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CHAPTER I 

G e n e r a l I n t r o d u c t i o n 

In 1895 SABINE initiated his famous investigation of quantitative measure­
ments in room acoustics, which gave the impulse to a firm foundation of scientific 
knowledge on this subject. Through extensive experimental studies of the 
acoustical properties of a room SABINE arr ived at an empirical relation 
between the reverberation character is t ics of an enclosure, its size and the 
amount of absorption present . 

He defined the reverberation t ime of an enclosure to be the time required 
for the sound energy density to reduce to 10-6 times its initial value when 
suddenly silencing the sound source, or in decibel-languange the time required 
for a drop of 60 dB in sound p ressu re level. Since SABINE's investigations the 
reverberat ion time has remained the most important objective quantity to 
character ize a hall acoustically. 

If a sound source is radiating sound power at a constant ra te in a large 
hall one can observe that the sound field is gradually being built up. It takes 
a few seconds before the hall has been "filled" with sound. Obviously the 
energy density reaches a finite level, since the intensity, heard subjectively, 
remains finite. In this steady state the radiated power must be equal to the 
rate of absorption of sound energy in the hall. For low and medium frequencies 
the sound energy is absorbed by the boundary surfaces of the enclosure and 
the objects therein. At high frequencies, say 4000 Hz and up, sound energy is 
appreciable dissipated in the a i r . 

When the steady state has been reached and the sound source is suddenly 
stopped the balance between the radiating power and the absorbed power is 
disturbed; the sound dies away. Since the rate of energy absorption will be 
proportional to the energy present , an exponential decay is to be expected. 
SABINE succeeded, first along empirical lines and afterwards theoretically, 
to derive the following equation 

(1.1) T = 0.163 V/A, (in Sl-units), 

where T is the reverberation time of an enclosure, V its volume and A the 
total absorption of the enclosure, defined as 

A = 2 agS, 

where ag is the absorption coefficient of the boundary, S its area , the summa­
tion being taken over all surfaces of the enclosure. Eq. (1.1) is dimensionally 
correct , the reason being that the factor 0.163 contains the reciprocal of the 
sound velocity. The theoretical derivation of Eq. (1.1) is based upon the inac­
curate assumption that the energy is distributed uniform throughout the entire 
volume of the enclosure. The fact th'at the totally absorbed power equals the 
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diminution of the energy per unit time leads to a differential equation of the 
f irs t order . Its solution yields Sabine's law (KINSLER & FREY [ l 9 5 0 ] ) , 

The absorption coefficient of a surface is usually defined as the non-
reflected fraction of the incident energy. If ag is defined in this way, Sabine's 
law turns out to be an approximation. A different approach is to assume the 
validity of Eq. (1.1) and to use it for calculating A from the measurable quan­
ti t ies V and T. When this is done twice in the same enclosure with different 
amounts of absorbing mater ia ls one can compute the difference AA = Aj - A 2 
between the two situations. If the two situations only differ in this respect that 
the first situation, as compared with the second one, contains a known extra 
surface S having an unknown absorption coefficient one is able to compute ag 
from the quantity A A (=ag S). The absorption coefficient thus computed from 
measurements is approximatily equal to the true absorption coefficient as defined 
above. This is the reason for the subscript S (from "SABINE") to a. 

The standard method of measuring the absorption coefficient of a mater ia l 
is through an investigation of its effect on the reverberation t ime in an en­
closure. Specially constructed enclosures known as reverberation chambers a re 
generally used for this purpose. The pr imary requirements of such a chamber 
a re that its wall surfaces should be highly reflecting, so as to produce a large 
reverberat ion time when the test sample is not present , that its volume should 
be large enough to contain a large number of normal vibrational modes in any 
given frequency interval, and that it should have i r regular wall surfaces and be 
equipped with a number of diffusers, e.g., curved plates of plywood of a few 
square mete rs each, so as to increase the rate of diffusion of sound waves. 
According to a recommendation of the International Organization for Standardi­
zation, its volume ought to be larger than 180 m3. 

EYRING [ l 9 3 0 ] derived an improved fashion for the relation between the 
absorption coefficient and the reverberation t ime. In order to calculate the 
absorption coefficient ag (the subscript E from "EYRING") two reverberation 
t imes T . and T (without and with the sample under test in the reverberation 
chamber) a re measured. The absorption coefficient ag is then given by 

(1.2) ag=||expr- 0.163 V/FT^l- exp F - 0.163 V/FT J I , 

in which S = the area of the sample; 
F = the total wall area in the chamber; 
V = volume of the chamber. 

The derivation of this equation is based upon the concept of geometrical or ray 
acoustics in which sound is assumed to travel along straight paths or rays . 
Sabine's law can be derived as an approximation from this equation if TQ and 
T-^ a r e taken to be large. 

The absorption coefficient ag or ag of a sample turns out to depend not 
only upon the propert ies of the mater ia l , but also on the size and shape of the 
sample. From a theoretical point of view this is not so surprising, if we bear 
in mind that additional sound energy flows inwards to a sample from all around 
by diffraction of the waves at the edges of the sample. In other words more 
energy str ikes the sample than would reach it if the sample affected the wave 
front through its own area only.The effective absorbing area appears to be 
larger than the geometrical a rea of the sample. It may be remarked that s imilar 
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phenomena occur in any type of scattering problem, such as scattering of 
electromagnetic waves and scattering by atomic sys tems. Until recently the de­
velopment of theoretical considerations of this so-called edge effect was 
hardly possible, because of the fact that the resul ts of a mathematical analysis 
were not feasible for numerical treatment due to the lack of computational 
facilities. In this thesis the resul ts of a mathematical investigation of three ' 
sound absorbing s t ruc tures , incorporating edges, a re finally presented in a 
numerical form. Some new aspects , which may well be of practical value, are , 
drawn from the numerical resu l t s . 

For a long time the edge effect has been felt to be a curious phenomenon 
in the practical application of sound absorbing mater ia l s . As early as 1900 
SABINE already noticed this effect. Concerning his investigation of the influen­
ce of sound absorbing mater ia l s , such as cushions, upon the acoustics of the 
lecture room of the Fogg Art Museum of Harvard University, he wrote in The 
American Architect and The Engineering Record: 

'Some early experiments in which the cushions were placed with one edge 
pushed against the backs of the set tees gave resul ts whose anomalous 
character suggested that, perhaps, their absorbing power depended not 
mere ly on the amount present but also on the a rea of the surface exposed, 
It was then recalled that about two years before, at the beginning of an 
evening's work, the first lot of cushions brought into the room were placed 
on the floor, side by side, with edges touching, but that after a few obser­
vations had been taken the cushions were scattered about the room, and the 
work was repeated. This was done not at all to uncover the edges, but in 
the primitive uncertainty as to whether near cushions would draw from 
each o ther ' s supply of sound, as it were, and thus diminish each other 's 
efficiency. No further thought was then given to these discarded observa­
tions until recalled by the above-mentioned discrepancy. They were sought 
out from the notes of that period, and it was found that, as suspected, the 
absorbing power of the cushions when touching edges was less than when 
seperated." 

The sound field encountered in the reverberat ion chamber is very compli­
cated, indeed. Sound is incident from all directions upon the sample and the 
absorption coefficient thus obtained applies to random incidence of sound. 

In contrast to such complicated situations one might consider the simple 
case where a plane wave is incident upon an absorbing area of infinite dimen­
sions, the incidence being normal or oblique. There will be a reflected plane 
wave which has a smal ler amplitude than the incident one. The absorption 
coefficient is now defined as 

(1.3) a = l - | r | ^ , 

where r is the pressure reflection coefficient. 
The case of normal incidence of a plane wave can be simply realized in 

the laboratory by isolating a par t of the infinite plane wave in a rigid cylindrical 
tube terminated by the absorbing material and, subsequently, forgetting for the 
sound field outside the tube, which does not longer interest us . An instrument 
which is based on this concept is called an interferometer . It can be described 
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as a tube in which a sound source and the sample under test a re inserted in 
opposition at either end thus closing the tube from both sides. The-sound source 
is operated at such a low frequency that only plane waves can travel in the tube. 
We may describe the sound field in the tube as the superposition of two plane 
waves: an incident one and a reflected one. Owing to absorption, the reflected 
wave will have a smaller amplitude than the incident one. From the location 
and the values of the maxima and the minima of the pressure in the standing wave the 
reflection coefficient of the sample can be evaluated. The case of oblique 
incidence can be realized in a similar way. In addition to the plane wave 
component in the tube higher-order modes a re possible. It can be shown that if 
the waveguide has a rectangular cross-sect ion and is excited in a higher-order 
mode the situation is s imilar to oblique incidence of a plane wave. We shall 
not proceed further along these lines since it would take us too far. 

It will be the general pract ise in this thesis to analyse problems by the 
complex exponentional method. We represent a sinusoidal function of time with 
an angular frequency a» by the real part of a complex function. For example, at 
a fixed point in space R we have the sound p res su re 

, ^ ( R , t ) = Re f p (R) exp ( j a . t ) l . 

The function p(R) denotes the complex representation of the sound pressure . 
Since the major problem attacked in this thesis is to calculate the ab­

sorption of some sound absorbing s t ructures , it is worthwhile to deal with the 
simplest problem of this kind, i.e., the absorption of a plane wave by an infinite 
sound-absorbing surface at normal and oblique incidence. 

]t now becomes desirable to discuss the behaviour of sound in the neigh­
bourhood of a boundary surface and express it in t e rms of a boundery condition 
to be imposed on the sound pressure . The ratio of the sound p ressu re and the 
normal component of the velocity is referred to as the normal acoustic impe­
dance. Often this quantity is not known a pr ior i has to be determined experi ­
mentally. If the surface is porous so that air can penetrate into the surface 
mater ia l then there can be an average air velocity into the surface without 
motion of the boundary itself. The particle velocity perpendicular to the boun­
dary at a particular point needs not be governed exclusively by the sound p r e s ­
sure at the same point, but may also be influenced by p ressures at neighbour­
ing points on the boundary. Ifthe pores do not interconnect then it would be true 
that the mean normal velocity of penetration of the air into the pores has a 
constant ratio to the local p ressure independent of the p ressure and velocities 
of the sound field at the other points of the surface. For such a "locally 
reacting" boundary the normal impedance will be independent of the configura­
tion of the incident wave and can be specified in advance as a character is t ic 
property of the boundary. Many mater ia ls may be assumed to be approximately 
locally reacting, e.g., mater ia ls with a rather large air resistance and perfora­
ted porous t i les. Since the assumption that the boundary is locally reacting 
simplifies the problems considerably and since the assumption is frequently 
approximately fulfilled we shall accept its validity as a basis for our considera­
tions. 

We now define a complex parameter Zs , the normal specific acoustic 
impedance of the boundary 
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(1.4) Zg = p / u n , 

where p = the p ressure at the boundary; 
Ujj = the part iele velocity normal to the boundary into 

the wall. 

From the equation of motion we know that u^ is proportional tadp/dn, since 

(1.5) a p / a n = - i'^Po "n • 

where P = the density of the medium above the acoustic surface. 

Then the boundary condition can be written in t e rms of p only, as follows 

(1.6) j k p = - - ! ^ | E - , 
P Q C dn 

where k = w/c (the wave number); 
c = the sound velocity in the medium above the acoustic surface. 

For plane waves the quantity PgC is the ratio of the pressure to the associated 
part icle velocity. It may be observed that the product of these quatities has 
greater significance as a character is t ic property of the medium than does 
either po or c, individually. For this reason p o c is called the character is t ic 
impedance of the medium above the sound absorbing surface. 

For convenience' sake we introduce the reduced specific acoustic admit­
tance 

(1.7) '' = V / 2 s 

With this notation the boundary condition Eq. (1.6), to be imposed on the sovmd 
pressure p, becomes: 

(1.8) a p / ö n + j k j ; p = 0. 

This type of boundary condition will be assumed valid for all sound absorbing 
surfaces discussed in this thesis . 

A mate r ia l which has recently been the subject of a profound experimental 
study concerning the edge effect, is the porous sound-absorbing material 
Sillan, consisting of rockwool and obtainable in different densities and thickness­
es . This material may approximately be considered as locally reacting. In 
our computations we employ the data of Sillan SP 100, 5 cm thick; its impe­
dance diagram is shown in Fig. 1.1. 

Returning to our problem we suppose a plane soiind wave to impinge upon 
a surface consisting of uniform acoustic mater ia l with admittance T| , in a di­
rection making an angle 6 with the normal to the surface. The boundary coin­
cides with the x,y-plane (Fig. 1.2). The representation of the incident wave, 
which satisfies the Helmholtz equation in rectangular co-ordinates 
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Fig. 1.1 The impedance diagram of SiUan SP 100, 
5 cm thick. 

is 

(1.10) p^ = Ajexpl^j kx sin (0) cos (yj) + j k y sin (0) sin (<p) + j k z cos (6) 

where A j = the amplitude of the incident wave. 

The reflected wave is then given by: 

(1.11) p^= Aj.exp j k x sin (0) cos(<p)+ j k y sin (0) sin (p) - j kz cos (0) 1 . 

where A^. = the amplitude of the reflected wave, and the total 

]• 

pressure p* by 

(1.12) t i r 
P = P + P . 

In order to express Ar in t e rms of Ai we inser t the total p ressu re into the 
boundary condition Eq. (1.8). We then obtain 

(1.13) _ i : = ^ = cos (0) - V 
Aj c o s (0) + "7 ' 
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where r is the reflection coefficient. 
The absorption coefficient a^ of this infinitely large absorbing surface is now 
defined as 

a.l4) a 0 = l - | r | ^ . 

Introducing the notation that v- Re (?)) + j Im (r;), we obtain an expression for 
AQ, being 

n i=. 4Re(»;) cos ( 0 ) 
(1.15) a o - p =— 

^ l^cos (0) + Re(7,) J 2 + im();)2 

For three values of rj, borrowed from the impedance diagram of Sillan SP 100, 
5 cm thick, SLQ has been plotted as a function of 0(Fig. 1.3). It is worth r e m a r ­
king that the amount of absorbed power has a maximum value at about 0 = 60°, 
The curves also show that the fraction of power absorbed approaches zero as 
the angle of Incidence approaches 90°. In fact Eq, (1.15) indicates that the sur ­
face would not absorb any power from a wave travelling parallel to the surface, 
no mat ter what the value of jj i s . This seems to be a contradiction of t e r m s , for 
the p r e s su re fluctuations in a wave parallel to the surface would cause motion 
of the medium above the surface in the direction perpendicular to the assumed 
direction of the wave. The fact of the mat ter is that a plane wave can not t rave l 
paral lel to an infinite plane surface of non-zero admittance. 

Fig. 1.2. A plane wave is incident upon the x, y - plane. 
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1.00 

Fig. 1.3. The absorption coefficient a.Q&s a function of the angle 
of incidence e for three values of the reduced specific 
acoustic admittance rj . 

.A different approach for the derivation of the absorption coefficient is to 
calculate directly the ratio ofthe absorbed power to the incident power. In order 
to find these quantities we s ta r t with the general formula for the time-averaged 
power flow density vector i 

(1.16) 

where u is the part icle velocity. 

iRe[puj, 

The power 

(1.17) 

flow passing through a surface S is then given by 

P = è R e [ J j (p u*.n) d s ] 

where the quantity u.n represents the component of the particle velocity in the 
direction of the normal n to the surface. 
The power absorbed by a surface of area S, consisting of acoustical mater ia l 
with admittance t; is now given by 

(1.18) 
5 Re in) ill 

S 

| p | ^ d S 

This resul t has been obtained with the aid of Eq. (1.4) for the part icle velocity. 
For a plane wave, represented by Eq. (1.10), the power incident upon an 

a rea S of the x,y-plane follows from Eq. (1.17) and the fact that p = P(,c u: 
16 
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Fig. 1.4. The absorption coefBcient a t^j as a function of frequency. The absorbing 
material is Sillan SP 100, 5 cm thick. 

(1.19) P. 
1 

4IM' cos (0) S / p ^ c . 

The absorption coefficient is determined as the ratio of Pĝ  and Pj Hence 

(1.20) 
Re (i\) 

I A. I 2 cos (0) S m dS 

This definition is quite general and is often used for the computation of ab­
sorption coefficient In the problems, encountered in the thesis . If we Insert the 
expression for the total p ressu re Eq. (1.12) at z = 0 into Eq. (1.20) we obtain 
again Eq. (1.15) for aQ, 

An adequate mean value of the absorption for locally reacting materials is 
found if the energy absorbed by a surface element that is exposed to a complete 
diffuse sound field is considered. The incident energy per unit a rea comprised 
in a small solid angle d ü in adirection with an angle 0 to the normal is 
proportional to cos(0), since the apparent surface ofthe surface element under 
consideration is proportional to cos(0). The mean value for stat ist ical sound 
incidence is defined as 

ƒ aQ cos (0) dfi 
(1.21) 

stat ƒ cos (0) dfi 

Now a0 is only dependent upon 0 ; therefore, take as an elementary solid angle 
d n the small angle between a circular cone around the normal with vertical 
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angle 20 and a s imilar cone with vert ical angle 2 (0+ d0), then dQ = 27rsin(0) 
d0 and ir/2 

(1.22) Vat " ^ ƒ ^ ^̂ ^ ̂ ^^ ®̂̂  ^°^ ^^^ '^^• 
o 

This coefficient is usually referred to as the statistical average absorption 
coefficient. For locally reacting surfaces a g is known as a function of 0 , so 
the integral can be evaluated (ZWIKKER & KOSTEN [ l949]) . For the acoustic 
mater ia l Sillan SP 100, 5 cm thick, aĝ ĝ ^ has been plotted as function of 
frequency in Fig. 1.4. 

