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Abstract  
 

Multivalent interactions are crucial mechanisms employed by cells to respond to their environment, often leading to 
superselectivity phenomena. Extensive experimental and theoretical efforts have been made to understand the 
variables controlling superselectivity, but challenges persist in achieving precise control over receptor and ligand 
numbers in biological systems. To address this, the Laan lab developed a model system using DNA origami, enabling 
precise manipulation of receptor and ligand numbers at the nanoscale. These nanoscopic (~15 nm) structures can 
mimic the receptors of a target surface, and the extracellular ligands are represented by a branched star-shaped DNA 
origami structure in solution. Both structures hold a fluorophore, allowing visualization using total internal reflection 
microscopy (TIRF) by measuring intensity values of the DNA nanostars absorbed into target surface. In this study, we 
investigated the effects of altering binding strength and flexibility in DNA nanostar structures on superselectivity. We 
found that experimental results for replicating previous experiments using the same DNA nanostars (Design A) 
exhibited minor variations within expected ranges, validating the reliability of the experimental protocol. However, 
sensitivity analysis highlighted the influence of data points on superselectivity interpretation, emphasizing the need 
for careful data analysis. Our study also evaluated the impact of introducing sequence mismatches on binding affinity 
(Design A*), revealing that modifications reducing binding affinity do not necessarily enhance superselective 
behavior for this system. Additionally, our investigation into the effects of increased flexibility (Design C) revealed 
unexpected behaviours in bound fraction and cluster formation, suggesting a potential relationship between cluster 
formation, intensity values registered, and the flexibility of the structure mediated by phase separation. These 
findings underscore the complexity of DNA nanostar behavior and stress the need for further research to elucidate 
the factors influencing superselectivity in DNA nanostars. By providing more understanding into how to develop 
highly selective particles, therapeutic molecules could sharply distinguish between healthy and corrupt cells, leading 
to customizable treatments with higher efficacy. 
 
Keywords: superselectivity, DNA nanostars, adsorption, multivalent interactions. 
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1 Introduction 
 

1.1 Multivalent Interactions in Biology 
 

For over 30 years, research focused on using nanoparticles as delivery vehicles for therapeutic molecules 
elucidated a world of possible applications in targeted ways using multivalent principles (Mammen et al., 1998). In 
this context, let us use the definition of a multivalent interaction as the specific interplay between receptors and a 
ligand in two different biological entities, involving multiple interactions simultaneously (Mammen et al., 1998).  
In general terms, receptors denote surface “receivers” on cells, while ligands refer to molecules that alter the 
receptor function (Figure 1). By convention, the receptor becomes the host, and the ligand becomes the guest 
(Mahon & Fulton, 2014). Multivalent systems typically comprise k ligands, usually linked to a "core." The number of 
receptors nR and k ligands can form up to i bonds, where i is the smallest of nR or k, considering single ligand binding 
per receptor site.  
 

 
Figure 1. Schematic illustration depicting a multivalent particle (guest) interacting with a host cell covered in compatible receptors. The diagram 
illustrates a host cell with receptors (𝑛𝑅) and a guest particle with ligands (k). Each receptor can bind with multiple ligands, forming up to i 
bonds, where i is the smaller of the total number of receptors (𝑛𝑅) or ligands (k), considering single ligand binding per receptor site. Created 
with BioRender.com 

 
Drawing inspiration from the dynamic world of how viruses, bacteria, and cells interact, the synthesis of 

synthetic multivalent constructs has surged a way to control biological interactions (Lombardo et al., 2019).  
Whiteside et al. have reported that protein interactions, virus-host dynamics, cell-cell adhesion, protein polarization 
and interactions, antibody action mechanisms, and other biological processes (Arsiwala et al., 2019; Tong et al., 
2009) constitute some of the examples where multivalent interactions determine functionality. Given its appearance 
in biological contexts, multivalency has offered a possibility for various applications where ligand-receptor 
interactions can play a pivotal role. However, the mechanisms underlying these interactions are not easily employed 
experimentally (Dubacheva et al., 2015), hence the importance of further exploring experimental models with a 
higher degree of control over multivalent interactions is required.  
 

Nonetheless, given the relevance of multivalent interactions in nature, this concept has radiated across 
diverse biological and synthetic experimental applications spanning vaccines, antibodies, carbohydrates, liposomes, 
dendrimers, polymers, peptides, oligonucleotides, and supramolecular constructs to improve biological applications 
(Arsiwala et al., 2019; Carlson et al., 2007; Lombardo et al., 2019; Mahon & Fulton, 2014; Soliman et al., 2011; Wang 
et al., 2020). For instance, an interesting connection between multivalency and immune response in humans has 
been explored by Kiessling and collaborators, by proposing some mechanisms by which multivalent ligands engage 
with oligomeric receptors on cell surfaces. By using the receptor clustering phenomenon, they found that multivalent 
ligand density controls the clustering of receptors, critical for subsequent signaling cascades that regulate immune 
response in humans. Another big example of applications has been around targeting cancerous cells, by using the 
subtle variations in receptor concentrations that cancerous cells show, to create superselective therapies or drug 
delivery vehicles that don’t attack healthy cells (Antignani et al., 2020; Kapcan et al., 2023; Wang et al., 2020; Zhang 
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et al., 2014). More recently, other applications have taken the properties of multivalent binding using DNA-origami 
to enhance targeting in vivo tumor cells (Heuer-Jungemann et al., 2016; Zhang et al., 2014), to enhance target 
delivery by using DNA self-assembly properties with scaffold design (Li et al., 2016), and to customize 
chemotherapeutic drug release, or tumor necrosis triggers (Ijäs et al., 2021). Other examples include the addition of 
nucleic acid aptamers to the surface of genome-free viral capsid carrier to increase its binding capabilities (Ozalp et 
al., 2011; Tong et al., 2009), using DNA-origami nano agents to trigger over 100x times faster rates of apoptosis in 
cells (Berger et al., 2021).  
 

Although we can see the diverse and wide application space that multivalent interactions have brought into 
biological settings, there is still a lot of work needed to scale up these discoveries into generalized procedures for 
targeted medical treatments or therapeutics, as some off-target effects and poor delivery efficiency (Antignani et al., 
2020; Wilhelm et al., 2016) have been the encountered challenges to obtain fully clinically approved procedures. As 
research of multivalency and biological landscapes grows, the lack of reproducibility in the experiments reported and 
the specificity of the studies conducted (sometimes using materials that are not suitable for biological applications) 
seems to call for adopting new hypotheses or protocols that can lead to more reliable results (Leroux, 2017; Tjandra 
& Thordarson, 2019; Woythe et al., 2021). This could indicate there is a gap in either the theoretical aspects of such 
interactions, the standardization of the experimental methods that are being used, or the utilization of 
computational models that support the design of such molecules. However, the need is pressing, as increasing 
adsorption and reducing unwanted side effects of current therapeutics seems to be limited by the lack of specificity 
and selectivity from drug molecules in use (Woythe et al., 2021). 
 

Numerous medical fields such as tissue engineering, cardiology, vaccinology, and oncology have identified 
the benefits of targeted molecules (Woythe et al., 2021). Tuning in and out superselective behavior in particles could 
represent a breakthrough in systemic drug delivery therapeutics, by providing particles capable of sharply 
distinguishing the receptor cell where the therapeutic molecule should be delivered. Maximizing the selectivity of 
multivalent drug delivery systems centers on understanding the underlying factors governing multivalent ligand 
binding of multivalent theory, which is still a work in progress.   
 
     Therapeutic molecules must prevail over several biological barriers before arriving at their target receptors in the 
desired cell, then superselective behavior would ensure higher efficacy. Theoretical models show superselective 
interactions are highly sensitive to the number of receptors and ligands available (Linne et al., 2021; Tjandra & 
Thordarson, 2019), ergo having quantitative experimental approaches for this end is essential to achieve real 
applications. Moreover, most of the experimental models mentioned before containing ligand-receptors interactions 
can’t be individualized for control on low number valencies. For this end, The Laan Lab developed a simple 
experimental model, assembling the most important characteristics of a multivalent superselective interaction while 
allowing high control over ligand and receptor number in low regimes. This approach allows to measure changes in 
binding dynamics given by small variations in the number of receptors, ligands, and binding strength. To do so, star-
shaped DNA origami structures known as DNA nanostars are used, as a molecular representation of the ligand-
receptor interactions in cells. This thesis aims to extend the knowledge of superselective behavior in the nanoscale, 
providing an exploration of experimental reproducibility and the consideration of additional variables like flexibility, 
utilizing this unique experimental approach developed at the Laan Lab. 
 
 

1.2 Experimental Approach using DNA Origami/DNA Nanostars  
 

DNA nanostars are DNA origami structures composed of several single-stranded DNA (ssDNA) molecules, that 
result in a self-assembled DNA star-shaped structure when hybridized together (Biffi et al., 2013). These nanoscopic 
particles then portray a controlled number of interacting terminations, mimicking a particle with a well-defined 
valency. It is possible to add a "sticky end" to each DNA arm (a non-paired ssDNA sequence), complementary to the 
sequence that will resemble the receptor structure. The number of base pairs and specificity of the complementary 
sequence for the sticky end will control the interaction strength. The sequence used for the non-sticky section of the 
arm determines the flexibility and material properties of the DNA nanostar. Modifications on the ssDNA sequences 
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with fluorophores or cholesterol molecules are possible, facilitating visualization and manipulation of the 
experimental model. For further clarification, see figure 2. 
 

For this thesis, we have used an experimental model to simulate superselectivity on a surface that resembles a 
lipid membrane. For selected sticky ends in the DNA nanostars in solution, we will embed a double-stranded DNA 
(dsDNA) backbone sequence to a coverslip shielded with a Supported Lipid Bilayer (SLB) composed of small 
unilamellar vesicles (SUVs) made from the phospholipids 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). We will 
truncate the receptors using a cholesterol molecule Chol- TGE at the 5’ end, and a Cy3 fluorophore at the 3’ end. For 
the DNA nanostars in solution, we will use different designs that can bind complementary to the selected receptors 
and an Atto488 fluorophore molecule will be added at the 3' end of one sticky end. A complete experimental setup is 
referred to in figure 2. 
 

A) B)  

 
Figure 2 DNA nanostars and experimental model. A) Simulation model of a 6-arm DNA nanostar in solution. Each arm terminates with sticky 
ends represented by non-paired nucleotides. The Atto488 fluorophore is depicted in green at the end of one of the sticky end sequences. The 
central region displays non-binding base pairs, typically composed of repetitive oligo sequences such as poly-A or poly-T. This simulation was 
created using oxView (Poppleton et al., 2021). B) Experimental design illustrating a target surface containing receptors, along with DNA 
nanostars in solution to mimic ligands. Both the receptors and DNA nanostars are labeled with fluorophores to aid visualization using Total 
Internal Reflection Fluorescence (TIRF) microscopy. The blue section denotes the Supported Lipid Bilayer (SLB) where receptor sequences are 
truncated using cholesterol-modified DNA sequences to a microscopy slide. The green and yellow dots denote the corresponding Atto488 and 
Cy3 fluorophores in the DNA nanostar and receptor sticky ends, respectively. Not to scale. Created with BioRender.com 

 

The addition of fluorescent molecules will allow the direct visualization of the nanostar surface adsorption 
using total internal reflection (TIRF) microscopy. By measuring light intensity levels emitted by the sample after being 
exposed to a 488nm excitation laser, we will be able to quantify the number of nanostars attached to the receptors 
on the surface. By varying the sticky end length, the valency of nanostars, and the base pairs that conform to the 
nanostar’s center, it is expected to detect changes in the average intensity values registered. A brief explanation of 
TIRF microscopy is depicted in Figure 3. 
 

For our experiments, we used only k=6 DNA nanostars, with modifications in vertex sequence and base pair 
number (Design C), mismatch in the base pair number between arm sticky end and receptor sticky end (Design A*), 
and the unmodified design used by Linne (2022) (Design A).  
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Figure 3 Schematic of TIRF microscopy mechanism of action. By irradiating the sample with a low-power laser (typically 15% of the laser 
wavelength) within the absorption spectra of the fluorophores, an evanescent wave is generated within the coverslip. This wave causes 
excitation of fluorescent molecules near the surface, resulting in emission at a lower wavelength. This enables clear separation of the emitted 
light from the incident laser light at the collecting camera. Adapted from (Capsid Constructors, n.d.).  

 

1.3 Superselectivity: theory basics 
 

Measuring superselectivity is the core of our experimental approach, and is defined as the ability of 
multivalent particles to distinguish and select surfaces to which it will bind, based on the accessible receptors at a 
target surface (Dubacheva et al., 2015; Linne, 2022), as shown in Figure 4. The ligand particles can detect small 
changes in the number of receptors, making superselectivity a highly precise process. Most of the theoretical 
frameworks we have about superselectivity in multivalent interactions rely on the works of Whitesides and 
collaborators (Mammen et al., 1998); and Frenkel and collaborators (Dubacheva et al., 2015; Martinez-Veracoechea 
& Frenkel, 2011, p.) where they have established the variable convention and in-depth exploration of multivalent 
binding thermodynamics. However, experimental measurements to corroborate the theory in biological cases 
represent a technical challenge since the chances of detecting the effects of individual physical properties in such 
nanoscales are limited (Linne, 2022). To this end, let us dive into the basics of superselectivity, and some examples of 
experimental protocols developed to study it.  
 

A)   B)  

Figure 4     A) Schematic figure of superselectivity, the ability to select surfaces based on the number of receptors. B) Schematic figure of 
multivalency, the ability to bind to one or multiple receptors. Adapted from Linne (2022). 
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1.3.1 Frenkel’s theory on superselectivity: Thermodynamics of Multivalent Interactions  
 

This section explores the interplay of thermodynamics and kinetics underlying multivalent interactions, 
showing how these physical principles can dictate the success of binding selectivity in experimental applications. As 
mentioned before, the pioneering works of Frenkel and Whitesides to standardize multivalent binding 
thermodynamics are at the moment widely used in the field but come with certain limitations by often ignoring 
competition from neighboring binders, steric forces on receptors, kinetic barriers due to clustering, and local 
structural complexities near the cell membrane (Curk et al., 2018), factors that might be more important for 
superselective behavior than previously considered. 
 

