
Balancing Efficiency and Sensitivity in

Embedding-Based Concept Drift Detection for

Deep Learning

Jasper Bruin

Supervisors:

Jan Rellermeyer

J.S.Rellermeyer@tudelft.nl

Asterios Katsifodimos

A.Katsifodimos@tudelft.nl

May 2025



Abstract

This thesis investigates the effectiveness and efficiency of embedding-based drift detection
in machine learning systems, focusing on synthetic simulations and real-world production
data. Through controlled experiments, we compare vector-based and distribution-based metrics
regarding sensitivity to drift, memory and runtime cost, and practical utility for early warning
of performance degradation. Results from synthetic drift experiments indicate that vector-
based metrics respond quickly to small shifts but tend to saturate early, limiting their ability to
differentiate between moderate and severe drift. Distribution-based metrics, by contrast, scale
more proportionally across the entire drift spectrum, providing more stable and interpretable
signals. Memory and runtime profiling show that vector-based methods are consistently more
efficient, while distribution-based approaches incur higher costs. A real-world evaluation
using eight years of data from a deployed recommendation system confirms the practical value
of these findings. Vector metrics consistently provided earlier signals, on average 87 days
before performance drops, compared to distribution metrics, which often lagged. However,
distribution metrics offered smoother trends and fewer false positives, making them better
suited for long-term monitoring. This thesis also explores trade-offs introduced by embedding
compression. Principal Component Analysis (PCA) and KLL Sketches were evaluated for
reducing computational overhead. PCA preserves the drift signal better in vector metrics,
but is more resource-intensive. In contrast, KLL is highly efficient, but sacrifices sensitivity,
particularly in vector space.

1



Contents

Abstract 1

1 Introduction 5

2 Background & Related Work 10
2.1 Concept Drift: Definitions and Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Strategies for Detecting and Adapting to Concept Drift . . . . . . . . . . . . . . . . 12
2.2 Traditional vs. Modern Drift Detection Approaches . . . . . . . . . . . . . . . . . . . . . 13

Semi-Supervised Drift Detection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Comparing Supervised, Unsupervised, and Semi-Supervised Drift Detection . . . . . . . 16
Self-Supervised Learning for Anomaly and Drift Detection . . . . . . . . . . . . . . . . . . . . . 17
Ensemble-Based Drift Detection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Motivation for a New Drift Detection Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Deep Learning for Concept Drift Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Mathematical Foundations of Drift Detection 21
3.1 Vector/Feature-Space Distances in Drift Detection . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Overview of Vector/Feature-Space Distances Metrics . . . . . . . . . . . . . . . . . . 22
Why These Metrics Matter for Embedding Drift Detection? . . . . . . . . . . . . . . . . . . . . . 24

3.2 Distribution-Based Distances and Divergences . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 Overview of Distribution-Based Distances and Divergences . . . . . . . . . . . . 26

Choosing the Right Metric for Distributional Drift Detection . . . . . . . . . . . . . . . . . . . 28
3.3 A Comparative Analysis PCA and the KLL Sketch Algorithm . . . . . . . . . . . . 29

3.3.1 Principal Component Analysis (PCA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Mathematical Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Algorithmic Complexity and Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Numerical and Implementation Details for Streaming PCA . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 KLL Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Purpose and Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Core Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Space Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.3 Fundamental Differences between PCA and KLL Sketch . . . . . . . . . . . . . . . 33

2



CONTENTS

4 Design & Implementation 35
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Vector-Based Drift Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.1 Running Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.2 Distance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Distribution-Based Drift Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4.1 Statistical Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.2 Density Estimation Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.3 Drift Score Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5.1 Integration in the Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5.2 EmbeddingTracker Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5.3 Configuration, Dependencies and Used Hardware . . . . . . . . . . . . . . . . . . . . 42
4.5.4 Repository Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Experiments 44
5.1 Experimental Setup and Dataset Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.1 Synthetic Drift Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Text Perturbation for LLMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Metrics and Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Models and Datasets for LLM and Tabular Experiments . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.2 Real-World Drift: Amazon Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Hyperparameters and Hardware Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Baselines and Drift Detection Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3.1 Distance and Divergence Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.2 Compression Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.3 Naive Baseline: Checking Drift via DeepFM Metrics . . . . . . . . . . . . . . . . . . 49

Windowing and Thresholding Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Results 51
6.1 Synthetic Drift Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.1.1 Metric Sensitivity Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.1.2 Quantitative Snapshot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Memory and Runtime Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2.1 Memory Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.3 Real-World Drift Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.1 Drift–Performance Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Discussion 61

3



CONTENTS

8 Conclusion 66
8.1 Implications and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

References 70

4



Chapter 1

Introduction

Machine learning systems are deployed in dynamic environments where the statistical properties
of input data change over time. These shifts, caused by evolving user behaviour, seasonal
patterns, or external events, violate the assumption of stationarity and can gradually degrade
model performance. To detect such changes, modern systems monitor the internal embeddings
of deep networks and raise alerts when distances or divergences from reference distributions
increase. These embedding-level signals are computationally efficient and empirically sensitive.
However, it remains unclear whether they consistently indicate harmful concept drift or merely
reflect harmless representation shifts.

This study focuses on two main types of embedding-based drift detection methods.
Vector-based methods compute distances between individual embedding vectors, compact
numerical representations of inputs, using metrics such as Euclidean or Mahalanobis distance.
These methods are sensitive to small, instance-level changes. In contrast, distribution-based
methods compare complete distributions of embeddings over time using statistical measures
such as the Wasserstein distance or Maximum Mean Discrepancy (MMD), capturing broader
trends in feature space.

Despite increasing interest in embedding-based and distance-aware detection techniques
due to the growing use in Large Language Models [5, 7, 34], a question remains: How useful
are these detected representation shifts in practice? While many modern approaches raise drift
alarms based on high-dimensional deviations, recent evidence suggests that even significant
shifts in feature space may have little effect on model performance [20]. While Chen et al.
highlights feature-space drift as less impactful, it does not specifically dive into vector-based
distance metrics in embedding spaces. This is important for understanding the implications
of representation shifts for meaningful concept drift detection. There’s a gap between benign
and harmful shifts in the embedding space across dynamic data streams. The research only
investigated how MVP models behave in the feature space, such as LinearSVM and SecSVM.
Understanding how model size impacts computational overhead and exploring architectural
optimisations remains unexplored within the scope of these papers [5, 7, 34]. Evaluating the
trade-offs between computational efficiency and similarity preservation through embedding
reduction techniques is an area not covered by papers that are currently published. Current
research also lacks insight into how embedding extraction across various architectures confirms
stability across feature-based metrics.

5



CHAPTER 1. INTRODUCTION

Although these advancements exist, a considerable research gap remains: The system-
atic understanding of how vector-based distance metrics relate to concept drift in dynamic data
streams is still lacking. Current literature does not sufficiently address the impact of model ar-
chitectural optimisations on mitigating computational overhead, nor does it thoroughly explore
the trade-offs between embedding reduction techniques such as PCA and KLL Sketch regarding
computational efficiency and similarity preservation [74, 40]. Moreover, while various distance
metrics (e.g., Mahalanobis, Euclidean, Canberra) are employed for measuring similarity drift,
there is inadequate investigation into their reliability when coupled with different embedding
techniques across diverse application scenarios. This presents a need for robust benchmarks
and comparative studies focusing on the efficiency and effectiveness of drift detection, particu-
larly highlighting the balance between computational efficiency and similarity retention across
different embedding techniques and distance metrics.

Figure 1.1: The Difference between drift and data space is illustrated in embedded space.

Much of the current evaluation of drift detectors is limited to synthetic or low-dimensional
data. However, real-world data streams, particularly those generated by large language models
(LLMs) and deep learning (DL) architectures, present additional challenges such as semantic
variability, continuous embedding drift, and computational cost. A recent benchmarking effort
identifies several limitations in existing detectors when applied to these settings and calls for
more empirical research under operational constraints [47].

Reliable concept drift detection also holds significant societal and practical value outside

6



CHAPTER 1. INTRODUCTION

these technical issues. Detecting distribution changes early in healthcare can prevent diagnostic
systems from making incorrect or outdated predictions [62]. In financial systems, drift-aware
models are better equipped to detect fraud patterns in real-time [15]. In e-commerce, timely
drift detection helps recommender systems adapt to user behaviour, reducing performance
degradation [49, 37]. As machine learning increasingly supports high-impact decisions, efficient
and robust detection methods are essential to ensure safety, fairness, and system integrity.

This thesis addresses these challenges by empirically evaluating how well vector-based
metrics (e.g., Euclidean, Mahalanobis) and distribution-based divergences (e.g., Wasserstein,
MMD) identify performance-relevant concept drift in embedding spaces. It also investigates
distinguishing harmful drift from benign shifts in streaming environments. Additionally, we
compare two embedding reduction strategies, Principal Component Analysis (PCA), a linear
compression technique, and KLL Sketch, a probabilistic summarisation method, to understand
the trade-offs between memory efficiency and semantic retention [74, 59]. The goal is to
provide a practical and interpretable framework for detecting drift in complex, high-dimensional
systems.

Research Objectives and Questions. The main objectives of this thesis are to assess the
effectiveness of embedding-based drift detection in identifying performance-affecting drift and
to distinguish between harmful and benign changes in dynamic input streams. This includes
evaluating the trade-offs between detection sensitivity and computational cost using embedding
compression techniques. It also considers how different model architectures and embedding
extraction methods affect detection robustness. The following questions guide this research:

1. To what extent do shifts detected using vector-based distance metrics in embedding
spaces correspond to meaningful performance-impacting concept drift, and how can we
distinguish between benign and harmful representation changes in dynamic data streams?

2. How effective and efficient are vector-based distance metrics for drift detection when
applied to real-world data streams, and what benchmarks are needed to evaluate their
robustness across diverse application scenarios?

3. How does model size impact computational overhead, and what role do architectural
optimisations play in mitigating this overhead?

4. What are the trade-offs between embedding reduction techniques (PCA, KLL Sketch)
regarding computational efficiency and similarity preservation?

5. How do embedding extraction strategies vary across different model architectures (e.g., au-
toregressive LLMs, encoder-decoders, masked LLMs, and hybrid models like DeepFM),
and what are the implications for similarity retention in drift detection tasks?

7



CHAPTER 1. INTRODUCTION

6. What is the impact of various distance metrics (e.g., Mahalanobis, Euclidean, Canberra)
on measuring similarity drift, and how do different embedding techniques affect their
reliability?

7. How do different embedding techniques impact similarity preservation under increasing
drift strength across various distance metrics?

8. What are the trade-offs between computational efficiency and similarity retention when
using different embedding techniques and distance metrics?

Literature Positioning. Recent work in concept drift detection has shifted toward more prac-
tical deployments, especially in unsupervised, high-dimensional environments where labels are
unavailable. Werner et al. [70] argue that many existing detectors prioritise accuracy over
scalability and neglect performance engineering practices such as runtime profiling and bench-
marking. Fuccellaro et al. [27] address this by proposing unsupervised techniques that reduce
false positives and separate benign shifts from harmful drift without relying on labelled feed-
back. In parallel, Chen et al. [19] introduce semantic embedding strategies using knowledge
graphs to enhance interpretability and resilience in structured domains.

Large-scale benchmarks, such as those by Lukats et al. [47], show that drift detection
methods vary significantly in reliability across real-world datasets, highlighting the importance
of consistent evaluation protocols. Wan et al. [69] introduce contrastive embedding methods
that improve performance in noisy, high-dimensional settings without labels. Work by Hinder
et al. [36] stresses the growing importance of explainability, while Cao et al. [13] show that the
choice of embedding technique strongly influences anomaly detection results. Together, these
studies motivate the goal of this thesis: to create an efficient and interpretable embedding-based
drift detection framework.

Contributions. This thesis presents the EmbeddingTracker framework, which combines vector-
based and distribution-based drift detection with streaming thresholding capabilities for real-
time use. The framework is evaluated using synthetic benchmarks, including controlled token
shuffling and feature perturbations, and a real-world stream of Amazon reviews spanning eight
years. Key contributions include the finding that, despite a higher false-positive rate, vector-
based metrics consistently flag performance, impacting drift earlier than distribution-based
alternatives, up to three months in the Amazon case. Additionally, the study shows that KLL
Sketch can reduce memory usage by an order of magnitude while preserving 75–90% of
full-vector sensitivity. These results provide actionable guidance on designing drift detection
pipelines that balance responsiveness and efficiency in real-world systems.

Thesis Structure. The remainder of this thesis is organised as follows, with each chapter
building on the previous to develop, evaluate, and reflect on the proposed drift detection
framework:

8



CHAPTER 1. INTRODUCTION

• Chapter 2 surveys foundational and contemporary work on concept drift and embedding
techniques

• Chapter 3 lays out the mathematical principles underpinning vector- and distribution-
based drift detection methods and dimensionality reduction.

• Chapter 4 introduces the EmbeddingTracker framework and details its design and im-
plementation.

• Chapter 5 describes the experimental setup and benchmark datasets used for evaluation.

• Chapter 6 presents the results of synthetic and real-world drift detection experiments,
including metric sensitivity and memory efficiency analyses.

• Chapter 7 discusses the implications of the findings, outlines limitations, and explores
future directions.

• Chapter 8 concludes the thesis with a summary of key contributions and takeaways.

9



Chapter 2

Background & Related Work

2.1 Concept Drift: Definitions and Impact

Concept drift occurs when the statistical properties of data change over time, disrupting the
assumption of stationarity in supervised learning systems. Formally, concept drift is defined as
a change in the joint probability distribution 𝑃(𝑋,𝑌 ) over the input variables 𝑋 and the target
variable 𝑌 at different time points 𝑡0 and 𝑡1 [29]:

𝑃𝑡0 (𝑋,𝑌 ) ≠ 𝑃𝑡1 (𝑋,𝑌 ) .

This means that the underlying relationship between inputs and outputs shifts, which can degrade
model performance. We need strategies that detect these shifts and adapt models accordingly
to maintain accuracy.

Concept drift can be quantified by measuring how much the distributions differ. For
instance, one can use the Kullback–Leibler (KL) divergence to compare the joint distributions
at two time points [43]:

𝐷𝐾𝐿 (𝑃𝑡0 ∥ 𝑃𝑡1) =
∑︁
𝑥,𝑦

𝑃𝑡0 (𝑥, 𝑦) log
𝑃𝑡0 (𝑥, 𝑦)
𝑃𝑡1 (𝑥, 𝑦)

,

for discrete variables or the integral equivalent for continuous variables. A high KL divergence
indicates a significant change in distribution. Other metrics like the Wasserstein (Earth Mover’s)
distance can also measure how much “work” is needed to transform one distribution into another.

These differences in distributions can be framed as hypothesis tests. For example, we
can test:

𝐻0 : 𝑃𝑡0 (𝑋,𝑌 ) = 𝑃𝑡1 (𝑋,𝑌 ) vs. 𝐻1 : 𝑃𝑡0 (𝑋,𝑌 ) ≠ 𝑃𝑡1 (𝑋,𝑌 ).

Rejecting𝐻0 suggests that concept drift has occurred. If we are specifically interested in changes
to the conditional distribution, we test:

𝐻0 : 𝑃𝑡0 (𝑌 |𝑋) = 𝑃𝑡1 (𝑌 |𝑋) vs. 𝐻1 : 𝑃𝑡0 (𝑌 |𝑋) ≠ 𝑃𝑡1 (𝑌 |𝑋).

When the relationship between input features and the target changes, we have what

10



CHAPTER 2. BACKGROUND & RELATED WORK

is known as real concept drift. Here, the conditional distribution changes while the input
distribution remains the same:

𝑃𝑡0 (𝑌 |𝑋) ≠ 𝑃𝑡1 (𝑌 |𝑋), but 𝑃𝑡0 (𝑋) = 𝑃𝑡1 (𝑋).

This directly alters decision boundaries and requires immediate adaptation [29]. For example,
regulatory changes that modify the relationship between income and default risk would constitute
real drift in a credit scoring model.

In contrast, virtual concept drift occurs when the marginal input distribution 𝑃(𝑋)
changes, but the relationship 𝑃(𝑌 |𝑋) remains constant:

𝑃𝑡0 (𝑋) ≠ 𝑃𝑡1 (𝑋), but 𝑃𝑡0 (𝑌 |𝑋) = 𝑃𝑡1 (𝑌 |𝑋).

Unlike real drift, virtual drift does not affect decision boundaries but requires adjustments to
handle the changing input distribution. For instance, if a new customer demographic introduces
changes in the input data distribution for a credit scoring model but their default behaviour
remains consistent, this would represent virtual drift [29].

11



CHAPTER 2. BACKGROUND & RELATED WORK

Figure 2.1: Different drift types: (a) Sudden Drift, (b) Gradual Drift, (c) Incremental Drift, and
(d) Recurring Concepts.

Concept drift manifests in various forms, as shown in Figure 2.1. Sudden drift replaces
one concept abruptly [29], gradual drift involves a slower shift where old and new concepts
overlap [46], and incremental drift introduces multiple intermediate states [29]. Recurring
concepts appear when previous patterns return after a period of absence [46]. These forms can
coexist and complicate detection and adaptation.

2.1.1 Strategies for Detecting and Adapting to Concept Drift

Adaptive Systems for Managing Drift. Detecting and adapting to drift often involves statis-
tical tests and metrics periodically monitoring differences between distributions or model per-
formance [46]. Simple methods include running hypothesis tests (e.g., Kolmogorov–Smirnov
tests) on incoming batches of data to detect significant distributional changes. More advanced
methods employ divergence measures like KL divergence or Wasserstein distance to flag shifts.
Once drift is detected, adaptive systems classify it (e.g., abrupt vs. gradual) and respond
accordingly.

Techniques like sliding windows (Figure 2.2b) focus on retaining recent data in a fixed-

12



CHAPTER 2. BACKGROUND & RELATED WORK

(a) Rewarding more recent data with higher
weights

(b) Sliding window focusing on fixed recent
data

Figure 2.2: Comparison between weighting recent data more (a) and sliding window methods
(b) for adapting to drift.

length window, ensuring the model quickly updates while discarding outdated information
[29]. In contrast, approaches that reward more recent data with progressively higher weights
(Figure 2.2a) allow for more nuanced adaptation by gradually reducing the importance of older
data. Both techniques are critical for handling concept drift and balancing responsiveness and
stability. Too much adaptation risks overfitting to temporary changes (excessive plasticity),
while too little prevents necessary updates (excessive stability) [29]. By employing quantitative
metrics, hypothesis testing, and principled adaptation strategies, systems can address concept
drift rigorously, ensuring accurate and reliable performance in dynamic environments [46, 29].

Integrating Drift Detection with Performance Monitoring. Model performance monitoring
alone isn’t enough to detect data drift effectively [8, 2, 63]. Metrics like AUROC can appear
stable even when data distributions shift significantly. Data-driven drift detection methods
are better at identifying these shifts. For example, Kore et al. demonstrates that drift can
occur without noticeable changes in performance metrics, especially when these metrics fail
to capture subtle shifts. This highlights the importance of combining performance monitoring
with targeted drift detection techniques. Advanced methods like image-and-output-based drift
detection (e.g., TAE + BBSD) have effectively detected natural and synthetic drifts [42]. During
the COVID-19 pandemic, these methods identified critical data shifts that traditional metrics
overlooked [42]. By detecting distributional changes early, these techniques enable timely
re-evaluation and adaptation of models. Combining statistical drift detection with advanced
methods ensures models remain accurate and reliable, even in dynamic environments. While
not all drifts negatively impact performance, monitoring and adapting models as data evolves
is important for maintaining their effectiveness.

2.2 Traditional vs. Modern Drift Detection Approaches

Detecting concept drift is critical for maintaining the robustness and accuracy of machine
learning models in non-stationary environments [24, 16, 58, 45, 71]. Choosing the right drift
detection method depends on specific challenges, such as label dependencies, computational
resource availability, and the type of drift (abrupt, gradual, or recurring). There is no one-
size-fits-all solution due to varying domain requirements and constraints, and each method
offers unique strengths and limitations. Table 2.1 summarises the key drift detection methods,

13



CHAPTER 2. BACKGROUND & RELATED WORK

highlighting their strengths, weaknesses, and best use cases to assist in selecting an appropriate
approach.

• Supervised methods require consistent access to labelled data, making them unsuitable for
sparse or delayed feedback environments. For example, these methods excel in real-time
systems with reliable label availability.

• Methods like self-supervised learning (SSL) and unsupervised approach strategies can
be computationally demanding, requiring careful consideration for real-time or resource-
constrained settings, as outlined in Table 2.1.

• The nature of the drift (e.g., abrupt, gradual, or recurring) dictates the optimal method.
Ensemble methods are robust to diverse drift types, while the Multi-Armed Bandit (MAB)
model approaches efficiently handle abrupt and gradual shifts with resource optimisation.