Experiments show that ag differs substantially from the coefficient ag^^j. 
by computing from Interferometer data, even In the case of locally reacting 
mater ia l s . Moreover, it appears that ag for a small area is substantially 
greater than that for a very large area. These differences in absorption coef­
ficients a r e a consequence of the edge effect. 

Many investigators have measured the dependence of the absorption coef­
ficient on the dimensions of the sample. All these resul ts a re doubtful, how­
ever, because up till 1960 it was not known that the reveberant field in most 
reverberat ion chambers was far from diffuse and the results for the absorption 
coefficient were, therefore, considerably too low, so that comparison of these 
old values of the absorption coefficient with â ĝ̂ ^ Is meanlngsless. 

In many ofthe older papers , the authors appear to be unaware of the fact that 
the important quantity is the edge length of the sample ra ther than the area. 
Only PARKINSON [ l93o] appreciated this essential point. His publication was, 
however, overlooked. An excellent review of these older papers concerning the 
edge effect has been represented in detail by KUHL [ l 9 6 o ] . 

KOSTEN [ i 9 6 0 ] suggested that the increased absorption Is directly p ro­
portional to the relative edge length E (in m"-'-) of the sample. The impli­
cation is that 

(1.23) ag = a s t a t + bgta t E . 

where ^^^^^ (in m) is the edge effect constant. 
Results of a round robin,reported by KOSTEN [l960] i l lustrate the existence 

of such a proportionality factor bg ta t Starting from this idea KUHL [ i960 ] 
has plotted different experimental resul ts of former investigators in a new 
way. He also found agreement between these resul ts and KOSTEN's statement. 
KUHL himself has done some new experimental work concerning the edge 
effect of Sillan SP 120. He showed that the edge effect is reduced, if the edges 
of the sample a re lined with broad vertical planks. This experiment gives a 
good indication as to the existence of diffraction phenomena at the edge. KUHL 
and later afterwards TEN WOLDE [ l 9 6 7 ] found bs ta t to be a function of the 
frequency and, of course, to be dependent on the type of acoustical mater ial . 
The constant bg^^^ has a maximum value of the order of 0.25 m somewhere in 
the neighbourhood of 500 Hz (Fig. 1.5). 

For small a reas , E is large, the linearity of the relation between a g and 
E is not so good. It is then perhaps better to speak of the "a rea effect". 

Theoretical aspects have been studied by many authors. Most of these 
investigations concern the sound absorption of an acoustic s t r ip . The resul ts 
of these investigations will be discussed in the Introduction of Chapter HI. 
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Fig. 1.5. The edge effect constant hgt^j as a function of frequency 
for the sound absorbing material Sillan SP 100, 5 cm 
thick (after TEN WOUDE [1967] ). 

In this thesis we deal with the scattering and absorption of a plane wave 
by: 
(1) 
(2) 
(3) 

a semi-infinite absorbing plane supplemented to an infinite hard plane; 
an absorbing acoustic s t r ip lying on an infinite hard plane; 
absorbing acoustic s t r ips lying in a periodic arrangement. 

All three absorbing configurations a re assumed to coincide with the x,y-plane 
of a rectangular co-ordinate system and to extend indefinitely in the y-d i rec­
tion and to be uniform in this direction. The representation of the incident 
wave is given by Eq. (1.10). 

For the sake of convenience we introduce the direction cosines 

a = k sin (0) cos (v ) , /3 = k sin (0) sin (*>) and 7 = k cos (0). 

In t e rms of these quantities we have 

(1.24) exp l a x + •• o j ^ o ^ ^ ] 7 z 
J 'o ] 

Without any loss of generality the amplitude of pi is assumed to be unity. 
Because of the fact that the absorbing configurations extend to infinity in 

the y-direction without any discontinuity and that the incident wave is assumed 
to be a plane wave, it is obvious that the boundary conditions and the wave 
equation a re invariant under a translation in the y-direction. Consequently, the 
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y-dependence of the incident and the scat tered fields a r e the same. According­
ly, let us write for the p re s su re 

(1.25) p ( x , y , z) = exp (jyö^y) * ( x , z ) , 

where <I> is a function related to the sound p re s su re , 
In this notation the incident field becomes 

(1.26) *^ = exp 1 a x + l-y z •• o o ]• 
Inserting Eq. (1.25) into Eq. (1.9) we obtain the two-dimensional Helmholtz 
equation 

(1.27) d^^/dx^ + a^4>/dz^+ i c ^ * = 0 , 

where <ĉ  = k:^ - /3 ^. 
o 

All problems, encountered in the next chapters a re solved by taking the s im­
plified expression for the p re s su re given in Eq. (1.25), 

The reasons for considering the three mathematical models listed above are 
given in the Introductions to the different chapters . 
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CHAPTER II 

Diffraction and absorption by an absorbing half-plane 

2.1 I n t r o d u c t i o n 

In the previous chapter we discussed the fact that the additional absorption 
due to diffraction of the waves at the edge was approximately proportional to 
the relative edge length of the sample. The shape of the sample was not 
important to the effect if the sample were not too small in respect to the 
wave length. The observed changes in the absorption coefficient can be a t t r i ­
buted to sound scattered by the sample in such a way that the part of the 
absorbing surface near the edge generally absorbs more sound power than 
an equally large a rea near the centre . The additionally absorbed power 
near the edge of a large sample will be greatest near the edge and will 
decrease away from the edge falling off to a negligible value in a distance of 
several wavelenghs. DANIEL [ 1963] showed this fact in an experiment 
concerning one straight edge of a large fiber glass blanket lying on the floor of a 
reverberation chamber. 

It seems to be reasonable that the diffraction by a large sample of 
rectangular shape can be constructed as the diffraction for four separate half-
planes. For this reason, thé present chapter will be devoted to the calculation of 
the diffraction and absorption by an absorbing semi-infinite plane lying on an 
infinite acoustically hard plane, when a plane wave is incident from an arbi t rary 
direction. 

Many authors have given attention to diffraction by a half-plane. The oldest 
investigation is due to SOMMERFELD [1896] who considered the conducting 
half-plane. SOMMERFELD's basic concept was a multivalued solution of the 
wave quatlon. COPSON [ l 9 4 6 ] and SCHWINGER formulated the problem in 
t e rms of an integral equation, which they solved by the Wiener-Hopf method 
(NOBLE [ 1958a] ). 

SENIOR [l951"] extended the method to a metallic sheet of finite con­
ductivity. He derived explicit expressions containing Fresnel integrals for 
the distant field. The difficulty in extending the Sommerfeld problem to a 
finitely conducting half-plane lies in the so-called factorization of the Fourier 
transformed kernel function. This explains why it is difficult for the problem 
considered by SENIOR to obtain simple expressions for the diffracted field, 

HEINS and FESHBACH [ l 9 5 4 ] investigated the effect of a plane wave 
Incident upon an infinite plane divided into two half-planes by a straight line. 
Each of the two half-planes is assumed to have acoustic proper t ies which can be 
expressed by an acoustic admittance. The solution found by these authors, 
obtained by solving therelevantintegralequation, is very complicated due to the 
great difficulties met in the process of factorization. In general , the integral 
equation method needs the choice of asu i tab leGreen ' s function, the formulation 
of the integral equation and the application of integral t ransforms in order to 
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solve the integral equation. The Green ' s function method for formulating an 
integral equation is sometimes cumbersome (HEINS & FESHBACH [ l 9 5 4 ] ) . 
Often It is far from obvious which Green ' s function should be chosen. The 
main advantage of the Integral equation method of approach seems to be 
that it is easy to recognize whether the problems can be solved by the 
Wlener-Hopf technique or not. 

All the problems just mentioned a re amenable to a simpler treatment 
based on representation of the scat tered field as an angular spectrum of plane 
waves (CLEMMOW [ l 9 6 6 a ] ). This directly leads to a pair of dual integral 
equations which replace the single integral equation. The distinction lies in 
the choice of a plane wave as the fundamental field ra ther than the field due 
to a line source. 

The concept of a field built up out of elementary waves generated by a 
source is directly employed in Huygens' principle and the classical Klrchhoff 
diffraction theory. That the alternative concept of a plane wave spectrum may be 
more convenient in thetheory of diffraction has been recognized for a loi^ t ime. 

The technique has originally been developed in connection with the theory of 
radio propagation over a non-homogeneous earth ( BOOKER & CLEMMOW 
[l950a,b] ). In the present chapter we apply it to the two-dimensional problem 
of a plane wave incident upon a half-plane. The dual Integral equations obtained 
through an application of the boundary conditions at the half-plane can be solved 
with the aid of complex function theory through a technique which uses the same 
arguments as the Wlener-Hopf method. From the expression for the scattered 
field we derive a quantity for the additional power absorbed by the edge. In the 
case of a diffuse sound field we define a quantity bstat being the ratio of the 
additional power per unit edge length and the incident intensity. The dimension of 
this quantity is a length so we expect this quantity to be the same as the one 
which Is experimentally detected in the reverberation chamber. Comparison of 
theoretical and experimental resul ts is now possible. 

2.2 M a t h e m a t i c a l f o r m u l a t i o n of t h e p r o b l e m 

Let a plane wave be Incident upon the s t ructure , which is located in the 
x,y-plane (Fig. 2.1). In the domain - M < X < 0, -i>ö<y<i>o , z = 0 this plane 
is acoustically hard, in the domain 0 < x < oo , -oo < y <: DO , z = 0 this plane 
consists of sound absorbing mater ia l , whose propert ies a re characterized by a 
reduced specific acoustic admittance v . 
The space dependence of the incident wave is specified in Eq. (1.24). 

As explained in Chapter I, this three-dimensional scattering problem can be 
reduced to a two-dimensional one. 

The total sound p ressu re is written as the superposition of three contribu­
t ions: the incident field 4>' , , a field i^ reflected against an acoustically hard 
boundary of infinite extent and a scat tered field *^, The expression for the total 
field therefore can be written as 

t s 
(2.1) * (x,z)= exp (j a x + j> z) + exp ( j a x - J7 z) + * . 

We first seek a suitable representation for <I> 
An elementary solution of the Helmholtz equation is the plane wave: 
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Fig. 2.1. Geometry of the diffraction probiem. 

r 2 2 -
- j ax + j («c - a )?- z 

If (K^- a'^)2 is^real (2.2) represents an uniform plane wave; if on the other 
hand ( K 2- a 2)5 jg imaginary or complex (2.2) represents an non-uniform 
plane wave. Now it can be shown that any solution of the Helmholtz equation can 
be brought into the form of an angular spectrum of plane waves: 

2̂ 3) ^ J f(") e x p [ - j a x + j ( K ^ - a ^ ) ^ z J d a , 

i 
by a suitablechoiseof the path of integration i and the function t{a) (CLEMMOW 
[ 1966 b ] ) . Such a representation is closely linked with the expression of an 
arbi t rary function by means of a Fourier integral. The function f (a) is the 
spectrum function which specifies in t e rms of amplitude and phase, the "weight" 
attached to each plane wave of the spectrum. Without loss of generality a 
suitable fixed path of integration can be selected so that the problem under 
consideration becomes a matter of determining the appropriate spectrum 
function f(a). 

The first condition to be imposed on the scattered field is founded on the 
Sommerfeld radiation condition and this implies that this field consists solely of 
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branchline - K 

Fig. 2.2. The path of integration t in the complex a-plane. 

complex a-plane 

« branchline 

either plane waves travelling in the direction of the positive z-axis or waves 
decreasing exponentlonally in this dlrpction. If the sign of the square root 
(K 2-a2)2js chosen such that Re ( « 2 - a2)2>o In the entire a-plane then only the 
solution 

(2.4) rfj J f(«)exp [- j a x - j ( K 2 - a 2 ) 2 ^ da 

satlfies this requirement. The cholse of the square root implies that the 
branch cuts a re situated at lm(a ) = 0 and K < ' Re (a) < co (Fig.2.2.) . 

The path of integration in the complex a -plane must run the full range 
from -<x) toooas shown in Fig. 2.2. The reason for this choice of the limits of the 
Integral is that we expect in the plane z = 0 different field representations for 
x<0 and x>0, respectively, on account of the discontinuity In the boundary 
conditions at x = 0, z = 0. For a precise determination of the contour I in the 
complex a-plane we must determine the behaviour of the square root 
( " 
Let 

K 2 - «2 )2 in the complex a-plane. 

(2.5) 2 2 -i 
{K^-a ) 2 

^^^"2 

in which X]̂  and f2^^G real , and let a = a + j a 

* 2 2 2 2 2 then by squaring both sides of Eq. (2.5) we obtain « - a + a = « * _ « 
^ ^ L 2i 

and ""^i^o ^l ' '2 

Since * is bounded as z —>tx) we must assume that "2—0 on the path of integration 
Consequently, "̂ i " 2 ^ 0 , or since K I > 0 (see above) we have a j a 2 > 0 . This 
situation occurs only in the first and the third quadrants. For this reason the 
path of Integration £' is located in these regions of the complex «-plane. Further 
the contour may not extend to infinity In a direction other than along the real 
axis because of the boundedness of the field at any finite x. Therefore, the path 
of Integration must pass along the real axis to Infinity in the first or third 
quadrant. 
The boundary conditions from which the spectrum function is to be determined 
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(2-6) ö<i>Vöz = jkT,**, 0 < x < o o , z = 0, 

(2-'̂ ) ö<j>Vöz = O, - o o < x < 0 , z = 0. 

With the aid of Eqs. (2.1), (2.4), (2,6) and (2.7) we have 

(2.8) 2 ^ J f (**) [ l^ ' !+( ' ' - « )^ J e x p ( - j a x ) d a = - 2kT exp ( j a ^ x ) , 0<x<(x>; 

ï 

(2.53) 2 ^ J f(a) (K^-a^)5 exp (-jax) d a = 0 , - o o < x < 0 . 

ï 

Eqs. (2.8) and (2.9) a r e dual integral equations in the unknown spectrum function 

f (a). 

2.3 T h e s o l u t i o n o f t h e d u a l I n t e g r a l e q u a t i o n s 

It is convenient to introduce the following notations: 
The domain of the complex a-plane above the path of integration (the upper half-
plane) will be referred to as D+ and the domain below the path of integration t 
( the lower half-plane) as to D . Further , functions which are free of singulari­
t ies and zeros in D+and of algebraic growth at infinity therein will be denoted by 
the subscript + and those free of singularit ies and zeros in D~ and of algebraic 
growth at infinity therein will be denoted by the subscript - . 

The dual Integral equations Eqs. (2.8) and (2.9) may be solved as follows. 
If we bear in mind that x is negative in the left-hand side of Eq. (2.9), we may 
close the path of integration with a semicirc le at infinity In D+ provided that this 
procedure does not lead to any additional contribution to the integral. 
This latter requirement is only fulfilled if f ( a ) . («(2-a2)2 tends to zero as 
)a|—ooin D+ by virtue of Jordan 's lemma (WHITTAKER & WATSON [ l927a ] ) . 
Let g^ (a) be any function which is regular in D+ and of algebraic growth at 

infinity therein, and let g +(a)-»0 as |aj-.-ooin D"̂ , then the Integral equation of 
Eq. (2.9) is clearly satisfied by: 

(2.10) g ^ ( a ) = f (a) (K^-a)^ 

The function g^ fa) is now substituted into the first integral equation of Eq, (2.8). 
We then obtain 

(2 11) 2 ^ J S+^'">[^'^'^''f " - « ) ' M e x p ( - j a x ) d a = - 2k))exp ( j a^x) , 
t 

0 < X < oa. 
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def „ „ _ i 
We introducé the function K (a) = l+k')('('^ -o'^) ^.This function has two sin­
gularities in the complex a-plane: 

(1) a branch point a =-K in D'*' ; 
(2) a branch point a = K in D ". 

We now assume that K (a) can be written as a product of two functions K .̂ (a) 
and K_(a) which have the following propert ies: 

(1) K+ (a) K. (a) = K (a) on Ï ; 
(2) K+(a) is regular in D^ and has the behaviour K4.(a;-—1 as |a —— oo In D"""; 
(3) K_ (a) is regular in D"and has the behaviour K_(a)—1 as |a|—».oainD" 

That such a factorization is possible is known from the general Wlener-Hopf 
theory (NOBLE [l958b])and explicit expressions for K^ (a) and K_ (a) are given 
in the next section. 

The integral equation can be written as 

(2-12) 2^ J g^ (a) K^(«) K_(a) exp ( - j ax)da= 2k)? exp (ja^x), 0 < x < o o . 

i 

By virtue of Cauchy's theorem we may write for the right-hand side of Eq. (2.12) 

/o iQ\ «, , . > S k i f exp ( - j a x ) , 
(2.13) - 2k7; exp j« x = „ . f ^ '' 'da, 

Ï ° 

provided that the path of integration £ is indented above the pole a= -a^. 
This leads to the integral equation 

^^•"' i i j j [ g+ (") ^ <«) ̂ - (<*> - ( I T Ï S 1 ê P (-i"^) d a= 0, 0 < X < CO . 
£_ o 

Likewise in the integral for x > 0 we can close the path of Integration with a 
semicircle at infinity in D" without making any additional contribution to the 
integral on the assumption that a function h . (a) exists which is regular in D" and 
of algebraic growth at infinity therein and satlfies the following requirements: 

(1) h . (a ) = g^ (a ) (a+a^)K^(a ) ; 

(2) h _ ( - a ^ ) = 2 k ' ; / K _ ( - a ^ ) ; 

(3) h_(a) / (a+a^)= 0^^_1^ as | a | - « - M i n D ' . 

