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ABSTRACT11

The optimal placement and operation of pressure control valves in water distribution networks12

is a challenging engineering problem. When formulated in a mathematical optimisation frame-13

work, this problem results in a nonconvex mixed integer nonlinear program (MINLP), which has14

combinatorial computational complexity. As a result, the considered MINLP becomes particularly15

difficult to solve for large-scale looped operational networks. We extend and combine network16

model reduction techniques with the proposed optimisation framework in order to lower the com-17

putational burden and enable the optimal placement and operation of control valves in these com-18

plex water distribution networks. An outer approximation algorithm is used to solve the considered19

MINLPs on reduced hydraulic models. We demonstrate that the restriction of the considered op-20

timisation problem on a reduced hydraulic model is not equivalent to solving the original larger21

MINLP, and its solution is therefore sub-optimal. Consequently, we investigate the trade-off be-22

tween reducing computational complexity and the potential sub-optimality of the solutions that23
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can be controlled with a parameter of the model reduction routine. The efficacy of the proposed24

method is evaluated using two large scale water distribution network models.25

INTRODUCTION26

Ageing infrastructure, growing water demand and more stringent environmental standards pose27

unprecedented challenges to the management of water distribution networks (WDNs). Signifi-28

cant benefits can be achieved through an efficient pressure control that results in the reduction29

of leakage (Lambert 2000; Wright et al. 2015) and risk of pipe failure (Lambert and Thornton30

2011). Traditionally, pressure control in WDNs is actuated by pressure reducing valves (PRVs),31

which regulate pressure at their downstream node. The optimal placement and operation of control32

valves are complex tasks, and the locations of such control devices are usually determined based33

on engineering judgement. When formulated into a mathematical framework, these tasks result34

in a difficult co-design optimisation problem, which combines continuous and discrete decision35

variables. Continuous variables include nodal hydraulic heads and pipe flow rates, while discrete36

decision variables are used to represent control valve locations. Energy and mass conservation37

laws are enforced across each pipe and at each node, respectively, resulting in nonconvex optimi-38

sation constraints. A faithful representation of WDN daily operation requires the consideration of39

multiple water demand conditions and associated pumps control profiles, thus further increasing40

the number of continuous optimisation variables and constraints. The network models presented41

in this paper do not include pumps. However, pumps operation can be modelled by adding suitable42

optimisation constraints - e.g. see Equation (10) in D’Ambrosio et al. (2015). The resulting opti-43

misation problem is analogous to the one considered here and it can be solved using the methods44

discussed in the following sections.45

In the present manuscript, we consider multiple demand conditions and build upon the problem46

formulation introduced and briefly discussed in Pecci et al. (2017a). The proposed problem47

reformulation reduces the degree of nonlinearity of the constraints and the overall problem size in48

comparison to previous literature (Eck and Mevissen 2012; Dai and Li 2014; Pecci et al. 2017b).49

The resulting problem is a nonconvex Mixed Integer Nonlinear Program (MINLP) that is dif-50
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ficult to solve, and it is usually dealt with using meta-heuristic approaches (Nicolini and Zovatto51

2009; Creaco et al. 2015; Ali 2015; De Paola et al. 2017) or local optimisation methods (Eck and52

Mevissen 2012; Dai and Li 2014; Pecci et al. 2017b). As a consequence, the quality of the gen-53

erated solution will depend on the algorithmic initialisation. It is sometimes convenient to start54

the optimisation process with different initial conditions, selecting a posteriori the best objective55

function performance. In addition, when multiple objectives need to be minimised at the same56

time, typical mathematical optimisation methods rely on the solution of sequences of MINLPs -57

see examples shown in Pecci et al. (2017d). Consequently, it is important to take into account the58

computational effort required to generate a solution. Solving a MINLP requires a substantial com-59

putational effort when the number of discrete variables is large. This is the case when we study60

operational water distribution networks. Additional problem-specific computational challenges61

can be posed by the structure of a water distribution network considered for the optimal placement62

and operation of control valves. In the case of a highly inter-connected network, there exist multi-63

ple control valve configurations with similar objective function performances. The high degree of64

symmetry in the solution space results in an increased computational effort (Margot 2010).65

In the present study, we investigate the application of alternative network reduction approaches66

to decrease the dimension of the search space and the computational load associated with solving67

the problem of optimal placement and operation of control valves within complex water distri-68

bution networks. The considered model-reduction techniques have already been demonstrated69

to improve the computational performance of hydraulic simulation tools (Deuerlein et al. 2016;70

Deuerlein 2008; Simpson et al. 2014) and for operational optimisation of large water networks71

(Burgschweiger et al. 2005). However, their use within a framework for the optimal placement72

of control valves (i.e. design problems) in water distribution networks has not been previously73

investigated. In particular, we first consider the forest-core decomposition proposed by Elhay et al.74

(2014), and pose reduced size MINLP using only the core of the network (i.e. the part of a network75

that is not contained in the forest, where the forest is the union of all trees of the network). In addi-76

tion, we implement the contraction of links, which are connected in series, through a zero demand77
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node as proposed by Burgschweiger et al. (2005) to reduce network size before operational optimi-78

sation. The resulting model reduction procedure is then expanded by introducing the elimination79

of trivial loops, “leafy loops”, which include nodes with zero demand.80

We investigate the integration of these model reduction routines with optimisation methods for81

solving the co-design problem of optimal placement and operation of control valves. The two prob-82

lem formulations, when applied upon full-scale and reduced network models, result in nonconvex83