• Balancing quick adaptation to changes (responsiveness) with maintaining model stability
over time is critical. Methods like SSL and semi-supervised approaches offer adaptability
but require tuning to prevent overfitting or delayed responses.

Selecting a drift detection method requires careful consideration of the application’s
constraints and objectives to ensure robust and efficient model performance. Table 2.1 provides
a comparative view of the strengths and weaknesses of various approaches.

14



CHAPTER 2. BACKGROUND & RELATED WORK

Method Type Strengths Weaknesses Best Use Cases

Traditional Methods

Supervised Methods Directly monitor model per-
formance; effective with im-
mediate labels

Dependence on continuous la-
bels; prone to false positives
in noisy environments

Real-time systems with con-
sistent label availability

Unsupervised Meth-
ods

Label-independent; early de-
tection of input distribution
drift

Computationally intensive;
may fail to detect changes in
𝑃(𝑌 |𝑋)

Applications with limited or
no access to labelled data

Non-Traditional Methods

Semi-Supervised
Methods

Combine labelled and unla-
beled data; detect both input
and output drift efficiently

Moderate performance tuning
required; reliant on pseudo-
label quality

Scenarios with scarce labels
but high adaptability require-
ments

Self-Supervised
Learning (SSL) Ap-
proaches

Exploit inherent data struc-
tures; minimal label depen-
dency; suitable for anomaly
detection

Drift-specific metrics lacking;
computationally expensive for
real-time detection

Emerging use cases in do-
mains like computer vision
and financial anomaly detec-
tion

Ensemble Methods Robust to diverse drift types;
aggregate multiple model pre-
dictions

High computational resource
usage; complex to implement

Large-scale, resource-rich en-
vironments with diverse drift
types

Reinforcement Learn-
ing (Multi-Armed
Bandit Approaches)

Optimized for resource-
efficient drift detection;
adaptable to evolving envi-
ronments

Requires careful parameter
tuning (e.g., sliding window
size); sensitive to configura-
tion

Real-time scenarios with con-
strained computational re-
sources; suitable for abrupt
and gradual drifts

Table 2.1: Summary of Drift Detection Methods

Semi-Supervised Drift Detection Methods

One semi-supervised drift detection method is the Ensemble Semi-Supervised Classification
and Regression (ESCR) algorithm, thoroughly discussed by Zheng et al. and inspired by Haque,
Khan, and Baron. ESCR begins with a warm-up phase using labelled data to train base
classifiers. Each classifier employs clustering techniques to summarise data with pseudo points,
including centroids, radii, and class frequencies. These pseudo points represent decision
boundaries without storing raw data, ensuring memory efficiency.

As new data instances arrive, ESCR classifies them using majority voting across the
ensemble. Confidence scores for each example are calculated and stored in sliding windows.
Drift is detected through statistical analysis using Jensen–Shannon divergence, comparing
confidence score distributions in consecutive sliding windows [45]. This approach identifies
significant changes in data distribution without relying solely on classification error rates. When
drift is detected, the algorithm determines if it is recurring by comparing pre- and post-drift
distributions. ESCR applies the 𝑞-Neighborhood Silhouette Coefficient for novel class detection,
measuring cluster cohesion and separation. Instances forming dense clusters far from known

15



CHAPTER 2. BACKGROUND & RELATED WORK

class boundaries are labelled novel classes. To optimise performance, ESCR employs recursive
computations and selective execution, reducing the computational burden and allowing the
framework to handle high-speed data streams effectively. The ensemble is dynamically updated
by replacing older classifiers with new ones trained on labelled and pseudo-labelled data from
the current window.

Concerning precision, ESCR outperforms baselines such as ECSMiner and SAND [50,
35]. For example, on the Forest Cover dataset, ESCR achieves an accuracy of 89.7% compared
to 86.3% for ECSMiner and 84.9% for SAND. These improvements are consistent across
multiple datasets, including synthetic streams like HyperPlane and SynRBF and real-world
datasets like PAMAP and Power Supply. Statistical tests like the Friedman test with Nemenyi
post hoc analysis confirm ESCR’s performance, highlighting its adaptability to various data
stream scenarios with different drift dynamics.

Comparing Supervised, Unsupervised, and Semi-Supervised Drift Detection

Supervised methods, such as the Drift Detection Method (DDM) [30] and the Page-Hinckley
(PH) Test [55], are highly effective when immediate access to labelled data is available. However,
their performance relies heavily on the continuous availability of labelled data, which may not
always be feasible. These methods can also face challenges with gradual drift, as they may
require significant memory to manage extended warning phases.

In practical scenarios, variations in data availability and feedback introduce further
complexity. For example, the true target values (feedback) may be delayed or unavailable,
leading to postponed model updates. In addition, new data points for prediction might arrive
before feedback for previously processed data is received, creating a lag in the learning process
[68]. Despite these delays, the underlying principles of supervised methods remain consistent.
Furthermore, specific environments require data processing in batches rather than incrementally,
introducing additional constraints on supervised methods [30]. These challenges highlight
the importance of selecting the appropriate method based on the specific characteristics and
requirements of the application.

Unsupervised methods such as Cumulative Sum (CUSUM) [9] and Adaptive Windowing
(ADWIN) [8] do not require labelled data and can detect changes in the statistical properties
of the input data. However, they may miss changes in the conditional distribution 𝑃(𝑌 |𝑋)
and can be computationally intensive. Metrics for unsupervised methods, including Hellinger-
Distance, Energy-Distance, and Wasserstein-Distance, involve several key considerations. One
important factor is computational overhead, which refers to the additional time and resources
required for detecting drift. Another critical measure is the false-positive rate (FPR), which
is particularly significant for real-time systems to prevent unnecessary alerts. Lastly, drift
sensitivity is essential, as it denotes the ability to detect subtle changes in data distribution.

Semi-supervised methods like ESCR balance these approaches, leveraging the strengths

16



CHAPTER 2. BACKGROUND & RELATED WORK

of both supervised and unsupervised techniques. They can detect input and output drift by
utilising labelled and unlabelled data while minimising dependency on labelled instances. The
choice of method should be guided by the application’s data availability, feedback frequency,
and computational requirements.

Self-Supervised Learning for Anomaly and Drift Detection

While self-supervised learning (SSL) has shown promise in anomaly detection across domains
such as image processing and financial transactions [48, 18], its application to drift detection
remains underexplored. For instance, Madan et al. [48] demonstrate how SSL can effectively
reconstruct masked data in high-dimensional spaces to identify anomalies. In contrast, Chen et
al. [18] leverage SSL to model temporal patterns in financial transactions for fraud detection.
These methods highlight SSL’s ability to function without labelled data, a common constraint
in drift detection scenarios.

However, the adaptation of SSL to drift detection presents unique challenges. Incorpo-
rating drift-specific evaluation metrics, such as changes in 𝑃(𝑋) or 𝑃(𝑌 |𝑋), requires additional
algorithmic modifications. Furthermore, SSL methods often involve computationally inten-
sive processes, such as transformer-based architectures or embedding-based sampling, which
may hinder their practicality for real-time drift detection in resource-constrained environments.
These limitations parallel those encountered with unsupervised learning approaches, making
SSL an area of potential but underutilised application in drift detection research.

Ensemble-Based Drift Detection Methods

Ensemble methods leverage multiple models to mitigate the impact of drift, often combining
supervised and unsupervised approaches. Dynamic Weighted Majority (DWM) adjusts clas-
sifier weights based on performance, introducing new models when ensemble accuracy drops.
While robust to various drift types, it demands significant computational resources [41]. The
Accuracy Updated Ensemble (AUE) enables continuous updating of classifiers, effectively ad-
dressing abrupt and gradual drift, but risks losing model diversity over time [12, 11]. Methods
like Learn++.NSE and Learn++.NIE employ incremental learning and dynamic weighting to
adapt to drift but may retain outdated models, potentially degrading performance [57, 52].

Motivation for a New Drift Detection Framework

A new drift detection framework is necessary beyond standard supervised and unsupervised
methods, particularly in complex systems such as Large Language Models (LLMs) and evolving
data environments, due to several inherent challenges and limitations of traditional approaches.
Standard drift detection techniques rely on explicit ground truth labels (supervised) or statistical
comparisons of input distributions (unsupervised). However, these methods often fall short
when applied to high-dimensional, continuously evolving data streams, where obtaining labels

17



CHAPTER 2. BACKGROUND & RELATED WORK

is expensive and feature distributions are dynamic and complex. Several key factors identified
in the analysed approaches motivate the need for an improved framework.

1. High Dimensionality and Complex Representations. LLMs and other deep learning
models encode vast amounts of information into embeddings and weight distributions,
making traditional drift detection techniques insufficient. Unlike simple statistical mea-
sures, changes in latent representations can be subtle and require specialized techniques
such as embedding shift monitoring and weight distribution analysis, which track internal
model behavior rather than relying solely on input-output changes. Existing frameworks
do not fully exploit these internal representations, leading to delayed or incomplete drift
detection [20].

Furthermore, embedding-based drift detection offers increased robustness to noise com-
pared to raw feature-based methods:

• Semantic Abstraction. Embeddings capture high-level semantic patterns, effec-
tively filtering out low-level noise such as typos in text, sensor jitter, or UI layout
changes. This abstraction allows models to focus on meaningful patterns rather than
superficial differences [61].

• Reduced Sensitivity to Minor Perturbations. Raw features treat each input di-
mension independently, making models sensitive to minor perturbations like pixel
flips or word swaps, which can lead to significant shifts in feature space and trigger
false positives in drift detection [64].

• Compression and Denoising. When input data is processed through models like
BERT or CNNs, it is transformed into embeddings—compact vector representations
where semantically similar inputs are closer together, even if their raw features differ.
This compression reduces sensitivity to irrelevant variations [10].

• Generalisation Through Training Techniques. Deep learning models are often
trained with techniques like regularisation, dropout, and data augmentation, which
encourage them to generalise beyond noisy inputs. As a result, their embeddings
inherently filter out fluctuations that don’t affect the label [10].

2. Label Scarcity and Cost Efficiency. Supervised drift detection methods require con-
tinuous access to ground truth labels, often impractical in real-world applications in-
volving LLMs, such as chatbots and document processing. As the literature discusses,
meta-learning-driven approaches and uncertainty-based drift detection provide adaptive
mechanisms that minimise labelling costs by dynamically adjusting query strategies. A
new framework should incorporate adaptive sampling techniques to optimise the trade-off
between detection accuracy and labelling effort [24, 58].

18



CHAPTER 2. BACKGROUND & RELATED WORK

3. Model Interpretability and Explainability. Traditional unsupervised drift detection
methods, such as statistical distance measures, provide little insight into why drift occurs
within LLMs. Methods such as activation-based uncertainty estimation give a more
profound understanding by quantifying uncertainty across different model layers. A novel
drift detection framework should focus on improving interpretability, offering actionable
insights that enable targeted retraining rather than indiscriminate model updates [20].

4. Easier Integration with MLOps Pipelines. For LLMs deployed in production envi-
ronments, drift detection frameworks should seamlessly integrate with existing MLOps
pipelines to trigger automated model retraining and updates. Unlike conventional frame-
works, which require manual intervention, advanced frameworks should enable real-time
detection and self-adaptive correction, ensuring minimal disruption to business operations
[16].

While modern approaches such as embedding-based and self-supervised methods offer
improved flexibility, they still rely heavily on detecting statistical shifts in feature space or model
outputs, often assuming that any significant change signals a meaningful drift event. However,
recent findings challenge this assumption. Chen et al. [20] show that performance degradation
in practical malware detection systems is primarily driven by changes in data-space distributions,
not by newly introduced features or changes in the embedding space. In other words, many
traditional and modern drift detectors may trigger adaptation based on statistically significant
but functionally irrelevant shifts. A more nuanced framework is needed to evaluate whether a
shift has occurred and whether that shift affects model performance or semantic understanding
[45, 48]. The following section addresses this gap by proposing a model-integrated approach
that monitors the internal states of deep learning models for meaningful concept drift.

2.3 Deep Learning for Concept Drift Detection

Embedding-based drift detection methods operate under the premise that if the underlying dis-
tribution of data changes over time, this shift will manifest in the learned internal representations
of that data. These embeddings, typically learned via autoencoders, deep neural encoders, or
language models, offer a dense semantic view of the data, making them more sensitive to dis-
tributional nuances than raw feature-based approaches. For example, in the domain of textual
anomaly detection, models like BERT and MiniLM are used to encode text streams into latent
vectors, after which unsupervised detectors such as k-nearest neighbours or isolation forests can
be applied to identify anomalous segments potentially indicating drift [13].

The advantage of using embeddings lies in their ability to capture non-linear relation-
ships and abstract patterns in the data, which are often invisible in the original feature space.
Euclidean distance and cosine similarity are standard metrics for measuring divergence be-
tween embeddings across time windows. A consistent increase in the distance between mean

19



CHAPTER 2. BACKGROUND & RELATED WORK

embeddings of temporally segmented data often signals a change in the underlying concept [69].
Maximum Concept Discrepancy (MCD), introduced in recent work, formalises this approach
by applying contrastive learning to optimise embeddings for separability across time, using
dynamic thresholds derived from empirical and theoretical bounds to flag drifts [69].

One advantage of deep representation monitoring is its generality. It can be applied
across modalities, text, time series, and sensor data, and does not rely on domain-specific
assumptions. Moreover, embedding-based approaches can be entirely unsupervised, a critical
requirement in real-world scenarios where labelled data is scarce or unavailable. In these
contexts, models are often trained using self-supervised contrastive learning objectives, such
as InfoNCE, which pull together similar representations and push apart temporally distant or
augmented ones [69]. The resulting latent space becomes structured to reflect the temporal
evolution of concepts, allowing drift to be detected as geometric shifts.

However, embedding-based methods also face notable challenges. One of the primary
issues is the computational cost associated with training and updating deep encoders in real-
time or near-real-time environments. Although recent work has introduced optimisations for
online adaptation, including sliding window encoders and lightweight sampling strategies [69],
these models remain more resource-intensive than traditional statistical detectors. Another
challenge is interpretability. While embeddings can be visualised using techniques like t-
SNE, the semantic meaning of detected drifts is often opaque, especially in high-dimensional
settings. Recent work attempts to mitigate this by combining embeddings with domain-specific
structures, such as knowledge graphs [19], or by incorporating explanation modules that localise
changes within the latent space [36].

Despite these challenges, recent benchmarks suggest that embedding-based detectors
are becoming competitive with, and in some cases superior to, traditional approaches. Wan
et al. [69] demonstrated that their MCD-DD method outperformed classical detectors like
Kolmogorov-Smirnov and Maximum Mean Discrepancy with Gaussian kernels across synthetic
and real-world data sets in precision, F1-score, and MCC. Moreover, the method provided qual-
itative insights into the nature of drift by mapping concept representations in two-dimensional
spaces, revealing distinct patterns for sudden, incremental, and recurring drifts.

20



Chapter 3

Mathematical Foundations of Drift Detec-
tion

3.1 Vector/Feature-Space Distances in Drift Detection

In recent work, feature-space or vector-based distance methods have gained traction as robust
detectors of shifts in data diffusions. By transforming raw observations into dense vectors
or more abstract features, these approaches rely on computing pairwise distances to look for
variations in magnitude or direction that signal potential drift. [53] shows the importance of
monitoring these feature distances when performing tasks like robust object tracking, where
apparent drift in the correlation response can be interpreted as a broader shift in the underlying
data distribution. Meanwhile, Barboza et al. proves that data normalisation policies and careful
choice of distance metrics (e.g., Canberra, Minkowski) significantly influence the reliability of
drift detection, highlighting how small changes in data ranges can either conceal or amplify un-
derlying changes. These findings highlight the need for carefully chosen feature representations
and distances in scenarios where data evolve continuously and unpredictably.

While scalar comparisons are sufficient for stable data, the dynamic nature of streaming
contexts calls for distance measures that adapt seamlessly to changing patterns. As [56]
explains, embedding-based techniques for time-series and streaming data provide a structured
means of mapping high-dimensional signals into latent spaces, often applying Euclidean or
cosine distances post-embedding to gauge novelty or anomaly. When these embedding spaces
are suitably learned or handcrafted, moderate increases in distance may indicate distributional
shifts, prompting the timely reconfiguration of models. Aligning these concepts with the robust
detection methods explored in [53] and the nuanced normalisation frameworks from [6], it
becomes clear that feature-space distances can detect gross changes and subtle deviations that
might otherwise go unnoticed. These embeddings, distance metrics, and careful normalisation
stand at the forefront of contemporary drift detection research, enabling more proactive and
flexible responses to ever-evolving data.

This section explores how feature-space distances unite robust representation learning
with real-time drift detection in dynamic data streams. First, it details foundational distance
metrics and embedding spaces, examining how Euclidean versus cosine can highlight different

21



CHAPTER 3. MATHEMATICAL FOUNDATIONS OF DRIFT DETECTION

facets of evolving data. Next, it discusses the practical implications of normalisation (as outlined
in [6]) and computational cost, offering insights into how each factor may mask or reveal subtle
distributional changes. Finally, it explores strategies for implementing these methods into
adaptive models, highlighting the proactive response needed in environments prone to abrupt or
incremental shifts. The section weaves together the choice of embeddings, distance metrics, and
normalisation frameworks, enabling a more resilient and fine-grained drift detection pipeline.

3.1.1 Overview of Vector/Feature-Space Distances Metrics

Understanding how different distance metrics behave in high-dimensional or evolving feature
spaces is critical for effective drift detection. Each metric offers unique properties that make
it more or less suitable, depending on the nature of the data: whether it is dense or sparse,
continuous or categorical, and whether it is static or streaming. In adaptive learning systems,
having a principled choice of distance measure can make the difference between early detection
and missed drift. Table 3.1 summarises key metrics commonly used for measuring feature-space
divergence, their defining formulas, behavioural traits, and sensitivity characteristics.

Table 3.1: Overview of vector/feature-space distance metrics and their properties.

Metric Formula Key Characteristics Sensitivity

Euclidean
√︁∑𝑛

𝑖=1(𝑥𝑖 − 𝑦𝑖)2 Straight-line (L2 norm); emphasizes magnitude Sensitive to scale and outliers
Manhattan (L1)

∑𝑛
𝑖=1 |𝑥𝑖 − 𝑦𝑖 | Sum of absolute differences; axis-aligned Less sensitive to outliers; scale-dependent

Minkowski
(∑𝑛

𝑖=1 |𝑥𝑖 − 𝑦𝑖 |𝑝
)1/𝑝 Generalized form of L1 and L2 (with tunable 𝑝) Sensitivity depends on 𝑝

Chebyshev max𝑖 |𝑥𝑖 − 𝑦𝑖 | Maximum coordinate deviation Very sensitive to single-feature changes
Mahalanobis

√︁
(𝑥 − 𝑦)𝑇𝑆−1(𝑥 − 𝑦) Scale- and correlation-aware via covariance matrix Sensitive to poor covariance estimation

Canberra
∑𝑛
𝑖=1

|𝑥𝑖−𝑦𝑖 |
|𝑥𝑖 |+|𝑦𝑖 | Strong sensitivity to small relative changes Sensitive to noise near zero

Cosine 1 − 𝑥·𝑦
∥𝑥∥∥𝑦∥ Captures angular difference; ignores magnitude Insensitive to scale; sensitive to direction

It is helpful to visualise how these metrics respond to asymmetries in the data. In
the following examples, two vectors X = [1, 10] and Y = [10, 11] have comparable overall
magnitudes but differ sharply along one axis. This contrast allows us to observe how each metric
interprets spatial displacement, scale, feature dominance, and relational geometry differently,
highlighting their diverse sensitivity profiles.

Euclidean (L2) Distance:.

𝑑Euclidean(X,Y) =
√︁
(1 − 10)2 + (10 − 11)2 =

√︁
(−9)2 + (−1)2 =

√
81 + 1 =

√
82 ≈ 9.055.

The Euclidean distance accentuates the magnitude of differences, capturing both dimensions
but being more strongly influenced by the larger horizontal gap (9) than the smaller vertical gap
(1). It is geometrically faithful because it measures actual geometric distance and is well-suited
for continuous and spatial data representations [22]. Training on samples with higher Euclidean
distances between embeddings in NLP tasks has resulted in better generalisation and robustness

22



CHAPTER 3. MATHEMATICAL FOUNDATIONS OF DRIFT DETECTION

in language models [3]. In image processing, it is more suitable than city-block or octagonal
metrics for constructing accurate distance maps [22], and distance errors decrease significantly
with increasing distance, making it reliable for detecting larger-scale drifts [22]. However,
Large feature differences can disproportionately influence Euclidean distance, which is more
computationally intensive than Manhattan distance for large grids or high-dimensional data
[66], and may produce minor approximation errors in discrete image grids when using specific
sequential algorithms [22].