Substitution of this function h_(a) In the integral equation leads to 

(2.15) - ^ (ïJlzi^ K (a)-^^^'\exp{-iax)(ia =Q, 0 < x < o o . 
2ir}Jl(at-a) - • ' (a+a ) J 

1 ° ° 
It is clear from the second requirement for h_(a) that the non-exponentlonal 
part of the Integrand of Eq. (2.15) is regular in D " . The function h. (a) is a 
product of three functions which are regular in D+. Moreover, h_ (a) is regular 
in D , hence this function is regular in the entire a-plane and has algebraic 
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behaviour as a tends to infinity. Accordingly, we denote h_(a) by h ( a ) . Such 
functions a re called integral functions. We proceed to examine the behaviour 
of h(a) as a tends to infinity in order to apply the extended form of Liouville's 
theorem (NOBLE [ 1 9 5 8 c ] ) . From the third requirement we conclude that 
h ( a ) = O ( a +*I), q < 1 as |a|—>ixi. From Liouville's theorem h (a) must be a 
polynomial of degree less than or equal to [ q ] where [ q ] is the Integral par t 
of q. From the fact that q < 1 we state that the polynomial contains only a 
constant, viz. h (-a^) =h_ (-a^^). 

From all this we obtain 

(2.16) f (a) = 2 k 7 [ ( * ^ - « ^ ) ^ K _ ( - a ^ ) K (a) (a+a^) j " ^ 

t 
and <t> (x,z)= exp (ja^x + j-y^z) + exp (ja^ - j ^ ^ z ) 

. -jax- i (" - g )^ z J d a 
^ ' ' "" 2,rj J (a + a ) ( K 2 - «ii)5K {-a^)K (a) ' 

£ ° 
Applying once more the boundary condition at x>0, z = 0, Eq (2.6), we obtain for 
the field distribution at the absorbing half-plane 

t / >̂ - 2 I exp (- j a x ) d a 
(2.18) **(x.0) = 2 ^ J K (-a )K ( a ) ( a + a ) - '><x 

£ 

< 00 , z = 0 . 
, _ , J a i I a + " } 

o' + 

2.4 T h e f a c t o r i z a t i o n of K ( a ) . 

The required factorization of K (a) may be car r ied out with the aid of 
Cauchy's integral theorem. In order to accomplish this we note that the mult i ­
plicative decomposition ofK ( a ) is essentially equivalent to the additive decom­
position of the logarithm of K(a).For convenience' sake we introduce the follo­
wing notation: 

(2.19) L(a) = ln rK(a)l 

The function L (a) satisfies the Holder condition 

(2.20) | L ( a ^ ) - L (02) I < A \ a^-a^ 

with A>0 and n>0 and has the behaviour at infinity 

M 

(2.21) L(a ) = O ( |« |" '^) , fori a | 
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We now define two functions 

(2.22) L (a)^^ ^ f ^ M d £ , „ j ^ D ^ 
+ ' ' — 2 Tj J (s -a) ' 

£ 

<2,23) L (a)'^ ^-Ir L (s) d s , a i n D ~ . 

These integrals a re absolutely convergent by virtue of Eqs. (2.20) and (2.21), 
provided thata does not lie on the path of integration ^ . The function L + (a) is 
regular in D"*", the function L_(a) is regular in D"(NOBLE [ l958b ] ). For a 
point a , on the contour we define 

(2-24) L ( a ) ^ ^ l i m L (a) 
-û  1 ' + ^ 

a — a ^ 

where a—^a along values in D"*"; 

def 
(2,25) L_ (a^) = lim L_ (o) 

" ^ " l 

where o —» a, along values in D" 

we now state that 

(2.26) L^ ( a ^ ) + L_ (a^) = L ( a ^ ) . 

In order to prove this statement the limits In Eqs. (2.24) and (2.25) have to be 

determined with the aid of Eqs. (2.22) and (2,23) (DE HOOP [ 1963] ), 
After some manipulations with the Integrals in Eqs. (2.22) and (2.23) we obtain 

(2.27) ^ ( « l ) = ^Mai)^ S T T ^ J l i ^ 
i 

(2-2«) L.(a^)-L(a,)-^5>J^fè?-) 
£ ^ 

where ? denotes the Cauchy principal value (WHITTAKER & WATSON 
[ 1927b]). Addition of these formulae yields Eq. (2.26). The formulae (2,27) 
and (2.28) a re a special case of PLEMELJ 's formulae, (MUSKHELISHVILI 
[ 1 9 5 3 ] ) . 
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complex a -plane 

>h}-----

Fig. 2.3. The deformation of the contour ^ in order to cal­
culate the function K.̂  (a). 

From a calculational point of view we deform the path of integration £ ,as 
shown in Fig. 2.3. The loop integral around the branch line gives three contri­
butions : 

•^ oo 

L („) = J - f L(s)ds J _ C L(s)ds ^ (* h ( ^ ) d s _ 
+ ' 27rj J (s-a) 2TJ J ( s - a ) 2,rj J (g - „ ) 

C K-S K-S 
(2.29) 

,2.4 h-. (s) is obtained from L (s) by replacing - j ( s 2 - «2)2 j^y ( g ^ . ic')2_ 
The contribution from the circular a rc C around the branch point K can be 

shown to vanish in the limit of vanishing radius, 
Thus we obtain 

00 

ds 
:) (2.30) 

00 00 

• / ^ = J _ f L (s) ds J _ f L i (s) d 
"+ ^"' 2TJ j (s -a) 2)rj J ( s - a ) 

or 

(2.31) 

o r 

(2.32) 

r -1 1 r f-J^^ - «̂  ) + k , 1 ds 

K (a) = exp 

In a s imilar way we find 

(2.33) ^ - <''> = ^''P 

DO 2 2 i 
r 1 f / - i ( s -K ) ^+ k , Ï _ds_ ] 

cx) 2 2 — 

L^JH-TTT^T;;}—aJ-
These expressions for K + (a) and K_ (a) can be used everywhere in the a-plane, 
except on the path of integration. 
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2.5 A s y m p t o t i c e v a l u a t i o n of t h e s c a t t e r e d f i e l d 

Consider Eq. (2.18) for the field directly above the absorbing surface 
(x> 0, z = 0). We may supplement the contour by a semicirc le at infinity in the 
lower half-plane D~. There a re two singularities of the integrand: the pole 
a = -OQ and the branch point a = « . 
The contribution from the pole Is : 

as 2 exp (ja^x) ^^ 
(2.34) * (x,0) = K l-a )K (-a ) " 'f' exp ( j a x), 0 < X < . M 

- ^ o '̂  + ^ o 

where 

27 
(2.35) o 

k , 

The conclusion is that the contribution from the pole gives a term which exactly 
agrees with the field just above the absorbing surface far from the discontinuity 
at X = 0. We should also say that <l>^^represents the field above the x,y-plane 
as if there were no discontinuity in the admittance and the entire x,y-plane 
were to consist of sound absorbing mater ia l (cf. Chapter I). 

The loop integral around the branch line gives: 

CX) 

(2.36) <!, dif (^,0) = ƒ ^dif ^^^ ^^p ^_.^^^ ^ ^ 

K 

where 

^•f 2K (a) r 1 -, 1 
(2.37) ^'^'Ua)-~ • M - - - ^ • 

^' 2jr j (a+a J K (-a )LK(a) M ( a ) J 

M ( a ) is obtained from K ( a ) by replacing - J ( S 2 - A C 2 ) 2 by j(s2-(c2)2 _ 
Thus «t^^^ Is the field component that indicates the scattering of the plane 

wave by the discontinuity in the boundary conditions at x = 0, z = 0. 
The approximation of this integral for the case x—> oo can be carr ied out with 

the aid of an asymptotic expansion of the Integral (ERDELYI [1956 ] ). 
In order to perform the Integration required by Eq. (2.36) the behaviour of 
\f/<iif in the vicinity of the branch point K is important. It turns out that (^dlf_ 
0(a-it)2 as a-~x.For a Fourier Integral whose integrand has a singularity of this 
simple type at an end point of the interval, it can be shown that 

ƒ ' 1̂  (a) exp (-jax) d a = A X ^ exp (- j"x) 
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This solution, where A is some constant, has the character of a wave with de ­
creasing amplitude in the positive x-direction. 

Eq.(2.381 is usually called the "edge wave" approximation (CLEMMOW 
[ l 9 6 6 c j ) . 

2.6 T h e q u a n t i t i e s P e d e e ' ^ ^'^^ ' ^ s t a t 

We must derive a quantity which indicates the additional absorption due to 
diffraction ofthe waves in the neighbourhood of the edge. Therefore, we introdu­
ce Pedge being the additional power absorbed by an infinitely long s t r ip of the 
absorbing half-plane with unit width in the y-direction. In the previous section 
we pointed out that the total field consists of two contributions: <t>̂ ^ and <|dlf 
4,dif ig the field that gives r i se to an addltitional absorption. For the derivation 
of Pedge w® refer to the general formula for sound absorption, Eq. (1.18). For 
Pgdge ^ i ^ leads to: 

(2.39) 1 X 
o 1 Re (1) lim f , f ( • t , „, , 2 , as , 2 ) 
Pedge = 2 - ^ X-*-ooJ d y j { |p (x,y 0) | - | p (x,y.O) | | dx 

0 0 
Note that Pedge has been expressed as the difference of the true absorbed power 
and the extrapolated asymptotic value of the absorbed power. The integration 
with respect to the variable y is very simple being unity since 

|2 

and 

Hence we obtain: 

| p (x,y,z) I = I <t>*̂ (x,z) 

|p^'(x.y,0)|2 =1 *^«(x.0)P 

(2.40) p ^ = i S ^ I l ) li"" f | < l , ^ x , 0 ) | ^ - | * ^ ' ( x , 0 ) l ^ d x 
edge P Q C X — ^ M J • I I I 

0 

lim f i | * i i f ( , , ( „ | 2 , 4 , d l f ( ^ , 0 ) * - ^ V , 0 ) p^C X-

*'*'**(x,0) «J-̂ ^x.O) } dx, 
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00 " 

We have Introduced an upper limit since J $*• (x,0) |2dx and •' * (x,0)| dx 
are not convergent. 0 0 
The difference between these integrals does converge on account of the fact that 
i|>dif approaches zero strongly enough as x-< oo. We now have a sum of three 

integrals: 

X oo 
(2.41 •̂^ X^^^f *") '/''̂ '̂ «) exp (-jax) da r ^^^%)expCi^x)6& 

X oo 

=^Z^\ dx ƒ /^^a)daj /*^^(0)exp[-j(a-0)x] dfi 

00 oo 

i ^ J *^U'^)da\ ^Clir^^^ e x ^ - j ( a - f f ^ ) x ] - l d f f ^ lim 
X' 

X 00 

(2.41.II) lim ^as* ( . ^ f dif 
X-^oo * J exp(-]a^x) dx j ^ («) exp (-jax) da 

0 " 

00 

= S o o ' ^ ^ ' ' f *^''"(«) ^ ^ P C - J ( 0 ' ^ « 0 ) X ] - 1 ^„ 
X"" J -](«<-ao) 

(2.41.ni) lijn 
X !^Do ^^^ j expöaj jX)dx/ '̂̂ ^ (a )expüax)da 

0 * 
00 

^^ ^as j ^dif* e x p [ j (a+ap) x ] - 1 
—»-oo J ^ ' ' ' • " ' * 
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The te rms containing X in the last two integrals (Eqs. (2.41.II) & (2,41.111) 
approach zero in the limit X-» oo by virtue of the Riemann-Lesbesgue lemma 
(WHITTAKER & WATSON [ l 9 2 7 c ] ), since we exclude the case aQ= -K . I n 
the first integral (Eq. (2.41.1)) a diffilculty a r i se s as a-i/3. For this reason the 
integral with respect to 0 i s broken up into three par t s : 

(2.42) 
_ a-E 

lim f ,c ,^dif*^^^ e x p [ - j ( a - g ) x ] - 1 

- j ( « - / 3 ) 
d^ 

00 

ƒ 
, , ^ d l f - ^ ^ ^ e x p [ - j ( a - ^ ^ ) x ] - l ^ ^ 

a + s 

a+c 

+ƒ i dii*,^, e x p [ - j ( a - /3) X ] - 1 
W) d 0 

a-e 
-j {«- 0) 

(2.43) Ö
a-C 
'' rl^^^^*(a^ e x p [ - j ( a - g ) x ] 

^'^' -Ua-0) 
d0 

oo 

• ƒ *"" + I *' (iS) 

a + E 

e x p [ - j ( a - | 3 ) x ] 
- j {a - / 3 ) 

d/3 

a - e 

/

oo 

j ( a - 3 ) J Si«-P) 
a+E 

. r V " % . ö ) exp[-j(a-g)^].-l ^̂  
a - E 

-j ( a - / ï ) 
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The first two Integrals in Eq. (2.43) approach zero by virtue of the Riemann-
Lesbesgue lemma. The next two integrals can be combined: 

(2.44) y(''Z-M)4L ƒ 
where 9 denotes the Cauchy principal value, 
The last Integral can be brought into a suitable form by choosing a new variable 
u = X (a - /3 ). This leads to 

(2.45) 
eX 

"™ f fd i^* ( a - u / X ) ^ ^ P ^ J " ^ - ' du 
X-^OOl ^ \ < I _ j y 

lim C 
C-^ooj 

-EX 

ex 

ƒ 
-ex 

= ^ ^ " ^ a ) " ' " / exp (-ju) - 1 ^^ 
^ -^X-^oo ƒ -]U 

^dif*(„) ƒ £i£(l) du 

/dif* , , = ir \A (a) , 

If e is small , we may consider ^ (^) as a constant in the integration interval, 
Taking together all resu l t s , we obtain: 

oo 

^ i R e T ^ r r . d i f i^dif* 

edge -^J^^Jj ' ';\J,, '^' Clad 3 
(2.46) 

^ , , r ,/, dif , , , as * ,/ dif'" , , ,;, as 
1 Re(T) I - y (a) f + lA (a) y 
^ p c J - j ( a : + a ) 

o Jt u 

1 ReCl) I ,dif* , , ,dif , , , 
+ h IT „ V J ^ (a) ^ («) da 
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We now define the quantity b to be the ratio of Pedge and the intensity of the 
incident plane wave. Since b has the dimension of a length, b may be conceived as 
the width of a fictitious s t r ip of sound material (totally absorbing, how­
ever) beside the absorbing half-plane. 

For a diffuse sound field we define a quantity bstat as in the sound field, 
the statistical average of b for all angles in the hemisphere. The expression for 
tfetat can be deduced in a s imilar way as has been presented for the derivation of 
^staf. Accordingly, we have 

1 
IT 2 T 

(2.47) '^stat " ^ I '^'^ I b s i n ( 0 ) cos ( 0 ) d 0 . 

0 0 

2.7 N u m e r i c a l r e s u l t s a n d d i s c u s s i o n 

It can be proved that b and bstat a re proportional to the wavelength apart 
from the frequency dependence of v. To this aim consider Eq. (2.46) for the 
additional power Pedge- Replacing a by a k in the integrals of Eq. (2.46), yields 
an expression for the additional power Pedge which contains the wave number 
solely in the form of a factor l / k . 
In fact, kb is a more characteri t ic quantity than b, since kb is a function of the 
admittance only and is a dimenslonless quantity. For some values of v, taken 
from the Impedance diagram of Sillan SP 100, 5 cm thick (Fig.1.2.) kb and 
kbstat have been calculated with the aid of a digital computer. 

The evaluation of the integrals occurring in the expression for Pedge p r e ­
sents no considerable difficulties, since all Integrands a re smooth functions of 
the variables Involved. 
Consequently, the integration with respect to the variables in the expressions 
for K+ (a) and K- {ff) and with respect to the variables a and ff in the expression 
for Pgdge has been carr ied out with Simpson's rule. The integration with respect 
to the angle of incidence 0 and the azimuth ip has been done with the trapezoid 
integration rule. 

