]
TUDelft

Corrupting P4 programs by manipulating packet data

ALENA SHCHEGLOVA
Supervisor(s): FERNANDO KUIPERS, CHENXING JI
EEMCS, Delft University of Technology, The Netherlands
22-6-2022

A Paper Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering

Abstract

Data planes are responsible for forwarding pack-
ets in a network. The P4 language is used for pro-
gramming programmable data planes. Such data
planes give more flexibility to programmers by al-
lowing them to define how the packets should be
processed. However, these data planes might also
be more vulnerable to malicious attacks than tra-
ditional (non-programmable) data planes. That is
because software is usually more prone to errors as
compared to the hardware. Different research has
already analyzed various aspects of the security of
the P4 language. However, the security vulnera-
bilities of P4 programs have not been researched
in depth. The main contribution of this paper is
providing examples of attacks on P4 programs by
using manipulated packet data. In this research, it
was attempted to corrupt three P4 programs by ma-
nipulating packet data. Two of the three attempts
were successful. The paper concludes that some P4
programs can be corrupted by malicious packets.

1 Introduction

In a network, devices like routers and switches usually consist
of a control plane and a data plane. The control plane deter-
mines which path to use to send a packet. The data plane is re-
sponsible for forwarding packets. Traditionally, the function-
ality of data planes is predetermined by the manufacturer. So,
once the network device is finished there is no easy and cheap
way to change its functionality. However, programmable data
planes have changed that. Using languages like P4 [1], pro-
grammers are now able to define how the packets are going
to be processed, without being restricted to the functionality
implemented by the manufacturer. However, the flexibility
of the programmable data planes may also cause them to be
more susceptible to malicious attacks. Since P4 is a relatively
new language, there has not yet been extensive research into
its security.

Previous research provides some insight into the secu-
rity vulnerabilities of the P4 language as well as the pro-
grammable data planes. In [2], a STRIDE analysis of a P4
platform was presented. STRIDE is a model for categoriz-
ing IT-security threats. The researchers described potential
attacks, and vulnerabilities related to the P4 language, com-
piler, the controller, the P4 Runtime, as well as the switches.
In [3], the researchers automated the attack discovery of a
certain class of attacks on data planes. They provided an ex-
ample of such an attack and its discovery. In [4], assertion-
based verification was used to check the general security and
correctness properties of several P4 programs. The analysis
was based on translating a P4 program into a C program. The
C model was verified by a symbolic engine. The researchers
analyzed four P4 programs and managed to find bugs in each
of them. In [5], a few buggy P4 programs were produced.
The researchers analyzed how running these programs on a
switch affected the work of the switch.

This research attempts to answer the question: “Can the
attacker manipulate the packet data to corrupt certain P4 pro-

grams?”. To answer this question, first, three P4 programs
were analyzed and the vulnerable fields of these programs
were discovered. After that, the fields in the packets, that
could corrupt these P4 programs, were identified. We used
previously discovered vulnerabilities along with manipulated
packets to demonstrate attacks on the chosen P4 programs.

The main contribution of this paper is providing examples
of attacks on P4 programs by using packets with manipulated
data. These attacks aimed at corrupting the behavior of the
P4 programs.

The rest of the paper will have the following structure. Sec-
tion 2 describes the methodology used for this research. It is
followed by Section 3 with the description of the experimen-
tal setup and results. Section 4 contains a reflection on an
ethical aspect of the research. Finally, the conclusion is pre-
sented in Section 5.

2 Methodology

The first step in the research was a literature study. During
the literature study examples of vulnerabilities in buggy P4
programs were found, as well as examples of attacks on pro-
grammable data planes. Afterwards, three P4 programs were
chosen to be analyzed:

» load_balance.p4 [6]
e mri.p4 [7]
» firewall.p4 [8]

These programs were chosen with reproducibility in mind.
As they are part of the official P4 tutorial [9] and have open
source code, everyone can get access to them and easily work
with them.

Load_balance.p4 is an implementation of load balancing.
The load_balance.p4 uses a hash function to determine which
one of the two hosts the packet will be forwarded to.

