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A B S T R A C T

To cut down immense greenhouse gases emission and energy consumption
in the rapidly urbanizing world, a holistic understanding and rethinking
of our dynamic urban energy system are inevitable. Performing bottom-up
building energy modelings at urban scale based on Geographic Information
System (GIS) and semantic 3D city models could be a promising option to
provide quantitative and integrated energy solutions.

Nevertheless, input uncertainties either caused by limited data accessibil-
ity in most cities or parameters with stochastic variability (e.g. house occu-
pancy profile) become one of the biggest obstacles to produce reliable and
acceptable building energy modeling results. This study aims to address
the heating demand simulation performance gap caused by input uncer-
tainties. In this case study based on Amsterdam residential building stock,
parameter importance ranking of the 14 simulation inputs are first derived
according to the sensitivity analysis. The selected key uncertain parameters
are then modeled in a probabilistic distribution way at postcode 6 level (ap-
proximately or slightly more than 10 buildings). Model calibration is based
on the Bayesian approach and given six years (2010-2015) of gas consump-
tion data to infer parameter posterior distributions. After the training phase,
the calibrated annual heating demand simulation results of the validation
years show significant improvement in modeling accuracy. Comparing the
baseline and the calibrated simulation results, the averaged absolute percent-
age errors of energy use intensity (EUI) among at least 84 valid postcodes
have decreased from 24.96% to 8.31% in 2016 and from 19.93% to 7.70% in
2017 respectively.

The calibrated urban building energy model would be most interested
by municipalities, urban planners, and engineering consultancies. It can be
used to evaluate long-term energy supply and demand strategies, identify
building renovation saving potential, perform large-scale building perfor-
mance mapping, and carry out retrofit measures assessment.
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1 I N T R O D U C T I O N

Urban population is rapidly increasing. In 2014, 54% population lived in
cities, and it is expected to climb to 66% by 2050 [10]. This fact is accompa-
nied by increased energy demand per capita by 32% in the last 40 years [11].
Undeniably, urban energy systems worldwide face a tremendous challenge
to support increasing energy demand in the built environment while achiev-
ing decarbonization target. To cope with such challenge, Urban Building En-
ergy Modeling (UBEM) [12, 13] has been developed in many cities and aims
at characterizing building stock energy consumption or predicting energy
demand given hypothetical scenarios. Among many applications, urban
building energy model has an important role to assist decision making and
perform scenario analysis, for instance, evaluating urban building energy
performance, identifying cost-effective building retrofit potential, balancing
energy demand and supply, and supporting energy efficient building de-
sign and district planning [14, 15, 16].

Two urban building energy modeling approaches can be generally distin-
guished: top-down and bottom-up methods according to Swan and Ugur-
sal [1]. Top-down approach models long-term total energy demand of the
building stock often in country scale based on macroeconomic and socioe-
conomic parameters. It has a relatively coarse spatial-temporal resolution of
energy consumption of the building stock. On the other hand, the bottom-
up approach is more capable of developing a high spatial-temporal granu-
larity energy modeling for a city. This feature enables many more applica-
tions, for instance, detailed end-use consumption calculations, assessing the
consequence of introducing new technologies, and evaluating district-wide
energy demand and supply strategies. Due to these advantages, it is the
adopted approach for this study.

Bottom-up approach can be further separated into statistical method and
engineering method [1]. Statistical method relies on historical consumption
data, and building stock characteristics data, which are often derived from
Geographical Information System (GIS) layers (e.g. building construction
year, building surface area) or census statistics (e.g. population, income
level), in order to build a mathematical model to predict urban building en-
ergy consumption [14, 17, 18]. On the other hand, engineering method often
requires high level of detail data, from geospatial to building level data such
as 3D building geometries, building thermal envelope properties, window
to wall ratio, occupant number and occupancy profile, HVAC system (Heat-
ing, Ventilation, and Air Conditioning), etc. as inputs for a physical model
or a simulation engine to estimate dynamic building energy consumption.

Although bottom-up engineering method is a more versatile tool to assess
dynamic energy consumption, high computational cost of applying a build-
ing energy simulation engine at an urban scale is a significant challenge.
Another obvious obstacle is how to properly deal with inherent simulation
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2 ������������

uncertainties, particularly, input uncertainties alone could be significant fac-
tors to cause simulation performance gap [13, 19, 20].

Archetype classification is one of the solutions to assist input uncertainty
issues. As urban building energy modeling usually covers hundreds or
thousands of buildings, it is expensive and not yet possible to collect de-
tailed individual building data according to the current registration system.
A more common approach is to classify the building stock into different
groups (archetypes) with each unique archetype sharing similar characteris-
tics such as construction period, main building function, etc. [13, 21]. Model-
ers can then derive building thermal envelope properties from construction
database such as European Building Stock Observatory1, technical reports,
or local experts, based on the corresponding construction period, or esti-
mate occupancy schedule based on the main building function.

Input uncertainties can be further separated into subjective type and stochas-
tic type uncertainty. In the first case, deterministic parameter value does ex-
ist but unknown to the modeler because of incomplete information. For in-
stance, thermal transmittance U-values of wall, roof, floor, etc. On the other
hands, some simulation inputs are inherently uncertain and fluctuating. For
instance, it makes little sense to define occupancy schedule, thermostat set-
ting of the building, etc., deterministically. Cerezo et al. [21] suggest that
an additional level of detail can be introduced by assigning the key uncer-
tain parameters in a probabilistic way. Depending on the modeling scale
and data resolution, this can be based on a single building or to a group
of buildings of the same archetype. The Bayesian inference approach and
the measurement data can be applied to compute the parameter posterior
distributions. The subjective type uncertain parameter could potentially be
reduced to a deterministic value if sufficient data is given; while the distribu-
tion of the stochastic type uncertain parameter could be effectively refined
to describe the underlying random process.

Nevertheless, one should be aware that the calibration process is an over-
specified and under-determined problem. In most cases, there are relatively
few measured energy data available, but way more model inputs. This could
lead to over-fitting issues [22, 23]. To overcome this problem, sensitivity and
uncertainty analysis [3, 24] plays an important role to identify the most in-
fluential variables affecting the simulation results. The modeler can thus
prioritize data collection procedure or make more sensible assumptions for
the prior probability distributions of these key uncertain inputs.

As Saltelli et al. [24] point out, ”A model, as a human representation of
a given problem, represents essential simplifications and simulation con-
straints”. An additional aspect to be considered in energy modeling is thus
the model adequacy in terms of the modeling scale and purpose. Building
Energy Simulation (BES) has been widely used to model building perfor-
mance for decades, the popular tools include EnergyPlus, TRNSYS, Model-
ica, etc. Some of the sophisticated tools are capable of simulating building
energy performance in details, but often require diverse and detailed inputs
and have high computational cost. Additionally, complicated urban micro-
climate, e.g. the Urban Heat Island (UHI), has a direct impact on building

1 European Building Stock Observatory: https://ec.europa.eu/energy/en/data-analysis/

building-stock-observatory

https://ec.europa.eu/energy/en/data-analysis/building-stock-observatory
https://ec.europa.eu/energy/en/data-analysis/building-stock-observatory
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Figure 1.1: The generalized workflow followed by this research. Only key processes
and results are shown. Complete breakdown of this workflow is dis-
cussed in Chapter 3

energy consumption [15, 25, 26, 27], while these aspects are often simplified
or ignored at BES scale.

Among numerous simulation tools, CitySim is selected because of the
following characteristics. CitySim models the dynamic irradiation on the
exterior building surfaces to consider the effects of inter-building obstruc-
tion. Meanwhile, a resistor-capacitor (R-C) thermal model is implemented
in CitySim to calculate the thermal exchange between the outdoor and in-
door environment [28]. As a consequence, CitySim can simultaneously con-
sider important geometric features at an urban scale including the building
size, shape, orientation and density in response to local weather data and
at the appropriate level of detail. The simplified building thermal model
not only reduces computational cost but also eases the burden of managing
detailed building level data, which is often the biggest obstacle at an urban
scale simulation.

Figure 3.2 shows the generalized workflow followed by this research,
which summarizes the key processes and (intermediate) outputs for devel-
oping a calibrated urban building energy model. This workflow can be
further broken down into several research questions and steps as discussed
below.

�.� �������� ���������
The main research question of the project is defined as follow:

• How to realize Urban Building Energy Modeling (UBEM) using 3D city
model and minimizing parameter and simulation uncertainties based on the
Bayesian approach?

In order to answer this main question, these sub-questions need to be
answered subsequently.

• What open-source GIS layers, statistics data, and technical datasets related to
Amsterdam are available for the UBEM development? and how to integrate
these datasets in a sensible way to build up a simulation ready 3D city model?

• What is the added value and appropriateness of adopting CitySim as a simu-
lation engine in this research scope?
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• Given a number of simulation parameters with the associated uncertainty
ranges, which ones are the key parameters affecting annual heating Energy
Use Intensity (EUI) calculation and which ones are minimal and even ignor-
able, according to the sensitivity analysis?

• How to infer building dwelling type in order to assist deterministic archetype
classification?

• Which key uncertain parameters should be applied to probabilistic archetype
modeling?

• How could the Bayes’ theorem be applied to infer posterior probability distri-
butions of the uncertain building parameters and how effective is it to improve
simulation accuracy?

�.� ������ �������
The following will be discussed in this document.

• Chapter 2 discusses the theoretical background related to the Urban
Building Energy Modeling (UBEM) development. This includes mo-
tivations, existing modeling approaches, considerations in terms of
modeling domain and scale, introducing the selected simulation en-
gine: CitySim and its characteristics, the role of the semantic 3D city
model, introducing the uncertainty nature in energy simulation, how
to tackle uncertainty through available sensitivity analysis methods.

• Chapter 3 introduces the adopted methodology of this research. The
essential steps such as data preparation and uncertainty quantification,
sensitivity analysis of the simulation engine, probabilistic archetype
modeling, Bayesian calibration framework and validation are intro-
duced sequentially.

• Chapter 4 is the first implementation section of the research. Data re-
quirements, sources and data quality will be discussed. Deterministic
(baseline) values and uncertainty ranges of the inputs are summarized.
The data selection and cleaning rules and how to integrate heteroge-
neous datasets together and transform into a simulation ready 3D city
model will be discussed.

• Chapter 5 takes a closer look at CitySim simulation characteristics and
discusses its pros and cons. The sensitivity analysis result of CitySim
will be discussed.

• Chapter 6: The Bayesian inference and model calibration framework
is introduced. The implementation and the validation results are pre-
sented.

• Chapter 7 discusses and concludes the research results, problems en-
countered in this research, the implemented solutions and the possible
future work.
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The building sector plays an indispensable role in achieving a low-carbon
future as it accounts for more than one-third of total final energy use and
CO2 emissions [29, 30]. Meanwhile, fulfilling increasing energy demand
and achieving decarbonization target in the rapidly urbanizing world is a
tremendous challenge [13]. Nevertheless, the building sector has tremen-
dous potential to reduce energy consumption and greenhouse gases emis-
sion by improving building energy efficiencies such as enforcing appropri-
ate retrofit measures and net-zero emission buildings and urban districts
planning [29], where energy models play an important role.

Frayssinet et al. [27] breaks down urban energy challenges into three as-
pects and these facts illustrate why urban energy modeling remains an ac-
tive field for the last 30 years [12].

• Urban population is rapidly increasing, with 54% population lived in
cities in 2014 and is expected to climb to 66% by 2050 [10]. This fact
is accompanied by increased energy demand per capita by 32% in the
last 40 years [11]. Sustainable urban development and holistic energy
policies to balance the increased resource demands is thus a crucial
issue.

• Renewable energy sources are changing the landscape of energy mar-
ket rapidly [31]. Because of the decentralized and intermittent charac-
teristics of renewable energy sources, a comprehensive understanding
of urban energy systems is crucial to bridge the gap between energy
demand and production.

• Urban heat stress and increased cooling demands caused by urban
heat island (UHI) effects may be further intensified and become more
frequent in the context of climate change [32] and lead to public health
problems.

Allegrini et al. [15] complement to the second point by pointing out en-
ergy hubs, networks, and multi-energy grids are promising technologies to
achieve greater penetration of renewable generation, as balancing demand
and supply between different building types can improve load matching
and resource utilization. However, the temporal mismatch between energy
demands and availability of energy sources is still a significant barrier.

Since buildings and interconnected infrastructures and services typically
have a course of decades life cycle, data-driven planning, parametric mod-
eling, and energy optimization design at building or urban level are of in-
creasing interest to achieve sustainable urban development and to avoid

5
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Figure 2.1: Data flow and platform architecture of the LakeSim project, which has
building energy simulation model integrated into the application to as-
sist parametric design assessment [16].

unsatisfactory energy performances [16, 33]. These kinds of design opti-
mization or decision support applications are particularly important to the
rapidly urbanizing regions or where refurbishment measures are urgently
needed. This leads to emerging spatial decision support environments
such as TRANSFORM1, CityBES2, SusCity3, MUSIC-iGUESS4 and LakeSim5

where energy models are important components of the platforms (see Fig-
ure 2.1 for example). However, urban building energy modeling remains
challenging for multiple reasons, for instance, high Level of Detail (LOD)
data is rarely accessible, inherent simulation uncertainties, computational
cost, dynamic urban microclimate, stochastic occupant behavior, etc., all
add complexity to the urban energy modeling.

Urban energy modeling has broad application fields. Increased accessi-
bility and improved quality of spatial, non-spatial data as well as advance-
ment in geometric and geo-data modeling capabilities become indispensable
components to enable urban-level energy analysis [15]. The scope of this re-
search will be a case study based in Amsterdam, the Netherlands, focusing
on residential building heating demand simulation and dealing with input
uncertainties. Nevertheless, the review below will start from a broad intro-
duction of urban building energy modeling approaches and subsequently
dive into the discussions with respect to modeling scales, options of simula-
tion engines, and the chosen one for urban scale modeling in this research
and its challenges.

1 TRANSFORM: http://urbantransform.eu/decisionsupportenvironment/

2 CityBES: https://citybes.lbl.gov/

3 SusCity: http://groups.ist.utl.pt/suscity-project/home/

4 MUSIC-iGUESS: https://www.list.lu/en/research/project/music/

5 LakeSim: https://www.ci.uchicago.edu/blog/lakesim-designing-future-cities

http://urbantransform.eu/decisionsupportenvironment/
https://citybes.lbl.gov/
http://groups.ist.utl.pt/suscity-project/home/
https://www.list.lu/en/research/project/music/
https://www.ci.uchicago.edu/blog/lakesim-designing-future-cities
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Table 2.1: Three major residential energy modeling approaches summarized by
Swan and Ugursal [1]

Approach • Advantage • Disadvantage

Top-down • Long term forecasting in the
absence of any discontinuity

• Reliance on historical consumption
information

• Inclusion of macroeconomic and
socioeconomic effects

• No explicit representation of
end-uses

• Simple input information • Coarse analysis
• Encompasses trends

Bottom-up
statistical

• Determination of typical end-use
energy contribution

• Reliance on historical consumption
information

• Encompasses occupant behaviour • Multicollinearity
• Inclusion of macroeconomic and

socioeconomic effects
• Large survey sample to exploit

variety
• Uses billing data and simple survey

information

Bottom-up
engineering

• Determination of each end-use
energy consumption by type, rating,
etc

• Assumption of occupant behaviour
and unspecified end-uses

• ”Ground-up” energy estimation • Detailed input information
• Model new technologies • Computationally intensive
• Determination of end-use qualities

based on simulation

�.� �������� ���������� : ���-���� ��� ������-
�� �����

Many studies have investigated how different modeling approaches can be
used to predict building and urban scale energy consumption. Swan and
Ugursal [1] have categorized two main approaches to address urban energy
modeling issues: top-down and bottom-up model, where bottom-up can be
further distinguished by statistical and engineering method. Table 2.1 sum-
marizes the basic characteristics of these modeling approaches.

�.�.� Top-down model

Top-down approach models total energy consumption of building stock, of-
ten at the country scale, and based on macroeconomic and socioeconomic
parameters such as energy price, income, and population density. Since de-
tailed technological components of the city are not considered explicitly, the
top-down model is not able to represent energy consumption of buildings
at high spatial-temporal resolution [1, 27, 34].

�.�.� Bottom-up model

Bottom-up approach is able to generate high temporal and (potentially) spa-
tial energy demand estimations of the building stock and enables more
detailed end-use consumption calculations [1]. This can be further distin-
guished by statistical method and engineering method, namely, data-driven
and law-driven model according to Coakley et al. [22]
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�.�.� Bottom-up statistical method

At building scale, bottom-up statistical modeling uses recorded data as in-
puts of the mathematical models to predict energy consumption. These
models can be regression fitting, artificial neural network (ANN), random
forest, support vector machine (SVM), etc. [22, 35, 36, 37, 38]. Many studies
have indicated that statistical method results in better prediction accuracy
than engineering method [35, 37]. However, the downside is that it relies
on site-specific recorded data and consequently more difficult to generalize
when unobserved conditions happen. Unlike engineering method, statisti-
cal method is much limited in predicting the impact of new technologies
and energy saving potential through retrofit measures [14]. Additionally,
the complex interaction between input and output data is often sophisti-
cated and difficult to interpret and thus has less transparency [37].

When statistical method is applied at urban scale, building characteris-
tic such as construction year, envelope properties, building main function,
building shape, etc., become commonly selected predictors to study its cor-
relation with energy consumption. Tso and Yau [39] studied three methods
of predicting electricity consumption: regression, decision tree, and neural
network. The results show that decision tree and neural network have better
predicting performance but the difference among three methods are mini-
mal. This indicates that regression is a valid model for predicting energy
consumption and with the benefits of more interpretable parameters intro-
duced in the analysis.

Many studies have utilized multiple linear regression model and together
with GIS as a data collection, management, analysis and visualization plat-
form to estimate energy consumption at an urban scale [14, 17, 18, 40]. The
general form of multiple linear regression can be written as follow:

y = I + b1x1 + b2x2 + ... + bpxp + e (2.1)

Where y is the dependent variable (energy consumption); I the general
model intercept; bi the regression coefficient (i = 1, 2, ..., p); xi the predictors
(i = 1, 2, ..., p); e the error term

Howard et al. [17] analyzed the spatial distribution of end-use energy in-
tensities for domestic hot water, space heating and cooling, base electricity
in New York City. Building function and building floor area are predictors
of the robust multiple linear regression model in this study. The analysis
is performed in the aggregate level of 170 zip-code data points, individual
building on the same tax lot is not distinguishable. Visualization of the re-
sult can be seen in Figure 2.2

Torabi Moghadam et al. [18] developed a bottom-up statistical model via
robust multiple linear regression analysis and identified period of construc-
tion, heated volumes, type of ground floor, occupation factor, air tempera-
ture, type of roof, and the installed power are most related to space heating
demands of the residential building stock of the city Settimo Torinese, Italy.

