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Abstract—Reinforcement learning (RL) has gained wide 
attention, but its implementation in autonomous vehicles is still 
limited by insufficient sample efficiency and heavy training 
costs.  The training efficiency of RL agents is influenced by the 
dimension of the state space, which can be partitioned to reduce 
the complexity of sampling and computation. This study 
proposes a hierarchical clustering-based state grouping 
reinforcement learning (HCSG-RL) method  for the switching 
decision of autonomous vehicles. First, we partition the base 
state space into groups and generate a hierarchical tree of state 
space groups. Then, we train multiple sub-agents for each node 
in the hierarchical tree. Finally, we add these trained-well sub-
model into master policy. This method allows us to fully explore 
all state spaces and improve the training efficiency of individual 
agents, which handles the “long-tail” issue and the curse of 
dimensionality issue. We conduct experiments in a simulation 
environment and results show that the proposed method has 16-
72% reward improvement compared to the tree model in 
different road length. 

Keywords—reinforcement learning, hierarchical clustering, 
state grouping, autonomous switching 

I. INTRODUCTION 

Vehicle automation has the potential to enhance 
transportation efficiency and improve traffic safety. Studies 
suggest that implementing automated vehicle technology and 
assistance systems could lead to a reduction in road crashes 
and fatalities of 25-90% [1]. However, when vehicle control 
is shared by human drivers and automation, the driver's task 
changes from an active to a passive, supervisory role, which 
may reduce attention and situational awareness, leading to 
boredom, mode confusion, and performance degradation [2]. 
Additionally, automated entities do not always outperform 
human drivers under all circumstances, especially under 
specific road and environmental conditions such as bright 

light, heavy rain, and poor quality of road and traffic signs [3]. 
Thus, the issue of where control authority is shared and how 
it is switched between the vehicle and the human driver is a 
special focus of this study. 

Traditional rule-based solutions are widely employed but 
incapable to account for real-time driver conditions and fast-
moving obstacles. However, it is incapable to account for 
real-time driver conditions like fatigue or distraction and 
requires a more intelligent and adaptive strategy. Learning-
based techniques focus on two capabilities: the cooperation 
between the human and the system, and the system's ability 
to self-learn from these collaborative actions [4]. However, 
two limitations are present in learning-based techniques: first, 
how the user can validate correct learning based on their 
input, and second, how the system can integrate new 
competencies while maintaining validation and ensuring that 
it behaves correctly under all driving conditions. [5] proposed 
an automated driving transition framework, defining static 
states for primary driving task control, driver monitoring, and 
driving state transitions. However, their model overlooks the 
learning process between the vehicle and driver. [6] 
developed a learning-based model for automated driving, 
enhancing autonomy but lacks integration of new capabilities 
in varied driving conditions. 

Reinforcement learning (RL) has been applied to various 
autonomous driving tasks, including path planning, motion 
planning, and developing high-level driving policies [7]. 
Despite remarkable advancements, DRL also suffers from the 
issue of “long-tail” data imbalance distribution [8], [9]. 
Various techniques have been proposed to tackle long-tailed 
instance segmentation, such as bi-level sampling strategies 
[10], dynamic curriculum learning [11], and feature 
augmentation and sampling adaption  [12]. Data-centric 
methods such as re-weighting and re-sampling are used to 
address the “long-tail” data imbalance issue. Re-weighting 
adjusts the weights of samples based on frequency [13], loss 
values [14] and prediction probabilities [15] to alleviate 
performance bias. Re-sampling, on the other hand, alters the 
data distribution to solve the data imbalance problem.  
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The curse of dimensionality is also a significant issue in 
RL. As the size of the state space increases, the budget 
required grows exponentially. To tackle the curse of 
dimensionality, deep methods, such as Deep Q-networks 
(DQNs) and Double-DQNs (DDQNs), use deep neural 
networks (DNNs) to approximate parameterized value 
functions [16], [17]. State abstraction is an approach that 
condenses the dimension of the state space and groups states 
that exhibit similarities together and most methods use k-
means clustering for state grouping [18]. However, these state 
abstraction methods may lose some important information 
and result in suboptimal solutions. 

In this paper, we propose a Hierarchical Clustering-
based State Grouping Reinforcement Learning (HCSG-RL) 
method. This method focuses on improving the performance 
of RL agents on the switching decision from two aspects: 
decomposing the state space for RL agents to learn 
effectively in terms of computation time and memory, and 
balancing the training to maintain/improve general 
performance of the model. We demonstrate the performance 
of the method in the Mediator environment, which integrates 
the best capabilities of driver and vehicle automation systems 
to maximize driving safety and comfort. Our method shows 
improved performance compared to traditional methods in 
this complex environment. Our main contributions are as 
follows: 

1) A hierarchical clustering-based state grouping method 
is proposed to determine the switching among different 
autonomous levels when the driver is distracted. 