Mri.p4 allows users to track the path and the length of
queues that every packet travels through. It appends an ID
and queue length to the header stack of every packet.

Firewall.p4 implements a simple stateful firewall. It allows
hosts in the same internal network to communicate with each
other and with the hosts from the external networks. How-
ever, it prevents hosts from an external network to initiate
communication with hosts from the internal network.

To analyze the programs, we went over each program, un-
derstood its control flow, what it was doing, and detected
potential vulnerabilities. After analyzing and identifying the
vulnerable fields of the programs, we tested if these vulnera-
bilities could, indeed, be exploited by a malicious data packet.
For packet manipulation, Scapy [10] was used. Scapy is a
python library that allows to create/send/sniff data packets.
To run the P4 programs a bmv2 switch [11] was used. In or-
der to be able to send packets between the switches, we used
Mininet [12]. Mininet is a network emulator that allows to
create typologies of hosts/switches and send packets between
them.

3 Experimental Setup and Results

To set up the experiments, it is necessary to follow the steps
described in the P4 tutorial [9]. The tutorial explains how to

set up necessary software, install dependencies and run the
P4 programs. We used load_balance.p4 [6], mri.p4 [7] and
firewall.p4 [8] programs from the tutorial. All P4 programs
are run on bmv2 switch [11]. For each P4 program, the tuto-
rial provides a Mininent network as well as the python scripts
that allow to create/manipulate/sniff packets and send them
between the hosts in the Mininet network.

The following experiments used only the tools provided by
the tutorial and only some changes to the python scripts were
made. The changes will be described in each experiment.

load_balance.p4

Host 3

[=]

Switch 3

Host 2

(=]

Switch 2

Host 1

Figure 1: Load balance topology

The load_balance.p4 uses a hash function to forward the
packets to one of the two hosts. The purpose of a load bal-
ancer is to distribute traffic in order to avoid overloading one
of the two hosts. For this experiment, a topology from Fig.
1 was used. In the topology, there are three hosts, each con-
nected to its own switch. When host 1 sends packets, switch
1 forwards them either to host 2 or host 3.

We discovered through analysis that the simple hash func-
tion used in the program is a vulnerability that can be ex-
ploited by an attacker. In order to select one of the two hosts,
the hash function is applied to a 5-tuple consisting of the
source and destination IP addresses, IP protocol, and source
and destination TCP ports. This means that two packets with
identical source and destination IP addresses, IP protocol, and
source and destination TCP ports will always have the same
hash value and will go to the same host (either host 2 or host
3).

First, we ran this P4 program with the given send.py file.
This python script generates packets (using Scapy [10]) with
a randomized TCP source port. We only performed a slight
change to the given script, by moving the code that sends a
packet into a loop with the range from O to 50. This allowed
us to send 50 packets at once. When we sent 50 packets from
host 1, the packets got evenly distributed between the two
destination hosts (Fig. 2). We repeated that several times and

the packets were always evenly (almost) distributed between
the two hosts. Thus, we observed the intended behavior of
load_balance.p4.

Number of received packets

host 2 host 3
Hosts

Figure 2: Intended behavior of load_balance.p4

To make use of the hash function vulnerability, it is neces-
sary to change one of the values of a 5-tuple and see how it
affects where the packet is being sent. Since the initial python
script randomly chooses the TCP source port, we decided to
focus on this field of the packet. So, we again sent the traffic
of 50 packets and recorded which ones got sent to host 2. We
took the TCP source port values of the 20 packets that got re-
ceived by host 2 and put those values in an array. Then we set
a loop and sent the 20 packets (Fig. 3) with the TCP values
we had previously put into an array. Now, as expected, the
load balancer did not divide the traffic but instead sent every-
thing to h2 leaving h3 idle (Fig. 4). We repeated that several
times with various TCP source ports and various amounts of
packets - the result was always the same.

