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A numerical study has been made of horizontal core-annular flow: the flow of a
high-viscosity liquid core surrounded by a low-viscosity liquid annular layer through
a horizontal pipe. Special attention is paid to the question how the buoyancy force
on the core, caused by a density difference between the core and the annular layer, is
counterbalanced. The volume-of-fluid method is used to calculate the velocities and
pressures in the two liquids. At the start of the calculation the core is in a concentric po-
sition. Thereafter the core starts to rise under the influence of buoyancy until it reaches
an eccentric equilibrium position where the buoyancy force is counterbalanced by
hydrodynamic forces generated by the movement of a wave at the core-annular in-
terface with respect to the pipe wall. At high Reynolds number of the flow in the
annular layer core levitation is due to inertial forces, whereas at low Reynolds number
viscous (lubrication) forces are responsible for levitation. We carried out two types
of calculation. In the first we assume the interface to be smooth (without wave) at
the start of the calculation and study how the wave develops during the rising period
of the core. In the second a wave is already present at the start of the calculation.
C© 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4793701]

I. INTRODUCTION

We study the flow of a high-viscosity liquid surrounded by a low viscosity liquid through a
horizontal pipe. This core-annular flow is very interesting from a practical and scientific point of
view. Much attention has been paid in the literature to core-annular flow. Joseph and Renardy1 have
written a book about it. There are several review articles, see for instance Oliemans and Ooms2 and
Joseph et al.3 Most publications deal with the development of waves at the interface between the
high-viscosity liquid and the low-viscosity one, see Ooms,4 Bai et al.,5, 6 Renardy,7 Li and Renardy,8

Kouris and Tsamopoulos,9 and Ko et al.10 These studies deal with vertical core-annular flow (the
core has a concentric position in the pipe). In that case the buoyancy force on the core, due to a
density difference between the two liquids, is in the axial direction of the pipe. Papageorgiou et al.,11

Wei and Rumschitzki12 and others have developed lubrication models for axisymmetric core-annular
flow. They derive nonlinear evolution equations for the interface between the two liquids. These
equations include a coupling between core and annular film dynamics thus enabling a study of its
effect on the nonlinear evolution of the interface.

It is also important to pay attention to core-annular flow through a horizontal pipe. When
the densities of the two liquids are different, gravity will push the core off-center in that case.
Experimental results suggest that under normal conditions a steady eccentric core-annular flow
(rather than a stratified flow) is achieved. Relatively little attention has been given to the explanation
of the levitation mechanism. Ooms and Beckers,13 Ooms et al.,14 and Oliemans and Ooms2 proposed
a mechanism based on hydrodynamic lubrication theory. They showed that levitation could not take
place without a hydrodynamic lifting action due to the waves present at the oil-water interface. In
their theoretical work they assumed that the core viscosity is infinitely large. So any deformation of
the interface was neglected and the core moved as a rigid body at a certain speed with respect to the
pipe wall. The shape of the waves was given as empirical input. They were assumed to be sawtooth
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waves that were like an array of slipper bearings and pushed off the core from the wall by lubrication
forces. In their case the core would be sucked to the pipe wall if the velocity was reversed.

However it was pointed out by Bai et al.,6 that (at finite oil viscosity) the sawtooth waves are
unstable since the pressure is highest just where the gap between the core and the pipe wall is
smallest. So the wave must steepen where it is gentle and become smooth where it is sharp, and
levitation of the core due to lubrication forces is no longer possible. To get a levitation force from
this kind of wave inertial forces are needed according to Bai et al. They studied by direct simulation
the wave development for a concentric vertical core-annular flow (taking into account inertial forces)
under the assumption that the densities of the two liquids are equal. Moreover, they assumed that the
viscosity of the core is so large that it moves as a rigid solid which may nevertheless be deformed
by pressure forces in the annulus (by applying the Young-Laplace equation).