2) The proposed method partitions the state space into 
small subsets as the starting point for training the sub-agents 
and groups the sub-agents by a master policy, to handle the 
issues of the “long-tail” data imbalance and the curse of 
dimensionality. 

3) The results of experiments show that the proposed 
method achieves the best performance, alleviate driver’s 
unfitness and prevents emergency stop. 

II. FRAMEWORK 

In this paper, we proposed a HCSG-RL method for the 
switching decision of autonomous vehicles. We enhance the 
exploration mechanism of the agent by partitioning the 
expansive state space, and constructed a hierarchical state tree 
instead of training the agent on all state spaces. Each leaf node 
of the state tree represents a sub-state space with distinct state 
characteristics. 

 

Fig. 1. Framework of the HCSG-RL algorithm. 

Fig. 1 shows the framework of the HCSG-RL method, 
which contains three parts: HCSG, reinforcement learning 
and policy network. State partition is carried out in the HCSG 
section, where sub-state spaces are placed into the RL section 
for RL agents training. Well-performing agents are integrated 
into the policy network, while those with poor performance 
are sent back to the HCSG section for further state partition. 
The final model consists of a master policy and several well-
performing sub-agents. 

III. METHODOLOGY 

A. Mediator Environment 

In this study, we focus on the situation where the mediator 
needs to make decisions of switching control among different 
autonomous levels once the driver distraction is detected, as 
shown in Fig. 2. The controller receives observations from the 
driver and the car, determining actions and sending signals to 
the driver accordingly. In terms of interaction with the driver, 
the mediator controller takes the driver's distraction level as 
one of the observations and corrects the driver’s distraction by 
sending signals when necessary. Additionally, the mediator 
controller considers the driver's competence and willingness 
when making decisions to ensure optimal support. For 
example, if the distraction correction is ineffective for an 
extended period of time, the mediator controller will take an 
"emergency stop" action rather than continuing with a 
"distraction correction" action. Regarding car interaction, the 
mediator controller takes into account the car's level of 
autonomy and capabilities as the rest of the observations. The 
mediator controller assesses whether switching to a different 
level of autonomous driving is appropriate, and if so, sends 
signals to the car to facilitate the transition. The responsibility 
of the mediator controller is to determine the most suitable 
autonomous driving level given the current observations 
within the car capacities. The mediator controller will sample 
all observations and determine the next course of action based 
on both the driver's and car's states. Once the next action has 
been determined, the corresponding signal will be sent to 
either the driver or the car accordingly. 

 

Fig. 2. Interaction process illustration of the mediator environment. 

B. MDP Models 

In this section, the Markov Decision Process (MDP) 
model for the mediator environment is introduced as below: 

1) State definition: State space S = [L, D, TTDU, M]. L 
(Automation Level) stores the current level of automation 
that the vehicle is in, which includes L0 (no automation), L2 
(partial automation), L3 (conditional automation), L4 (full 
automation). D (Distraction Level) describes the driver's 
fatigue level, ranging from F0 (alert) to F3 (sleepy). TTDU 
(Time to Driver Unfit) describes the time until the driver 
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becomes unavailable. M (Max Automation Level) is the 
maximum available automation level.  

2) Action definition: Action space A = [DN, CD, SSLx, 
ESLx, ES]. DN (Do Nothing) is the default action. CD 
(Correct Distraction) will provide corrections when the driver 
becomes distracted. SSLx (Suggest Shift Lx) will suggest the 
user to shift to automation level Lx, while ESLx (Enforce 
Shift Lx) will shift directly to automation level Lx without 
asking the user. ES (Emergency Stop) will execute an 
emergency stop. 

3) State transition: P = ����|�, ��  is the conditional 
transition probability from state � to state �� at action a. In the 
action space, ESLx and ES are deterministic actions with a 
transition probability of 1. While the success probability of 
SSLx and CD actions depends on whether the user accepts 
the system's notifications, and the transition probabilities are 
defined within the mediator environment. 

4) Reward design: R = 	��, ��, which mentions in Fig. 3. 
First, the scenario is assessed for criticality based on TTDU. 
In critical scenarios (higher TTDU), the driver is in a fatigued 
state, increasing the automation level or making an 
emergency stop would yield better benefits. Conversely 
(lower TTDU), maintaining normal vehicle operation and 
promptly correcting distractions are the encouraged actions. 