MINLPs with a similar structure. Hence, the optimal valve placement problems for the different84

network models are solved using the same optimisation tools. We utilise the Outer Approximation85

with Equality Relaxation (OA/ER) algorithm for the solution of the considered MINLPs. This86

solution approach was initially proposed by Kocis and Grossmann (1987). The OA/ER algorithm87

solves an alternating sequence of nonlinear programs (primal problems) and mixed integer linear88

programs (master problems). Under certain convexity assumptions on the optimisation constraints,89

OA/ER converges to global optimal solutions (Floudas 1995, Section 6.5). When the problem is90

nonconvex, like the one considered here, OA/ER does not provide theoretical guarantees of global91

optimality. Nonetheless, OA/ER was shown to find near-optimal solutions when previous applied92

to problems in process synthesis optimisation by Kocis and Grossmann (1987) and Viswanathan93

and Grossmann (1990).94

The main contributions of this paper are as follows. Firstly, we evaluate strengths and lim-95

itations of the application of the OA/ER method in complex and operational water distribution96

networks. Secondly, we numerically investigate the coupling of model reduction and outer ap-97

proximation for solving the problem of optimal placement and operation of control valves in com-98

plex water distribution networks. In particular, we observe that the restriction of the considered99

optimisation problem on a reduced network can result in sub-optimal solutions. This is due to the100

exclusion of links/sequences of links with significant elevation differences within the reduced net-101

work model. Therefore, we propose a heuristic that preserves those links connected to nodes with102

elevation differences larger than a certain threshold parameter; the elevation difference threshold.103

Thirdly, the trade-off between the model size reduction and potential sub-optimality is numerically104
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investigated using two complex water distribution networks as case studies.105

PROBLEM FORMULATION106

A water distribution network with n0 water sources (eg. reservoirs or tanks), nn nodes and np107

pipes, is modelled as a graph with nn + n0 vertices and np links. We define the two edge-node108

incidence matrices A12 ∈ Rnp×nn and A10 ∈ Rnp×n0, respectively, for the nn junction nodes and109

the n0 water sources, respectively. Moreover, we include in the formulation nl different demand110

conditions - e.g. describing daily water demand profiles. Let t ∈ {1, ...,nl} be a time step and111

let dt ∈ Rnn be the assigned vector of nodal demands. Vectors of unknown hydraulic heads and112

flows are defined as ht := [ht
1 ...h

t
nn
]T and qt := [qt

1 ...q
t
np
]T , respectively. Hydraulic heads at the113

water sources are known and denoted by ht
0i for each i = 1, ...,n0. Moreover, the vector of nodal114

elevation is represented by ξξξ ∈ Rnn . Finally, for every link j we have maximum allowed flow115

though j defined by qmax
j .116

The frictional energy losses across network pipes can be modelled by either the Hazen-Williams117

(HW) or Darcy-Weisbach (DW) formulae. However, these are not suitable for being used in a118

mathematical optimisation framework, since they involve non-smooth terms. Consequently, it119

is necessary to consider smooth approximations for both friction head loss formulae. Here we120

apply a quadratic approximation minimising the integral of relative errors - see Eck and Mevis-121

sen (2015) and Pecci et al. (2017c). For a pipe j and time t, the resulting quadratic function122

can be written as φ j(qt
j) := (a j|qt

j|+ b j)qt
j, where a j ≥ 0, b j ≥ 0 are positive coefficients. Let123

ΦΦΦ(qt) := [φ1(qt
1), . . . ,φnp(q

t
np
)]T , for each t ∈ {1, . . . ,nl}.124

In this manuscript we consider an optimisation problem for placement and operation of control125

valves, and so we introduce the vectors of unknown binary variable z+ ∈ {0,1}np and z− ∈ {0,1}np126

to model the possible placement of control valves on np links, with the following permutations :127

• z+j = 1⇔ there is a valve on link j in the assigned positive flow direction,128

• z−j = 1⇔ there is a valve on link j in the assigned negative flow direction,129

• z+j = z−j = 0⇔ no valve is placed on link j,130
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and the constraints131

• z+j + z−j ≤ 1 to preclude the placement of two valves on a single link j,132

for each j = 1, . . . ,np.133

The objective to be minimised is average zone pressure (AZP), which is used as a surrogate134

measure for pressure-driven leakage (Wright et al. 2015) and is defined as:135

1
nlW

nl

∑
t=1

wT (ht−ξξξ ) (1)136

where L j is the length of link j, wi = ∑ j∈I(i)L j/2 with I(i) set of indices for links incident at node137

i, and W = ∑
nn
i=1 wi is a normalisation factor.138

The optimisation problem is subject to physical constraints in the form of energy and mass139

conservation laws:140

ΦΦΦ(qt)+A12ht +A10ht
0 +ηηη

ttt = 0, t = 1, . . . ,nl, (2)

A12
T qt−dt = 0. t = 1, . . . ,nl, (3)

where the vector ηηη ttt := [η t
1 . . . η t

np
]T in equation (2) represents the unknown additional head141

losses introduced by the action of control valves. In order to formulate linear constraints modelling142

the placement of a valve or otherwise on network links, we introduce diagonal matrices of large143

positive constants M+ := diag(M+
1, . . . ,M+

np) ∈ Rnp×np and M− := diag(M−1, . . . ,M−np) ∈144

Rnp×np , and define Qmax := diag(qmax
1 , . . . ,qmax

np
) ∈ Rnp×np . Then, we formulate the inequality145

constraints:146
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ηηη
t−M+z+ ≤ 0, t = 1, . . . ,nl, (4)