h1.-> h2
IpSrc, IpDst, TcpSpeort, TcpDport

10.0.1.1, 10.0.0.1, 52220, 1234 10.0.1.1, 10.0.0.1, 49733, 1234

10.0.1.1, 10.0.0.1, 61807, 1234 10.0.1.1, 10.0.0.1, 53853, 1234

10.0.1.1, 10.0.0.1, 60297, 1234 10.0.1.1, 10.0.0.1, 51917, 1234

10.0.1.1, 10.0.0.1, 58318, 1234 10.0.1.1, 10.0.0.1, 49788, 1234

10.0.1.1, 10.0.0.1, 49968, 1234 10.0.1.1, 10.0.0.1, 57047, 1234

10.0.1.1, 10.0.0.1, 50252, 1234 10.0.1.1, 10.0.0.1, 64762, 1234

10.0.1.1, 10.0.0.1, 49556, 1234 10.0.1.1, 10.0.0.1, 50742, 1234

10.0.1.1, 10.0.0.1, 64872, 1234 10.0.1.1, 10.0.0.1, 58200, 1234

10.0.1.1, 10.0.0.1, 49711, 1234 10.0.1.1, 10.0.0.1, 60024, 1234

10.0.1.1, 10.0.0.1, 51593, 1234 10.0.1.1, 10.0.0.1, 52238, 1234

Figure 3: Packets that got sent to h2

Hence, we managed to disrupt the work of load_balance.p4
and prevent it from distributing the traffic between the two
hosts. The danger of such an easily manipulated hash func-
tion is that an attacker can overload one of the hosts, which
can lead to a DoS attack of that host.

20.0

15

15.0

125

100

Number of received packets

T
host 2 host 3
Hosts

Figure 4: Corrupted behavior of load_balance.p4.

Switch 1

Figure 5: Mri topology

mri.p4

Mri.p4 allows users to track the path and the length of queues
that every packet travels through. It does that by appending an
ID and queue length to the header stack of every packet. So,
since the mri.p4 adds a header to the packet it processes, this
gave an idea to recreate a buffer overflow attack, described in
[13]. In that paper, however, the data plane was programmed
in C rather than in P4 language.

For this experiment, a topology from Fig. 5 was used. The
idea of the attack was to send a packet of a large size to the
switch. The switch would add a header to the packet. This
would make the packet larger than the allowed size, which
would lead to an overflow and the crash of the system.

We used the provided send.py script to attempt the attack.
The only change was made to the load of the packet. To in-
crease the size of the packet, we increased the load of the
packet (Fig.6). By trial and error, we figured out that the load
of ’X’*1468 was the largest that the packet could have. Any-
thing larger would make the packet exceed the allowed max-
imum size and hence would prevent it from being sent.

pkt = Ether(src=get_if_hwaddr(iface), dst="ff:ff:ff
dst=addr, options = IPOption_MRI(count=0,
swtraces=[])) / UDP(
dport=4321, sport=1234) f ('x'*1468)

FRIFFLFEY) /TR

Figure 6: Code change

Once the send.py script was changed, we tried to send the

packet from hl to h2. We expected switch 1 to crash after
it adds a header to the packet. Unfortunately, this did not
happen and the packet was just dropped by the switch.

After exploring the cause of the outcome, we found out that
such an attack is not possible. It is because, as described in
[5], the P4 program cannot directly control the next instruc-
tion to be executed, since the control flow is immutable. As
the control flow is immutable, the buffer overflow attack is
not feasible.

firewall.p4

Switch 4

Switch 3

Switch 1 Switch 2

Figure 7: Firewall topology

For this experiment, a topology from Fig.7 was used.
Switch 1 is configured with a P4 program that implements a
simple stateful firewall (firewall.p4). The rest of the switches
implement basic L2-forwarding, which simply forwards all
the packets to their destination.

The firewall on switch 1 has the following functionality:

e Hosts hl and h2 are on the internal network and can al-
ways connect to one another. They can also connect to
the switch on the external network - h3.

* Host h3 can only reply to connections once they have
been established from either h1 or h2, but cannot initiate
new connections to hosts on the internal network.