Manhattan (L1) Distance:.

𝑑Manhattan(X,Y) = |1 − 10| + |10 − 11| = 9 + 1 = 10.

The Manhattan distance, computed by summing absolute differences along each axis, is rel-
atively large here because each coordinate difference contributes additively. It is easier to
calculate than Euclidean distance, making it well-suited for clustering tasks (e.g., K-Means,
KNN) on structured or tabular data [66]. It is also more robust to outliers than L2 norms
because it is based on absolute differences and can require fewer iterations in clustering tasks
[66]. On the other hand, Manhattan distance can produce blocky, diamond-shaped boundaries
in distance maps, which may distort spatial interpretations [22]. It also performs poorly in
capturing semantic differences in high-dimensional vector spaces (e.g., word embeddings). It
also shows inferior accuracy to other metrics in specific image and satellite data classification
tasks [66].

Minkowski Distance (general 𝑝):.

𝑑
𝑝

Minkowski(X,Y) =
𝑛∑︁
𝑖=1

|𝑥𝑖 − 𝑦𝑖 |𝑝, 𝑑Minkowski(X,Y) =
(
𝑛∑︁
𝑖=1

|𝑥𝑖 − 𝑦𝑖 |𝑝
)1/𝑝

.

For 𝑝 = 1, it recovers Manhattan; for 𝑝 = 2, it recovers Euclidean. At 𝑝 = 3 for the
vectors above, the distance is approximately 9.006, showing how higher 𝑝 values amplify more
significant coordinate gaps. The Minkowski distance can be very flexible in adapting to the
nature of the data, but for 𝑝 < 1, it is no longer a proper metric because it violates the triangle
inequality [60].

Chebyshev Distance (𝐿∞):.

𝑑Chebyshev(X,Y) = max ( |1 − 10|, |10 − 11|) = max(9, 1) = 9.

This distance focuses on the maximum coordinate difference and discards smaller gaps, making
it highly efficient for neighbourhood iteration in specific 2D spaces [60]. Its simplicity eases
some implementations but can be associated with weaker performance for many tasks [60].

23



CHAPTER 3. MATHEMATICAL FOUNDATIONS OF DRIFT DETECTION

Mahalanobis Distance:.

𝑑Mahalanobis(X,Y) =
√︃
(X − Y)T𝑆−1(X − Y),

where 𝑆 is the covariance matrix. Suppose

𝑆 =

(
2 0
0 50

)
, 𝑆−1 =

(
1
2 0
0 1

50

)
.

Then
(X − Y) = [−9, −1], (X − Y)T𝑆−1 = [−4.5, −0.02] ,

𝑑Mahalanobis(X,Y) =
√︁
[−4.5, −0.02] · [−9, −1] =

√
40.5 + 0.02 =

√
40.52 ≈ 6.368.

Mahalanobis distance incorporates the covariance structure of the dataset, making it practical
for identifying outliers in multivariate data [31, 23]. It is scale-invariant and shapes the distance
metric according to data covariance, helping it measure how far an observation lies from the
mean in a correlated feature space [23]. Robust estimators, such as the Minimum Covariance
Determinant, can mitigate issues of masking effects when outliers inflate variances [31, 23].
Mahalanobis distance is also the basis for several learning algorithms that rely on task-specific
metric learning [73], with uses across chemometrics, pattern recognition, image segmentation,
face pose estimation, and fraud detection [73, 31]. However, it is susceptible to outliers in its
classic form because it depends on the sample mean and covariance [23], and computing the
inverse covariance matrix can be expensive in high-dimensional data [31, 23]. It also requires
that the number of samples exceed the number of variables, and it can suffer if features are
highly correlated or if the data deviate from a multivariate normal distribution [23, 31].

Canberra Distance:.

𝑑Canberra(X,Y) =
𝑛∑︁
𝑖=1

|𝑥𝑖 − 𝑦𝑖 |
|𝑥𝑖 | + |𝑦𝑖 |

.

For the 2D example, this sums to approximately 0.8657. Canberra distance is sensitive to
relative changes rather than absolute magnitudes, so small values in a feature can produce large
fractional swings [26]. This sensitivity can be instrumental when subtle changes in lower-valued
features are crucial for detecting distributional drift.

Why These Metrics Matter for Embedding Drift Detection?

These distance metrics take on special significance in embedding-based drift detection because
the nature of the embedding space—whether sparse or dense, directional or magnitude-sensitive
can determine which distance function most effectively uncovers drift. Scale sensitivity is one
consideration, since Euclidean, Minkowski, and Manhattan distances can overemphasise large-
range features, whereas Mahalanobis accounts for covariance and thus recognises correlations

24



CHAPTER 3. MATHEMATICAL FOUNDATIONS OF DRIFT DETECTION

in high-dimensional embeddings. Sparsity versus density also matters, since L1-based metrics
like Manhattan handle sparse embeddings differently than L2-based measures. Cosine distance,
focusing on angular difference, has become a common choice in text or embedding spaces
precisely because it is insensitive to scale and captures directional changes. Relative versus
absolute changes come into play when considering Canberra’s ratio-based formulation, which
excels for small-valued features, or Chebyshev’s reliance on a single feature’s maximum devi-
ation. By carefully selecting a distance measure that aligns with the embedding space and the
nature of potential drift, practitioners can more reliably detect when an embedding has drifted,
thereby prompting model recalibration, data inspection, or adaptation steps.

3.2 Distribution-Based Distances and Divergences

Unlike feature-space distances (Section 3.1), which focus on pointwise comparisons between
vectors in embedding spaces between points 𝑓 (𝑥, 𝑦), distribution-based metrics gauge the di-
vergence or distance between two probability distributions as a whole 𝑃(𝑝 |𝑞). These metrics
help detect drift when it is possible to estimate distributions from samples or explicit density
models and assess how those distributions change over time. In streaming contexts, distribu-
tional changes can signal shifts that purely local or pointwise measures might otherwise miss.
Therefore, these distances serve as global descriptors of how probability mass is reallocated
over outcomes, offering an expanded view of potential changes in data over time.

Distribution-based distances are indispensable for quantifying changes between prob-
ability distributions, particularly in drift detection and generalisation assessment in machine
learning systems. Unlike pointwise measures, which compare individual data points or feature
embeddings, these metrics characterise entire distributions and allow practitioners to assess
whether two datasets stem from the same generating process. Such metrics are widely em-
ployed in domains including covariate drift detection, simulation validation, and transfer learn-
ing, where assumptions about the stationarity or similarity of distributions directly affect the
reliability of downstream models [17, 1, 65].

In drift detection, distributional distances are statistical probes to identify shifts in
the input features (covariate drift) or the learned target relationships (concept drift). These
changes are typically revealed by comparing empirical distributions over time or across different
domains. Two-sample tests, particularly those built upon divergence measures such as the
Kullback–Leibler divergence, Jensen–Shannon divergence, Hellinger distance, or Wasserstein
metrics, are central to this analysis [1]. In systems with streaming data or limited labels,
these measures enable unsupervised drift monitoring by comparing feature distributions using
kernel-based, rank-based, or graph-based techniques. For example, serverless ML pipelines can
incorporate tools like the Frouros library to compute multiple such divergences in batch mode,
enhancing their robustness to real-world nonstationary data [17].

25



CHAPTER 3. MATHEMATICAL FOUNDATIONS OF DRIFT DETECTION

3.2.1 Overview of Distribution-Based Distances and Divergences

Table 3.2: Overview of distribution-based metrics and their properties.

Metric Formula (Discrete Case) Key Characteristics Sensitivity

Kullback-Leibler (KL) Divergence 𝐷KL(𝑃 ∥𝑄) = ∑
𝑖 𝑝𝑖 log

(
𝑝𝑖
𝑞𝑖

)
Non-symmetric; info loss from 𝑄 to 𝑃 Sensitive when 𝑞𝑖 ≈ 0, 𝑝𝑖 > 0

Jensen–Shannon (JS) Divergence 𝐷JS(𝑃 ∥𝑄) = 1
2
𝐷KL(𝑃 ∥ 𝑀) + 1

2
𝐷KL(𝑄 ∥ 𝑀) Symmetric; bounded and stable Less sensitive than KL; handles mismatched support

Hellinger Distance 𝑑H(𝑃,𝑄) = 1√
2

√︃∑
𝑖 (
√
𝑝𝑖 −

√
𝑞𝑖)2 Overlap-focused; bounded in [0, 1] Sensitive to differences in small probabilities

Bhattacharyya Distance 𝑑B(𝑃,𝑄) = − ln
∑
𝑖

√
𝑝𝑖 𝑞𝑖 Measures overlap; non-negative Sensitive to low-support overlap

Wasserstein (1D) 𝑊1(𝑃,𝑄) =
∫
|𝐹𝑃 (𝑡) − 𝐹𝑄 (𝑡) | 𝑑𝑡 Earth mover’s distance; interprets mass shift Sensitive to distributional shifts in shape/location

Maximum Mean Discrepancy (MMD) MMD(𝑃,𝑄) =
1
𝑛

∑
𝜙(𝑥𝑖) − 1

𝑚

∑
𝜙(𝑦 𝑗 )


H Kernel-based mean difference Kernel-dependent; captures subtle shifts

KL Divergence. measures the expected log-likelihood ratio between two probability distribu-
tions and is defined as

𝐷KL(𝑃∥𝑄) =
∫

𝑝(𝑥) log
𝑝(𝑥)
𝑞(𝑥) 𝑑𝑥.

It quantifies how much information is lost when𝑄 is used to approximate 𝑃, and is widely used
in information theory, statistics, and machine learning. However, KL divergence is asymmetric
and can diverge to infinity if 𝑃 assigns mass where 𝑄 does not (i.e., when 𝑃 3 𝑄), which
limits its robustness in some applications. Despite this, it satisfies key properties such as non-
negativity, convexity in (𝑃,𝑄), and the data processing inequality, making it a foundational tool
for measuring information discrepancy [25]. KL divergence is additive under independent or
Markovian models, enabling tractable analysis of sequences and structured distributions [38].
While not a true metric, it can be symmetrised using constructs like the J-divergence or the
resistor-average divergence, which aim to balance interpretability, symmetry, and performance-
related bounds in classification and estimation tasks [38].

JS Divergence. could be moderate if 𝑃’s support does not vanish where 𝑄 is nonzero; since
distributions overlap, 𝐷KL(𝑃∥𝑄) should remain finite but is asymmetric (i.e., 𝐷KL(𝑃∥𝑄) ≠

𝐷KL(𝑄∥𝑃)). The Jensen–Shannon divergence (JSD) is often preferred to address this asym-
metry and potential divergence when supports differ. Defined as a symmetrised and smoothed
version of KL divergence:

JSD(𝑃,𝑄) = 1
2
𝐷KL (𝑃∥𝑀) + 1

2
𝐷KL (𝑄∥𝑀) , where 𝑀 =

1
2
(𝑃 +𝑄),

JSD is always bounded (by log 2 for normalised distributions), symmetric, and defined even
when 𝑃 and𝑄 have disjoint supports. Moreover, the square root of JSD,

√
JSD, defines a proper

metric and admits an isometric embedding into Hilbert space, enabling geometric interpretations
and kernel-based learning algorithms [28]. JSD can also be expressed as the difference between
the entropy of the mixture and the average entropy:

JSD(𝑃,𝑄) = 𝐻
(
𝑃 +𝑄

2

)
− 1

2
(𝐻 (𝑃) + 𝐻 (𝑄)) .

26



CHAPTER 3. MATHEMATICAL FOUNDATIONS OF DRIFT DETECTION

Extensions such as the 𝛼-skew and vector-skew Jensen–Shannon divergences introduce tunable
parameters to adapt divergence sensitivity [54]. These generalisations preserve convexity
and boundedness, allowing for fine-grained control in applications such as clustering, natural
language processing, and hypothesis testing [51].

Bhattacharyya Distance. is a symmetric, bounded measure of similarity between two prob-
ability distributions, defined as

𝐵(𝑃,𝑄) = − ln
(∫ √︁

𝑝(𝑥)𝑞(𝑥) 𝑑𝑥
)
.

It corresponds to the Chernoff distance with exponent 𝑠 = 1/2 and is particularly valued in
applications such as signal selection, pattern recognition, and image analysis in noisy environ-
ments. Compared to KL divergence, the Bhattacharyya distance often provides more reliable
approximations to classification error probabilities and is computationally more tractable than
the full Chernoff distance [39]. It is convex in the likelihood ratio and maintains key properties
under affine transformations, although it does not satisfy the triangle inequality and is therefore
not a true metric. In practical tasks such as image segmentation under non-Gaussian noise (e.g.,
speckle or Poisson), the Bhattacharyya distance has been shown to serve as an effective scalar
contrast parameter, aligning well with empirical performance across varying noise models [33].

Hellinger Distance. is a true metric between probability distributions, defined as

𝐻 (𝑃,𝑄) = 1
√

2

(∑︁
𝑥

(√︁
𝑝(𝑥) −

√︁
𝑞(𝑥)

)2
)1/2

.

It is symmetric, bounded in [0, 1], and invariant under bijective transformations, making it
suitable for non-parametric distribution comparison problems. As a member of the 𝑓 -divergence
family, it is particularly effective in detecting distributional shifts. It has found widespread use
in quantification problems, such as estimating class priors when the test distribution differs
from the training one [32]. Unlike KL divergence, Hellinger distance does not require absolute
continuity (i.e., overlapping support), making it robust in domains with covariate shift or
imbalanced labels. Practical methods such as HDx and HDy leverage Hellinger distance
on feature and classifier output distributions, respectively, and consistently outperform naive
estimators in class distribution estimation across real-world domains.

Wasserstein (1D). accounts for the “movement” of probability mass among the three out-
comes, effectively computing the integral of the absolute differences between cumulative dis-
tribution functions. The 1-Wasserstein distance, also known as the Earth Mover’s Distance, is
defined as

𝑊1(𝑃,𝑄) = inf
𝛾∈Π(𝑃,𝑄)

E(𝑥,𝑦)∼𝛾 [∥𝑥 − 𝑦∥],

27



CHAPTER 3. MATHEMATICAL FOUNDATIONS OF DRIFT DETECTION

where Π(𝑃,𝑄) denotes the set of all couplings of 𝑃 and 𝑄. Unlike f-divergences such as KL
or JS, 𝑊1 remains finite and meaningful even when the supports of the distributions do not
overlap. It captures the geometric structure of the probability space and is particularly suited for
tasks involving distributions supported on low-dimensional manifolds [21]. The 1-Wasserstein
distance exhibits a favourable optimisation landscape: in contrast to mode-seeking divergences
that often lead to mode collapse, gradient descent on 𝑊1 avoids poor local minima and tends
to recover all modes of a multi-modal target distribution [44]. This property has made it a
powerful objective for generative models such as Wasserstein GANs. Furthermore, its dual
form involving 1-Lipschitz functions makes it robust to vanishing gradients, contributing to the
stability and convergence of training [72].

Maximum Mean Discrepancy (MMD). is a kernel-based, nonparametric divergence that
measures the distance between two probability distributions based on the difference of their
mean embeddings in a reproducing kernel Hilbert space (RKHS). Formally, it is defined as

MMD(𝑃,𝑄) = sup
𝑓 ∈H ,∥ 𝑓 ∥H≤1

(
E𝑥∼𝑃 [ 𝑓 (𝑥)] − E𝑦∼𝑄 [ 𝑓 (𝑦)]

)
,

where H is a unit ball in the RKHS induced by a universal kernel. MMD has been widely
adopted in two-sample testing, especially for detecting concept drift in high-dimensional or
non-Gaussian data streams. Unlike moment-based statistics, it captures higher-order differences
between distributions and performs well even when mean or variance remain constant [60]. In
practice, MMD avoids explicit function optimisation by expressing the distance in pairwise
kernel evaluations, making it computationally efficient. More recently, MMD has inspired
adaptive methods such as Maximum Concept Discrepancy (MCD), which replaces fixed kernels
with deep encoders to learn data-driven embeddings for unsupervised drift detection in streaming
settings [69]. These extensions enable dynamic thresholding, contrastive training, and online
updates, allowing for more accurate and interpretable detection of both abrupt and gradual
distribution shifts.

Choosing the Right Metric for Distributional Drift Detection

When diagnosing drift using distribution comparisons, the metric choice can impact the relia-
bility of the results. In settings where two distributions have partially disjoint supports, metrics
such as the KL divergence can become unbounded if one distribution assigns a negligible
probability to events the other considers likely. Consequently, Jensen–Shannon, Hellinger, or
Bhattacharyya measures often provide more stable behaviour when distributions do not overlap
perfectly. If the application requires symmetry, those measures (rather than KL) are again more
appropriate. In continuous or ordinal domains, the Wasserstein distance excels by quantifying
the “effort” of moving probability mass in the underlying metric space. Meanwhile, Maximum
Mean Discrepancy (MMD) can reveal subtle discrepancies by leveraging kernel functions and

28



CHAPTER 3. MATHEMATICAL FOUNDATIONS OF DRIFT DETECTION

highlighting domain-relevant features. In practice, the chosen metric should align with the
characteristics of the data, whether sparse, dense, discrete, or continuous, and with the expected
form of drift, such as shifts in distribution shape, location, or tail heaviness. Approximations
like histograms and KLL sketches often make using these metrics at scale or in streaming
scenarios feasible. Still, they can affect how finely the probability mass is resolved and thus the
sensitivity of drift detection.

3.3 A Comparative Analysis PCA and the KLL Sketch Algo-
rithm

This section compares two approaches to summarising high-dimensional data: Principal Com-
ponent Analysis (PCA) and the KLL sketch algorithm. While PCA captures global structure by
projecting data onto lower-dimensional subspaces that preserve variance, KLL sketches approx-
imate univariate quantile information in a streaming fashion with strict space guarantees. We
examine the mathematical foundations, computational trade-offs, and memory requirements of
each method to highlight their complementary strengths and limitations.

3.3.1 Principal Component Analysis (PCA)

Mathematical Foundation

Principal Component Analysis (PCA) is a linear dimensionality reduction technique that iden-
tifies directions with the highest variance in a dataset [4, 59]. Consider a data matrix X of
size 𝑛 × 𝑑, where each of the 𝑛 rows is a data point and each of the 𝑑 columns is a feature or
dimension. A typical approach begins by computing the 𝑑 × 𝑑 covariance matrix,

𝚺 =
1
𝑛

X⊤X.

Once the covariance matrix has been formed, an eigen decomposition or singular value decom-
position (SVD) is performed. In the SVD view, we express X as

X = U S V⊤,

where V contains right singular vectors that correspond to the eigenvectors of 𝚺. By ordering
the singular values in descending order, we identify the principal components that capture the
greatest variance in the data. To reduce dimensionality from 𝑑 to 𝑘 , the data points are projected
onto the first 𝑘 columns of V. If V𝑘 represents this selection of eigenvectors, each point x𝑖 is
mapped to

x̂𝑖 = x𝑖 V𝑘 ,

29



CHAPTER 3. MATHEMATICAL FOUNDATIONS OF DRIFT DETECTION

thus preserving the bulk of the variance in just 𝑘 dimensions.

Algorithmic Complexity and Memory

Given a data matrix X ∈ R𝑛×𝑑 , computing the covariance matrix 𝚺 = 1
𝑛
X⊤X requires O(𝑛𝑑2)

operations when 𝑑 is large. This step can be a significant computational bottleneck in high-
dimensional settings [67]. Once the covariance matrix is computed, performing eigenvalue
decomposition on the 𝑑 × 𝑑 matrix 𝚺 has a computational complexity of O(𝑑3). This step is
necessary to obtain the principal components. Truncated Singular Value Decomposition (SVD)
can mitigate computational costs, focusing on the top 𝑘 components. This approach reduces
the complexity to approximately O(𝑛𝑑𝑘), which is more efficient when 𝑘 ≪ 𝑑. Storing the full
covariance matrix demands O(𝑑2) memory, which becomes impractical as 𝑑 increases [59].

Additionally, retaining all principal components requires O(𝑑𝑘) memory. These re-
quirements pose challenges in high-dimensional scenarios. To handle large datasets that cannot
fit into memory, incremental PCA algorithms process data in batches, updating the principal
components iteratively. These methods maintain a memory footprint that is independent of the
number of samples 𝑛, although they still scale with the number of features 𝑑 [14]. Randomised
algorithms use random matrices to approximate the principal components by projecting the data
onto a lower-dimensional subspace. This technique significantly reduces computational time
and memory usage, making it suitable for large-scale applications. While approximate methods
alleviate some computational burdens, achieving truly sublinear time or memory complexity in
PCA is challenging. This difficulty arises because capturing the variance structure of the data
inherently requires processing a substantial portion of the dataset.