−qt +Qmaxz+ ≤ qmax, t = 1, . . . ,nl, (5)

−ηηη
t−M−z− ≤ 0, t = 1, . . . ,nl, (6)

qt +Qmaxz− ≤ qmax, t = 1, . . . ,nl. (7)

147

In the following, we clarify the role of these linear constraints. Assume that z+j = z−j = 0 for a148

particular link j. Constraints (4)-(5) imply that η t
j = 0, while the sign of qt

j is not constrained and149

−qmax
j ≤ qt

j ≤ qmax
j for all t ∈ {1, . . . ,nl}. Therefore, (2) represents the standard Bernoulli equation150

for energy conservation across link j. Now let z+j = 1, which implies z−j = 0. Constraints (4) -151

(7) yield 0 ≤ η t
j ≤ M+

j and 0 ≤ qt
j ≤ qmax

j , ∀t ∈ {1, . . . ,nl}. Note that M+
j has to be larger then152

any feasible value for η t
j. Analogously, if z−j = 1, we have −M−j ≤ η t

j ≤ 0 and −qmax
j ≤ qt

j ≤ 0,153

for all time steps t ∈ {1, . . . ,nl}. Consequently, in our problem formulation, once the direction of154

operation of a valve is chosen, we do not allow the flow direction to change during the control155

period - e.g. 24 hours. This assumption is not restrictive from an engineering point of view, as156

it represents the standard operation of pressure reducing valves, which regulate pressure at their157

downstream node with no or negligible backflow. Finally, we include in the formulation additional158

operational, physical and economic constraints:159

ht ≤ ht
max, t = 1, . . . ,nl, (8)

−ht ≤−ht
min, t = 1, . . . ,nl, (9)

z++ z− ≤ 1, (10)
np

∑
j=1

(z+j + z−j ) = nv, (11)
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where ht
max and ht

min are the vectors of maximum and minimum allowed pressure head, respec-160

tively, 1 := [1, . . . ,1]T ∈ Rnp , and nv is the number of PRVs to be installed, based on financial161

constraints.162

In summary, the problem formulation assumes known hydraulic heads at water sources, nodal163

demands, elevations, and bounds on allowed hydraulic heads and flow rates. Optimisation variables164

include hydraulic heads, flows, additional head losses introduced by the action of control valves,165

and valve locations. The resulting optimal valve placement problem is formulated as:166

minimise
1

nlW

nl

∑
t=1

wT (ht−ξξξ )

subject to (qt)t ,(ht)t ,(ηηη
t)t ,z+,z−satisfy (2)-(11)

z+,z− ∈ {0,1}np.

(12)167

Note that the Problem (12) has multiple sources of nonconvexity. Firstly, it includes binary168

constraints which result in a nonconvex disconnected feasible set, requiring the application of169

branch and bound procedures. In addition, the nonlinear equality constraints in (2) can not be170

relaxed as convex inequality constraints and so they can not be efficiently handled by convex171

optimisation tools. Finally, the components of function ΦΦΦ(·) are nonconvex, because their second172

order derivatives involve the sign(·) function.173

The number of linear constraints in Problem (12) is nl(3nn+4np)+np+1 while the nonlinear174

equations involved in the problem formulation are nlnp. In addition, only the nlnp flow variables175

appear within nonlinear expressions, while the optimisation constraints are linear with respect to176

the remaining variables. The formulation used in previous literature (Pecci et al. 2017b; Dai and177

Li 2014; Eck and Mevissen 2012) includes more constraints with higher degree of nonlinearity178

involving both flows and hydraulic heads as unknowns. The main difference between the solution179

spaces resulting from the two formulations is represented by the behaviour of a fully open valve.180

The model used in (Pecci et al. 2017b; Dai and Li 2014; Eck and Mevissen 2012) allows flow181

in both directions when a valve is fully open. On the other hand, in the present work, a solution182

is feasible only if the flow across a valve never changes sign during the control period - e.g. 24183
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hours. This assumption is not restrictive from the engineering point of view while resulting in a184

simplification of the optimisation constraints.185

When the number of binary variables is large, the solution of Problem (12) poses significant186

computational challenges for standard MINLP solvers. To mitigate this challenge, in the next187

section we investigate possible approaches for (considerably) reducing the size of (12), without188

(considerably) affecting the quality of the solutions.189

MODEL REDUCTION190

The complexity of Problem (12) grows combinatorially as the size of the considered network191

increases. In the literature, various model-reduction approaches have been used for improving the192

computational performance of hydraulic simulation tools (Deuerlein 2008; Deuerlein et al. 2016;193

Simpson et al. 2014) and optimising the operation of large operational water networks (Ulanicki194

et al. 1996; Burgschweiger et al. 2005; Paluszczyszyn et al. 2013). However, the application195

of these simplification schemes to the co-design problem of optimal placement and operation of196

control valves in WDNs has not been investigated. In this work, we study the implementation of197

model-reduction as a pre-processing routine for optimal co-design problems in WDNs and discuss198

its benefit and limitations. In particular, we investigate whether a reduction in the number of199

binary variables is achievable while preserving equivalence between the optimisation problems for200

the reduced and original models. To do so, we first give some essential definitions for the applied201

graph decomposition.202

Definition 3.1 A non-fixed head node V ( j) belonging to the graph of a WDN is called a leaf if it203

has cardinality one.204

The following definition of a tree in a WDN is introduced in Deuerlein (2008) and Simpson et al.205

