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1. EMERGENCE OF MAX-PLUS APPROACH. A
SYSTEM THEORY TAILORED FOR

SYNCHRONIZATION.

The emergence of a system theory for certain discrete event
systems (DES), in which max-plus algebra and similar
algebraic tools play a central role, dates from the early
80s.

Its inspiration stems certainly from the following obser-
vation: synchronization, which is a very nonsmooth and
nonlinear phenomenon with regard to ”usual” system the-
ory, can be modeled by linear equations in particular
algebraic structures such as max-plus algebra and other
idempotent semiring structures Cuninghame-Green [1979],
Cohen et al. [1983].

Two important features must be mentioned for this ap-
proach, so-called max-plus linear system theory:

• most of the contributions have used as a guideline the
”classical” linear system theory;

• it is turned towards DES performance related issues
(as opposed to logical aspects considered in other
approaches such as automata and formal language
theory) by including timing aspects in DES descrip-
tion.

A consideration has significantly contributed to the pro-
motion and the scope definition of the approach: a class
of ordinary 1 Petri nets, namely the timed event graphs
(TEGs) has been identified to capture the class of sta-
tionary 2 max-plus linear systems Cohen et al. [1985]
and subsequent publications by Max Plus team 3 . TEGs
are timed Petri nets in which each place has a single
input transition and a single output transition. A single
output transition means that no conflict is considered
for the tokens consumption in the place, in other words,
the attention is restricted to DES in which all potential
conflicts have been solved by some predefined policy. Sym-

⋆ The research was supported by GAČR grant S15-2532 and by RVO

67985840.
1 Petri nets in which all arc weights are 1.
2 Stationarity is defined conventionally but over operators of max-

plus algebra.
3 Max Plus is a collective name for a working group on max-plus

algebra, at INRIA Rocquencourt, comprising: Marianne Akian, Guy

Cohen, Stéphane Gaubert, Jean-Pierre Quadrat and Michel Viot.

metrically, a single input transition implies that there is
no competition in supplying tokens in the place. In the
end, mostly synchronization phenomena (corresponding to
the configuration in which a transition has several input
places) can be considered, and this is the price to pay for
linearity.

This new area of linear system theory has benefited
from existing mathematical tools related to idempotent
algebras such as lattice theory Birkhoff [1940], residuation
theory Blyth and Janowitz [1972], graph theory Gondran
and Minoux [1979], optimization Zimmermann [1981] and
idempotent analysis Kolokoltsov and Maslov [1997] but it
is worth mentioning that the progress has probably been
impeded by the fact that some fundamental mathematical
issues in this area are still open.

The overview of the contributions reveals that main con-
cepts from linear system theory have been step by step
specified into max-plus linear system theory. Without aim-
ing to be exhaustive:

• several possible representations have been studied,
namely state-space equations, transfer function in
event domain Cohen et al. [1983, 1985], time domain
Caspi and Halbwachs [1986], and two-dimensional
domain using series in two formal variables Cohen
et al. [1986] (with more details in Cohen et al. [1989]);

• performance analysis and stability are mostly based
on the interpretation of the eigenvalue of the state-
matrix in terms of cycle-time, with its associated
eigenspace and related cyclicity property Baccelli
et al. [1992], Gaubert [1997];

• a wide range of control laws have been adapted such
as

· open-loop structures overcoming system output
tracking [Baccelli et al. 1992, chap. 5.6], Cofer
and Garg [1996], Menguy et al. [2000] or model
reference tracking Libeaut and Loiseau [1996],

· closed-loop structures taking into account dis-
turbances and model-system mismatches Cot-
tenceau et al. [1999], Lüders and Santos-Mendes
[2002], possibly including a state-observer
Hardouin et al. [2010],