In Fig.2.4. the quantity bgjat has beenplottedas a function of frequency for 
the values of the admittances of Sillan SP 100, 5 cm thick. The theoretical 
resul ts have been plotted together with the experimental data of KUHL [ i960 ] 
and TEN WOLDE [l967 ] . The graphs show that the theoretical curve p r e ­
dicts higher values than the experimentally observed ones for the major part 
of the frequency range. Some reasons for this behaviour can be surmised: 
(1) It turns out that the major part of the integral with respect to the var iab les^ 
and 0 in the expression for bstat resul ts from the range where 0 approaches 
90°and ip = 180°. See also Fig.2.5 where kb cos (0) has been plotted as a func­
tion of 0 for two different admittances.' The scattered field near the edge shows 
some resemblance to a wave excited by a l ine source at the edge. (KARP & RUS-
SEK [l957]).This scattered wave will be referred to as the "edge wave" .The asjrm-
ptotic behaviour of this wave is identical with the behaviour of 4> in Eq.(2.38) 
For the values of <p and 0 referred to above the wavelength ofthe edge wave dif-
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fers but little from that ofthe incident wave and the directions of propagation are 
the same in contrast to the case where (C = 0°. For a proof of this statement let 
us compare the expressions for the asymptotic behaviour of (Eq. (2.38) ) and the 
Incident wave at z = 0. The x-dependence enclosed in the exponentional part of 
these expressions a re exp (-j"x) and exp (jao x), respectively. For angles refer­
red to above *—•.-k anday—>K.Thus considerable interference between the two 
waves is possible and may give r i se to large edge effects. Stringent requirement 
must be imposed on the isotropy of the incident sound field if the experimental 
values found for the edge effect a re to agree with the theoretical values, which 
were derived on the assumption of complete isotropy. It Is a well-known 
experimental fact that the maintalnance of Isotropy for angles near grazing 
incidence is hard to achieve, especially at low frequencies. In a reverberation 
chamber having acoustically hard boundaries only, a diffuse field builds up 
automatically as long as non-directive sources a re used, even for plane boun­
daries and no further measures to ensure diffusivity. If, however, a patch of 
highly absorptive material is applied to one of the boundaries, it will tend to 
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distort the diffuse sound field scattering the grazing waves and absorbing those 
to wlch it is most closely coupled. A sufficient diffusivity can be maintained 
in that case only by introducing diffusing elements. The larger the absorbing 
a rea is and the higher the absorption coefficient the more difficult it becomes 

to maintain a high rate of diffusivity. The experimental resul ts a re a l ­
ways a compromise between the requirements of a sufficiently large sample in 
order to yield accurate values of a^ and an adequate diffuse reverberant field. 
For this reason, as the requirements as to diffusivity a re far more serious for 
the edge effect constant than they a re for the absorption agtat. the expectations 
for identical resul ts obtained from different chambers and from theoretical 
considerations a re not hopeful. 
(2) In the Introduction of this chapter we noted that the mathematical model of 
the sound absorbing half-plane can only be a correct approximation ifthe dimen-
feions of the sample a re " l a r g e " with respect to the wavelength. However, at low 
frequencies this requirement is not fulfilled in the reverberation chamber. In 
that case the present analysis can not predict a correct description of the wave 
phenomena at the edge of the sample by virtue of the interaction between the 
scattered fields from the edges of the opposite "ha l f -p lanes" . 

It is unfortunate that the experimental values presented in Fig.2.4 have 
been obtained from samples whose absorbing surfaces lay some 5 cm higher 
than the surrounding hard surface. This, effect could not be incorporated in 
the theoretical model. Some Insight into the magnitude of the possible influence 
may be gained from Chapter IV. 

At high frequencies, n is practically constant. Hence, one would expect 
the same to be the case for kbgj-at. consequently, bĝ -ĵ j- is expected to approach 
a hyperbola. This agrees well with experiments. 
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CHAPTER in 

D i f f r a c t i o n a n d a b s o r p t i o n by an a b s o r b i n g s t r i p 

3.1 I n t r o d u c t i o n 

In the previous chapter we have investigated the sound absorption by an 
absorbing half-plane. It is expected that the half-plane model predicts correct 
values for the edge effect for a sample of any shape as long as the frequency 
is high enough, since the edge effect is a local effect and in this case the 
Interaction between different par t s of the boundary can be neglected. At low 
frequencies however, this assumption holds no longer and therefore a refined 
theory has to be developed. Now the simplest case of a sample where interaction 
between different par ts of the boundary can be taken into account mathemati­
cally, is the case where the sample has the form of an infinite strip of finite 
width. Accordingly, we consider the idealized problem where a single plane 
wave is incident upon an infinite hard plane, a part of which is covered by a 
straight s t r ip of finite width. The principal purpose of this investigation is 
to find under which conditions the interaction between the edges of the str ip 
becomes negligible. Again it is assumed that the str ip consists of locally 
reacting mater ia l , the properties of which can be characterized by an acoustic 
admittance. 

Work on the theory of diffraction of a s t r ip has been done previously, using 
different techniques. MORSE and RUBINSTEIN [ 1938] treated diffraction of a 
plane wave by a perfectly hard and a perfectly weakistr ipbyuslng the technique 
of separation of variables in the co-ordinates of the elliptic cylinder, which 
gives r i se to an expansion of the wave function in t e rms of Mathieu functions. 
The expansion coefficients are determined from the boundary conditions. For the 
case of intermediate impedances the boundary conditions lead to an infinite 
system of linear equations in the coefficients of the expansion. PELLAM 
[ 1940 ] employed this procedure and solved the system of linear equations 
by the method of successive approximations. The major problem is that the 
Mathieu functions have not been tabulated for the necessary values of the 
arguments in the case under consideration. For this reason PELLAM restr icted 
himself to real impedances. For real impedances his resul ts agree with those 
obtained in the present chapter where the impedance may have have any 
complex value. 

LEVITAS and LAX [ l 9 5 l ] formulated the problem in te rms of an integral 
equation for the sound pressure on the s t r ip , with the aid of the free space 
Green 's function. From this integral equation a stationary (in the sense used 
in the calculus of variations) expression for the scattered amplitude was 
constructed. This variational approach gives fairly accurate estimates of 
the scattered amplitudes if one inser ts a judicious approximation for the 
p ressu re distribution on the s t r ip . By virtue of the scattering cross-sect ion 
theorem the variational procedure also leads to a stationary expression for 
the total cross-sect ion. They estimated the ratio of the scattering cross-sect ion 
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to the absorption cross-sect ion under the assumption that the pressure on the 
s t r ip could be represented as the unperturbed p ressu re multiplied by a complex 
frequency-dependent factor. This is the weak point in the whole analysis. The 
asumption that the p re s su re on the s t r ip could be represented by the unperturbed 
p re s su re t imes a frequency-dependent factor is only valid at low frequencies. 
For these frequencies the p ressu re above the str ip equals approximately twice 
the incident p ressu re . Although the procedure yields a reasonable approximation 
for the absorption cross-sect ion of the s t r ip , the accuracy is inadequate to 
calculate the edge effect. This was to be expected as the model does not take 
into account any perturbation of the sound field near the edges. However, for 
normal incidence and low absorption the agreement with PELLAM's resul ts 
a r e acceptable, for intermediate and high frequencies too. 

NORTHWOOD et al. [ l 9 5 9 ] employed the same method as LEVITAS and 
LAX but for random incidence of sound and complex admittances. Afterwards 
NORTHWOOD [ l 9 6 3 ] refined the method for rectangular patches. The 
theoretical resul ts have been compared with the experimental resul ts of a 
round robin, reported by KOSTEN [ l 9 6 o ] . It appears that there is a slight 
discrepancy at high frequencies, where reverberation chamber results a re 
systematically higher than the calculated values. Apart from this, there a 
substantial agreement and it appears that the average of results for several 
reverberation chambers a re indeed the value that would be predicted from 
acoustical-impedance data. 

COOK [ 1 9 5 7 ] has considered both the s t r ip and the c i rcular patch. In 
order to find the sound field in the air near the absorbing surface he images the 
actual motion of the air to be generated by radiating "membranes" having a 
spatial distribution of vibrating amplitudes. The superposition of these vibrations 
Is a Fourier se r i es expansion for the actual motion of the absorbing surface. 
Each membrane radiates its own field, and the superposition of the fields gives 
the scattered sound field. The coefficients of the different membrane motions 
a re then determined from the boundary condition on the patch. 

MANGULIS [ l 9 6 5 ] solved the s t r ip problem by using the Green 's function 
formulation to obtain an integral equation for the p r e s su re on the s t r ip . The 
integral equation is then solved by the use of a Fourier se r i es expansion for 
the p r e s su re on the s t r ip . This leads to two simultaneous se ts of linear equations. 
The final numerical computations have been performed by solving a truncated 
system of equations by successive approximations. 

Our method uses a plane wave spectrum representation for the scattered 
field. Further , the p re s su re on the s t r ip is expanded in a Fourier se r ies , which 
differs from the one employed by MANGULIS. Elimination of the unknown 
spectrum function (cf. Chapter II) then leads to a single system of linear 
equations which is s impler and more convenient to handle. Graphs a re given 
in which the absorption coefficient has been plotted against the strip width 
with the angle of incidence and the admittance of the s t r ip mater ia l as pa ra ­
me te r s . Comparison has been made with the absorption coefficients, obtained 
from the absorbing half-plane analysis. 

3.2 M a t h e m a t i c a l f o r m u l a t i o n of t h e p r o b l e m 

A plane sound wave is incident upon a perfectly rigid wall which conincides 
with the plane z = 0. On this plane an acoustic s t r ip is placed which extends 
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from x = - d / 2 to x = d / 2 and indefinitely in the y-direction. We assume that 
the s t r ip consists of locally reacting sound absorbing mater ia l with a reduced 
specific acoustic admittance v. The spatial dependence of the incident wave 
has been specified in Eq. (1.24). As has been explained in Chapter I the th ree -
dimensional diffraction problem can be reduced to a two-dimensional form. 
(Fig, 3.1). 

The total sound pressure in the half-space z>0 is written as the super­
position of three contributions: the incident field * i ' a field ^^ reflected against 
an acoustically rigid boundary of infinite extent and a scat tered field 4>^. Accor­
dingly, the expression for the total field can be written a s : 

(3.1) * ( x , z ) = exp ( j a ^ x + J 7 ^ z ) + e x p ( j a ^ x - j v ^ z ) +<^^(x,z) . 

Again, we adopt the plane wave spectrum representation, employed in Chapter 
II, of the scattered field 

(3.2) 4 '^(x,z)=-^J i(a)exvl-iax-]{K^ -a^)K]aa. 

This representation satisfies the Sommerfeld radiation condition, and this 
implies that the field consists solely of either uniform plane waves travelling 
in the direction of the positive z-axis or non-uniform jvaves decreasing 
exponentlonally in this direction, provided that Re(/( - a 2 ) 2 > o for any value 
of a in the complex a-plane. On the same grounds as given in Chapter II, £ is 
chosen to extent from -oo to oo ; hence Eq. (3.2) amounts to a Fourier integral 
representation of 4> .̂ The points a-±K a re branch points and it is therefore 
necessary to determine how the path of integration avoids these points. The 
relevant problem has been solved in Chapter II. The path of integration £ in 
the complex a-plane is the one depicted in Fig. 3.2. 

Fur thermore, the field at the s t r ip is assumed to have a Fourier se r ies 
expansion of the form 

00 

(3.3) <I>(x ,0)= ^ ^ 0 Aj^ cos [ 7 r m ( x / d - è ) ] , w h e n | x | < d / 2 , z = 0 

where Aj^is the complex str ip field amplitude of order m. 
We now have two representations of the total field at the s t r ip , in which either 
the spectrum function f (a) in Eq. (3.2) or the constants Ajj,in Eq. (3.3) can be 
considered as unknowns. One of the unknowns can be eliminated with the aid of 
the boundary conditions in the plane z = 0: 

<̂ -*> 3 * ^ 5 2 = jk.,** , | x | < d / 2 , 

(3.5) dé/dz= 0, | x | > d / 2 . 

In fact, we chose to eliminate the spectrum function f (a); then an infinite 
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Fig. 3.1. Geometry of the diffraction by a strip. 

-Cr 

Fig. 3. 2. The path of integration t in the complex a-plane. 

a -plane 

-C^ 

system of linear equations in which the amplitudes A occur as unknowns, 
is obtained, 

Using Eq. (3.1) and Eq. (3.2) at z = 0 and equating the result to Eq. (3.3) 
gives 

00 I f 
(3 6 ) 2 A ^ c o s [ m T ( x / d - è ) ] = 2 exp ( j a x) + f (a) exp (-jax) da, 

m = 0 27rj -̂  

when X < d / 2 . 

By multiplying the left- and the right-hand side of this equation by 
c o s [ n i r ( x / d - 1 / 2 ) ] , integrating between the limits - d / 2 and d / 2 and using 
the orthogonality propert ies of the cosine function we obtain 

d/2 
(3.7) 2e C 

A = 5 / exp ( j a X) cos r n j r ( x / d - 5 ) ] + 
m d .̂  o •- -• -d /2 
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where eo = l and En =2 when n > l . This expression can be simplified by the 
introduction of the quantity 

d/2 

Vĵ  (a) ^ ^ _ I e x p ( - j a x ) cos [ n * n ( x / d - i ) ] d x 
(3.8) d J ^ / 2 

= j a [ e x p ( - j a d / 2 ) - ( - l ) " e x p ( j a d / 2 ) ] , 

Then 

(3.9) 
A = 2e n 

d (a2 - ^ 2 „ 2 / ^ 2 ) 

V (-a ) + ^ n C V (a) f («) da . 
n n ^ o' -r—r I n ^ ' ^ ' 

27rj J 

I f r, 9 1 
[ m ; r ( x / d - i ) ] = f (a) (K -a)^ exp ( - j « x ) dx, 

9 ir i - ' 

Upon substitution of Eqs. (3.1) (3.2) and (3.3) into the boundary condition Eq. 
(3.4) we obtain 

00 
ki; S „ A cos ' ni = 0 m . . 

2 T ] 
J. 

(^•^°^ when Ixl < d / 2 . 

whereas the right-side of Eq. (3.10) Is known to vanish outside the s t r ip by 
virtue of the boundary condition Eq. (3.5). Application of Fourier ' s inversion 
theorem to Eq. (3.10) leads to 

d/2 

ƒ 00 J 

k?; :; A cos [ m 7 r ( x / d - - 2 ) ] e x p ( j a x ) d a = j f(a) ( « ^ - 0 ^ ) 2 
-d /2 ^" = 0 

With the aid of Eq. (3.8) we obtain 

krjd 

,7 2 _, 
] ( « - a ) 

(3.12) f<" ) - 2 2.è S i = 0 - % - m * ( « ' -

The substition of this expression in Eq, (3.9) eliminates f (a). We then obtain 
an infinite system of linear equations in which the str ip field amplitudes occur 
as unknowns 

(3-13) A = b - S u A (n = 0, 1, 2 . ), 
n n m = 0 m,n m ^" ' ' ' ' 

in which 

(3.14) b ' M 2£ V ( - a ), 
n n n ^ o ' 
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(3.15) u d̂ f k^^de^ e ^ („) . ( a ) / ( . 2 . , 2 ^ è , „ 
m,n 2 T J "^ ï̂  

£ 
By virtue of the symmetry propert ies of Vjj)a) and of the path of integration 
£ , it appears that Ujj^ jj equals zero, if m is even and n is odd or m is odd and 
n is even. 

3.3 T h e a b s o r p t i o n c o e f f i c i e n t a n d t h e c r o s s - s e c t i o n s 

In the present section we shall show that all quantities of physical interest : 
the angular dependenceof the scattering amplitude, the scattering cross-sect ion, 
the absorption cross-sect ion, the absorption coefficient and the extinction c r o s s -
section (i.e. the total cross-sect ion, being the sum of the scattering and the 
absorption cross-sect ion) , a re expressible in t e rms of the pressure on the 
str ip, 

For our purpose the acousticpower absorbed by the str ip is of predominant 
interest . From the general formula for sound absorption Eq. (1.18), we 
determine the t ime-averaged power flow into the str ip per unit width in the 
y-direction to be 

1 ^^("^ r^^ 1 t ,2 
(3.16) P^ = i < I > ' ( x , 0 ) r d x . 

" o ^ :^d/2 

The intensity of the incident plane wave in its direction of propagation is è /Po" . 
if the amplitude of the incident wave is assumed to be unity. We now define the 
absorption cross-sect ion o^ to be the ratio of the absorbed power to the inten­
sity of the incident wave. Hence, 

d/2 
(3.17) ^ = R^^„. r l , . t , „ , I 2 Re (7,) r | * ^ x , 0 ) | 2 d x 

-d/2 
It is noted that this is an apparent cross-sect ion normal to the direction of 
propagation of the incident wave. 

Another interesting quantity is the ratio of the absorbed power to the 
power incident upon the s t r ip , the latter quantity being è d cos (0)//I>QC. We 
now define the t rue absorption coefficient a t r to be 

tj / ^ d / 2 
^ ® ( ' ' * f i t I ? 

(3.18) a^^= * ( x , 0 ) r d x 
d cos (0) J ' ' 

- d /2 
Upon substitution of the Fourier se r i es expansion for the total field on the 
s t r ip into Eq, (3,18) and evaluating the integrals, we obtain 

Re (»,) 00 
(3.19) a, = - A r / e . 

^̂  cos(0) m = 0 ' ™ ' 
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Fig. 3 .3 . Tlie path of integration C in tiie complex ^-plane 

For the angular dependence of the scattered field we need the asymptotic 
behaviour of the scattered field at large distances from the str ip. In order to 
find this behaviour from the representation Eq. (3.2) we introduce a new 
variable of integration £ , related to a by a = (csin (O. and tne polar co-ordinates 
R, f given in t e rms of x and z by the relations x = R sin (f) . R = cos (f) 
(0<R< CO, I < Re ( f ) <Z)- Hence, 

(3.20) *^ = — 1 - r f [Ks in(J ) ] exp [-j 'cRcos(t-5.)] cos (J) d? . 
2TJ I •* C 

The contour C is depicted ir. Fig. 3.3. The part of C lying along the real axis 
corresponds to uniform plane waves fanning out into the half-space z > 0, 
whereas the a rms running parallel to the imaginary axis correspond to non­
uniform plane waves decaying away from z = 0. At sufficiently great distances 
from the str ip it is possible to isolate a dominant part of the field, namely 
that part whose amplitude falls off as the inverse square root ofthe distance; 
this dominant contribution is known as the radiation field or far field of the 
s t r ip . We now derive expressions for the radiation field from the plane wave 
representation. A heurist ic argument is presented based on what is commonly 
called the method of stationary phase. At points where x R » l the amplitudes 
of the non-uniform waves of the spectrum are very small , and such a waves 
may be neglected. Moreover, the contributions of the uniform waves largely 
annul each other by destructive interference, since / c R » l the phase of the 
waves in general var ies rapidly with f in the sense that a phase change of T 
is achieved by only a small change in ^ . Exceptionally, however, those waves 
for which i, is close to f interfere constructively, since the variation of phase 
with ^ vanishes at ^ = f. Thus it can be argued that only that part of the path 
of integration C in the vicinity 5= f contributes significantly to Eq. (3.20) 
and consequently an approximation to Eq. (3.20) is 
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(3.21) s r ^cos(n r 
^^2: -̂ f [ -csln (O^JT] J e x p [ - j K R c o s ( ^ - f ) ] d f . 