Bai et al. tried to draw some conclusions about the levitation force on the core in case of an
eccentric horizontal core-annular flow. They considered what might happen if the core moved to a
slightly eccentric position owing to a small difference in density. The pressure distribution in the
liquid in the narrow part of the annulus would intensify and the pressure in the wide part of the
annulus would relax according to their predicted variation of pressure with the distance between
the core and the pipe wall for the concentric case. In that case a more positive pressure would be
generated in the narrow part of the annulus which would levitate the core. This calculation was
actually carried out later by Ooms et al.15 for an eccentric core-annular flow with a rigid core and a
wave shape as calculated by Bai et al.

Li and Renardy8 improved the wave simulation of Bai et al. by applying a volume-of-fluid
scheme (VOF) and by allowing for different densities for the two liquids. They assume axisymmetric
vertical flow. Their initial condition is seeded with an eigenmode of largest growth rate as found
from stability calculations. They state that the wave shape as calculated by Bai et al. is too rounded
and smooth compared to the experiments, which show an almost symmetrical form of the crest. The
crest is only slightly sharper on the front and less sharp on the back. These details are successfully
reproduced by Li and Renardy.

The aim of our research is to continue with the VOF-calculations by Li and Renardy, but then
for horizontal flow with a density difference between the liquids. We will start with a concentric
core and then calculate the upward movement of the core due to buoyancy and see whether the core
will stay free from the wall at a certain eccentricity due to hydrodynamic forces. In our calculations
we will study two different cases: in one case we start with a smooth interface between the core and
the annulus and in the other we start with an interface on which already a wave of finite amplitude is
present. The viscosity ratio is assumed to be large and the density ratio small. Moreover, calculations
will be done at high and low Reynolds number of the flow in the annular layer.

II. NUMERICAL SCHEME

The incompressible Navier-Stokes equations plus mass conservation equation have been solved,
with a density ρ and viscosity μ which are determined in each cell by the volume fraction of oil and
water present, i.e., if the volume fraction of oil is C, and the density of oil is ρ1 and the density of
water ρ2, the density in a cell is Cρ1 + (1 − C)ρ2 and similar for μ. The equations for both phases
have been solved using the Finite Volume method, with application of the VOF method (see Li16).
So an additional advection equation for the oil fraction C is solved. The equations solved are as
follows:

∂ρui

∂t
+ ∂ρui u j

∂x j
= − ∂p

∂xi
+ ∂

∂x j

{
μ

(
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Here gi is the gravity vector. We used the package OpenFOAM version 1.6 (see Ref. 17) for
the simulations. Use was made of the interFoam solver, with backward Euler in time, limited
linear for the advection terms of the velocity components, and van Leer for the advection of the
scalar. Interface compression (Rusche18) has been used to get a sharp interface. The pressure-
velocity coupling was done using the PISO scheme. The following linear solvers have been used:
Preconditioned Conjugate Gradient for the pressure, and Preconditioned Bi-Conjugate Gradient
for velocity components. For stability reasons the Courant number was kept below 0.02 for all
simulations. Although this Courant number is quite low, Courant numbers of this size are found
necessary to obtain a very thin interface with the current method, as reported by Gopala and van
Wachem.19

The grids were equidistant and structured for the axisymmetric cases and block-structured for
the 3D cases. For the axisymmetric cases we used 80×80, 128×128, and 256×256 grid points.
The final runs were made on a 128×128 grid. The 3D grids used had 110, 80, and 60 grid points
in radial, circumferential, and axial flow direction, a total of approximately 500.000 grid points. In
axial direction we impose the periodic boundary condition. At the pipe wall we prescribe the no-slip
condition.

Test runs have been made for the axisymmetric cases to ascertain that the grids were fine enough
and that the numerical schemes have not added too much numerical diffusion. We have made one
run with a grid which was twice as fine in both coordinate directions, and we repeated the same run
with the linear (non-limited) scheme. The results for the final wave form of the oil-water interface
were graphically almost indistinguishable after transport over a small, non-relevant distance which
indicated some difference in phase error.