The bloom filter with two hash functions is used to check
if a packet coming into the internal network is a part of an
already established TCP connection. Two different register
arrays are used for the bloom filter; each is updated by a hash
function. The hash functions use hash algorithms crc16 and
crc32. The hash functions for the packets that come from the
internal network are computed on the packet 5-tuple:

(IP.src, IP.dst, TCP.src, TCP.dst, IPv4 protocol type)

And the hash functions for the packets that come from an
external network are computed on the packet 5-tuple:

(IPdst, IP.src, TCP.dst, TCP.src, IPv4 protocol type)

The computed hash values are the bit positions in the two
register arrays of the bloom filter (regOne and regTwo).

When hl (or h2) sends a packet, the firewall computes the
values of the two hash functions and uses the results as in-
dices (regOne and regTwo) for the two register arrays. Then
it assigns 1 to the regOne element in the first array and 1 to
the regTwo element in the second array. When h3 sends a
packet to h1 (or h2), the hash functions are computed again,
providing indices regOne and regTwo. If the first array does
not contain 1 at position regOne or the second array does not
contain 1 at regTwo - the packet gets dropped. Otherwise, the
packet is considered a reply to the connection of hl (or h2)
and gets forwarded to the host.

However, both hash functions can be manipulated. For
that, it is necessary to find at least two packets whose IP and
TCP values will result in a collision for both hash functions.
When manipulation is successful, h3 can initiate communica-
tion with the hosts from the internal network.

We discovered the collisions by recording the register array
values for the packets that were sent from hl to h3 as well as
the packets that were sent from h3 to h1. Examples of packets
that cause collisions can be found in Fig.8.

For example, hl can send the following packet to h3 :

IPsrc = 10.0.1.1, IPdst = 10.0.3.3, TCP.sport = 50218 ,
TCPdport = 1234.
Then, as intended by the firewall.p4, h3 can reply with the
following packet:

IP.src = 10.0.3.3, IPdst = 10.0.1.1, TCP.sport = 1234 ,
TCPdport = 50218.
However, there is another packet that h3 can successfully
send to h1:

IP.src = 10.0.3.3, IPdst = 10.0.1.1, TCP.sport = 428 ,
TCPdport = 1234.
That is because both hash functions give the same values for
this packet and the first packet (sent from hl to h3), namely
regOne = 2660, regTwo = 3522. Hence, this results in h3
establishing a new TCP connection with hl, which disrupts
the intended behavior of the firewall.p4.

hi-> h3 h3->hl regOne | regTwo
IpSre, IpDst, TepSport, TepDport IpSre, IpDst, TepSport, TepDport

10.0.1.1,10.0.3.3, 50218 , 1234 | 10.0.3.3,10.0.1.1, 428, 1234 2660 3522
10.0.1.1,10.0.3.3, 49794 , 1234 | 10.0.3.3,10.0.1.1, 624 , 1234 2764 2440
10.0.1.1,10.0.3.3, 634 , 1234 10.0.3.3,10.0.1.1, 1806, 1234 | 3069 3867
10.0.1.1,10.0.3.3, 65197 , 1234 | 10.0.3.3,10.0.1.1, 63696 , 1234 | 2964 871
10.0.1.1,10.0.3.3, 63763 , 1234 | 10.0.3.3,10.0.1.1, 33811, 1234 | 773 1758
10.0.1.1,10.0.3.3, 63493 , 1234 | 10.0.3.3,10.0.1.1, 64268 , 1234 | 2876 1837

Figure 8: Packets that cause collisions

4 Responsible Research

The research is based on open sources. All the tools and
methods that were used in the research are described in Sec-
tion 2. The setup of the experiments is presented in detail

in Section 3. Since the analyzed programs have open source
code, everyone has access to them. Hence, research is re-
producible and anyone can repeat the same steps and get the
same results. All the papers and resources are mentioned in
the relevant parts of the text and are provided in the reference
section.

The P4 programs that were analyzed in this research are
part of a tutorial and are not used in real life. Thus, there
is no risk of making use of the vulnerabilities discovered in
these programs.