(2014)206

Definition 3.2 A tree in a WDN graph is an acyclic connected subgraph such that at least one of207

its nodes is a leaf, and only one of its nodes is connected to either a looped part of the network or208

to a fixed head node. Such a unique node is called root.209

9 Pecci, October 11, 2018



Definition 3.3 (Deuerlein 2008; Simpson et al. 2014) The forest of a water network is defined as210

the disjoint union of all trees in the network. The part of the network which is not contained in the211

forest but includes the roots of all the trees is called core.212

We now introduce the definition of trivial loops, i.e. “leafy loops” involving only nodes with zero213

demand. In hydraulic models of operational water networks, such loops can be found where some214

nodal demands have been set to zero to account for disconnected customer connections or where215

the driver for near real time hydraulic models has resulted in the alignment between hydraulic216

models and GIS information.217

Definition 3.4 For a WDN graph, we define a loop as a trivial loop if:218

• all nodes in the loop have demands equal to zero;219

• all nodes except one have cardinality two; the unique node with cardinality greater than220

two is referred to as root of the loop.221

In order to describe the model-reduction algorithm and illustrate the challenges posed by its ap-222

plication to co-design optimisation problems in WDNs, we devise and present an example network223

(appropriately named “ToyNet”), whose layout is reported in Figure 1. The details for the pipes224

and nodes are listed on the left and right columns of Table 1, respectively. For this model, the H-W225

friction head loss formula is used. All nodes with non-zero demand have a required minimum pres-226

sure of 15 m while the maximum velocity in each pipe is 2 m
s , hence we set qmax

Pj
:=

πD2
Pj

4 ·2. The227

maximum allowed hydraulic head at each node is equal to the head at the reservoir, H0 = 120 m.228

Given the small size of this example network, it is possible to compute the global minimiser of229

Problem (12) for ToyNet using the global MINLP solver SCIP (Gamrath et al. 2016), implemented230

here via the Matlab interface provided by the OPTI TOOLBOX (Currie and Wilson 2012). The231

globally optimal solution for the placement of 3 valves is on links P4,P5,P7 and results in an232

average zone pressure of 39.53 m.233

Now consider the index sets for the links and non-fixed head nodes of the full network model234

P := {P1, . . . ,P7} and V := {V1, . . . ,V6}, respectively. At the current stage, the unique leaf node235
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is V6 and the corresponding link is P7. The conservation of mass and energy equations at V6 and236

across P7, respectively, are:237

qP7 = dV6 (13)

hV6 = hV5−dV6 · (aP7 ·dV6 +bP7)−ηP7 (14)

Therefore, qP7 is known a priori while hV6 can be expressed as a linear function of the head238

hV5 and the additional head loss introduced by a possible valve placed on P7, denoted by ηP7 . We239

update demand at V5 with dV5← dV5 +dV6 = 0.01+0.01= 0.02(m3/s) and now we get the reduced240

model P← {P1, . . . ,P6}, V ← {V1, . . . ,V5}. In the network described by (P,V ), we identify V5 as241

a leaf node whose corresponding link is P6. As before, we can discard the variables qP6 and hV5 as242

we can evaluate them from the formulae243

qP6 = dV5, (15)

hV5 = hV3−dV5 · (aP6 ·dV5 +bP6)−ηP6, (16)

and perform the update dV3 ← dV3 +dV5 +dV6 = 0.02. We now express the head at V6 with244

hV6 = hV3−dV6 · (aP7 ·dV6 +bP7)−dV5 · (aP6 ·dV5 +bP6)−ηP6−ηP7 . (17)245

After this second reduction, we have P←{P1,P2,P3,P4,P5} and V ←{V1,V2,V3,V4}. At this stage,246

all leaf nodes have been removed from (P,V ). We observe that links P2,P3 are connected in series247

to V2, which has demand equal to zero. The corresponding conservation laws are:248
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qP4−qP5 = dV4 (18)

qP1−qP2 = dV1 (19)

qP2−qP4 = 0 (20)

hV1−hV2 = qP2(aP2|qP2|+bP2)+ηP2 (21)

hV2−hV4 = qP4(aP4|qP4|+bP4)+ηP4 (22)

As shown in Pecci et al. (2017c), in the case of H-W friction models, the quadratic approxima-249

tion coefficients are defined such that aP2 = rP2α(qmax
P2

), bP2 = rP2β (qmax
P2

) and aP4 = rP4α(qmax
P4

),250

bP4 = rP4β (qmax
P4

). Equation (20) implies that qP2 = qP4 . Hence, qmax
P2

= qmax
P4

and we have that251

α(qmax
P2

) = α(qmax
P4

) and β (qmax
P2

) = β (qmax
P4

). We can introduce a pseudo-link P8 connecting V1 and252

V4 with flow qP8 and quadratic approximation coefficients aP8 := aP2 + aP4 and bP8 := bP2 + bP4 .253