 

Fig. 3. Reward model of the Mediator environment. 

C. Hierarchical Clustering-Based State Grouping 

 The HCSG-RL algorithm segment the whole state space 
based on specified metrics to generate a hierarchical tree of 
state space groups, followed by top-down sub-state space 
training for each leaf node. The effectiveness of the training is 
assessed by comparing the performance of the overall model 
before and after training. Upon successful training, the 
corresponding sub-model and sub-state are integrated into the 
primary policy. If not, the sub-state space is skipped, and 
training proceeds to the next leaf node's sub-state space. The 
detailed process is as follows: 

 To evaluate the success of training on a sub-state space, 
we compare the performance of the model before and after 
training. Specifically, we conduct scenario testing in the sub-
state space with a certain number of rounds, and calculate the 
average reward based on (1) 

	 

�

�
∑

�

��
∑ ����

��
���

�
���                    (1) 

where � is the total testing rounds, �� is the total epochs in 
the �-th round, and ���� denotes the reward obtained at each 
step. If the model outperforms after training, we consider the 
training to be successful and fit into the main policy network. 

Consider that each action not only has an immediate 
impact, but may also have long-term consequences, we 

initialize the environment with the sub-state space's state so 
that the agent can discover what choices produce the best 
long-term benefits when beginning in the present sub-state. 
This method evaluates the long-term consequences of each 
action and helps to prevent suboptimal options. 

Algorithm 1: Hierarchical clustering based state grouping 

Data:  Maximum state dimension dmax and training 
episodes L 

Result:  Master Policy M and sub-state groups GM 
1 Initialize master policy and state cluster s0= all; 
2 Train base agent A0 on environment env0 with whole state 

space for L episodes; 
3 Add A0 in M (0) and s0 in GM (0); 
4 Initialize current state dimension d = 1; 
5 while d < dmax do 
6     Find all state clusters sd at state dimension d; 
7     for each state s in sd do 
8         Initialize environment envs with state s; 
9         Train agent As on for L episodes; 
10         Test agent As in envs and get reward RA; 
11         Test current policy network M in and get reward RM; 
12         if RA > RM do 
13             Add As in M and s in GM (d); 

14         end 
15     end 
16     d = d + 1; 

17 end 

 The HSCG algorithm is depicted in Algorithm 1. Line 1-3 
show the initialization of the main policy network and the 
training of the full state space model. Line 6-15 show the 
partitioning of the sub-state space of the current dimension, 
the comparison with the pre-training model after training the 
model on the sub space, and the update process of adding the 
successfully trained model to the main policy network. 

D. Master Policy 

The main work flow of the master policy is shown in Fig. 
4. The master policy is a strategy used to match states with 
agents, selecting the most appropriate agent network for 
decision-making in the current round based on different state 
inputs.  

First, these hierarchical metrics are extracted from the 
input states and form customized states. Then the master 
policy determines which of the sub-policies to use given the  
customized state, and sub-policies are responsible for 
selecting actions based on the state input. These sub-policies 
are the agents trained after HCSG-RL training. 

 

Fig. 4. Workflow diagram of the master policy. 

IV. EXPERIMENT AND RESLUT 

A. Experiment Setup 

Our experiments are conducted in Mediator environment 
and run on a Intel Core i7-8750H CPU device with 8GB of 
RAM. The networks of DDQN agents are implemented base 
on the open source framework Pytorch. The training 

1377
Authorized licensed use limited to: TU Delft Library. Downloaded on February 10,2025 at 13:30:07 UTC from IEEE Xplore.  Restrictions apply. 



parameters of the DDQN algorithm with ReLU as activation 
function are seen in TABLE I.  

TABLE I.  TRAINING PARAMETERS OF THE DDQN ALGORITHM 

Parameter Value 

Learning rate  
Batch size 

Replay buffer size 
Target Q network update period 

[����, ����] 
� decay 

� 
discount   

0.0005 
8 

105 

4 
[0.5, 0.02] 

0.995 
0.01 
0.99 

As for the evaluation of the HCSG algorithm performance 
in training in multiple environments. We compare with 
transfer learning and decision tree algorithm. The two baseline 
methods are as described below:  

• Base model: the DDQN model without state grouping 
that only uses Agent !" in Algorithm 2 Line 2. 

• Tree model: the Rule-based model, where rules are 
pre-set based on practical experience. 

We define four evaluation metrics, including the average 
episode reward, the case completion rate, driver unfit case 
ratio, driver unfit duration, and driver unfit time ratio.  