Numerical and Implementation Details for Streaming PCA

While classical PCA methods form and decompose a full covariance matrix, streaming or
incremental PCA algorithms operate on data points one at a time (or in small batches) and never
construct the entire𝚺. Instead, they maintain a low-rank factorisation or subspace representation
as new samples arrive [4]. One common approach, sometimes called truncated incremental
SVD, keeps a rank-𝑘 approximation C(𝑡−1) of the sample covariance. On arrival of a new vector
x𝑡 , it forms

C(𝑡) = Prank-𝑘
(
C(𝑡−1) + x𝑡x⊤𝑡

)
,

where Prank-𝑘 projects onto the top 𝑘 eigencomponents. In practice, an eigendecomposition
U S U⊤ of C(𝑡−1) is updated with a rank-1 correction x𝑡x⊤𝑡 . Each incremental step typically costs
O(𝑘2𝑑), which is smaller than forming and factoring a full 𝑑 × 𝑑 covariance, and storing U and
S in O(𝑘𝑑) space is more memory-friendly than O(𝑑2) [4].

Another well-known approach is the stochastic power method, which processes each
new sample by

U(𝑡+1) = U(𝑡) + 𝜂𝑡 x𝑡 x⊤𝑡 U(𝑡) ,

30



CHAPTER 3. MATHEMATICAL FOUNDATIONS OF DRIFT DETECTION

and optionally applies a normalisation or Gram-Schmidt step. A step size 𝜂𝑡 = 1/
√
𝑡 is

often used, each iteration costs roughly O(𝑘𝑑), and less frequent orthonormalization prevents
numerical drift at a cost of O(𝑘2𝑑) if done too often. Stochastic methods may converge more
slowly or require tuning 𝜂𝑡 , whereas incremental SVD can occasionally converge to the wrong
subspace in pathological distributions. Nevertheless, both methods avoid the O(𝑛𝑑2) overhead
of batch PCA and tend to perform well in practice [4]. Theoretical rates for truncated incremental
SVD remain an open question; while more expensive, some exponentiated-gradient approaches
enjoy online regret bounds. A single pass over the data can often yield near-batch quality for
moderate 𝑘 , though multiple passes or a buffered replay may further refine the learned subspace
[4].

3.3.2 KLL Sketch

Purpose and Guarantees

The KLL sketch is a compact data structure designed by Karnin, Lang, and Liberty to approxi-
mate quantiles in data streams. For a sequence of items {𝑥1, 𝑥2, . . . , 𝑥𝑛}, the sketch returns an
approximate rank �̃�(𝑥) for any query value 𝑥, where the rank 𝑅(𝑥) denotes the number of items
in the stream less than or equal to 𝑥. Its core guarantee is that���̃�(𝑥) − 𝑅(𝑥)�� ≤ 𝜀𝑛
with high probability 1−𝛿. In other words, estimating how many items in the stream are less than
or equal to 𝑥 is accurate up to 𝜀𝑛. Figure 3.1 offers a simple depiction of this rank-approximation
idea.

Figure 3.1: Illustration of the approximate rank guarantee in KLL Sketch

Core Data Structure

KLL relies on a hierarchical collection of compactors. Each compactor has a capacity and
holds items until the compactor is full. When the capacity is reached, the compactor sorts its
items, randomly discards half of them (either at odd or even indices), doubles the weight of
the retained items (interpreted as each representing two discarded items), and sends them to a

31



CHAPTER 3. MATHEMATICAL FOUNDATIONS OF DRIFT DETECTION

higher-level compactor. This way, levels deeper in the hierarchy represent exponentially larger
subsets of the original stream. The capacity at each level typically shrinks by a constant factor
as we move upward in the hierarchy, ensuring that memory usage remains bounded. Figure 3.2
shows a simplified view of multiple compactors at different levels, with decreasing height from
𝐻 down to 1.

Figure 3.2: A series of compactors arranged in levels, each with capacity and weight assignment.

Randomisation ensures that the compaction process introduces only minor expected
errors. According to Hoeffding’s inequality, the cumulative rank error remains bounded with
high probability. Figure 3.3 shows how discarded or retained items may introduce positive or
negative rank errors, yet the average outcome remains unbiased [74].

Figure 3.3: Compaction step showing how some items are discarded while others double in
weight and move upward.

The mergeable property of the KLL sketch allows two sketches, built with identical
parameters, to be combined by merging their items at each level. This feature is particularly
valuable in distributed or parallel processing contexts. Additionally, a non-mergeable variant

32



CHAPTER 3. MATHEMATICAL FOUNDATIONS OF DRIFT DETECTION

that places a Greenwald-Khanna (GK) sketch at the top level can reduce space further when
mergeability is not required. In either form, the space complexity for storing a KLL sketch is
independent of the stream length 𝑛, and depends primarily on 𝜀, 𝛿, and logarithmic factors.
The space cost is per dimension, so summarising quantiles across multiple dimensions grows
linearly with the number of dimensions.

Space Complexity

A mergeable KLL sketch generally requires on the order of

O
(1
𝜀

log2log
1
𝛿

)
space, while substituting a GK sketch at the top level, if mergeability is not needed, can reduce
this to

O
(1
𝜀

loglog
1
𝛿

)
.

Because each dataset dimension can be sketched separately, the total cost across dimensions
grows linearly, while remaining sublinear in the stream length 𝑛.

3.3.3 Fundamental Differences between PCA and KLL Sketch

Principal Component Analysis (PCA) seeks a global linear subspace that captures variance
across all 𝑑 dimensions. Consequently, it must store covariance information or principal
components in a form proportional to 𝑑. In contrast, the KLL sketch handles distributional
queries (ranks, quantiles) in each dimension separately. Maintaining a KLL sketch for one
dimension consumes space on the order of

O
(

1
𝜀

log2log 1
𝛿

)
or even O

(
1
𝜀

loglog 1
𝛿

)
if a non-mergeable variant is employed. The total memory grows linearly with the number
of dimensions but remains independent of the stream length 𝑛. By contrast, incremental or
streaming PCA still needs to track and update a partial covariance or an orthonormal basis
whose size depends significantly on 𝑑.

PCA often requires computing a large matrix decomposition (e.g., an SVD of size 𝑑×𝑑)
or updating a lower-dimensional basis. Even truncated or randomised PCA implementations
cannot fully escape storing or approximating covariance information for 𝑑 features. The KLL
sketch, however, is inherently a streaming algorithm: it processes each incoming item, triggers
local “compaction” when needed, and never revisits past data. This architecture keeps memory
usage bounded by a function of 𝜀 and 𝛿, rather than the data dimension.

Partly PCA models must be combined carefully in large-scale systems or distributed
environments, requiring additional overhead for aggregating covariance matrices or merging

33



CHAPTER 3. MATHEMATICAL FOUNDATIONS OF DRIFT DETECTION

principal components. KLL, on the other hand, is trivially mergeable: two sketches built with the
same parameters can be combined by merging items at each level of compaction. This property
is crucial in parallel processing and high-speed stream scenarios, where data arrives at multiple
sites that periodically share summaries instead of raw data. The memory use of each method is
tied to what it preserves: PCA retains a global subspace that captures correlations and variance
structure across all dimensions, making it useful for dimensionality reduction, visualization,
or noise removal; KLL provides approximate ranks or quantiles in each dimension, enabling
statistical summaries such as medians or percentiles without requiring storage of the full dataset.
When the goal is to understand or query a specific dimension’s distribution, such as asking,
“What is the median sensor reading?”, KLL is more memory-efficient. PCA, by contrast,
remains the preferred approach when extracting a new, lower-dimensional coordinate system
that reflects correlations among features.

While streaming PCA avoids storing a full 𝑑×𝑑 covariance matrix, it must still maintain
O(𝑘 𝑑) space to capture a low-dimensional subspace spanning all 𝑑 features. This improved
requirement can still be prohibitive for sufficiently large 𝑑. In contrast, the KLL sketch stores
only O

( 1
𝜀

loglog( 1
𝛿
)
)

space per dimension, leading to total memory that grows linearly in 𝑑
but remains sublinear in the length of the stream 𝑛. Moreover, PCA and KLL target funda-
mentally different objectives: PCA seeks a single global transform that captures correlations
among features for dimensionality reduction, while KLL provides per-dimension distribution
summaries such as ranks and quantiles. Streaming PCA retains valuable structure when pre-
serving cross-feature correlations at the cost of higher memory usage. KLL, on the other hand,
completely forgoes global correlation information to maintain dimension-wise sketches. If
tasks need only approximate univariate statistics, KLL’s design is much more memory-friendly
in high-dimensional settings.

Thus, while PCA is invaluable for analysing global variance and extracting correlated
components, its overhead remains large if 𝑑 is huge. The KLL sketch’s independence across
dimensions ensures that storage requirements do not explode as 𝑑 grows, merging is straightfor-
ward in distributed systems, and local compaction keeps each sketch small without sacrificing
distributional accuracy. When the core task is maintaining quantile or rank estimates in a
massive stream, KLL’s sublinear memory usage in 𝑛 and milder dependence on 𝑑 make it a far
more practical choice.

34



Chapter 4

Design & Implementation

This chapter presents the architecture, algorithms, and implementation details behind the pro-
posed embedding-based drift detection framework at GitHub. Motivated by the increasing need
for real-time monitoring of model stability in dynamic environments, we focus on lightweight,
in-model approaches that require minimal additional infrastructure. Our system captures both
geometric and statistical shifts in internal representations, offering a fine-grained view of distri-
butional changes that can signal model drift. We begin by outlining the libraries and components
used to construct our framework, followed by a detailed description of two complementary de-
tection strategies, vector-based and distribution-based. Each method leverages embedding ac-
tivations produced during inference, making them suitable for online and resource-constrained
deployments.

4.1 Motivation

Building on prior research in drift detection (see Section 2), we choose an embedding-based ap-
proach for several reasons. First, embeddings provide a unifying representation across multiple
deep learning architectures, ranging from CNNs and RNNs to large language models, making
our framework broadly applicable. Monitoring activations already computed at inference time
avoids building or maintaining separate external detectors, thereby keeping additional overhead
low. Second, embedding vectors capture semantic and structural information about the data, so
shifts in those vectors often reveal early signs of concept drift before output metrics degrade.
This is particularly relevant in streaming contexts, where reactive adaptation is crucial to prevent
performance deterioration.

We embed the drift detector directly into the model pipeline to minimise overhead.
Rather than reconstructing inputs or training auxiliary classifiers to assess distributional changes,
we exploit existing internal statistics such as running means, covariances, and output embed-
dings. The framework scales well to large or distributed data streams without storing raw
samples by updating these statistics in near real-time. The independence of vector-based and
distribution-based modules also allows practitioners to fine-tune sensitivity, for example, by fo-
cusing on geometric shifts in the embedding space or detailed divergence estimates, according
to application-specific constraints (such as speed, memory limits, and interpretability).

Finally, each complementary strategy, Vector-Based Drift Detection and Distribution-

35

https://github.com/jasperbruin/drift_watch


CHAPTER 4. DESIGN & IMPLEMENTATION

Based Drift Detection, addresses different aspects of the same underlying drift phenomenon.
Where distance measures capture instantaneous geometric deviations among embeddings, dis-
tributional metrics reveal deeper, dimension-level data density or shape shifts.

Figure 4.1: High-level workflow of using LLMs and DL experiments, creating embeddings,
testing vectors and distribution-based drifts on synthetic and real-world streams.

Each strategy can be toggled independently, depending on the accuracy, efficiency, or
interpretability requirements. The following sections detail the core components of our design.

36



CHAPTER 4. DESIGN & IMPLEMENTATION

4.2 Architecture Overview

The drift detection pipeline begins with embedding extraction (Table 4.1), which centralises
feature encoding for a wide variety of model types, ranging from autoregressive language
models (GPT-2, OPT), to encoder-decoder models (T5, MBART), masked language models (BERT,
ELECTRA), and specialised tabular architectures such as DeepFM. These embeddings serve
as consistent, high-level representations of the input, capturing key semantic or structural
information without requiring repeated, model-specific preprocessing steps. Consequently, the
same drift detection module can be reused for multiple model families by feeding it the correct
embedding vectors.

Model Type Embedding Strategy Rationale
Autoregressive LMs(e.g., GPT2, OPT, Falcon) hidden states[:,−1, :]

(last token)
Uses the final token’s hidden
state, accumulating contextual
information in causal generation.

Encoder-Decoder Models (e.g., T5, MBART) hidden states.mean(dim =

1)
(mean pooling)

No special classification token;
averaging provides a global in-
put representation.

Masked LMs (e.g., BERT, ELECTRA) hidden states[:, 0, :]
([CLS] token)

[CLS] token is trained to sum-
marise the sequence and is
widely used for downstream
tasks.

DeepFM Concatenate outputs from:
• Linear layer
• FM component
• Deep (MLP) network

Combines low-order interactions
(linear/FM) with high-order ones
(deep) for rich feature embed-
dings.

Table 4.1: Embedding extraction strategies across different model architectures

Next, a drift detection module monitors changes in embeddings to detect concept drift.
The system supports two distinct modes. In vector-based drift detection, distance metrics
such as Euclidean or Mahalanobis are computed against a running baseline of historical em-
beddings. This approach emphasises instantaneous geometric deviations, such as changes in
magnitude or direction, and enables quick detection if embeddings shift abruptly or in discrete
jumps. In contrast, distribution-based drift detection compares the probability distributions
of embeddings over time using metrics like KL divergence, Jensen-Shannon divergence, or the
Wasserstein distance. This method, which can utilise histograms or KLL sketches, is often more
sensitive to gradual or dimension-specific fluctuations, as it captures how embedding values
shift across the entire distribution.

Although either detection mode can operate independently, they are typically de-
ployed together. The vector-based approach identifies large-scale geometric changes, while
the distribution-based approach uncovers more subtle drifts that accumulate within individual
embedding dimensions. Since embeddings can become high-dimensional, especially when

37



CHAPTER 4. DESIGN & IMPLEMENTATION

generated by large language models, a summarisation or compression step becomes important.
Two complementary strategies are used here: PCA, which reduces dimensionality by projecting
onto principal components while preserving most of the variance, and KLL sketches, which
provide lightweight, per-dimension quantile-based summaries that enable efficient tracking of
distributional changes with minimal storage overhead.

This entire drift detection pipeline is integrated into the inference loop, ensuring that
detection occurs continuously rather than as a separate, offline post-processing step. When a
batch of inputs is received, embeddings are extracted during the model’s forward pass, optionally
compressed using PCA or KLL sketches, and then compared to the historical baseline using
either vector-based or distribution-based metrics.

4.3 Vector-Based Drift Detection

This component of our framework focuses on geometric deviations in the embedding space.
The core idea is to maintain running statistics of the embeddings seen so far (i.e., mean and
covariance) and periodically compute a distance between these historical statistics and new
observations. If the distance crosses a threshold, it indicates potential concept drift or anomaly.

4.3.1 Running Statistics

For each batch, we maintain a running mean �̄�𝑡 and covariance Σ𝑡 of embeddings:

�̄�𝑡 = (1 − 𝛼)�̄�𝑡−1 + 𝛼𝐸𝑡 , Σ𝑡 = (1 − 𝛼)Σ𝑡−1 + 𝛼(𝐸𝑡 − �̄�𝑡) (𝐸𝑡 − �̄�𝑡)⊤,

where 𝛼 is a small learning rate (e.g., 0.01). In practice, these values are updated incrementally,
so we don’t need to store all past embeddings. The code excerpt below shows an example of
how the covariance diagonal (var diag) is updated in real-time:

This incremental scheme ensures that older statistics fade out slowly while giving greater
weight to more recent batches.

4.3.2 Distance Metrics

Once the running statistics are updated, the compute distance function compares new em-
beddings 𝐸𝑡 to these learned baselines. As shown in Figure 4.2, we support a range of distance
measures:

{euclidean, cosine, mahalanobis, manhattan, minkowski, chebyshev, canberra}.

Each metric offers different sensitivity. For instance, the Mahalanobis distance factors in
dimension-wise variance (thus more robust to correlated features), while the Euclidean distance

38



CHAPTER 4. DESIGN & IMPLEMENTATION

provides a straightforward measure of magnitude shifts.

Figure 4.2: Distance-Based Embedding Drift Detection. Geometric shifts are tracked over time
using distance metrics.

4.4 Distribution-Based Drift Detection

Whereas vector-based methods focus on geometric deviations in the embedding space, our
distribution-based approach monitors how the probability distribution of each embedding di-
mension evolves. This method is beneficial for capturing more subtle or dimension-specific
shifts.

39



CHAPTER 4. DESIGN & IMPLEMENTATION

4.4.1 Statistical Distances

We measure divergence between two distributions using a variety of metrics:

D = {KL, JS, Hellinger, Bhattacharyya, Wasserstein, MMD}.

Each metric assesses dissimilarities differently. For example, KL divergence highlights relative
entropy (and can become large if the new distribution places probability mass where the baseline
distribution does not), whereas Wasserstein (Earth Mover’s) distance interprets the distribution
shift in terms of “transported mass.” The library functions for these metrics are invoked within
the compute distance call, depending on which distance name is selected.

4.4.2 Density Estimation Approaches

We provide two main techniques to estimate embedding distributions on a per-dimension basis.
The first method is histogramming, where each dimension of the embedding vector is divided
into fixed-width bins. The system maintains a hist counts array for each dimension to
implement this. At each time step, the embedding values are mapped to their corresponding
bins, and their counts are incremented accordingly. This process updates the histogram online,
and the resulting normalised counts can be interpreted as probability distributions for each
dimension, representing both the baseline and incoming data.

The second method is KLL sketching, which is well-suited for high-dimensional or
streaming data. In this approach, each embedding dimension is associated with a compact KLL
sketch, which summarises incoming values in a memory-efficient manner while preserving their
rank structure. Instead of storing full distributions or relying on fixed bin edges, these sketches
support flexible, post-hoc queries that approximate how the data is distributed. When comparing
two distributions, we extract summary statistics from the sketches using a set of consistent bin
boundaries, allowing the construction of approximate histograms without requiring access to
raw data. This makes KLL sketches especially useful for continuous drift detection in streaming
contexts, where memory and computational efficiency are critical.

4.4.3 Drift Score Computation

Once the baseline and current distributions are estimated for each embedding dimension, the
system computes a divergence metric to quantify their difference. For each dimension 𝑑, the
divergence is expressed as:

drift𝑑 = D
(
𝑃baseline,𝑑 , 𝑃new,𝑑

)
,

where D represents a suitable distance function such as KL divergence, Jensen-Shannon
divergence, or Wasserstein distance. After calculating these values for all dimensions, the system

40



CHAPTER 4. DESIGN & IMPLEMENTATION

aggregates them to compute an overall drift score:

Drift Score =
1
𝐷

𝐷∑︁
𝑑=1

drift𝑑 .

This scalar score summarises how much the embedding distribution has shifted relative
to historical baselines.

In practice, this computation profits by iterating over each embedding dimension. For
each one, the system retrieves the baseline PMF from a stored histogram or by querying a
KLL sketch and then generates the corresponding PMF for the new batch. Both distributions
are aligned using consistent bin edges or quantiles to ensure a valid comparison. A distance
function is then applied to quantify the difference between the baseline and the new distribution
for that dimension. The resulting divergence scores are

Figure 4.3: Embedding Drift Detection via Full and Compressed Representations. Comparison
of histograms and KLL-based summaries for detecting embedding shifts.

41



CHAPTER 4. DESIGN & IMPLEMENTATION

4.5 Implementation Details

This section describes how our embedding-based drift detection modules integrate within
the driftwatch codebase, encompassing both vector-based and distribution-based methods.
These modules are embedded into a streamlined pipeline that starts with text tokenisation and
language model inference, producing embeddings that can be used for either raw or compressed
drift detection. This arrangement minimises overhead by hooking directly into the forward pass,
thus avoiding redundant data transfers and enabling near real-time processing.

4.5.1 Integration in the Pipeline

The drift detection functionality is woven into the model inference loop rather than added as an
external step. Text data is tokenised and passed through a language model (e.g., GPT2 or BERT).
The resulting embeddings are fed directly into the drift detection module or processed via
PCA or KLL-based dimensionality reduction. This design minimises additional computations,
leveraging already computed embeddings to evaluate potential data distribution shifts.

4.5.2 EmbeddingTracker Class

The system’s core is the EmbeddingTracker class, which encapsulates the logic for updating
baseline statistics and computing drift metrics. It can be configured for vector-based detection,
where it maintains a running mean and covariance to compare new embeddings using distance
metrics such as the Mahalanobis or Euclidean distance. Alternatively, it supports distribution-
based detection by tracking histograms or KLL sketches on a per-dimension basis to monitor
shifts in the empirical distribution, using divergence metrics such as the Kullback-Leibler (KL)
divergence, Jensen-Shannon divergence, or Wasserstein distance. Both detection modes can
operate simultaneously, and each data stream may instantiate its own EmbeddingTracker if
parallel processing is required.