A great part of the multivalent theory up to now heavily relies upon statistical thermodynamics, explaining 
multivalency as a statistical phenomenon bridging physics and biology. Explaining selectivity can be done by using 
two equations:  adsorption profile 𝛩, and the selectivity factor 𝛼.  A critical, and well-defined, receptor density allows 
for “switch-like” adsorption dynamics (Figure 5), meaning that the interaction can turn on and off. Such a sharp 
response is then defined as superselectivity. Thus, the adsorption profile, or bound fraction, can be written as (Curk 
et al., 2018; Martinez-Veracoechea & Frenkel, 2011):  
 

𝜃 =
𝜌𝑛 ∗ 𝐾𝐴

𝑎𝑣

1 + 𝜌𝑛 ∗ 𝐾𝐴
𝑎𝑣  (1.1) 

 
where 𝜌𝑛 is the molar concentration of DNA nanostars in solution, 𝐾𝐴 is the affinity constant that describes the 
bonding affinity for an individual ligand-receptor binding event, and 𝐾𝐴

𝑎𝑣  is the equilibrium avidity association 
constant, which is the accumulated strength of all the multiple affinities. 𝐾𝐴

𝑎𝑣  is also described in terms of a new 
variable, 𝐾𝑖𝑛𝑡𝑟𝑎  a constant representing the likelihood of forming subsequent bonds after the first bond was formed, 
and whenever cooperative effects among the ligands are ignored. Defining 𝜎𝑅 as the density of available receptors 
on the host, the relation among 𝐾𝐴 and 𝐾𝑖𝑛𝑡𝑟𝑎  describes the formation of all possible bonds as (Curk et al., 
2018)(Figure 5): 
 
 

𝐾𝐴
𝑎𝑣~

𝐾𝐴 

𝐾𝑖𝑛𝑡𝑟𝑎
 [(1 + 𝑛𝑅𝐾𝑖𝑛𝑡𝑟𝑎)𝑘 − 1]  (1.2) 

  
 
with 𝑛𝑅   and  𝑘 representing the total number of receptors and ligands. For our experiments, we will use an 
adaptation of these term employed by Linne in her experiments, where the space of ligands and receptors is 
enclosed: 
 
 

𝐾𝐴
𝑎𝑣~

𝐾𝐴 

𝐾𝑖𝑛𝑡𝑟𝑎
 [(1 + 𝜎𝑅𝐴𝐾𝑖𝑛𝑡𝑟𝑎 )𝑘 − 1] (1.3) 

 
where 𝜎𝑅𝐴  represents the number of finite receptors available for binding within a total surface area A. Since 𝜃 
depends on 𝐾𝐴

𝑎𝑣, this expression shows that the bound fraction is sensitive to the number of perceived receptors by 
the guest on the host, a pivotal factor in targeted binding scenarios. Let us note that both equations assume there 
are no effective interactions (e.g. attractions or repulsions) among DNA nanostars. Now, to quantify the selectivity 
factor 𝛼, we use the definition (Martinez-Veracoechea & Frenkel, 2011): 
 

𝛼 =
𝑑𝑙𝑛 𝜃

𝑑𝑙𝑛 𝜎𝑅
 (1.4) 
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for which a sharp switch-like behavior concerning the number of receptors will be reflected in a heightened 
selectivity. In other words, a system is called superselective (Figure 5), if the relation between the receptor 
concentration and the binding probability is nonlinear, such that: 
 

𝜃 = (𝜎𝑅)𝛼 , 𝛼 > 1 (1.5) 
 
 
These equations also unravel how multivalent selectivity centers upon various factors, including binding strength 
(𝐾𝑖𝑛𝑡𝑟𝑎  ), ligand number (k), and receptor availability (𝜎𝑅).  Since our experimental model allows for control over low 
valence numbers, the next question that arises is how many ligands are effectively binding to the receptors. For this, 
we will use a more specific analytical expression (Linne, 2022) developed to calculate the average number of bound 
arms after the first bond was formed, using DNA nanostars: 
 

< 𝑛 > = 1 +
𝑘 − 1

(1 + 𝜎𝑅𝐴𝐾𝑖𝑛𝑡𝑟𝑎 )−1
 (1.6) 

 
Let us note that Eq. 1.6 relies on the assumption that the superselective behavior of DNA nanostars only depends on 
the receptor density and the likelihood of establishing new bonds after the primary bond. The equations above 
established our theoretical framework to study superselectivity in DNA nanostars. In the next section, we will show 
how these are related to our experimental results. 
 
 
 

 
 
 

A) B)  
 

 
 
 
 
 
Figure 5 Theoretical "Switch-Like" Relation Bound fraction. A) This schematic illustration demonstrates the theoretical "switch-like" relationship 
between the adsorption profile, receptor density, and superselective behavior. The graph depicts the non-linear transition of the bound fraction 
𝜃, showcasing how selectivity shifts from non-selective to superselective as receptor density increases. Created using BioRender.com. B) 
Schematic illustration showing difference between 𝐾𝐴 and 𝐾𝑖𝑛𝑡𝑟𝑎. Adapted from (Linne, 2022). 

 

𝝈𝑹 
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1.4 Research Framework 
 

Linne (2022) was able to provide experimental evidence for the binding dynamics of DNA nanostars with 
1,3,6 and 10 arms on a target surface allowing the testing of Frenkel's theories about superselectivity and valency 
number correlation. Frenkel stated that the bound fraction of the guest particles (DNA nanostars in this case) on the 
surface should sharply increase nonlinearly with the number of arms it holds (Dubacheva et al., 2015). However, 
Linne (2022) found larger superselectivity values for DNA nanostars with fewer arms, where DNA nanostars with 
valency k= 3 arms showed the most superselective behavior over k=6 or k=10 (Figure 6).  Even though this optimum 
has been quantitatively explained by proposing extending the current theory with interactions between DNA 
nanostar binding sites (Linne et al., 2023), we also would like to propose this could correspond to a technical 
limitation, as the considerations for the model state that:  i) there should not be cooperation among receptors and 
ligands, and ii) that the DNA nanostars should do not interact among each other, meaning the binding should 
correspond to individual DNA nanostars interacting multivalently with the surface. Moreover, if we reflect DNA 
nanostars from a structural point of view, the flexibility of each arm and how structurally mobile they are could 
potentially determine the number of arms that are effectively binding to the target surface. Thus, we think the 
configuration of the arms and their flexibility in the DNA nanostars could be a limiting factor for the superselective 
behavior registered with our experimental method.  
 
 

A) B)   
Figure 6 Results from Linne (2022) A) Measurements of bound fraction vs. receptor density values on the target surface. Experiments were 
conducted separately for DNA nanostars of 1,3,6 and 10 arms. The grey area indicates regions where experimental data deviates from the 
theoretical model, revealing a reduction in bound fraction for nanostars with higher valency numbers. B) Selectivity calculations from bounded 
fractions. The critical value for superselectivity corresponds to the 3-arm nanostar. Adapted from (Linne, 2022). 

Further investigation into the dynamic properties of DNA has uncovered interesting findings that could 
provide insight into the limitations of the current experimental protocol. Specifically, the persistence length of DNA 
differs significantly between single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), with dsDNA measuring 
approximately 50 nm (equivalent to around 150 base pairs) (Marin-Gonzalez et al., 2021) and ssDNA measuring 
about 0.75 nm (Saran et al., 2020). In our experimental setup, this difference seems acceptable, considering that 
each receptor is 77 base pairs long, while the arms of each DNA nanostar consist of 53 base pairs. However, studies 
suggest that the dynamics at the base pair level are heavily influenced by the DNA motif or sequence present in the 
sequence, potentially affecting the flexibility and persistence length of the DNA (Marin-Gonzalez et al., 2021). For 
example, research has shown that Poly A sequences are more rigid at a local level compared to Poly T sequences 
(Saran et al., 2020), which could be impacting experiments involving DNA nanostars shown by Linne (2022), as all the 
DNA nanostar designs used hold poly A sequences in the vertex. Additionally, the interaction between these DNA 
processes and hybridization has been found to facilitate various physical phenomena that may be relevant to our 
experimental setup, such as precipitation or liquid-liquid phase separation (King & Shakya, 2021).  

 
As an example, researchers such as the Rogers Lab in Brandeis University, are currently using DNA nanostars 

as the proposed system to study phase separation and the complex structures formed by them below ~45°C , which 
is called the upper critical solution temperature (UCST), where they claim the DNA nanostars are in the two-phase 
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region (Hegde et al., 2023). The research shows that nanostar droplets can spontaneously form hyperuniform 
structures, a type of disordered material with “hidden order” that combines the long-range order of crystals with the 
short-range isotropy of liquids, which potentially could change the binding dynamics we are considering with our 
model. Since the experimental protocol we proposed does not regulate temperature, and is always lower than the 
given UCST, we also propose that this physical phenomenon could be affecting the superselectivity measurements 
obtained by Linne (2022), and our experiments as well. 
 
 
 

1.4.1 Research Questions and Objectives  
 

For this project, it is our interest to further explore the reproducibility of the experimental model using DNA 
nanostars to study superselective events (Design A), to evaluate the effects of changing the binding strength 
between DNA nanostars and receptors by creating a slight mismatch in the complementary sequences of the sticky 
ends (Design A*), and to reconsider the influence of flexibility changes in the DNA nanostar structure (Design C), by 
studying how it may be influencing the reported results of bound fraction 𝛩, selectivity factor 𝛼, average bound arms 
<n>, and the binding affinity constants 𝐾𝐴 and 𝐾𝑖𝑛𝑡𝑟𝑎 . Then our research question states:  

 
How do experimental validation, the exploration of variations in the binding affinity constants, and flexibility 

constraints governing DNA nanostars contribute to our understanding of superselective behavior for k=6 DNA 
Nanostars? What insights do these investigations provide into the deviation from theoretical predictions, 
particularly Frenkel's model? 

 
And the derived sub-questions:  
 

1. Experimental Validation (Design A) 
a. Verification of Reproducibility: How well do the replicated experimental results align with the 

outcomes obtained in the original studies? 
b. Consistency Across Different Experimental Conditions: To what extent does the superselective 

behavior remain consistent under varying experimental conditions, confirming the reliability of the 
developed technique? 
 

2. Effect of Complementary Sequence Variations in the sticky end (Design A*) 
a. How do changes in the number of base pairs (bps) in the overhang sticky end complementary 

sequences influence the superselective behavior of k=6, 6bps sticky end DNA Nanostars? 
b. How do these differences change the effective binding strength constants? 

 
3. Influence of DNA Nanostar Flexibility on Superselectivity (Design C) 

a. Image Analysis: How can the analysis of intensity values derived from TIRF microscopy images be 
employed to reinterpret the experimental measurements, as the values of coverage, bonding, and 
superselectivity derive from this crucial step? 

b. Role of Polynucleotide Sequence in Superselectivity: What observable effects, if any, does the 
variation in the polynucleotide sequence have on the measured superselective behavior? 

c. Comparison with Theoretical Predictions: How do the observed results align with Frenkel's model, 
and what insights can be gained regarding the influence of flexibility constraints on superselectivity? 

 
 
To this end, we only focused on 6-arm nanostars by using the same designs for nanostars and receptors that 

Linne (2022) used; and added a new design where the flexibility of the arms along the structure was enhanced by 
altering the polynucleotide sequence along the vertex (see Figure 2).  
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2 Materials and Methods  
 

2.1.1 DNA Nanostar and DNA Receptor Hybridization  
 

For our experiments, we used only k=6 DNA nanostars, with modifications in vertex sequence and base pair 
number (Design C), mismatch in the base pair number between arm sticky end and receptor sticky end (Design A*), 
and the unmodified design obtained from previous work conducted by Linne (2022) (Design A). The sticky end length 
dictates the hybridization energy (∆G = −7 𝑘𝐵𝑇). Previous experiments with colloidal particles reported by Linne 
(2021) indicated that superselective binding occurs around such enthalpies, which is why these sticky ends were 
chosen. The experimental protocols used are based on Linne (2022) work, with alterations done for the purposes of 
this thesis. 

 
Each DNA nanostar is formed by combining modified six ssDNA sequences in equal concentrations (X1 to X6), 

where one (X1) of the strands holds a modification of a Atto488 fluorophore (Table 1). Receptors (Rec) in use are 
composed of two parts, receptor backbone (R1), holding the cholesterol modification, and the receptor fluorophore 
(R2), holding the complementary sticky end sequence that binds with the DNA nanostars, and a Cy3 modification 
(Table 2). All modified DNA strands were purchased from Integrated DNA Technologies Inc (IDT), resuspended in Tris 
Acetate-EDTA-NaCl (TAE,100 mM NaCl, pH=8) to a final stock concentration of 200 nM and stored at −20C.   

 
To hybridize the DNA nanostars and receptors, the ssDNA were thawed and added in equal concentrations until 

the mixes reached a final volume of 30 µl, in a final concentration of 0.5 𝜇𝑀. For the annealing process, the final 
mixes went in a PCR thermocycler overnight, beginning in 95◦C for 10 min and progressively cooling down at a rate of 
0.2◦C/min until reaching 4◦C. The hybridized DNA was later stored at 4C until used for the experiment on the same 
day. For the experiments, we diluted the DNA nanostars to a final concentration of 0.01uM and receptors in 6 
different concentrations in Tris Acetate-EDTA-NaCl (TAE ,100 mM NaCl, pH=8, 10 mM magnesium chloride (MgCl)). 
We used the same buffer batch in all experiments. 
 
 
 
Name                                 Sequence (5' to 3’)                                                                                                                                                     5'      3’ 

DA/DA* - X1 CTACTATGGCGGGTGATAAAAAAACGGGAAGAGCATGCCCATCCA-sticky end - ATTO488 

DA/DA* - X2 GGATGGGCATGCTCTTCCCGAAAACTCAACTGCCTGGTGATACGA-sticky end - - 

DA/DA* - X3 CGTATCACCAGGCAGTTGAGAAAACATGCGAGGGTCCAATACCGA-sticky end - - 

DA/DA* - X4 CGGTATTGGACCCTCGCATGAAAACCATGCTGGACTCAACTGACA-sticky end - - 

DA/DA* - X5 GTCAGTTGAGTCCAGCATGGAAAACGCATCAGTTGCGGCGCCGCA-sticky end - - 

DA/DA* - X6 GCGGCGCCGCAACTGATGCGAAAATTTATCACCCGCCATAGTAGA-sticky end - - 

DC - X1 CTACTATGGCGGGTGATAAATTTTTTTTTTCGGGAAGAGCATGCCCATCCA-sticky end - ATTO488 

DC - X2 GGATGGGCATGCTCTTCCCGTTTTTTTTTTCTCAACTGCCTGGTGATACGA-sticky end - - 

DC - X3 CGTATCACCAGGCAGTTGAGTTTTTTTTTTCATGCGAGGGTCCAATACCGA-sticky end - - 

DC - X4 CGGTATTGGACCCTCGCATGTTTTTTTTTTCCATGCTGGACTCAACTGACA-sticky end - - 

DC - X5 GTCAGTTGAGTCCAGCATGGTTTTTTTTTTCGCATCAGTTGCGGCGCCGCA-sticky end - - 

DC - X6 GCGGCGCCGCAACTGATGCGTTTTTTTTTTTTTATCACCCGCCATAGTAGA-sticky end - - 

DA/DC - X sticky end  GTAGAA - - 

DA* - X sticky end  GTAG - - 

 
Table 1. DNA sequences of nanostars used in the study, categorized by design, where Design A is DA, Design C is DC, and Design A* is DA). The 
DNA strands labeled with 'X' contribute to the formation of the DNA nanostars, with the number of strands and sticky ends determining the 
valency of each nanostar. The strands indicated in the name were specific to the corresponding design (DA, DC, or DA*), while those without 
clarification were used for all three designs. 
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Name                                 Sequence (5' to 3’)                                                                                                                                                      5'       3’ 

Receptor sticky end                TTCTAC                                                                                                                                                           -  - 
Receptor backbone             TCGTAAGGCAGGGCTCTCTAGACAGGGCTCTCTGAATGTGACTGTGCGAAGGTGACTGTGCG

AAGGGTAGCGATTTT 
Choleste
rol-TEG 

  

Receptor TTTATCGCTACCCTTCGCACAGTCACCTTCGCACAGTCACATTCAGAGAGCCCTGTCTAGAGAG
CCCTGCCTTACGA-sticky end 

Choleste
rol-TEG 

 Cy3 
 

 
Table 2 DNA receptor sequences employed in the study. Each receptor consists of a backbone sequence hybridized with specific receptor 
sequences, resulting in the formation of receptors with sticky ends. These receptors are designed to bind complementary to the DNA nanostars 
sticky end.  