The conservation laws (18)-(22) are equivalent to:254

qP8−qP5 = dV4 (23)

qP1−qP8 = dV1 (24)

hV1−hV4 = qP8(aP8|qP8|+bP8)+ηP2 +ηP4 (25)

hV2 =
rP4

rP2 + rP4

hV1 +
rP2

rP2 + rP4

hP4−
rP4

rP2 + rP4

ηP2 +
rP2

rP2 + rP4

ηP4 (26)

Constraints (23)-(25) are added to the original problem formulation, while removing (13)-(16)255

and (18)-(22). As a consequence, variables qP7 , qP6 , qP2 , qP4 , hV6 , hV5 and hV2 can be discarded256

from the optimisation together with the corresponding constraints. We set P←{P1,P3,P5,P8} and257

V ← {V1,V3,V4}. In order to preserve the feasible set of the original problem, all binary variables258

related to discarded links have to be included within the problem formulation. Moreover, it is259

necessary to add linear constraints to enforce physical and operational constraints at discarded260
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nodes and links. As a result, the graph simplification does not result in a substantial reduction261

of the combinatorial complexity: while the overall number of continuous variables and nonlinear262

constraints is reduced, the set of of binary variables and the number of linear constraints involving263

the binary variables is preserved. With the aim of reducing the number of binary variables, we264

assume that no valve has to be placed on forest links P6 and P7. In this case, it is possible to set265

z−P6
= z+P6

= z−P7
= z+P7

= 0 and enforce constraints at nodes hV5 and hV6 by appropriately modifying266

minimum and maximum allowed hydraulic heads at the root node V3, taking into account the head267

losses occurring across forest links:268

hmin(V3)←max
{

hmin(V3), hmin(V5)+φP6(dV5), hmin(V6)+φP7(dV6)+φP6(dV5)
}

(27)

hmax(V3)←min
{

hmax(V3), hmax(V5)+φP6(dV5), hmax(V6)+φP7(dV6)+φP6(dV5)
}

(28)

It is therefore possible to ignore all variables and constraints related to forest nodes and links269

while preserving the feasibility of the solution. However, as we see in the remainder of this section,270

the computed valve configuration can be sub-optimal, since we discard links P6 and P7 from the set271

of candidate locations. In comparison, the elimination of binary variables related to links P2 and272

P4 while enforcing feasibility at node V2 requires the inclusion of the pseudo-link P8 as candidate273

valve location. In fact, the simple exclusion of both links P2 and P4 from the set of candidate274

locations would inevitably result in sub-optimal solutions.275

Therefore, we propose the following two stage algorithm. Firstly, we introduce additional276

variables ηP8 , z+P8
, z−P8

, and solve Problem (12) on the simplified network defined by (P,V ) - see277

Figure 2, with updated minimum and maximum allowed hydraulic heads at node V3. At this first278

stage, the optimisation process is ignoring the existence of node V2 and the changes in elevation279

occurring along the path composed of links P2 and P4. The resulting optimal locations are used to280

determine a set of candidate locations for the second stage, where Problem (12) is solved on the281

original full network model, with binary variables restricted to the set defined in the first stage.282
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We solved Problem (12) on the reduced network using SCIP and found the global optimum with283

valve placements on P1,P5,P8. The set of candidate locations is then restricted to {P1,P5,P2,P4}284

and Problem (12) is solved for the full network model with SCIP. The optimal solution has a285

corresponding AZP of 42.65m and valves on links P1,P4,P5; compare with the global optima of286

39.53 with valves placed on links P4,P5,P7.287

The implemented two-stage algorithm has resulted in a sub-optimal solution. The reason for288

such an outcome is the exclusion of forest links from the set of possible valve locations. In fact,289

the significant changes in elevation occurring at nodes V5 and V6 requires the installation of a290

control valve on link P7. Analogously, it is possible to define examples where the sub-optimality is291

caused by ignoring changes in elevations occurring across a sequence of demand nodes discarded292

by contraction. In order to limit the level of sub-optimality, we include a simple heuristic in the293

model-reduction algorithm to preserve those links that connect nodes with elevation differentials294

bigger than some constant εthres > 0; we discuss how to choose appropriate εthres values in the295

Numerical Results section. We then apply the two-stage approach outlined using ToyNet.296

In general terms, the model reduction algorithm proceeds as follows - for a detailed description297

see Appendix I. A procedure for computing network forest and core is presented in Simpson et al.298

(2014), with the aim of improving computational efficiency of hydraulic simulation. We extend the299

approach by Simpson et al. (2014) in order to enforce the satisfaction of minimum and maximum300

pressure constraints (8) and (9) at forest nodes. The second stage of our algorithm involves the301

elimination of all trivial loops. These can be collapsed into a single node, the root of the loop,302

whose hydraulic head is equal to the hydraulic heads of every other node. Because all the links303

involved in the trivial loops have zero flow, such links cannot be candidates for valve placement.304

Consequently, trivial loops are considered as member of the forest. Finally, we operate the con-305

traction of sequences of links connecting nodes with zero demand by introducing hydraulically306

equivalent pseudo-links.307

Let P and V be the index sets of all network links and nodes, respectively, resulting from the308

model reduction routine. Let ΦΦΦP(qt(P)) := diag(φP(1)(qt
P(1)), . . . ,φP(|P|)(qt