Case completion rate 

# 
 ∑ $����
��"                 (2) 

where the case completion rate is #, � is the number of testing 
rounds and $��� indicates whether the vehicle arrives at the 
destination. If the vehicle does not reach the destination due 
to an emergency stop in the � -th round, then  $��� 
 0 , 
otherwise, $��� 
 1.  

Driver unfit case ratio, driver unfit duration and driver 
unfit time ratio are written as: 

  '(	)�*+� 

�

�
∑ ,����

��"         (3) 

  '-)�*+� 

�

�
∑ ∑ .���

��
��"

�
��"                 (4) 

'�	)�*+� 

�

�
∑

�

��
∑ .���

��
��"

�
��"      (5) 

where driver unfit case ratio is '(	)�*+�, driver unfit duration 

is '-)�*+�  and driver unfit time ratio is '�	)�*+� . � is the 

total episode number. ��  is the single episode length. We 
define the unfit state as ��-'� 
 0 and �.�/01213� 4 03 at 
time step �. ,��� 
 1 when the unfit state appears at episode 
�, otherwise ,��� 
 0. .��� 
 1 when the comfort state is 
unfit at time step �, otherwise .��� 
 0. 

B. State Grouping 

In the HCSG algorithm, we select automation level (L0, 
L2, L3, L4) and distraction level (F0, F1, F2, F3) as the metric 
for states grouping, and train sub-models accordingly. The 
results are shown in Fig. 5, where each sub-state is trained 
separately based on the state grouping. The green blocks 
indicate that the sub-model trained in the current subspace 
outperformed the original model, and the white blocks 
represent failed training. In total, we obtained 13 models with 
4 in the first dimension and 9 in the second dimension. 

 

Fig. 5. The result of grouping states in different dimensions. 

C. Model Performance 

To compare the model performance of the proposed 
HCSG-RL method, the Base model and the Rule-based Tree 
model, we designed 1000 episodes of test experiments for 
each algorithm in random Mediator environment with 
different road lengths (5, 10, 20 and 30km), evaluating their 
performance using the average episode reward. The results are 
shown in the Fig. 6. 

 

Fig. 6. The average episode reward with different road lengths. 

As expected, longer road length results in decreased 
average rewards across all models, where the probability of 
tail states appearing in the “long-tail” distribution increases. 
Notably, the HCSG model consistently outperform the Base 
model and Tree model, exhibiting the highest mean and 
minimum values for the average reward, and a more stable 
reward distribution indicated by smaller boxplots over trials. 
Moreover, as shown in the TABLE II. , the advantages of the 
proposed model become more pronounced in challenging 
situations (i.e., longer road lengths), where there is a 72% 
improvement in rewards compared to the Tree model. By 
leveraging state grouping, the proposed model is able to 
thoroughly explore the entire state space, mitigating to some 
extent the issue of “long-tail” distribution in sampled data, and 
thereby achieving better performance limits. 

TABLE II.  DRIVER UNFIT DURATION ON THE BASE ENVIRONMENT FOR 

OUR HCSG MODELS AND BASELINE 

Models 

Average episode reward 6 on the base environments in 

different road length 

5m 10m 20m 30m 

HCSG 

 
Base 

 
Tree 

4.7828 
(↑116.7%) 

4.7398 
(↑115.7%) 

4.0970 
(100%) 

4.1892 
(↑129.9%) 

3.9543 
(↑122.6%) 

3.2246 
(100%) 

3.6904 
(↑141.2%) 

3.4304 
(↑131.3%) 

2.6127 
(100%) 

2.9544 
(↑172.0%) 

2.5736 
(↑149.9%) 

1.7173 
(100%) 
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D. Case Completion Rate 

In the test environment of autonomous driving vehicles, 
there are cases where a vehicle makes an emergency stop 
during the trip, resulting in early termination of the round and 
failure to reach the destination. It usually means that the 
system encounters problems when making decisions and 
cannot complete the task smoothly while ensuring driving 
safety. We conducted test experiments at different road 
lengths (5, 10, 20, and 30 km) and observed whether different 
models could make reasonable decisions to avoid emergency 
stops by calculating task completion rates. The results are 
shown in Fig. 7. 

 

Fig. 7. The results of case completion rate with different road lengths. 

The HCSG model effectively handled emergency 
situations by making appropriate decisions in driving mode 
switching, consequently avoiding emergency stops and 
ensuring smooth vehicle operation across all test scenarios. In 
contrast, the Base model and Tree model demonstrated 
reduced task completion rates as the road length increased. 
Notably, the Tree model exhibited the poorest adaptability, 
with a pass rate of 50.07% in the 30 km scenario. 