 
 
 
 

2.1.2 DNA electrophoresis to confirm DNA nanostar hybridization. 
 
For hybridization verification, we performed DNA electrophoresis for each of the ssDNAs that conform the 

hybridization of nanostars and receptors, and their respective mixes after the hybridization protocol. For each we 
loaded 10 µL of 0.5 µM, on a 1.5% agarose gel, comparing against Quick-Load Low Molecular weight DNA ladder 
from Biolabs. After 45 min at 120 V, we obtained the following figures for Design A and Design C, and Receptors 
(from left to right, Figure 7.). The highest bands on each case correspond to the formation of the hybridized product, 
compared to the size of each individual ssDNA. Since these bands are the brightest, it indicates that most of the 
sample hybridized correctly. The lower bands could correspond to incomplete hybridization products as ssDNAs can 
have structural changes that impede complete formation of the DNA nanostar.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Gel electrophoresis results showing DNA nanostars and receptors. Lane 1: Low molecular weight DNA ladder (M). Lanes 2 to 8: Design 
A (DA) DNA nanostars. Lanes 9 to 15: Design C (DC) DNA nanostars. Lanes 16 to 18: Receptors (Rec). The largest band in each lane corresponds 
to the hybridization product. Design A DNA nanostars appear to be approximately 350 base pairs (bps), Design C DNA nanostars approximately 

    M    X1   X2   X3   X4   X5   X6   DA   X1   X2    X3   X4    X5   X6   DC   R1   R2   Rec 
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400 bps, and receptors approximately 766 bps in size. The gel electrophoresis results provide a relative indication of the size difference between 
individual DNA strands and the hybridized DNA nanostars. Due to interference from the Chol-TEG cholesterol molecule and the three-
dimensional structure of the DNA nanostars during the electrophoresis process, precise size determination is challenging. However, the focus is 
on assessing the relative difference between individual strands and the hybridized DNA nanostars, which is sufficient for the intended analysis. 
Imaged processed with Image Lab (Image Lab Software | Bio-Rad, n.d.). 

 

2.1.3 DNA functionalized Supported Lipid Bilayer (SLB). 
 

To assess DNA nanostar adsorption on a surface covered with complementary receptors, we covered a glass 
microscopy slide with a supported lipid bilayer (SLB) to which the cholesterol molecules could truncate to, 
maintaining the DNA receptors on surface. We created small unilamellar vesicles (SUVs) using 18:1 1,2-dioleoyl-sn-
glycero-3-phosphocholine (DOPC) lipids in stock. The latter were obtained from Avanti Polar Lipids and stored in 
chloroform. The DOCP lipids were dried out in an overnight vacuum desiccator and stored at -20C until use.  
 

To generate the SUVs, the dried lipids were resuspended in TAE-NaCl buffer and low speed shaker for 30 
mins without temperature regulation (room temperature). The obtained solution was extruded using an Avanti mini 
extruder, with a membrane 30 nm pore size, also from Avanti Polar Lipids. These is done to regulate the size of the 
vesicles obtained.  
 

To prepare the glassware for attaching the SUVs and ensure uniform coverage, we subjected the glass slides 
and coverslips from VRW to an ultra-cleaning process. Initially, the glassware underwent three phases of sonication. 
First, they were sonicated in a 2% Hellmanex solution, followed by acetone (>99.9%), and finally in a potassium 
hydroxide solution (KOH, 1 M, Merck), with each phase lasting 30 minutes. Cleaning with MiliQ water was performed 
in between each step, ensuring thorough rinsing. All liquids were poured until they completely covered the glass 
slides in a 250mL beaker. For the final batch of experiments (Design C), only the glass slides were cleaned using a 2% 
Hellmanex solution and MiliQ water, while the protocol for the coverslips remained unchanged. The cleaned 
glassware was discarded after 5 days. 

 
Finally, to create the flow channels for each receptor concentration, we used two different methods: 

parafilm stripes and double-sided polyimide tape. For the initial experiments, after blow drying the glassware with 
nitrogen, a hand-cut parafilm template was used to create 7 rectangular flow channels of (1 × 22) mm. This was put 
between the cover slip and the glass slide, and later molten at 125C to attach the glassware together. For the second 
method, we replaced the molten parafilm with templates of double-sided polyimide tape (50mm width) from Micro 
to Nano. With the flow channels established, we injected through SUVs, and incubated the sample at non-controlled 
room temperature for 45 mins. After removing any SUV excess using TAE NaCl buffer, the DNA receptors (Rec) were 
added in fixed concentrations to each flow channel. To do so, we used Linne (2022) characterization for receptor 

surface density 𝜎𝑅, establishing the relation between desired DNA receptors per 𝜇𝑚2 as 𝜎𝑅 =
# 𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟𝑠 𝑓𝑜𝑟 𝑏𝑖𝑛𝑑𝑖𝑛𝑔

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 [𝑢𝑚2}
 , 

and the required dilution from stock receptor concentration [M] to obtain a fixed number of receptors over the flow 
channel area A~22x104 𝜇𝑚2. For further information, see Table 3. 
 

To assess the binding probability on the sample, we diluted the stock concentration of DNA nanostars 𝜌𝑠 =

 10−4 𝑀 into Tris Acetate-EDTA-NaCl buffer forming a concentration solution of  𝜌𝑛 =  10−8𝑀, and added it on 
each flow channel. After 20 mins, we expected the sample to be in equilibrium, then the intensity of bound 
nanostars was measured for seven different 𝜎𝑅 values, ideally covering the entire adsorption range from the 
minimum bound density 𝐼𝑏𝑔  to the maximum bound density 𝐼𝑚𝑎𝑥  (Table 3). The first channel Ch 1 is always 𝜎𝑅 =

0 𝑢𝑚−2, corresponding to background intensity, and the last channel Ch 7 holds a maximum number of receptors 
per unit area for each experiment (𝜎𝑅 = 300000 − 3750000 𝜇𝑚−2 ). 

Desired receptor DNA/um^2 Volume receptor [uL] Stock concentration receptor [M] 
Volume TAE - MgCL buffer 
[uL] 

1000 3.19 1.00E-07 19.9 

3000 9.56 1.00E-07 13.5 

10000 3.19 1.00E-06 19.9 
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20000 6.38 1.00E-06 16.7 

50000 3.19 5.00E-06 19.9 

100000 6.38 5.00E-06 16.7 

150000 9.56 5.00E-06 13.5 

200000 6.38 1.00E-05 16.7 

250000 7.97 1.00E-05 15.1 

300000 9.56 1.00E-05 13.5 

600000 18.4 1.00E-05 4.6 

750000 23 1.00E-05 0 

1140000 7 5.00E-05 16 

3750000 23 5.00E-05 0 

 
Table 3 Desired DNA receptor density (𝜎𝑅)  receptors/μm^2 employed per channel in our experiments. The values are calculated based on the 
characterization conducted by Linne (2022). The table shows the relationship between the desired DNA receptor density per 𝜇𝑚2 and the 
required dilution from the stock receptor concentration [M] using TAE - MgCl buffer, to achieve a fixed number of receptors over the flow 
channel area (A ~ 22 x 10^4 𝜇𝑚2). 

 
 

2.2 Data acquisition using TIRF Microscopy 
 

With the sample ready, we proceed to visualize the adsorption of nanostars onto the SLB, and assess the 
bound fraction per receptor density, using Total Internal Reflection Microscopy (TIRF). To do so, we utilized an 
inverted fluorescence microscope (Nikon Ti2-E). The images were taking by using azimuthal TIRF/FRAP illumination 
module (GATA systems, iLAS 2) and a 100× oil immersion objective (Nikon Apo TIRF, 1.49NA). Each DNA nanostar was 
labelled with an Atto488 dye, while each receptor had a Cy3 dye. We used the laser excitation wavelength of 561 nm 
to allocate only the receptors attached to the surface on the sample (TIRF561), then later used the 488 nm 
wavelength to only excite the nanostars bound to the receptors and take the images there (TIRF488). The emitted 
fluorescent signal was detected using an EM-CCD Andor iXON Ultra 897.  

After identifying the receptors on the surface using TIRF561 starting on Ch 7, the image acquisition protocol 
was modified for capturing 10 images at 5 locations employing Multi-Dimensional Acquisition (MDA) functionality in 
MetaMorph software. The image parameters used were TIRF488 laser power 15%, exposure time 50ms, gain 50 and 
ellipse 100nm. In this approach, we captured five consecutive images at each of the five locations by automatically 
progressing to the next position after each picture. This cycle was repeated until obtaining a total of 50 images for 
each channel.  

 

2.3 Data Analysis 
 

2.3.1 Intensity values into bound fraction 
 

We computed the average intensity value from each 50 images per flow channel. The obtained data were 
then normalized per experiment, utilizing background 𝐼𝑏𝑔  and maximum intensity 𝐼𝑚𝑎𝑥  values (Equation 2.1), to 

compute the bound fraction per receptor density. The normalization process was conducted in Excel and ImageJ, 
employing a consistent Region of Interest (ROI) selected across all images. The images were uniformly sized at 
512x512 pixels and encoded in 16-bit. 

 
 The normalized intensity values were processed in Python, based on the analysis code used by Linne (2022). 
Changes were introduced in the code to adapt it for the purpose of our current research. The initial aim was to 
calculate the relation between bound fraction and intensity established by Linne (2022): 
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𝛩 =
𝐼 −  𝐼𝑏𝑔

𝐼max − 𝐼𝑏𝑔  
    (2.1) 

 
Where the calculation of experimental error involves determining the standard error of the mean (SEM), 

considering both the number of measurements and their standard deviation. The reported error is based on 
replicates conducted under the same experimental conditions for each design. By having the bound fraction 𝛩 for 
each experiment, we then extracted a fitted function 𝛩𝑓𝑖𝑡    that represents it, to calculate and plot the 

superselectivity parameters 𝛼  and < 𝑛 > with respect to the receptor density 𝜎𝑅 following Frenkel’s superselectivity 
equation (Eq. 1.1 - 1.5).  

 
 
 

2.3.2 Image analysis for clustering  
 

In order to analyze the cluster formations observed with Design C, we developed a Python code to process 
the TIRF images obtained during the experimental setup, as shown in Figure 8. Initially, we utilized a macro in ImageJ 
to create masks of the TIRF images, highlighting the locations of the clusters. These masks were then used to extract 
the size and intensity values of each cluster, which were stored in a CSV file. It's worth noting that the calibration 
length scale of our KNIC TIRF microscope, which is set to 8 pixels per micrometer, was applied during this process. 
Subsequently, the generated CSV file serves as a parameter for the Python code. The code then analyzes the CSV file 
and calculates parameters such as size, count, and intensity values for the clusters per channel. Finally, the code 
generates plots based on these calculated values. For further information, refer to Section Results. 

 
 
 
 

 
Figure 8 Experimental Workflow Followed in Thesis. This figure illustrates the experimental workflow used in this thesis for analyzing 
superselectivity using DNA nanostars and receptors. Initially, the sample is placed on a functionalized glass slide holding the DNA nanostars and 
receptors. The slide is then inserted into a TIRF microscope, where 50 pictures are captured per channel, across seven channels on each glass 
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slide. The captured images are verified in ImageJ to ensure they are well-focused. From these images, the average intensity value of each 
picture is extracted, and the raw data is exported into an Excel sheet. In Excel, the data is normalized using the bound intensity equation 2.1. 
The normalized data is then processed in Python to plot the experimental bound fraction, create a fit bound fraction, and calculate 
superselectivity parameters. For Design C, there is an alternative data processing step after Excel, where the data is input into a Python code for 
cluster identification in terms of size, count, and coverage on the sample. Figure created with BioRender.com. 

 
 

2.3.3 Fitting calculations for binding fraction 𝜃𝑓𝑖𝑡  

 
 The fit function 𝜃𝑓𝑖𝑡  adapted from Linne (2022), takes the experimental values for the binding fraction, Θ, 

and adjusts its values to fit a least square fit denoted as 𝜃𝑓𝑖𝑡 . The code uses the theoretical definition: 

  

𝜃𝑓𝑖𝑡 =
𝜌 ∗ 𝐾𝐴

𝑎𝑣

1 + 𝜌 ∗ 𝐾𝐴
𝑎𝑣   

 
where  𝜌𝑛 = 10−8 𝑀 is the concentration of DNA nanostars in solution and remains constant for all calculations. The 
average affinity constant 𝐾𝐴

𝑎𝑣  is calculated as: 

𝐾𝐴
𝑎𝑣 = 𝐶 ((1 +

𝜎𝑅𝐴

𝐷
)

𝑘

− 1) 

 
In this equation A = 24000000 𝜇𝑚2 represents the total surface area of a glass slide, and k = 6 is the valency 

of the DNA nanostar. This function optimizes the parameters C and D to minimize the difference between the 
experimental data 𝜃 and the fitted function 𝜃𝑓𝑖𝑡 . Once calculated, C and D are constant for each calculated curve.  

 
By providing estimates for these parameters, 𝐾𝐴 and 𝐾𝑖𝑛𝑡𝑟𝑎  can be evaluated for each experimental 

condition given 𝐶 =
𝐾𝐴

𝐾𝑖𝑛𝑡𝑟𝑎
, 𝐷 =

1

𝐾𝑖𝑛𝑡𝑟𝑎
. This approach enables the comparison of the roles of 𝐾𝐴 and 𝐾𝐼𝑛𝑡𝑟𝑎  in the 

described superselective behavior across different experimental designs. The obtained 𝜃𝑓𝑖𝑡  function is then used to 

calculate superselectivity parameter 𝛼, and average number of bound arms <n>, as described in the theoretical 
model in Section 1.3. 
 

In the context of our study, employing a fitting approach to calculate parameters such as 𝛼 is essential for 
several reasons. This approach offers several advantages over direct calculation methods. First and foremost, fitting 
the experimental data to a mathematical model enables the extraction of 𝛼, 𝐾𝐴  and 𝐾𝑖𝑛𝑡𝑟𝑎  parameters with reduced 
noise and increased accuracy. From our research, the fitting approach mitigates the influence of random fluctuations 
or measurement errors that can lead to large differences in calculated parameters. Our decision to adopt a fitting 
method for calculating alpha values was further validated through comparative analyses with direct calculation 
methods, employed for DA-CL (orange), 6amr/4bps (green) and DA (cyan) datasets, as shown in Figure 9. These 
analyses revealed that reproducing 𝛼 values without a fitting approach resulted in significantly higher levels of noise 
and led to distinct maximum 𝛼 values compared to the fitting approach, as we will see in the Results section. In this 
sense, past studies conducted by researchers at TU Eindhoven also utilized a fitting method to determine alpha 
values from experimental data in weak multivalent interactions (Scheepers et al., 2020), supporting our decision to 
use a fit. 
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2.3.4 Mann Whitney U test for experimental comparison 
 

 
The Mann-Whitney U test is a non-parametric statistical test that can be used to determine if there is a 

significant difference between two independent, non-normally distributed groups of data, with a small sample size 
(less than 15 observations per group) (Frost, 2023). The test ranks all the observations from both occasions and then 
calculates the sum of ranks for both. If the sums are significantly different, it suggests that the distributions of the 
two groups are different. The test provides a p-value, which indicates the probability of observing the data if the null 
hypothesis (that there is no difference between the groups) is true. If the p-value is below a predetermined 
significance level (~ 0.05), the null hypothesis is rejected, indicating that there is a significant difference between the 
groups. It is important to note, however, that a significant result does not necessarily imply that the underlying 
phenomena represented by the two sets of measurements are different. Variations in experimental conditions or 
other factors may also contribute to observed differences. Therefore, while the Mann-Whitney U test serves as a 
valuable analytical tool, it is best employed as part of a comprehensive analysis strategy, as we will discuss further in 
the subsequent chapter. 
 