III. RESULTS

A. Upward vertical core-annular flow with buoyancy effect

To check our calculations we started with a comparison of our results with those presented by Li
and Renardy for an upward vertical core-annular flow with buoyancy effect. Like them we assumed
that at the start of the axisymmetric calculation a concentric core-annular flow with a wave of very
small amplitude (A = 0.000001 m) is present at the interface. The radii of the core and the pipe are,
respectively, given by R1 = 0.00372 m and R2 = 0.00476 m. The wavelength α is chosen (as by Li
and Renardy) to be equal to the fastest growing wavelength found from linear stability calculations
α = 0.0116 m. The dynamic viscosities of the liquids in the core and annulus are, respectively,
μ1 = 0.601 kg/ms and μ2 = 0.001 kg/ms. The densities are ρ1 = 905 kg/m3 and ρ2 = 995 kg/ms.
The interfacial tension is T = 8.54 × 10−3 kg/s2. The pressure gradient in the axial direction is
dp/d z = f = −9172 kg/m2 s2. The velocity of the core liquid at the centreline of the pipe is then
V0 = 0.166 m/s (for fully developed smooth core-annular flow). This gives for the Reynolds num-
ber of the core liquid Re1 = ρ1 V0 R1/μ1 = 0.93 and the Reynolds number of the annular liquid
Re2 = ρ2 V0 (R2 − R1)/μ2 = 171. The other dimensionless parameters, as used by Li and Renardy,
are m = μ2/μ1 = 0.00166, a = R2/R1 = 1.28, ζ = ρ2/ρ1 = 1.1, J = T R1 ρ1/μ

2
1 = 0.0795, and

K = (f + ρ1 g)/(f + ρ2 g) = −0.4552. The result is shown in Figure 1 for t = 0.0 , 0.4 , 0.8 , 1.2 , 1.6,
and 2.0 s. In the calculation the reference system is chosen in such a way that at the start of the calcu-
lation the core is at rest and the pipe wall is moving downward. This is done to follow more easily the
development of the wave at the interface. However with the wave development the force on the core in-
creases and it starts to move downward. Moreover, the wave moves with respect to the core, although
the viscosity ratio between core liquid and annular liquid is rather large. These are the reasons why the
wave changes position in the figure. We compared our results with those of Li and Renardy for wave
shape, final amplitude and wave speed. Beyond the linear regime the core annular flow evolves into a
flow with “bamboo” waves of constant amplitude at the interface. For the wave speed c (made dimen-
sionless with the centreline velocity) we found is c/V0 = 0.85 and for the maximum amplitude (made
dimensionless by the core radius) Amax/R1 = 0.18. All in good agreement with the results of Li and
Renardy.
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FIG. 1. Cross-section of vertical core-annular flow with buoyancy effect. The straight vertical lines in this figure represent
the pipe wall.

B. Core-annular flow without buoyancy effect

Before studying the influence of buoyancy on horizontal core-annular flow we wanted to
investigate whether a wave develops at the interface when there is a density difference between core
liquid and annular liquid, but gravity is not taken into account (g = 0). The parameters are chosen to
be the same as in the foregoing case of an upward vertical core-annular flow with buoyancy effect,
except the pressure gradient is different. As the liquids are no longer pulled down by gravity, the
pressure gradient can be chosen significantly smaller to achieve a net flow in the axial direction of
the pipe. It is chosen to be dp/d z = f = −150 kg/m2 s2. The velocity of the core liquid at the
centreline of the pipe is then V0 = 0.330 m/s. In the calculation the reference system is again chosen
in such a way that at the start of the calculation the core is at rest and the pipe wall moving downward
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FIG. 2. Core-annular flow without buoyancy effect.

with a velocity of 0.330 m/s. The result is given in Figure 2 for t = 0.0 , 0.4 , 0.8 , 1.2 , 1.6, and 2.0 s.
Again a wave develops as function of time. After a certain period the shape and amplitude do not
change anymore. For this case both axisymmetric calculations and 3D calculations were carried out.
The results were in agreement. For all the coming cases 3D calculations were performed. We will
use the result of this case as initial condition for some of the coming calculations.