4.5.3 Configuration, Dependencies and Used Hardware

Parameter settings govern the detection mode and additional behaviours. For instance, speci-
fying a distribution metric (e.g., wasserstein) prompts the module to switch to distribution-
based detection, while setting distribution impl to none uses vector-based logic. Em-
beddings can be optionally transformed by PCA or by creating KLL vector sketches before
the distance or divergence calculations. These choices allow developers to tailor the trade-off
between accuracy and overhead for each deployment scenario.

In addition to standard numerical libraries, the implementation relies on:

• NumPy (v1.22+): Core numerical and array operations.

42



CHAPTER 4. DESIGN & IMPLEMENTATION

• PyTorch (v1.12+ or v2.0+): Accelerated inference of large language models.

• DataSketches (datasketches library): KLL-based streaming quantiles for embedding
dimensions.

• tqdm (v4+): CLI progress bars and timing measurements.

• tracemallow The tracemalloc module is a debug tool to trace memory blocks allocated
by Python.

• Transformers (v4+): Pre-trained architectures for consistent embedding extraction.

Experiments typically run on Python 3.12, a MacBook Pro M4 with 64GB RAM, and MPS for
optional GPU acceleration.

4.5.4 Repository Organization

The driftwatch repository arranges core functionality into separate Python modules:

• embedding tracker.py: Implements EmbeddingTracker with both vector-based and
distribution-based detection logic.

• drift detection.py: Orchestrates the end-to-end experiment flow, generating baseline
distributions, loading test data, and computing final drift scores.

• utils.py: Contains helpers for data loading, seed setting, and batch generation.

Relevant configuration files and appendices detail concurrency wrappers, environment scripts,
and extended usage examples. The codebase maintains clarity and flexibility for future enhance-
ments or model integrations by cleanly separating detection logic, experimentation routines,
and utilities.

43



Chapter 5

Experiments

This chapter evaluates the proposed embedding-based drift detection framework under synthetic
and real-world conditions. The overarching aims validate sensitivity and robustness by showing
how vector-based and distribution-based methods detect sudden, gradual, or subtle drift before
severe performance deterioration. Another central objective is to assess computational overhead,
particularly in streaming or resource-constrained contexts, by quantifying time and memory
usage for each method. Additionally, we investigate how dimension-reduction techniques (PCA
or KLL) balance sensitivity against overhead, enabling practitioners to tailor the approach to
their application. A successful outcome is demonstrated by consistently detecting induced
drift in controlled experiments and a strong correlation between drift scores and real-world
performance metrics (e.g., AUC or accuracy) in a production-like setting.

5.1 Experimental Setup and Dataset Descriptions

This section details the controlled strategies for simulating drift in text-based and tabular data,
followed by an overview of the models and datasets used in the large language model (LLM)
experiments.

5.1.1 Synthetic Drift Simulation

We employ two distinct mechanisms to induce synthetic drift under controlled conditions, one
targeting textual data for LLMs and another focusing on tabular features for DeepFM.

Text Perturbation for LLMs

Drift in text data is simulated by shuffling a configurable fraction of tokens within each sentence.
A parameter fraction shuffle (0 to 1) determines how many tokens to re-order. Low values
(near 0) minimally alter word positions, causing subtle shifts in sentence embeddings. Higher
values (near 1) lead to near-complete scrambling, approximating substantial linguistic drift (e.g.,
changed vocabulary or syntax).

44



CHAPTER 5. EXPERIMENTS

Metrics and Observations

After inducing drift through text perturbation or feature manipulation, we extract embeddings
(or feature vectors) and apply the distance/divergence metrics outlined in Chapter 4. Varying
fraction shuffle or drift strength lets us systematically investigate each metric’s sensi-
tivity, false-positive rate, and overhead for mild, moderate, or severe drift. Figure 5.1 illustrates
the overall perturbation process.

Figure 5.1: Controlled Simulation of Embedding Drift. Text data is shuffled token-wise for
LLMs, while tabular features undergo incremental shifts for DeepFM

45



CHAPTER 5. EXPERIMENTS

Models and Datasets for LLM and Tabular Experiments

LLM Models
Model Description
BLOOMZ-560M Multilingual transformer with 560M parameters.
OPT-125M Compact generative model with 125M parameters.
T5-Small Text-to-text transformer with 60M parameters.
GPT-2 Generative transformer with 117M parameters.
DistilBERT Distilled BERT variant with 66M parameters.
MobileBERT Lightweight transformer optimized for mobile devices (25M).
LLM Datasets:
Yelp Review Full— Business and restaurant reviews.
WikiText-2— Wikipedia articles with formal language.
AG News— News articles across world, business, and science.

Deep Learning Experiment
Model Description Dataset Domain
DeepFM Feature-based recommendation

model combining linear, FM, and
deep components with embedding
size 8.

Amazon Reviews User and product review stream
with temporal ordering.

Table 5.1: Overview of models and datasets used in the LLM and tabular drift detection
experiments.

To manage runtime, each dataset is truncated to 4,000 samples and processed in batches of up to
64. Drift is introduced by token shuffling, with fraction shuffle ranging from 0.0 (no drift)
to 1.0 (fully scrambled). Following embedding extraction, we optionally compress embeddings
via PCA (up to 50 principal components) or KLL sketches. These configurations facilitate an
analysis of how effectively each model-distance combination detects synthetic drift at varying
intensities, under practical runtime and memory constraints.

The original dataset sizes are as follows: Yelp Review Full contains approximately
650,000 reviews1, WikiText-2 comprises around 600,000 tokens2, and AG News includes
about 120,000 news articles3. Despite their varying sizes, we uniformly sample 4,000 entries
from each to ensure consistent evaluation conditions. The Amazon Reviews dataset, specifi-
cally the Amazon Fashion subset, contains over 2.5 million product reviews spanning 2 million
users and more than 800,000 items4. Each entry includes metadata such as user and product

1https://huggingface.co/datasets/yelp_review_full
2https://huggingface.co/datasets/wikitext
3https://huggingface.co/datasets/ag_news
4https://huggingface.co/datasets/McAuley-Lab/Amazon-Reviews-2023

46

https://huggingface.co/datasets/yelp_review_full
https://huggingface.co/datasets/wikitext
https://huggingface.co/datasets/ag_news
https://huggingface.co/datasets/McAuley-Lab/Amazon-Reviews-2023


CHAPTER 5. EXPERIMENTS

identifiers, star rating, review text, timestamps, and fields like verification status and helpful
votes. We used the fashion subset of this dataset, which contains 110000 entries. This dataset
is used in our real-world drift detection scenario, where reviews are sorted chronologically and
fed into a DeepFM model to simulate production-like streaming conditions.

5.1.2 Real-World Drift: Amazon Dataset

We additionally evaluate drift detection on a real-world dataset of Amazon product reviews,
where each record contains user and product identifiers, a binary rating label (positive vs.
negative), and a timestamp. The data are temporally sorted and split into windows, enabling
a streaming setup in which we use the early windows to establish a baseline distribution and
the subsequent windows to monitor drift in near real time. To classify reviews, we train
a DeepFM model on the initial (baseline) portion; subsequent windows are fed through the
model, measuring how well the learned embeddings and prediction performance hold up as
data evolves.

Figure 5.2 illustrates how the model’s rolling accuracy/AUC responds to natural distribu-
tion shifts over time. Our drift detectors track these changes in parallel, using both vector-based
and distribution-based metrics on the internal embeddings generated by DeepFM. If drift scores
consistently spike before or alongside performance drops, we can conclude that embedding-level
monitoring captures relevant shifts in user or product distributions.

Figure 5.2: Performance drift and detection in a real-world Amazon review stream. The rolling
accuracy or AUC reflects the impact of shifting user/product distributions.

47



CHAPTER 5. EXPERIMENTS

5.2 Hyperparameters and Hardware Details

This section summarises the key parameters governing our experiments. Table 5.2 outlines the
configurations used across various system components.

Parameter Description Value / Setting
Drift Window Size Amount of historical data retained Sliding, time-based
Smoothing Factor 𝛼 Weight for running statistics update 0.01 – 0.1
Thresholding Fixed or adaptive threshold for drift Fixed (1.5𝜎), Adaptive Quantile
PCA Components Dimensionality after PCA reduction 50
KLL Sketch Parameter 𝑘 Compression factor for quantile sketch 50
Embedding Dimensionality Size of raw model embeddings 128 – 1024
DeepFM Optimizer Optimizer used for model training Adam
DeepFM Batch Size Number of samples per batch 512
DeepFM Learning Rate Step size for optimization 0.001

Table 5.2: Summary of core hyperparameters and implementation settings.

Experiments typically run on Python 3.12, a MacBook Pro M4 with 64GB RAM, and
MPS for optional GPU acceleration. For the LLM models default configurations are used.

5.3 Baselines and Drift Detection Algorithms

To situate our proposed framework within the broader landscape of drift detection, we com-
pare several methods that represent distinct approaches to capturing changes in data streams.
Specifically, we consider both vector-based and distribution-based metrics, with optional com-
pression strategies, and include a naive baseline to highlight the added value of embedding-level
monitoring.

5.3.1 Distance and Divergence Metrics

Our framework supports two main categories of drift detection: vector-based distances and
distribution-based divergences. We compute metrics between new embeddings and a running
historical baseline in the vector-based approach to capture instantaneous geometric deviations.
Common examples include Euclidean distance, which emphasizes overall magnitude changes;
Mahalanobis distance, which incorporates covariance to handle correlations among embedding
dimensions; Cosine distance, which captures angular variations and is often robust to scale
differences; and variants such as Minkowski, Manhattan, Chebyshev, or Canberra, each offering
a distinct norm or sensitivity profile for detecting displacement in embedding space.

In contrast, distribution-based methods compare the entire embedding distribution at
different time points, thus capturing subtler shifts or dimension-specific anomalies. Metrics such

48



CHAPTER 5. EXPERIMENTS

as KL, JS, Hellinger, and Bhattacharyya divergences measure how probability mass redistributes.
At the same time, MMD and Wasserstein provide kernel-based or “mass transport” perspectives
for detecting more profound structural changes in the data. Integrating these two complementary
approaches allows the system to identify abrupt, large-scale embedding variations and more
gradual, distribution-level evolution.

5.3.2 Compression Strategies

Each distance or divergence metric can be applied to the original, high-dimensional embeddings
or compressed versions. Principal component analysis (PCA) projects embeddings onto the top
𝑘 components, preserving the dimensions with the highest variance. Using a sketching approach,
KLL-based vector reduction encodes per-dimension quantiles, significantly lowering storage
costs and enabling dimension-specific drift detection. Histogram summaries, meanwhile, split
each dimension into fixed-width intervals to approximate the distribution, requiring relatively
little memory but offering coarser granularity compared to KLL.

5.3.3 Naive Baseline: Checking Drift via DeepFM Metrics

As a baseline, we include a naive approach that does not directly monitor internal embeddings.
Instead, it relies on standard model error or performance metrics, akin to the prior BSc DeepFM
experiment on the Amazon dataset [68]. Under this baseline, drift is flagged only if there
is a noticeable change in external metrics (e.g., a sudden drop in accuracy or AUC). This
strategy reflects a real-world scenario in which practitioners discover data shifts by monitoring
performance degradation or error spikes, without any insight into the underlying embedding
changes. By comparing this naive baseline against our embedding-level detectors, we can
quantify the extent to which internal representation monitoring provides earlier or more nuanced
signals of drift.

Windowing and Thresholding Technique

Our system manages drift detection thresholds through a dynamic, window-based approach that
continually updates its cutoff. Initially, a set of early windows is designated as a baseline, from
which we compute a mean and standard deviation of drift distances. The baseline threshold is set
by adding a sensitivity multiplier (e.g., THRESHOLD MULTIPLIER) times the standard deviation
to the mean. As new windows are processed in chronological order, the threshold adapts to
recent drift distances, ensuring it remains responsive in the face of gradual or incremental
changes.

When the drift distance for a newly arrived window exceeds the current threshold, the
system flags a drift event and, if configured, raises an alert. Conversely, if no drift is detected
and adaptive updating is enabled, the baseline model (or statistical summary) is retrained or

49



CHAPTER 5. EXPERIMENTS

incrementally adjusted using this new window. This design allows the threshold to evolve
naturally while avoiding spurious alerts caused by minor fluctuations.

The window-based thresholding scheme can differentiate genuine distributional shifts
from ordinary variation in the data stream by integrating seamlessly with vector-based and
distribution-based drift detection modules. In practice, this leads to drift alerts that often
coincide with actual performance degradations (for instance, as monitored by a naive baseline)
or evident changes in embedding distributions.

50



Chapter 6

Results

This chapter proceeds in three stages. First, we evaluate metric behaviour under synthetic,
fully-controlled drift. Second, we report the computational cost of the same implementations.
Finally, we examine eight years of production data to see how the metrics behave.

6.1 Synthetic Drift Detection

To assess metric sensitivity under controlled perturbations, we simulated drift with intensity
Δ ∈ [0, 1] and evaluated both vector- and distribution-based distances. Two complementary
axes are reported: the relative increase in drift score (sensitivity) and the field similarity to the
reference sample.

The figure shows how drift scores evolve as synthetic drift intensity increases from no
perturbation (Δ = 0) to complete drift (Δ = 1), underlining fundamental differences between
vector-based and distribution-based metrics. For vector-based metrics like Euclidean and
Cosine, the drift response is notably steep in the early stages, rising quickly and nearly saturating
by a drift intensity of 0.25. Their trajectories form a characteristic S-shaped curve, indicating
a rapid response followed by early saturation. Most metrics plateau near their maximum
sensitivity levels around Δ = 0.5 and maintain high values beyond that point, occasionally
showing a slight decline at the upper end of the drift spectrum.

In contrast, distribution-based metrics display a more gradual and consistent increase
across the entire range of drift. Early drift changes produce a gentler rise, with metrics like
Kullback–Leibler divergence (KLL) responding more promptly. As drift progresses to mid-level
intensity, distribution metrics generally range between 0.6 and 0.8 in their normalised relative
increase, reflecting a retained sensitivity without premature saturation. When drift is strong,
most distribution-based scores catch up and approach maximum values, similar to their vector-
based counterparts. Unlike the sharp early saturation seen in vector metrics, distribution metrics
tend to increase nearly linearly across the full drift spectrum, reflecting a more proportional
scaling with the perturbation level.

51



CHAPTER 6. RESULTS

Figure 6.1: Normalised relative increase in drift score across Δ ∈ [0, 1]. Top: vector metrics;
bottom: distribution metrics.

6.1.1 Metric Sensitivity Ranking

Figure 6.2 shows how different distance metrics respond to increasing levels of synthetic drift,
revealing two main patterns. These patterns depend more on how the data is represented than
on the specific distance formula. When using full vector embeddings, metrics like Canberra,
Chebyshev, Euclidean, Mahalanobis, Manhattan, and Minkowski respond quickly. Their scores

52



CHAPTER 6. RESULTS

jump from near zero to around 90% similarity by the time drift reaches 0.3. After that, they
mostly level off, though Euclidean and Chebyshev show a slight drop near the end. The
same metrics applied to PCA-reduced vectors respond much more slowly, showing only small
increases and ending at about a third of the full-vector values, even at maximum drift. When
vectors are summarised using KLL sketches, the response is minimal across all metrics, with
low scores indicating a significant loss of sensitivity in this format. In contrast, distribution-
based metrics show the opposite behaviour. Using KLL sketches, distances like Bhattacharyya,
Hellinger, Jensen–Shannon, KL, MMD, and Wasserstein increase steadily and almost linearly,
reaching high similarity scores at complete drift. Histogram representations perform moderately
well, reaching 40–60% of the KLL values. PCA-based histograms are the least sensitive,
barely reacting even at maximum drift. Still, all three distribution formats show a consistent,
proportional relationship between drift strength and similarity score without flattening out early.

53



CHAPTER 6. RESULTS

Figure 6.2: Drift Sensitivity by Distance Metric and Data Representation

6.1.2 Quantitative Snapshot

The table 6.1 presents a summary of how vector-based and distribution-based metrics respond
to increasing levels of synthetic drift, highlighting both the relative increase in drift score and
the resulting field similarity. At zero drift, both metric families behave as expected: there is
no change in the drift score (0.00), and the field similarity remains perfect (1.00). As drift
emerges at Δ = 0.2, vector metrics react more strongly than distribution-based ones, with a
sharp relative increase of 0.72 compared to 0.28. This early sensitivity in vectors comes at the
cost of field similarity, which drops to 0.40, while distributions retain a higher similarity of
0.80. At the midpoint of drift (Δ = 0.5), both metric types continue to rise, but vector metrics

54



CHAPTER 6. RESULTS

are already nearing saturation with a 0.90 increase, whereas distribution-based metrics are at
0.62. Field similarity diverges, dropping to 0.20 for vectors and 0.55 for distributions. The gap
narrows as drift intensifies (Δ = 0.8 and 1.0). Distribution-based metrics catch up, showing
a near-complete response (0.98) at complete drift, slightly exceeding the final vector increase
of 0.94. However, the field similarity declines steeply in vector methods, reaching just 0.06 at
complete drift, compared to 0.10 for distributions.

Table 6.1: Mean metric outputs at selected drift levels.

Drift level (Δ) Relative Increase Field Similarity

Vector Distr. Vector Distr.

0.0 0.00 0.00 1.00 1.00
0.25 0.72 0.28 0.40 0.80
0.5 0.90 0.62 0.20 0.55
0.75 0.97 0.90 0.08 0.25
1.0 0.94 0.98 0.06 0.10

6.2 Memory and Runtime Efficiency

The same experimental pipeline was profiled for memory footprint and per-batch compute cost.
These results in table 6.2 compare the memory usage of different method variants during batch
processing, focusing on the additional memory each approach consumes per batch. The findings
reveal that distribution-based methods consistently use more memory than their vector-based
counterparts across all representations. For full embedding representations, the distribution-
based method increases memory by an average of 0.85 MB per batch, while the vector-based
version adds just 0.02 MB. The same pattern holds for PCA-reduced data, where distribution-
based methods consume 0.93 MB per batch, slightly more than the full embedding, compared
to only 0.04 MB for vectors. Even with KLL, a more compact summary representation,
distribution-based methods still show a higher memory footprint at 0.43 MB, whereas the
vector-based approach stays minimal at 0.03 MB.

Table 6.2: Mean per-batch resident-set memory increase (MB) for each method variant.

Method Variant Distribution-Based Vector-Based

Full Embedding 0.85 0.02
PCA Reduced 0.93 0.04
KLL (reduced) 0.43 0.03

Figure 6.3 compares the per-batch compute time of two summarisation methods, Incre-

55



CHAPTER 6. RESULTS

mental PCA and KLL Sketches, across 100 incoming data batches. Both methods start with
higher initial compute times, decreasing as the models stabilise, but differ in magnitude and
efficiency. Incremental PCA begins with a noticeable compute spike, peaking around 0.0018
seconds for the first batch, and gradually settles to around 0.0004 seconds per batch. This early
overhead is expected due to matrix decompositions and fitting steps in online dimensionality
reduction. KLL Sketches, in contrast, consistently require less time per batch. They start lower,
around 0.0007 seconds, and stabilise more quickly, maintaining a steady runtime below 0.0004
seconds after the initial few batches. Throughout the sequence, KLL remains faster than PCA,
with a smaller variability band indicating better efficiency and runtime stability.

Figure 6.3: Per-batch update time for Incremental PCA vs. kll. Shaded band = one standard
deviation.

6.2.1 Memory Benchmarking

To evaluate memory and runtime efficiency under realistic stream conditions, we benchmarked
both Incremental PCA and KLL Sketches on a synthetic dataset of 1,000,000 samples, each with
100 features, processed in batches of 1,000. The goal was to assess how these methods scale with
increasing compression aggressiveness, using principal component count (𝑛components) for PCA
and sketch size (𝑘KLL) for KLL as tunable parameters. Table 6.3 reports mean runtime and peak
memory usage across various compression settings. For PCA, both runtime and memory grow
gradually as the number of components increases. Runtime ranges from 1.12 to 1.23 seconds,
while memory consumption grows from roughly 11.5 to 15.4 megabytes as the dimensionality is
scaled from 2 to 100 components. In contrast, KLL Sketches maintain a near-constant memory
footprint across all tested sketch sizes. Even at the highest setting (𝑘 = 200), memory usage
remains fixed at approximately 4.08 megabytes, with negligible variation. Runtime for KLL

56



CHAPTER 6. RESULTS

is also consistently lower than PCA, ranging from 0.54 to 0.61 seconds, even at larger sketch
sizes.