 
  

Figure 9 Calculation of Parameter 𝛼 Without Fitting 𝜃. α calculations without fitting 𝜃 for experimental datasets and Linne (CL) data. Cyan and 
purple lines represent experimental data for Design A (DA) and Design A* (DA*), respectively. Orange and green lines correspond to CL data for 
DA-CL and 6arm/4bps-CL datasets, respectively. The absence of 𝜃 fitting results in increased noise levels when compared with fitted functions, 
emphasizing the importance of fitting for accurate parameter determination. 
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3 Results 
3.1 Experimental Validation using Design A  
 
 

To begin the study of superselectivity employing 6-arm DNA nanostars, the experimental protocol developed 
by the Laan Lab was initially verified. This validation utilized the design previously employed by Linne (2022), 
consisting of 6-arm/6-bp sticky end DNA nanostars with complementary receptors of 6-bps, denoted as Design A 
(DA) in this chapter (see Figure 10). The hypothesis of this thesis suggested that replicating the existing protocol with 
identical samples would yield consistent experimental outcomes for superselectivity compared to Linne’s findings 
(denoted as DA-CL). This validation aimed to quantify the variability in these superselectivity results and extend them 
to new DNA nanostar designs. Additionally, the calculated binding constants 𝐾𝐴, 𝐾𝑖𝑛𝑡𝑟𝑎 , and 𝛼  from the obtained 
results served as confirmation methods for the validation. 
 
 

 
 

Figure 10 Schematic representation of experimental conditions for Design A. The star-shaped figures represent DNA nanostars (top), interacting 
with DNA receptors on the target surface (bottom). The receptors are anchored to a supported lipid bilayer (SBL) depicted in blue, which is 
placed on a microscope glass slide. Each vertex of the DNA nanostar contains a polynucleotide sequence of four adenines between each arm, 
highlighted by the zoomed-in section. The brush-like structures on both DNA nanostars and receptors symbolize complementary sticky ends, as 
indicated by the specified interacting nucleotide sequences. This schematic is not to scale. Figures created with BioRender.com. 

 
 

The experiments presented in this chapter were performed to gain an understanding of the practical details 
of the protocols involved in DNA nanostar and receptor hybridization, glass slide cleaning, reactivation of Small 
Unilamellar Vesicles (SUVs) of DOPC, DNA functionalization of supported lipid bilayers, and data acquisition using 
TIRF microscopy (for detailed procedures, refer to Materials and Methods). Specifically, the aim was to determine 
the consistency of superselective behavior across different experimental conditions. These changes in experimental 
conditions entail minor modifications in the necessary protocol adjustments and the learning process. The protocol 
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modifications included minor alterations in glassware cleaning and the method and materials used for flow channel 
functionalization with lipid membrane and receptors (see Materials and Methods). The protocols for DOPC SUVs, 
DNA nanostar and receptor hybridization remained unchanged from the original work by Linne (2022). 

 
Our goal for this experiment was to determine if 6-arm/6-bp DNA nanostars (DA) exhibit comparable 

adsorption numbers for various densities of chosen DNA receptors (𝜎𝑅) compared to the reported findings (DA-CL). 
To achieve this, we conducted two experimental replicates. To visualize the fluorophores attached to the adsorbed 
nanostars on the SUVs on the glass slides, and to estimate the number of nanostars bound to the surface receptors, 
we performed a fluorescence-based assay using TIRF microscopy (Section 2.2). We assumed that changes in 
fluorescence intensity measured depending on receptor density could indicate alterations in the number of 
nanostars bound, with higher fluorescence intensity values expected to correlate with increased binding of nanostars 
to the surface, as shown in Figure 11. 

 
 
 
 
 

 
 
 
  
 
 
Figure 11 TIRF Microscopy Images for seven channels on the Target Surface for Design A (Exp #1). Images captured via TIRF microscopy 
representing seven channels on the target surface for Design, experiment #1. From left to right: Channel 1 serves as the negative control 
(𝜎𝑅  = 0𝜇𝑚2) establishing the background signal Ibg . Channel 7 exhibits the maximum receptor density and ideally should display the highest 
registered intensity 𝐼max, but it was consistently not observed across experiments. The images correspond to the following receptor densities on 
each of the seven channels:  𝜎𝑅    = [ 0, 1000, 10000, 20000, 50000, 150000, 300000] 𝜇𝑚2. All images were adjusted to have the same intensity 
values for comparison, from 0 to 10000 intensity units. 

 
 
 

 

 

 

 

 
 
 
 
 
 

 

 

 

 
 
 

 
 

Figure 12 Experimental measurements of bound fraction 𝜃 as a function of receptor density for Design A and Design A* (with a mismatch in the 
sticky end sequence between DNA nanostars and receptors, further explained in section see section 3.2), compared to experimental results 

           Ch 1                                   Ch 2                            Ch 3                            Ch 4                              Ch 5                             Ch 6                             Ch 7 

    𝟎 𝝁𝒎−𝟐                  𝟑𝟎𝟎𝟎 𝝁𝒎−𝟐            𝟏𝟎𝟎𝟎𝟎 𝝁𝒎−𝟐            𝟐𝟎𝟎𝟎𝟎 𝝁𝒎−𝟐            𝟓𝟎𝟎𝟎𝟎 𝝁𝒎−𝟐            𝟏𝟓𝟎𝟎𝟎𝟎 𝝁𝒎−𝟐         𝟑𝟎𝟎𝟎𝟎𝟎 𝝁𝒎−𝟐 
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obtained by Linne (2022) (DA-CL, 6arm/4bps-CL). Each curve represents the results of at least 2 experimental replicates per condition. Error bars 
indicate the standard error of the mean value per receptor density. 

To build the sigmoidal bound fraction 𝜃, we sampled seven receptor densities going from a maximum 
receptor density value (𝜎𝑅 max) to zero saturation state (𝜎𝑅 = 0 𝜇𝑚−2), to cover the full spectrum of adsorption.  
On each receptor density, we measured the mean intensity value along a fixed region of interest (ROI), standard for 
all the experiments unless there were image artifacts that could notably interfere with the average value. For the 
case of DA, the maximum receptor value (𝜎𝑅= 300000 𝜇𝑚−2) did not correspond to the highest intensity value 
registered, in fact it corresponded to 𝜎𝑅= 50000 𝜇𝑚−2and 𝜎𝑅= 150000 𝜇𝑚−2 on each of the experiments, as seen in 
Figure 12. The receptor density where the sample reached a fully adsorbed state corresponds to the highest 
normalized intensity registered (Θ ~ 1) as seen in Figure 12. 
 

Upon qualitative assessment of the results presented in Figure 12, it is observed that, overall, the distribution 
of bound fraction obtained falls within the range of error bars, reaching full adsorption around the same range of 
receptor densities (𝜎𝑅 = 50000 𝜇𝑚−2), and displaying a reduction in bound fraction after reaching maximum 
adsorption state, a phenomenon observed across other designs and previous reported values (Linne, 2022) (Figure 
6). Our experiments also reported a high bound fraction towards lower receptor densities (𝜎𝑅= 1000 𝜇𝑚−2 ), 
consistent with previous reports. While acknowledging that visual verification alone may not be sufficient to ensure 
experiment reproducibility and protocol reliability, we posed the question of whether these experimental curves 
could be quantitatively assessed for statistical similarity. 

 
 

3.1.1 Are DA-CL and DA statistically significantly similar?  
 

In comparing the experimental datasets of DA-CL and DA, we utilized the Mann-Whitney U test, a non-
parametric method detailed in Methods. This method, advantageous for its flexibility with dataset distributions and 
receptor density variations, requires formulating a null hypothesis. Our null hypothesis posited no statistically 
significant difference between the distributions of the DA-CL and DA datasets. A Mann-Whitney U p-value below 0.05 
indicates significance, encouraging rejection of the null hypothesis and suggesting a notable difference between the 
datasets. Conversely, a p-value above 0.05 fails to reject the null hypothesis, indicating similarity between the 
datasets, implying they represent the same phenomenon. 
 

Calculations with the CL-DA dataset as reference yielded a Mann-Whitney U test p-value for DA of 0.552, 
suggesting no statistically significant difference between the distributions of DA-CL and DA. This implies that the two 
datasets may represent the same phenomenon, supporting the reliability of the experimental protocol used for both 
datasets.  

 

3.1.2 Sensitivity analysis: Calculation of Binding Constants 𝐾𝐴, 𝐾𝑖𝑛𝑡𝑟𝑎 , and superselectivity parameters 𝜃, 𝛼, and 
<n>  

 
Moving beyond the experimental results for bound fraction, we now evaluate the reliability of the 

experimental protocol while calculating the binding constants and superselective parameters, by employing a 
sensitivity analysis. Let us recall that the terms describing superselective behavior, 𝐾𝑎  , 𝐾𝑖𝑛𝑡𝑟𝑎 , 𝛼, and <n>, are 
calculated from fitting the adsorption profile 𝜃 using a least square method for nonlinear curves (See Methods), 
which makes the fit more sensitive compared to fitting a linear curve. For this reason, the sensitivity analysis focused 
on the assessment of how variations or uncertainties in the input parameters propagate through the calculations to 
affect the outputs (𝐾𝐴, 𝐾𝑖𝑛𝑡𝑟𝑎 , 𝛼  and <n>). 

 
By systematically varying the input data points within three proposed cases, and observing the resulting 

changes in the output, the sensitivity analysis provided insights into the relative importance of different sources of 
uncertainty. Our hypothesis was that the least square fit method used to quantify superselective behavior from 
experimental data is heavily dependent on the input data points, and that the superselectivity parameters calculated 
from it are sensitive to the choice of data points for the fit. This turns to be important considering that Linne (2022) 
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compares DNA nanostars with different valency number (number of arms) based on these calculations, and that this 
procedure is the decisive method to say if a sample is behaving superselectively or not. 

 
To quantify the variation, three cases were postulated to vary the data points that represent the sigmoidal 

experimental adsorption profile 𝜃, into the generated fitted version of it, called 𝜃𝑓𝑖𝑡 , depicted in Figure 13. Case 1 

includes all the data points. Case 2 excludes the outliers from the sigmoidal behavior, in this case the low receptor 
density values, and Case 3 excludes the low receptor density outliers and the data points after full adsorption was 
reached. 
  

Figure 13  Sensitivity analysis for the calculation of superselectivity parameters across three cases: Case 1 (blue), Case 2 (red), and Case 3 
(green). From left to right: (i) Adsorption profile 𝜃𝑓𝑖𝑡   with respect to receptor density 𝜎𝑅 ,  (ii) Superselectivity parameter α vs. 𝜎𝑅 , and (iii) 

average number of bound arms <n> with respect to 𝜎𝑅 . The figure illustrates the sensitivity of the fitting process for superselectivity 
parameters across three cases. Case 1 considers all experimental data points, resulting in notable differences in the slope of the fitted 
adsorption profile compared to Case 2 (removing low receptor density outliers) and Case 3 (removing outliers and data points after full 
absorption). These differences influence the calculated superselectivity parameter 𝛼 and <n>. Notably, Case 1 shows a deviation from the 
superselective regime observed in Case 2 and Case 3, resembling monovalent particle behavior. Comparisons with reported values by Linne 
(2022) reveal discrepancies, particularly in the maximum 𝛼 value (sometimes referred as 𝛼𝑚𝑎𝑥) and <n>. Case 2 and Case 3 exhibit similar 
trends in 𝛼 value and <n>, indicating the robustness of the fitting process under outlier removal. These findings highlight the importance of 
considering variations in the fitting approach when analysing superselectivity parameters. 

� 

 
 

Case 1 

Case 2 

Case 3 

(i)                                       (ii)                                          (iii) 
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From Figure 13 the most important differences observed along the three proposed cases for DA and DA-CL 
are (1) differences in the slope for the fitted adsorption profile 𝜃𝑓𝑖𝑡 , (2) differences in the calculated max value peak 

for superselectivity parameter 𝛼, and (3) differences in the calculated average number of bound arms <n>. 
 
 In Case 1, the slope value from DA was mostly affected by the inclusion of all the experimental data points, 
leading to a small reduction in slope values compare to DA-CL. From this, it is evident that the model is highly 
sensitive to slight slope changes as the calculated 𝛼 value for this design describes as it the adsorption profile was no 
longer superselective, resembling the results describing the adsorption for monovalent particles with low free 
binding energies (Martinez-Veracoechea & Frenkel, 2011). Moreover, this also affects the calculation of the average 
number of bound arms, confirming the interpretation of the monovalent particle, as only one arm being bound.  If 
we compare to the values reported by Linne (2022) (see Figure 13) for DA-CL, the max value for the superselective 
parameter 𝛼 reported in Case 1 differs slightly, with DA-CL 𝛼 ~ 1.27  and DA 𝛼 ~ 0.94  (Table 4). However, the 
previous reported value for <n> seems to differ, as for this 𝜎𝑅  ~ 105, <n> ~ 5 arms, compared to the reported <n>~4 
arms for the same receptor density value. 
 

In Case 2, the removal of the low receptor density outliers allowed both DA and DA-CL slopes to behave 
more similarly, although the calculated 𝛼  values for both vary significantly. Unlike Case 1, the shape of the 𝛼  
function allow to conclude that both describe multivalent superselective adsorption (Martinez-Veracoechea & 
Frenkel, 2011). Comparing with the samples reported by Linne (2022) (see Figure 2), DA-CL for this case registered a 
slightly higher 𝛼 max value (1.35), and DA values although in the superselective regime (1.11), are lower than DA-CL. 

Notably, for DA-CL 𝜎𝑅~105, the reported <n>~4 arms, as for our calculations this value corresponds to <n>~ 5 arms. 
For DA, <n>~4 arms, which then coincides with the previous studies. 
 
 Lastly, for Case 3, the removal of both low receptor density outliers and experimental data after reaching full 
absorption shows little to no change in the slope values for DA-CL and DA seen in Case 2. Superselective values do 
not change compared to Case 2. In consequence, the curves for <n> did not change either.  
 

The results obtained showed Case 1 to be the closest to the reported values by Linne (2022), but also the 
case where the difference in the max value of 𝛼 is the largest between DA-CL and DA. To continue the exploration of 
superselective parameters and how the fit used to calculate those could affect the results, a second design was 
explored. For this case, a change in the free binding energy available for ligand-receptor interactions was introduced.  
 