E. Driver Fitness 

Driver fitness test models' abilities in optimizing driving 
safety. We used 3 indicators to indicate driver fitness: Driver 
Unfit Case Ratio, Driver Unfit Duration, and Driver Unfit 
Time Ratio. 

 

Fig. 8. The results of driver unfit case ratio with different road lengths. 

 

Fig. 9. The results of driver unfit duration with different road lengths. 

 

Fig. 10. The results of driver unfit time ratio in different case road length. 

Fig. 8 shows the results of the '(	)�*+�, which is defined 

as the proportion of discomfort episodes in total episodes. The 
driver is more likely to endure discomfort as the route 
lengthens and the driving environment becomes more 
complex. The proposed model demonstrates improvements of 
at least around 10% compared to the two baseline methods and 
the improvement compared to the base model is nearly   20% 
in shorter road length case, which can effectively reduce 
driver discomfort. 

The results of '-)�*+�  are displayed in Fig. 9. It 

demonstrates the duration of driver discomfort increases with 
longer scenario lengths. The HCSG model, by selecting more 
appropriate driving modes, reduces driver discomfort duration 
and achieves a 10-20% improvement compared to the base 
model. Although the Tree model appears to have the lowest 
driver unfitness duration, considering the Case Completion 
Rate, it tends to apply emergency stops in unforeseen 
situations, resulting in early termination of the test.  

 To account for differential driving distances and times 
among different models (where the Base and Tree models may 
not complete the entire scenario and therefore have reduced 
driving distance and time), we introduced '�	)�*+� , which is 

defined as '-)�*+�  divided by the total driving time. This 

metric allows for a more realistic evaluation of model 
performance in terms of optimizing driver safety. As shown in 
the Fig. 10, the proposed model exhibited the lowest ratio of 
unfit time, reducing by 2-3% compared to other models when 
the road length reaches 20-30 km. For the Tree model, even 
though the '-)�*+�  is relatively short, it still account for a 

significant portion of their total driving time. 

According to the above experiments, the HCSG-RL 
model can make reasonable decisions in response to 
emergency situations to alleviate driver discomfort and 
ensure that the vehicle can safely complete the test scenario. 
In general, the HCSG-RL model significantly outperformed 
the Tree model and Base model. 

F. Case Study 

In this section, we take a specific case as an example to 
intuitively observe the advantages of the HCSG model. The 
case comprised a 30-km road which contains urban road (0-
2.6km), provincial road (2.6-12.1km), highway road (12.1-
27.2km), urban road (27.2-30km), and different roads types 
have different driving speed limits. 

Fig. 11 shows the performance of HCSG model and Tree 
model. When the vehicle transitions from an urban road to a 
provincial road (at 2.6 km), the HCSG agent determines to 
switch the driving level to L2. When the driver continues to 
be unfit and becomes distracted (at 7.5 km), the Tree model 
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performs an emergency stop due to the current L0 Auto-level 
and the HCSG takes corrective action (reminding the driver) 
based on the current L2 Auto-level, allowing the vehicle 
safely pass through the entire scenario. The experimental 
results show that when higher Auto-level is available, the 
HCSG model can timely take into account the vehicle 
situation and switch Auto-level. This improves the ability to 
handle driver fatigue and prevents emergency stop caused by 
driver distraction, allowing the vehicle to operate safely and 
maintain normal performance. However, the rule-based Tree 
model is limited in finding solutions based on actual 
situations, which fails to take reasonable actions against driver 
unfit and leads to emergency stop.  

 

(a) 

 
(b) 

Fig. 11. Model performance comparison on a case. (a) Test result of HCSG-
RL agent on the base environment. (b) Test result of decision-tree agent 
on the base environment. 

V. CONCLUSIONS 

In this work, we propose an autonomous driving level 
switching decision method called hierarchical clustering-
based state grouping reinforcement learning (HCSG-RL) to 
solve the “long-tail” issue and the cruse of dimensionality 
issue. This method partitions the whole state space into groups 
and trains corresponding sub-agents, allowing for a more fully 
exploration on the whole state space and achieving higher 
training efficiency for the sub-agents. As the simulation 
results show that the proposed method could perform better in 
environments with different settings compared with the two 
baseline models. Besides, the proposed method avoids driver 

unfit situations, improving driving safety. At last, we explain 
how the HCSG-RL model avoids driver unfit by a case 
representation. 

In future work, the HCSG-RL model could expand more 
and deeper dimensions by introducing more state indicators. 
A smarter master algorithm might give more efficient results 
in higher HCSG dimensions. Besides, a deeper/wider neural 
net or more complicated network architecture might be more 
generalized than small neural nets. 
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