C. Horizontal core-annular flow with buoyancy effect

1. Density difference is 20 kg/m3

Next we considered the flow that we really wanted to investigate: horizontal core-annular
flow with a large viscosity ratio and small density ratio, taking into account gravity. We keep all
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FIG. 3. Horizontal core-annular flow with an initial smooth interface and with buoyancy effect.

the parameters the same as in the foregoing case, except that the density of the core liquid is
ρ1 = 980 kg/m3, the density of the annular liquid ρ2 = 1000 kg/m3 and gravity is now switched on
in the direction perpendicular to the pipe axis. At the start the reference system is chosen in such a
way that the core is at rest and the pipe wall moving to the left with a velocity of 0.330 m/s. The result
is shown in Figure 3 for t = 0.0 , 0.3 , 0.6 , 0.9 , 1.2, and 1.5 s. As can be seen the core moves upward
under the influence of buoyancy. However when it arrives close to the pipe wall a wave develops.
The wavelength is this time half the length of the wave in the foregoing cases. The core remains free
from the pipe wall. The explanation of the levitation force will be given in the following.
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FIG. 4. Horizontal core-annular flow with an initial smooth interface and with buoyancy effect, for a pipe which is five times
longer (0.0580 m) than the one used for Figure 3.

We repeated this calculation, but for a pipe which is five times longer (0.0580 m). The result
(see Figure 4) is the same as in the preceding case. A wave develops at the interface and the core
rises to an eccentric, equilibrium position. The wavelength is the same as in Figure 3. The wave
shape and amplitude vary as function of time.

In the following calculation we started with a wave of finite amplitude at the interface. To that
purpose we choose the wave shape as found for the case of core-annular flow without buoyancy
effect (see Figure 2). All other parameters are the same as in the foregoing case with an initial smooth
interface and pipe length of 0.0116 m. The result is shown in Figure 5. In this figure we show the
results between t = 0.0 s and t = 1.0 s. Thereafter the wave shape did not change noticeably anymore.
The amplitude remains finite. The crest is only slightly sharper on the front than on the back. Again
the core rises until it reaches an eccentric equilibrium position. The eccentricity is smaller than
in the preceding case (for which a smooth initial interface was used). The wavelength does not
change during the upward flow and is twice as large as for the case with an initial smooth interface.
We continued the calculation much longer. The total upward momentum of the core is given in
Figure 6. It is clear that after about t = 2.5 s the stable position has been reached. The 3D structure
of the wavy interface (corresponding to the stable position) and the associated distribution of the
reduced pressure (pressure without gravity contribution) are given in Figure 7. This will be discussed
in more detail.

We have also computed the axial velocity distribution in the annular layer at the top of the pipe
(see Figure 8 for velocity distributions at six axial positions at t = 0.8 s). In the chosen reference
system the pipe wall is at rest. The wave shape and position at t = 0.8 s can be seen in Figure 5. The
straight vertical part of the distributions is the velocity of the core liquid which has a viscosity much
larger than the viscosity of the annular liquid. At this condition the wave moves relative to the core
with a velocity of about 0.04 m/s in the −z direction. So when we subtract in Figure 8 about 0.21 m/s
from the axial velocity we choose a reference system according to which the wave is at rest. In this
reference system we find a velocity distribution with negative and positive parts. It is negative close
to the pipe wall, which is moving in the −z direction, and positive close to the interface. So in that
reference system there is a recirculating flow in the trough of the wave. As mentioned already by Bai
et al.,6 this eddy (as they call the recirculating flow) plays an important role in the development of
the pressure distribution in the annular layer. More details are given by Ooms et al.15 Also contour
plots and profiles for the axial velocity in a total cross section of the pipe when the stable position
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FIG. 5. Horizontal core-annular flow with an initial wave of finite amplitude at the interface and with buoyancy effect.

has been reached, are shown in Figure 9 for a reference system according to which the pipe wall is
at rest. As can be seen again, there is a recirculation region in the trough of the wave.