3.2 Experimental Effects of Complementary Sequence Variations in sticky end using  Design A* 
 

To continue our study of superselectivity using 6-arm DNA nanostars, we created a new design where the 
complementary receptor’s sticky end does not fully coincide with the sticky end of the ligands. The design consists of 
a 6-arm/4-bps sticky DNA nanostar with a 6-bps sticky end receptor on the adsorption surface, as depicted in Figure 
14. This new design will be referred to as Design A* (DA*). 
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A) B)  
Figure 14  Schematic of Design A*. A) Schematic representation of the Design A* DNA nanostar with its associated DNA receptor. The nanostar 
is shown interacting with a DNA receptor on the target surface. The polynucleotide sequence of four adenines between each arm of the DNA 
nanostar is detailed. Brush-like structures on both the DNA nanostar and the receptors symbolize the complementary sticky end mismatch, 
which are specified with nucleotide sequences. B) Close-up of the sticky end nucleotide mismatch interaction: the left sequence (5’ to 3’) 
corresponds to the sticky end on the receptor strand, while the right sequence corresponds to the sticky end on one of the DNA nanostar arms. 
The nucleotides marked in black belong to the DNA nanostar. Figures created with BioRender.com. 

We hypothesized that such “mismatch” in the complementary sequences for the sticky ends would increase 
superselective parameters as a decrease in the affinity between ligands and receptors corresponds to one of the 
reported rules for increasing superselective behavior (Dubacheva et al., 2023). Thus, the objective of these 
experiments was to evaluate the effects of a change in free binding energy, translated into the sequence mismatch, 
into the superselective behavior of our proposed probes. In the same way, we wanted to evaluate quantitatively the 
effect on the binding strength constants 𝐾𝐴, 𝐾𝑖𝑛𝑡𝑟𝑎 , 𝛼  and <n>, and compare it to our results DA, and previously 
reported results DA-CL and 6arm/4bps -CL from Linne (2022).  
 

In terms of the protocols used, the same changes used for the glassware cleaning preparation for Design A 
were used, and the method and materials used for the flow channel functionalization with lipid membrane and 
receptors (see Methods). The protocols for DOPC small unilamellar vesicles (SUVs), and DNA nanostar and receptor 
hybridization were kept like the original works.  
 
 We proceeded to estimate the DNA nanostars adsorbed to the surface with fluorescence-based assay and 
used TIRF microscopy to visualize the fluorophores attached to the adsorbed nanostars on the glass slide (see Figure 
15), and reconstruct the experimental adsorption profile 𝜃 with respect to receptors (𝜎𝑅), as shown in Figure 12. The 
same assumptions about the direct correlation between intensity and number of nanostars bound were employed.  
 

For each experiment, we imaged seven receptor densities and measured the mean intensity value along a 
fixed region of interest (ROI) of 4096 𝜇𝑚2. To build the sigmoidal adsorption profile for this design, we were required 
to sample much higher receptor densities than the employed for Design A to cover the full spectrum of adsorption. 
Moreover, again the maximum receptor value (𝜎𝑅 = 3750000 𝜇𝑚2) did not correspond to the highest intensity value 
registered, in fact it corresponded to 𝜎𝑅  = 525000 𝜇𝑚2 and 𝜎𝑅 = 750000 𝜇𝑚2, as seen in Figure 12. Using this design, 
a decrease in bound fraction after the full absorption was sampled, a phenomenon observed for DA and previous 
reported experiments (Linne, 2022) (Figure 5). 
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From a graphical assessment of the adsorption profile, we note two of the low receptor density values for 

bound fraction for DA* coincide with values reported for the 6arm/4bps-CL curve. Nonetheless, for increasing 
receptor densities, there is a clear reduction in bound fraction values for DA*until both curves reach saturation at 

𝜎𝑅= 300000 𝑢𝑚−2. Since 6arm/4bps-CL was not sampled for receptor density values over 105, we do not know if it 
could have shown the characteristic reduction in bound fraction as DA*, as seen in Figure 6Error! Reference source 
not found.. 

 
 
 
 

 

 

 

 

Figure 15 TIRF Microscopy Images of Design A* on the Target Surface. From left to right: Channel 1 serves as the negative control (σR = 0𝜇𝑚−2) 
and defines the background signal Ibg. Channel 7, intended to have the maximum receptor density and ideally the maximum registered 
intensity, although 𝐼𝑚𝑎𝑥  did not consistently achieve this across experiments. The images were captured for varying receptor densities on each 
of the seven channels per experiment, using all the possible densities 𝜎𝑅   = [0, 10000, 50000, 100000, 300000, 525000, 600000, 750000, 
1140000, 3750000] 𝜇𝑚−2. The intensity ranges shown go from 0 to 5000, as shown in the heatmap column on the right.  

  
Proceeding with the calculation for superselectivity values and binding constants using the Sensitivity 

Analysis presented in 3.1.2, we compare the values obtained for each of the designs used in Figure 16. Table 4 
presents the values in Figure 13, along with the calculated error values. For each table, the colour represents the 
cases illustrated in Figure 13 and Figure 16. 

 
  

Figure 16   Comparative Boxplot Analysis for Ka, Kintra, and α_max Values. This figure presents boxplot graphs comparing the values of 𝐾𝐴, 𝐾𝑖𝑛𝑡𝑟𝑎 , and 
max selectivity parameter  𝛼𝑚𝑎𝑥  for Design A, Design 6arm/4bps-CL (DA-CL) sourced from Linne (2022), Design A (DA), and Design A* (DA). The 
analysis includes three sensitivity analysis cases, distinguished by colors: Case 1 (blue), Case 2 (red), and Case 3 (green). 

           0 μm^(-2)             10000 μm^(-2)           50000 μm^(-2)          100000 μm^(-2)         300000 μm^(-2)      600000 μm^(-2)      750000 μm^(-2) 

              Ch 1                            Ch 2                            Ch 3                             Ch 4                            Ch 5                            Ch 6                               Ch 7 
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Table 4 Calculated values for 𝐾𝐴, 𝐾𝑖𝑛𝑡𝑟𝑎 ,
𝐾𝐴

𝐾𝑖𝑛𝑡𝑟𝑎 
  and  𝛼𝑚𝑎𝑥 for three cases for sensitivity analysis, derived from optimization terms from fit as  

described in Methods. In parentheses, the calculated propagated errors from the optimization parameters. For more information on error 
calculation, see Appendix (Section 7.3). 

 
Let us recall that both DA-CL and DA have a sticky end length of 6 base pairs. In contrast, 6arm/4bps-CL and DA* 

DNA nanostars feature a sticky end length of 4 base pairs. Despite these differences, all four designs share the same 
valency. We anticipated significant variation in 𝐾𝐴    and 𝐾𝑖𝑛𝑡𝑟𝑎   among the different sticky end lengths but expected 
less variation within each group. 
 

We expected similar 𝐾𝐴 values for DA and DA-CL since they represent the same case. Similarly, comparable 
values were anticipated for DA* and 6arm/4bps-CL. 𝐾𝐴 represents the interaction strength between ligands and 
receptors for the initial binding event, depending on the number of base pairs on the sticky ends in our model. Larger 
𝐾𝐴 values shift the critical point of the selective interaction curve θ to lower concentrations, potentially reducing 
superselective behavior. Notably, there is a one-order-of-magnitude difference between the groups, with DA and DA-
CL exhibiting early jumps to superselectivity, reflected in their 𝐾𝐴 values. Conversely, DA* and 6arm/4bps-CL 
consistently show the lowest 𝐾𝐴 values, with the transition point to superselectivity occurring at higher receptor 
densities. Case 1 exhibits the highest variability in 𝐾𝐴 values among the designs, while Cases 2 and 3 show the lowest 
variability. The observation of higher 𝐾𝐴 for DA in Case 1 supports the explanation of monovalent binding, where the 
initial binding event is strong enough to inhibit subsequent multibinding. 

 
For  𝐾𝑖𝑛𝑡𝑟𝑎 , we expect to see a higher 𝐾𝑖𝑛𝑡𝑟𝑎  constant for higher superselective values, indicating more ligands 

are bound to the receptors on the surface after the first bound has been established. We observe DA and DA-CL tend 
to have the highest 𝐾𝑖𝑛𝑡𝑟𝑎  values registered, indicating these designs use more arms to bind than the other two 
designs. It is also noted that the 𝐾𝑖𝑛𝑡𝑟𝑎  value from DA varies considerably compared to DA-CL in all cases, which 
ideally should not happen. For Case 1, the Kintra value obtained is surprisingly small, indicating a possible problem 
with the fit used to represent this function. In all cases, DA* consistently shows the lowest 𝐾𝑖𝑛𝑡𝑟𝑎  values, possibly 
indicating that the sticky end mismatch is interfering with the binding process of more than one ligand.  

   

When put together, the 
𝐾𝐴

𝐾𝑖𝑛𝑡𝑟𝑎  
  ratio is ultimately what dictates a design is more or less superselective. We expect 

to see low ratios for high superselectivity. We observe consistently in all cases 6arm/4bps-CL to have the 
lowest 𝐾𝑖𝑛𝑡𝑟𝑎  value, followed by DA-CL. And in all cases, DA* seems to have the highest 𝐾𝑖𝑛𝑡𝑟𝑎   value. The variability 
among values through the considered cases is minimum, only for the Case 2 there is an exception for DA that we 
attribute to the quality of the fit. These results are consistent with the maximum superselectivity registered for the 
designs.  

CASE 3 
Design 

𝐾𝐴  
(𝑀−1 ∗ 10−5) 

𝐾𝑖𝑛𝑡𝑟𝑎  
(∗ 10−13) 

 

𝐾𝐴
𝐾𝑖𝑛𝑡𝑟𝑎

⁄  

(𝑀−1 ∗ 107) 

 
𝛼𝑚𝑎𝑥 

DA-CL 
1.05(1.55) 13.6(8.14) 0.773 

1.35 

DA 1.01(5.43) 5.59(13.5) 1.80 1.11 

DA* 0.22(0.05) 1.02(1.12) 2.10 1.08 

6arm/4bps-CL 0.19(0.003) 5.75(0.03) 0.33 1.62 

CASE 1 
Design 

𝐾𝐴  
(𝑀−1 ∗ 10−5) 

𝐾𝑖𝑛𝑡𝑟𝑎  
(∗ 10−13) 

 

𝐾𝐴
𝐾𝑖𝑛𝑡𝑟𝑎

⁄  

(𝑀−1 ∗ 107) 

 

𝛼𝑚𝑎𝑥  

DA-CL 
1.23 (1.48) 12.2(6.26) 1.01 

1.27 

DA 2.52 (1.40) 3.49 10−5 (1.37) 7210 0.94 

DA* 0.22 (0.48) 0.99(1.0) 2.24 1.07 

6arm/4bps-CL 
0.27(0.09) 4.31(0.58) 0.62 

1.42 

CASE 2  
Design 

𝐾𝐴  
(𝑀−1 ∗ 10−5) 

𝐾𝑖𝑛𝑡𝑟𝑎  
(∗ 10−13) 

 

𝐾𝐴
𝐾𝑖𝑛𝑡𝑟𝑎

⁄  

(𝑀−1 ∗ 107) 

 
𝛼𝑚𝑎𝑥 

DA-CL 1.05(1.52) 13.6(7.96) 0.773 1.35 

DA 1.01(5.43) 5.59(13.5) 1.80 1.11 

DA* 0.22(0.10) 0.99(1.00) 2.24 1.07 

6arm/4bps-CL 0.27(0.09) 4.31(0.06) 0.68 1.42 
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Lastly, the 𝛼𝑚𝑎𝑥 maximum selectivity parameter registered consistently shows 6arm/4bps-CL to be the most 

superselective design, followed by DA-CL, without large changes across cases. DA* was always the least 
superselective design. 

 
 

3.3 Influence of DNA Nanostar Flexibility on Superselectivity Measurements using Design C  
 

To investigate the influence of DNA Nanostar flexibility on superselectivity (Design C), we created a new 
design by increasing the flexibility and length between the 6-arms. This was achieved by altering the polynucleotide 
sequence connecting the arms from four adenines to ten thymines, as seen in Figure 17. Following the same protocol 
used for the previous designs, we observed significant differences in the average intensity values obtained. 
Specifically, the θ curve exhibited anomalous behavior compared to previous experiments, as depicted in Figure 18. 

 
 
 
 

 
Figure 17 Schematic of Design C of DNA nanostars with their associated DNA receptors. The nanostar is shown interacting with a DNA receptor 
on the target surface. The polynucleotide sequence of ten thymines between each arm of the DNA nanostar is detailed. Brush-like structures on 
both the DNA nanostar and the receptors symbolize the complementary sticky ends, which are specified with nucleotide sequences. The scheme 
is not to scale. Figure made with BioRender.com 
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 Additionally, we observed the formation of “cluster” structures over some, but not all, of the receptor 
densities 𝜎𝑅, meaning larger particles were seen here compared to any of the previous two designs in the TIRF 
microscopy images. To further investigate and describe this effect and how it could be connected to the increased 
flexibility in the sample, two different analysis methodologies were created.  

 
Initially, an image analysis algorithm in Python was developed to examine each Total Internal Reflection 

Fluorescence (TIRF) image individually for the particles formed. This enabled us to analyze the size, intensity, and 
distribution across each channel within the images. For our experiments, we utilized 7 receptor density levels 𝜎𝑅 , 
labeled as flow channels as follows: Ch1 = 0 𝜇𝑚−2, Ch2 = 3000  𝜇𝑚−2, Ch3 = 10000 𝜇𝑚−2, Ch4 = 20000 𝜇𝑚−2, Ch5 = 
50000 𝜇𝑚−2, Ch6 = 150000 𝜇𝑚−2, Ch7=300000 𝜇𝑚−2. Since there was a low correlation between the two replicates 
done with Design C, the results for each are shown separately.  

 
 
 
 
 
 
 

 
 

  
 
 
 
 
 
 
For the first replicate, shown in Figure 19, our observations revealed a tendency for the formation of large 

particles or "clusters" in Ch 5 and Ch 6, which are notably reduced in size in Ch 7, as depicted in the histograms on 
Figure 20. Our analysis allowed us to visualize the largest clusters formed in Ch 5 and Ch 6, with a 5-fold count 
increase in Ch 6 compared to Ch 5. Ch 7 shows an important reduction in both size and count with respect to Ch 6. All 
the other channels show a cluster size no larger than 1-2 𝑢𝑚2 . The observations point at Ch 5 and Ch 6 as the 

Figure 18 Adsorption profile 𝜃 for Design C. Notably, the behavior depicted deviates considerably from previous designs, potentially indicating 
a decrease in coverage as receptor density increases.  

 

Figure 19 TIRF images of Design C, first replicate. From left to right: Ch1 to Ch7. Cluster formation and intensity values relative to background are observed. 
Channels 1 and 2 exhibit darker clusters, indicating higher average intensity values compared to other channels. Significant increases in cluster size are 
noted for Ch 5 and 6, followed by a decrease in Ch 7. Additionally, a decrease in cluster intensity with increasing size is observed. The intensity ranges are 
scaled from 0 to 10000, as depicted in the heatmap column on the right. Colors are inverted to highlight cluster formations. 

      𝟎 𝝁𝒎−𝟐                𝟑𝟎𝟎𝟎 𝝁𝒎−𝟐           𝟏𝟎𝟎𝟎𝟎 𝝁𝒎−𝟐         𝟐𝟎𝟎𝟎𝟎 𝝁𝒎−𝟐          𝟓𝟎𝟎𝟎𝟎 𝝁𝒎−𝟐        𝟏𝟓𝟎𝟎𝟎𝟎 𝝁𝒎−𝟐       𝟑𝟎𝟎𝟎𝟎𝟎 𝝁𝒎−𝟐 

             Ch 1                           Ch 2                        Ch 3                          Ch 4                                 Ch 5                        Ch 6                            Ch 7 
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preferential for these structures since the DNA nanostar concentration in solution was kept constant at 𝜌𝑛 =
 10−8 𝑀 for all the channels. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20 Histograms for cluster counting vs. size for each receptor density concentration, enumerated as flow channels, in replicate 1. 
Channels 1 to 7 correspond to receptor density concentrations of Ch1 = 0 𝜇𝑚−2, Ch2 = 3000 𝜇𝑚−2, Ch3=10000 𝜇𝑚−2, Ch4=20000 𝜇𝑚−2, 
Ch5=50000  𝜇𝑚−2, Ch6=150000 0 𝜇𝑚−2, and Ch7=300000  𝜇𝑚−2 respectively.  Channels 5, 6, and 7 exhibit the largest counts of clusters, 
with Channel 6, representing the largest clusters and the highest count. 
 