P(|P|))). The restriction309
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of Problem (12) to the network defined by (P,V ) can be formulated as follows:310

minimise
1

nlŴ

nl

∑
t=1

ŵT (ĥt−ξξξ (V ))

subject to ΦΦΦP(q̂t)+A12(P,V )ĥt +A10(P, :)h0
t + η̂ηη

t = 0, t = 1, . . . ,nl

A12(P,V )T q̂t−d(V)t = 0, t = 1, . . . ,nl

(q̂t)t ,(ĥt)t ,(η̂ηη
t)t , ẑ+ẑ−satisfy (4)-(11) restricted to (P,V )

ẑ+, ẑ− ∈ {0,1}|P|,

(29)311

where the following notation is adopted: given a matrix B, the expression B(I,J) denotes312

the sub-matrix composed by rows and columns of B whose indices are in I and J, respectively.313

The above formulation includes a smaller number of variables and constraints with respect to314

Problem (12). In particular, Problem (29) has less nonlinear constraints, thus reducing the total315

nonconvexities, and a smaller number of binary variables.316

After solving Problem (29), let ẑ+ and ẑ− define optimal valve placements for the reduced317

model, which we shall use to define candidate valve locations for the original full network. If a318

valve is placed on a pseudo link, then all links contracted in making it become candidate locations.319

Similarly, if a valve is placed on a real link of the reduced model, then that link also becomes a320

candidate valve location. This can be implemented using binary cuts as follows, where z+j and z−j321

are set to zero for non-candidate links j. Let ẑb = 0 ∈ Rnp , then:322

• if ẑ+l + ẑ−l = 1 and P(l) is not a pseudo-link, we set ẑb(P(l)) = 1.323

• if ẑ+u + ẑ−u = 1 and P(u) is a pseudo-link, let P(l0), . . . ,P(lN) be the sequence of links that324

have been contracted in P(u). We set ẑb(P(l j)) = 1, ∀ j ∈ {0, . . . ,N}.325
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Using ẑb, we add binary cuts to the original Problem in (12) to form the MINLP:326

minimise
1

nlW

nl

∑
t=1

wT (ht−ξξξ )

subject to (qt)t ,(ht)t ,(ηηη
t)t ,z+,z−satisfy (2)-(10)

z+ ≤ ẑb

z− ≤ ẑb

z+,z− ∈ {0,1}np.

(30)327

The binary cuts introduced in Problem (30) considerably reduce the combinatorial complexity328

with respect to Problem (12) and make the problem easier to solve. In fact, as a consequence329

of the binary cuts, many binary variables in Problem (30) are fixed. The proposed two-stage330

method is characterised by the subsequent solution of Problems (29) and (30) and is summarised331

in Algorithm 1 and Figure 3.332

As observed before, the constraints in Problem (29) do not include information about discarded333

nodes involved in elevation changes smaller than εthres. Therefore, Problem (29) represents an ap-334

proximation of the original Problem (12), which was formulated on the full network model. The335

reduction in accuracy of such approximation becomes higher for larger εthres. A computational336

evaluation of the exact level of sub-optimality caused by a particular value of εthres would be pos-337

sible only by applying a global MINLP solver, which is not practical in problem instances for338

complex water networks. Nonetheless, based on the illustrative example ToyNet and the results re-339

ported in the Numerical Results section, we conjecture that the larger the value of εthres, the greater340

the possibility of obtaining a severely sub-optimal solution from Algorithm 1 and demonstrate that341

physically reasonable values can be derived by solving the problem for larger values and gradually342

decreasing εthres until no improvements can be shown or the problem becomes intractable.343

SOLUTION METHOD344

We observe that Problems (12), (29), and (30) are mixed integer nonlinear programs (MINLPs)345

with similar structure, involving nonlinear equality constraints and a number of linear constraints.346
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Algorithm 1 Two-stage method for optimal placement and operation of control valves
1: Input:Network properties and an elevation threshold εthres
2: Apply the network reduction and compute index sets P, V
3: Stage 1: solve Problem (29) and obtain ẑ+ and ẑ−
4: Define vector ẑb
5: Stage 2: solve Problem (30)

As a consequence, we apply the same solution method to all three problems. We implement the347

Outer Approximation with Equality-Relaxation (OA/ER), which was initially employed by Ko-348

cis and Grossmann (1987) for problems in process synthesis optimisation. OA/ER relies on the349

solution of an alternating sequence of master mixed integer linear programs (MILPs) and primal350

nonlinear programs (NLPs), until a termination criteria is met. Master MILPs are defined by lin-351

earisations of the nonlinear equality constraints. In the case considered here, at each iteration, the352

solution of the master MILP results in a set of candidate valve locations. On the other hand, the353

primal NLP corresponds to the problem of optimising valves control settings, while their locations354

are fixed. A detailed description of the OA/ER algorithm can be found in Appendix II.355

Under suitable convexity assumptions OA/ER converges to the globally optimal solution, see356