· model predictive control scheme [De Schutter
and van den Boom 2001, van den Boom and
De Schutter 2002] with emphasis on stability in
[Necoara et al. 2007].
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67985840.
1 Petri nets in which all arc weights are 1.
2 Stationarity is defined conventionally but over operators of max-

plus algebra.
3 Max Plus is a collective name for a working group on max-plus

algebra, at INRIA Rocquencourt, comprising: Marianne Akian, Guy
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For a large survey on max-plus linear systems theory, we
refer to books Baccelli et al. [1992], Gunawardena [1998],
Heidergott et al. [2006], Butkovič [2010], to manuscript
Gaubert [1992] and surveys Cohen et al. [1989], Gaubert
[1997], Cohen et al. [1999], Akian et al. [2003].

2. SOME EXTENSIONS FOCUSED ON
SYNCHRONIZATION IN DES.

A natural generalization of deterministic max-plus-linear
systems are stochastic max-plus-linear systems, which
have been studied for more than two decades. Ergodic
theory of stochastic timed event graphs have already been
developed in Baccelli et al. [1992], where most of the
theory is covered. In particular, asymptotic properties of
stochastic max-plus-linear systems are studied therein in
terms of the so-called Lyapunov exponents that corre-
spond to the asymptotic mean value of the norm of the
state variables. In the case the underlying event graph is
strongly connected the Lyapunov exponent is the unique
value to which the mean value converges. For general event
graphs there is a maximal Lyapunov exponent.

Uncertainty can also be considered through intervals defin-
ing the possible values for parameters of the system. In
Lhommeau et al. [2004] TEGs, in which the number of
initial tokens and the time delays are only known to belong
to intervals, are represented over a semiring of intervals
and robust controllers are designed.

Another way of extending techniques for linear systems is
to consider that parameters of the models may vary, that
is study non-stationary linear systems. This possibility has
been examined within the max-plus linear setting Brat and
Garg [1998], Lahaye et al. [1999, 2004] with contributions
mainly focused on representation, control and performance
analysis.

Continuous timed event graphs are particular graphs in
which fluids hold rather than discrete tokens and the fluid
flow through transitions can be limited to a maximum
value. Moreover, an initial volume of fluid can be defined
in places and times can be associated with places to model
fluid transportation times MaxPlus [1991]. Such graphs are
relevant for example to approximate the behavior of high
throughput manufacturing systems in which the number
of processed parts is very large. In parallel, a similar
approach called network calculus has been developed by
considering computer network traffic as a flow (based on
the use of ’leaky buckets’) to approximate the high number
of conveyed packets Cruz [1991]. Extension on fluid timed
event graphs with multipliers in a new algebra, analogous
to the min-plus algebra, has been proposed in Cohen et al.
[1995], Cohen et al. [1998].

Switching Max-Plus-Linear (SMPL) systems are discrete-
event systems that can switch between different modes
of operation [van den Boom and De Schutter 2006]. The
switching allows to change the structure of the system, to
break synchronization, or to change the order of events. In
each mode the system is described by a max-plus-linear
state equation and a max-plus-linear output equation.
Note that regular max-plus-linear systems are a subclass
of SMPL system, namely with only one mode. In van
den Boom and De Schutter [2011], authors describe the

commutation between different (max,+)-linear modes and
shows that an SMPL system can be written as a piecewise
affine system which allows for using similar techniques in
such seemingly different classes of systems. SMPL models
can be used to describe the dynamics of various semi-cyclic
discrete event systems.

Another extension of the class of systems that can be
modeled in max-plus algebras consists in considering hy-
brid Petri nets, and more particularly, hybrid TEGs that
consist of a discrete part (a TEG) and a continuous part
(a continuous TEG). It has been shown in Komenda et al.
[2001] that a linear model can be obtained based on
counter function if only one type of the interface between
continuous and discrete part is present. However, for appli-
cation to just in time control this constraint can be relaxed
as it has been shown in Hamaci et al. [2006].