5 Conclusions

In the network devices, data planes are responsible for for-
warding packets. Traditional data planes only allow for pre-
defined protocols, however, that has changed since the emer-
gence of programmable data planes. Programmable data
planes allow programmers to define their own protocols and
how packets are going to be handled. To program data planes,
the P4 language [1] is used. It is a relatively new language
and even though there has been some research done concern-
ing the security of P4 [2-5], it has not been studied enough
yet.

The question that this paper aimed to answer is “Can an
attacker corrupt certain P4 programs by manipulating packet
data?”. In order to answer this question, three P4 programs
were chosen for analysis: load_balance.p4 [6], mri.p4 [7],
firewall.p4 [8]. The analysis helped to identify the vulnerabil-
ities of these programs. After that, the packets were created
in such a way that they could make use of the vulnerabilities
and corrupt the P4 programs. Hash functions were the vul-
nerabilities of load_balance.p4 and firewall.p4 programs. To
corrupt such programs, malicious packets were created with
manipulated TCP headers. Both of the attacks succeeded. For
mri.p4 a buffer overflow attack was attempted. To do that, the
size of the packet was increased by increasing the size of the
load of the packet. However, the attack was unsuccessful and
it was not possible to corrupt the P4 program.

Although one of the three attacks was not successful, the
paper proves that it is possible to corrupt certain P4 programs
by manipulating packet data. With regard to future work,
more P4 programs can be analyzed.

References

[1] P4 language. (2022). P4 Open Source Programming
Language [Online]. Available: https://p4.org/.

[2] A. Agape, M. C. Danceanu, R. Hansen, S. Schmid,
”Charting the Security Landscape of Programmable
Dataplanes”, [Online], Jun 30 2018. Available:
https://arxiv.org/abs/1807.00128.

[3] Q. Kang, J. Xing, A. Chen. ”Automated attack dis-
covery in data plane systems”, in [2th USENIX
Workshop on Cyber Security Experimentation and
Test (CSET19), Santa Clara, CA, 2019. Available:
https://www.usenix.org/biblio-3061.

[4] L. Freire, M. Neves, L. Leal, K. Levchenko, A.
Schaeffer-Filho. “Uncovering Bugs in P4 Programs
with Assertion-based Verification”, in Proceedings

[9]

[10]

[11]

[12]

[13]

of the Symposium on SDN Research, LOS AN-
GELES, CA, USA, 2018, pp. 1-7. Available:
https://dl.acm.org/doi/10.1145/3185467.3185499.

M. V. Dumitru, D. Dumitrescu, C. Raiciu. ”Can
we exploit buggy P4 programs?”’, in Proceed-
ings of the Symposium on SDN Research, San
Jose, CA, USA, 2020, pp. 62-68. Available:
https://doi.org/10.1145/3373360.3380836.
Load_balance.p4. (2018). Load
balancing [Online]. Available:
https://github.com/p4lang/tutorials/tree/master/exercises/
load_balance.

Mri.p4. (2018). Multi-Hop Route
Inspection [Online]. Available:
https://github.com/p4lang/tutorials/tree/master/exercises/mri.

Firewall.p4. (2018). Firewall [Online]. Available:
https://github.com/p4lang/tutorials/tree/master/exercises/firewall.

P4 tutorial (2018). P4 Tutorial [Online]. Available:
https://github.com/p4lang/tutorials.

Scapy’s documentation (2022). Scapy’s

documentation [Online]. Available:
https://scapy.readthedocs.io/en/latest/.

Bmv2. Behavioral model (bmv2) [Online]. Available:
https://github.com/p4lang/behavioral-model.

Mininet (2022). Mininet [Online]. Available:
http://mininet.org/.

D. Chasaki, T. Wolf. “Attacks and Defenses in
the Data Plane of Networks”, in I[IEEE Trans-
actions on Dependable and Secure Computing,
2012, vol. 9, no. 6, pp. 798-810. Available:
https://ieeexplore.ieee.org/document/6231636.

	Introduction
	Methodology
	Experimental Setup and Results
	Responsible Research
	Conclusions