•• C 

It is well-known that the Integral in Eq. (3.21) Is THQ^^) (KR) which is in turn 
naturally replaced by its asymptotic form for KR » I. Finally, then, the 
expression for<i>® in the radiation field is 

(3.22) ^= _i ,. , exp (-JKR) 
^ ' ' ^ ' ' (2rj) 2 f [ ^sin(f) ] cos(i-) ^^^^1 asR—00. 

With the aid of Eq. (3.12) for the spectrum function f (a) we obtain 

kdr; exp (-j KR) 00 

(3.23) 

•(2^j)2 3( ,R)è m=0 ^m V [''^^"(f)] 

d/2 
krj exp(-jKR) 

i 1 
2 

J <̂  (x,0)exp[ j»;xsln(f) ] dx. 

(27rj)'̂  j(KR)2 -d/2 

For the sake of convenience we introduce 

d/2 
aei r ^ 

F ( f)=rk)7 I * (x, 0 ) exp [ j KX sin ( f) ] dx . (3.24) 

Hence 

def 

-d/2 

DO 

(3.25) ^ ^ _ ^ e x p ( - j . R ) ^ ^^^ _ 

j(27rj K R ) * 

This equation represents an outgoing cylindrical wave with a "polar diagram" 
specified by F (f). 

The time-averaged power flow density in the x-z plane associated with the 
scattered field has only a radial component which can be written as 
2/3Q I <t ^ | 2 / PC. Note that the factor /J^ corrects for the power flow in the 
y-direction. The scattering cross-section is defined as the scattered power per 
unit intensity of the incident wave. Thus we obtain by integration over a semi-
cylinder of large radius R 
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jr /2 
0^= r R | *^ | 2 d f 

- T / 2 

s 

(3 26) 
'r/2 

^ f I , 2 
= F( f ) d f . 

2rky , /2 ' 
Another method for obtaining dg is starting directly from the knowledge of the 
distribution of the scattered field on the str ip. In an analogous way to the d e r i ­
vation of (J â  we find 

d/2 

(3,27) a^ = - Re L J * ^ ( x , 0) * * * ( x , 0 ) d x . 

-d /2 

There is a well-known theorem applicable to scattering problems that 
relates the total cross-sect ion a^ to the scattering amplitude in the forward 
direction, in this case specifically the amplitude in the direction of the specular 
reflection (DE HOOP [ 1959 ] ). A direct verlflcationof this theorem is obtained 
by evaluating the expression for the sum of the absorbed power P^ and the 
scattered power Pg per unit width in the y-direction, being 

(3.28) p + p = i 

d/2 

Re j < * n.u - ^^ n.i'^ * > dx 
a s 

d/2 
where n is the inward normal to the s t r ip . If we write 

s t 
<i> = <J> - 2 exp (j a X) at z = 0, 

and «* t* 
n. u ^ = u * at z = 0. 

we find 

I 2 exp ( j a^x ) n.u^ *}'^\-

-d /2 

t* Eliminating n.u by the admittance boundary condition on the str ip and dividing 
by the intensity of the incident plane wave we obtain 

d/2 

(3.30) a ^ = a ^ + ü^ = R e L ƒ 2 exp ( - j a ^ x ) « t ^ x , 0) dx j . 

- d /2 

When the expression for cf̂  is compared with representation of F ( f ) , it follows 
by inspection that ö t can be expressed in t e rms of F (.f ). The result is 

47 



2 
(3.31) a^= - Re [ F ( - f g ) ] . 

k 

where TQ i^ given in te rms of a by the relation f Q = arcsin (OQ/K) . 

3,4 N u m e r i c a l c o m p u t a t i o n s 

The infinite system of linear equations Eqs. (3.15) can be solved by 
truncating the infinite system to a finite one. The solution will evidently be 
acceptable provided that the e r r o r involved in solving N equations approaches 
zero as N tends to infinity. For this reason we evaluate Um,n for large values 
of m and n. For large values of m and n we have from Eq. (3.15): 

U m n ' ^ 0 ( l / m n) as m,n—^c 

A sufficient condition for the uniqueness of the solution is that the matrix 
coefficients satisfy the Koch condition (KANTOROVICH & KRYLOV [ l 9 6 4 ] ): 

00 I I 2 
2 U <oo . 
m,nl '"•"I 

Our system obviously satisfies this condition. 
The truncated system is best solved by the method of successive approxi­

mations. In the zero order approximation we take Ujjj^ji =0 for m /n . Then in 
the matrix only the diagonal elements remain. Consequently, the zero-order 
solution is 

(0) 
A„ = b / ( 1 + U ) • n n ^ n , n ' 

Substituting this zero order approximation into Eqs. (3.13) we obtain a recurrence 
relation tor any approximation of higher order s 

(S+1) DC (s) 
A 1 + U = b - S U ^ ^ A ^ n ^ n ,n ' n ^ . m,n r„ 

m= 0 
m / n 

This process of numerical computation is called "Jacobi iteration" (FOX 
[ 1964 ] ) . A sufficient condition for its convergence is that the diagonal e le ­

ments are predominant, which implies 

I I 00 
1 + U > S U I n,n '^ •̂  „ ni,n . I I m=0 I I 

m / n 
For our problem the diagonal elements a re predominant. 

The main difficulty in the numerical computations lies in the evaluation 
of the integrals in the matrix coefficients. This evaluation can most appropriate 
be done with Simpson's integration rule with a step width adapted to the 
variations in the function. For ,the sake of numerical convenience we rewrite 
Vm (a) as 
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2 a s i n ( 5 a d ) 
V («> = ^ 'i 2 2 7 X ' if rn is even. 

d ( a - X m / d ) 

2 j a cos (2 a d) 

% <«* ^ ~ ^ — 2 ~ 2 7 T ' if ™ i^ °'̂ 'i 
d ( a -,r m / d ) 

and by virtue of the symmetry of the path of integration ;f in a we rewri te 
Um,n as 

~ . d ^ 2 ^ , _ 2 , i . 

U 
2k))E^ ^ 4 a sin ( i ad ) da 

I"'" Ö~Z~ ) T 3 2 2 2 / , 2 , , 2 2 2,_,2, , 2 2 è 
2 TTd J (a - TT m / d ) (a -)r n / d ) (K - a ) ^ 

2 k v e r ^ ' ' 4 a 2 ^.^2 ^ i^^^ ^ ^ 

;7~L3(-7:7 27rd L J ( a ' - , r ^ m W ) ( a ^ - A W ) (K^-a^ )^ 

4a sin ( è a d ) d a 

J (a / 2 2 2 / , 2 , , 2 2 2 , ,2 , 2 2~^ 
(a -n- m / d ) (a - ^ n / d ) ( a - K ) _̂ if m,n Is even; 

00 2 9 
2k>? e r 4 a cos (èad) da M 'm ,n j , 2 2 2 ,2, , 2 2 2 , . 2 ,2 2 I 

2xd ^ [a -w m/d ) (a -ir a /d) (x. -a ) ^ 

^'^"^n r f ^ 
2trd L J (a^-

K 2 2 1 
4 a cos ( 2 a d) d a 

2,rd L J ( a ' - , r 2 m W ) ( a ^ - x V / d ^ ( , 2 . „ 2 ^ ; 

- s 4a c o s ^ ( 5 a d ) d a 

, 2 2 2 , ,2 , 2 2 2 , , 2 2 2 V 
^ (a -n- m / d ) (a -/r- n / d ) ( a -K ) ^ -l,if m , n i s odd. 
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Difficulties could be expected as a= mir/d or a = nir/d. However, at these 
values both numerator and denominator vanish, and the integrand remains 
bounded and continuous. In the integrals containing the infinite range of inte­
gration the upper limit has been taken to be a= 50. The convergence of the 
integrals is very good, as the integrand Is of order 0 (a~3) as a—•oo . 

In Section 3.3 we have considered the cross-sect ion theorem. This theorem 
provides an excellent tool as to the correc tness of the numerical computations. 
Computing the scattering cross-sect ion from Eq. (3.26) by integration with 
respect to the angle 0 , adding the computed absorption cross-sect ion from Eq; 
(3.17), we obtain a value for the total cross-sect ion. This value must be equal 
to the value obtained for the right-hand side of Eq, (3.31). One of the most 
important resul ts of the application of this theorem is the determination of 
the number of equations of the truncated system required in order to yield 
correct values of the s t r ip field constants. In the present instance about fifteen 
equations were adequate to ensure the theorems being satisfied to within a 
relative e r r o r of 10~4. 

3.5 D i s c u s s i o n of t h e r e s u l t s 

We shall discuss the graphs where the absorption coefficient atr has been 
plotted as a function of the str ip width- with the angle of Incidence 0 and the 
admittance of the sample as parameters . We have chosen two values for the 
admittance, corresponding to a medium and a high value of the absorption 
coefficient of the s t r ip mater ia l . All plots show a large increase of the 
absorption coefficient for small s t r ip widths. This is easily understood if we 
bear in mind that for these values of the s t r ip width the pressure above the 
s t r ip deviates little from its undisturbed value over the acoustically hard 
part of the plane; in other words, the p re s su re on the str ip is twice the p ressure 
of the incident wave. It is now simple to see from Eq. (1.20) that a^j. = 4 Re (ri)/ 
cos (0). Of course, this equation is only valid in the limiting case of small 
values of kd approaching zero. From this equation we can understand why 
the absorption coefficient can exceed 100%. If the s t r ip width is increased 
then the p ressu re distribution on the str ip will no longer be uniform but the 
p ressure in the centre of the s t r ip will decrease. The expectation is then that 
the absorption coefficient also decreases for increasing str ip width until 
the limiting value a g has been reached. The extend to which a^j, approach 
a 0 depends to a large extent on the angle of Incidence. At 0 = 0° the limiting value 
a0 is reached rapidly, but at 0 = 60° several tends of units of kd are necessary 
10 reach this limiting value. 

An Important aspect of the graphs is that they yield information as to the 
interaction between the edges of the s t r ip . In order to extract this Information 
we introduce aggp being the absorption coefficient for a s t r ip of given width, 
taking the edge effects to be resulting from two-separate, non-interacting half-
planes. If Interaction between the edges of the str ip does not occur, asep will 
equal atr- The discrepancy between these two quantities is thus a measure 
for the interaction of the edges. We can determine a-sep from the following 
equation: 
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(3.3.) asep = ag + (b '+ b ) / c o s (0» d 

where W is the coefficient, defined in section 2.7, relevant to a plane wave 
incident under an angle 0 , while b - ' is the coefficient belonging to a plane 
wave incident under an angle - 0 . It may be seen from Eq, (3.33) that aggp as 
a function of kd is a displaced hyperbola. This function has been compared with 
the true absorption coefficient obtained from the exact analysis. It is evident 
from Figs, 3.4 - 3.9 that the approximate analysis for aggp yields acceptable 
resul ts for intermediate and large s t r ip widths. The absorption coefficient 

agep equals atj. within 10%, when kd>10. In Chapter II it was stated that the 
additional absorption due to diffraction can be considered as a result of a local 
field in the neighbourhood of the edges of the patch. This is also confirmed by 
the experimental resul ts ofDANIEL [ l 9 6 3 ] , who found that for kd> 5 interaction 
does not occur. 

For a diffuse sound field, we assume that the same analysis holds as such a 
field may be expanded in a set of superimposed plane waves. The plane 
waves, incident under the angles 0 = 0°, 30° und 60° are expected to give a 
good indication as to the behaviour of a str ip in a diffuse sound field. 
That the whole problem can be treated as a real edge effect and not as an area 
effect is a favourable fact for the further refinement of reverberation techniques. 
The statement of KOSTEN [ i 9 6 0 ] that ag is proportional to the relative edge 
lenght is not only confirmed experimentally but also theoretically. The validity 
of this result is confined,of course, to intermediate and large patches. 

For the sake of completeness we present twelve "polar diagrams* (Fig. 
3.10- 3,13). The basic principles governing the polar diagram can be learned 
from studying combinations of simple line sources. For small s tr ip width we 
may consider the s t r ip to radiate as a single line source and we expect a 
c i rcular polar d iagrams. With increasing s t r ip width more line sources may be 
considered to be present on the s t r ip; the p ressu res arriving from these sources 
will differ in phase and consequently, the polar diagram will not longer be a 
circle , Inother words, the str ip will radiate sound in some directions better than 
in others. The wider the extent of the s t r ip the more lobes a re present in the 
polar diagram. The principal lobe lies in the direction of the specularly ref lec­
ted wave which is surrounded by a number of side lobes. 
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CHAPTER rv 

Diffraction and absorption by an absorbing periodically uneven surface of 
rectangular profile 

4.1 I n t r o d u c t i o n 

In Chapter III we have described the wave phenomena associated with the 
diffraction of a plane wave by a sound absorbing s t r ip , lying in an acoustically 
rigid plane. 

However, this mathematical model p resen ts an oversimplified view upon 
the determination of bg(.ĵ (.. When bg^g ĵ-jg determined in the reverberat ion cham­
ber with the aid of Eq. (1.23): 

^E = ^stat + ^'stat ^ ' 

we use a sample consisting of several rectangular patches, which in various 
ar rangements yield various values of the relat ive edge length E of the sample. 
In this way we obtain, for each value of E, a value of the absorption coefficient 
a g . We now compose a graph of ag as a function of E, This plot should to be a 
straight line and its slope with the E-axis yields the edge effect constant bgj-ĝ -̂. 
It turns out that this constant, thus determined, depends not only upon frequency 
and the nature of the acoustical mater ia l , but also upon the distance between 
the patches under test . The lat ter effect can be explained by the fact that the 
scat tered waves from the edges interact with each other resulting in a diminution 
of the edge effect and thus introducing an experimental e r r o r . If the free edges 
of the patches a re separated by about three wavelengths then the interaction 
becomes negligible and we obtain a correct value for bĝ ĝ j 

Consequently, a refinement of the theory is needed if the edges a re close 
to each other. One of the possibil i t ies for studying the interaction of the edges 
is to consider a periodic arrangement of absorbing stripy. The Influence of the 
edges upon each other Is then rigorously taken into account. The periodic 
s t ructure is also at tractive from an archi tectural-acoust ic point of view. In 
many halls for public assembly periodic s t ruc tures of this kind have been applied. 
The quantity of major importance is now the absorption coefficient of the entire 
s t ructure The present chapter is devoted to an investigation of a periodically 
of a periodically uneven s t ruc ture of rectangular profile of either sound absor­
bing ridges or sound absorbing grooves, 

The method used here has been employed before by DERYUGIN [ 1952, 
1953, 1960a, 1960b ] who solved the problem of the reflection of a normally 
or obliquely incident plane wave, by an uneven surface with rectangular 
non-absorbing grooves. The essence of the method consists of finding solutions 
In both the upper half-space and the region containing the grooves by means of 
separation of var iables . The imposition of the boundary conditions at the plane 
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common to the two regions then leads to two infinite systems of linear algebraic 
equations in which the amplitudes of the reflected waves and the groove field 
amplitudes occur as unknowns, respectively. The form of the wave field is 
different for the two regions involved. In the upper half-space the solution 
consists of plane waves which a re either propagating or evanescent in a direction 
away from the interface. In the grooves the wave motion is a superposition 
of waveguide modes either travelling or evanescent in opposite directions. 

In order to obtain numerical resul ts the two infinite systems of equations 
a re solved by successive approximation; through this method any desired degree 
of accuracy can be acquired. 

The principle of the method resembles the one employed by RAYLEIGH 
[ 1907 ] in that the field is expressed as the superposition of plane waves with 
unknown coefficients, while the boundary conditions then lead to linear, 
a lgebraic equations from which the coefficients In the corresponding expansions 
can be determined. However, DERYUGIN's method differs from RAYLEIGH's 
method in this respect , that it first determines the exact s tructure of the field 
in the grooves, while afterwards the field in the space above the corrugations 
is coupled to the field in the grooves by imposing the conditions of continuity 
in the interface. This method is exact; as far as RAYLEIGH's method is 
concerned, this is as least doubtful. 

Anomalies in the wave field have been observed when one of the reflected 
spectral plane waves t ravels along the grating. In that case repeated pertubations 
from all corresponding elements of the surface add in phase and may produce 
intense waves of glancing spectral order . It is interesting to note that anomalies 
due to diffraction at a grating have been detected experimentally a long time 
ago by WOOD [ 1902 ] . The first theoretical treatment of these anomalies 
is due to RAYLEIGH [l907 ] . In addition to this "Wood anomaly» OLINER 
and HESSEL [ l 9 6 5 ] found a resonance type of behaviour in the amplitudes 
of the reflected wave (cf. section 4.5). Another interesting feature of the 
uneven surface is the waveguide type of resonance, which is related to the 
depth of the groove: at special values of this depth an unusually large or 
unusually small absorption is found. 