 

 

 

 

 

 

 

 

 
 

Figure 21 Cluster size and distribution for Design C, first replicate. Scatter plot show the size distribution of the clusters per channel vs the 
intensity registered during TIRF imaging. Notably, Ch 1 and Ch 2 show smaller, but highly intense clusters, as Ch 6 and Ch 5 show the largest 
clusters with lowest intensities registered.  



       

36 

 

 
Since one of the considerations of the experimental model we are using ignores any cooperation or 

interactions among ligands (see Section 1.3.1), the formation of clusters can indicate a violation of this assumption. 
The latter would imply that our readings for intensity values to calculate 𝜃 (see Methods) could not be a 
measurement of coverage of single nanostars adsorbed uniformly to receptors but would represent the adsorption 
of interacting nanostars or receptors, or both, forming clustered particles. Our hypothesis was that the observed 
clustering phenomenon could be dominating the read for average intensity values, requiring a reinterpretation for 
the adsorption profile 𝜃. To do so, our next analysis focused on relating cluster size with intensity value registered. 
For this replicate, we found a negative correlation between cluster size and intensity value, showing Ch 5 and Ch 6 
have the largest clusters with lowest intensity values. In the same way, Ch 1 and Ch 2 show the highest intensity 
values with the smallest clusters. It is noted these intensity values showed to be around 4.5 times higher than for the 
remaining channels, nothing alike to any other experiment we have seen before.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
After repeating the analysis for the second replicate, we observed again the preferential formation of large 

clusters in Ch 5, with an exceptional higher count for smaller clusters in Ch 6 and Ch 7, as depicted in Figure 23. 
Overall, the maximum cluster sizes reached here were half the size of the ones registered in the first replicate.  
Our analysis over size and intensity, as seen in Figure 24, show a negative correlation cluster size vs intensity values 
for Ch 5. Interestingly, we observe Ch 1 and Ch 2 clusters register low intensity values, different to the first replicate. 
Nonetheless, we observe Ch 6 and Ch 7 clusters show the lowest intensities, coinciding with the observations for the 
first replicate. It is important to clarify that intensity values are not absolute across replicates; therefore, comparison 
is only possible relative to the values found for each experiment. To compare among replicates, and for extension 
experiments, it is required to normalize the values, as explained in section 2.3. Since we were only interested in the 
relative increase of intensity, the values were not normalized for these two cases.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 22  TIRF images Design C, second replicate. From left to right, Ch1 to Ch7. We observe the cluster formation and their intensity value relative 
to background. We observe Ch 1 and Ch2 show zero to low cluster density. We note the cluster size increases significantly for Ch 4 and Ch 5, to 
decrease in size and intensity in Ch 6 and Ch 7. Moreover, we observe the cluster intensity to decrease as the size increases. The intensity ranges 
shown go from 0 to 10000, as shown in the heatmap column on the right.  

 

 
 

   𝟎 𝝁𝒎−𝟐              𝟑𝟎𝟎𝟎 𝝁𝒎−𝟐             𝟏𝟎𝟎𝟎𝟎 𝝁𝒎−𝟐            𝟐𝟎𝟎𝟎𝟎 𝝁𝒎−𝟐           𝟓𝟎𝟎𝟎𝟎 𝝁𝒎−𝟐         𝟏𝟓𝟎𝟎𝟎𝟎 𝝁𝒎−𝟐          𝟑𝟎𝟎𝟎𝟎𝟎 𝝁𝒎−𝟐 

           Ch 1                            Ch 2                            Ch 3                            Ch 4                            Ch 5                            Ch 6                             Ch 7 
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Figure 23 Histograms for cluster size vs cluster count for the second replicate. The histograms illustrate cluster counting vs. size for each receptor density 
concentration, enumerated as flow channels, in replicate 1. Channels 1 to 7 correspond to receptor density concentrations of Ch1 = 0 𝜇𝑚−2, Ch2 = 3000 
𝜇𝑚−2, Ch3=10000 𝜇𝑚−2, Ch4=20000 𝜇𝑚−2, Ch5=50000  𝜇𝑚−2, Ch6=150000 0 𝜇𝑚−2, and Ch7=300000  𝜇𝑚−2 respectively. Channels 5, 6, and 7 exhibit 
the largest counts of clusters, with Channel 7, representing the highest count. Channel 5 shows the largest clusters. 

 

Figure 24 Scatter plot cluster size vs Intensity for second replicate. This scatter plot illustrates the size distribution of clusters per channel 
relative to the intensity registered during TIRF imaging. In contrast to the observations in the first replicate, Ch 1 and Ch 2 exhibit smaller low 
intense clusters. Conversely, Ch 3, Ch 4 and Ch 5 display the highest intensity values, with Ch 5 hosting the largest clusters registered. 
Furthermore, there is a noticeable reduction in intensity values for Ch 6. 
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Finally, to facilitate comparison between the two replicates, we created two graphs depicting the total area 

covered by clusters and the comparative number of clusters for each, as shown in Figure 25 and Figure 26. Our 
observations revealed varying patterns of cluster formation and intensity across different receptor density levels (Ch 
1 to Ch 7). In Figure 25, we noticed high cluster coverage, ranging from approximately 200 to 230 μm², for Ch 5 in 
both replicates.  However, Figure 26 shows that Ch 6 has the highest count of clusters for both replicates, which 
coincides with the lowest bound fraction value registered in Figure 18. Interestingly, as receptor densities increased 
from Ch 3 to Ch 6, our scatter plots results indicate a reduction in cluster intensity values alongside an increase in 
cluster size and count, leaving Ch 6 to hold consistently the lowest intensities in clusters. This suggests a potential 
negative correlation between cluster formation and intensity values from Ch 3 to Ch 6. 

Figure 25 Total area covered by clusters for Design C. This image depicts two histograms representing the total area covered by clusters per 
channel in left: replica 1 (blue), right: replica 2 (pink). In replica 1, Ch5 and Ch6 exhibit the highest coverage, whereas in replica 2, Ch4 and Ch5 
show the most coverage. Interestingly, Ch7 consistently exhibits one of the lowest coverages in both replicas. 

Figure 26 Comparative for cluster number vs channel for both replicates for Design C. This graph displays a scatter plot of the number of 
clusters vs the channel for both replicates of Design C, with replica 1 in blue, and replica 2 in pink. Ch6 consistently holds the highest 
cluster count for both replicates. 
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Further measurements are required to confirm this relationship and to analyze the effects of cluster 
formation on the interpretation of adsorption profiles 𝜃. While our results do not definitively establish a direct 
correlation between cluster coverage and average intensity value, they highlight the importance of considering 
cluster formation when calculating 𝜃. Additionally, our findings indicate that the intensity of the clusters consistently 
exceeds background values, which should also be considered when analyzing average intensity values. 
 

4 Discussion 
4.1 Interpretation of experimental results 

 

4.1.1 Validation of experimental model for superselectivity using Design A  
 
 

The experimental validation of the protocol designed to study superselectivity in 6 arm/6bps DNA nanostars 
aimed to explore if we could replicate the outcomes for sigmoidal bound fraction θ, α, and binding constants 𝐾𝐴, 
𝐾𝐼𝑛𝑡𝑟𝑎 , and <n> obtained in the initial study by Linne (2022). Regarding the experimental bound fraction θ, our 
results demonstrated variation within expected ranges between the replicated results (DA) compared to the original 
(DA-CL), where even similar phenomena of reduction of coverage after reaching maximum adsorption (θ~1) and high 
coverage for low receptor densities were observed. This allowed us to demonstrate that these observed behaviors 
were not outliers and could indicate an unexplored phenomenon, as shown in Figure 12. Additionally, we performed 
a direct comparison of the experimental datasets representing the bound fraction for DA and DA-CL to establish if 
both datasets were statistically different, by using the non-parametric Mann-Whitney U p-value test. The results 
indicate no statistical difference between DA and DA-CL, suggesting they may represent the same phenomenon, 
supporting the reliability of the experimental protocol. To further validate the statistical results, the Mann-Whitney U 
test p-value between CL-DA and 6arm/4bps-CL was calculated as well, resulting in a value of 0.246 (p>0.05) (see 
Section 2.3.4). As this value suggests no significant difference between CL-DA and 6arm/4bps-CL, we interpreted it as 
an indication of how alike the data sets are, even though they are meant to represent different binding dynamics. 
However, we hypothesize that increasing both the number of experimental replicates and the resolution of receptor 
densities per design could enhance further differentiation of the evaluated curves. In summary, a qualitative and 
statistical assessment of the results was used to conclude the reliability of the experimental technique. We 
hypothesize the slight differences in slope value for θ can be resolved once more experimental replicates are done, 
and more receptor densities are explored. 

 

4.1.1.1 Sensitivity analysis – results for Design A 
 

To continue the assessment of reproducibility of the protocol using Design A (DA), the next step required 
calculating 𝛼, 𝐾𝐴, 𝐾𝑖𝑛𝑡𝑟𝑎  and <n>, from the adsorption profile from DA, and comparing to i) the reported values in 
(Linne, 2022), and ii) our reconstruction of the calculation using the reported data (DA-CL). The calculation of the 
variables comes from the theoretical definition of adsorption profile (or bound fraction) as described in Section 1.3.1, 
that later was adapted to quantify the change in the number of adsorbed nanostars on the target surface using 
intensity measurements, as shown in Section 2.3. To use θ, a least square fit model was used to generate 𝜃𝑓𝑖𝑡 , with 

𝐾𝐴 and 𝐾𝑖𝑛𝑡𝑟𝑎  as fitting parameters. The calculation of 𝛼 and <n> were derived from 𝜃𝑓𝑖𝑡 .  

 
Linne (2022) reports in her study in 6 arm DNA nanostars that for large receptor densities (𝜎𝑅  ~ 104), and for low 

receptor densities (𝜎𝑅  ~ 103), 𝜃𝑓𝑖𝑡  shows a deviation from the data points, indicating the fit could not be describing θ 

accurately. Since our experimental results also showed the similar deviation at both high and low receptor densities, 
the sensitivity analysis aimed to explore the variation in fitting parameters 𝐾𝐴 and 𝐾𝑖𝑛𝑡𝑟𝑎 , as well as the calculated 𝛼 
and <n>, as a result of varying the datapoints included in the fit. For the DA case, our observations show that the 
data points included in the fit influences considerably, even changing the interpretation of superselective behavior if 
the “wrong” set of points is included. For Case 1, all the points included the calculations of 𝜃𝑓𝑖𝑡 , 𝛼 and <n> described 

the sample as not superselective. For Case 2, once the low receptor density outlier was removed, DA calculations 
were superselective again. For Case 3, when both low receptor densities and high receptor densities outliers were 
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removed, there was no significant change with respect to Case 2. The latter allowed us to conclude for this case, the 
fit is more sensitive to low-receptor density outliers, a modification that should be considered for following 
experiments.  

 
When quantitatively comparing the superselectivity parameters calculated for DA-CL and DA, irrespective of the 

sensitivity case chosen, there is an important variability among the values reported (Figure 16). This shows that the 
calculation of superselective parameters is a highly sensitive process, where small variations in slope values for 𝜃𝑓𝑖𝑡  

can lead to large variations in 𝛼, 𝐾𝐴 and 𝐾𝑖𝑛𝑡𝑟𝑎 . We do not know if this variability can be entirely attributed to the 
difference in experimental replicates between DA (e.g. 2) and DA-CL (e.g. 3) and its associated uncertainty, or if it is 
also due to the use of a least-square fit to generate a non-linear function 𝜃𝑓𝑖𝑡  that does not fully adjust to the 

theoretical sigmoidal behavior. Some other studies of selectivity on weak multivalent interactions also use a fit to 
calculate the adsorption profile from experimental data points, where the data points are fitted into a sigmoidal or 
exponential shaped function depending on the experimental observations (Scheepers et al., 2020). We point out the 
fit we used does not assume a shape on the fitted function, therefore this could cause the obtained 𝛼 curves look 
less sharp and have lower 𝛼𝑚𝑎𝑥 values, as well as to affect the obtained optimization parameters.  

 
 Referring to the effects of including or excluding data points for the fit when full adsorption was reached, it was 

noted that for Case 1, the calculations for DA-CL did coincide with the reported values (Linne, 2022) for the same set 
of data points. Nonetheless this case was also the one that showed the highest variability between DA and DA-CL, 
making it inadequate to conclude this is the best case for interpretation. Some studies done by Dubacheva and 
associates, show fits where the data points where full adsorption has been reached, are excluded from the fit 
function for 𝜃  (Dubacheva et al., 2015). The latter, together with our findings that the exclusion of these data points 
does change the 𝛼, <n>, 𝐾𝐴 and 𝐾𝑖𝑛𝑡𝑟𝑎  values obtained, suggest that either it is required to develop a new analytical 
term 𝜃 capable of identifying when the sample has entered full bound regime, or to exclude the points from the fit 
calculation altogether.   

 
Delving a little more into the possibility of holding an analytical definition of 𝜃 that accounts for not fully bound 

or fully bound states, we would like to discuss the equation chosen for our model to represent the bound fraction 𝜃 
that depends on the definition of equilibrium avidity association constant 𝐾𝐴

𝑎𝑣, as explained in Section 1.3.1.  This 
variable describes the effective strength of multivalent interactions when more than one arm from the same DNA 
nanostar is bound. One can find similar definitions of 𝐾𝐴

𝑎𝑣  all over the literature, where some hold a term related to 
the number of accessible receptors, or free receptors, so that when the sample reaches full adsorption (e.g. free 
receptors ~ 0), 𝜃 and  𝐾𝐴

𝑎𝑣   should reflect this change (Curk et al., 2022) and possibly revert into strong binding 
definitions. In a way, we note that the definition of 𝐾𝐴

𝑎𝑣  used in our model does not have a mathematical definition 
that allows for changes in the number of receptors available for binding, as 𝜎𝑅  here refers to the total receptor 
density in certain area A. These could be compromising the interpretation, especially when θ~1 to later revert into 
lower coverage values, as observed in our results.  