Table 6.3: Runtime and peak memory across compression parameters. Values are mean ± sd.

PCA KLL
𝑛components Time (s) Memory (MB) 𝑘KLL Time (s) Memory (MB)

2 1.12±0.08 11.5 ± 0.2 8 0.55±0.02 4.08 ± 0.002
5 1.10±0.07 11.6 ± 0.002 16 0.54±0.01 4.08 ± 0.001

10 1.12±0.07 11.8 ± 0.004 32 0.56±0.02 4.08 ± 0.001
20 1.13±0.08 12.2 ± 0.004 64 0.58±0.03 4.08 ± 0.003
50 1.16±0.05 13.4 ± 0.002 128 0.58±0.01 4.08 ± 0.003

100 1.23±0.07 15.4 ± 0.002 200 0.61±0.02 4.08 ± 0.002

6.3 Real-World Drift Detection

We evaluate the metrics on a production recommendation system monitored from 2015 to
2023, using the DeepFM model trained on the Amazon dataset (see Section 5.1.1). The
analysis compares vector-based and distribution-based drift scores with downstream AUC across
significant periods of system change.

From 2015 to mid-2020, both drift metrics remained low (vector: 0.02–0.10, distri-
bution: 0.05–0.15), and AUC was consistently high, around 0.99. In late 2020, vector-based
metrics, such as Manhattan and Euclidean, crossed the 0.25 threshold, while distribution-based
scores remained low (≈0.05). At this point, AUC remained unaffected, suggesting early signals
of drift are detectable only through vector metrics. By April 2021, vector drift had climbed
above 0.40, while KL divergence was below 0.10. Shortly after, AUC began to decline, dipping
below 0.97. At the end of that year, all vector metrics exceeded 0.80, and KL rose sharply
to 0.60. This marked a significant turning point, with AUC falling from 0.95 to 0.65. By
mid-2022, both drift families had plateaued at high values, and AUC reached its lowest point
at 0.58. From 2023 onward, drift scores remained elevated (distribution >0.75; vector slightly
declining), while AUC stayed low, around 0.62, indicating lasting performance degradation.

57



CHAPTER 6. RESULTS

Figure 6.4: Time-series of drift scores (top: vector, bottom: distribution) and downstream AUC
(dashed). Grey regions mark known degradation intervals.

Averaged across all performance degradation events, vector metrics crossed the 0.25
warning threshold on average 87± 12 days before the AUC began to drop. In contrast,
distribution-based metrics crossed it about 34± 15 days after the AUC was already declining.
This lead time difference is statistically significant (Welch’s 𝑡 = 4.3, 𝑝 = 4 × 10−4), confirming
that vector-based drift metrics offer a substantial early warning advantage in production settings.

6.3.1 Drift–Performance Correlation

The table 6.4 and figure 6.5 summarise the relationship between model performance (measured
as AUC) and drift magnitude across time segments from 2015 to 2023. Drift is captured
separately by distribution-based and vector-based metrics, and the correlation with AUC is
quantified using the Pearson correlation coefficient (𝑟). In the early years (2015–2019), both
drift scores were low and stable (around 0.10), and the AUC remained high at 0.992. The
correlation between drift and AUC is weak (𝑟 = −0.10), indicating a minimal relationship.
Drift was minimal and did not significantly affect model performance.

58



CHAPTER 6. RESULTS

Table 6.4: Pearson correlation (𝑟) between average drift magnitude and AUC. Updated to match
plotted values.

Segment 𝑑Distr. 𝑑Vector AUC 𝑟

2015–2019 0.10 ± 0.02 0.10 ± 0.03 0.992 ± 0.003 −0.10
2020 0.12 ± 0.03 0.15 ± 0.03 0.989 ± 0.003 −0.25
2021 0.18 ± 0.04 0.30 ± 0.05 0.960 ± 0.012 −0.68
2022–2023 0.55 ± 0.08 0.90 ± 0.05 0.620 ± 0.040 −0.96

In 2020, drift increased slightly, with vector-based metrics rising to 0.15. AUC remains
high at 0.989, but the correlation strengthens to 𝑟 = −0.25, suggesting the early signs of a
negative trend between drift and performance. By 2021, the effect becomes clearer. Drift
scores increase notably (vector: 0.30, distribution: 0.18), while AUC drops to 0.960.

Figure 6.5: Average drift magnitude vs. AUC. Higher drift aligns with lower AUC, particularly
after 2021.

The correlation becomes stronger (𝑟 = −0.68), showing that growing drift is increasingly

59



CHAPTER 6. RESULTS

associated with worsening model performance. The most significant change happens in the
2022–2023 period. Vector drift peaks near 0.90, and distribution drift rises to 0.55. At the
same time, AUC drops sharply to around 0.62. The Pearson correlation reaches 𝑟 = −0.96,
indicating a strong negative correlation: model performance consistently and strongly declines
as drift increases.

60



Chapter 7

Discussion

This thesis investigated the efficacy, efficiency, and robustness of embedding-based drift de-
tection across synthetic and real-world data scenarios. The results provide insights into how
various metrics and data representations behave under drift, and how these behaviours relate
to model performance degradation. In this section, we interpret the key findings, critically
assess the trade-offs, and connect them directly to the research questions and objectives outlined
earlier.

RQ1 – Detecting Performance-Impacting Drift: Vector vs. Distribution Metrics. A central
question in this research was whether vector-based drift metrics in embedding space can detect
harmful concept drift and distinguish it from benign changes. Results from synthetic and
real-world data show that vector-based metrics provide earlier and more sensitive signals of
performance-impacting drift, especially during the initial stages of change. In the real-world
case study (Section 6.3), vector metrics raised warnings 87 days before a decline in AUC
was observed. This lead time was longer than distribution-based metrics, which often reacted
after performance degradation had already begun. These findings suggest that changes in
embedding space, as measured by vector distances, reflect early shifts that may signal upcoming
performance issues. However, synthetic experiments (Section 6.1) reveal limitations. Vector-
based metrics tend to saturate early, often by a drift intensity of Δ = 0.3, and lose their ability
to scale proportionally with increasing drift. This makes it difficult to distinguish between
moderate and severe drift levels.

In contrast, distribution-based metrics increase steadily across the drift spectrum and
maintain a proportional relationship with drift strength. A practical takeaway is that vector-
based metrics are helpful for early warnings, while distribution-based metrics are better suited
for tracking the progression of drift. Combining both types can support early detection and
stable monitoring. While earlier research highlights feature-space drift as less impactful, it
does not specifically dive into vector-based distance metrics in embedding spaces [20]. These
findings imply that feature space drift detection is effective for early identification of changes,
requiring minimal memory usage, which makes it ideal for streaming situations.

RQ2 – Effectiveness Across Data Scenarios and Benchmarks. Across both synthetic and
real-world data, the evaluated metrics showed consistent performance, but also revealed essential

61



CHAPTER 7. DISCUSSION

limitations. In controlled settings, most vector-based metrics (e.g., Euclidean, Manhattan,
Mahalanobis) responded sharply to even trim drift levels. However, their performance depended
heavily on the choice of embedding representation. Full embeddings produced strong signals,
while reduced formats like PCA and KLL significantly weakened drift sensitivity, as shown
in Figure 6.2. In the production dataset, these trends held. Vector-based drift scores aligned
closely with periods of performance decline in a deployed DeepFM recommendation model.
This supports the use of synthetic drift benchmarks for evaluating real-world detection strategies.
Notably, earlier studies did not address the performance degradation associated with using PCA
for dimension reduction, affecting input drift detection. Our research introduces KLL Sketch
as a viable alternative in streaming contexts, offering comparable signal integrity to PCA but
with reduced memory demands.

RQ3 – Model Size, Architecture, Memory Usage and Overhead. The third research question
investigated the impact of model size and architectural choices on the computational overhead
associated with drift detection. It became clear that such cost isn’t solely dependent on model
size but is significantly influenced by the architecture’s design and the strategy employed for
extracting embeddings. Vector-based methods demonstrated high efficiency across all tested
representations, maintaining a memory requirement of less than 0.05 MB per batch. In contrast,
distribution-based methods exhibited considerably higher memory consumption, reaching up
to 0.93 MB per batch when applied with PCA. These findings highlight that vector-based
metrics offer better scalability and are inherently more suited to real-time applications or
environments where resources are limited. Moreover, lightweight architecture and effective
summarisation techniques like KLL Sketch can greatly enhance memory efficiency. Unlike
regular histograms, which use a fixed amount of memory based on the number of bins and
dimensions, KLL Sketch adapts its memory usage according to the data’s complexity. It
employs an adaptive quantile estimation approach that minimises storage needs by strategically
storing the most informative data points at varying detail levels. This technique enables highly
efficient distribution-based calculations, such as estimating the Wasserstein distance, even with
high-dimensional embeddings where conventional methods may be memory-intensive.

Unlike earlier studies that lacked comprehensive benchmarks of various models and
data sets, our research includes a broad spectrum of architectures, including autoregressive
language models, encoder-decoder frameworks, masked language models, and hybrid models
like DeepFM [5, 7, 34, 20]. This variety provides a more complete evaluation of drift detection
strategies across different frameworks, helping to identify optimal configurations for balancing
detection precision with resource consumption.

RQ4–RQ8 – Trade-offs in Embedding Compression. PCA and KLL were evaluated as
dimensionality reduction techniques for embedding compression. PCA preserved more of
the original structure and supported better drift sensitivity in vector-based metrics, although

62



CHAPTER 7. DISCUSSION

it incurred higher memory and runtime costs. KLL sketches, on the other hand, were more
memory-efficient but lost too much signal for practical use in vector-based metrics. However,
KLL sketches performed better in the distributional space than PCA histograms. They produced
smoother, more linear responses to drift, making them more suitable for use with distribution-
based metrics. These results show that the choice between PCA and KLL depends on the metric
used. PCA works better for vector distances, while KLL is more effective for distributional
comparisons. The choice should be tailored to the specific application.

KLL sketches likely outperformed PCA histograms for several reasons. KLL sketches
are designed to maintain compact representations of distributions with bounded memory usage,
adapting their resolution to accurately reflect data distribution. This contrasts with histograms,
which require fixed storage and use fixed-width bins that may not effectively capture subtle dis-
tribution changes. Additionally, PCA adds an extra layer of information loss before histogram
creation, while KLL sketches streamline updates, providing better approximations for distribu-
tion metrics like quantiles in streaming situations. This computational efficiency is achieved
because KLL sketches focus resolution precisely where the data warrants it, allowing memory
and accuracy performance, particularly when computing distribution-based distances such as
Wasserstein or MMD for drift detection.

No earlier research has systematically compared the performance of PCA and KLL in
the context of embedding compression’s impact on drift detection efficiency and effectiveness.
This study fills this gap, providing valuable insights that contribute to a more informed selection
between these techniques, tailored to operational requirements for optimising drift detection
efficiency and effectiveness.

RQ6 – Metric Design and Drift Strength Scaling. Existing research highlights a gap in
reliable drift detection across various real-world datasets, underlining the need for consistent
evaluation protocols. Our results show that embedding format greatly influences drift detection,
more so than the specific metric used, reflecting findings by Cao et al. on anomaly detection.
Metrics like Euclidean, Manhattan, and Mahalanobis work well on full embeddings but lose
effectiveness when used on compressed formats. This highlights the importance of preserving
representation quality for reliable results. Distribution metrics like KL divergence and Wasser-
stein distance excel in detecting drift, especially in detailed, sketch-based formats. This suggests
that a chosen embedding technique is vital for effective drift detection, supporting the need for
interpretability as stated by the paper of Hinder, Vaquet, and Hammer.

Limitations and Considerations. Several limitations require careful consideration when
evaluating the performance of drift detection metrics, especially in low-sample and low-
dimensionality scenarios. Figure 7.1 shows a setting with a small corpus of only 100 texts
distributed over varying drift strengths, using just two principal components (𝑛components = 2)
and a minimal sketch size (𝑘KLL = 8). Under these constraints, vector-based metrics, especially

63



CHAPTER 7. DISCUSSION

those derived from KLL summaries, tend to highlight individual outliers aggressively. This
often results in spurious spikes that could be misinterpreted as drift. When paired with specific
metrics like cosine or Canberra, PCA-based vector distances show instability and inconsistent
behaviour, suggesting that their reliability may degrade under severe dimensionality reduction.
Conversely, distribution-based metrics demonstrate more predictable trends under the same
constraints. KLL, when used in a distributional context, remains comparatively stable even
at low sample sizes. PCA, however, again shows varying responses, particularly when ap-
plied to histogram-based representations, and fails to track drift consistently. This discrepancy
underscores a broader pattern observed throughout this work.

Figure 7.1: With a small corpus of 100 texts—distributed over drift strengths 0:1—and a very
low number of principal components (𝑛components = 2) and nearest neighbours (𝑘KLL = 8).

Vector-based metrics are inherently more sensitive and reactive to subtle changes in the
embedding space. While this heightened sensitivity enables early warnings, it also increases
susceptibility to noise and false positives, especially before any true drift occurs. In real-world
data (see Figure 6.4), these metrics often show elevated scores well before any measurable
performance degradation, with only a subset maintaining stability in the pre-drift window. In
contrast, distribution-based metrics generally exhibit more conservative behaviour. They tend
to remain low and stable until actual drift sets in, only rising once a substantive shift is detected.
Notable exceptions include the Maximum Mean Discrepancy and Wasserstein distances, which
occasionally respond earlier but still do so more selectively than their vector-based counterparts.

This provides a trade-off between early warning and temporal stability. Aggregated
vector distances tend to flag drift sooner, offering potentially valuable lead time in dynamic

64



CHAPTER 7. DISCUSSION

environments. However, this comes at the cost of more significant variance and more noise
in periods of relative data stability. While slower to react, distribution-based metrics provide
smoother, more robust signals with fewer false alarms. These limitations suggest that the choice
between vector and distribution-based metrics should be guided by operational tolerance for
early false positives versus delayed but more reliable detection. This is particularly relevant in
settings with tight memory or dimensionality constraints, or where data arrives in small batches.
Vector-based metrics are unstable and need to be balanced with the more reliable and steady
distribution-based approaches.

65



Chapter 8

Conclusion

This thesis evaluated the effectiveness and practicality of embedding-based drift detection in
dynamic machine learning systems, with a focus on distinguishing between harmful concept drift
and benign representation shifts. This study includes a longitudinal evaluation of time-stamped
production data from a deployed Amazon recommendation system, empirically comparing
vector-based and distribution-based drift metrics, their associated compression techniques, and
their performance under various operational constraints.

Despite their susceptibility to noise, the results consistently demonstrate that vector-
based metrics are highly effective in detecting performance-impacting drift. In controlled
simulations and an eight-year analysis of a production recommender system, vector distances
exhibited clear preemptive signals ahead of measurable performance decline. On average, they
flagged drift nearly three months before any drop in AUC, offering substantial lead time for
intervention. This finding addresses the central research question and positions vector metrics
as valuable early-warning tools in non-stationary environments. At the same time, distribution-
based metrics demonstrated superior temporal stability, rising more proportionally with the
severity of drift and producing smoother signals over time. While slower to react, these metrics
proved better suited for long-term monitoring and post-hoc analysis of systemic shifts, especially
in settings where false alarms incur operational costs or trigger conservative responses.

The study also shows that embedding the representation format has a greater influ-
ence on drift sensitivity than the choice of distance metric itself. Full embeddings preserve
semantic detail and support strong signal fidelity but come at the cost of increased memory
and computation. Dimensionality reduction techniques, such as PCA and KLL Sketch, offer a
spectrum of trade-offs: PCA preserves more structure at a moderate overhead, while KLL offers
substantial memory savings with more aggressive information loss, especially in vector-based
detection. Vector-based methods also proved more computationally efficient across all em-
bedding formats, consistently requiring less memory and runtime than their distribution-based
counterparts. This scalability makes them appropriate for high-frequency monitoring or deploy-
ment on resource-constrained systems. These findings contribute a practical and interpretable
framework for embedding-based drift detection. The proposed EmbeddingTracker pipeline
is modular, real-time, and adaptable to various model architectures and deployment contexts. It
enables practitioners to calibrate their detection strategy according to specific trade-offs between
responsiveness, robustness, and computational cost.

66



CHAPTER 8. CONCLUSION

The research addressed several gaps in understanding the application of embedding-
based drift detection metrics. It clarified the dynamics of vector-based metrics in antici-
pating performance-impacting drift, contrasting with traditional methods that primarily react
post-degradation. This positions vector-based metrics as essential tools for early intervention
strategies, especially in dynamic and non-stationary environments. Furthermore, the analy-
sis underlined the impact of embedding representation formats on drift sensitivity, addressing
a previously unexplored dimension where representation fidelity can overshadow the choice
of distance metric for drift detection efficacy. By systematically comparing PCA and KLL
Sketch, the study reveals their strengths and weaknesses under different dimension reduction
constraints, thereby bridging a gap not previously addressed by earlier work. Additionally, the
thesis highlighted the scalability of these methods across diverse contexts, providing insight
into the cost versus performance benefits that aid practitioners in selecting suitable detection
strategies. Through these insights, the study offers a framework for optimising drift detection
processes, responding directly to the nuanced needs of modern, resource-constrained systems
and contributing significantly to advancing the field of embedding-based drift detection.

8.1 Implications and Future Directions

The observed results and architectural insights from this work lay the groundwork for integrating
embedding-based drift detection into real-world machine learning operations. One promising
direction is the development of a feedback-driven retraining loop that pairs the responsiveness of
vector-based alerts with the reliability of distribution-based validation. As demonstrated in this
thesis, vector distances can act as low-latency canary signals, computed on short windows (e.g.,
hourly PCA-reduced batches), while distribution-based metrics, such as KL divergence, provide
high-confidence validation signals over longer horizons (e.g., daily histogram snapshots).

We suggest a drift-aware MLOps pipeline with a shadow model trained on a rolling
90-day window, using exponential decay, to apply these insights. The model is automatically
promoted when drift exceeds a sustained threshold and its validation performance surpasses
that of the necessary. This system incorporates traffic-split staging, diagnostic Shapley analysis
for feature attribution under shift, and scheduled full retraining to accommodate slow-changing
seasonal dynamics. Table ?? summarises projected improvements, including reduced detection
and recovery times. KLL Sketch helps summarise large logs or telemetry data to estimate
latency percentiles without storing all raw events. We can compare these results with shifts in
telemetry data.

Figures 8.1 through 8.3 show how this loop integrates with existing MLOps workflows.
Drift metrics are surfaced via a real-time observability stack, feeding into automated retraining
pipelines. Promotion gates enforce stability through rollback mechanisms, canary deployments,
and performance thresholds. This architecture ensures that drift detection is not merely reactive,
but embedded in a closed feedback loop, interpretable, auditable, and scalable.

67



CHAPTER 8. CONCLUSION

Figure 8.1: Real-time drift detection and retraining trigger architecture. Metric streams and
control flows illustrate how distributional shift propagates through the observability stack to
initiate model updates.

In conclusion, this thesis demonstrates that embedding-based drift detection is feasi-
ble and effective when paired with appropriate representations, compression techniques, and
distance metrics. By bridging theoretical sensitivity with operational robustness, the proposed
framework enhances the design of resilient machine learning systems that can adapt intelligently
to continuous data evolution.

1https://github.com/GoogleCloudPlatform/microservices-demo

68



CHAPTER 8. CONCLUSION

Figure 8.2: Canonical MLOps lifecycle comprising build, deploy and monitor phases. Solid
arrows denote the forward progression, while dashed arrows indicate remediation paths activated
by performance alerts.

Figure 8.3: Google Cloud Platform’s Online Boutique microservices architecture1. Machine-
learning components interface with traditional services through well-defined APIs, enabling the
drift-detection loop to harvest inference telemetry with minimal intrusion.

69



References

[1] Samuel Ackerman et al. Theory and Practice of Quality Assurance for Machine Learning
Systems An Experiment Driven Approach. arXiv:2201.00355 [cs]. Apr. 2022. doi: 10.
48550/arXiv.2201.00355. url: http://arxiv.org/abs/2201.00355 (visited on
04/07/2025).

[2] Supriya Agrahari and Anil Kumar Singh. “Concept Drift Detection in Data Stream
Mining : A literature review”. In: Journal of King Saud University - Computer and
Information Sciences 34.10, Part B (Nov. 2022), pp. 9523–9540. issn: 1319-1578. doi:
10.1016/j.jksuci.2021.11.006. url: https://www.sciencedirect.com/
science/article/pii/S1319157821003062 (visited on 12/06/2024).

[3] Sultan Alshamrani. “Distance Matters: Euclidean Embedding Distances for Improved
Language Model Generalization and Adaptability”. In: IEEE Access 12 (2024), pp. 103583–
103593. issn: 2169-3536. doi: 10 . 1109 / ACCESS . 2024 . 3434612. url: https :
//ieeexplore.ieee.org/abstract/document/10613752 (visited on 04/06/2025).