4.2 D i f f r a c t i o n b y a p e r i o d i c a l l y u n e v e n s u r f a c e of r e c t a n ­
g u l a r p r o f i l e 

In the present section we deal with the diffraction of a plane sound wave 
by the configuration, shown in Fig. 4 , 1 . The uneven surface is composed of 
a periodic s t ructure of infinitely long grooves parallel to the y-axis of a 
car tes ian co-ordinate system. We assume that the upper side of the ridges 
consists of locally reacting sound absorbing mater ia l with reduced specific 
acoustic admittance V-., and that the bottom of the grooves consists of locally 
reacting sound absorbing mater ia l with reduced specific acoustic admittance 
V 2' The side walls of the grooves a re assumed to be acoustically hard. The 

plane z = 0 coincides with the upper side of the r idges . The width of the grooves 
is d, the period of the grooves is/, and the depth of the grooves is h. 

The spatial dependence of the incident wave is specified in Eq. (1.24). 
As has been explained in Chapter I we may reduce this three-dimensional 

diffraction problem to a two-dimensional one. 
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We first seek representat ions for the total field 4>j In region I (above 
the X, y-plane, z > 0 ) and the total field 4> j j in region II (within the groove, 
- h < z < 0 ) . 

On account of the periodicity of the s t ructure the scattered field ^ s in the 
half-space z>iO can be written as a superposition of plane waves which are 
ei ther uniform or"' propagating along the uneven surface, being evanescent 
in the direction normal to the surface. Accordingly, we have 

t V 
(4.1) * J (x,z) = e x p ( j a ^ x + J7^jZ) + ^^_J<-^ exp ( ja^x - j -y^z) , 

where Rj, is the complex reflection amplitude of the plane wave of the r - th 
spectra l order . In Eq. (4.1) the following symbols have been used 

(4,2.) a ~ a + 27rr/A 
r o 

(4.3) Tr 
def 

(K -a )^ > 0, when K ^ « ; 

- j (\ - "^f with («^ - K^^f > 0 , when «^ >'>-^. 

The sign of the square roots has been chosen such that the reflected waves 
either travel in the positive z-direction or a re evanescent in this direction. 

The field In the grooves can be written as a superposition of waveguide 
modes considering the direction of the z-axis as axial direction. By virtue 
of the boundary condition 94> jT/9x = 0_at the waveguide walls,the appropriate 
eigenfunctions in the t ransverse direction are c o s [ m ir (x/d-g) ] , where m is 
an a rb i t ra ry integer. Separation of variables in the Helmholtz equation then leads 
to the following representation for the field In the c-th groove 

* „ (x,z)= exp üa^vj) " A _ exp (j X z) + B _ exp (-iX_ z) X 

X cos rmn-(xyd-i)l , 

when - d/2 < x , ^ , < d / 2 , _ h < z < 0 ; 

1 , 2 2 2 / , 2 ,1 ..̂  n u 2 2 2 , ,2 
(4.5) ^ cjef ) (" - ÏÏ- m / d )2 > 0, whenx > r m / d ; 

(4.4) 

where 

X 
m = -](K^m^/d^- K^^ with{w^m^/d^-K'^f>() 

2 2 , , 2 > 2 
when n- m / d _ " , 
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A ^ and Bj^ are the groove field amplitudes and x^ is the co-ordinate in the 
x-directlon in the v-th period (v = 0, +1 , + 2 ). 

From the definition of the incident field we see that it satisfies the 
difference equation 

(4.6) 4>̂  (x + / i / ,z)=exp (ja^ ^./)*^(x,z), 

where v is an integer. In Eqs. (4.1) and (4.4) we have made the customary 
assumption that the total field in both domains satisfies the same difference 
equation. 

4.3 The i n f i n i t e s y s t e m s of l i n e a r e q u a t i o n s 

From the boundary condition in the grooves at z = - h 

(4-̂ > 9<i.Jj/az = jk,2 * „ 

we have 

(4.8) 

i A „ X_ exp(-jhx ) - i B x exp(ihX ) = • ' m m ^ \ J in' - " m m ^^•' m' 

from which we express Bjjj in terms of Aĵ ^ through 

(4.9) B = r A 
^ ' m m m 

in which the coefficient T ̂ ^̂  is given by 

in + ^ 

Substitution of this result in Eq. (4.4) gives 

(4.11) 

* 5 J =exp (3V^m=0 ^m [ e x p ( j x ^ z ) +rj^exp(-i X^z)]cos[m,r(x/d-è)] . 
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We now have two sets of unknown coefficients, viz. Ajjj and Rj.. 
We can eliminate one of these sets with the aid of the condition of continuity 
at the interface where the grooves are linked to the half-space z > 0: 

(4.12) ^^\/dz-]kVj~l*\^/dz-jkv^ *5j \ at z = 0, 

I vJ- d/2<x< 

^'•''^ * S = * n ) . / + d / 2 

and the boundary condition on the ridges 

(4.14) 9*Vdz - jk,^ * j = 0, at z = 0, / " + d / 2 < x < / ( . ' + l ) - d / 2 , 

Substitution of Eqs. (4.1) and (4.11) in Eq, (4.12) gives 

oo 

iiy^-kv-^^) exp(iaQX)- i 2^_Jl^exp(ja^x) (y^ + kv^) = 

(4.15) 00 

m i e x p ( j a ^ . / ) Jj^Q ^ml '̂̂ rli '̂ V " ' ' ' ' l ( ^ + V ] cos [mx( x / d - è ) ] 

Replacing x by Xv+Jv in the left-hand side of Eq. (4,15), we may cancel the 
common factor exp (j aj,v-). Multiplying the left- and the right-hand sides of 
the resulting equation by exp (-ja x^), integrating between the limits -/ /2 and 
/ / 2 , using the orthogonality properties of the exponential function and the 
boundary condition Eq. (4.14), we obtain an expression for the reflection 
coefficient R„ in terms of A„: r m 

1 d/2 
f 00 

(̂ •̂ )̂ ^=-/(^^.k,p J I V[>^m(l-^m)-k''l(l-V]X 

Xcos [ m7r (xyd-è ) ]exp( - j« X ) d x ^ + 

1/2 

Hy^^kr,^) 4 , 2 
_ J exp[ jx^, (a^-ap]dXy,r = 0, ± 1,+2, 

We now introduce the coefficients 
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V 

m , r 

d/2 
def 

•^ I cos [mi r (Xy /d -è ) ] e x p ( j a ^ x „ ) dx^ 

- d / 2 

= - j a ^ Lexp ( ja^d/2) - ( - l ) ' " exp ( - j a d / 2 ) ] 

, , 2 2 2 / , 2 , d (o. - TT m / d ) 

Eq. ^1.16) can then be written as 

7 -k?; / , \ 00 

0̂= :^^ - ( / jLo V t ^m(i-V-k''i(i-r^)]v4o_ 
(4 18) V ^ ' l • 

r̂ = -(7) L ^mt V(l-r.„)-k';i(l-^r^)],^ m,r 
^ r + k l j ) ' 

r = + 1, ± 2, 

The as ter i sk attached to v and v „ indicates the complex conjugate. 
Substituting Eqs . (4.1) ana (4.11) in the condition of continuity Eq. (4.13) 
we obtain 

2 A (1+ r ^ ) cos [ m ,t (X J / d - è ) ] 
m=0 

(4 19) 2 R exp ( j a ^ x ^ ) + exp ( j a x ^ ) , w h e n - d / 2 < x ^ < d / 2 , 
r=-oa 

Using the orthogonality proper t ies of the cosine function over the period d, 
we obtain from Eq. (4.19) an expression for Aj^ in t e rms of R 

/ £ ^ 
\ i (̂  + ^m^ = ( " d ^ ) ƒ ^'^P «%"" , ) cos [m,r(X , / d - è ) ] d x , 

(4,20) 
d/2 

fr") f r = - o o ^ r ^ ' ^ ^"r"".^ c o s [ m r ( x / d - è ) ] d x , 
^ ^ - d / 2 

(m = 0, 1, 2 . . , . ), 
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where e O = 1 and ^ m = 2 when m ^ 1. Making use of Eq. (4.17), Eq. (4.20) 
can be written as 

(4,21) A ( 1 + r ) =e V „ + e 2 V R ( m = 0 1 2 ) m^ m ' m m , 0 m r=-ix) m , r r-'^ " . J--^ )• 

By eliminating the reflection amplitudes with the aid of Eq. (4.18) we obtain an 
infinite system of linear equations in which the groove field amplitudes A^ 
eccur as unknowns 

(4.22) (1 + r ) A = b - 2 u A , (n = 0, 1, 2, ) , 
^ ' ^ n ' n n m=0 m,n m'^ ' 

where 

(4.23) b ^ 2 e V ^ > / , y + k n , ) , 
n n n,0 o' ^ 'o ' l ' ' 

(4.24) 
u ^ e (4-)[x (1-r ) -k , , ( i+ r )] X 

m.n n V i / L m ^ m ' ' 1 ^ m'-" 

^ r = - o o ^ m , r V r / ^ ^ r ^ ^ . ^ ) . 

In a s imilar way we can first eliminate the groove field amplitudes; then we ob­
tain an infinite system of linear equations in which the reflection coefficients Rj. 
occur as unknowns: 

(4. 25) (-)- + k)?, ) R = c - 2 V R , (n = 0, + 1, + 2, . , . . ) , 
^ ^ ' n 1 ' n n r=-&c r ,n r '• ^ > - • _ > • / • 

where 

(4.26) c, ^ . Vk,^ - (^) 1^^ . ^ [Xm<^-rni)-'^^x(l^r^) ] ^ ,. ^ 
' n , P K m,0 ' m,0. 

^ m ' 
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(4.27) 

° ^ ^ \ / ym=0 m "̂  TTT^n. ' m , n " ' m , 0 , 
m ' 

(n = + 1, + 2,. . .), (4.28) - ' - ' • ' ' 

T,af=\J]m=0 m • - m,n "m, r , 
^ m ' 

(n,r = O, + 1, + 2, . . . .) . 

4.4 C o n s i d e r a t i o n s c o n c e r n i n g the s c a t t e r e d and a b s o r b e d 
p o w e r by the u n e v e n s u r f a c e 

In the first place we shall prove that of the reflected spectrum only the 
uniform plane waves contribute to the power radiated into the half-space 
z;> 0 and that the evanescent waves do not carry any power into this domajn. 
In order to substantiate this statement we start with the general formula for 
power transport across a surface. The power Pg scattered across one period 
of the uneven surface and per unit length in the y-direction is given by 

1/2 

(4-29) p^ = i R e [ J <|.^(x,0) / * . n c ^ ] 

-J/2 

where u?.n represents the particle velocity associated with the scattered 
field in the direction normal to the interface. With'the aid of the equation of 
motion we eliminate this particle velocity, through 

(4.30) / • n = - ( J ' - P „ ) " l 9 4 . V 9 n . 

We then obtain, if we insert at the same time the plane wave representation 
for <p^ Into Eq. (4.29), 

i/2 

(4.31^ P3 = è (a>p^)-l Re [ f { | _ ^ R ^ exp ( ja^x) \ X 

- / /2 ' 

/ 00 
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By evaluating the occurring integrals we obtain by virtue of the orthogonality 
p roper t i e s of the exponentional function 

DO 

(4-32) P s = 4 ^ ( ' - % ) " ' ^ e [ 2 _ | R ^ | 2 ( ^ 2 _ 2 ^ è ^ 

However, only for a finite number of values of r , y^z. those corresponding 
to the uniform plane waves, the square root (K^-a2)z is a real quantity. For 
all remaining values of r , («2-02)5 is imaginary; these te rms do not contribute 
to P because of the operation of taking the real par t . The quantity Pg i s , 
therefore, built up solely from the contributions of the uniform plane waves, 
travelling without damping into the half-space z > 0 . 

In addition the power Pĝ  absorbed by one period of the uneven surface is 
immediately given by the difference between the incident power P j , i .e. , 
è cos (e ) . / /poC, and P 

A different method for calculating P employs the field directly above 
the boundary of the periodic s t ructure . The absorbed power Pĝ  may then be 
derived from the general formula for sound absorptionEq. (1.10). Accordingly, 
we have d/2 

2 Re (rjg) f i t I 2 

^a= 17^^) J I * i i ( x , . - h ) I dx,+ 

(4.33) 

- d / 2 

1 Do /_ s ^ - d / 2 
2 ^ ^ ( " i ) r I t , .2 J * , (x,0) dx P„c J I ' I 

° d /2 
The first term of this equation represents the sound absorption by the groove, 
while the second te rm represen ts the absorption by the ridge. We now define 
the t rue absorption coefficient aj-p as the rat io of P^ to P . , i.e. a^ = P /P.. 

We also distinguish another absorption coefficient, the so-called 
equivalent absorption coefficient ag^., representing the sound absorption as if 
there were no diffraction of the waves at the edges of the grooves. Consequently, 

(4.34) a g q = ( d / / ) a 2 0 + [ ( i - d ) / i ] a^ ^ , 

where a, n and a^ Q a re the absorption coefficients for an infinite sample 
of the sound absorbing mater ia l s of which the upper side of the ridges and 
the bottom of the grooves, respectively, a re consisting, 

Still another interesting quantity is the shape factor Q defined as the ratio 
of ajp and aeq; this quantity is a measure for the edge effect in the periodic 
s t ruc ture . 
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4,5 Considerations concerning the Wood , anomaly, the sur­
face resonance and the waveguide resonance 

The Wood anomaly is related to the occurrence of zeros among the 
coefficients 7 . When this occurs one of the plane waves is travelling exactly 
along the uneven surface. This event is mathematically accompanied by a 
singularity in the scat tered field. This singularity in the wave field is also 
experimentally observed in the investigation of light diffraction by an optical 
reflection grating. In 1902 WOOD discovered the presence of unexpected narrow 
bright and dark bands in the spectrum of an optical reflection grating illuminated 
by a light source with a slowly varying spectral intensity distribution. He 
noticed, in addition, that the occurrence of these bands was dependent upon 
the state of polarization of the incident light. Since these effects could not be 
explained by means ofordinarygrat ingtheory, WOOD termed them ' a n o m a l i e s ' . 

The first theoretical t reatment of these anomalies has been given by 
RAYIEIGH [ 1907 ] . His "dynamical theory of the grating" was based on an 
expansion of the scat tered field in te rms of outgoing waves o n l y in the entire 
domain up to the corrugated surface. With this assumption he found that the 
scat tered field is singular at wavelengths or angles of incidence for which one 
of the spectral o rders emerges from the grating at the grazing angle. If by 
variation of 0 , ^ and k one ofthe 7_'s changes from real to imaginary values, 
or vice versa , the corresponding reflection amplitudes show an anomalous 
behaviour. An indication for this anomalous behaviour of the reflection 
coefficients is that the reflected power distr ibutes Itself over one more or one 
less spectral order when passing a zero of y . 

One of the limitations in RAYLEIGH's resul t s is that it does not yield the 
shape of the bands associated with the anomaly. In an attempt to overcome this 
difficulty FANO [ 1938 ] , and afterwards ARTMANN [ 1942 ] derived approxi­
mate expansions in the vicinity of the singulari t ies , of which only ARTMANN's 
representat ion of the field exhibits some charac ter i s t ic propert ies of the shape 
of the Wood anomalies. 

For a period of severa l yea r s , therefore, the theory was essential ly in 
agreement with the basic experimental observations, even though many of the 
finer points, such as the detailed shape of the anomalies, could not be calculated. 

A careful re-examination of RAYLEIGH's initial assumption of including 
outgoing waves only was conducted byLIPPMANN [ 1953] and he concluded thai 
RAYLEIGH's approximation to be a valid one for shallow grooves only. For 
this reason RAYLEIGH's theory is clearly incompetent to predict the finer 
details of the Wood anomalies. 

In recent yea r s , with the advance of sophistication in the t reatment of 
scat ter ing from various obstacles , a different approach to the explanation of 
the Wood anomalies has been adopted. This approach is based on the multiple-
scat ter ing point of view. In most of the relevant t rea tments , the total scattered 
field is expressed in t e r m s of the s ingle-scat ter ing amplitude of one sca t te re r 
within, the grating. The expression for the mult iple-scat ter ing amplitude takes 
into account all the coupling effects between the various sca t t e re r s . Such ana­
lyses have been applied by a number of wr i te rs to a variety of periodic a r r ays 
of s c a t t e r e r s . In par t icular , we mention KARP AND RADLOW [ 1956 ] , 
MILLAR [ 1963a, b ] and TWERSKY [ 1952, 1 9 5 6 ] . This method can predict 
satisfactorily the location and shape of the anomalies in the case of certain 
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simple geometries of the basic sca t te re r in the grating The resul t s , however, 
have been limited to gratings of relatively shallow groove depth. 

A new theoretical approach is presented by OLINER and HESSEL [ l 9 6 5 ] 
which yields a new insight into the character of Wood's anomalies. It is not 
an extension of the mult iple-scattering approach, but it may be viewed upon 
as an extension of RAYLEIGH's work containing a number of new elements . 
If the intensity variations of a Wood anomaly are examined carefully, it is 
seen that the appearance of a next undamped spectral order is in itself 
not sufficient for a description of the form of variation. There i s , in addition, 
a resonance effect present . The resonance condition can be seen from the 
second system of equations (Eq. (4.25)) involving the reflection amplitudes 
Rp, by inspecting the diagonal elements . The resonance is expected to occur 
when one ofthese elements takes a small value, viz. if 7 + kr; , + V — • 0. 