 

4.1.2 Evaluation of sequence mismatch on sticky end using Design A* 
 

To analyze the influence of introducing changes in the binding affinity between ligands and receptors, we created 
a 2-nucleotide mismatch in the sticky end DNA complementary sequences between DNA nanostar’s arms and 
receptors on the surface, referred to as Design A*. We thought this design would facilitate creating many weak 
binding receptors, as it is ideal for superselective systems (Martinez-Veracoechea & Frenkel, 2011), without having to 
introduce inert receptors, or increase the total number of receptors used. Nonetheless, our results show that 
introducing a possible reduction in free binding energy ΔG, resulted in the least superselective design when 
compared to DA-CL, DA and 6arm/4bps. The reported parameters 𝛼, 𝐾𝐴 and 𝐾𝐼𝑛𝑡𝑟𝑎  were the lowest of all the 
measured designs. Our interpretation is that the included mismatch interferes with the binding process in both initial 
bound and subsequent bounds, therefore a modification of this kind does not only affect the subsequent binding 
affinity 𝐾𝐼𝑛𝑡𝑟𝑎 , but also 𝐾𝐴.  The results also point out that the introduced reduction of binding affinity between 
ligands and receptors did not enhance superselective behavior, emphasizing the sensitivity of the proposed 
superselective system, and the delicate interplay of 𝐾𝐴 and 𝐾𝐼𝑛𝑡𝑟𝑎  to achieve higher superselective values. 
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This experiment highlighted DNA's unpredictable behavior within sensitive systems, such as the one employed in 
our study. Although the design aimed to introduce a two-nucleotide mismatch, with the remaining four nucleotides 
forming complementary base pairs, we hypothesize from the results an unexpected competition among potential 
binding configurations, as depicted in Figure 27. Studies show that imperfectly matched DNA sequences are still able 
to bind, and with important changes in the binding constants depending on the mismatches introduced (Cisse et al., 
2012). According to the “Rule of Seven” in Watson-Crick base-pairing, at least seven contiguous base pairs are 
necessary for quick (microseconds) and efficient binding of DNA strands, which is defined as avoiding non-specific 
interactions. The same study also points out that mismatched DNA sequences required an increase in DNA 
concentration to observe binding, something we also found when trying to find the fully bound state (e.g. full 
adsorption in surface) with our DA* experiments. Therefore, this suggests that the presence of a two-nucleotide 
mismatch could have significantly disrupted the stability of the sticky end binding process, resulting in distinct 
configurations with highly different binding dynamics, something we can relate to the loss of superselective behavior 
we observed. Overall, the introduction of a two-nucleotide mismatch appears to create more than weak binding 
interactions, potentially resulting in nonspecific binding becoming the dominant outcome (Martinez-Veracoechea & 
Frenkel, 2011). This highlights the importance of considering the “Rule of Seven” when designing DNA sequences for 
superselective systems, something we can also extend to all the other designs. 

 
 
 
 

 
Figure 27 Possible configurations for unspecific DNA annealing of sticky ends for receptors and DNA nanostars after introducing a 2-nucleotide 
mismatch. We postulate that the “Rule of seven” for DNA annealing can give an explanation on why DA* lost superselective behavior instead of 
gaining it. Figure created with BioRender.com 

 

4.1.2.1 Sensitivity analysis -results for Design A*  
 
The values obtained in Case 1 and Case 2 were the same, and there was a slight difference with Case 3; 

indicating that the results for this design are the least sensitive to variations in the data points for the fit calculations.  
Since this design did not show outliers for low receptor densities, in comparison to DA, we raise the question if this 
found stability depends solely on the binding kinetics of the sample, or it is also connected to the number of 
experimental replicates that were used for DA* (6 replicates). Nonetheless, we emphasize that the results from the 
analysis should not depend on the sample, for which more considerations should be made for the fit used. 
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4.1.3 Effects of increase flexibility on DNA nanostars - Design C 
 

Regarding the effects of increasing the flexibility of the DNA nanostar structure by changing four Adenines 
into ten Thiamines in the vertex of the nanostar, it was found that these lead into unanticipated behavior in the 
measured bound fraction θ. The latter didn’t show the expected sigmoidal function and even showed a negative 
slope, unlike seen for previous designs. We also observed a high variability among the replicates, unlike previous 
experiments. When exploring into the TIRF images obtained for this design, surprisingly, we noticed a significant 
number of clusters detected along certain receptor densities in both replicates, that look nothing alike to pervious 
results (See Figure 11, Figure 12, Figure 19, and Figure 22). This led our interest into analyzing if there was a 
preferred receptor density for the formation of clusters, and if there was a connection with the size and cluster 
number. Our results suggest the highest number of clusters formed in Ch 6 - 𝜎𝑅 = 150000 𝜇𝑚−2 (see Figure 20 and 
Figure 23), and the largest clusters formed in Ch 5 - 𝜎𝑅  = 50000 𝜇𝑚−2  (see Figure 24 and Figure 21), leading to the 
largest area coverage by clusters for these two densities (see Figure 25). Surprisingly, the particles seen later 
dissipate in size (for both replicates) and number (for only one replicate) when the maximum receptor density Ch 7 - 
𝜎𝑅  =300000 𝜇𝑚−2 is reached. This finding suggests the existence of critical range of densities where the formation 
of these particles is thermodynamically preferred, but that unexpectedly doesn’t correspond to the maximum 
possible receptor density, therefore we explored some other explanations. 

 
As briefly described before, the formation of clusters on this experimental model would violate one of the 

main assumptions of no cooperation/interaction among guest particles (e.g. ligands), and the measurement of more 
than one DNA nanostar binding with one or more arms to the same receptors on surface (Linne, 2022)  (see Section 
1.3.1). Since this result would imply a reinterpretation of what the adsorption profile 𝜃 is measuring, we hypothesized 
that the observing cluster phenomenon could be affecting the final intensity reads obtained (see Figure 18). 
Surprisingly, our findings suggested a possible negative correlation between an increase in cluster formation and size, 
with a decrease in intensity values of the clusters for at least three receptor densities (𝜎𝑅  = 10000 𝜇𝑚−2 to 𝜎𝑅  = 
50000 𝜇𝑚−2 to 𝜎𝑅  = 150000 𝜇𝑚−2 ). When comparing with the θ bound fraction for both replicates, it is observed 
that Ch 6 - 𝜎𝑅  = 150000 𝜇𝑚−2 holds consistently lower cluster intensities and lowest bound fraction values, which 
seems to support our hypothesis for negative correlation between average intensity measurements and cluster 
formation. Nonetheless, we underline that these finding may be somewhat limited by the number of replicates done, 
and the variability among them, for which further investigations are required to elucidate more about the role of 
cluster formation in superselectivity measurements. 

 
Nonetheless, we would like to suggest a possible explanation for these results, as the formation of clusters 

among DNA nanostars has indeed been reported before. Biffi et. al. (2013) using 3- and 4-armed DNA nanostars with 
complementary sticky ends, concluded that for temperatures below T~42°C, all the DNA nanostars in solution on an 
electrolyte-rich buffer (NaCl in different concentrations for 3 or 4-armed) were found to undergo liquid-liquid phase 
separation into “coexisting small droplets”. This indicates there is a phase separation between DNA nanostars in 
solution and those organized in droplets. The authors also observed that below this temperature, clusters grow larger 
as temperature reduces. Besides, they found that reducing the valence of these DNA nanostars leads to a reduction 
of the gas-liquid coexistence region, suggesting that the critical parameters of temperature and concentration for the 
coexisting region decrease as the valence is reduced. A similar critical temperature of T~42°C for DNA nanostars was 
also reported in independent studies using DNA nanostars as the system model for phase separation experiments 
(Hegde et al., 2023). Additionally, coarse-grain bead-spring model simulations for DNA nanostars with 3, 4 and 5 arms, 
support the previous results of phase change from unstructured fluid to a hydro gel phase for sufficiently low 
temperatures, although there is no direct mention of temperature values, but anything below allowing DNA to 
behave like gas (Naskar et al., 2023). This is an interesting point to mention, as for our experimental protocol, 
experiments are always done under 42°C and without strict temperature regulation, therefore increasing the chances 
of DNA phase separation in our samples.  

 
Since the formation of clusters in DNA nanostars has been supported by recent studies, this leads us to 

consider the composition of these clusters. We suggest that phase separation could occur between i) DNA nanostars, 
ii) DNA receptors with DNA nanostars, and iii) DNA receptors alone. Although such phase separation wouldn’t change 
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the overall concentrations of receptors or DNA nanostars in solution, it would influence the binding dynamics. This is 
critical because this affects the interpretation of bound fraction and superselectivity measurements. 

 
 
Furthermore, the presence of phase separation challenges the assumptions of our theoretical models. 

Specifically, Equations 2 and 3, which describe the theoretical bound fraction Θ and its adaptation for experimental 
results, respectively, presume uniform receptor coverage. If phase separation occurs, this assumption is invalidated, 
leading to a scenario where receptors exist in a third state: unbound and unable to bind. In this scenario, the 
adsorption profile would most likely correspond to a mix of binding behaviors, including single DNA nanostars binding 
multivalently, and clusters of DNA nanostars that may not interact multivalently with surface receptors. Moreover, we 
propose this phenomenon could be responsible for the decrease in adsorption observed after reaching the first fully 
bound state in most of the experiments, as depicted in Figure 6 and Figure 12. Instead of indicating a reduction in 
receptor coverage, this decrease may actually reflect the clustering of nanostars and receptors, a phenomenon that 
could be misinterpreted as reduced adsorption. 

 
Finally, we propose that the observed decrease in fluorescence intensity values with increasing cluster size 

suggests that clusters may not be bound to the surface. Instead, they appear to be deposited or condensed onto it. 
This hypothesis explains the measured contrast in TIRF microscopy intensities between the clusters and the 
background, as well as the overall reduction in average intensity values when cluster formation is promoted. While 
this potential phase separation phenomenon was more evident in Design C, likely due to its increased size and 
flexibility promoting larger clustering, our findings suggest that this phenomenon may be relevant to all the designs 
studied. Although we did not quantify these structures for Design A and Design A* in this thesis, TIRF images indicate 
the presence of cluster-like particles, albeit in smaller numbers and sizes compared to Design C (refer to Figure 11, 
Figure 15, Figure 19, and Figure 22). Therefore, we recommend further research to explore how this phenomenon 
could offer insights into reinterpreting the results obtained for superselective behavior with this experimental model.  

 

5 Conclusion 
 

Through a comprehensive investigation into the reproducibility of the experimental model using DNA nanostars 
to study superselective events, we examined the effects of altering the binding strength between DNA nanostars and 
receptors, as well as the influence of flexibility in the DNA nanostar structure for superselective behavior. This 
section summarizes the most relevant points for the reader. 

 
Experimental Validation (Design A): Our analysis of experimental validation, focusing on Design A, revealed 

variation within expected ranges between replicated results and the original study by Linne (2022). Despite minor 
differences, statistical tests indicated no significant divergence, supporting the reliability of the experimental 
protocol. However, sensitivity analysis on the superselectivity calculations from the experimental data highlighted 
the influence of certain data points on the interpretation of superselective behavior for this design, emphasizing the 
need for careful consideration of the fit used for data analysis. Nonetheless, we acknowledge that this discrepancy 
could emphasize the need for further experimentation to enhance differentiation of evaluated bound fraction 𝜃. 
Additionally, we suggest that further exploration into the analytical definition of θ and the equilibrium avidity 
association constant 𝐾𝐴

𝑎𝑣  could enhance our understanding of superselectivity dynamics in DNA nanostars, as a 
possibility to portray the so-called reduction of bound fraction at high receptor densities.  
 

Evaluation of Sequence Mismatch on Sticky End (Design A*): The introduction of a 2-nucleotide mismatch in 
the sticky end DNA complementary sequences, referred to as Design A*, aimed to evaluate the impact of changes in 
binding affinity between ligands and receptors. Despite expectations that this design would promote weak binding 
receptors ideal for superselective systems, the results showed that Design A* exhibited the least superselective 
behavior compared to other designs. Parameters such as 𝛼, 𝐾𝐴, and 𝐾𝑖𝑛𝑡𝑟𝑎  were notably lower, indicating 
interference with the binding process and subsequent reductions in binding affinity. This suggests that modifications 
introducing a reduction in binding affinity using DNA mismatches do not necessarily enhance superselective 
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behavior, emphasizing the delicate interplay of 𝐾𝐴 and 𝐾𝑖𝑛𝑡𝑟𝑎  in achieving higher superselective values on this 
system. 

 
The experiment also revealed DNA's unpredictable behavior in sensitive systems, like the one used here. 

Despite the intention to create a specific mismatch, competition among stable and unstable binding configurations 
could have led to a reduction in specificity and selectivity among ligands and receptors. The analysis suggests that 
even a two-nucleotide mismatch can create more than weak binding interactions, potentially leading to nonspecific 
binding as the dominant case along the sample. For the future, we postulate considering the “Rule of Seven” for next 
DNA nanostar designs, to assure the complementary sequence for the sticky end is binding as expected, reducing the 
chances for non-specific interactions among DNA base pairs. 

 
Sensitivity analysis results indicated stability in Design A* compared to other designs, raising questions about 

the factors influencing this stability, such as binding kinetics and the number of experimental replicates. However, it 
underscores the importance of ensuring that analysis results are independent of sample variations and that further 
considerations should be made for the fit used in future experiments. 
 

Effects of Increased Flexibility on DNA Nanostars (Design C): The investigation into the effects of increasing 
flexibility on DNA nanostars, designated as Design C, has revealed unexpected behaviors in the measured bound 
fraction 𝜃 and the formation of clusters. Unlike previous designs, Design C displayed a negative slope in the bound 
fraction as the receptor density increased, indicating a clear deviation from the expected theoretical behavior. The 
observation of clusters along certain receptor densities suggests a preferential formation at   𝝈𝑹 = 𝟏𝟓𝟎𝟎𝟎𝟎 𝝁𝒎−𝟐,  
contrary to the assumption of no cooperation/interaction among DNA nanostars and in between receptors that was 
postulated for our experimental model.  

 
We hypothesize that the unexpected behavior observed in Design C may be attributed to phase separation 

phenomena reported in previous studies, where DNA nanostars undergo liquid-liquid phase separation into 
coexisting small droplets at temperatures below 42°C to 45°C, which was never employed or regulated in our 
experiments. Since there appears to be a negative correlation between an increase in cluster formation and 
measured average intensity value, we postulate this could give potential explanation for the “reduction” of bound 
fraction after the sample reached full adsorption, as seen in previous studies and other designs used in this thesis. 
This phenomenon raises questions about the composition and implications of these clusters and suggests a need for 
reconsideration of the theoretical equations employed, and the interpretation on binding dynamics extracted from 
the model. 

 
In conclusion, the findings from Design C highlight the complexity of DNA nanostar behavior and the need for 

comprehensive investigation into the factors influencing its superselectivity measurements. Further research is 
recommended to explore the potential implications of cluster formation in superselective systems using DNA 
nanostars, and to extend the analysis to previous design configurations.  
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5.1 Potential refinements in experimental design for further research  
 

In this section, we summarize the key findings and insights gained from our investigation into superselective 
behavior using DNA nanostars. Building upon these findings, we offer recommendations for future research and 
potential refinements in experimental design to enhance the reliability and accuracy of our results. 
 

• For our TIRF-experiments, we did not create a specific calibration profile for our samples, potentially leading 
to variability in intensity values measured. Although data normalization was applied to show general 
behavior with respect to coverage, Design C exhibited discrepancies that made us reflect in the importance 
of calibrating the microscope for our samples specifically. Therefore, performing a specific calibration profile 
for these samples could address this issue and reduce variability.  

 

• Through discussion with TIRF experts revealed that slight changes in the thickness of the sample coverslip 
and glass slide could have significantly impacted intensity values, potentially affecting readings of 
superselectivity. Current coverslips and glass slides used in these experiments lack the recommended 1.5H 
thickness, possibly leading to skewed measurements. For future experiments, we recommend utilizing fine 
1.5H glassware to ensure consistency and accuracy in TIRF measurements. 