Mastrucci et al. [14] used statistical method to breakdown aggregated
level energy consumption to end-use by multiple linear regression. To iden-
tify significant independent variables of the regression model, the authors
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Figure 2.2: Spatial distribution of end-use energy intensity in New York City es-
timated by multiple linear regression model. Retrieved from Howard
et al. [17]

carried out a two steps procedure: first identifying main influential variables
on energy consumption of dwellings based on the current state of the art;
secondly performing stepwise regression analysis to select the statistically
significant variables. Dwelling type, construction period, floor area are the
main predictors of gas consumption.

Braulio-Gonzalo et al. [40] took year of construction, and additional fea-
tures of surrounding area such as building shape coefficient (represents sur-
face to volume ratio, S/V), solar orientation of the main facade, street aspect
ratio and urban block pattern as predictors to estimate building energy per-
formance and discomfort hours for the cooling and heating in Castellón de
la Plana, Spain. The statistical analysis is based on approximate Bayesian
inference using Integrated Nested Laplace Approximation (INLA) and iden-
tified building shape coefficient and construction year are the most influen-
tial parameters while solar orientation of the main facade of the building is
least significant.

Feature and model selection are important steps especially when dealing
with high-dimensional and multi-domain building energy data. Identifying
key independent predictors with minimal interactions among them is cru-
cial to give better model performance, stability, interpretation and to reduce
over-fitting and multicollinearity (predictors are correlated) issues [1, 41].
This is part of the scope of sensitivity and uncertainty analysis, which will
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Table 2.2: Key variables identified by different statistical methods in case studies

Method Purpose Key variables

Robust
MLR
with M-
estimators

End-use energy use intensities of domestic
hot water, space heating and cooling, base
electricity in New York City [17]

building function, building
floor area

Robust
MLR
with AIC

Heating demands of the residential building
stock of the city Settimo Torinese, Italy [18]

construction period, heated
volumes, type of ground floor,
occupation factor, air temper-
ature, type of roof, installed
power

Stepwise
MLR

End-use energy consumption in residential
building stock, Rotterdam, the Netherlands
[14]

dwelling type, period of con-
struction, floor area

Bayesian
inference
INLA

Building energy performance and discomfort
hours for the cooling and heating in Castellón
de la Plana, Spain [40]

year of construction, shape co-
efficient

Stepwise
MLR
with SRC

Heating energy consumption in historical
dwellings in Bath, UK [42]

number of open flues

MLR: Multiple Linear Regression; AIC: Akaike Information Criterion; INLA: Integrated Nested Laplace
Approximation; SRC: Standardized Regression Coefficients

be introduced in section 2.6.

Other method such as principal component analysis (PCA) is studied by
[43] and is used to filter and select key predictors of consumption for district
heating, building electricity use, cold water consumption and total heat loss
in Stockholm. Table 2.2 summarizes the identified key influential variables
by different statistical methods in different building stocks.

�.�.� Archetype modeling

Before diving into engineering method, it is worth to introduce archetype
characterization. Urban building energy modeling usually deals with more
than hundreds or thousands of buildings, it is expensive and not realistic to
collect detailed building data for each of them according to the current regis-
tration system. Consequently, a common approach is to classify the building
stock into different groups (archetypes) with each archetype sharing similar
characteristics such as construction period, main building function, etc.

There is no consensus about general approach for archetype modeling
because fundamental interactions may differ by geographic context and
consequently often rely on generic assumptions and literature [13]. Rein-
hart and Cerezo Davila [13] review 17 works, the number of archetypes can
range from 5 to 3168. European TABULA project6 generates country-wide
archetypes for 13 European nations based on building dwelling type (de-
tached, terrace, etc.) and construction period [6]. Monteiro et al. [44] classi-
fied partial residential building stocks of Lisbon into 18 archetypes based on
construction period, size class (single-family, multi-family), roof type, and
neighboring.

6 TABULA: http://webtool.building-typology.eu/#bm

http://webtool.building-typology.eu/#bm
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Cerezo et al. [21] proposed three approaches in the case study to classify
the building stock:

• Available literature: characterizing building properties such as con-
struction and occupancy details deterministically based only on avail-
able literature, e.g. technical reports, engineering database, or scien-
tific papers.

• Local expertise: acquiring a deeper knowledge from local construction
and engineering practices and sometimes applying the information
derived from the representative buildings for archetype classification.

• Probabilistic parameters: while the local expertise could significantly
reduce the uncertainties of specific parameters, it makes little sense
to define occupancy profile, lighting loads, thermostat setting, etc.,
deterministically since these variables could either have subjective un-
certainty or stochastic variability. Consequently, the authors introduce
an additional level of detail by assigning probabilistic distributions to
key uncertain parameters. Depending on the modeling scale and data
granularity, this can be based on a single building or a group of build-
ings of the same archetype. The Bayesian inference approach and the
measurement data can be applied to compute the parameter posterior
distributions. The subjective type uncertain parameter could poten-
tially be reduced to a deterministic value if sufficient data is given;
while the distribution of the stochastic type uncertain parameter could
be effectively refined to describe the underlying random process.

The advantage of estimating building characteristics by probabilistic dis-
tribution also help modelers to examine energy simulation result in proba-
bilistic ranges rather than a deterministic value [21].

�.�.� Bottom-up engineering method

Engineering method requires detailed building characteristics data as model
inputs, for instance, occupancy profile, thermostat setting, air infiltration
rate, and so on (detailed parameters see Figure 3.3), and it simulates energy
demand based on the science of building physics. The capability to general-
ize and predict system behavior given previously unobserved conditions is
the biggest advantage of this modeling approach, and thus it is often used
to assess and quantify the impacts of retrofit measures, future climate sce-
narios, new technologies or to assist policy making [1, 22, 27, 34]. These
advantages make it the preferred approach in the scope of this research.

Nevertheless, this method comes with the cost that it is computation-
ally more intensive than statistical method. Depending on the modeling
purposes and how sophisticated the underlying calculations or simulation
engines are, the required inputs can vary dramatically and might up to
hundreds parameters or even more [1, 22, 41]. Accessibility, quality, reso-
lution and uncertainty of the model inputs are common challenges of this
approach [12].

The next section will go further into bottom-up engineering method and
introduce the modeling scale aspect and general features of specific simula-
tion models and engines.
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Figure 2.3: Allegrini et al. [15] assess 20 energy simulation tools based on 17 model-
ing capabilities and its level of details.

�.� ����� ��� ����� �� ��������

�.�.� Scope of modeling

Urban energy modeling is a broad topic and consists of numerous prob-
lem domains. Allegrini et al. [15] identify and classify district-scale energy
system into three key parts, district energy systems (such as heat networks,
multi-energy systems and low temperature networks), renewable energy
generation (for instance, solar, bioenergy, wind and the related topic of sea-
sonal storage), and the urban microclimate which affects building energy
demands. Although each of them addresses different purposes and are
modeled with different tools, the authors emphasize the needs to consider
district-level interaction in energy systems and assess the theory of model-
ing approaches and capabilities of 20 existing simulation engines which can
be seen in Figure 2.3.

It is clear that one should choose a suitable simulation engine depending
on the modeling purpose and scale. In some cases, especially when the
study covers broad spatial or temporal scales, a single simulation engine
might not be able to give reasonable result to the research problem. Cou-
pling different engines to benefit from the strength of each tool is also a com-
mon modeling approach [26, 27, 45]. Additionally, a compromise between
inputs LOD and computational cost is always an issue to be considered.

The following paragraphs specifically address scale aspect and require-
ments for UBEM.
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�.�.� Simulation engine options and considerations

Many models and simulation engines have been developed and mainly used
in the community for the whole building energy simulation. Simulation at
this scale can generally be called as Building Energy Simulation, BES, and it
is unnecessary to precisely consider the local urban effects [27]. The missing
or simplified aspects at BES level will be further discussed in section 2.3.3.

Heo et al. [46], Booth et al. [47] carried out building energy retrofit analy-
sis under uncertainty, and applying Bayesian calibration on normative mod-
els (CEN/ISO), which are light-weight, quasi-steady state formulations of
heat balance equations and thus more efficient to model large sets of build-
ings. Buffat et al. [48] studied building stock modeling with large-scale GIS
data and modeled with the SIA 380/1 Norm, which is a building thermal
model also established on the ISO model and uses a monthly steady-state
method to estimate and model the heat balance of a building. The argu-
ments for choosing simplified ISO models are mostly due to compromise
between level of details and computational effort [46, 47, 48]

Except ISO models, many researchers have carried out district to urban
level building energy modeling with more advanced dynamic simulation
engines such as EnergyPlus, and TRNSYS. In the review work of [15], these
are classified as holistic simulation tools as they have capabilities to span
many areas of interests, see the matrix presented in Figure 2.3. EnergyPlus,
developed by the U.S. Department of Energy (DOE) [49], has gained popu-
larity in the research and simulation community for decades. It primarily
simulates building level energy costs given hourly local weather informa-
tion, a building geometry, HVAC description, utility rate structure, and etc.
[15, 22, 49]. Davila et al. [50], Sokol et al. [51] used EnergyPlus to carry
out urban residential building energy modeling and calibrated by Bayesian
model.

TRNSYS is a transient system simulation program with a modular struc-
ture, which implements component-based simulation approach and allow-
ing the users to implement new components and mathematical models for
various purposes. The tool is intentionally designed for detailed energy sys-
tem simulations rather than modeling general energy flows at district or city
scale [15, 22].

�.�.� Urban scale energy modeling considering microclimate

The simulation models and tools discussed in the previous section are mainly
designed for BES and with limited capabilities to take interactions between
adjacent buildings into account, or often only shadowing is modelled [15].
This is no longer sufficient in district or urban scale modeling as microcli-
mate has significant influence on building energy demands. For instance,
air temperature is higher in urban areas due to the Urban Heat Island (UHI)
effect and wind speeds are lower due to sheltering effect [25]. These local
interactions motivates that microclimate should be considered when per-
forming urban scale energy simulation. Coupled modeling with different
simulation engines can also be executed rather than the microclimate being
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Figure 2.4: Modification of the energy balance of an urban building compared to a
stand-along building. Retrieved from Frayssinet et al. [27]

a predetermined boundary condition [15, 26, 27, 52]

Frayssinet et al. [27] illustrated three spatial scales of energy modeling
(Figure 2.5) and summarized four main effects to be accounted for at urban
scale modeling. The general difference is illustrated in Figure 2.4:

• Obstructions and sheltering effects, which has direct impacts on solar
gains and the radiative cooling to the sky

• Surrounding surfaces account for the reflected solar radiations and
emitted longwave radiations from the ground surface.

• Urban morphology will affect urban airflows and ventilation, which
influence convective heat exchanges.

• The general Urban Heat Island (UHI) effect means city center has a
higher temperature than suburban areas because of above mentioned
reasons, extra the anthropogenic heat sources as well as less evapora-
tive cooling due to lack of vegetation. These facts account for reduced
heating demands and increased cooling demands in the city center.

Figure 2.5: Frayssinet et al. [27] classified energy simulation into three spatial scales.

Due to multi spatial-temporal scale modeling characteristics (Figure 2.6)
and high computational cost in general, the authors indicates that there is
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Figure 2.6: Multi-scale and multi-domain nature of energy simulation. Retrieved
from Frayssinet et al. [27]

still no entirely validated simulation tool able to model accurately and ex-
plicitly the energy demand of urban buildings at the city scale [27]

Dorer et al. [26] studied the influence of urban microclimate on the build-
ing energy demands in street canyons with different aspect ratios (build-
ing height/street canyon width). The authors used BES tool: TRNSYS and
adapted with other models such as Computational Fluid Dynamics (CFD) to
account for (1) the radiation exchange between buildings; (2) the convective
heat transfer adapted to the local flow field and (3) the UHI effect. The
influence from urban microclimate is obvious (Figure 2.7) and the authors
explained that due to multiple reflections and more solar and thermal ra-
diation is entrapped, wider street canyon require higher cooling demands,
while lower cooling demands in narrow street canyons is expected as less
solar radiation entering the street canyon.

Above discussion justifies that taking environmental interactions into ac-
count at urban scale simulation is needed. However, a certain level of sim-
plification of the models to reduce computational cost should also be con-
sidered. This leads to the discussion of why choosing CitySimin in this case
study. The general CitySim characteristics are introduced below.

�.� �������� �� ������� ��� ����� ����� ��-
���� ��������

Compromise between level of details and computational cost is always an
issue to be concerned. Although sophisticated simulation tool such as TRN-
SYS has components to simulate both radiative and convective model, it
requires high level of detail inputs, modelers experience, and high compu-
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Figure 2.7: The experimental result modeled in TRNSYS and CFD on annual cooling
demand estimations of a stand-along building and street canyons with
different aspect ratios. Retrieved from Dorer et al. [26]

tational cost and thus is not the first choice for an urban scale simulation.

On the other hand, CitySim developed at the Swiss Federal Institute of
Technology Lausanne (EPFL) by [28] is a holistic simulation tool to model
resource flows in urban environment and specifically focusing on inter-
building interactions such as shadowing, light inter-reflection, and infrared
exchanges [28, 53]. It consists of a simple Resistor-Capacitor (R-C) network,
analogy with the electrical circuit, to perform energy simulation. The short-
wave and longwave radiation model (simply denoted as radiation model in
this document) accounts for solar gains on facades and roofs. Beside that, it
includes simplified occupant behavior with deterministic or stochastic mod-
eling options, and plant/equipment models [15, 28, 45].

CitySim requires 3D building model and ground surface to model en-
vironmental interactions between buildings. Building geometry and con-
struction details such as facade U-value (thermal transmittance coefficient,
W/m2K), window to wall ratio (glazing ratio) and etc. of each surface; op-
eration details such as number of occupants and occupancy profile of the
building can be specified in the specific CitySim XML schema or CityGML
schema for simulation.

Like most simulation engines listed in matrix 2.3, CitySim does not in-
clude convective model to account for external air flow and ventilation;
weather file is usually collected from the historical hourly observation data
of a nearby meteorological station or from Meteonorm7. These facts indicate
that the influence of the UHI effect is simplified to some extent. To evaluate
microclimate in greater detail, Mauree et al. [54] tried to couple CitySim
with Canopy Interface Model (CIM), where CIM provides high-resolution
vertical meteorological profiles to CitySim while CitySim is capable of rep-
resenting surface and building thermal performance.

To validate whether the simplified thermal model of CitySim can still pro-
duce valid result, Walter and Kämpf [53] conducted a comparative testing

7 Meteonorm: http://www.meteonorm.com/

http://www.meteonorm.com/
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approach within the frame of the Building Energy Simulation Test (BESTEST)
method, which is developed by the US National Renewable Energy Labo-
ratory, the International Energy Agency (IEA) and the US Department of
Energy [55]. The IEA BESTEST suite used in the study is composed of refer-
ence kernel of ESP (UK), BLAST 3.0 Level 215 (USA), DOE2.1E-W54 (USA),
SERIRES/SUNCODE (USA), SERIRES-1.2 (USA), S3PAS (Spain), TRNSYS
(USA) and TASE (Finland). The comparison is carried out in sequence of dif-
ferent subsequent changes of the base case such as building mass, windows
orientation and shadings. Annual heating and cooling loads and annual
peak heating and cooling loads considering ideal heating and cooling con-
trol system are compared with validity ranges generated from the reference
programs. The authors conclude CitySim results are consistent with those
of more sophisticated program except two cases, peak cooling requirement
(case 610) and annual heating requirement (case 960) are outside the range
by approximately 0.14% and 0.54% (Figure 2.8).

Figure 2.8: Comparative testing results of CitySim compared with reference kernels
based on BESTEST for the annual heating, cooling loads, and peak heat-
ing and cooling requirements. Retrieved from Walter and Kämpf [53]

Meanwhile, the experimental verification with the monitored data for the
EPFL campus building shows that CitySim simulated result overestimates
heating demand by 5.1% in year 2012 and 0.6% in year 2013, but are within
acceptable range. The authors explained the deviation could be caused by
the simplified occupancy behaviour, uncertainties associated with tempera-
ture set-point, air tightness of the envelope, and the averaged weather file
obtained from Meteonorm [53].

�.� ������-�� ������ ���������� �������
�� �������� ���� �����

Regardless of the modeling scale and purpose, bottom-up simulation gen-
erally requires way more inputs than top-down approach or bottom-up sta-
tistical method. Collecting, cleaning and integrating such detailed infor-
mation from heterogeneous data sources is a rather complex and resource-
demanding task, let alone aggregating, disaggregating or updating exist-
ing datasets. To deal with this challenge, semantic data (city) model is al-
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most indispensable for most UBEM developments. Two previous bottom-up
UBEM projects, TRANSFORM8 and MUSIC-iGUESS9 10 with focus on Am-
sterdam and Rotterdam respectively, have developed respective data model
and workflow (script) to manage and integrate large amount of spatial/non-
spatial data based on the relational database management system (both use
PostgreSQL11) [56, 57]. Monteiro et al. [44] developed an urban building
database (UBD) to run an urban building energy modeling in Lisbon, Por-
tugal. While most of these projects, to name just a few, have achieved the
individual study purpose, the developed semantic data (city) models are
application specific and require additional efforts to be reused by other sim-
ulation tools or domains.

An international standardized data model such as CityGML based on the
Open Geospatial Consortium (OGC) standard [58] is an alternative option
and has potential to increase data interoperability and to facility data ex-
change for multi-scale and multi-domain simulations. CityGML is based
on the Geography Markup Language (GML) to represent and exchange vir-
tual 3D city models. It can define 3D geometry, semantics, ontologies and
appearance of most relevant topographic objects of different spatial scales
on different levels of detail (LODs, see Figure 2.9 left) [58]. Beside the ex-
isting CityGML thematic modules (bridge, building, city furniture, and so
on, see Figure 2.9), it is possible to extend the new classes and attributes by
the Application Domain Extension (ADEs) such as Energy ADE [59], Utility
Network ADE [60], etc, where the Energy ADE is highly relevant to the ur-
ban building energy modeling purpose.

Figure 2.9: Left: Five level of detail representations in CityGML. Right: General
CityGML architecture, thematic modules and application domain exten-
sions (ADEs). Retrieved from [58, 61]

Since its standardization in 2008, there are many urban energy modeling
related researches and projects based on CityGML. Few examples include,
Hong et al. [62] adopt CityGML and Energy ADE as one main component
within the platform architecture to develop CityBES, a web-based platform
to support city-scale building energy efficiency. Nouvel et al. [63] investigate

8 TRANSFORM: http://urbantransform.eu/decisionsupportenvironment/

9 MUSIC: https://www.list.lu/en/research/project/music/

10 iGUESS: https://github.com/ERIN-LIST/iguess

11 PostgreSQL: https://www.postgresql.org/

http://urbantransform.eu/decisionsupportenvironment/
https://www.list.lu/en/research/project/music/
https://github.com/ERIN-LIST/iguess
https://www.postgresql.org/
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the influence of data quality on annual urban heating demand modeling
based on CityGML LOD1 and LOD2 3D city models and energy simulation
tool SimStadt [64]. The authors classify the simulation inputs into three data
categories depending on relevance, where the Must-have category includes
building construction year, building function, refurbishment information,
residence type (main, secondary, vacant); LOD2 city model belongs to Nice-
to-have category, the third relevance category. Case studies in partial districts
of two German cities (Ludwigsburg, Karlsruhe) and Dutch city (Rotterdam)
have also gone through energy modelings by using CityGML 3D city model
[19]. More CityGML and Energy ADE use cases can be found in [59].