Floudas (1995, Section 6.5). However, the functions involved in the nonlinear equality constraints357

within Problems (12), (29), and (30) are nonconvex, hence OA/ER is applied only as a local358

optimisation method. In this work, we terminate OA/ER if the master MILP is infeasible or the359

best objective function values are not decreasing in consecutive iterations.360

The nonconvexity of the equality constraints has two main effects on the application of OA/ER361

to Problems (12), (29), and (30). Firstly, the corresponding primal NLPs are nonconvex and the362

application of gradient-based NLP solvers results in local optima, with no theoretical guarantee363

of global optimality. Secondly, the linearised constraints within the master MILP may cut out364

portions of the feasible set, discarding the globally optimal choice of binary variables. As shown365

in the next section, this can result in early termination of the OA/ER algorithm, due the infeasibility366

of the master MILP caused by inconsistent linearised constraints.367

Consequently, the quality of the solutions computed by OA/ER depends on the initialisation.368
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We initialise OA/ER using the solution of Problem (12) with nv = 0, which is feasible provided that369

hydraulic heads and flows satisfy constraints (4)-(9) when no valve is installed. We observe that370

solving Problem (12) with nv = 0 is equivalent to simulating the network model without valves. Al-371

ternatively, the authors in Viswanathan and Grossmann (1990) have proposed to initialise OA/ER372

with the solution of the NLP relaxation of Problem (12), where the binary constraints in (12)373

are ignored and variables z+j and z−j are allowed to assume any value between 0 and 1, for all374

j ∈ {1, . . . ,np}. The numerical results reported in the next section show that good quality solutions375

can be achieved by applying one of these two initialisation strategies.376

NUMERICAL RESULTS377

The developed model reduction and OA/ER methods for the solution of Problem (12) have been378

evaluated using two large operational network models. The solver IPOPT (v3.12.6) (Waechter and379

Biegler 2006) is used to solve the primal NLP problems within OA/ER as well as any NLP needed380

to initialise OA/ER. IPOPT is implemented in MATLAB through the interface provided by the381

OPTI TOOLBOX (Currie and Wilson 2012). Moreover, in the implementation of IPOPT we directly382

supply the solver with sparse gradients and Jacobians, in order to take advantage of the very sparse383

structure of our problem. The master MILP within OA/ER is solved using the commercial solver384

GUROBI (v7.0) (Gurobi Optimization 2017), and implemented in MATLAB using the supplied385

interface with tolerance for the relative MIP optimality gap set to 0.01. All other GUROBI options386

were set to their default values. In particular, these include the presolving routines, that are applied387

before starting the linear programming based branch and bound algorithm implemented in GUROBI.388

In order to provide a fair comparison between the different instances, we report the total CPU time389

employed by OA/ER to reach a solution as well as the number of IPOPT iterations, the amount390

of simplex iterations, and the number of nodes visited by the branch and bound algorithm within391

GUROBI - these are referred to as “BB Nodes” in Tables 4, 6, 7, 8, and 10. All computations were392

executed within MATLAB 2016b-64 bit for Windows 7, installed on a 2.40GHz Intelr Xeon(R)393

CPU E5-2665 0 with 16 Cores and 32 GB of RAM.394
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Case study 1395

We first consider BWFLnet, network model of the Smart Water Network Demonstrator, a396

“Field Lab” operated by Bristol Water, InfraSense Labs at Imperial College London and Cla-Val397

presented in Wright et al. (2015). This water supply network consists of 2310 nodes, 2369 pipes398

and 2 inlets (with fixed known hydraulic heads) - see also Table 2, where the quantities np−nn
np

and399

2np
nn

correspond to the loopiness of network topology and the average degree of connectivity per400

node, respectively. We observe that BWFLnet represents a typical network in urban area in United401

Kingdom, which is characterised by a tree-like structure with few loops. In addition, since its av-402

erage degree of connectivity per node is close to 2, the network model includes a large number403

of link sequences (possibly involving non-zero demand nodes). As a consequence, we expect the404

proposed model reduction procedure to result in considerable computational savings. Following405

the work by (Wright et al. 2015), the network operator has already installed 3 PRVs, currently406

operated in order to minimise AZP as a surrogate measure for leakage. For the purpose of this407

numerical experiment, the presence of the PRVs is ignored and their corresponding links are mod-408

elled without PRVs. This is useful also because we want to analyse the degree of sub-optimality409

of the current locations. The network graph is presented in Figure 4. The frictional head losses are410

modelled in BWFLnet using the HW formula. In this study, we use the quadratic approximation411

of the H-W formula proposed in (Eck and Mevissen 2015), where the maximum velocity in each412

pipe is set to 3 m
s .413

In the present formulation we consider 24 different demand conditions, one for each hour of414

the day. The minimum allowed pressure head at demand nodes is 18 m, while this value is relaxed415

to zero for nodes with no demand. We formulate Problem (12) for the optimal placement and416

operation of 1 to 5 control valves, addressing the minimisation of AZP, for the full network model.417

The number of continuous variables, binary variables and constraints is reported in Table 3.418

We initialise OA/ER using the solution of Problem (12) with nv = 0. With this initial point,419

the OA/ER algorithm has successfully converged after two iterations to (local) solutions in all420

instances. The number of iterations taken from OA/ER is limited because of the nonconvexity421