For some s t ructures these resonance effects can occur af wavelengths or 
angles of incidence far removed from the values predicted by the Rayleigh 
condition. If V is viewed upon as an admittance, representing the influence 
of the grooves, 'the above condition is related to the total surface admittance. 
The phenomenon is , therefore, called the surface resonance. Especially, if 
7 n is negative imaginary and the quantity ki;. •<- Vĵ  ^̂  has a positive imaginary 

par t together with a small r ea l par t , we could expect a sharp resonance type 
of behaviour in the reflection coefficients. In the special case of vanishing 
groove depth the quantity k»;^ •<- V^ jj turns out to approach the value 17 ^̂ .̂  of the 
admittance, averaged over one period of the surface. 

In a s imilar way we can disclose a resonance tjrpe of behaviour in the 
groove field amplitudes by inspecting the diagonal elements of the first system 
of equations (Eqs. (4.22)), involving the unknown groove field amplitudes. 
The corresponding "waveguide resonance" is associated with the existence 
of minimum values of these diagonal e lements . 

Especially the minimum values ofthe ze ro -order diagonal element turns 
out to exert considerable influence upon the calculated value of the absorption 
coefficient Roughly speaking, resonances associated to the plane-wave mode 
in the groove a re simply given by the relation 

| i . r j —0 
or 

I "" '^ ' '2 
1 +^;rn:— exp (-2jxh) - ^ 0 . 

In the case of a non-absorbing groove bottom (1J2 = 0) the left-hand side in the 
equation approaches zero for values of Kh equal to {n+^)r, with n = 0,1,2 
In the case of non-vanishing admittance r)2, the quantity 1 + FQ cannot take on 
the value zero, but does have a minimum. The quantity U„ ^ can be viewed upon 
a detuning factor: the real resonance groove depth deviates from the values of 
(ch obtained by an application ofthe condition I I + T Q I — > - n. We observe a s imilar 
p rocess in open organ pipes. The true resonance frequency does not agree with 
values computed from the geometrical length of the column. An end correct ion 
for the effective length of the column which is proportional to the tube radius. 
The p re s su re in the mouth of the groove at z = 0 has to be accounted for 
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< l > ^ x , , 0 ) = e x p ( j a ^ . ) [ A Q ( l + rQ) + 2 ^ ^ A ^ ( l + r ^ ) c o s [ m 7 r ( x y d - è ) ] J . 

For the sake of simplicity we confine ourselves here to the case where the 
ze ro -o rde r term of the left-hand side of this equation expresses the dominant 
part of the sound p re s su re . Under this condition it is obvious that 4>t approaches 
a minimum value at the wave guide resonance. At the bottom of the groove we 
have the sound p res su re 

* ( x ^ , - h ) ^ e x p ( j a ^ / ^ ) AQ iexp(-JKh) + r y exp (JKh)\+ 

=1 ^m{ «^(-J''m'̂ )+r^«'̂ ÖVh)}] 
00 

+ 2 
m 

It is obvious at this place that the sound p res su re exhibits a maximum value 
at the waveguide resonance. It is now apparent why the two important types 
of uneven surfaces profoundly investigated in this Chapter, i.e.: 
( i) the uneven surface of rectangular profile with »)j/Oa and 12~^' 
(ii) the uneven surface of rectangular profile with J?]̂  = 0 and ' Ï2/ 0 
show large differences in their behaviour as to the sound absorption in the 
neighbourhood of the waveguid resonance. In the first case the sound pressure 
above the acoustical mater ia l on the ridges beside the grooves decreases sharp­
ly as a consequence of the sharp drop in sound p ressu re at the mouth of the 
groove. In the second case a maximum pres su re at the bottom of the groove 
leads to an unusually large sound absorption, 

4,6 N u m e r i c a l c o m p u t a t i o n s 

The infinite sys tems of linear equations, Eqs. (4.22) and (4.25), can be 
most suitably solved by the method outlined in Section 3.4. Accordingly, we 
truncate the infinite sys tems to finite ones, 

The solution will evidently be acceptable only if the e r r o r involved 
in solving N equations approaches zero as N tends to infinity. For this reason 
we evaluate Um,n and Vp jj for large values of m, n and r . For large 
values of m, n and r we have from Eqs. (4,10), (4.17) and (4.24) 

V p = o (m" r ) a s m — « - c > o , l r | — co; 

1 + r = 0 (1 ) , 1 - r = 0 ( l ) a n d X = O (m) a s m — 0 0 . 
m ^ ' m ^ ' m 

Hence 

- 1 -2 
U = O (m, n ) as m,n— -co . 

m,n ^ 
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The summations with respect to r converge very rapidly, since 

V,r V/(^r+'^''l)=0(^" )^^ IH 
for all m and n. 
In the same way we have 

V = 0 ( r V ^ ) n,r ^ ' 

For the solution to be unique it is sufficient that the matrix coefficients 
satisfy the Koch condition (cf. Section 3.4). Both systems under consideration 
obviously satisfy this condition. The truncated systems are most suitably 
solved by the method of the Jacobi iteration. In the zero-order approximation 
we neglect in the matrices of coefficients the non-diagonal elements with 
respect to the diagonal elements, i.e. we take Ujĵ  jj ~ 0 and Vp jj = 0 if 
m/n, r /n. Then only the diagonal elements remain and the corresponding 
zero-order solution is 

(0)_ 
n n ,n ' 

A ^"'= b , ( l + r + U ); n n / ^ " V, ., /• 

R °̂̂  = c / ( y +k7,,+ V ), n n ' ^'n '1 n,n' 

This zero-order approximation is the starting value in a recurrence relation 
for any approximation of higher order s: 

N 
(s+1) ( i ^ r +u ) = b - ^ „ u A^^^ , 
n ^ n n ,n ' n m=0 m,n m 

m / n 

N 

R(S+1) (^ + k , , + V ) = c - - ^, V R ( ^ \ 
n ^ 'n 1 n , n ' n r=-N r ,n r 

r / n 

A sufficient condition for convergence is that the diagonal elements a re p r e ­
dominant, which implies 

1+ r + u . „ I > - „ |U 
n n,n | '* m=0 | m,n | ' 

I n ' 1 n ,n | ^ r=-oo | r ,n | 
r / n 
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For our problem the diagonal elements a re predominant in most cases except 
in the three cases of anomalous behaviour. 

Both systems are equally valuable for numerical computations although 
in some cases the successive approximation for one system will converge 
more rapidly than for the other. For example, for small groove widths it is 
advantageous to use the first system, Eqs. (4.22), in which the groove field 
amplitudes Ajj occur as unknowns and hence the amplitude A^ is the most 
important one of the coefficients Aji. The sound pressure in the groove is 
then almost independent of the variable x. If on the other hand we look at 
the reflection amplitudes Rjj, we observe that the reflection coefficient RQ 
does not predominate the other reflection amplitudes so strongly, as there 
scat ter ing of sound in all directions takes place. 

We now pay attention to the types of resonance. In the first system 
involving the groove amplitudes we observe that if 'Vji+k'?j approaches 
a minimum, all the matr ix elements Uj^ ^ become large and the iteration 
process for the Aj^'s fails to converge. From the second system for the 
reflection amplitudes it is obvious that there is no reason for any difficulty. 
Thus, if we require a solution of the diffraction problem under consideration 
for angles of incidence for which the above condition is satisfied, we have 
always to use the second system in order to obtain the reflection amplitudes. 
It is worthwhile to r emark that the above condition occurs for angles of 
incidence in the vicinity of those, pertaining to the surface resonance which 
is related to a minimum of | 7jj + ki?^ + Vjj j^ | , It is obvious from Eq. (4.21) 
that, if we have solved the reflection amplitudes, we also know the groove 
field amplitudes. If on the other hand the quantity JI + T Q ! passes through 
a minimum, the matr ix elements Vp^jbecome large and the diagonal elements 
in this matr ix predominate no longer. The use of the first system of equations 
is then to be preferred 

The latter preference holds in all cases where a sharp surface r e so ­
nance does not occur, for the groove field amplitudes form a sequence with 
index m running from zero to infinity, while the index r of the reflection 
amplitudes runs through all the values from - c» to oa . the required number 
for I m I and r | for suitable numerical computations being roughly equal. 
In pract ical cases the second system is twice as large as the first to obtain 
the same accuracy; in a typical case we required 20 equations of the first 
system versus 36 of the second one. 

4.7 D i s c u s s i o n of t h e r e s u l t s 

Numerical computations have been ca r r ied out for a number of cases , 
some of these resul ts a re presented in graphical form. Let us f irs t discuss 
Figs 4.2-4.12 which demonstrate the behaviour of the absorption, expressed 
in t e r m s of either the t rue absorption coefficient atp or the shape factor 
Q, as well as the reflection coefficients as a function of the angle of incidence 
for different values of kd, k / and kh and the admittances HJ and ^2, Most 
of the data apply to the case for which only a few propagating spectral 
o rde r s a re present . In the plots the most str iking feature is the occurence 
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of the large variation in the reflection amplitudes, whichcanbeascr ibed 
to the Wood anomaly or the surface resonance. The influence of the diffraction 
anomalies is most clearly demonstrated In the behaviour of the reflection 
coefficients more than in the absorption behaviour. On notes the surface 
resonances (Figs . 4 .2b - 4.4b). For Instance, the reflection coeffi­
cient R_i , exhibits a sharp maximum at the surface resonance followed by a 
rapid fall of infinite slope at the Wood anomaly. At k /= 5 one can ascertain 
that the Wood anomaly is located at ö_-^ = 14°.9, while the spectral order 
n = - 1 is the resonant one. If kh = 0, kd = 2.5 and Vi = 0.627 + j 0.342,12= 0. 
we can compute the average value of the admittance over the surface to be 
2 ' ' i = 0.314 + j 0.171. From this knowledge one can readily compute the 
location of the maximum of the curve, using the fact that | 7 . ^ + kijj^y [ = 

\y-X + 5 k7)2 approaches a minimum. From this equation we obtain a 
maximum of | R . j which is located at © = 14° which is in approximative 
agreement with the maximum of Fig. 4.2b, If h / 0 we expect that the location 

ofthe maximum has been displaced in consequence of the different value of v 
Consider to this aim Figs. 4.3b and4.4b, where kh = 0,5 and kh = 1.0, r espec­
tively. ^t the angle of incidence, pertaining to the Wood anomaly, the curve 
exhibits an infinite slope, probably because of the fact that the derivate of the 
square root y^ to 9 , dy^/dQ L _ _ Q , becomes infinite. Although we have not 
been able to determine whether or not this feature is generally t rue, the figures 
suggest this occurrence of an infinite slope. 

Attention is now paid to two figures which differ in their value of the 
parameter kh (Figs. 4.8 and 4.9), The groove depth has a value kh = 0 and 
kh = 1.0, respectively; the other pa ramete r s remaining unaltered, viz, 
kh = 5, k / = 10, Vi = 0.265 + j 0.395 and 12 = 0 ,* '= 90°. There a re three 
locations of a Wood anomaly, viz. at e_2 = 14°,9, ö^ j = 21° 8 and e^g = 620-3, 
Both figures show a considerable difference of behaviour in the vicinity of 
these angles. The Infinite slope is present , of course, but the character of 
the absorption coefficients being quite different in both cases . In the case 
kh = 0, atp shows a sharp dip; if, however, kh = 1, atp shows a sharp peak 
at these angles. It is strange that the anomalies of order n = + 1 and n = - 3 
a re much more important than the one of order n = - 2. 

Figs . 4.6, 4,7 and 4.8 give an impress ion of the dependence on the 
azimuth ^ . As ^ increases , the number of anomalies decreases , but hardly 
influences the general trend of the curves . This is due to the fact that the 
reduced wave number K hardly influences the absorption coefficient outside 
the anomalies. 

Figs. 4.12 a, b and c give two examples of the absorption and reflection 
behaviour of s t r ips in a periodic arrangement, the admittances in the two cases 
being complex conjugate, viz. ')j = 0 .2- jO.4 and I j = 0.2 + j 0.4. Upon exami­
nation of the two curves of the reflection amplitude of order n = - 1 we find, 
if Im( i?̂ ) •^0 , the absence of a surface resonance. We only see a sharp peak 
precisely at the Wood anomaly. In the alternative case, Im(r)2)>0, we observe 
the usual peak of the surface resonance, which has been displaced from the 
Wood anomaly. 

It may be useful to mention here some experimental resu l t s obtained 
with absorbing reflection grat ings. For this purpose the resul ts of a recent 
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paper by H X G G L U N D and SELLBERG [ 1966 ] a r e very suitable. These 
authors Investigated the reflection, absorption and emission of light by an 
opaque optical grating, both theoretically and experimentally. Experiments 
and computations have been made, for instance, for aluminium gratings. 
With the exception of some comments published ea r l i e r by WOOD [ 1935 ] 
and by ARTMANN [ i 9 4 2 ] , K A G G L U N D and SELLBERG were the first to 
investigate experimentally the absorption propert ies at the Wood anomalies. 
The optical constants of aluminium in the region of visible light a re well de r i ­
ved from the free electron model and so exhibit typical plasma proper t ies . The 
losses a r e ra ther small and the imaginary par t of the permittivity is smal ler 
than the real par t . Their resu l t s agree qualitively surprisingly well with our 
resul t s as far as the theory of the surface resonances is concerned. The 
authors found sharply peaked resonances beside the Wood anomalies. From 
their paper it is evident that the authors were not aware of the existence of 
a surface resonance as has been outlined by OLINER and HESSEL. 

Other interesting features a re shown in Figs. 4.13, 4.14 and 4.16 
where the absorption coefficient a.^^ or the shape factor Q has been plotted 
as a function of the groove depth Idi. Upon examination of the curves we find 
a large variation in the absorption. Observe the difference between the two 
types of uneven surfaces mentioned in Section 4.5 as to their absorption 
proper t ies . The extent of the peaks depends on the ratio d / / and the wave 
number k to a considerable degree. All the figures have been drawn for 
normal incidence. For oblique incidence the same type of figures is found. 
The consequence of these waveguide resonances for practical purposes 
has been investigated for a periodic s tructure in which the absorbing mater ia l 
is assumed to be Sillan SP 100, 5 cm thick, which has a frequency dependent 
admittance (Fig, 1,1), This construction has been applied in many halls for 
public assembly. Fig. 4.17 shows the resul ts for three s t ructures of different 
dimensions at normal incidence. If a very good absorbing s t ructure were 
needed in a narrow frequency band an with at tractive architectural proper t ies , 
the periodic structure would meet the requirements .This arrangement of s t r ips 
is obviously also advantegeous from an economic point of view. The shape 
factor Q usually exceeds unity to a. considerable extent. As the frequency 
inc reases , a^p should approach ag_, this tendency is apparent from the graph. 

A question arising in the measurement of the edge effect in the r eve r ­
beration chamber, is the minimum allowable distance of the free edges of 
the patches in order to obtain an optimum value of b ^ ,, TEN WOLDE [ 1967] 
has pointed out that this distance plays a very important role in finding an 
optimum value of bgtg t̂ • ^ ° ^ '•^^^ reason a periodic arrangement of s t r ips 
of width kd = 5 has been investigated.where the period of the s t ructure has 
been varied. The angles of incidence were =9=0° and 9 = 60°, respectively. 
At the same time the absorption coefficient of a single str ip has been computed 
by the method developed in Chapter III. At large distances between the free 
edges the absorption coefficient of the s t r ip in the periodic arrangement and 
the single s t r ip a re expected to approach each other. For normal incidence 
the distance for this agreement is much smal ler than one wavelength, but at 
oblique incidence it can amount to about three wavelengths. This agrees with 
the experimental resul ts of TEN WOLDE who found a distance of three 
wavelengths to be acceptable for finding a cor rec t value of bgtj^t in a diffuse 
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soimd field. The angle of incidence 60° has been taken on account of the fact, 
that this value is representative for a diffuse sound field since it is most 
nearly equal to the average value of the angle of incidence. 
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Fig, 4 , 1 , 
Geometrv of the difiractton of a plane wave 
by periodically uneven surface. 
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Fig. 4. 2a. The shape factor Q as a function of the angle of incidence Ö. 
•71 = 0. 627 + j 0,342; 'Ï2 = 0; 
k / = 5. 0; kd = 2. 5; kh = 0. 
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Fig. 4. 2b. The modulus of the reflection coefficients RQ and R_j^ as a function of the angle 
of incidence 6 Other conditions as in Fig. 4. 2a. 
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Fig, 4,3a. The shape factor Q as a function of the angle of Incidence 0 . 
1 1= 0.627+ ] 0.342; Ig = 0; 
k/F5.0: kd = 2.5; kh = 0.5; 
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Fig. 4.3b. The modulus of the reflection coefficients B„andR_-^ as a function of the angle 
of Incidence 6 . Other conditions as In Fig, 4', 3a, 
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Fig, 4,4a, The shape factor Q as a function of the angle of incidence 6 . 
1 1 = 0,627 + ] 0,342; Ig = 0: 
k / = 5,0; kd = 2.5; kh = 1,0; 
*= = 0°, 
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Flg. 4.4b. The modulus of the reflection coefficients Rg and R.i as a function ofthe 
angle of incidence'9. Other conditions as in Fig. 4.4a. 
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Fig. 4.5a. The shape factor Q as a function of the angle of incidence 
i)j =12 = 0,627 + j 0.342 
K/= 5.0; kd = 2 .5 ; kh = 1.0; 
f= 0° . 
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Fig, 4,5b, The modulus of the reflection coefficients R^ and R_2 as a function of the angle of 
incidence 6 . Other conditions as in Fig. 4.5a. 
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Fig, 4.6. The absorption coefficient ajj. as a function of the single of incidence 9 . 
"^l = 0.264 + j 0,395; Ig = 0| 
V.^= 10,0; kd = 5,0; kh = 0; 
V = 60°. 
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Fig, 4,7, The absorption coefficient a^j. as a function of the angle of incidence 9 , 
1 , = 0,264 + j 0,395; 1 g = 0; 

k / = 10,0; kd = 5.0; kh = 0; 
V = 30°, 
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Fig. 4,17, The absorption coefficient atj. as a function of frequency of a sound 
absorbing periodic s t ructure of which the bottom of the grooves consists 
of the acoustic mater ial Sillan SP 100, 5 cm thick, for normal incidence. 