Despite the above mentioned benefits of using the standardized data
model like CityGML and Energy ADE, which is also a valid format to
CitySim, it is not yet implemented in this work merely because the au-
thor had founded the way and developed the relevant scripts to integrate
datasets and generate (overwrite) CitySim XML during the course of explor-
ing CitySim, see Figure 4.6, and Figure 4.10.

�.� ����������� �� ����� �������� ������
��������

As Saltelli et al. [24] point out, ”A model, being a human representation of
a given problem,...represents essential simplifications and simulation con-
straints, and might sometimes be erroneous or a poor representation of real-
ity”. Awareness of this fact brings to the discussion of uncertainty and sensi-
tivity analysis for (urban) building energy simulation process. Uncertainty
and sensitivity analysis can not only help to overcome building knowledge
gap, identifying and ranking the uncertainty sources, might also assist cali-
bration process to obtain a better probabilistic description [65] e.g. helping
probabilistic archetype modeling, which is briefly discussed in section 2.2.4.

The relationship between the observations zi, the true process z(·), and
the computer model process h(·, ·) can be described in Equation 2.2, accord-
ing to Kennedy and O’Hagan [23].

zi = z(Xi) + ei = rh(Xi, q) + d(Xi) + ei (2.2)

Where ei is the observation error for the ith observation; r is an unknown
model parameter; d(·) is a model inadequacy function that is independent
of the code output h(·, ·); Xi is vector of known inputs while q is vector
of uncertain inputs. This formula can be translated and corresponds to the
source of uncertainty listed in Table 2.3

In the scope of this study, building characteristics and operational uncer-
tainty (simply denoted as parameter or input uncertainty in this document)
will be the main focus for uncertainty and sensitivity analysis, while obser-
vation error is assumed minimized (data selection process see section 4.1.6).
Weather observation data is collected from meteorological station and thus
has little control over it in the current research scope. CitySim model ade-
quacy is discussed in the previous section and treated as an adequate black
box.
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Table 2.3: Source of uncertainty in building energy models. From Heo [2]

Category Factors

Scenario uncertainty Outdoor weather conditions
Building usage/occupancy schedule

Building physical/operational uncertainty Building envelope properties
Encompasses occupant behaviour
HVAC systems
Operation and control settings

Model inadequacy Modeling assumptions
Simplification in the model algorithm
Ignored phenomena in the algorithm

Observation error Metered data accuracy

�.� �������� �� ����������� ��� �����������
��������

When dealing with complex system like building energy simulation model
or statistical method with multiple inputs, sensitivity and uncertainty anal-
ysis is a powerful tool to answer the question like how can we define the
importance of each variable unambiguously? which variables are ignorable
when limited time and computational resources become constraints? and
how to quantify uncertainty ranges for the variables? [3, 24, 66]. Specifi-
cally, sensitivity analysis (SA) is the study of relative importance of differ-
ent inputs on the model output, while uncertainty analysis (UA) focuses
on quantifying the uncertainty in model output. The general framework of
performing sensitivity analysis is illustrated in Figure 2.10

Sensitivity analysis can be further distinguished by: local sensitivity anal-
ysis and global sensitivity analysis. Local sensitivity emphasizes on the
effects of uncertain inputs around a point (or a base case). Global sensitivity
studies the influences of uncertain inputs over the entire input space, thus
it is more a reliable method but also computationally more expensive [3, 24].

Figure 2.10: Typical workflow of sensitivity analysis in building performance analy-
sis. Retrieved from Wei [3]
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Table 2.4: Global sensitivity methods and characteristics. Adapted from Wei [3]

Method Characteristics Subtype

Regression • Fast and easy to interpret
• SRC and t-value are only suitable for linear models and can

not be used in the presence of correlated factors
• SRRC and PCC can be used for non-linear but monotonic

functions
• Applicable to observational study

SRC
SRRC
PCC
t-value
step-wise
adjust R square
AIC

Screening • Qualitative measures to rank factors, not suitable for
uncertainty analysis

• Model free approach, suitable for large number of inputs
and computationally intensive models

• No self-verification

Morris

Variance • Model free appraoch, suitable for complex non-linear and
non-additive models

• Quantify all the variance of the output and consider
interaction effects among variables

• Highest computational cost among all global methods
• FAST is not suitable for discrete distribution and only

consider non-linear effects, but not interaction effects

Sobol
FAST

Meta-model • Suitable for complex and computationally
intensive models

• Quantify output variance of different inputs
• The accuracy dependent on the applied meta-model
• Applicable to observational study

MARS
ACOSSO
SVM
GP
TGP

SRC: Standardized Regression Coefficients; SRRC: Standardized Rank Regression Coefficient; PCC: Par-
tial Correlation Coefficients; AIC: Akaike Information Criterion; FAST: Fourier Amplitude Sensitivity Test;
MARS: Multivariate Adaptive Regression Splines; ACOSSO: Adaptive Component Selection and Smooth-
ing Operator; SVM: Support Vector Machine; GP: Gaussian Process; TGP: Treed Gaussian Process

Wei [3] conducted a comprehensive overview regarding different sensitiv-
ity techniques applied in building performance analysis and observational
study. The introduction below presents basic characteristics and limitations
of these methods based on the works done by [3, 24, 66, 67], and summa-
rized in Table 2.4 (only global methods are presented).

�.�.� Local sensitivity analysis

Local sensitivity analysis, also named as differential sensitivity analysis, be-
longs to the class of the one-factor-at-a-time methods (OAT). The usual ap-
proach is to study how output is changed by changing one factor while
all other factors are fixed. Comparatively straightforward approach gives
this method advantage regarding computational cost while the drawbacks
include: it only explores a reduced space of the input factor around a base
case; the interactions are not considered; no self-verification in this method,
which means the analyst does not know how much of the total variances of
outputs have been taken into account in the analysis [3].

�.�.� Global sensitivity analysis

Global sensitivity analysis examines the influence of uncertain parameters
over the whole parameter range. It includes regression methods, screening-
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based methods, variance-based and meta-modeling approaches.

Be noted that the screening-based method (Morris method) is the only
adopted sensitivity analysis method in this study. The other methods are
introduced because of their relevance to the building energy performance
study, reading comprehension shall not be affected even without the prior
knowledge of these methods. The overview paragraphs below are mainly
summarized from [3, 24, 66, 67].

Regression method

Regression method is fast to compute and easy to interpret, and thus widely
used in building energy analysis. Regression and variance based method are
based on the decomposition of the Equation 2.3 [68]

Y(X) = f0 +
k

Â
i=1

fi(Xi) +
k

Â
j>i

fij(Xi, Xj) + f12...k(X1, ...Xk) (2.3)

The model response Y(X) is a vector of one model output. X is a N ⇥ k
matrix of model inputs X with N samples of k input parameters defined
with the parameter space by the lower and upper bounds for each param-
eter, Xmin, Xmax respectively. In order to estimate sensitivity indices based
on regression analysis, the model response Y(X) can be approximated by
a linear multidimensional model F(X) with a regression coefficient fi for
each input parameter Xi as shown below, and assuming the decomposed
individual input factors are independent:

F(X) = f0 +
k

Â
i=1

fi(Xi) (2.4)

Estimated regression coefficients become comparable when they are stan-
dardized using the variance of the model response V(Y(X)) and the vari-
ance of the corresponding input V(Xi), which has the following form:

SRCi = fi
V(Xi)

V(Y(X))
(2.5)

The absolute value of SRCi indicates the importance of variable on model
output, while the sign indicates the positive or negative correlation between
input and output. One should be noted that SRCs are only applicable when
the model response Y(X) can be sufficiently represented by the approxi-
mated linear regression model, namely, it is not suitable when the building
model is highly non-linear [68]. To understand how well the approximated
linear model fits the (possibly non-linear) building model, coefficient of de-
termination R2 is used, which means how much of the building energy
model variance V(Y(X)) can be explained by the variance of the approxi-
mated linear model V(F(X)):

R2 =
V(F(X))
V(Y(X))

(2.6)

Low R2 might indicate relevant variables (predictors) are not included in
SA, or due to non-linearity or interaction effects that are not captured by the
regression analysis. A threshold of R2 = 0.7 is defined by Saltelli et al. [69]
for the acceptance of the approximated regression model and the resulting
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SRCs.

Another commonly used technique in regression method includes: for-
ward (backward) stepwise regression with selection criteria by means of
SRC, t-values, adjusted R2, and Akaike Information Criterion (AIC).

A example case of using regression method for SA would be applying
Monte Carlo or Latin hypercube sampling method to sample input space
and to perform multiple simulation runs. The simulation inputs and out-
puts are then collected in order to run a sensitivity analysis.

Screening-based method

The Morris method is one of the most commonly used approaches due to
its efficiency in combination with factorial sampling strategy. The compu-
tation cost of Morris method depends on number of parameters k, number
of trajectory t and leads to a total number of observations: t ⇤ (k + 1). Mor-
ris method gives two indices: µ⇤

i is sensitivity index used to estimate the
elementary (main) effect of a variable on the model output and to rank the
importance of model variables. The second index di can be interpreted as
a measure for non-linearity and parameter interactions. The illustration of
variable ranking by Morris method can be seen in Figure 2.11 and Figure
5.6. Morris method will be more thoroughly discussed in section 3.4

EEi =
y(xi, ..., xi�1, xi + D, ..., xk)� y(xi, ..., xk)

D
(2.7)

µ⇤
i =

1
r

r

Â
t=1

|EEi,t| (2.8)

si =

s
1

r � 1

r

Â
t=1

|EEi,t � µ⇤
i |2 (2.9)

The drawbacks of Morris method include: it provides qualitative mea-
sures by ranking input variables but does not quantify the effects of differ-
ent variables on outputs. Namely it does not allow self-verification, because
the modeler does not know how much of the total variances of outputs have
been taken into account [3].

Variance-based method

The variance-based method tries to decompose the uncertainty of outputs
and apportion to different sources of inputs based on the functional decom-
position scheme shown in Equation 2.3. This leads to the ANOVA decompo-
sition of total model variance (Equation 2.10). The notation discussed here
follows section 2.7.2, and the detailed derivation of the following formulas
can refer to [67]

V(Y) = Â
i

Vi + Â
i

Â
j>i

Vij + ... + V12...k (2.10)
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Figure 2.11: Example of using Morris method to rank variable importance. Re-
trieved from Menberg et al. [66]

where Vi = V(E(Y|Xi)) (equivalents to Equation 2.11) is the contribution
of each input to the total variance of the output with the inner expectation
operator denoting that the mean of Y is taken over all possible values of
Xi; Vij = V(E(Y|Xi, Xj)) � Vi � Vj is the joint effect of the parameter pair
(Xi, Xj) on the outcome, and accordingly for all other higher-order effects.

Two indices are often used: first order effects and total effect. First or-
der effects consider the main effects for the output variations due to the
corresponding input and has the following form:

VXi (EX⇠i (Y|Xi)) (2.11)

where X⇠i denotes the N ⇥ k matrix of all inputs but Xi. In other words,
it is the expected reduction in variance that would be obtained if Xi could
be fixed. The normalized first order sensitivity coefficient is written as:

Si =
VXi (EX⇠i (Y|Xi))

V(Y)
(2.12)

Total effects represent total contributions to the output variance due to
the corresponding input, where first, second, and all higher-order effects
caused by interactions are included (Equation 2.13):

STi =
EX⇠i (VXi (Y|X⇠i))

V(Y)
= 1�

VX⇠i (EXi (Y|X⇠i))

V(Y)
= Si + Sij...+ Sij...k (2.13)

where EX⇠i (VXi (Y|X⇠i)) is the expected variance that would be left if all
inputs but Xi could be fixed; VX⇠i (EXi (Y|X⇠i)) is the expected reduction in
variance that would be obtained if all inputs but Xi could be fixed. Equation
2.13 also indicates that the difference of total effects and first order effects
can be used to indicate overall higher order effects of an input (Equation
2.14).

SH = STi � Si = Sij... + Sij...k (2.14)

Similarly, based on Equation 2.10, for the second order effects Sij for pa-
rameter pairs:

Sij =
VXij(EX⇠ij(Y|Xi, Xj)

V(Y)
� Si � Sj (2.15)
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As a model free approach, variance-based method is suitable for com-
plex nonlinear and non-additive models. Additional advantage includes
the capability to quantify all the variance of output and also consider the
interaction effects among variables. The downside of this approach is its
high computational cost. Fourier Amplitude Sensitivity Test (FAST) and
Sobol method are two most commonly used numerical approaches to esti-
mate sensitivity indices Si, STi, SH , Sij while Sobol method requires much
more computational cost compared to other global sensitivity analysis. The
illustration of Sobol sensitivity result can be seen in Figure 2.12

Figure 2.12: Example result of the first order and total effect of the variables con-
ducted by Sobol method. Retrieved from Menberg et al. [66]

Meta-model based method

Meta-model based method is suitable for complex (linear, non-linear) mod-
els as it is created using non-parametric regression methods to approxi-
mate the objective functions based on statistical or machine learning models,
which means there is no predetermined form. Sensitivity analysis measures
are calculated by using meta-model based the on variance-based method.
Efficient calculation is the biggest advantage of adopting meta-model based
method, which is faster than running detailed building energy simulation
models. Meanwhile, it also allows variance quantification of the output for
different inputs since it uses variance-based method in the second step.

According to the review done by Wei [3], commonly used meta-model
techniques include: MARS (Multivariate Adaptive Regression Splines), SVM
(Support Vector Machine), ACOSSO (Adaptive COmponent Selection and
Smoothing Operator), GP (Gaussian Process) and TGP (Treed Gaussian Pro-
cess).

Table 2.5 summarizes the different sensitivity analysis methods applied
in different case studies as well as the most influential variables, based on
the review work of Wei [3]. The table reveals that key influential variables
not just varies according to the modeling purposes, but also geographical
locations and building (stock) characteristics.
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Table 2.5: Global sensitivity analysis techniques applied in different simulation en-
gines and case studies. Summarized from Wei [3]

Method Purpose Key variables

SRC Energy performance of office buildings in
four USA cities by EnergyPlus [70]

key variables changed by differ-
ent climate zone

Cooling energy for a residential building,
Italy [71]

solar shading, window area,
window insulation

SRRC Annual cooling load in low-rise apartment in
hot-humid climate by EnergyPlus [72]

natural ventilation, window
area, solar heat gain coefficient

Heating energy use in a mixed-mode office
buildings, UK [73]

infiltration rate, lighting gains,
equipment gains

t-value Heating energy and overheating risk in an
office building, UK [74]

internal heat gains

Morris Office building energy use, Denmark [75] lighting control, ventilation dur-
ing winter

Energy rating in a house, Italy [76] indoor temp., air change rate,
number of occupants, metabolic
rate, equipment heat gains

FAST Building thermal performance for typical of-
fice buildings, Italy [77]

envelope transparent surface ra-
tio

Sobol Air temperature for an experimental house,
France [78]

heating capacity, infiltration, fi-
breglass thickness, heat ex-
changer efficiency, internal heat
gains, fibreglass conductivity

Final energy consumption in office buildings
in six european cities [79]

climate zone is the most influen-
tial factor

MARS Influences of climate change on a office build-
ing for overheating risk, UK [80]

lighting gains, equipment gains,
weather conditions

ACOSSO Thermal performance of a campus building,
UK [81]

lighting gains, solar heat gain
coefficients of windows, cooling
degree days, equipment heat
gains

SRC: Standardized Regression Coefficients; SRRC: Standardized Rank Regression Coefficient; FAST:
Fourier Amplitude Sensitivity Test; MARS: Multivariate Adaptive Regression Splines; ACOSSO: Adap-
tive Component Selection and Smoothing Operator; SVM: Support Vector Machine; GP: Gaussian Process;
TGP: Treed Gaussian Process



3 M E T H O D O LO GY

This chapter starts with introducing the selected test area for the UBEM de-
velopment in this case study. It is then followed by methodology overview,
which is broken down into several steps and research questions. These steps
include data preparation, parameter uncertainty quantification and data in-
tegration, energy model sensitivity analysis, building archetype classifica-
tion, Bayesian inference and calibration, and validation of the calibrated
model.

�.� ���� ����
The whole project is studying how to realize Urban Building Energy Model
(UBEM) development from 3D city model and with particular focus on res-
idential building heating demand simulation and model calibration. In the
first place, a semantic 3D city model of the test area, managed in the form
of a programmable CitySim XML file, is required by the simulation engine
CitySim to perform dynamic heating demand simulations.

Figure 3.1: 3D city model of the partial residential districts in Amsterdam-Oost.
Buildings colored in red have completed data (building metadata, en-
ergy, etc.) to perform heating demand simulation and calibration.

In order to reflect adequate building stock diversity with regards to con-
struction periods and dwelling types, three residential building districts in
Amsterdam-Oost (Amsterdam-East) are selected, see Figure 3.1. Several
years of annual metered gas consumption data is collected and will be used
to calibrate the model. Due to the fact that the highest spatial resolution of
the annual metered gas consumption data is only accessible at an aggregate

27
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postcode 6 level (approximately or slightly more than 10 buildings), datasets
with different spatial resolutions will at some point be integrated and aggre-
gated to the same level of details. In total, 2178 buildings are included in the
test area. At least 84 postcodes within the test area fulfill simulation data
requirement (selection criteria is explained in Chapter 4), and will be used
for model calibration and validation.

�.� �������� �����������
A complete bottom-up Urban Building Energy Modeling (UBEM) is often
built from several interdependent tasks, which is illustrated in Figure 3.2.
This general framework is concluded from extensive but non-exhaustive lit-
erature review and mainly discussed in the works done by [2, 21, 22, 47].
The following paragraphs will go through these steps in depth.

Figure 3.2: The research project is following this generalized framework. Only key
processes and results are presented. Complete breakdown of this work-
flow is discussed in respective sections in this chapter.

�.� ���� ����������� ��� ����������� ����-
����������

While the required inputs for running an energy model is significantly de-
pendent on the adopted simulation engine, they can in general be grouped
into these five data categories, weather, geometry, construction, system, and
operation respectively, see Figure 3.3. These data categories also apply to
CitySim inputs, the table part in Figure 3.3 summarizes the overwritten
CitySim parameters in this case study.

In the final step of data preparation, all heterogeneous datasets are cleaned,
harmonized and integrated mostly by GIS operations (in FME platform 1)
and Python scripts. The end results are managed in database software Post-
greSQL and some as GIS layers (in shapefile format [82]).

At the stage of data preparation, one may easily face a difficulty of assign-
ing some inputs with deterministic values. This is because those parameters,
for instance, room temperature setting, occupancy profile, etc., are highly
fluctuating and exist stochastic variability. Another typical case is subjective

1 FME: https://www.safe.com/

https://www.safe.com/
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Figure 3.3: General data categories required by UBEM as well as the modified
CitySim parameters in this case study. Parameter, symbol, and unit are
listed from left to right.

uncertainty, for instance, window to wall ratio (WWR) of a building is a
deterministic value; however, due to high data collection cost at an urban
scale, this is often given as an averaged value of a certain building type from
technical reports (e.g. residential, commercial).

