN 0010-4620. doi: 10.1093/comjnl/7.4.308.

[31] G.F. Newell. Applications of queueing theory. Monographs on statistics and applied probability. Chap-
man and Hall, London, 2nd ed edition, 1982. ISBN 978-0-412-24500-8. Section: xvi, 303 p. : illustrations
; 22 cm.

[32] Amedeo R. Odoni and Richard de Neufville. Passenger terminal design. Transportation Research Part A:
Policy and Practice, 26(1):27–35, January 1992. ISSN 0965-8564. doi: 10.1016/0965-8564(92)90042-6.

Bibliography 99

[33] Paul Roling. Landside capacity, February 2021.

[34] Rotterdam The Hague Airport. Ons verhaal in feiten en cijfers. Technical report,
2021. URL https://www.rotterdamthehagueairport.nl/wp-content/uploads/
Ons-verhaal-in-feiten-en-cijfers-2021.pdf.

[35] Michael Schultz and Hartmut Fricke. Managing Passenger Handling at Airport Terminals. Ninth
USA/Europe Air Traffic Management Research and Development Seminar (ATM2011), 2011.

[36] Alexei Sharpanskykh and Jan Treur. A Temporal Trace Language for Formal Modelling and Analysis of
Agent Systems. In Specification and Verification of Multi-agent Systems, pages 317–352. Springer New
York, NY, July 2010. ISBN 978-1-4419-6983-5. doi: 10.1007/978-1-4419-6984-2_11.

[37] S. P. Singh and R. R. K. Sharma. A review of different approaches to the facility layout problems. The
International Journal of Advanced Manufacturing Technology, 30(5-6):425–433, September 2006. ISSN
0268-3768, 1433-3015. doi: 10.1007/s00170-005-0087-9.

[38] Senay Solak, John-Paul B. Clarke, and Ellis L. Johnson. Airport terminal capacity planning. Transporta-
tion Research Part B: Methodological, 43(6):659–676, July 2009. ISSN 0191-2615. doi: 10.1016/j.trb.2009.
01.002.

[39] Takakuwa and Oyama. Simulation analysis of international-departure passenger flows in an airport
terminal. In Proceedings of the 2003 Winter Simulation Conference, 2003., volume 2, pages 1627–1634
vol.2, December 2003. doi: 10.1109/WSC.2003.1261612.

[40] Nursyuhada Taufik and Mohd Hafiz Hanafiah. Airport passengers’ adoption behaviour towards self-
check-in Kiosk Services: the roles of perceived ease of use, perceived usefulness and need for human
interaction. Heliyon, 5(12):e02960, December 2019. ISSN 2405-8440. doi: 10.1016/j.heliyon.2019.e02960.

[41] Vojin Toi. A review of airport passenger terminal operations analysis and modelling. Transportation Re-
search Part A: Policy and Practice, 26(1):3–26, January 1992. ISSN 0965-8564. doi: 10.1016/0965-8564(92)
90041-5.

[42] Michael W. Trosset. On the Use of Direct Search Methods for Stochastic Optimization. June 2000. Ac-
cepted: 2018-06-18T17:48:14Z.

[43] Didier van der Horst. An improved Tabu Search for optimising the configuration of an agent-based
simulation model of a novel security checkpoint. Master’s thesis, TU Delft, 2021.

[44] András Vargha and Harold D. Delaney. A Critique and Improvement of the CL Common Language Ef-
fect Size Statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics, 25(2):101–
132, June 2000. ISSN 1076-9986. doi: 10.3102/10769986025002101. URL https://doi.org/10.3102/
10769986025002101. Publisher: American Educational Research Association.

[45] Ashish Verma, Divyakant Tahlyan, and Shubham Bhusari. Agent based simulation model for improving
passenger service time at Bangalore airport. Case Studies on Transport Policy, 8(1):85–93, March 2020.
ISSN 2213-624X. doi: 10.1016/j.cstp.2018.03.001.

[46] Diane Wilson, Eric K. Roe, and S. Annie So. Security Checkpoint Optimizer (SCO): An Application for
Simulating the Operations of Airport Security Checkpoints. In Proceedings of the 2006 Winter Simulation
Conference, pages 529–535, December 2006. doi: 10.1109/WSC.2006.323126. ISSN: 1558-4305.

[47] Andreas Wittmer. Acceptance of self-service check-in at Zurich airport. Research in Transportation
Business & Management, 1(1):136–143, August 2011. ISSN 2210-5395. doi: 10.1016/j.rtbm.2011.06.001.

[48] Paul Pao-Yen Wu and Kerrie Mengersen. A review of models and model usage scenarios for an airport
complex system. Transportation Research Part A: Policy and Practice, 47:124–140, January 2013. ISSN
0965-8564. doi: 10.1016/j.tra.2012.10.015.

https://www.rotterdamthehagueairport.nl/wp-content/uploads/Ons-verhaal-in-feiten-en-cijfers-2021.pdf
https://www.rotterdamthehagueairport.nl/wp-content/uploads/Ons-verhaal-in-feiten-en-cijfers-2021.pdf
https://doi.org/10.3102/10769986025002101
https://doi.org/10.3102/10769986025002101

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	I Scientific Paper
	II Literature Study previously graded under AE4020
	Introduction
	Airport Operations
	Airport Terminal Design
	Airport terminal design process
	Airport components
	Airport Stakeholders

	Airport Terminal Activities

	Check-In
	Check-In Design
	Self-Service Check-In
	Self Check-In Options
	State of the Art Self-Service Kiosks

	Next Generation Self-Service Kiosks
	Checked luggage check-in kiosks
	Cabin luggage check-in kiosks at gate

	Discussion of check-in process

	Modeling Airport Terminal Operations
	Approach to Modeling Airport Terminal Processes
	Preliminary Requirements
	State of the Art of Modeling Airport Terminal Processes
	Early Airport Terminal Processes Models
	Operational Planning and Design Models

	Discussion of Model Overview

	Simulation Optimization
	Metaheuristics
	Finite Parameter Spaces
	Large or Infinite Parameter Spaces
	Simheuristics

	Other Simulation Optimization Techniques
	Response Surface Methodology
	Model-based methods
	Direct Search Methods

	Discussion of Simulation Optimization Methods

	Agent-based Airport Terminal Operations Model
	Introduction to Agent Based Modeling
	AATOM Architecture
	Agents
	Environment
	Interactions

	Research Proposal
	Problem Definition
	Research Objective
	Preliminary Optimization Technique Trade-Off

	Research Questions
	Main Research Question
	Sub Questions

	Research Methodology
	Case Study RTHA
	Work Packages
	Planning

	III Supporting work
	Extension of AATOM
	Model Development
	Development of PhysicalObjects
	Development of Self-Service Process Activities
	Integration with Existing Model

	Implementation of Self-Service Luggage Check-In System in the RTHA Layout
	Reconfiguring RTHA Layout to Accommodate Kiosks

	Verification

	Simulation Optimization with Simheuristics
	Algorithm Trade-Off
	Simheuristics
	Integration of tabu search with simheuristic framework
	Constructing the deterministic version of AATOM
	Verification of the deterministic version of AATOM

	Optimization Software
	Tabu search class
	Main Simheuristic tabu search procedure

	Additional Results
	Results
	Configuration optimization experiment
	Simheuristic optimization performance

	Statistical tests
	Configuration optimization experiment
	Gate experiment

	Bibliography