/ = 0.15 m; d = 0.025 m; h = 0,10 m; 
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--1? = 0.30 m; d = 0,20 m; h = 0.10 m, 
^ = 0 : 9= 0° . 
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lying in a periodic arrangement of identical acoustic s t r ips , a s a 
function of the normalized distance of the edges at normal Incidence. 
1^ = 0.264 + j 0,395;l2 = 0; 
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¥>= 0°; 9= 0°; 

The absorption coefficient of a single sound absorbing strip with 
normalized width kd = 5, lying in an infinite hard plane at normal 
incidence, equals the value 0,64, as computed with the method p re ­
sented in Chapter III, 
The peaks in the figure a r e due to the surface resonance and the 
Wood anomaly, 
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The absorption coefficient of a single sound absorbing s t r ip , lying 
in an infinite hard plane, equals the value 1,73, as computed with the 
method presented in Chapter III. 
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SUMMARY 

In this thesis we present a contribution to the explanation of the experimentally 
observed fact that the sound absorption coefficient of sound-absorbing materials 
as measured in the reverberation chamber, depends upon the dimensions of the 
test sample. To this aim a calculation is presented for the absorption of sound 
by three differentsound-absorbingstructures consisting of mater ia ls with known 
proper t ies . 

The cause of this effect can be attributed to the sound diffraction phenomena 
in the vicinity of the edges of the sample, which result into an additional sound 
absorption. 

In Chapter I we present a general introduction to the intr icacies arising in 
calculating this edge effect, 

In Chapter II we t rea t the diffraction problem where a plane wave is obli­
quely incident upon the straight edge of an acoustically hard half-plane and an 
absorbing half-plane. The reflected field consists of two contributions: the spe-
culary reflected plane wave against a rigid wall and a scattered field which can 
be represented as a superposition of plane waves. The latter spectrum consists 
partly of undamped travelling waves while the remaining plane waves exhibit an 
exponential decay in the direction perpendicular to the s t ructure . The total field 
is forced to satisfy the boundary conditions which hold on each of the two half-
planes. This leads to two dual integral equations with the spectral distribution as 
unknown function. This spectrum function which represent the phase and the am­
plitude of each specimen ofthe spectrum, is determined from the integral equa­
tions with the aid of the Wiener-Hopf technique. From the obtained results the 
additional absorption at the edge is computed for a diffusely incident sound field. 
This absorption is then compared withexperimentally observed values. Finally, 
the influence of the angle of incidence upon the edge effect is considered in de­
tai l . 

In Chapter III we present the calculation of the edge effect for a sound-
absorbing s t r ip , lying in an infinitely large, rigid plane. 
The scattered field is again represented as a spectrum of plane waves. Further, 
the field directly above the str ip is expanded into a Fourier se r i es with unknown 
coefficients. By relating the spatial field to the field directly above the str ip 
with the aid of the boundary conditions on and besides the s t r ip , an infinite sy­
stem of linear equations is derived, in which the Fourier amplitudes of the field 
directly above the s t r ip occur as unknowns. The system is solved numerically; 
from the resul ts the absorption coefficient of the s t r ip is computed. 
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Special attention has been paid to the approximative söliition in which the 
diffraction of a plane sound wave by a s t r ip is considered as being caused by two 
separate , non-interacting, absorbing half-planes. This procedure can give very 
acceptable results for not too small a s t r ip width. This has been verified by 
comparing the resul ts ofthe approximate solution with the resul ts obtained from 
the exact formulation of the problem. 

In Chapter TV we present the solution for the problem of the diffraction of a 
plane sound wave by a sound-absorbing periodically uneven surface of rectangu­
lar profile. The field in the grooves is expanded into waveguide modes; the am­
plitudes of these modes occur as unknowns. The field above the periodic s t ruc­
ture is written as an infinite se r ies of plane waves with unknown amplitudes, A 
finite numberoftheseplane waves is undamped, while the remaining plane waves 
show an exponential decay in the direction perpendicular to the periodic surface. 
By relating the field in the grooves to the field above the periodic s tructure with 
the aid of the condition of continuity at the interface and employing the boundary 
conditions, two infinite systems of linear equations a re derived in which either 
the groove field amplitudes or the reflection amplitudes, respectively, occur as 
unknowns. These sys tems have been solved numerically. From the results the 
absorption coefficient of the periodic s t ructure has been computed. The resul ts 
a re presented for the most part in graphical form. Special attention has been 
paid to the three anomalies occurring in the sound field. These anomalies - which 
in optics a re well-known phenomena - depend upon the geometry of the per io­
dic s t ructure and appear to have large influence upon the values of the absorpti­
on coefficient, 
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SAMENVATTING 

In dit proefschrift wordt een bijdrage geleverd tot de verklaring van het 
experimenteel waargenomen feit dat de geluidsabsorptiecoëfficlënt van geluids-
absorberende materialen, zoals die in de galmkamer wordt gemeten, afhankelijk 
is van de afmetingen van het monster dat bij de meting gebruikt wordt. Daartoe 
"wordt een berekening gegeven van de geluidsabsorptie van drie geluidsabsorbe-
rende configuraties, die zijn opgebouwd uit materialen met bekend veronder­
stelde eigenschappen. 

De oorzaak van dit effect is gelegen in de buigingsverschijnselen van het ge­
luid, die in de nabijheid van de randen van het monster optreden en die een ad­
ditionele geluidsabsorptie tot gevolg hebben. 

In het Eers te Hoofdstuk wordt een algemene Inleiding gegeven in de proble­
matiek betreffende de berekeningswijzen van dit randeffect. 

In het Tweede Hoofdstuk wordt het buigingsprobleem behandeld, waarbij een 
vlakke golf scheef invalt op de rechte rand van een akoestisch hard halfvlak en 
eengeluidsabsorberendhalfvlak. Het gereflecteerde veld bestaat dan uit twee bi j ­
dragen: de geometrisch gereflecteerde vlakke golf tegen een harde wand en een 
strooiveld, dat voorgesteld wordt als een superpositie van vlakke golven. Dit 
spectrum bestaat voor een deel uit ongedempte golven, terwijl de overblijvende 
vlakke golven een exponentiële afname vertonen in de richting loodrecht van de 
configuratie af. Het totale veld wordt vervolgens aangepast aan de randvoor­
waarden, die op elk van de twee halfvlakken gelden. Dit leidt tot twee duale inte­
graalvergelijkingen met de spectrale verdeling als onbekende functie. Deze 
spectrumfunctie, die de fase en amplitude vanelkevlakke golf weergeeft, wordt 
met behulp van de Wiener-Hopf techniek uit de integraalvergelijkingen bepaald. 
Met behulp van het verkregen resultaat wordt de additionele absorptie aan de 
rand voor een diffuus invallend geluidveld numeriek berekend. Deze absorptie 
wordt vervolgens vergeleken met waarden die uit experimentele gegevens wer­
den gevonden. Tenslotte wordt de invloed van de hoek van inval op het randeffect 
in detail beschouwd. 

In het Derde Hoofdstuk wordt de berekening van het randeffect gegeven van 
een geluidabsorberende strook, die op een oneindig groot hard vlak ligt. Het 
strooiveld wordt wederom voorgesteld door een spectrum van vlakke golven; 
voorts wordt het veld direct boven de strook ontwikkeld in een fourierreeks met 
onbekende coëfficiënten. Door het ruimtelijke veld en het veld direct boven de 
strook aan elkaar aan te passen door middel van de randvoorwaarden op en naast 
de strook, wordt een oneindig stelsel vergelijkingen afgeleid, waarin de fourier-
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amplituden van het veld juist boven de strook als onbekenden optreden. Dit s tel­
sel wordt numeriek opgelost, waarna de absorptiecoëfficiënt van de strook wordt 
berekend. 

Speciale aandacht wordt besteed aan de benaderende oplosslngswijze, waar­
bij de geluidverstrooiing van een vlakke golf aaneen strook wordt opgevat als te 
zijn veroorzaakt door twee van elkaar gescheiden, dus elkaar niet beïnvloedende, 
absorberende halfvlakken. Deze oplossing kan voor niet al te kleine strookbreed-
ten tot zeer acceptabele resultaten leiden. Dit is bewezen door de resultaten van 
de benaderende zienswijze te vergelijken met de resultaten die uit de exacte for­
mulering van het probleem zijn verkregen, 

In het Vierde Hoofdstuk wordt een oplossing gegeven voor het vraagstuk van 
de verstrooiing van een vlakke geluidgolf door een geluidabsorberend, periodiek 
oneffen, oppervlak 'voorzien van groeven met een rechthoekige doorsnede. Het 
veld in de groeven wordt ontwikkeld in trillingswijzen, die in een golfpijp kunnen 
optreden; de amplituden van deze trillingswijzen treden als onbekenden op. Het 
veld boven de periodieke structuur wordt geschreven als een oneindige reeks 
van vlakke golvenmetvoorlopig, onbekende amplituden. Een deel van deze vlakke 
golven is ongedempt, terwijl de overblijvende vlakke golven een exponentiële af­
name vertonen in de richting loodrecht op het periodieke oppervlak. Door het 
veld in de groeven en het veld boven de periodieke structuur aan elkaar aan te 
passen met behulp van de continuïleitsvoorwaarden van het geluidveld in de ope­
ning van de groeven, worden twee oneindige stelsels vergelijkingen afgeleid, 
waarin de groefamplitudenende reflectieamplituden respectievelijk optreden als 
onbekenden. Deze s te lsels werden numeriek opgelost, waarna de absorptiecoëf­
ficiënt van deze periodieke structuur kon worden berekend. De resultaten van de­
ze numerieke oplossingsmethode worden merendeels in grafische vorm weerge­
geven, Speciale aandacht wordt besteed aan de drie anomalieën, die het geluid­

veld kan vertonen. Deze anomalieën - die in de optica een bekend verschijnsel 
zijn - hangen samen met de verschillende afmetingen in de periodieke structuur 
en blijken in bepaalde gevallen een bij zonder s terke invloed op de waarde van de 
absorptiecoëfficiënt te hebben. 
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STELLINGEN 

1, De additionele ge luidabsorptie,,die wordt veroorzaakt door de buiging van ge­
luidgolven aan de rand van een geluidabsorberend monster , kan worden be­
schouwd als een plaatselijk randeffect. Dit resul taat biedt de mogelijldieid om 
op de met de nagalmmethode verkregen waarden van de absorptiecoëfficiënt 
op een eenvoudige wijze een cor rec t ie aan te brengen voor de omstandigheid 
dat het monster niet oneindig uitgebreid is bij de meting. 

Dit proefschrift . Hoofdstuk III, 
C.W. KOSTEN, Acustica _10 [1960], 400. 

2, De mate van diffusiteit van het geluidveld in de nagalmkamer heeft een zo 
grote invloed op de gemeten waarde van de randeffectcoëfficiënt bĝ ^̂ :̂, dat 
het vergelijken van meetresultaten,die voor deze coëfficiëntin verschil lende 
nagalmkamers zijn verkregen, zeer twijfelachtig wordt, 

Dit proefschrift . Hoofdstuk II. 

3. De wijze waarop OLINER en HESSEL tot het optreden van een zogenaamde 
oppervlakteresonantie besluiten bij reflectie door een oppervlak met pe r io ­
diek veranderde eigenschappen, is onnauwkeurig. Zij brengen hier slechts de 
invloed in rekening van de diagonaalelementen in de coëfficiëntenmatrix van 
het s te lsel l ineaire vergelijkingen dat deze reflectie beschrijft; dit is alleen 
geoorloofd, indien deze diagonaalelementen dominant zijn ten opzichte van de 
andere matr ixelementen, hetgeen in hun s te lse l niet het geval i s . Het s te lse l 
vergelijkingen (4.25) in dit proefschrift bezit deze eigenschap wel en is de r ­
halve beter geschikt om de oppervlakteresonanties te local iseren. 

A.A. OLINER en A. HESSEL, Appl. Opties 
_4[^1965], 1275, 

Dit proefschrift . Hoofdstuk IV, 

4. De methode die BREITHAUPT toepast om de integralen, die bij het "factor i -
seren" in de Wiener-Hopftechniek optreden, numeriek te bepalen (methode, 
van Gauss , onder toepassingvanLaguerre-polynomen) is onjuist, daar de op­
tredende integranden op het oneindige geen exponentieel gedrag vertonen. 

R,W, BREITHAUPT, P r o c . I .E.E.E, 51 
[ l963] ,1455. 

5. De bewering van SHENDEROV, dat bij doorlating van geluidgolven door een 
vlakke plaat van eindige aikte die van periodiek gelegen spleten is voorzien, 
de doorlatingsfactor nul wordt bij het optreden van een anomalie van Wood is 
onjuist. Het door hem gebruikte s te lsel vergelijkingen geeft namelijk te weinig 
informatie over het vers t rooide veld bij het optreden van een anomalie van 
Wood. 

E.L. SHENDEROV, Soviet Phys.-Acoust ics 
J ^ [ l 9 6 5 ] , 305. 

6, De wijze waarop MECKEL en WILLE de absorp t ie -en de verstrooi ingsdoor-
snede van een geluidabsorberende bol numeriek bepalen (namelijk door de 
theorie van Mie te gebruiken), levert grote moeilijkheden op bij waarden van 
de s t raa l die groot zijn ten opzichte van de golflengte. Het zou juis ter geweest 
zijn voor die waarden een asymptotische methode - die bij voorbeeld met be­
hulp van de t ransformat ie van Watson kan worden verkregen - te gebruiken. 

F r . MECHEL en P . WILLE, 5e Congres Int. d'Acoustiqué, 
Liège [l965j,K-17 

F r , MECHEL en P . WILLE, Acustica 16_ [1965], 101, 



7. Het is op akoestische gronden niet duidelijk waarom de boring van een hobo 
niet zuiver kegelvormig zou zijn, t emeer daar afwijkingen van de kegelvorm 
vaak tot onzuiverheden in het lage reg is te r leiden. 

C.J. NEDERVEEN en A. de BRUIJN, 
A c u s t i c a J ^ [1967] , 47. 

P, BATE, The Oboe, 
Ernes t Benn, Ltd, London [ l962] ,p . 83. 

8. Het begrip "akoest isch zacht" (Eng. "sound-soft") dat wiskundigen vaak ge­
bruiken te r aanduiding van de eigenschappen van een geluidverstrooiend ob­
stakel dat geen van nul verschillende waarde van de geluiddruk op zijn opper­
vlak toelaat, suggereer t dat e r door het obstakel akoestisch vermogen zou 
worden geabsorbeerd in tegenstelling tot het geval van akoestisch harde (Eng. 
"sound-hard") obstakels . Dit is niet geval, zodat het aanbeveling verdient de 
-mis le idende- benaming "sound-soft" te vervangen door "perfectly compli­
ant». 

B.NOBLE, Methods based on the 
Wiener-Hopf technique, 
Pergamon P r e s s , NewYorkLl958j,p. 51 
D.S.JONES, Theory of Electromagne-
t i sm, Pergamon P r e s s , Oxford[l964], p. 451, 

9, Onder natuurkundigen kunnen soms merkwaardlgen misverstanden heersen 
omtrent het vakgebied der akoestiek. Als een van de oorzaken kan worden be­
schouwd de omstandigheid dat veel overzichtsart ikelen over de akoestiek in 
algemeen georiënteerde natuurkundige tijdschriften en leerboeken te vaag zijn 
en te weinig informatiebiedenover de werkelijke problemen waarmee akoes-
t ici zich bezighouden. 

R.B.LINDSAY, EducationinAcoutics, 
J . Acoust, Soc. Amer . 37 [l965"j, 217. 

10,Terecht wijst SIMON VESTDIJK erop, dat de "differentiële waardekrit iek», 
d.w,z. het bepalen van de waarde van muziek door het vergelijken van onder­
delen (binnen een compositie of binnen de grenzen van een oeuvre), te weinig 
de aandacht geniet van de zijde der musicologen, 

S.VESTDIJK, 
Het ee r s t e en het laats te , 
Uitg, Ber tBakker /DaamenN.V. , 
Den Haag [1956]. 
"De kamermuziek van Brahms, 

een onderzoek" 
uit - Hoe schrijft men over muziek ? - , 
Uitg. De Bezige Bij, Amsterdam, 
Uitg, Nijgh & vanDi tmaf . ' s -Gravenhage 
[1963], p . 233. 

N.LOESER, 
Simon Vestdijk en de muziekesthetiek, 
Mensen Melodie 12(^1957], 140. 

A. de Bruijn. Delft, 7 juni 1967. 