Due to the above mentioned reasons, the main task in this step is not only
assigning deterministic values for the simulation inputs, but also defining
reasonable uncertainty ranges or probabilistic distributions to the relevant
parameters. Chapter 4 will further discuss data preparation in details.

�.� ����������� ��������
Depending on the modeling purposes, energy simulation can sometimes be
very sophisticated and requires tens to hundreds of inputs to run [1, 22, 41].
Identifying the key parameters influencing heating demand calculation can
be a critical step when available datasets and computational resources are
constrained.

The main task in this step is to answer one of the research questions raised
in section 1.1. Given a number of simulation parameters with the associated uncer-
tainty ranges, which ones are the key parameters affecting annual EUI calculation
and which ones are minimal and even ignorable, according to the sensitivity analy-
sis?

Morris method, which is a commonly used statistical method in energy
simulation study, will be used to answer this question considering its com-
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putational efficiency. Morris method is a global sensitivity method to eval-
uate the influence of uncertain parameters over the whole parameter range.
It applies Monte Carlo based evaluation by running CitySim multiple times
(hundred to thousand times) on randomly selected input samples from the
entire input space, see Figure 3.4. The modeler defines k parameters with
the associated uncertainty ranges. Each parameter is normalized to [0, 1]
scale and divided into p levels. The input space W is now a k dimensional
space with p levels in each dimension, consequently leads to pk points in
the entire input space, see Figure 3.5 for illustration.

Figure 3.4: Procedure to perform Morris sensitivity analysis

Figure 3.5: The whole input space W is divided into p levels in each dimension
and leads to pk points in the entire input space. The blue and red arrows
represent two example trajectories. Retrieved from Prempraneerach et al.
[83]

During sampling, the method randomly picks up an initial point in the
input space and then moves along each dimension by the defined grid jump
steps (D). Each sampling process forms a trajectory. Depending on pa-
rameter k and trajectory number (t), the total number of evaluation N is:
t ⇥ (k + 1). Morris method gives two indices: µ⇤

i and si. The first measure,
µ⇤

i , is the sensitivity index to estimate the average elementary effect of a
parameter, which has the following form shown in Equation 3.1:

µ⇤
i =

1
r

r

Â
t=1

|EEi,t| (3.1)

where

EEi =
y(xi, ..., xi�1, xi + D, ..., xk)� y(xi, ..., xk)

D
(3.2)
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The second measure, si, can be interpreted as a measure for non-linearity
and parameter interaction effects.

si =

s
1

r � 1

r

Â
t=1

|EEi,t � µ⇤
i |2 (3.3)

In this research, the sensitivity analysis is performed for a simple generic
model: a cubic building with dimension of 13.5 meter in width, length and
height standing along on the center of the ground surface (192m⇥176m) to
run sensitivity analysis. In total, 14 parameters are evaluated, and the upper
and lower bound value of the parameter uncertainty is defined respectively,
see Table 4.8 for the complete input setting. Different trajectory numbers
(t = 10, 30, 50, 100, 150) are being tested to ensure the stability of the re-
sults. More experimental setup and results will be discussed in full length
in Chapter 5: CitySim characteristics and sensitivity analysis.

The end result of Morris method provides a qualitative measures to rank
parameter importance. This gives the modeler a guidance for building
archetype classification, and allows prioritizing calibration parameters.

�.� �������� ����� ��������� ��������
As UBEM is dealing with more than hundreds or thousands of buildings, it
is expensive and not yet available to have such comprehensive documenta-
tion of the built environment, or it might simply not be freely accessible. As
a result, a common approach is to classify the building stock into different
groups (archetypes), with each archetype shows similar heating demand
pattern, based on the similar building properties such as construction pe-
riod, main building function, and etc.

According to Dutch national reference home standard [84, 85], the exam-
ple building is distinguished by construction period and dwelling type (de-
tached house, semi-detached house, terrace house between, terrace house
corner, gallery complex, apartment complex). In addition, the EPISCOPE
and TABULA project, supported by the Intelligent Energy Europe program
of the European Union, also develops residential building typologies for 13
European countries with the classification scheme mainly based on dwelling
type (single-family house, terraced house, multi-family house, and apart-
ment block), and construction period [6]. Based on these references, the
research classifies the residential building stock of Amsterdam into 18 build-
ing archetypes, with six distinguished construction periods and three major
dwelling types, see Figure 3.6. While Dutch standard and TABULA have
six and four dwelling types respectively, it is aggregated into three main
types in this research: single-family house (SFH), terrace house (TH) and
multi-family house (MFH)

This deterministic archetype classification scheme now serves as a basis.
As suggested by Cerezo et al. [21], assigning probabilistic distribution to key
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Figure 3.6: The basis archetype classification follows the existing schemes by sep-
arating the buildings stock into groups based on dwelling type and
construction period. Key uncertain parameters can be modeled in a
probabilistic way and add additional level of detail to the deterministic
archetype model.

uncertain parameters can introduce an additional level of detail to the deter-
ministically defined archetype. The results from the sensitivity analysis can
help the modeler determines which parameters are the ideal candidates to
be modeled in a probabilistic way and should go through Bayesian process
to infer posterior. Among these selected uncertain parameters, some may be
inherently stochastic such as thermostat setting and infiltration rate, while
some are just unclear to the modeler. As the current CitySim version does
not allow probabilistic inputs, and to simplify the entire model calibration
process, it is assumed that the parameter with either kind of uncertainty can
be both reduced to a single deterministic value, which is represented by the
highest posterior probability. These optimal parameter values inferred from
the posterior are building or postcode level specific and will be used to run
the calibrated energy simulation.

Besides, the prior probability is now only modeled in a uniform distribu-
tion; nevertheless, non-uniform distribution is also possible given adequate
prior knowledge of the specific parameter, see Figure 3.6.

As dwelling type information is not available in the existing collected
datasets, additional classification task is required, and will be explained in
more details in section 4.2.2: Building archetype classification in Chapter 4.

Although the archetype information is assigned to each building, due to
the fact that spatial resolution of the gas consumption is at an aggregate
postcode 6 level. As a result, the calibration can only be carried out at the
same spatial resolution. Building archetype will be aggregated into post-
code 6 level based on the dominant building volume share within the same
postcode.
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�.� �������� ��������� ��� ����� �������-
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Previous steps and works put essential data together and establish a foun-
dation to run an urban scale heating demand simulation. At this stage, the
modeler can carry out a baseline heating demand simulation given a deter-
ministic city model (inputs with only deterministic values). This baseline
result, however, is very likely to deviate from the metered data due to lim-
ited understanding of some key uncertain parameters. To minimize this gap,
Bayes’ theorem is adopted to perform model calibration.

Based on the sensitivity analysis (the result is presented in Chapter 5),
minimum thermostat setting (Tmin) and infiltration rate (Nin f ) are two of
the most uncertain and influential parameters affecting annual heating de-
mand calculation. The calibration framework assumes there exists a post-
code specific representative value for each of these parameters, which is
approximated by the highest posterior probability of Tmin and Nin f in the
end of the training phase. Previously defined uncertainty ranges of these
two parameters are divided into 5 sections, and it is assumed that each
parameter prior has a uniform probability distribution. Theoretically, it is
possible to select more parameters or dividing input space into finer sec-
tions for calibration. Nevertheless, it will significantly increase the number
of parameter combinations and will thus require much more computational
resources to complete the calibration task. In addition, it is also possible to
model the parameter uncertainty in a non-uniform distribution way as long
as adequate prior knowledge is given.

Figure 3.7: Prior probability distribution illustrated in a two dimensional grid. Each
input combination has 4% prior probability given the uniform probabil-
ity distribution assumption.

This setting generates 25 input combinations and the prior probability
P(q) of the joint distribution having equally 4% probability for each input
combination (see Figure 3.7), which is denoted as uncertain input vector
q. Meanwhile, the remaining deterministic parameters are grouped into a
vector X. We can then think of simulation process in the following form:

y = G(X, q) (3.4)

where G is the simulation engine algorithm, and y is the vector contains
energy simulation outputs, yi, and 1 6 i 6 25. Based on the Bayes’ theorem
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(Equation 3.5), observed annual gas consumption EUI geui can be used to
infer posterior probability P(q|geui).

P(q|geui) =
P(geui|q)P(q)

P(geui)
(3.5)

and

P(geui) =
Z

q
P(geui|q)⇥ P(q)d(q) (3.6)

Since there is no explicit form, it is assumed that the likelihood function
P(geui|q) can be described by Gaussian normal distribution function.

P(geui|q) ⇡ P(geui; µ, s) =
1

s
p

2p
exp(� (geui � µ)2

2s2 ) (3.7)

where geui is the individual postcode 6 EUI of the training year; µ is the
simulated EUI of the corresponding postcode of the same year given the spe-
cific input combination q; s is estimated from the standard deviation of the
measured consumptions of the same building archetype.

In the current implementation, annual metered data from year 2010 to
2015 are used to train the model (infer posterior probability of the uncertain
parameters). As mentioned above, the prior probability P(q) is initialized
as uniform distribution. This iterative calibration process uses the posterior
probability of the N year as a new prior of the N + 1 year in the training
phase. When the training phase is done, the input combination q with the
highest posterior probability is selected as a calibrated input to run heating
demand simulation of year 2016, and 2017.

�.� ����������
The whole framework applies annual metered EUI from year 2010 to 2015
to train the model. The annual metered EUI of the year 2016 and 2017 are
used to validate the calibrated model. Absolute percentage error (PE) in
the following form is used to assess and compare baseline and calibrated
results:

PE =

����
EUImetered � EUIsim

EUImetered

����⇥ 100% (3.8)

Be noted that Energy Use Intensity, EUI, is calculated as the sum of gas
consumption in kilowatt-hours per cubic meter (kWh/m3) instead of com-
mon EUI reference (kWh/m2), which is normalized to the square meter of
the floor area. The main reason of applying this unit is considering the fact
that accurate calculation of total floor area of the building is much more diffi-
cult than volume due to incomplete and missing values sometimes found in
the floor area features in the address layer (BAG.verblijfsobject). On the con-
trary, building volume can be more easily and efficiently calculated based on
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the 3D city model. Meanwhile, based on the American Society of Heating,
Refrigerating and Air-Conditioning Engineers (ASHRAE) Guideline 14-2002
recommendations, the allowable maximum percentage error of annual cali-
brated model is set to be 5%.





4 S E M A N T I C C I T Y M O D E L F R O M
H E T E R O G E N E O U S DATA S E T S

Establishing a 3D semantic city model for Urban Building Energy Model-
ing involves several data collection, selection, cleaning, and integration pro-
cesses. Due to large amount of information involved at this stage, it is
exclusively discussed in this new chapter. It starts with data preparation
and uncertainty quantification, and followed by multi-datasets integration
and semantic city model enrichment.

�.� ���� ����������� ��� ����������� ����-
����������

This section aims at providing an overview of available data sources for the
UBEM development applicable to the Netherlands, and more specifically, in
Amsterdam. The collected data shall be able to serve as useful information
for the relevant projects or applying to other simulation softwares such as
City Energy Analyst for future UBEM development when necessary.

General data categories required by UBEM can be seen in Figure 3.3. Data
preparation of meteorological data, building geometry, construction data,
system, operation, and postcode 6 level gas consumption will be discussed
in sequence. In the end of this section, deterministic values and uncertainty
ranges of the model inputs are summarized in Table 4.6 to Table 4.8 respec-
tively.

Collecting and carefully selecting heterogeneous datasets from available
GIS layers, statistics data, technical reports, and energy data sources is some-
times a time-consuming and tedious process. Nevertheless, it is an indis-
pensable step to define appropriate model inputs, or at least to help the
modeler making a reasonable assumption about input uncertainty ranges.
The work done in this section shall be able to answer one of the research
questions: What open-source GIS layers, statistics data, and technical datasets re-
lated to Amsterdam are available for UBEM development? and how to integrate
these datasets in a sensible way to build up a simulation ready 3D city model?

�.�.� Meteorological data

Hourly time-series meteorological data of the study area is often required
by energy simulation softwares in order to run a dynamic building energy
simulation. CitySim takes the following meteorological parameters into ac-
count as listed in Table 4.1. Apart from Diffuse horizontal irradiance (G Dh)
and solar normal irradiance (G Bn), historical observation records measured
at the Schiphol station (which is approximately 10km from the city center
of Amsterdam) is accessed from the Royal Dutch Meteorological Institute,

37
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Koninklijk Nederlands Meteorologisch Instituut (KNMI)1 and translated to
CitySim compatible format. Meanwhile, because G Dh and G Bn records
are not included in KNMI records, these values are retrieved from Energy-
Plus weather data repository, Amsterdam epw.2.

Overall, 8 years of meteorological data from year 2010 to 2017 are collected
and translated into CitySim readable weather files.

Table 4.1: Meteorological parameters required by CitySim Pro

Abbreviation Data Unit Source

d Day
m Month
h Hour
G Dh Diffuse horizontal irradiance W/m2 Amsterdam.epw
G Bn Beam (solar) normal irradiance W/m2 Amsterdam.epw
Ta Air temperature �C KNMI
FF Wind speed m/s KNMI
DD Wind direction � KNMI
RH Relative humidity % KNMI
RR Precipitation mm KNMI
N Nebulosity Octas KNMI

�.�.� CitySim specific building geometry preparation

The building geometry preparation is subjected to the adopted simulation
engine, the discussion in this section applies to CitySim specifically

In the Netherlands, the Basic Registration Addresses and Buildings data
Basisregistratie Adressen en Gebouwen (BAG), managed by Kadaster3 con-
tains detailed, up to date, and georeferenced building (BAG.pand) and ad-
dress (BAG.verblijfsobject) level data of the entire country (attributes con-
tained in each layer can be seen Table A.1 and Table A.2 in Appendix). At-
tributes like year of construction, building function and building footprint,
and etc. are included in BAG and can be freely accessed via Web Feature
Service (WFS) maintained by Nationaal Georegister (NGR)4.

Building geometry is modeled in level of detail 1 (LOD1) block model, the
coarsest volumetric representation defined in Open Geospatial Consortium
(OGC) CityGML standard [58]. LOD1 building model is usually acquired
with extrusion from 2D building footprint with building height estimated
from point cloud data [86]. 2D building footprint in the current imple-
mentation is a standard GIS file in shapefile format [82]. Point cloud data,
Actueel Hoogtebestand Nederland (AHN3), published by de waterschappen,
de provincies en Rijkswaterstaat provides detailed and precise elevation
data collected by airborne laser scanning techniques (or LiDAR-Light De-
tection And Ranging) and has average of eight height measurements per
square meter covering the whole Netherlands. These datasets are an open-
source and are accessed from PDOK5.

1 KNMI: https://projects.knmi.nl/klimatologie/uurgegevens/selectie.cgi

2 EnergyPlus Weather (.epw): https://energyplus.net/weather/sources

3 Kadaster: https://www.kadaster.nl/bag

4 National Georegister: http://www.nationaalgeoregister.nl

5 PDOK: https://www.pdok.nl/nl/ahn3-downloads

https://projects.knmi.nl/klimatologie/uurgegevens/selectie.cgi
https://energyplus.net/weather/sources
https://www.kadaster.nl/bag
http://www.nationaalgeoregister.nl
https://www.pdok.nl/nl/ahn3-downloads
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Building reference height is estimated from the median height of the
points positioned within the building footprint. This value approximately
corresponds to the half of the height of the roof, which is considered to be
the most suitable LOD1 height reference in terms of building volume com-
putation [87].

Considering the level of detail of the collected data is mostly in building
and postcode 6 level. In order to reduce simulation complexity, each build-
ing in the current implementation is modeled as a single thermal zone. This
greatly simplifies geometric processing complexity, even though defining
multiple thermal zones within a building is applicable in CitySim. To gener-
ate a valid 3D city model for thermal simulation in CitySim, the contiguous
building wall areas have to be removed to avoid overestimating heating de-
mand; otherwise, CitySim will assume these areas are touching the air and
consequently overestimates heat exchanges. While many approaches may
exist to perform adjacency detection and removal, this task can be most effi-
ciently and effectively achieved by using the 3D modeling tool: Rhinoceros
3D in combination with its plugins: Grasshopper and Honeybee according
to the author’s experience.

Rhinoceros 3D is a CAD modeling software allows miscellaneous geomet-
ric processing, especially when it is used with its versatile Grasshopper plu-
gin. Meanwhile, Honeybee and Ladybug are open-source, comprehensive
environmental design tools built upon Grasshopper environment. These ad-
ditional tools enable parametric scripting to carry out geometry preparation
suitable for energy simulation, e.g. detecting adjacency and removal (Figure
4.2), decomposing surfaces by types, and so on. The procedure here starts
with preparing GIS baselayer contains unique building IDs, 2D footprints
and reference heights estimated from the point cloud data. The 2D building
footprints have gone through topology check to remove polygon overlaps,
slivers, merge gaps, and a generalization process to reduce geometry com-
plexity. As CitySim applies detailed radiation model, simplified geometry
(e.g. less triangulated faces) can significantly reduce computation time, see
Figure 4.3.

Figure 4.1: The diagram presents the generalized workflow for preparing a CitySim
compatible 3D city model. The complete Grasshopper workflow can
refer to Figure D.1 and Figure D.2 in Appendix.
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LOD1 building extrusion and adjacency detection is followed by baselayer
cleaning and generalization. The exported 3D city model has LOD1 build-
ings standing on the ground surface, where the ground surface area over-
lapped by the building footprints are removed. The conceptual workflow
can be seen in Figure 4.1 and complete Grasshopper workflow is presented
Figure D.1 and Figure D.2 in Appendix. After all these processes, the 3D
city model now contains ground surface and LOD1 buildings with unique
building IDs. CitySim can translate the exported AutoCAD DXF file into
XML format, which is the basis for semantic city model enrichment in the
later steps and will be discussed in section 4.2.

Figure 4.2: Red surfaces indicate overlaps between two neighboring buildings. In
order to generate a valid 3D city model for running an energy simu-
lation, these areas are removed by adopting Honeybee components in
Grasshopper.

Figure 4.3: Removing triangulated faces in SketchUp to simplify the city model.

�.�.� Construction data

Construction data refers to thermal transmittance coefficient (U-value) of
roof, wall, floor and window (denoted as Uroof, Uwall, Ufloor, Uwindow);
solar energy transmittance of window glazing (Gwindow); building infiltra-
tion rate (Ninf); window to wall ratio, window to roof ratio (WWR, WRR);
(ground) surface shortwave reflectance (GSW, SW).

It is not difficult to imagine that certain building construction parameters,
such as envelope U-values, can have significant influence on building energy
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performance in moderate climate zone. The relation between specific U-
value and heat flow (F) is illustrated in the follow form.