P-time Petri nets form an important extension of Petri
nets, where the timing of places/transitions is nondeter-
ministic. They have been studied in max-plus algebras in
Declerck and Alaoui [2004], Declerck and Alaoui [2005].
They find their applications e.g. in modeling of electro-
plating lines or chemical processes, where both upper and
lower bound constraints processing time are required,see
e.g. Spacek et al. [1999].

3. CONSIDERING DES WITH SHARED
RESOURCES.

An important aspect of DES is that different processes
share and compete for resources. Resource allocations
policies have to be considered to solve the corresponding
conflicts. Timed discrete event systems (TDES) are mostly
modeled by timed extension of Petri nets or by timed
extension of finite automata. There have been several
different approaches to the investigation of resource shar-
ing phenomenon, in conjunction with other phenomena of
TDES (synchronization and concurrency).

Resource allocation policies have been studied based on
classical linear systems (with underlying TEG models) in
the idempotent semiring min-plus with counter functions
Cohen et al. [1997]. More recently, conflicts among timed
event graphs have been studied in Addad et al. [2012],
where conflicting timed event graphs (CTEGs) have been
proposed with some fairly restrictive assumptions. Re-
source allocation policies studied in Addad et al. [2012]
are mainly FIFO and cyclic (periodic) policy. The authors
provide an analytic evaluation of an upper bound on the
cycle time of CTEG as a function of the cycle time of each
TEG and of the timers of the conflict places. However,
this direct modeling approach has not been yet applied to
control problems.

There is a completely different approach that is based
on the so-called max-plus automata, which have been
introduced by S. Gaubert in Gaubert [1995] to general-
ize both max-plus-linear systems and logical automata.
Resource sharing is then modeled by the underlying finite
automaton instead of a Petri net. Unlike the first approach,
where different resource allocation policies are handled one
by one, this approach allows for simultaneous modeling of
different resource allocation policies within a single model
as long as these policies can be represented by a regular
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language. This means that as an automaton-based model
it can handle several such policies at the same time within
a single model without having to rebuild the model each
time the policy is changed.

The approach based on max-plus automata has enabled a
detailed study of performance evaluation Gaubert [1995]
of DES with shared resources. S. Gaubert has presented
results about the worst case, optimal case and mean case
performance of max-plus automata. More sharp results are
naturally obtained for deterministic max-plus automata,
but most of the paper is focused on general nondetermin-
istic max-plus automata. It is to be noted that not all max-
plus automata can be determinized and their determiniza-
tion, i.e. existence of a deterministic max-plus automaton
having the same behavior (recognizing the same formal
power series), is still an open problem and it is not even
known if determinization of a given nondeterministic max-
plus automaton is decidable. In Gaubert [1995] a charac-
terization of deterministic max-plus automata is provided
based on the concept of projectively finite semigroups,
which can be used as a semi-algorithm for determinization
(with no guarantee of success).

More recently, supervisory control theory of max-plus au-
tomata has been investigated with the ultimate goal to
extend this theory from logical to timed automata. Al-
though max-plus automata can be viewed as general timed
automata, they have strong expressive power in terms
of timed Petri nets as shown in Gaubert and Mairesse
[1999]. Supervisory control theory of max-plus automata
with complete observations has been proposed in Komenda
et al. [2009], where the basic elements of supervisory con-
trol, such as supervisor, closed-loop system and control-
lability are extended from logical to max-plus automata.
However, it follows from results presented therein that
rational (finite state) controllers can only be obtained
for systems (plants) which have behaviors at the same
time max-plus and min-plus rational. This is a serious
fundamental obstacle, the class of series that are at the
same time max-plus and min-plus rational coincides with
the class of unambiguous series (series recognized by an
unambiguous automaton) as has been shown in Lombardy
and Sakarovitch [2006]. Although unambiguous series is
less restrictive property than deterministic series (series
recognized by a deterministic max-plus automaton), a typ-
ical approach for imposing unambiguity is to determinize a
max-plus automaton. More complete picture about ratio-
nality issues extended to more general setting is presented
in Lahaye et al. [2015]. More specifically, minimally per-
missive and just-after-time supervisors are studied in order
to guarantee a minimal required behavior and to delay the
system as little as possible so that sequences of event occur
later than prescribed dates, which is important for appli-
cations in transportation networks (e.g. improving train
connections in railway systems), but also in manufacturing
systems and communication networks. It has been shown
that finite state controllers for both control problems exist
if the system-series and the specification (reference-series)
are both unambiguous. This assumption is met for sev-
eral classes of practically relevant max-plus automata, e.g.
those modeling a type of manufacturing systems such as
safe Flow-shops and Job-shops. Another class of timed sys-
tem called timed weighted systems has been studied in Su