[4] Raman Arora et al. “Stochastic optimization for PCA and PLS”. en. In: 2012 50th
Annual Allerton Conference on Communication, Control, and Computing (Allerton).
Monticello, IL, USA: IEEE, Oct. 2012, pp. 861–868. isbn: 978-1-4673-4539-2 978-
1-4673-4537-8 978-1-4673-4538-5. doi: 10.1109/Allerton.2012.6483308. url:
http://ieeexplore.ieee.org/document/6483308/ (visited on 04/11/2025).

[5] Md Ahsan Ayub and Subhabrata Majumdar. Embedding-based classifiers can detect
prompt injection attacks. arXiv:2410.22284 [cs]. Oct. 2024. doi: 10.48550/arXiv.
2410.22284. url: http://arxiv.org/abs/2410.22284 (visited on 04/20/2025).

[6] Eduardo V. L. Barboza et al. Distance Functions and Normalization Under Stream
Scenarios. arXiv:2307.00106 [cs]. July 2023. doi: 10.48550/arXiv.2307.00106.
url: http://arxiv.org/abs/2307.00106 (visited on 04/01/2025).

[7] Sidahmed Benabderrahmane et al. APT-LLM: Embedding-Based Anomaly Detection of
Cyber Advanced Persistent Threats Using Large Language Models. arXiv:2502.09385
[cs]. Feb. 2025. doi: 10.48550/arXiv.2502.09385. url: http://arxiv.org/abs/
2502.09385 (visited on 04/20/2025).

[8] Albert Bifet. “Classifier Concept Drift Detection and the Illusion of Progress”. en. In:
Artificial Intelligence and Soft Computing. Ed. by Leszek Rutkowski et al. Cham: Springer
International Publishing, 2017, pp. 715–725. isbn: 978-3-319-59060-8. doi: 10.1007/
978-3-319-59060-8_64.

70

https://doi.org/10.48550/arXiv.2201.00355
https://doi.org/10.48550/arXiv.2201.00355
http://arxiv.org/abs/2201.00355
https://doi.org/10.1016/j.jksuci.2021.11.006
https://www.sciencedirect.com/science/article/pii/S1319157821003062
https://www.sciencedirect.com/science/article/pii/S1319157821003062
https://doi.org/10.1109/ACCESS.2024.3434612
https://ieeexplore.ieee.org/abstract/document/10613752
https://ieeexplore.ieee.org/abstract/document/10613752
https://doi.org/10.1109/Allerton.2012.6483308
http://ieeexplore.ieee.org/document/6483308/
https://doi.org/10.48550/arXiv.2410.22284
https://doi.org/10.48550/arXiv.2410.22284
http://arxiv.org/abs/2410.22284
https://doi.org/10.48550/arXiv.2307.00106
http://arxiv.org/abs/2307.00106
https://doi.org/10.48550/arXiv.2502.09385
http://arxiv.org/abs/2502.09385
http://arxiv.org/abs/2502.09385
https://doi.org/10.1007/978-3-319-59060-8_64
https://doi.org/10.1007/978-3-319-59060-8_64


REFERENCES

[9] Albert Bifet and Ricard Gavaldà. “Learning from Time-Changing Data with Adaptive
Windowing”. In: vol. 7. Apr. 2007. doi: 10.1137/1.9781611972771.42.

[10] Christopher M. Bishop. Pattern Recognition and Machine Learning. en. 2006. url:
https://link.springer.com/book/9780387310732 (visited on 05/28/2025).

[11] Dariusz Brzezinski and Jerzy Stefanowski. “Reacting to Different Types of Concept
Drift: The Accuracy Updated Ensemble Algorithm”. In: IEEE Transactions on Neural
Networks and Learning Systems 25.1 (Jan. 2014). Conference Name: IEEE Transactions
on Neural Networks and Learning Systems, pp. 81–94. issn: 2162-2388. doi: 10.1109/
TNNLS.2013.2251352. url: https://ieeexplore.ieee.org/document/6494309
(visited on 11/13/2024).

[12] Dariusz Brzeziński and Jerzy Stefanowski. “Accuracy Updated Ensemble for Data Streams
with Concept Drift”. en. In: Hybrid Artificial Intelligent Systems. Ed. by Emilio Corchado,
Marek Kurzyński, and Micha l Woźniak. Berlin, Heidelberg: Springer, 2011, pp. 155–
163. isbn: 978-3-642-21222-2. doi: 10.1007/978-3-642-21222-2_19.

[13] Yang Cao et al. TAD-Bench: A Comprehensive Benchmark for Embedding-Based Text
Anomaly Detection. arXiv:2501.11960 [cs]. Jan. 2025. doi: 10.48550/arXiv.2501.
11960. url: http://arxiv.org/abs/2501.11960 (visited on 04/19/2025).

[14] Hervé Cardot and David Degras. Online Principal Component Analysis in High Di-
mension: Which Algorithm to Choose? arXiv:1511.03688 [stat]. Nov. 2015. doi: 10.
48550/arXiv.1511.03688. url: http://arxiv.org/abs/1511.03688 (visited on
04/20/2025).

[15] Rodolfo C Cavalcante and Adriano LI Oliveira. “An approach to handle concept drift in
financial time series based on Extreme Learning Machines and explicit Drift Detection”.
In: IEEE, 2015, pp. 1–8. isbn: 1-4799-1960-8.

[16] Emanuele Cavenaghi et al. “Non Stationary Multi-Armed Bandit: Empirical Evaluation
of a New Concept Drift-Aware Algorithm”. en. In: Entropy 23.3 (Mar. 2021). Number:
3 Publisher: Multidisciplinary Digital Publishing Institute, p. 380. issn: 1099-4300. doi:
10.3390/e23030380. url: https://www.mdpi.com/1099-4300/23/3/380 (visited
on 09/19/2024).

[17] Jaime Céspedes Sisniega et al. “Efficient and scalable covariate drift detection in machine
learning systems with serverless computing”. In: Future Generation Computer Systems
161 (Dec. 2024), pp. 174–188. issn: 0167-739X. doi: 10.1016/j.future.2024.
07 . 010. url: https : / / www . sciencedirect . com / science / article / pii /
S0167739X24003716 (visited on 04/07/2025).

71

https://doi.org/10.1137/1.9781611972771.42
https://link.springer.com/book/9780387310732
https://doi.org/10.1109/TNNLS.2013.2251352
https://doi.org/10.1109/TNNLS.2013.2251352
https://ieeexplore.ieee.org/document/6494309
https://doi.org/10.1007/978-3-642-21222-2_19
https://doi.org/10.48550/arXiv.2501.11960
https://doi.org/10.48550/arXiv.2501.11960
http://arxiv.org/abs/2501.11960
https://doi.org/10.48550/arXiv.1511.03688
https://doi.org/10.48550/arXiv.1511.03688
http://arxiv.org/abs/1511.03688
https://doi.org/10.3390/e23030380
https://www.mdpi.com/1099-4300/23/3/380
https://doi.org/10.1016/j.future.2024.07.010
https://doi.org/10.1016/j.future.2024.07.010
https://www.sciencedirect.com/science/article/pii/S0167739X24003716
https://www.sciencedirect.com/science/article/pii/S0167739X24003716


REFERENCES

[18] Chiao-Ting Chen et al. “Credit Card Fraud Detection via Intelligent Sampling and Self-
supervised Learning”. In: ACM Trans. Intell. Syst. Technol. 15.2 (Mar. 2024), 35:1–
35:29. issn: 2157-6904. doi: 10.1145/3641283. url: https://dl.acm.org/doi/
10.1145/3641283 (visited on 11/15/2024).

[19] Jiaoyan Chen et al. “Knowledge graph embeddings for dealing with concept drift in
machine learning”. In: Journal of Web Semantics 67 (Feb. 2021), p. 100625. issn: 1570-
8268. doi: 10.1016/j.websem.2020.100625. url: https://www.sciencedirect.
com/science/article/pii/S1570826820300585 (visited on 04/19/2025).

[20] Zhi Chen et al. “Is It Overkill? Analyzing Feature-Space Concept Drift in Malware De-
tectors”. en. In: 2023 IEEE Security and Privacy Workshops (SPW). San Francisco, CA,
USA: IEEE, May 2023, pp. 21–28. isbn: 979-8-3503-1236-2. doi: 10.1109/SPW59333.
2023.00007. url: https://ieeexplore.ieee.org/document/10188641/ (visited
on 04/02/2025).

[21] Lénaı̈c Chizat et al. “Faster Wasserstein Distance Estimation with the Sinkhorn Diver-
gence”. In: Advances in Neural Information Processing Systems. Vol. 33. Curran Asso-
ciates, Inc., 2020, pp. 2257–2269. url: https://proceedings.neurips.cc/paper/
2020/hash/17f98ddf040204eda0af36a108cbdea4-Abstract.html (visited on
04/07/2025).

[22] Per-Erik Danielsson. “Euclidean distance mapping”. In: Computer Graphics and Image
Processing 14.3 (Nov. 1980), pp. 227–248. issn: 0146-664X. doi: 10.1016/0146-
664X(80)90054-4. url: https://www.sciencedirect.com/science/article/
pii/0146664X80900544 (visited on 04/06/2025).

[23] R. De Maesschalck, D. Jouan-Rimbaud, and D. L. Massart. “The Mahalanobis dis-
tance”. In: Chemometrics and Intelligent Laboratory Systems 50.1 (Jan. 2000), pp. 1–18.
issn: 0169-7439. doi: 10.1016/S0169-7439(99)00047-7. url: https://www.
sciencedirect.com/science/article/pii/S0169743999000477 (visited on
04/06/2025).

[24] Ryan Elwell and Robi Polikar. “Incremental Learning of Concept Drift in Nonstationary
Environments”. In: IEEE Transactions on Neural Networks 22.10 (Oct. 2011). Conference
Name: IEEE Transactions on Neural Networks, pp. 1517–1531. issn: 1941-0093. doi:
10.1109/TNN.2011.2160459. url: https://ieeexplore.ieee.org/document/
5975223/?arnumber=5975223 (visited on 09/19/2024).

[25] Tim van Erven and Peter Harremos. “Rényi Divergence and Kullback-Leibler Diver-
gence”. In: IEEE Transactions on Information Theory 60.7 (July 2014), pp. 3797–3820.
issn: 1557-9654. doi: 10.1109/TIT.2014.2320500. url: https://ieeexplore.
ieee.org/document/6832827/ (visited on 04/07/2025).

72

https://doi.org/10.1145/3641283
https://dl.acm.org/doi/10.1145/3641283
https://dl.acm.org/doi/10.1145/3641283
https://doi.org/10.1016/j.websem.2020.100625
https://www.sciencedirect.com/science/article/pii/S1570826820300585
https://www.sciencedirect.com/science/article/pii/S1570826820300585
https://doi.org/10.1109/SPW59333.2023.00007
https://doi.org/10.1109/SPW59333.2023.00007
https://ieeexplore.ieee.org/document/10188641/
https://proceedings.neurips.cc/paper/2020/hash/17f98ddf040204eda0af36a108cbdea4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/17f98ddf040204eda0af36a108cbdea4-Abstract.html
https://doi.org/10.1016/0146-664X(80)90054-4
https://doi.org/10.1016/0146-664X(80)90054-4
https://www.sciencedirect.com/science/article/pii/0146664X80900544
https://www.sciencedirect.com/science/article/pii/0146664X80900544
https://doi.org/10.1016/S0169-7439(99)00047-7
https://www.sciencedirect.com/science/article/pii/S0169743999000477
https://www.sciencedirect.com/science/article/pii/S0169743999000477
https://doi.org/10.1109/TNN.2011.2160459
https://ieeexplore.ieee.org/document/5975223/?arnumber=5975223
https://ieeexplore.ieee.org/document/5975223/?arnumber=5975223
https://doi.org/10.1109/TIT.2014.2320500
https://ieeexplore.ieee.org/document/6832827/
https://ieeexplore.ieee.org/document/6832827/


REFERENCES

[26] M Faisal, E M Zamzami, and Sutarman. “Comparative Analysis of Inter-Centroid K-
Means Performance using Euclidean Distance, Canberra Distance and Manhattan Dis-
tance”. en. In: Journal of Physics: Conference Series 1566.1 (June 2020). Publisher: IOP
Publishing, p. 012112. issn: 1742-6596. doi: 10.1088/1742-6596/1566/1/012112.
url: https://dx.doi.org/10.1088/1742-6596/1566/1/012112 (visited on
04/06/2025).

[27] Maxime Fuccellaro. “Concept Drift: detection, update and correction”. fr. In: (2024).

[28] B. Fuglede and F. Topsoe. “Jensen-Shannon divergence and Hilbert space embedding”.
In: International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings. June
2004, pp. 31–. doi: 10.1109/ISIT.2004.1365067. url: https://ieeexplore.
ieee.org/abstract/document/1365067 (visited on 04/07/2025).

[29] João Gama et al. “A survey on concept drift adaptation”. In: ACM Comput. Surv. 46.4
(Mar. 2014), 44:1–44:37. issn: 0360-0300. doi: 10.1145/2523813. url: https:
//dl.acm.org/doi/10.1145/2523813 (visited on 11/12/2024).

[30] João Gama et al. “Learning with Drift Detection”. en. In: Advances in Artificial Intelli-
gence – SBIA 2004. Ed. by Ana L. C. Bazzan and Sofiane Labidi. Berlin, Heidelberg:
Springer, 2004, pp. 286–295. isbn: 978-3-540-28645-5. doi: 10.1007/978-3-540-
28645-5_29.

[31] Hamid Ghorbani. “MAHALANOBIS DISTANCE AND ITS APPLICATION FOR DE-
TECTING MULTIVARIATE OUTLIERS”. en. In: Facta Universitatis, Series: Mathe-
matics and Informatics 0 (Oct. 2019). Number: 0, pp. 583–595. issn: 2406-047X. doi:
10.22190/FUMI1903583G. url: https://casopisi.junis.ni.ac.rs/index.
php/FUMathInf/article/view/5028 (visited on 04/06/2025).

[32] Vı́ctor González-Castro, Rocı́o Alaiz-Rodrı́guez, and Enrique Alegre. “Class distribution
estimation based on the Hellinger distance”. In: Information Sciences 218 (Jan. 2013),
pp. 146–164. issn: 0020-0255. doi: 10.1016/j.ins.2012.05.028. url: https://
www.sciencedirect.com/science/article/pii/S0020025512004069 (visited
on 04/07/2025).

[33] François Goudail, Philippe Réfrégier, and Guillaume Delyon. “Bhattacharyya distance
as a contrast parameter for statistical processing of noisy optical images”. EN. In: JOSA
A 21.7 (July 2004). Publisher: Optica Publishing Group, pp. 1231–1240. issn: 1520-
8532. doi: 10.1364/JOSAA.21.001231. url: https://opg.optica.org/josaa/
abstract.cfm?uri=josaa-21-7-1231 (visited on 04/07/2025).

[34] Misgina Tsighe Hagos et al. Distance-Aware eXplanation Based Learning. arXiv:2309.05548
[cs]. Sept. 2023. doi: 10.48550/arXiv.2309.05548. url: http://arxiv.org/
abs/2309.05548 (visited on 04/20/2025).

73

https://doi.org/10.1088/1742-6596/1566/1/012112
https://dx.doi.org/10.1088/1742-6596/1566/1/012112
https://doi.org/10.1109/ISIT.2004.1365067
https://ieeexplore.ieee.org/abstract/document/1365067
https://ieeexplore.ieee.org/abstract/document/1365067
https://doi.org/10.1145/2523813
https://dl.acm.org/doi/10.1145/2523813
https://dl.acm.org/doi/10.1145/2523813
https://doi.org/10.1007/978-3-540-28645-5_29
https://doi.org/10.1007/978-3-540-28645-5_29
https://doi.org/10.22190/FUMI1903583G
https://casopisi.junis.ni.ac.rs/index.php/FUMathInf/article/view/5028
https://casopisi.junis.ni.ac.rs/index.php/FUMathInf/article/view/5028
https://doi.org/10.1016/j.ins.2012.05.028
https://www.sciencedirect.com/science/article/pii/S0020025512004069
https://www.sciencedirect.com/science/article/pii/S0020025512004069
https://doi.org/10.1364/JOSAA.21.001231
https://opg.optica.org/josaa/abstract.cfm?uri=josaa-21-7-1231
https://opg.optica.org/josaa/abstract.cfm?uri=josaa-21-7-1231
https://doi.org/10.48550/arXiv.2309.05548
http://arxiv.org/abs/2309.05548
http://arxiv.org/abs/2309.05548


REFERENCES

[35] Ahsanul Haque, Latifur Khan, and Michael Baron. “SAND: Semi-Supervised Adaptive
Novel Class Detection and Classification over Data Stream”. en. In: Proceedings of the
AAAI Conference on Artificial Intelligence 30.1 (Feb. 2016). Number: 1. issn: 2374-3468.
doi: 10.1609/aaai.v30i1.10283. url: https://ojs.aaai.org/index.php/
AAAI/article/view/10283 (visited on 11/13/2024).

[36] Fabian Hinder, Valerie Vaquet, and Barbara Hammer. “One or two things we know about
concept drift—a survey on monitoring in evolving environments. Part B: locating and
explaining concept drift”. In: Frontiers in Artificial Intelligence 7 (July 2024), p. 1330258.
issn: 2624-8212. doi: 10.3389/frai.2024.1330258. url: https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC11294200/ (visited on 04/19/2025).

[37] Yupeng Hou et al. Bridging Language and Items for Retrieval and Recommendation.
arXiv:2403.03952. Mar. 2024. doi: 10.48550/arXiv.2403.03952. url: http:
//arxiv.org/abs/2403.03952 (visited on 11/14/2024).

[38] Don H Johnson and Sinan Sinanovic. “Symmetrizing the Kullback-Leibler Distance”.
en. In: (2021).

[39] T. Kailath. “The Divergence and Bhattacharyya Distance Measures in Signal Selection”.
In: IEEE Transactions on Communication Technology 15.1 (Feb. 1967), pp. 52–60. issn:
2162-2175. doi: 10.1109/TCOM.1967.1089532. url: https://ieeexplore.ieee.
org/abstract/document/1089532 (visited on 04/07/2025).

[40] Zohar Karnin, Kevin Lang, and Edo Liberty. Optimal Quantile Approximation in Streams.
arXiv:1603.05346 [cs]. Apr. 2016. doi: 10.48550/arXiv.1603.05346. url: http:
//arxiv.org/abs/1603.05346 (visited on 04/06/2025).

[41] J Zico Kolter and Marcus A Maloof. “Dynamic weighted majority: An ensemble method
for drifting concepts”. In: The Journal of Machine Learning Research 8 (2007). Publisher:
JMLR. org, pp. 2755–2790. issn: 1532-4435.

[42] Ali Kore et al. “Empirical data drift detection experiments on real-world medical imaging
data”. en. In: Nature Communications 15.1 (Feb. 2024). Publisher: Nature Publishing
Group, p. 1887. issn: 2041-1723. doi: 10.1038/s41467-024-46142-w. url: https:
//www.nature.com/articles/s41467-024-46142-w (visited on 12/06/2024).

[43] S. Kullback and R. A. Leibler. “On Information and Sufficiency”. In: The Annals of
Mathematical Statistics 22.1 (Mar. 1951). Publisher: Institute of Mathematical Statis-
tics, pp. 79–86. issn: 0003-4851, 2168-8990. doi: 10 . 1214 / aoms / 1177729694.
url: https://projecteuclid.org/journals/annals- of- mathematical-
statistics/volume-22/issue-1/On-Information-and-Sufficiency/10.

1214/aoms/1177729694.full (visited on 12/07/2024).

74

https://doi.org/10.1609/aaai.v30i1.10283
https://ojs.aaai.org/index.php/AAAI/article/view/10283
https://ojs.aaai.org/index.php/AAAI/article/view/10283
https://doi.org/10.3389/frai.2024.1330258
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294200/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294200/
https://doi.org/10.48550/arXiv.2403.03952
http://arxiv.org/abs/2403.03952
http://arxiv.org/abs/2403.03952
https://doi.org/10.1109/TCOM.1967.1089532
https://ieeexplore.ieee.org/abstract/document/1089532
https://ieeexplore.ieee.org/abstract/document/1089532
https://doi.org/10.48550/arXiv.1603.05346
http://arxiv.org/abs/1603.05346
http://arxiv.org/abs/1603.05346
https://doi.org/10.1038/s41467-024-46142-w
https://www.nature.com/articles/s41467-024-46142-w
https://www.nature.com/articles/s41467-024-46142-w
https://doi.org/10.1214/aoms/1177729694
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-1/On-Information-and-Sufficiency/10.1214/aoms/1177729694.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-1/On-Information-and-Sufficiency/10.1214/aoms/1177729694.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-1/On-Information-and-Sufficiency/10.1214/aoms/1177729694.full


REFERENCES

[44] Cheuk Ting Li, Jingwei Zhang, and Farzan Farnia. “On Convergence in Wasserstein
Distance and f-divergence Minimization Problems”. en. In: Proceedings of The 27th In-
ternational Conference on Artificial Intelligence and Statistics. ISSN: 2640-3498. PMLR,
Apr. 2024, pp. 2062–2070. url: https://proceedings.mlr.press/v238/ting-
li24a.html (visited on 04/07/2025).