F = A ⇥ U ⇥ (Ti � To) (4.1)

where heat flow is represented by F [W]; A [m2] is exposed surface area;
U [W/m2K] is thermal transmittance of the construction material (U-value),
Ti [K] represents indoor temperature and To [K] represents outdoor temper-
ature.

While it is impractical to collect deterministic construction values for
each building, some construction parameters, especially U-values, are re-
lated to and can be inferred from building construction period. These year-
dependent data can be found from the sources such as, European Building
Stock Observatory6, EPISCOPE and TABULA project web portal7, Ecofys
report [9], Sociale Huursector Audit en Evaluatie van Resultaten Energiebe-
sparing (SHAERE) database [4], and so on.

Figure 4.4 summarizes and compares U-value statistics for each construc-
tion material (roof, wall, floor, and window) in different construction peri-
ods. Statistics values from these data sources are summarized in Appendix
B.1, B.2, B.3. SHAERE database values are not included here as it requires
additional authorization to access the database; however, large amount of
records and diverse construction metadata (with 50-60% reporting rate of
non-profit buildings in the Netherlands each year since 2010 [4]) might be a
potential data source to be used for the UBEM development.

Lower U-value means less heat exchange between surfaces due to bet-
ter insulation. Clear descending trends can be observed in all U-values
of the construction materials, mainly due to technology advancement and
energy performance regulation such as Energy Performance of Buildings Di-
rective (EPBD) or Energy Efficiency Directive (EED). However, one may soon
find it difficult to determine which data source values should be used as
simulation inputs since some values are not consistent in some close con-
struction periods. This could be caused by different samples and sampling
approaches used by the data providers. This fact also reflects the inherent
uncertainty within the simulation inputs and emphasizes the importance of
model calibration as an essential UBEM step.

U-values accessed from EPISCOPE and TABULA project are chosen and
used as baseline inputs in this project in the end, as U-values of the repre-
sented construction periods are consistent with the building classification
scheme introduced in the Dutch national reference home standard [84, 85].
Another advantage of using this data source is because of its scalability.
EPISCOPE and TABULA project is supported by the Intelligent Energy Eu-
rope program of the European Union with the aim of making the energy
refurbishment processes in the European housing sector transparent and
effective. In the precedent TABULA project, residential building typolo-
gies have been developed for 13 European countries with the classification
scheme mainly based on dwelling type (single-family house, terrace house,

6 European Building Stock Observatory: https://ec.europa.eu/energy/en/data-analysis/

building-stock-observatory

7 The TABULA WebTool: http://webtool.building-typology.eu/#bm

https://ec.europa.eu/energy/en/data-analysis/building-stock-observatory
https://ec.europa.eu/energy/en/data-analysis/building-stock-observatory
http://webtool.building-typology.eu/#bm
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Figure 4.4: Comparison of multiple U-values of the construction materials collected
from different sources

multi-family house, and apartment block), and construction period [6]. Each
building archetype has an exemplary building with the associated construc-
tion details such as U-values of wall, roof, etc., and freely accessible via
TABULA web portal8. This will undoubtedly speed up data preparation
process if the developed methodology in this work is going to apply to the
building stock of another European country.

While EPISCOPE and TABULA values are used as baseline inputs, the re-
mained construction U-values are still helpful sources to be used for uncer-
tainty quantification (e.g. defining upper and lower bound of the U-values
within the similar construction periods).

At the stage of data collection, it is easily realized that U-value references
are generally more accessible and comprehensive than the other construc-
tion parameters. This could be due to high data collection cost (e.g. build-
ing infiltration rate) [88], or the parameter itself has stochastic variability
and thus can not be described deterministically. To cope with such situa-
tion, uncertainty assumptions (assumed uniform probabilistic distribution
within the defined boundary) are made for these parameters and presented
in Table 4.2.

8 The TABULA WebTool: http://webtool.building-typology.eu/#bm

http://webtool.building-typology.eu/#bm
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Table 4.2: Defined uncertainty ranges of the construction parameters

Parameter Baseline value Probabilistic Baseline source

Gwindow 0.76 U(0.30, 0.85) [9]
Ninf 0.60 U(0.19, 0.81) [89]
WWR 0.18(SFH), 0.24(MFH) U(0.15, 0.45) [9]
WRR 0.00 U(0.00, 0.15) CitySim default
GSW 0.20 U(0.20, 0.50) CitySim default
SW 0.20 U(0.20, 0.50) CitySim default

1. SFH: Single family house; MFH: Multi-family house

Except for the self-explanatory parameters, Ninf here stands for building
air volume change rate per hour in normal conditions (unit in h�1), and
taking both air infiltration through the envelope, air flow through the doors,
windows, and casual or for ventilation purposes into account [88]. Most
studies indicate air change rates are decreased with the construction peri-
ods of the buildings, and Ninf of older buildings is around 2 to 4 times
higher than the more recent buildings [90, 91]. Additionally, cold countries
(Estonia, Finland, Canada, Sweden and Norway, with Ninf reported around
0.19 to 0.37 h�1) are found to have lower average Ninf than more temperate
climate countries (Belgium, England, Greece, USA, and Italy, with Ninf be
around 0.44 to 0.81 h�1) according to [91], which can be used to define un-
certainty range of Ninf as listed in Table 4.2. All baseline input values and
uncertainty ranges of the construction parameters are summarized in Table
4.6, Table 4.7, and Table 4.8.

�.�.� System data

In the Netherlands, majority of heating demand (80%) is fulfilled by combus-
tion of natural gas through gas boilers or cogeneration plants, this percent-
age will gradually decrease to 77% by 2020 and to 71% by 2030 according
to the existing policy [92]. Table 4.3 provides an insight into the share of
household heating system type and efficiency of the non-profit buildings
accessed from SHAERE database [4]. It clearly shows that the condensing
boiler with efficiency > 0.95 is the dominant installation in the existing
building stock. In addition, to access detailed heating system type and effi-
ciency per building is challenging due to privacy concerns. As a result, in
the current implementation, heating system diversity and uncertainty is less
addressed and treated as homogeneously distributed in the building stock
when compared with other simulation inputs.

Table 4.3: Distribution of heating system types in the Netherlands. Retrieved from
Filippidou [4]

Type of heating system Frequency Percentage

Condensing boiler (h�0.95) 930127 74%
Improved non-condensing boiler (h=0.80-0.90) 178557 14%
Condensing boiler (h=0.90-0.925) 42026 3%
Gas/oil stove 40548 3%
Conventional boiler (h<0.80) 29973 2%
Condensing boiler (h=0.925-0.95) 19595 2%
Heat pump 16722 1%
µCHP 2751 0%
Electric stove 484 0%
Total 1260783 100%
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�.�.� Operation data

In the context of this research, operation parameters refer to number of occu-
pants per building, occupancy schedule (profile), minimum set-point tem-
perature of the heating system (Tmin, when indoor temperature is lower
than Tmin, heating system starts to operate), and window openable ratio
(WOR).

Needless to say, human behavior has significant impacts on instantaneous
energy consumption particularly when it is examined with high temporal
resolution (e.g. hourly, and daily energy consumption). For instance, the
presence of occupants directly influence how the building would be oper-
ated (e.g. Heating, ventilation and air conditioning (HVAC)), as well as inter-
nal heat gain (use of appliances) [93, 94, 95]. As occupant behavior is one
of the biggest uncertainty in energy modeling [47], how to properly model
occupancy schedule and human behavior in great details remains a popular
yet challenging topic, and it is currently out of the scope of this research.
Meanwhile, the UBEM model developed in this case study is validated with
and calibrated by annual gas consumption data at aggregated postcode 6
level, which gives us more confidence to assume that the fluctuation in
heating demand consumption is mainly affected by building characteristics,
while occupancy uncertainty can be approximated by a standardized profile
in annual scale, see Figure 4.5.

Operation data preparation first starts with estimating the number of oc-
cupant per residential building. Since occupant number of each building is
not directly available in the building layer (BAG.pand), it is derived from
the census data at postcode 6 level (PC6) published by the Central Bureau
of Statistics, Centraal Bureau voor de Statistiek (CBS) 9 of year 2008 to 2010
(the PC6 census data of year 2012-2014 requires additional cost to access),
and denoted as OCCPC6. Detailed attributes included in CBS census data
can be viewed in Appendix Table A.5. Following the equation below, we can
estimate the number of occupants within building i, denoted as OCCbuilding,i

OCCbuilding,i = OCCPC6 ⇥
Ai

Apc6
(4.2)

where Ai stands for the summed residential surface areas within the
building i; Apc6 represents the total residential surface areas of the belonged
postcode. OCCbuilding,i is rounded to the nearest integer before running sim-
ulation.

The set-point temperature of the heating system is another influential yet
uncertain input on heating demand calculation. According to the study
of Leidelmeijer and Grieken [5], Tigchelaar and Leidelmeijer [96], which is
partially based on the WoON survey 10 data in the Netherlands, different
temperature setting profiles throughout different time of a day and weekend
are observed and summarized in Table 4.4. Although different temperature

9 CBS: https://www.cbs.nl/nl-nl/dossier/nederland-regionaal/geografische%20data/

gegevens-per-postcode

10 WoOn: https://www.wooninfo.nl/

https://www.cbs.nl/nl-nl/dossier/nederland-regionaal/geografische%20data/gegevens-per-postcode
https://www.cbs.nl/nl-nl/dossier/nederland-regionaal/geografische%20data/gegevens-per-postcode
https://www.wooninfo.nl/
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Figure 4.5: Standardized occupancy profile of the residential building provided by
ASHRAE Standard 90.1. 2004 is adopted for energy simulation in the
project.

setting profiles exist, CitySim only allows a single value (T minimum and T
maximum respectively) as set-point inputs per building. As a consequence,
the averaged value 18.38 �C is adopted as a baseline input. Nevertheless,
this profile gives us a better insight and helps to quantify uncertainty range
of the set-point temperature in average Dutch households by taking the
minimum and maximum temperature as lower and upper bounds from
weighted average (approximately between 15 to 20 �C).

Window openable ratio (WOR) is barely found in any technical report
or literature reviewed by the author, baseline value and uncertainty range
of this parameter is thus made with an intuitive but rational assumption,
see Table 4.6 and Table 4.8. Sensitivity analysis result presented in Chapter
5 confirms that the parameter influence on heating demand calculation is
minimal and almost ignorable.

Table 4.4: Different thermostat setting (�C) profiles in Dutch households. Adapted
from Leidelmeijer and Grieken [5]

Morning Afternoon Evening Weekend Share

profile 1 15.2 17.4 14.1 16.2 4%
profile 2 18.4 18.8 15.6 18.5 16%
profile 3 19.7 20.2 15.2 20.0 35%
profile 4 19.6 20.0 11.6 19.8 8%
profile 5 14.9 20.2 14.7 20.1 11%
profile 6 20.9 21.2 20.4 21.1 5%
profile 7 21.6 22.0 15.5 21.7 20%

�.�.� Energy consumption data

Metered gas consumption data is not only used to validate simulation re-
sults but also applied to model calibration. Because of privacy concern,
high spatial-temporal resolution metered data, for instance, sub-hourly en-
ergy data per building, is often not readily available. As a consequence, the
research focuses on using open-source data and starts with energy datasets
released by CBS and Liander (local grid operator and energy provider),
which both open annual energy consumption (gas and electricity) data at
aggregated postcode 6 level.
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Brief analysis on both datasets quickly leads to the final decision of adopt-
ing Liander dataset for this project. This is because, CBS dataset has only
2014 consumption data freely accessible through WFS 11 ; while 10 years
of energy consumption records starts from 2008 to 2017 is made available
via Liander open data portal 12. The energy consumption records managed
in Liander dataset also come with much detailed metadata. For instance,
delivery percentage (network supply minus customer self-generation), net-
work status, and so on, which gives user a better control over data quality.
Detailed attributes included in CBS and Liander energy data can be seen in
Table A.3 and Table A.4 in Appendix.

�.�.� Inputs summary

Running a bottom-up heating demand simulation requires diverse inputs
from different data categories as illustrated in Figure 3.3. The main efforts
spent in this section is trying to source deterministic values as baseline
inputs and to quantify uncertainty ranges for these parameters based on
non-exhaustive literature and technical reports. These numerical values are
summarized in the following tables to provide a general overview.

Table 4.5: Data collections applied to the Amsterdam UBEM development

Data category Dataset Data period Remark Source

Weather Annual hourly observation 2010-2017 [1] KNMI
Irradiance 1982-1999 [2] Amsterdam.epw

Geometry Building footprint up to date - BAG(WFS)
Building height 2014-2019 [3] AHN3

System Heating system statistics 2010-2014 [4] [4]
Operation PC6 population 2008-2010 [5] CBS

Occupancy schedule - [6] ASHRAE
Temperature set-point - 2005 - [5]
Window openable ratio - [7] -

Construction See Table 4.6 - - -
Energy PC6 annual gas consumption 2010-2017 [8] Liander

1. The measurement is made at Schiphol meteorological station, which is approximately 10 km away from
Amsterdam center.
2. This data is based on IWEC data in Amsterdam and managed in EPW (EnergyPlus Weather) format.
IWEC data is derived from long term observation sometimes up to 18 years (1982-1999 for most stations).
Details refer to https://energyplus.net/weather/sources#IWEC

3. AHN3 point cloud data collection period is scheduled to 2019 http://ahn.maps.arcgis.com/apps/

Cascade/index.html?appid=75245be5e0384d47856d2b912fc1b7ed

4. Statistical distribution data of the heating system type and efficiency collected from the non-profit
building stock database in the Netherlands.
5. Only 2008-2010 is made freely accessible. 2012-2014 data is made available at cost.
6. Standardized residential occupancy profile
7. Barely found reliable data source, rational assumption is made for this parameter
8. Liander energy data is better than the CBS data quantitatively and qualitatively (several years of
consumption data and much detailed metadata)

11 2014 Gas and electricity supply: http://www.nationaalgeoregister.nl/geonetwork/

srv/dut/catalog.search#/metadata/9a3ae78f-9d4d-4cd9-9aec-10c16f8597f4?tab=

relations

12 Liander open data: https://www.liander.nl/over-liander/innovatie/open-data

https://energyplus.net/weather/sources#IWEC
http://ahn.maps.arcgis.com/apps/Cascade/index.html?appid=75245be5e0384d47856d2b912fc1b7ed
http://ahn.maps.arcgis.com/apps/Cascade/index.html?appid=75245be5e0384d47856d2b912fc1b7ed
http://www.nationaalgeoregister.nl/geonetwork/srv/dut/catalog.search#/metadata/9a3ae78f-9d4d-4cd9-9aec-10c16f8597f4?tab=relations
http://www.nationaalgeoregister.nl/geonetwork/srv/dut/catalog.search#/metadata/9a3ae78f-9d4d-4cd9-9aec-10c16f8597f4?tab=relations
http://www.nationaalgeoregister.nl/geonetwork/srv/dut/catalog.search#/metadata/9a3ae78f-9d4d-4cd9-9aec-10c16f8597f4?tab=relations
https://www.liander.nl/over-liander/innovatie/open-data
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Table 4.6: Deterministic (baseline) values of the simulation inputs
Parameters Symbol Unit Baseline Source a

Building construction parameters
Window to wall ratio WWR - 0.21 [9]
Window to roof ratio WRR - 0.00 -
Thermal transmittance coefficient of roof Uroof W/m2K Table4.7 TABULA
Thermal transmittance coefficient of wall Uwall W/m2K Table4.7 TABULA
Thermal transmittance coefficient of floor Ufloor W/m2K Table4.7 TABULA
Thermal transmittance coefficient of window Uwindow W/m2K Table4.7 TABULA
Solar energy transmittance of window glazing Gwindow - 0.76 [9]
Surface shortwave reflectance SW - 0.20 Default
Ground surface shortwave reflectance GSW - 0.20 Default
Infiltration rate (air change rate) Ninf Volume/h 0.60 [89]
Operation parameters
Minimum set-point temperature Tmin �C 18.38 [5]
Window openable ratio WOR - 0.25 -
System parameter
Heating system efficiency Eta - 0.95 [4]

a If no reliable source is being found, a generic assumption is made.

Table 4.7: Baseline U-values in different construction periods [6]
.

Parameters Pre 1965 1965-1974 1975-1991 1992-2005 2006-2014 Post 2014
Uroof 1.68 0.89 0.64 0.36 0.23 0.16
Uwall 1.76 1.45 0.64 0.36 0.27 0.21
Ufloor 1.75 2.09 0.94 0.35 0.27 0.27
Uwindow 2.90 2.90 2.90 1.80 1.80 1.80

Table 4.8: Defined uncertainty ranges of the simulation inputs
Parameters Symbol Unit Uncertainty Source a

Building construction parameters
Window to wall ratio WWR - U(0.15-0.45) [9]
Window to roof ratio WRR - U(0.00-0.15) -
Thermal transmittance coefficient of roof Uroof W/m2K U(0.16-2.60) [6, 8, 9]
Thermal transmittance coefficient of wall Uwall W/m2K U(0.21-2.55) [6, 8, 9]
Thermal transmittance coefficient of floor Ufloor W/m2K U(0.27-2.09) [6, 8, 9]
Thermal transmittance coefficient of window Uwindow W/m2K U(1.68-3.80) [6, 8, 9]
Solar energy transmittance of window glazing Gwindow - U(0.30-0.85) -
Surface shortwave reflectance SW - U(0.20-0.50) -
Ground surface shortwave reflectance GSW - U(0.20-0.50) -
Infiltration rate (air change rate) Ninf Volume/h U(0.19-0.81) [91]
Operation parameters
Minimum set-point temperature Tmin �C U(15.0-20.0) [5]
Window openable ratio WOR - U(0.00-0.35) -
System parameter
Heating system efficiency Eta - U(0.80-0.95) [4]
Geometry parameter
Building height uncertainty B h - U(0.90-1.10) [87]

a If no reliable source is being found, a generic assumption is made.

�.� �����-�������� ����������� ��� �����-
��� ���� ����� ����������

This section expatiates the technical details of integrating heterogeneous
datasets and explains what selection constraints are applied to the specific
datasets.

The entire data cleaning, integration and city model enrichment process
involves several steps and is accomplished by combining multiple tools (en-
vironments) in use, such as GIS processing in FME software, Geometry pro-
cessing in Rhinoceros 3D together with Grasshopper plugin, PostgreSQL
database and Python programming.
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Figure 4.6: Generalized workflow presents some of the key steps in the data integra-
tion process. Be noted that the sequence of some steps is adjustable, but
this is how the workflow is implemented in the project. The complete
FME script used for data integration can refer to Figure C.1 in Appendix.

Figure 4.6 summarizes the key steps from data integration to city model
enrichment. Figure 4.7 further illustrates the key attributes, constraints, and
relationships of these datasets. GIS processing in FME platform is exten-
sively carried out here and can be broken down into four main stages and
explained in the following sequence.