 

• Considering strict temperature regulation (at least making sure the DNA nanostars are always above the 
critical temperature 42°C to 45°C) in these experiments could provide more control on DNA nanostars’ 
matter phases and structural conformations, leading to more understanding of what our experiments are 
showing. The majority of experiments (Lee et al., 2021) using this DNA nanostars are more focused on the 
structural changes and material properties of DNA condensing phases (Dubacheva et al., 2023) than on 
superselective behavior.   
 

• Exploring strategies to enhance ligand-receptor interactions and reduce ligand cooperativity could improve 
superselective behavior. We know now that reducing the binding affinity by nucleotide mismatch is not a 
way to do so. Additionally, we recommend making sure that the sticky ends modification always respects the 
“Rule of Seven” to avoid non-specific interactions in the sticky end DNA strands.  
 

• Recent studies emphasize the importance of spatial distribution of ligands and receptors in superselective 
behavior (Bila et al., 2022). Investigating different spatial configurations of receptors and ligands, along with 
multivalent pattern recognition, could provide valuable insights, as our experimental protocol does not 
regulate receptor displacement along the surface. 

 

• Our results allowed us to reflect on how certain chemical modifications can also be disrupting the expected 
Watson-Crick interaction rules and may need to be taken more into account in the interpretation of 
superselective behavior for DNA nanostars. The inclusion of chemical modifications such as specific buffer-
salt conditions or the use of fluorophores has been shown to lead to discrepancies between predicted and 
measured binding energies in DNA. Moreover, fluorophores have been found to alter the steady state and 
hinder the desired dynamic response of single-stranded DNAs (ssDNA) with Cy-dyes more likely to inhibit 
DNA binding dynamics compared to Atto-dyes (Idili et al., 2017). Acknowledging these differences is vital for 
accurately interpreting the binding dynamics of DNA nanostars. Additionally, the potential decay of 
fluorophores in current DNA nanostar samples should be taken into account, particularly for fluorophores 
older than three years. 
 

• Likewise, fluorophore modifications have been reported to decrease the accessibility of ssDNA for base 
pairing and affect the dissociation constant (Jahnke et al., 2021). Therefore, it is then essential to consider 
that the binding affinity 𝐾𝐴 of a DNA nanostar binding with a fluorophore arm differs from that of a non-
fluorophore case. This variation in 𝐾𝐴  influences the subsequent 𝐾𝑖𝑛𝑡𝑟𝑎  value, consequently affecting the 
overall dynamics and probability of development of superselective behavior. Taking these findings into 
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account could prove crucial when drawing conclusions about the general dynamics of superselective systems 
based on this model, as for our experiments we were assuming there is no binding energy cost for the arm 
that holds the fluorophore. 
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7 Appendices 
 

7.1  Experimental protocols  
 
Location: W:\staff-bulk\tnw\BN\LL\Shared\Valentina\Protocols 

 

DNA Nanostar and Receptor Hybridization 

 
1. Thaw the main stock (100 uM) of the desired DNA strands. In total you will need 6 different DNA stocks to 

obtain a DNA nanostar with 6 arms. 

2. To obtain a 10 uM final DNA nanostar (NS) concentration, first, add 12 uL of TAE-MgCl buffer to an epje. 

Then, add 3uL of each main stock. In total you should have a final volume of 30 uL with a concentration of 

100 uM. 

3. At the same time, add 24 uL of TAE-MgCl buffer to an epje. Then add 3uL of each main stock for the receptor 

backbone and receptor. 

4. Mix the epjes and spin them down with a small table centrifuge. 

5. Place the epjes in a thermocycler and run the CL_HYBRID_NS program in the upstairs kitchen (left machine).  

6. The program typically runs overnight and can be started around 16:00/17:00 and will be done on the next 

day in the morning. 

7. When doing the insertion of DNA NS in the channels, in a 5mL Eppendorf dilute 2 uL of DNA-NS in 10 uM 

concentration into 1998 uL of TAE-MgCl buffer, obtaining a final concentration of 0.01 uM in each channel.  

 
 

Small Unilamellar Vesicles of DOPC 

 
Material: 

• Chloroform, isopropanol, deionized water 

• Three glass beakers 

• DOPC 

• TAE-NaCl buffer 

• Gas tight syringes (non-fluorescent) 

If you start with the dry aliquots from the freezer, you can start in step 6 
1. Clean the gas tight syringe with Chloroform by pushing the liquid through the syringe at least 10 times. 

2. Add 30 µL DOPC to a glass vial (there are already aliquots dried in the freezer) 

3. Speed up the evaporation of the chloroform by gently blowing into the glass bottle with nitrogen 

4. Place the glass bottle in a vacuum desiccator for at least one hour 

5. Clean the gas tight syringe with Chloroform by pushing the liquid through the syringe for at least 10 times. 

6. X Suspend the dried lipids in 375 µL of TAE-NaCl buffer and vortex it for 30 minutes (vortexer with Styrofoam 

on the top, maximum speed at 2). 

7. Use the extruder with membrane size 0.05 um. Clean the syringes with isopropanol and water (deionized) by 

pushing the liquid through the syringe for at least 10 times. 

8. Assemble the extruder and first test if the extruder is gastight by extruding deionized water. If that works 

fine, fill the syringes with 2x dilutes lipid solution. This means add 375 µl of TAE-NaCl buffer again.    

 It is normal to lose about 20% of the solution during the extrusion. For more information about the extrusion 
look here: https://www.youtube.com/watch?v=8ei62ZmLgSM&ab_channel=AvantiPolarLipids  
9. Store the final solution in an epje in the fridge (maximum 5 days). 

10. Clean the extruder parts and syringes thoroughly with first isopropanol and then rinse it with deionized 

water and let it dry before putting it back into the packaging. 

https://www.youtube.com/watch?v=8ei62ZmLgSM&ab_channel=AvantiPolarLipids
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DNA Nanostar binding experiments – sample preparation: DNA nanostar hybridization  

Important: Hybridization always during the night before the experiment, do not store, prepare fresh for each day of 
experiment. 
 

• Thaw the main stock (100 uM) of the desired DNA strands. In total you will need 6 different DNA stocks to 
obtain a DNA nanostar with 6 arms. 

• To obtain a 10 uM final DNA nanostar (NS) concentration, first, add 12 uL of TAE-MgCl buffer to an epje. 
Then, add 3uL of each main stock. In total you should have a final volume of 30 uL with a concentration of 
100 uM. 

• At the same time, add 24 uL of TAE-MgCl buffer to an epje. Then add 3uL of each main stock for the receptor 
backbone and receptor. 

• Mix the epjes and spin them down with a small table centrifuge. 

• Place the epjes in a thermocycler and run the CL_HYBRID_NS program in the upstairs kitchen (left machine).  

• The program typically runs overnight and can be started around 16:00/17:00 and will be done on the next 
day in the morning. 

• When doing the insertion of DNA NS in the channels, in a 5mL Eppendorf dilute 2 uL of DNA-NS in 10 uM 
concentration into 1998 uL of TAE-MgCl buffer, obtaining a final concentration of 0.01 uM. 

 

DOPC SUVs: Flow channel functionalization with lipid membrane and receptors  

Important: Do not use cleaned glassware stored in KOH longer than 5 days. The KOH damages the surface over time 
and influences the formation of the lipid bilayer.  

• Dry a pre-cleaned objective slide (Cleaned in 2%Hellmanex, Acetone and KOH (1M)) 
• *Place a piece of parafilm on the objective slide and cut out 7 times 1 mm broad channels 
• *Place a cleaned coverslip on top and melt the parafilm on a heating plate @ 125°C 
• *Press lightly with a pair of tweezers on the coverslip while the parafilm melts 
• CRITICAL STEP: in case of using the double-sided polyimide tape (50mm width), skip all steps with * and proceed to 

past the flow channel template without heat, pressing lightly with your hand until the piece is attached completely. 
• For each flow channel: 

o Add 13 μL TAE-NaCl buffer 
o Add 13 μL four times diluted SUVs 
o Incubate for 45 minutes in a closed chamber with a wet tissue  
o Wash four times with 13 μL TAE-NaCl buffer 
o CRITICAL STEP: Premix in epjes the desired DNA concentrations for the 7 channels receptors chosen  
o Incubate for 45 minutes 
o Wash four times with 13 μL TAE-NaCl-MgCl buffer 

• From step 1.7 DNA Hybridization: Add 13 uL of the desired DNA nanostar concentration and wait 20 minutes 
before imaging. 

Imaging parameters 

TIRF 488 15% 
Exposure time 50ms 
Gain 50 
Ellipse 100nm 

Tips 

• Negative control: Channel 1 no added receptors (measurement used for background corrections)  

• Positive control: Channel 7 add maximum number of receptors (usually 300000). Here, we expect the system 
to be saturated and will be used to normalise your system. Be aware, this normalization is a little hand wavy 
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because sometimes we don’t observe a clear saturation at this receptor density. The saturation depends a lot 
on the valency and interaction strength.  

Increasing valencies with increasing number of sticky ends but with always 6 arms, exact DNA stock can be found 
in Lab_inventory_Linne.xlsx 
 
Six-valent: X_3_1, X_3_2, X_4_3, X_5_4, X_6_5, X_6_6  
 
Here, you can choose the number and location of the sticky ends by choosing, which sequence you use. The idea is to 
always keep the number of arms constant but vary the sticky ends and with that the valency. The sequences do not 
contain a sticky end and can be used as a base for this approach. 
 
DNA receptor design 
 
6bp: CL_157 (LongLInkerBAckbone) + CL_1108 
 
 

Appendix: Dilutions for receptor densities  

 
To obtain the desired receptor density on each channel, as seen in the table below, we must dilute the initial 
receptor DNA sample #1 (10 uM) into 3 additional concentration stocks. 
#1 Is the initial concentration of 30ul DNA hybridized the day before. 
#2 From this, we want to obtain a stock of 5 uM. Add 11.53 ul of #1 to 11.53 ul of TAE MgCl NaCl buffer.  
#3 From this, we want to obtain a stock concentration of 1 uM. Add 4.62 ul of #2 to 18.4 ul of TAE MgCl NaCl buffer. 
#4 From this, we want to obtain a stock concentration of 0.1 uM. Add 2.31 ul of #3 to 20.7 TAE MgCl NaCl buffer.  
After having 4 different stock concentrations, proceed to dilute with TAE MgCl NaCl buffer to obtain the 

concentrations per channel, highlighted in green 2 to 7 on the table below. The channel 1 is the blank.  

In the case you are using higher concentrations than 300000 DNA/um^2, make sure to calculate the right stock 
concentration.  
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7.2 TIRF DNA Nanostar Visualization  
 

1. TIRF Microscope  

a. Turn on both switches on top of the microscope. 

b. Turn on the computer (takes long) 

c. In the meantime, you can lower the objective and change it to 100X. 

d. Put oil on objective and proceed to put sample. 

e. Open Metamorph when the computer has finished initializing. 

f. With the manual control in Z, slowly move the stage until you see that the sample touches the oil. 

For previous samples, we found z =  1790 to be the value for surface visualization. Turn on the PFS 

button to hear auditive validation that the PFS has found the sample. 

g. Make sure to start in Ch7, as it is the one that holds the largest fluorescence intensity. 

h. To localize the DNA NS attached to the surface, we will use the fluorophores Cy3. This excites at 555 

nm max and emits at 569nm max. For this, we use the bypass 568 LP, to only detect the emissions of 

these. Make sure to insert this bypass.  

i. Using Metamorph, turn on the yellow laser TIRF 561, 11%, with an ellipse of 100 nm. 

j. Press the MDA button to open the camera. 

k. Focus the image until the structures are clear. 

l. Turn off the laser and change the bypass to 525/50. This will make sure to obtain most of the 

fluorescence only from the Atto 488 fluorophores on the DNA NS attached to the receptors. 

m. Now, open blue laser TIRF 488. Focus on the image again, it shouldn’t be very far from the z position 

you had before. 

n. Establish the ellipse in 100nm, 11% TIRF 488. 

o. Check on the default values for EM gain = 50 and exposure time = 50 ms CHECK.  

p. Localize in the savings folder, put date and Ch. 

q. MDA requires you to choose 5 random locations and take 10 pictures on each. Once you have 

located the surface, you can move around the sample. 

r. Click Acquire. 

s. Wait until the pictures are ready, and check the PFS is still working, meaning the pictures are 

focused.  

t. Now take 30 random pictures without MDA along the channel. 

u. Go down with the manual control, find the first channel border, and continue with Ch6. 

v. Once you are done, repeat the procedure to test if time changes measurements. So, repeat using 

MDA from Ch1 to Ch 7. 

w. Save folder in Instruments… 

x. Make sure all lasers are off. 

y. Lower the stage as much as possible. 

z. Take the sample out. 

aa. Clean objective with isopropanol and Nikon wipes. 

bb. Change 100X objective to 40X objective. 

cc. Turn off the computer. 

dd. Turn off the microscope. 
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7.3 𝐾𝐴, 𝐾𝑖𝑛𝑡𝑟𝑎 error propagation calculations from general error propagation formula 
 
 

The error propagation formulas for Ka and Kintra were calculated using the concept of relative error 
propagation through mathematical functions with multiplication and division. When we have two variables 𝑋 and 𝑌 
related by a function  𝑍 =  𝑓(𝑋, 𝑌)  and we know the errors  Δ𝑋, Δ𝑌 we can estimate the error Δ𝑍 using the 
following formula: 
 
 

Δ𝑍

𝑍
= √(

Δ𝑋

𝑋
)

2

+ (
Δ𝑌

𝑌
)

2

 (1) 

 
 

Where ΔX and Δ𝑌 are the relative errors of X and Y respectively. Since for 𝐾𝐴  and 𝐾𝑖𝑛𝑡𝑟𝑎  we have the following 

relationships 𝐾𝐴 =
𝐶

𝐾𝑖𝑛𝑡𝑟𝑎
, 𝐾𝑖𝑛𝑡𝑟𝑎 =

1

𝐷
, we can define: 

 

𝑓1(𝐶, 𝐾𝑖𝑛𝑡𝑟𝑎 ) = 𝐾𝐴 =  
𝐶

𝐾𝑖𝑛𝑡𝑟𝑎
, 𝑓2(𝐷) = 𝐾𝑖𝑛𝑡𝑟𝑎 =  

1

𝐷
  (2) 

 
 
Where we obtain the following expressions: 
 

Δ𝐾𝐴 = √(
Δ𝐶

𝐶
)

2

+ (
Δ𝐾𝑖𝑛𝑡𝑟𝑎

𝐾𝑖𝑛𝑡𝑟𝑎
)

2

∗ 𝐾𝐴  (3) 

Δ𝐾𝑖𝑛𝑡𝑟𝑎 =
ΔD

𝐷
 ∗ 𝐾𝑖𝑛𝑡𝑟𝑎  (4)

 

 

The values were calculated for each case and are shown in Table 4.  
 
 
 

7.4 Analysis Codes  
 
All codes can be found in https://github.com/vquirogaf/MEP-TU-Delft,  all codes and data sets can be found in 
WebDrive W:\staff-bulk\tnw\BN\LL\Shared\Valentina\Data_Analysis\All_Analysis_Codes, and all microscopy and 
electrophoresis images can be found in WebDrive W:\staff-bulk\tnw\BN\LL\Shared\Valentina\Data.  

https://github.com/vquirogaf/MEP-TU-Delft