The explanation of the levitation force can be understood from the reduced pressure distribution
in the annular layer at the top and the bottom of the pipe (see Figure 10). As can be seen the size
of the variations in the pressure distribution remains about the same at the top of the pipe, whereas
at the bottom the variations disappear with increasing eccentricity. The reduced pressure at the top
can be larger or smaller than at the bottom, leading to downward and upward forces on the core.
However, on average the downward force at the front of the wave crest is larger than the upward
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FIG. 6. Total upward momentum of the core as function of time. (The time step in the calculation is very much smaller than
the time between two consecutive points shown in the figure.)

FIG. 7. 3D structure of the wavy interface (corresponding to the stable position) and the associated reduced pressure
distribution.The pipe wall is shown as a transparent image.
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section through the wave top (bottom, left) and velocity profile in a cross section through the trough of the wave (bottom,
right).

force at the back. So there is a net downward force that counterbalances the upward buoyancy force
when the core is in its equilibrium position.

As mentioned in the Introduction according to Bai et al. inertial forces are needed to get
levitation. To check this statement we carried out the same calculation as given in Figure 5, but this
time without inertial terms in the equations of motion. The result is shown in Figure 11. Indeed
inertial forces are essential for core levitation. Without inertial terms the core continues to rise and
finally touches the pipe wall. It is important to point out, that this statement holds for high Reynolds
numbers for the flow in the annular layer. At low Reynolds numbers this conclusion is not valid, as
we will show in Sec. III C 3.

2. Density difference is 40 kg/m3

We performed also a calculation for a horizontal core-annular flow similar to the one shown
in Figure 5, but with a larger density difference of ρ2 − ρ1 = 40 kg/m3, a larger pressure drop
dp/d z = f = −450 kg/m2 s2 and an initial amplitude of 0.0001 m. The other parameters remain
the same. The core velocity at initial (concentric) position is now about 1 m/s. The result is given in
Figure 12. Again the core rises in the tube until an equilibrium position is reached. However, this
time the wave shape continues to change. Several wavelengths are possible.

3. Low Reynolds number

It is interesting to study horizontal core-annular flow with buoyancy effect also at low Reynolds
number of the flow in the annular layer. Bai et al.6 state in their paper that at low Reynolds number
stationary core-annular flow is not possible as the vertical force on the core is then upward instead
of downward. The pressure forces in the annular layer are associated with the form of the waves
that they generate. According to them waves also develop at low Reynolds number, but the pressure
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FIG. 10. Reduced pressure distribution for horizontal core-annular flow with an initial wave of finite amplitude at the
interface and with buoyancy effect. At t = 0.0 s the reduced pressure distribution at the top and bottom coincide.

forces associated with these waves are negative like those on the reversed slipper bearing which pull
the slipper to the wall. Only when the Reynolds number is higher than a certain threshold value,
high positive pressures are generated, that cause core levitation.

As mentioned earlier Li and Renardy8 improved the wave simulation of Bai et al. by applying
a VOF scheme and by allowing for different densities for the two liquids. They state that the wave
shape as calculated by Bai et al. is too rounded and smooth compared to experiments, which show
an almost symmetrical form of the crest. The crest is only slightly sharper at the front and less sharp
at the back. These details are successfully reproduced by Li and Renardy. Moreover, it is important
to realize that Bai et al. studied the wave development for a concentric vertical core-annular flow
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FIG. 11. Horizontal core-annular flow with an initial wave of finite amplitude at the interface and with buoyancy effect, as
calculated without inertial terms in the equations of motion.

under the condition that the viscosity of the core is so large, that it moves as a rigid solid which
may nevertheless be deformed by pressure forces in the annulus (by applying the Young-Laplace
equation).