�.�.� Multi-layers integration and preprocessing

The first step starts with combining building layer (BAG.pand) and address
layer (BAG.verblijfsobject) together by the shared attribute, building ID (pan-
didentificatie), as the join key. The output layer is now called baselayer
and additional information will be stacked upon this layer subsequently.
Although the BAG layers are regularly maintained by Kadaster, topology
repairing process is performed to ensure valid building footprint polygon
(without overlaps, slivers, gaps, and etc.) for later processes. As occupant
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Figure 4.7: UML diagram presents the key attributes, feature constraints, and rela-
tionships of these heterogeneous datasets. The spatial resolution of each
data is illustrated on the left. The integrated baselayer is integrated from
the UML classes colored in yellow, and the data filtering rules are colored
in red.

number per building is not available as an open-source data, it is estimated
from postcode 6 population statistics from CBS dataset, and calculation
method is introduced in section 4.1.5.

Be noted that specific constraints applied to the corresponding datasets
is illustrated in Figure 4.7. These constraints and data filtering rules, for
instance, confining building function to be residential building, energy sup-
ply minus energy return is 100%, namely, no self-generated energy, and so
on, are applied to ensure heterogeneous datasets are integrated in a sensible
way.

�.�.� Building archetype classification

The goal at this stage is to classify the building stock into three dwelling
types: single-family house (SFH), terrace house (TH), and multi-family house
(MFH) as well as 6 construction periods as introduced in section 4.2.2. Con-
struction periods can be easily derived from the construction year stored
in the baselayer. Meanwhile, GIS operations and topology relation analysis
are performed to infer three dwelling types. The applied classification rule
(Figure 4.9) can distinguish 6 dwelling types, it is then aggregated into three
main dwelling types for the final use.

Dwelling type classification based on geometry features introduced in
the literatures [18, 97] has also been experimented. Two geometric indices,
shape coefficient Cs (exposed surface to volume ratio, also denoted as S/V
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Figure 4.8: Left: three S/V ratios are applied to the city model and try to distinguish
four dwelling types, which are presented by different colors. However,
misclassification is currently unavoidable by this approach. Right: rela-
tive compactness shown in color ramp. From isolated (orange), interme-
diate (yellow) to compact (blue).

ratio) and relative compactness (RV) of the building with the following
forms are applied to the 3D city model.

Cs =
S
V

(4.3)

where S represents total surface areas in contact with outside air and V
represents building volume. Cs indicates a relation of area per unit volume.
This index is used by Torabi Moghadam et al. [18] to classify the building
stock of the city Settimo Torinese located in northwestern Italy with the
following classification rules: Detached house (DH): S/V > 0.8m�1; Terrace
house (TH): 0.6 6 S/V 6 0.8m�1; Multi-family house (MFH): 0.4 6 S/V 6
0.6m�1; Apartment block (AB): S/V 6 0.4m�1. Relative compactness has
the following form:

RV =
6V2/3

S
(4.4)

where V represents building volume and S is surface area of the building.

In this experiment, it is found that the previously mentioned classifica-
tion values can not be directly apply to the building stock of Amsterdam.
After some trial and error, it is found that although defining classification
boundaries with alternative values can classify building stock into differ-
ent dwelling types in general, misclassification becomes another issue to be
solved with this approach, see Figure 4.8. As a consequence, this approach
is not adopted in the current implementation for the dwelling type classifi-
cation task.

�.�.� Postcode 6 level archetype labeling

Since the availability of gas consumption data is at postcode 6 level, the
inferred building archetype will be aggregated to the corresponding level
at this stage. The aggregated archetype is assigned based on the domi-
nant building volume share within the corresponding postcode. To estimate
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LOD1 building volume, AHN3 point cloud data is used to calculate refer-
ence building height and then calculate building volume. The detail of this
calculation is introduced in section 4.1.2.

Figure 4.9: Classification rules based on topology relation and the number of ad-
dress per building is implemented for the dwelling type classification.

�.�.� Finalization

It is found that simulation time is significantly affected by geometry com-
plexity as a result of the detailed radiation model implemented in CitySim.
To speed up computation time, building footprint geometry is simplified
and generalized (using Douglas-Peucker algorithm with tolerance set to be
0.5 and the shared boundaries are preserved) through GIS operations in
FME at this stage. For instance, reducing the number of nodes in a curved
boundary and thus decreases the number of faces of the LOD1 model. Fur-
thermore, data availability check is carried out after going through these
steps to examine whether the building has valid and complete data to carry
out heating demand simulation or not (constraints applied to the integrated
data can be seen in Figure 4.7). Valid data is duplicated, exported and man-
aged in PostgreSQL database. Meanwhile, integrated baselayer is exported as
a .SHP file for later use.

�.�.� Enriching CitySim 3D city model

This is the final step of data integration before executing heating demand
simulation. At this stage, the intermediate result: integrated baselayer will
be used to update CitySim 3D city model, which has XML format with de-
fault values. On the other hand, archetype library information, which con-
tains archetype specific deterministic and probabilistic values (uncertainty
ranges) defined in section 4.1.7, will be appended to valid building data via
PostgreSQL operation. As CitySim 3D city model is managed in XML for-
mat, it can be easily parsed and overwritten by the developed Python script
(see Figure 4.10). The main task done by the Python script is to overwrite
the CitySim default values with the defined deterministic or probabilistic
inputs for each building. Because two simulation inputs, Nin f and Tmin
are defined probabilistically in the current implementation (explanation see
Chapter 5), this generates 25 enriched CitySim city model files instead of a
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single file. These enriched city models will go through heating demand sim-
ulation iteratively and using metered data to carry out model calibration.

Figure 4.10: The simplified overwriting logic implemented in the Python script. A
piece of CitySim XML code is presented



5 C I T Y S I M C H A R A C T E R I S T I C S A N D
S E N S I T I V I T Y A N A LY S I S

The main goal of this chapter is to further investigate the added-value and
appropriateness of adopting CitySim as a simulation engine in this case
study. Meanwhile, the sensitivity analysis is performed in order to get the
insight of input importance ranking and to be used as a reference for prob-
abilistic archetype classification.

�.� ������� ������ ���������� �����������-
����

A large paragraph from section 2.3 to section 2.4 in Chapter 2 introduces
what factors should be considered when choosing a simulation engine for
the project. In essence, the requirements for this research are: i) the simu-
lation engine should be able to take energy exchange in the urban environ-
ment into account as urban microclimate is found to have significant influ-
ences on urban thermal condition and consequently affect energy consump-
tion [15, 25, 27]; ii) computation efficiency; iii) the scale of the simulation
matches the level of detail of the available data; iv) easily programmable.
According to these requirements, advanced energy simulation engine such
as EnergyPlus, TRNSYS, and etc. become an expensive option as they usu-
ally require very detailed inputs to perform sophisticated simulation which
will require more computational resources and time compared with CitySim.
Additionally, these traditional simulation engines are designed mainly for
building scale simulation and consequently the environmental interactions
between buildings are less addressed.

CitySim becomes the option because it is the one most fulfills these re-
quirements and also the operation is familiar by the author. The experi-
ment below addresses specifically about the first requirement, and trying
to understand what is the added-value of adopting CitySim for this UBEM
project.

�.�.� Experiment set-up

The first experiment tries to understand how radiation effect (shadowing,
multiple reflections) in the urban environmental causes annual heating de-
mand differences under different building layouts. Rectangular building(s)
with dimension of length: 110.5m; width: 13.5m; height: 13.5m are placed
in parallel with four different aspect ratios (building height/street canyon
width): 0, 0.5, 1, 2, see Figure 5.1. This set-up roughly corresponds to multi-
family building size, and is adopted from the work done by [26], where the
same building dimension and layouts are applied, but tested with TRNSYS.

53
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Figure 5.1: Annual heating demand results with four different aspect ratio set-ups.
Heating demand from high to low is colored in red to blue.

Figure 5.2: Left: Annual heating demand differences caused by building layout. The
one in the center has the highest heating demand because it is most
shaded by the surrounding buildings. Right: The surface temperature
calculation made with the radiation model of CitySim.

The Schiphol weather record is used. The construction, operation, and sys-
tem parameters of the buildings are all kept as default, so we can observe
the effect of building geometry (related to radiation) on annual heating de-
mand calculation.

The goal of the second experiment is similar to the first one, but the build-
ing dimension (13.5m in all dimensions) as well as layouts are changed, see
Figure 5.2. The S/V ratio (surface to volume ratio) of the rectangular build-
ing in the first experiment is approximately: 0.24, while the S/V ratio of the
cubic building is: 0.37 in the second experiment.

�.�.� Results and discussion

The results of these two experiments can be best illustrated in Figure 5.3, 5.4.
From both figures, one can easily observe that compact built environment
leads to slightly higher heating demand, mainly because of less external
radiation received by the building due to geometry shadowing. One may
question that this result is a bit counterintuitive, for instance, the Urban
Heat Island effect happens in the densely populated urban environment,
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where the temperature can be few Celsius higher than the suburban area
[25, 27]. The author believes that this result can be explained by the fact that
the current CitySim version applies a radiation model to calculate environ-
mental energy exchange; however, this does not include energy exchange
caused via convection. To be able to simulate convective energy exchange,
it often requires coupling with Computational Fluid Dynamics (CFD) soft-
ware to run more advanced simulations [54], which is out of the scope of
this research.

On the other hand, a positive correlation between heating energy demand
and building surface to volume ratio (S/V) can be observed when compar-
ing two results. This observation is not too surprising as heat flow (F) is
proportional to exposed surface area (A) as shown in Equation 4.1. When
exposed surface area per unit volume (S/V) is higher and all the other con-
ditions are fixed, one can expect higher heat flow per unit volume, namely,
more heat loss and consequently higher heating demand.

Figure 5.3: The first experiment reveals that high aspect ratio layout (more compact
and more shading for each building) leads to higher annual heating de-
mand than low aspect layout.

Figure 5.4: Similarly, the shaded buildings have higher heating demand. Further-
more, larger S/V ratio leads to higher heating demand compared with
the first experiment. Building numbering refer to Figure 5.1, 5.2
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To briefly conclude, two experiments present the simulation characteris-
tics CitySim have when it is applied to the urban environment. Although
without a convection model, the environmental radiation model takes build-
ing geometry characteristics and shadowing into account. Nevertheless, the
normalized annual heating demand differences are rather modest in both
cases.

�.� ����������� ��������
Chapter 4 introduces the data requirements for UBEM development of Am-
sterdam, where the deterministic parameter values and uncertainty ranges
are defined and presented. The work of this section is trying to answer one
of the research questions: Given a number of parameters with the defined uncer-
tainty ranges to describe building characteristics, which ones are the key parameters
affecting heating demand calculation and which ones are minimal and even ignor-
able, according to the sensitivity analysis?

The adopted sensitivity analysis method is Morris method, due to its
capability to give parameter importance ranking with less computational
resources, compared with other methods such as Sobol method. The theo-
retical details of sensitivity analysis are extensively discussed in section 2.7:
Overview of sensitivity and uncertainty analysis, and the execution details
are briefly discussed in section 3.4: Sensitivity analysis of the simulation en-
gine. The sensitivity analysis is carried out by the Python script with exter-
nal library, SALib1 [98], which contains commonly used sensitivity analysis
methods. The following paragraphs will expand on these backgrounds and
start with the experiment set-up.

�.�.� Sensitivity analysis set-up

A stand-alone cubic building with 13.5m in all dimensions positioned in the
center of the ground surface is used for the sensitivity analysis. Input un-
certainty ranges used in the sensitivity analysis is summarized in Table 4.8.
Each parameter is divided into 10 levels (p), which leads to 1014 input com-
binations (W). The grid jump size (D) is set to be 2. Since Morris method
applies Monte Carlo based evaluation by running simulation multiple times
with each input sampled from the whole input space (W) using trajectory
sampling (see Figure 3.5), it is likely to give a more stable result (param-
eter ranking) given more evaluations. The total number of evaluation (N)
is defined as N = t ⇥ (k + 1), namely, N µ t. To understand how many
trajectories (t) can roughly give a stable result, sensitivity analysis is carried
out 5 times with t = [10, 30, 50, 100, 150]. Based on this finding, a stable
threshold t is adopted to run the further sensitivity analysis, which should
give a more reliable parameter importance ranking result.

�.�.� Sensitivity analysis results and discussion

The relative parameter importance ranking based on the sensitivity analysis
with different number of trajectories (t) is illustrated in Figure 5.5. Param-

1 SALib https://salib.readthedocs.io/en/latest/

https://salib.readthedocs.io/en/latest/
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Figure 5.5: Relative parameter importance ranking tested with different number of
sampling trajectories (t). A stable result is expected when t > 50.

eter ranking is slightly changed when t is increased from 10 to 30. The
ranking remains consistent afterwards, and concludes that the sensitivity
analysis results with t > 30 are more stable. It is believed that setting t = 50
could give a more reliable result and still under acceptable computation
time in this case.

Based on this finding, Figure 5.6 presents the sensitivity analysis result
with t = 50. Parameter sensitivity estimated from the average elementary
effect µ⇤ as well as parameter interaction effect measured by s are presented.
It is found that under the defined uncertainty ranges, operation parameter:
minimum thermostat setting Tmin has the most significant effect on an-
nual heating demand calculation, and followed by construction parameters
Uwall and Nin f . Furthermore, the result clearly shows that construction
parameters, especially U-values of wall, floor, window, and roof have sig-
nificant to moderate influence on annual heating demand calculation, while
building surface shortwave reflectance (SW), ground surface shortwave re-
flectance (GSW), and window openable ratio (WOR) are insignificant. The
ignorable result of SW and GSW might be caused by the experiment setting
that there is no surrounding building in this case.

Meanwhile, as building reference height is estimated from AHN3 point
cloud data, it is possible that building height (volume) estimation uncer-
tainty exists. The experiment allows the building reference height to vary
between 90% to 110% of the estimated height, and according to sensitivity
analysis result, one can conclude that building height estimation uncertainty
within this range has a comparatively insignificant influence on annual heat-
ing demand calculation. Finally, it was surprisingly found that heating sys-
tem efficiency (Eta) shows no influence in this case. Further examinations
revealed that the maximum thermal power of the system is also required
by CitySim in order to give sensible results. Nevertheless, detailed system-
related information is difficult to collect and thus prior information remains
ambiguous, the rest experiments are thus carried out with this sensitivity
analysis result and believed it is more than sufficient.
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Figure 5.6: Sensitivity analysis result on a simple cubic building with k = 14, p = 10,
D = 2, and t = 50. Diagram on the left shows parameter sensitivity
estimated from the average elementary effect µ⇤; diagram on the right
shows additional parameter interaction by the measure of s.

�.�.� Probabilistic archetype modeling

Based on the sensitivity analysis result, the basis archetype classification,
which classifies the building stock into 18 archetypes based on dwelling
types and construction periods (refer Figure 3.6), can be further expanded.
Two key uncertain parameters: Tmin and Nin f , divided into 5 sections
respectively and with assumed uniform prior probability distribution, are
used to expand the existing archetype, see Figure 5.7. When metered gas
consumption data is available, and by using Bayesian inference approach,
the prior assumption with respect to these parameters will be updated to
posterior. The optimal parameter combination of the postcode with the
highest posterior probability is selected and used to run calibrated simula-
tion deterministically.

It is theoretically possible to include more key uncertain parameters in a
probabilistic archetype modeling and prepare for the later calibration pro-
cess. However, this will significantly increase the required number of cali-
brating simulations (Nc), which can be written as: Nc = PK

s , where Ps here
represents the number of levels of the sensitive parameter, and K indicates
how many key parameters to be calibrated. In addition, calibration process
is an over-specified and under-determined problem. In this project, six years
of annual gas consumption data of at least 84 respective postcodes is used
for calibration. Applying comparatively few and low-resolution measure-
ments to calibrate the complex model could easily lead to over-fitting issues,
this explains why only two key uncertain parameters are currently selected
for probabilistic archetype modeling and calibration.

Despite the above archetype model is the final implemented solution, one
idea was trying to investigate whether it is possible to group and model
U-value parameters (Uroof, Uwall, Ufloor, and Uwindow; these parameters
are sensitive and related to construction periods, see Figure 4.4) as an ef-
fective construction year, which takes building renovation into account, and
expecting Bayesian inference can update building construction year into ef-
fective construction year. Nevertheless, based on the fact that renovation
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Figure 5.7: Tmin and Nin f are two key uncertain parameters according to the sensi-
tivity analysis. This information enables the modeler to expand each of
the existing deterministic archetype with a probabilistic definition.

mostly takes place on respective building components (Figure 5.8) rather a
whole building renovation [4], this idea was not implemented in the end.

Figure 5.8: Replacement rate based on Energy Saving Measures ESMs according to
SHAERE database. From Filippidou [4]





6 B AY E S I A N I N F E R E N C E , M O D E L
C A L I B R AT I O N A N D VA L I DAT I O N

This chapter explains how Bayesian inference is applied to infer posterior
probability distribution of the key uncertain parameters and how model
calibration is performed given annual gas consumption data. The follow-
ing paragraph starts with the recap of the Bayesian calibration framework,
which is followed by the model validation, and discussion.

�.� �������� ��������� ��� ����� �������-
����

�.�.� Bayesian inference and model calibration set-up

All of the previous works conclude to two important outputs, determinis-
tic parameters describing building characteristics, which are grouped into a
vector X, and two key uncertain parameters, Tmin and Nin f , denoted as a
vector q. Tmin and Nin f is divided into 5 levels with uniform prior probabil-
ity distribution respectively and this leads to totally 25 input combinations.
This can be interpreted as that (X, q) together generates 25 models for each
valid postcode. We are particularly interested in which input combination,
q, is likely to give the most reasonable simulation result when compared
with the metered data geui, namely, posterior probability P(q|geui). Pos-
terior probability P(q|geui) can be calculated according to Bayes’ theorem
(Equation 6.1), where P(geui|q) is the likelihood function and evaluated in
the form shown in Equation 6.3; P(q) is prior probability and initialized as
a uniform distribution, see Figure 3.7.

P(q|geui) =
P(geui|q)P(q)

P(geui)
(6.1)

and

P(geui) =
Z

q
P(geui|q)⇥ P(q)d(q) (6.2)

Since there is no explicit form, it is assumed that the likelihood function
P(geui|q) can be described by Gaussian normal distribution function.

P(geui|q) ⇡ P(geui; µ, s) =
1

s
p

2p
exp(� (geui � µ)2

2s2 ) (6.3)

where geui is the individual postcode 6 EUI (kWh/m3) of the training year;
µ is the simulated EUI of the corresponding postcode of the same year given
the specific input combination q; s is estimated from the standard deviation
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of the measured consumptions of the same building archetype. s is further
scaled down by a factor of 5 because most archetype groups have numerous
sample points, which could overestimate the EUI variability of the respec-
tive archetype. When the sample number of the specific archetype is not
enough, for instance, archetype SFH 1964 has only one sample in this case,
a constant value 5 (kWh/m3) is adopted for s.

It should be noted that using Gaussian normal distribution to describe the
likelihood function is an assumption. This might fall short to accurately de-
scribe the real likelihood distribution for the respective input combination.
Further investigations in future work are required.

Figure 6.1: Measured postcode level EUI distribution per archetype included in the
test site. 84 and 85 samples available in 2016, 2017 respectively.