et al. [2012]. Timed weighted systems are simply modular
automata (collection of local automata) endowed with a so
called mutual exclusion function as well as a time-weighted
function. Timed weighted systems can be understood as a
synchronous product of max-plus automata (which is not
made explicit) and durations of events are described by
time-weighted function.

In our opinion max-plus automata form a gateway to
the general timed automata, because systems modeled
by max-plus automata exhibit most of decidability and
determinization issues that are present for general timed
automata, while they are conceptually simpler, which
allows for better grasping the core of these fundamental
problems.

On the other hand, max-plus automata can so far effi-
ciently represent only safe timed Petri net models, al-
though some extensions to general bounded non safe timed
Petri nets are being explored.

The Model Predictive Control (MPC) design method can
be applied to (switching) max-plus linear systems [van
den Boom and De Schutter 2006]. MPC for conventional
(non-DES) systems is very popular in the process industry
[Maciejowski 2002] and a key advantage of MPC is that it
can accommodate constraints on the inputs and outputs.
For every cycle the future control actions are optimized by
minimizing a cost function over a prediction window sub-
ject to constraints. If the cost function and the constraints
are piecewise affine functions in the input, output, and
state variables, the resulting optimization problem will be
a mixed-integer linear programming (MILP) problem, for
which fast and reliable algorithms exist. An alternative
approach is to use optimistic optimization [Xu et al. 2014].
In De Schutter and van den Boom [2001] MPC for regular
max-plus-linear systems was studied using the just-in-time
cost function with constraints that were monotonically
nondecreasing in the output. In that case the problem
turns out to be a linear programming problem. Results
for MPC of stochastic (switching) max-plus linear systems
are given in van den Boom and De Schutter [2012] and
Farahani et al. [2016].

In scheduling problems the system matrix of the SMPL
model becomes affine in max-plus binary scheduling vari-
ables [van den Boom et al. 2013]. This scheduling tech-
nique has been applied in Kersbergen et al. [2016], where
a railway traffic management algorithm has been derived
that can determine new conflict-free schedules and routes
for a railway traffic network when delays occur.

4. MAX-PLUS-GEOMETRIC THEORY.

Classical linear algebra as well as control of linear systems
are known to be closely related to geometry. It was then
natural that much effort has been put on generalizing
these well established connections to the max-plus algebra
and max-plus-linear systems. First attempts to formulate
basic concepts of max-plus-geometric theory go back to
1990’s, cf. Cohen et al. [1996], where projection onto
images of operators and parallel to the kernels of operators
have been studied. Another important concept, convexity,
a powerful tool in optimization has been investigated
and extended to the max-plus framework, because max-
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plus-convex sets play an important role in optimization
problems. Minkowski theorem in classical linear algebra
shows that a non-empty compact convex subset of a
finite dimensional space is the convex hull of its set
of extreme points. In Gaubert and Katz [2007] a max-
plus analogue is proven, which extends this result to
max-plus convex sets. Such sets arise in natural way in
several domains, ranging from max-plus-linear systems,
abstractions of timed automata to solutions of a Hamilton-
Jacobi equation associated with a deterministic optimal
control problem.