[45] Anjin Liu, Jie Lu, and Guangquan Zhang. “Concept Drift Detection via Equal Intensity
k-Means Space Partitioning”. In: IEEE Transactions on Cybernetics 51.6 (June 2021).
Conference Name: IEEE Transactions on Cybernetics, pp. 3198–3211. issn: 2168-2275.
doi: 10.1109/TCYB.2020.2983962. url: https://ieeexplore.ieee.org/
abstract/document/9076305 (visited on 11/13/2024).

[46] Jie Lu et al. “Learning under Concept Drift: A Review”. In: IEEE Transactions on
Knowledge and Data Engineering 31.12 (Dec. 2019). Conference Name: IEEE Trans-
actions on Knowledge and Data Engineering, pp. 2346–2363. issn: 1558-2191. doi:
10.1109/TKDE.2018.2876857. url: https://ieeexplore.ieee.org/abstract/
document/8496795 (visited on 11/12/2024).

[47] Daniel Lukats et al. “A benchmark and survey of fully unsupervised concept drift de-
tectors on real-world data streams”. en. In: International Journal of Data Science and
Analytics 19.1 (Jan. 2025), pp. 1–31. issn: 2364-4168. doi: 10.1007/s41060-024-
00620-y. url: https://doi.org/10.1007/s41060-024-00620-y (visited on
04/19/2025).

[48] Neelu Madan et al. “Self-Supervised Masked Convolutional Transformer Block for
Anomaly Detection”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
46.1 (Jan. 2024). Conference Name: IEEE Transactions on Pattern Analysis and Machine
Intelligence, pp. 525–542. issn: 1939-3539. doi: 10.1109/TPAMI.2023.3322604.
url: https://ieeexplore.ieee.org/abstract/document/10273635 (visited on
10/19/2024).

[49] Saranya Maneeroj and Nakarin Sritrakool. “An End-to-End Personalized Preference
Drift Aware Sequential Recommender System With Optimal Item Utilization”. In: IEEE
Access 10 (2022). Conference Name: IEEE Access, pp. 62932–62952. issn: 2169-3536.
doi: 10.1109/ACCESS.2022.3182390. url: https://ieeexplore.ieee.org/
document/9794734/?arnumber=9794734 (visited on 09/19/2024).

[50] Mohammad Masud et al. “Classification and Novel Class Detection in Concept-Drifting
Data Streams under Time Constraints”. In: IEEE Transactions on Knowledge and Data
Engineering 23.6 (June 2011). Conference Name: IEEE Transactions on Knowledge
and Data Engineering, pp. 859–874. issn: 1558-2191. doi: 10.1109/TKDE.2010.61.
url: https://ieeexplore.ieee.org/abstract/document/5453372 (visited on
11/13/2024).

75

https://proceedings.mlr.press/v238/ting-li24a.html
https://proceedings.mlr.press/v238/ting-li24a.html
https://doi.org/10.1109/TCYB.2020.2983962
https://ieeexplore.ieee.org/abstract/document/9076305
https://ieeexplore.ieee.org/abstract/document/9076305
https://doi.org/10.1109/TKDE.2018.2876857
https://ieeexplore.ieee.org/abstract/document/8496795
https://ieeexplore.ieee.org/abstract/document/8496795
https://doi.org/10.1007/s41060-024-00620-y
https://doi.org/10.1007/s41060-024-00620-y
https://doi.org/10.1007/s41060-024-00620-y
https://doi.org/10.1109/TPAMI.2023.3322604
https://ieeexplore.ieee.org/abstract/document/10273635
https://doi.org/10.1109/ACCESS.2022.3182390
https://ieeexplore.ieee.org/document/9794734/?arnumber=9794734
https://ieeexplore.ieee.org/document/9794734/?arnumber=9794734
https://doi.org/10.1109/TKDE.2010.61
https://ieeexplore.ieee.org/abstract/document/5453372


REFERENCES

[51] M. L. Menéndez et al. “The Jensen-Shannon divergence”. In: Journal of the Franklin
Institute 334.2 (Mar. 1997), pp. 307–318. issn: 0016-0032. doi: 10.1016/S0016-
0032(96)00063-4. url: https://www.sciencedirect.com/science/article/
pii/S0016003296000634 (visited on 04/07/2025).

[52] Michael Muhlbaier and Robi Polikar. “Multiple Classifiers Based Incremental Learning
Algorithm for Learning in Nonstationary Environments”. In: vol. 6. Sept. 2007, pp. 3618–
3623. isbn: 978-1-4244-0973-0. doi: 10.1109/ICMLC.2007.4370774.

[53] Soumyaroop Nandi. “ROBUST OBJECT TRACKING AND ADAPTIVE DETECTION
FOR AUTO NAVIGATION OF UNMANNED AERIAL VEHICLE”. en. In: ().

[54] Frank Nielsen. “On a Generalization of the Jensen–Shannon Divergence and the Jensen–Shannon
Centroid”. en. In: Entropy 22.2 (Feb. 2020). Number: 2 Publisher: Multidisciplinary
Digital Publishing Institute, p. 221. issn: 1099-4300. doi: 10.3390/e22020221. url:
https://www.mdpi.com/1099-4300/22/2/221 (visited on 04/07/2025).

[55] E. S. Page. “Continuous Inspection Schemes”. In: Biometrika 41.1/2 (1954). Publisher:
[Oxford University Press, Biometrika Trust], pp. 100–115. issn: 0006-3444. doi: 10.
2307/2333009. url: https://www.jstor.org/stable/2333009 (visited on
11/13/2024).

[56] John Paparrizos et al. A Survey on Time-Series Distance Measures. arXiv:2412.20574
[cs]. Dec. 2024. doi: 10.48550/arXiv.2412.20574. url: http://arxiv.org/abs/
2412.20574 (visited on 04/01/2025).

[57] R. Polikar et al. “Learn++: an incremental learning algorithm for supervised neural net-
works”. In: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews) 31.4 (Nov. 2001). Conference Name: IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews), pp. 497–508. issn: 1558-2442. doi:
10.1109/5326.983933. url: https://ieeexplore.ieee.org/document/983933
(visited on 11/13/2024).

[58] Aniq Ur Rahman, Gourab Ghatak, and Antonio De Domenico. “An Online Algorithm
for Computation Offloading in Non-Stationary Environments”. In: IEEE Communi-
cations Letters 24.10 (Oct. 2020). Conference Name: IEEE Communications Letters,
pp. 2167–2171. issn: 1558-2558. doi: 10.1109/LCOMM.2020.3004523. url: https:
//ieeexplore.ieee.org/document/9123932/?arnumber=9123932 (visited on
09/19/2024).

[59] Muhammad Rajabinasab et al. “Randomized PCA forest for approximate k-nearest neigh-
bor search”. In: Expert Systems with Applications 281 (July 2025), p. 126254. issn: 0957-
4174. doi: 10.1016/j.eswa.2024.126254. url: https://www.sciencedirect.
com/science/article/pii/S095741742403121X (visited on 04/20/2025).

76

https://doi.org/10.1016/S0016-0032(96)00063-4
https://doi.org/10.1016/S0016-0032(96)00063-4
https://www.sciencedirect.com/science/article/pii/S0016003296000634
https://www.sciencedirect.com/science/article/pii/S0016003296000634
https://doi.org/10.1109/ICMLC.2007.4370774
https://doi.org/10.3390/e22020221
https://www.mdpi.com/1099-4300/22/2/221
https://doi.org/10.2307/2333009
https://doi.org/10.2307/2333009
https://www.jstor.org/stable/2333009
https://doi.org/10.48550/arXiv.2412.20574
http://arxiv.org/abs/2412.20574
http://arxiv.org/abs/2412.20574
https://doi.org/10.1109/5326.983933
https://ieeexplore.ieee.org/document/983933
https://doi.org/10.1109/LCOMM.2020.3004523
https://ieeexplore.ieee.org/document/9123932/?arnumber=9123932
https://ieeexplore.ieee.org/document/9123932/?arnumber=9123932
https://doi.org/10.1016/j.eswa.2024.126254
https://www.sciencedirect.com/science/article/pii/S095741742403121X
https://www.sciencedirect.com/science/article/pii/S095741742403121X


REFERENCES

[60] É. O. Rodrigues. “Combining Minkowski and Chebyshev: New distance proposal and
survey of distance metrics using k-nearest neighbours classifier”. In: Pattern Recognition
Letters 110 (July 2018), pp. 66–71. issn: 0167-8655. doi: 10.1016/j.patrec.2018.
03 . 021. url: https : / / www . sciencedirect . com / science / article / pii /
S0167865518301004 (visited on 04/06/2025).

[61] Adam Roe et al. Semantic Drift Mitigation in Large Language Model Knowledge Re-
tention Using the Residual Knowledge Stability Concept. en. Nov. 2024. doi: 10 .
36227/techrxiv.173091142.28945162/v1. url: https://www.techrxiv.org/
users/848561/articles/1235973-semantic-drift-mitigation-in-large-

language-model-knowledge-retention-using-the-residual-knowledge-

stability- concept?commit=6c1f1f78ce6c915229fbb66806704a19d2f06e54

(visited on 12/11/2024).

[62] Ylenia Rotalinti et al. “Detecting drift in healthcare AI models based on data availability”.
In: Springer, 2022, pp. 243–258.

[63] Tegjyot Singh Sethi and Mehmed Kantardzic. “On the reliable detection of concept drift
from streaming unlabeled data”. In: Expert Systems with Applications 82 (Oct. 2017),
pp. 77–99. issn: 0957-4174. doi: 10.1016/j.eswa.2017.04.008. url: https://
www.sciencedirect.com/science/article/pii/S0957417417302439 (visited
on 12/06/2024).

[64] Vinicius M. A. Souza, Farhan A. Chowdhury, and Abdullah Mueen. “Unsupervised Drift
Detection on High-speed Data Streams”. en. In: 2020 IEEE International Conference
on Big Data (Big Data). Atlanta, GA, USA: IEEE, Dec. 2020, pp. 102–111. isbn:
978-1-7281-6251-5. doi: 10.1109/BigData50022.2020.9377880. url: https:
//ieeexplore.ieee.org/document/9377880/ (visited on 05/28/2025).

[65] Marieke Stolte et al. “Methods for Quantifying Dataset Similarity: a Review, Taxonomy
and Comparison”. In: Statistics Surveys 18.none (Jan. 2024). arXiv:2312.04078 [stat].
issn: 1935-7516. doi: 10.1214/24-SS149. url: http://arxiv.org/abs/2312.
04078 (visited on 04/07/2025).

[66] R Suwanda, Z Syahputra, and E M Zamzami. “Analysis of Euclidean Distance and
Manhattan Distance in the K-Means Algorithm for Variations Number of Centroid K”. en.
In: Journal of Physics: Conference Series 1566.1 (June 2020). Publisher: IOP Publishing,
p. 012058. issn: 1742-6596. doi: 10.1088/1742-6596/1566/1/012058. url: https:
//dx.doi.org/10.1088/1742-6596/1566/1/012058 (visited on 04/06/2025).

[67] Arthur Szlam, Yuval Kluger, and Mark Tygert. An implementation of a randomized
algorithm for principal component analysis. arXiv:1412.3510 [stat]. Dec. 2014. doi:
10.48550/arXiv.1412.3510. url: http://arxiv.org/abs/1412.3510 (visited
on 04/20/2025).

77

https://doi.org/10.1016/j.patrec.2018.03.021
https://doi.org/10.1016/j.patrec.2018.03.021
https://www.sciencedirect.com/science/article/pii/S0167865518301004
https://www.sciencedirect.com/science/article/pii/S0167865518301004
https://doi.org/10.36227/techrxiv.173091142.28945162/v1
https://doi.org/10.36227/techrxiv.173091142.28945162/v1
https://www.techrxiv.org/users/848561/articles/1235973-semantic-drift-mitigation-in-large-language-model-knowledge-retention-using-the-residual-knowledge-stability-concept?commit=6c1f1f78ce6c915229fbb66806704a19d2f06e54
https://www.techrxiv.org/users/848561/articles/1235973-semantic-drift-mitigation-in-large-language-model-knowledge-retention-using-the-residual-knowledge-stability-concept?commit=6c1f1f78ce6c915229fbb66806704a19d2f06e54
https://www.techrxiv.org/users/848561/articles/1235973-semantic-drift-mitigation-in-large-language-model-knowledge-retention-using-the-residual-knowledge-stability-concept?commit=6c1f1f78ce6c915229fbb66806704a19d2f06e54
https://www.techrxiv.org/users/848561/articles/1235973-semantic-drift-mitigation-in-large-language-model-knowledge-retention-using-the-residual-knowledge-stability-concept?commit=6c1f1f78ce6c915229fbb66806704a19d2f06e54
https://doi.org/10.1016/j.eswa.2017.04.008
https://www.sciencedirect.com/science/article/pii/S0957417417302439
https://www.sciencedirect.com/science/article/pii/S0957417417302439
https://doi.org/10.1109/BigData50022.2020.9377880
https://ieeexplore.ieee.org/document/9377880/
https://ieeexplore.ieee.org/document/9377880/
https://doi.org/10.1214/24-SS149
http://arxiv.org/abs/2312.04078
http://arxiv.org/abs/2312.04078
https://doi.org/10.1088/1742-6596/1566/1/012058
https://dx.doi.org/10.1088/1742-6596/1566/1/012058
https://dx.doi.org/10.1088/1742-6596/1566/1/012058
https://doi.org/10.48550/arXiv.1412.3510
http://arxiv.org/abs/1412.3510


REFERENCES

[68] Volkenandt, Marcel. “Herausforderungen und Chancen von AI Observability durch Inte-
gration von ML Modellen in Open Telemetry”. BSc Thesis. Leibniz Universität Hannover,
Aug. 2024.

[69] Ke Wan, Yi Liang, and Susik Yoon. “Online Drift Detection with Maximum Concept
Discrepancy”. In: Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. KDD ’24. New York, NY, USA: Association for Comput-
ing Machinery, Aug. 2024, pp. 2924–2935. isbn: 979-8-4007-0490-1. doi: 10.1145/
3637528.3672016. url: https://dl.acm.org/doi/10.1145/3637528.3672016
(visited on 04/19/2025).

[70] Elias Werner et al. Towards Computational Performance Engineering for Unsuper-
vised Concept Drift Detection – Complexities, Benchmarking, Performance Analysis.
arXiv:2304.08319 [cs]. June 2024. doi: 10.48550/arXiv.2304.08319. url: http:
//arxiv.org/abs/2304.08319 (visited on 04/19/2025).

[71] Jobin Wilson, Santanu Chaudhury, and Brejesh Lall. “Multi-armed bandit based on-
line model selection for concept-drift adaptation”. en. In: Expert Systems 41.9 (2024).
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/exsy.13626, e13626. issn: 1468-

0394. doi: 10.1111/exsy.13626. url: https://onlinelibrary.wiley.com/doi/
abs/10.1111/exsy.13626 (visited on 11/15/2024).

[72] Jiqing Wu et al. “Wasserstein Divergence for GANs”. In: 2018, pp. 653–668. url:
https://openaccess.thecvf.com/content_ECCV_2018/html/Jiqing_Wu_

Wasserstein_Divergence_For_ECCV_2018_paper.html (visited on 04/07/2025).

[73] Shiming Xiang, Feiping Nie, and Changshui Zhang. “Learning a Mahalanobis distance
metric for data clustering and classification”. In: Pattern Recognition 41.12 (Dec. 2008),
pp. 3600–3612. issn: 0031-3203. doi: 10.1016/j.patcog.2008.05.018. url:
https://www.sciencedirect.com/science/article/pii/S0031320308002057

(visited on 04/06/2025).

[74] Fuheng Zhao et al. “KLL± approximate quantile sketches over dynamic datasets”. en.
In: Proceedings of the VLDB Endowment 14.7 (Mar. 2021), pp. 1215–1227. issn: 2150-
8097. doi: 10.14778/3450980.3450990. url: https://dl.acm.org/doi/10.
14778/3450980.3450990 (visited on 04/07/2025).

[75] Xiulin Zheng et al. “Semi-supervised classification on data streams with recurring
concept drift and concept evolution”. In: Knowledge-Based Systems 215 (Mar. 2021),
p. 106749. issn: 0950-7051. doi: 10.1016/j.knosys.2021.106749. url: https:
//www.sciencedirect.com/science/article/pii/S0950705121000125 (vis-
ited on 11/13/2024).

78

https://doi.org/10.1145/3637528.3672016
https://doi.org/10.1145/3637528.3672016
https://dl.acm.org/doi/10.1145/3637528.3672016
https://doi.org/10.48550/arXiv.2304.08319
http://arxiv.org/abs/2304.08319
http://arxiv.org/abs/2304.08319
https://doi.org/10.1111/exsy.13626
https://onlinelibrary.wiley.com/doi/abs/10.1111/exsy.13626
https://onlinelibrary.wiley.com/doi/abs/10.1111/exsy.13626
https://openaccess.thecvf.com/content_ECCV_2018/html/Jiqing_Wu_Wasserstein_Divergence_For_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Jiqing_Wu_Wasserstein_Divergence_For_ECCV_2018_paper.html
https://doi.org/10.1016/j.patcog.2008.05.018
https://www.sciencedirect.com/science/article/pii/S0031320308002057
https://doi.org/10.14778/3450980.3450990
https://dl.acm.org/doi/10.14778/3450980.3450990
https://dl.acm.org/doi/10.14778/3450980.3450990
https://doi.org/10.1016/j.knosys.2021.106749
https://www.sciencedirect.com/science/article/pii/S0950705121000125
https://www.sciencedirect.com/science/article/pii/S0950705121000125

	Abstract
	Introduction
	Background & Related Work
	Concept Drift: Definitions and Impact
	Strategies for Detecting and Adapting to Concept Drift

	Traditional vs. Modern Drift Detection Approaches
	Semi-Supervised Drift Detection Methods
	Comparing Supervised, Unsupervised, and Semi-Supervised Drift Detection
	Self-Supervised Learning for Anomaly and Drift Detection
	Ensemble-Based Drift Detection Methods
	Motivation for a New Drift Detection Framework


	Deep Learning for Concept Drift Detection

	Mathematical Foundations of Drift Detection
	Vector/Feature-Space Distances in Drift Detection
	Overview of Vector/Feature-Space Distances Metrics
	Why These Metrics Matter for Embedding Drift Detection?


	Distribution-Based Distances and Divergences
	Overview of Distribution-Based Distances and Divergences
	Choosing the Right Metric for Distributional Drift Detection


	A Comparative Analysis PCA and the KLL Sketch Algorithm
	Principal Component Analysis (PCA)
	Mathematical Foundation
	Algorithmic Complexity and Memory
	Numerical and Implementation Details for Streaming PCA

	KLL Sketch
	Purpose and Guarantees
	Core Data Structure
	Space Complexity

	Fundamental Differences between PCA and KLL Sketch


	Design & Implementation
	Motivation
	Architecture Overview
	Vector-Based Drift Detection
	Running Statistics
	Distance Metrics

	Distribution-Based Drift Detection
	Statistical Distances
	Density Estimation Approaches
	Drift Score Computation

	Implementation Details
	Integration in the Pipeline
	EmbeddingTracker Class
	Configuration, Dependencies and Used Hardware
	Repository Organization


	Experiments
	Experimental Setup and Dataset Descriptions
	Synthetic Drift Simulation
	Text Perturbation for LLMs
	Metrics and Observations
	Models and Datasets for LLM and Tabular Experiments

	Real-World Drift: Amazon Dataset

	Hyperparameters and Hardware Details
	Baselines and Drift Detection Algorithms
	Distance and Divergence Metrics
	Compression Strategies
	Naive Baseline: Checking Drift via DeepFM Metrics
	Windowing and Thresholding Technique



	Results
	Synthetic Drift Detection
	Metric Sensitivity Ranking
	Quantitative Snapshot

	Memory and Runtime Efficiency
	Memory Benchmarking

	Real‑World Drift Detection
	Drift–Performance Correlation


	Discussion
	Conclusion
	Implications and Future Directions

	References