Annual metered data from year 2010 to 2015 are used to train the model.
As mentioned, the prior probability P(q) is initialized as a uniform dis-
tribution. In the training phase, the iterative calibration process uses the
posterior probability of the N year as a new prior of the N + 1 year. If the
measurement EUI deviates more than ±1.5 EUI of the possible simulation
results, the posterior of the year will not be updated since all the simulation
results generated by the given input combinations can poorly explain this
measurement. Namely, such observation deviation could only be explained
when other input variabilities are taken into account.

When the training phase is complete, the input combination q with the
highest posterior probability is selected as a calibrated input to run heat-
ing demand simulation deterministically given 2016, and 2017 weather data.
The validation step will compare the baseline simulation result as well as
the calibrated simulation result to the measurement data, see Figure 6.3.

�.�.� Results, validation, and discussion

An example Bayesian inference process of the postcode 1094 SH is visual-
ized in Figure 6.2. It clearly shows that after given six years of training data
(annual gas consumption data per postcode), the posterior probability of the
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few specific input combinations stand out from the rest. It also shows how
the marginal posterior probabilities of the parameters Tmin and Nin f are
updated in the right bar chart in Figure 6.2. The optimal input combination
with the highest posterior probability will be used to run a calibrated heat-
ing demand simulation deterministically. Such Bayesian inference process
is applied to all valid postcodes (fulfill data requirement) in the test area by
the Python script.

Figure 6.2: Visualizing the Bayesian inference process of the postcode 1094 SH over
the course of the training phase. Joint probability distribution is visual-
ized in a 2D grid in left while marginal probability distributions of Tmin
and Nin f are presented in right. From top to down: the prior probability,
the posterior of 2010, and the posterior of 2015.

Figure 6.3 presents the comparison between EUI of the Liander measure-
ment, the baseline simulation and the calibrated simulation result of ap-
proximately 85 postcodes in the test area in year 2016, 2017 (Figure 3.1). The
improvement is clearly visible. It is found that the baseline simulation tends
to over estimate heating demand in this case, and the calibrated simulation
successfully reduces simulation performance gaps. To compare in a quanti-
tative way, absolute percentage error (see Equation 6.4) of the baseline and
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the calibrated result of the partial postcodes in the test site are presented in
Figure 6.4.

PE =

����
EUImetered � EUIsim

EUImetered

����⇥ 100% (6.4)

Based on the validation results, the effectiveness of applying Bayesian in-
ference framework to perform model calibration is clear. Although some
calibrated postcodes do not completely fulfill ASHRAE standard: allowable
maximum 5 percentage error of annual calibrated model (see Figure 6.4),
the simulation performance gaps are in general significantly reduced.

Figure 6.3: Comparison between the 85 postcode 6 measurements and simulation
results. The dash lines indicate 5% of allowable percentage error sug-
gested by the ASHRAE standard. In the case of the uncommonly high
energy use shown in upper right of the plots, it could be flagged as a
priority postcode (buildings) for further examination.

For the purpose of model calibration, the Bayesian calibration framework
applied in this case study has picked up an optimal deterministic input com-
bination for each valid postcode from the refined posterior distributions. To
understand whether the posterior distributions show statistically significant
pattern for the respective archetype (a group of postcodes in this case). The
marginal posterior probability distributions of Tmin and Nin f are visual-
ized on each row of the heat maps shown in Figure 6.5, and postcodes with
the same archetype are placed together. Visual inspection reveals that it
might be able to say that the distributions of Tmin and Nin f of the particular
archetypes are further reduced, for instance, Tmin and Nin f of MFH 75 91
and TH 1964. However, due to the limited number of sample of the certain
archetypes, it is in general difficult to conclude that the posterior distribu-
tions of Tmin and Nin f show statistically significant pattern or cluster for
most archetypes at the moment

Nevertheless, when other area of interests have poor quality inputs or no
measured data is available for the model calibration, the posterior distri-
butions of the particular archetypes might still assist the modeler to form
a more sensible prior assumption. These posterior distributions are also
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Figure 6.4: Baseline and calibrated simulation results of the partial postcodes pre-
sented in absolute percentage error. The red horizontal line indicates the
ASHRAE allowable maximum percentage error (5%) of annual calibrated
model.

valuable when probabilistic energy modeling is needed. For instance, when
using UBEM to predict retrofit measures saving, probabilistic simulation re-
sults can serve as confidence intervals around the saving amounts [51].

Computation time is another aspect worth discussion. According to the
current implementation, calibrating two parameters requires 25 simulation
runs in total, and this process is iteratively conducted 6 times given 6 years
of annual gas consumption data. This is 150 simulations in total. Depending
on the partitioned city model scale of the test site and geometry complexity
(Figure 6.6), small scale simulation with 226 buildings can take 27 hours and
the largest scale simulation with 1363 buildings requires almost 10 days to
complete the expensive training phase on a personal computer with 4 cores
3.60GHz processor and 16GB RAM. Although CitySim simulation scales
well in general, such time constraint could still become an obstacle to devel-
oping UBEM into an interactive platform for decision support applications.
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Figure 6.5: Marginal posterior distribution of Tmin and Nin f visualized in heat
map. Each row represents one postcode, and the postcodes with same
archetype are place together. Color intensity represents probability (%).

Figure 6.6: The test site is partitioned into three city models, the diagram shows
how much CitySim computation time is needed to run one complete
simulation for each case.



�.� �������� ��������� ��� ����� ����������� 67

Figure 6.7: Visualizing the spatial distribution of the optimal posterior values of
Tmin and Nin f of the calibrated postcodes.





7 D I S C U S S I O N A N D C O N C L U S I O N

�.� ����������

�.�.� General discussion

To cut down immense greenhouse gases emission and energy consumption
in the built environment requires a holistic understanding and rethinking of
our dynamic urban energy system. Multi-scales and multi-domains energy
flow data within the built environment is valuable information, especially
when the penetration of decentralized and intermittent sustainable energy
sources is constantly increasing. The research focus of the project, annual
heating demand simulation, is merely one domain of the broad scope of
UBEM. The modeling scale and purpose of UBEM can be very diverse.

The project has developed a calibrated annual heating demand modeling
for the partial districts of Amsterdam based on open-source data collections.
Comparing the baseline and the calibrated simulation results, the averaged
absolute percentage error at postcode 6 level (approximately a group of 10
buildings or slightly more) of the validation years, 2016 and 2017, has im-
proved from 24.96% to 8.31% and 19.93% to 7.70% respectively. Postcodes
with absolute percentage error less than 10% has increased from 23.8% to
75% in 2016 (number of calibrated postcodes = 84) and from 32.9% to 78.8%
in 2017 (number of calibrated postcodes = 85).

These error ranges are acceptable when the UBEM is served as a guidance
to assist urban planning and retrofit measures assessment or to provide deci-
sion support [13]. However, simulation accuracy can significantly decreases
when analyzed in higher spatial-temporal resolution, for instance 40% devi-
ation is found in single building results according to Nouvel et al. [19], and
4% to 66% deviation in a building basis according to Fonseca and Schlueter
[20] (more reported simulation errors of UBEM studies can refer to Reinhart
and Cerezo Davila [13]), and these deviations are largely accounted by the
stochastic type uncertainties.

How to generate energy flow information of high spatial-temporal gran-
ularity becomes an indispensable discussion in order to open more engi-
neering applications based on UBEM. The impact of data availability and
granularity on simulation results is obvious, this is not only a call for har-
monizing diverse data collections for the sake of high-quality data but also
emphasizing the need of releasing available datasets, under the secured con-
dition, in order to fill the data gap in UBEM development.

As for what kind of spatial and temporal data matters to the specific mod-
eling scale and task, sensitivity analysis such as Morris method provides a
very efficient and interpretable way for prioritizing calibration targets. Nev-
ertheless, narrowing down the data collection scope can sometimes be a
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challenging task already, as the influence of the specific input could be un-
known in the early development phase. As a consequence, it might be
interesting to start discussing and incorporating the levels of detail (LODs)
framework for the energy simulation inputs, based on the existing LODs
framework applied in GIS domain, domain sizes and spatial-temporal reso-
lution of the modeling techniques, similar to the scheme presented in Figure
2.6 from Frayssinet et al. [27].

This could possibly start with reviewing and summarizing the existing
works, as many studies have tried to identify the key variables on different
modeling scales and purposes (Table 2.2 presents some case studies), but
no comprehensive review starting with this perspective exists yet. Secondly,
sensitivity analysis can be a powerful tool in assisting such task when high
quality and high granularity data is not directly available. When interpret-
ing sensitivity analysis results, one should be careful that the result is model
specific and the defined uncertainty range is a strong influencer. By perform-
ing aforementioned analysis, this could result in a multi-dimensions LODs
framework, which can serve as a guideline for future UBEM development.

Energy data of high spatial-temporal resolution is a valuable asset for
many engineering applications, but often not readily accessible. If no corre-
sponding high frequency temporal inputs are given (e.g. precise occupancy
profile, HVAC schedule, etc.), it might seem challenging to produce reli-
able energy data of high spatial-temporal resolution via UBEM because of
stochastic uncertainty, which may be the biggest limitation of UBEM at the
moment. Nevertheless, we have seen Bayesian inference is an effective ap-
proach to reduce subjective uncertainty, which in some way, can reduce to a
single usable input value and produce acceptable energy data through sim-
ulation engine at reasonable temporal scale. Following this framework, it
is expected given higher frequency (monthly or perhaps weekly) measured
energy data, it is possible to more effectively and accurately reduce multi-
ple parameter uncertainties (subjective type in particular) as the inference
process has been tested with various conditions (e.g. seasonal variation).

In a rigorous sense, the parameter posterior distributions should be inter-
preted on postcode basis in this study. However, if the parameter posteriors
of the specific building archetype (not necessary confined to the archetype
definition of this study, could also be spatially close buildings, etc.) show
statistically significant pattern, the parameter posteriors might be able to
apply to the untrained postcodes or buildings to fill the spatial and energy
data gap often seen at the urban scale. Additionally, since simulation inputs
and energy data have both gone through the calibration process, the con-
fidence level could increase when breaking down aggregated energy data
into different end-use consumptions. For instance, if the heating system
efficiency and domestic hot water system efficiency are both calibrated (sub-
jective uncertainty in this case), the aggregated heating simulation result
of the postcode (building) can be decomposed into respective consumption
types, which generates finer energy flow information and makes further
analysis and energy saving possible.
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Table 7.1: 10 building characteristics are used to calculate definite energy label [7].

Construction year Dwelling type
Type of glass Facade insulation
Room insulation Floor insulation
Heating system type How water supply type
Ventilation system Solar panels and solar water heater

Due to data availability and accessibility limitation, the major role of the
current calibrated UBEM would be providing decision support or assisting
scenario urban planning and building renovation. One practical use case
could be large scale building performance mapping and labeling. In the
Netherlands, registration of a definitive energy label when selling, releasing
or delivering a house is enforced by law since January 2015. Based on the
definite energy label, the house owner can take suggested building retrofit
measures if necessary. Provisional energy label, calculated based on pub-
licly registered data such as construction year, etc., is no longer sufficient
after January 20151 [7]. However, registering definite energy label, which
is calculated based on ten building characteristics as listed in Table 7.1, re-
quires an authorized expert to evaluate individual house, which is a labor-
intensive and time demanding task. This might explain why more than 50%
of buildings do not have a definite energy label by the end of 2017 yet (Fig-
ure 7.3), and consequently slowing down the building renovation process.
Following the building renovation rates achieved over the years 2010-2014,
Filippidou [4] points out attaining the short-term goals of upgrading to an
average energy label B in the non-profit Dutch housing stock by the end
of 2020 is not probable. Based on this fact and the urgent need, calibrated
UBEM is a powerful and versatile alternative to perform large-scale building
performance mapping and labeling and comes with the capability to carry
out retrofit measures assessment and scenario analysis. In addition, when
the calibrated UBEM is developed into a decision support environment, vi-
sualizing energy consumption pattern and retrofit saving potentials could
potentially increase citizen engagement, which is one of the key factors to
ensure a successful energy transition.

Except the above general discussion, the following paragraphs will dis-
cuss other UBEM aspects in separated sections.

�.�.� Data preparation and data harmonization

UBEM is a bottom-up approach to study energy performance at urban scale.
As a consequence, extensive search for available open-source datasets from
diverse sources and data harmonization works are indispensable in the very
beginning.

• What open-source GIS layers, statistics data, and technical datasets related to
Amsterdam are available for UBEM development? and how to integrate these
datasets in a sensible way to build up a simulation ready 3D city model?

The study of the above question is fully discussed in Chapter 4. Table
4.5 provides an overview of the required and adopted datasets for the Am-
sterdam UBEM development. This also includes data period, source and

1 https://www.ep-online.nl/ep-online/Default.aspx

https://www.ep-online.nl/ep-online/Default.aspx
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Figure 7.1: Energy label dashboard provides a quick overview of the current state
of the Dutch building stock. Accessed from https://energiecijfers.

databank.nl/dashboard/Energielabels/ [October 2018]

remark regarding data quality. Additional information regarding each pa-
rameter value, uncertainty range can refer to Table 4.6, Table 4.7, and Ta-
ble 4.8 respectively. The open-source data collections for this project may
not be guaranteed as the best datasets available, for instance, open-source
CBS postcode 6 population is rather old compared with other datasets, and
SHAERE database could be a very valuable source if accessibility is autho-
rized. Nevertheless, it is believed that the summary made in Table 4.5 is a
starting point for further UBEM projects applicable to the Netherlands.

At the time of writing this section (October, 2018), the author has also
noticed that the stakeholders involved in energy transition in the Nether-
lands, from government bodies to utility companies have gathered together
to discuss energy and spatial information standards and tried to make ex-
isting but decentralized national and international energy data collections
into collected inventories, which is available at: https://www.geonovum.nl/

themas/energie (in Dutch).

In addition to data preparation, integrating multi-datasets with different
spatial-temporal resolutions is often recognized as a time-consuming and
sometimes a discouraging task. Although the data integration workflow
and specific data model tailed for the project requirement have been made
from scratch (Figure 4.6 and Figure 4.7), to avoid reinventing the wheel and
to increase the reusability of the 3D city model, it is worth to think about
maintaining the city model in a standardized format such as CityGML [58]
with Energy ADE [59] support, which is designed to facilitate data exchange
and interoperability. More future works would be needed to understand
and test how the newly released Energy ADE version 1.0 (January, 2018)
can support multi-scales and multi-domains simulation and how general
can the standardized data model fits diverse energy simulation engines and
simulation applications.

https://energiecijfers.databank.nl/dashboard/Energielabels/
https://energiecijfers.databank.nl/dashboard/Energielabels/
https://www.geonovum.nl/themas/energie
https://www.geonovum.nl/themas/energie
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Figure 7.2: Filippidou [4] monitored the energy labels distribution of the non-profit
rented buildings in the Netherlands from 2010 to 2014. The author con-
cluded the renovation pace is too low to fulfill the ambitious goals of
the national Covenant agreed in 2012 or reach the EU goals for energy
efficiency.

�.�.� CitySim simulation characteristics and sensitivity analysis

The theoretical considerations and practical requirements of adopting CitySim
as a simulation engine are introduced in section 2.3 and section 2.4 in Chap-
ter 2. Chapter 5 takes a closer look at CitySim simulation characteristics
with the following sub-questions:

• What is the added value and appropriateness of adopting CitySim as a simu-
lation engine in this research scope?

• Given a number of simulation parameters with the associated uncertainty
ranges, which ones are the key parameters affecting annual heating EUI cal-
culation and which ones are minimal and even ignorable, according to the
sensitivity analysis?

Both experiments demonstrated in section 5.1 have clearly shown that
CitySim can take geometry obstruction, radiation shadowing effect into ac-
count when a 3D city (building) model and local weather file are given. It
does not come with the capability to simulate convective energy exchange
occurred in the built environment. Coupling with other simulation models
might be a solution [54], but it is not within the scope of the research. Be-
sides, the experiments also show the positive correlation between building
shape coefficient (S/V ratio) and annual heating EUI (kWh/m3) calculation,
which is expected in moderate to cold climate zones.

In addition, the experimental results reveal that the EUI difference caused
by inter-building interactions (when only radiation aspect is considered) is
comparatively modest. It is worth rethinking the necessity of adopting a
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Figure 7.3: More than 50% buildings in the Netherlands do not have definite energy
labels by the end of 2017, as can be seen from the National Energy Atlas
Accessed from https://www.nationaleenergieatlas.nl/en/kaarten

[October 2018]

Figure 7.4: From stand-alone data model to standardized semantic data model can
potentially increase data interoperability and facilitate data exchange to
make multi-scale and multi-domain simulations and applications easier.
Adapted from [59]

simulation engine with a detailed radiation model for UBEM development.
If a simplified radiation model could significantly increase simulation speed
without compromising too much accuracy, it would have positive impacts
on UBEM scalability, usability as well as decrease development time.

The second sub-question can be answered by the sensitivity analysis re-
sult based on Morris method (see Figure 5.6). The user behavior (operation)
parameter: minimum thermostat setting (Tmin) is shown to be the most in-
fluential input affecting annual heating EUI (kWh/m3) calculation under the
defined uncertainty range (15 to 20 �C) and the geometry dimension given
to CitySim. This is followed by building envelope parameters such as Uwall,
Nin f and so on. On the other hand, highly uncertain parameters: building
surface shortwave reflectance (SW), ground surface shortwave reflectance
(GSW), and window openable ratio (WOR) are insignificant. The ignorable
result of SW and GSW might be caused by the experiment setting that there
is no surrounding building in this case. Conducting a sensitivity analysis
when the neighboring buildings are presented is thus recommended in or-
der to obtain a more thorough parameter ranking result in the future work.
In addition, building height estimation uncertainty has a comparatively in-
significant influence on annual heating EUI (kWh/m3) calculation. This
indicates that LOD1 city model should be sufficient for annual heating de-

https://www.nationaleenergieatlas.nl/en/kaarten
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mand simulation, which is consistent with the result concluded by Nouvel
et al. [63]

�.�.� Archetype modeling

Building construction periods and dwelling types have been widely used
to classify building stocks of many European countries, one example is
TABULA project [6]. This classification scheme is also appeared in Dutch
national reference home standard, but with finer classification in dwelling
types [84, 85]. The deterministic classification scheme applied in this project
is adapted from these references, where the Amsterdam residential build-
ing stock is classified into 6 construction periods and 3 dwelling types, see
Figure 5.7. To complete the entire archetype modeling, the following to
sub-questions have to be answered.

• How to infer building dwelling type in order to assist deterministic archetype
classification?

• Which key uncertain parameters should be applied to probabilistic archetype
modeling?

As dwelling type information is not available from the existing data col-
lections, additional GIS processing is required. The first approach attempts
to use geometry features, shape coefficient (S/V ratio) and relative com-
pactness for the classification purpose [18, 97]. However, it is found that a
number of buildings are misclassified if only these two features are used.

The final implemented classification rule is based on analyzing number
of address per building and building footprint topology relation (how many
neighbors does the building have), see Figure 4.9.