Concerning control of max-plus-linear systems, an im-
portant concept of (A,B) invariant spaces has been in-
vestigated in Katz [2007], which generalizes some invari-
ance properties from the Wonham’s geometric approach
Wonham [1974] to linear systems. Let us point out at
this point that the Wonham’s geometric approach is well
known for being at the very origin at the whole domain of
discrete event systems, namely supervisory control theory
developped in early 1980’s in parallel with the theory of
max-plus-linear systems.

Recently, an interesting connection has been discovered
between geometrical approach to classical max-plus-linear
systems Gaubert and Katz [2007] and reachability analysis
of timed automata, a very general model of TDES includ-
ing several continous variables called clocks that measure
time that have elapsed since their last reset and define
timing conditions for enabling logical transitions in timed
automata.

Interestingly, results from max-plus geometry find their
application in reachability analysis of timed automata.
Timed automata with infinite clock spaces are abstracted
into finite automata called region or zone automata, where
the clock space is abstracted by a finite number of geo-
metric zones. The zones are represented by efficient data
structures called difference bound matrices (DBM) that
represents the bounds on differences between state vari-
ables. The reachability of different zones can be studied
using max-plus-cones from geometric theory of max-plus-
linear systems.

It has been shown in Lu et al. [2012] that max-plus
polyhedra are very useful in reachability analysis of timed
automata. Every max-plus cone (also called max-plus
polyhedron) can actually be expressed as a union of finitely
many DBM’s as shown in Adzkiya et al. [2013]. These
geometric objects have proven to be extremely useful for
both forward and backward reachability analysis. Forward
reachability analysis aims at computing the set of possible
states that can be reached under the model dynamics, over
a set of consecutive events from a set of initial conditions
and possibly by choosing control actions [Adzkiya et al.
2015]. Backward reachability analysis is to determine the
set of states that enter a given set of final states, possibly
by choosing control actions. This is of practical importance
in safety control problems consisting in determine the set
of initial conditions leading to unsafe states. However, for
backward reachability analysis the system matrix has to
be max-plus invertible, i.e. in each row and in each column
there should be a single finite element (not equal to -∞),
which is restrictive. The main advantage of using max-plus
polyhedra is saving of computational complexity, because

time complexity of these aproaches is polynomial as for
standard DBM based algorithms.

5. APPLICATIONS.

It can appear somewhat surprising that methods based on
very particular structure of max-plus algebra can find a
large number of applications. But it turns out that max-
plus system theory has been applied to a wide variety of
domains, such as:

• capacity assessment, evaluation and control of delays
in transportation systems Braker [1991], Heidergott
et al. [2006], Houssin et al. [2007], Kersbergen et al.
[2016] and car traffic Farhi et al. [2011],

• sizing, optimization and production management in
manufacturing systems Cohen et al. [1985], Imaev and
Judd [2008], Martinez and Castagna [2003],

• performance guarantees in communication networks
through so-called network calculus Cruz [1991], J.-Y.
Le Boudec [2001],

• high throughput screening in biology and chemistry
Brunsch et al. [2012],

• modeling, analysis and control of legged locomotion
Lopes et al. [2014, 2016],

• speech recognition Mohri et al. [2002] or image pro-
cessing Culik and Kari [1997] through weighted au-
tomata such as max-plus automata,

• optimization of crop rotation in agriculture Bacaër
[2003],

• scheduling of energy flows for parallel batch processes
Mutsaers et al. [2012],

• paper handling in printers Alirezaei et al. [2012]
• ...

This diversity is to be emphasized all the more since these
applications have sometimes suggested new theoretical
questions.

We cannot finish this overview without mentioning the
important connections with other fields of research: dy-
namic programming and optimal control with solutions to
Hamilton-Jacobi-Bellmann differential equations Maslov
and Kolokoltsov [1994], Quadrat and Max-Plus [1994],
statistical mechanics Quadrat and Max-Plus [1997], op-
erations research Zimmermann [2003],...
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