Like Li and Renardy we apply the VOF method and satisfy the full dynamic interface conditions
(continuity of velocities and of normal and tangential stresses). This may lead to different results at
low Reynolds number than as found by Bai et al. For that reason we studied by our method horizontal
core-annular flow with buoyancy effect also at low Reynolds number. This was done by increasing
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FIG. 12. Horizontal core-annular flow as in Figure 5, but with larger density difference ρ2 − ρ1 = 40 kg/m3, a larger pressure
drop dp/d z = f = −450 kg/m2 s2 and initial amplitude of 0.0001 m.

the viscosity of the annular liquid by a factor of 40 (μ2 = 0.04 kg/ms). The Reynolds number of
the annular layer is then Re2 = 8.5. The core viscosity was chosen to be (μ2 = 2.4 kg/ms). So the
ratio of the viscosities is still significant (60). All other parameters were kept the same, apart from
the density difference between the core liquid and annular liquid, that was increased in steps from
ρ2 − ρ1 = 20 kg/m3 to ρ2 − ρ1 = 150 kg/m3. The calculations were done with and without inertial
terms. We found that for all cases the core-annular flow becomes eccentric and stable. For the cases
without inertial terms levitation is due to viscous (lubrication) forces that create a pressure built-up
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FIG. 13. Cross-section of horizontal core-annular flow with buoyancy effect at low Reynolds number, as calculated without
inertial term in the equation of motion.

strong enough to counterbalance the upward buoyancy force. An example is given in Figure 13,
which shows the flow development for the case without inertial terms and with a density difference
ρ2 − ρ1 = 150 kg/m3. So, contrary to the statement of Bai et al., we find that stable core-annular flow
is possible at low Reynolds number of the flow in the annulus. We have continued this calculation to
t = 2.65 s. In Figure 14 the reduced pressure distribution at the top and bottom of the pipe is shown
at t = 2.65 s. The reduced pressure variations are considerable larger than as shown in Figure 10.
The reason is that in this case the density difference is much larger.
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FIG. 14. Reduced pressure distribution for horizontal core-annular flow with buoyancy effect at low Reynolds number at
t = 2.65 s, as calculated without inertial term in the equation of motion.

IV. CONCLUSION

Horizontal core-annular flow with a large viscosity ratio and small density ratio is a fascinating
physical phenomenon. In the case that the density of the core liquid is smaller than the density
of the annular liquid, one would expect that the core continues to rise until it touches and fouls
the upper part of the pipe. However that does not happen as we know from experiments and now
also from numerical simulations. Waves develop at the core-annular interface. When the core rises,
the movement of these waves with respect to the pipe wall generates pressure variations in the
annular layer that are larger at the top of the pipe than at the bottom. These pressure variations
cause downward and upward forces on the core, but the downward forces are larger. When a certain
eccentricity has been reached, the net downward force counterbalances the upward buoyancy force
on the core. The core has then reached its equilibrium position. We have simulated this process
by direct simulation of the flow in the core and the annulus. At high Reynolds numbers of the
annular flow levitation is caused by inertial forces and at low Reynolds numbers levitation is due
to viscous (lubrication) forces. To the best of our knowledge such simulations have not been done
before.

From experiments it is known that stationary, eccentric horizontal core-annular flow with a
large viscosity ratio and small density ratio is only possible within a certain region of parameter
values (density difference, pressure gradient, viscosity ratio, percentage of annular liquid). More
information about this point is given by Oliemans and Ooms.2 In future work we want to
study, whether we can numerically simulate and understand these limitations to core-annular
flow. The purpose of this publication is to show that it is possible to simulate numerically
horizontal core-annular flow and study the levitation mechanism at low and high Reynolds
numbers.

Another point of further study is the influence of the chosen wavelength in the numerical study.
For the vertical core-annular flow with buoyancy effect (that we discussed) we choose (like Li and
Renardy) the wavelength to be equal to the length of the fastest growing disturbance found in linear
stability calculations. We kept this wavelength for the other calculations. Perhaps this choice is not
too bad, as we know from nonlinear stability calculations that a range of wavelengths is present in
finite amplitude waves. Moreover from experiments it is known that the wavelength is about the
same as the pipe diameter (like we assumed).

A point of concern in our simulations is that the bottom layer becomes practically smooth.
This does not seem to be consistent with what has been observed in horizontal core-annular flow
experiments (see, for example, Sotgia et al.,20 where oil properties are similar to those used in
the simulations). Contrary to the simulation results, in eccentric core-annular flow experiments the
observed wave amplitude (and wavelength) is larger at the bottom.
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