Sensitivity analysis based on Morris method provides an insight for the
uncertain parameter importance ranking. Two key uncertain parameters:
Tmin and Nin f , divided into 5 sections respectively and assumed uniform
prior probability distributions, are adopted to expand the existing archetype.
This probabilistic archetype model is visualized in Figure 5.7. Although the
author believe the best practice of modeling a probabilistic archetype clas-
sification would require running sensitivity analysis for each existing de-
terministic archetype individually, namely, conducting 18 sensitivity anal-
ysis with each one is provided with the corresponding uncertainty ranges
(some parameters are construction year dependent) and geometry (exam-
ple dwelling type geometry). The probabilistic archetype modeling is then
modified accordingly. However, this will inevitably increase the complexity
of the project and thus leave it as a future work.

�.�.� Bayesian inference and model calibration

The effectiveness, limitation, and potential of applying Bayesian inference
for model calibration have been discussed in the beginning of the chapter
and thus do not repeat here. Nevertheless, it should be reminded that in
the Bayesian inference and calibration framework, using Gaussian normal
distribution to describe the likelihood function is an assumption since the
explicit function does not exist. The current implementation might fall short
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to accurately describe the real likelihood distribution for the respective in-
put combination, for instance, the simulation variability caused by other
input uncertainties are not incorporated in this formulation. This is an issue
to be addressed in future work.

Furthermore, possible future works can investigate how to optimize this
framework to compute more efficiently and effectively. In this project, train-
ing the model (2178 buildings) with six years of gas consumption data on a
single 4 cores personal computer requires approximately two weeks. How
effective would the calibration process be if the model is trained with even
fewer observation data? How to avoid over-fitting issue and how to effi-
ciently scale the framework to high dimension calibration to incorporate
more parameters? How this approach can possibly reduce more subjective
uncertainties in order to fill spatial and energy data gap? would be some
future work questions in order to unlock the full potential of UBEM.

�.� ����������

Energy simulation performance gap is a common issue and can happen at
any spatial temporal modeling scale especially when input data quality is
poor. To fill data gap and minimize data uncertainty at urban scale and to in-
crease heating simulation reliability and usability, the methodology applied
in this project has successfully carried out an urban scale heating demand
modeling based on a LOD1 3D city model of the partial districts in Ams-
terdam and calibrated at least 84 residential postcodes based on Bayesian
approach, provided with six years of gas consumption data. The effective-
ness of the Bayesian calibration framework is validated when comparing the
baseline and the calibrated heating demand simulation results, see Figure
6.3 and Figure 6.4. After the model calibration phase, postcodes with ab-
solute percentage error less than 10% have increased from 23.8% to 75% in
2016 (number of calibrated postcodes = 84) and from 32.9% to 78.8% in 2017
(number of calibrated postcodes = 85).

To ensure an effective model calibration, performing sensitivity analysis
is well-advised. The result derived from the efficient and effective Morris
method indicates that thermostat setting has the most significant impact on
annual heating demand simulation in terms of Amsterdam building stock,
followed by building construction parameters such as U-values and infiltra-
tion rate. Besides, LOD1 city model should be sufficient to produce accept-
able annual heating results based on CitySim.

Modeling the key uncertain parameters in a probabilistic way can appro-
priately depict the dynamic nature of the urban environment. With the help
of Bayesian inference and adequate observation data, parameter uncertain-
ties can be further reduced, and consequently establishing a more reliable
UBEM and opening more applications. Following this framework and ad-
justing according to the local context, calibrated bottom-up heating demand
energy model can be developed in most cities in the world as long as suf-
ficient spatial, non-spatial data is provided, and the utilities are willing to
disclose partial energy consumption data.
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The calibrated urban building energy model would be most needed by
the municipality, urban planners, utilities and engineering consultancy who
might show keen interest to perform energy policy assessment, scenario
analysis. It also has a potential to perform large-scale building performance
mapping and labeling in order to prioritize building retrofit targets and to
accelerate building stock renovation and energy transition.

�.� �������������

In this interdisciplinary research, many efforts have been made in sourcing
available energy related datasets from diverse sources in oder to character-
ize building properties with deterministic values, and to quantify the associ-
ated uncertain ranges. These spatial, non-spatial data collections are in the
end integrated into a 3D city model in a CitySim XML format to carry out
an urban scale heating demand simulation. The collected datasets and the
developed workflows for data integration and geometry preparation should
serve as a good starting point for any future UBEM project, which are par-
ticularly applicable to the cities in the Netherlands.

Conducting an urban scale heating demand estimation is not new in spa-
tial science field; however, simulation performance gap either caused by
simulation engine inadequacy or insufficient input data quality have always
been challenging and not fully solved issues. On the contrary, in build-
ing energy simulation field, parameter uncertainty, sensitivity analysis, and
model calibration are more widely discussed but also more confined at the
building or component scale. Hopefully by doing such interdisciplinary
study, more dialogues and knowledge exchanges can happen between both
fields, and consequently come up with a more integrated solution to tackle
the sustainability challenges.

Furthermore, the major contribution is developing and validating a cali-
brated 3D urban energy model in partial districts in Amsterdam, which is a
more versatile tool than statistical method and possible to perform diverse
scenario analysis with a better credibility. For instance, the government and
urban planners can start to use the calibrated urban energy model to carry
out heating consumption analysis given long-term climate change scenario
and formulate energy transition roadmaps. The calibrated urban heating
demand model can also assist in identifying retrofit hot spots and perform-
ing building retrofit assessment, helping the government and stakeholders
to find the most cost-effective building renovation measures.

From a technical perspective, the developed Python scripts: allowing over-
writing CitySim XML file from the queried data and executing simulation
automatically, FME script: automating data cleaning and integration work-
flow, and Grasshopper script: preparing building geometry for CitySim en-
ergy simulation as well as visualizing simulation results. These outputs are
made available on the GitHub repository2. Follow the instruction should al-
low anyone with certain technical experience to develop an UBEM for other
areas of interest.

2 Amsterdam CitySim UBEM: https://github.com/ckwang25/Amsterdam_CitySim_UBEM

https://github.com/ckwang25/Amsterdam_CitySim_UBEM
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The possible future works with respect to the different aspects will be listed
and discussed below.

�.�.� Data preparation and uncertainty quantification

• Uncertainties are everywhere in building energy simulation. The col-
lected datasets and the assumptions made can not guarantee these
uncertainties are best minimized. A call for high-quality data is al-
ways needed, especially related to operation and system data cate-
gories. The latest CBS census data, local occupancy profiles (possi-
bly derived from smart meter observation) rather then a standardized
profile, and SHAERE database could be valuable inputs to the future
UBEM development.

• Preparing simulation ready city model is one of the most resource
and time demanding tasks in this project. It is worth to think about
and test transforming the existing data model to the standardized data
model such as CityGML and Energy ADE, so the city model can be
reused for multi-scale and multi-domain simulations.

�.�.� Sensitivity analysis

• Morris method is the adopted sensitivity analysis method because of
its efficiency. It is capable of giving parameter importance ranking
within acceptable computation time and easily interpretable. Never-
theless, it is worth to experiment alternative methods such as Sobel
method, in order to cross validate the results and to test how can it
assist uncertainty quantification.

• Conducting individual sensitivity analysis for each existing determin-
istic archetype. This could lead to a more specific parameter ranking.
Probabilistic modeling would be reflected in a more diverse but pre-
cise way, and could potentially lead to a more effective calibration.

�.�.� UBEM development in general

• Since the calibration is an over-specified and under-determined prob-
lem, if high spatial-temporal resolution energy measurements (monthly
or even weekly consumption data) are accessible, this could help high
dimension calibration (calibrating more key uncertain parameters at
once) become more feasible and also makes the result more stable
(seasonally variations would also be tested).

• Running calibrating simulations is a computationally intensive pro-
cess especially when the city model becomes too complex, distributed
computing or cloud architecture might be an alternative solution.

• Besides transferring to other simulation architecture, developing UBEM
with different simulation engines with simplified radiation model can
be tested. Since the results shown in section 5.1 demonstrates that an-
nual EUI difference is rather modest in this case study when geometry
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obstruction is the only variable. Be noted the result could be different
if tested under different weather conditions.

• How to more accurately formulate the likelihood function would need
further studies.

• Investigating how the Bayesian approach can be optimized to carry out
an efficient and effective calibration. For instance, train the model with
fewer measured energy data or examine the simulation performance
when applying the parameter posteriors to run energy simulation on
the untrained postcodes (buildings).

• The current implementation is only focus on residential building heat-
ing demand simulation. Scaling up to electricity consumption, cooling
demand simulation or even commercial buildings in the UBEM would
be another research possibility.

• Further development is needed to make this calibrated UBEM into
a decision support and planning assessment platform. However, ex-
treme care should be taken on the user experience, workflow simpli-
fication, and application life cycle as according to the interview with
one of the developers of the ambitious UBEM project, TRANSFORM
(six European cities involved). The developed application became less
actively used after the end of the 3 years project because the users
found it comprehensive but too complicated.
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A AT T R I B U T E TA B L E S

Table A.1: Attribute table of BAG.pand

Attribute Attribute (raw) Database Description

identification identificatie v Building identification
construction year bouwjaar v -
status status v -
surface min oppervlakte min - -
surface max oppervlakte max - -
number of objects aantal verblijfsobjecten v Number of addresses in the building

v: Attribute is required and stored in the database
-: Self explanatory term

Table A.2: Attribute table of BAG.verblijfsobject

Attribute Attribute (raw) Database Description

identification identificatie v Address identification
surface oppervlakte v -
status status v -
function gebruiksdoel v -
public space openbare ruimte - -
house number huisnummer v -
addition toevoeging v -
postcode postcode v -
residence woonplaats - e.g. Amsterdam
construction year bouwjaar v -
building identification pandidentificatie v The corresponding building contains

this address
building status pandstatus v -

v: Attribute is required and stored in the database
-: Self explanatory term

Table A.3: Attribute table of 2014 CBS gas consumption data

Attribute Attribute (raw) Database Description

gid gid - -
Avg house con-
sumption

Gemiddelde
aardgaslevering
woningen

- -

PC6 total consump-
tion

Totale aardgaslever-
ing woningen

- -

Number of sup-
plied households

Aantal toegewezen
leveringsadressen
aardgas woningen

- -

postcode postcode - -

v: Attribute is required and stored in the database
-: Self explanatory term
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Table A.4: Attribute table of Liander energy data

Attribute Attribute (raw) Database Description

NETWORK OPER-
ATOR

NETBEHEERDER - The EAN-code of the regional network
operator

NETWORK AREA NETGEBIED - -
STREET NAME STRAATNAAM - -
POSTCODE FROM POSTCODE VAN v The postal code in the format of 4 digits

and 2 letters
POSTCODE TO POSTCODE TOT v Merged postcode is presented if less

than 10 connections are existed within
the postcode from area. Otherwise, it
remains the same

RESIDENCE WOONPLAATS - -
COUNTRY CODE LANDCODE - -
PRODUCT TYPE PRODUCTSOORT v ELK (electricity) or GAS (gas)
CONSUMPTION
SEGMENT

VERBRUIKSSEGMENT - Small consumption: connection value of
electricity connection is not greater than
3x80 ampere and gas not greater than
G25

CONNECTIONS
NUMBER

AANSLUITINGEN
AANTAL

v The number of connections in the rele-
vant postcode area for the relevant en-
ergy type

DELIVERY DIREC-
TION PERC

LEVERINGSRICHTING
PERC

v The percentage gets lower if more re-
turn delivery takes place (e.g. via self
generation)

PHYSICAL STATUS
PERC

FYSIEKE STATUS
PERC

v The percentage of connections that are
in operation

TYPE INERATION
PERC

SOORT AANSLUITING
PERC

- Indicating connection capacity

TYPE OF CON-
NECTION

SOORT AANSLUITING - Name of the most common connection
type

SJV GEMIDDELD SJV GEMIDDELD v The average annual netted consumption
of electricity (kWh) and gas (m3)

SJV LAAG
TARIEF PERC

SJV LAAG
TARIEF PERC

- The percentage of connections with a
double rate

SMART METER
PERC

SLIMME METER
PERC

- The percentage of smart meter

v: Attribute is required and stored in the database
-: Self explanatory term



��������� ������ 93

Table A.5: Attribute table of CBS postcode 6 data

Attribute Attribute (raw) Database Description

postcode 6 pc6 v e.g. 1094 NA
municipality code gemeentecode - -
Oad2010 Oad2010 - -
Sted Sted - -
population aantal inwoners v Total population within the postcode
number men aantal mannen - -
number women aantal vrouwen - -
perc 00 14 perc 00 14 - Percentage of population within these

ages
perc 15 24 perc 15 24 - -
perc 25 44 perc 25 44 - -
perc 45 64 perc 45 64 - -
perc 65 74 perc 65 74 - -
perc 75 older perc 75 older - -
non-Western immi-
grants

nietwestersallochtoon - -

gem household size gemhuishoudensgrootte - -
single-person
household perc

eenpersoonshuishouden-
perc

- -

single-parent house-
hold perc

eenouderhuishouden-
perc

- -

morespecialchildren
perc

meerpzonderkinderen
perc

- -

two-parent house-
hold perc

tweeouderhuishouden perc- -

home woningvrd - -
house value gemwoningwaarde - -
number parthh aantal parthh - -
Income recipients Inkomensontvangers - -
Low income Laaginkomen - -
High income Hooginkomen - -
Benefit recipients Uitkeringsontvangers - -
Self-employed Zelfstandigen - -
Fiscal monthly in-
come

Fiscaalmaandinkomen - -

v: Attribute is required and stored in the database
-: Self explanatory term





B U -VA L U E S F R O M D I F F E R E N T DATA
S O U R C E S

Table B.1: Construction U-values in different construction periods from [6]

Parameters Pre 1965 1965-1974 1975-1991 1992-2005 2006-2014 Post 2014
Uroof 1.68 0.89 0.64 0.36 0.23 0.16
Uwall 1.76 1.45 0.64 0.36 0.27 0.21
Ufloor 1.75 2.09 0.94 0.35 0.27 0.27
Uwindow 2.90 2.90 2.90 1.80 1.80 1.80

Table B.2: Construction U-values in different construction periods from [8]

Parameters Pre 1945 1945-69 1970-79 1980-89 1990-99 2000-2010 Post 2010
Uroof 2.6 1.8 1.1 0.6 0.6 0.4 -
Uwall 2.55 2.15 1.9 1.38 1.23 0.8 -
Ufloor 2 1.7 1.5 1 0.9 0.4 -
Uwindow 3.8 3.4 3.4 3.4 2.9 2 -

Table B.3: Construction U-values in different construction periods from [9]

Parameters Pre 1975 1975-90 1991-2002 2003-2006 Post-2006
Uroof 1.5 0.5 0.4 0.25 0.23
Uwall 1.5 1 0.5 0.41 0.38
Ufloor 1.2 0.8 0.5 0.44 0.41
Uwindow 3.5 3.5 2 1.84 1.68
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C DATA I N T E G R AT I O N W O R K F LO W

Figure C.1: Data harmonization workflow developed in the FME platform. The
script is available on the Github repository: https://github.com/

ckwang25/Amsterdam_CitySim_UBEM
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D G E O M E T R Y P R E PA R AT I O N
W O R K F LO W

1. Read .shp file

1. Read .shp file

2. Remove adjacent walls

2. Remove adjacent walls

3. Export buildings

4. Export ground surface

Figure D.1: Grasshoper script developed to prepare a CitySim ready geometry from
a .SHP file. The complete script is available on the Github repository:
https://github.com/ckwang25/Amsterdam_CitySim_UBEM
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3. Export buildings

4. Export ground surface

Figure D.2: Grasshoper script developed to prepare CitySim ready geometry from
a .SHP file. The complete script is available on the Github repository:
https://github.com/ckwang25/Amsterdam_CitySim_UBEM

https://github.com/ckwang25/Amsterdam_CitySim_UBEM
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This document was typeset using LATEX. The document layout was generated using the

arsclassica package by Lorenzo Pantieri, which is an adaption of the original
classicthesis package from André Miede.






	1 Introduction
	1.1 Research questions
	1.2 Thesis outline

	2 Theoretical background and related work
	2.1 Overview of urban building energy modeling
	2.2 Modeling approaches: Top-down and bottom-up model
	2.2.1 Top-down model
	2.2.2 Bottom-up model
	2.2.3 Bottom-up statistical method
	2.2.4 Archetype modeling
	2.2.5 Bottom-up engineering method

	2.3 Scope and scale of modeling
	2.3.1 Scope of modeling
	2.3.2 Simulation engine options and considerations
	2.3.3 Urban scale energy modeling considering microclimate

	2.4 Overview of CitySim for urban scale energy modeling
	2.5 Bottom-up energy simulation enabled by semantic city model
	2.6 Uncertainty in urban building energy modeling
	2.7 Overview of sensitivity and uncertainty analysis
	2.7.1 Local sensitivity analysis
	2.7.2 Global sensitivity analysis


	3 Methodology
	3.1 Test area
	3.2 Research methodology
	3.3 Data preparation and uncertainty quantification
	3.4 Sensitivity analysis
	3.5 Building stock archetype modeling
	3.6 Bayesian inference and model calibration
	3.7 Validation

	4 Semantic city model from heterogeneous datasets
	4.1 Data preparation and uncertainty quantification
	4.1.1 Meteorological data
	4.1.2 CitySim specific building geometry preparation
	4.1.3 Construction data
	4.1.4 System data
	4.1.5 Operation data
	4.1.6 Energy consumption data
	4.1.7 Inputs summary

	4.2 Multi-datasets integration and semantic city model enrichment
	4.2.1 Multi-layers integration and preprocessing
	4.2.2 Building archetype classification
	4.2.3 Postcode 6 level archetype labeling
	4.2.4 Finalization
	4.2.5 Enriching CitySim 3D city model


	5 CitySim characteristics and Sensitivity Analysis
	5.1 CitySim energy simulation characteristics
	5.1.1 Experiment set-up
	5.1.2 Results and discussion

	5.2 Sensitivity analysis
	5.2.1 Sensitivity analysis set-up
	5.2.2 Sensitivity analysis results and discussion
	5.2.3 Probabilistic archetype modeling


	6 Bayesian inference, model calibration and validation
	6.1 Bayesian inference and model calibration
	6.1.1 Bayesian inference and model calibration set-up
	6.1.2 Results, validation, and discussion


	7 Discussion and Conclusion
	7.1 Discussion
	7.1.1 General discussion
	7.1.2 Data preparation and data harmonization
	7.1.3 CitySim simulation characteristics and sensitivity analysis
	7.1.4 Archetype modeling
	7.1.5 Bayesian inference and model calibration

	7.2 Conclusion
	7.3 Contributions
	7.4 Future work and recommendation
	7.4.1 Data preparation and uncertainty quantification
	7.4.2 Sensitivity analysis
	7.4.3 UBEM development in general


	A Attribute tables
	B U-values from different data sources
	C Data integration workflow
	D Geometry preparation workflow