19 Pecci, October 11, 2018



of the constraints; once the first iteration is completed and a vector of binary variables has been422

identified, the set of linearised constraints becomes inconsistent and so the master MILP at the423

second iteration is infeasible.424

If we fix the locations of PRVs to those currently installed by the network operator in BWFLnet,425

we obtain an optimised AZP value of 37.48 m. Therefore, the application of OA/ER for the place-426

ment of 3 control valves has resulted in a good quality configuration with a slightly lower value427

of the objective function - see Table 4. This is in agreement with the numerical results reported428

in Kocis and Grossmann (1987) and Viswanathan and Grossmann (1990), where OA/ER has re-429

sulted in near-optimal solutions for problems in process synthesis optimisation. Finally, the overall430

computational performance is summarised in Table 4.431

The number of nodes explored in the branch and bound procedure grows rapidly with nv and432

so does the CPU time. However, for the considered case study, the computational effort required433

for OA/ER to converge is limited to a few hours, on the desktop machine used for the numerical434

tests reported in Table 4. When the considered network model is larger, the combinatorial problem435

could become intractable and the implementation of MINLP solution algorithms that efficiently436

exploit multiple available CPU cores is subject of ongoing research (Ralphs et al. 2018). In ad-437

dition, in order to improve the quality of the solutions, it is sometimes convenient to implement438

a multi-start optimisation strategy, where OA/ER is executed with many different initial points.439

Furthermore, it is possible to seek the minimisation of additional objective functions together with440

AZP. In this case, standard approaches require the solution of a parametrised sequence of MINLPs441

with the same structure as Problem (12) - see Pecci et al. (2017d) for an example. Under such442

circumstances, the computational burden could easily become impractical.443

In order to reduce the computational effort, we investigate the application of the two stage444

approach outlined in Algorithm 1. Firstly, we focus on the choice of εthres. In the following, the445

ratio |P|/np is used as surrogate measure of the reduction in computational burden, as the number446

of binary variables is 2|P|. In addition, we conjecture that the larger value of εthres, the higher the447

possibility of generating a sub-optimal solution - see the example ToyNet in the Model Reduction448
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section.449

Numerical tests show that, for this case study, very small/negligible model reduction is achieved450

for εthres > 5 and no further reduction is achieved when εthres > 28. Therefore, we report in Figure451

5 the values of |P|/np corresponding to εthres ∈ {0,1,2, . . . ,28}. Figure 5 shows that the most sig-452

nificant reductions in problem size occur for εthres≤ 3. Elevation differences of such magnitude are453

analogous to the order of uncertainty usually experienced in WDN models. In particular, pressure454

control in operational water networks is subject to multiple sources of data and modelling errors.455

These include stochastic nature of customer demand, dynamic hydraulic conditions, uncertainty456

affecting the hydraulic model and the data, and failures of the control pilots and equipment - see457

the experimental study reported in (Wright et al. 2015).458

In the following, we investigate the computational performance of Algorithm 1 with εthres ∈459

{1,2}.460

The size of the simplified network after the different stages of the reduction algorithm is sum-461

marised in Table 5. When εthres = 1, the final reduced network is composed of roughly 45% of the462

links and nodes of the full order model. In comparison, if εthres = 2, the network size is reduced463

by roughly 65%. In both cases, the formulation of Problem (29) results in a considerably smaller464

nonconvex MINLP than the one formulated for the full network model, with the number of binary465

variables reduced by roughly 45% and 65%, respectively.466

Following Algorithm 1, OA/ER is applied to solve Problem (29) and then Problem (30), for467

each choice of εthres ∈ {1,2}. The performance of Algorithm 1 with εthres = 1 is reported in Table 6.468

In all instances, it results in the same solutions computed with the full network model. However,469

we observe that both computational time and number of nodes visited by the branch and bound470

algorithm are reduced by an order of magnitude. In addition, Table 6 shows that the number of471

nodes visited during the second stage of Algorithm 1 is either zero or very small (< 10). This is472

because, at this stage, OA/ER is applied to solve Problem (30), where binary cuts have been added473

to restrict the set of feasible binary variables according to the solution computed at the previous474

stage.475
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When a larger threshold is considered, the computational performance is further improved.476

However, as observed in the previous sections, Algorithm 1 is more likely to converge to sub-477

optimal solutions. In the case considered here, the use of εthres = 2 results in slightly worse so-478

lutions in the case of nv = 3,4,5 - see Table 7. Nonetheless, the differences between AZP values479

from Tables 6 and 7 are smaller than the level of hydraulic head uncertainties for models of op-480

erational water networks. The computational time reported in Table 7 is reduced with respect to481

Table 6. However, number of iterations, CPU time and amount of visited nodes reported in Tables482

6 and 7 are of the same order of magnitude in all instances. Less conservative choices of εthres483

would result in small reductions of network dimension and hence of computational effort, possibly484

with more severely sub-optimal solutions. Therefore, we limited our analysis to the computational485

performance corresponding to εthres ∈ {1,2}.486

Case study 2487

In this section, we evaluate the developed methods on a network model with different size and488

level of connectivity from BWFLnet. We consider NYnet (Ostfeld et al. 2008), which represents489

an highly looped city network from USA- see Figure 6. This network model has 12523 nodes,490

14830 pipes and 7 inlets (modelled as nodes with fixed hydraulic heads) and has been previously491

presented in the framework of optimal sensor placement (Ostfeld et al. 2008). To the best of our492

knowledge, this network model has not been previously used to evaluate solution methods for op-493

timal valve placement and operation problems, and the present study is the only example where494

the considered problem is solved for a network as complex as NYnet. The network topological495

properties are reported in Table 2. Since NYnet is highly looped and it has a larger average degree496

of connectivity per node than BWFLnet, we expect the model reduction algorithm to have a less497

significant impact on the size of the network and hence on the corresponding combinatorial com-498

plexity of Problem (12) - see also Figure 7. The NYnet hydraulic model considers a single demand499

condition, by setting nl = 1. As a result, the number of continuous variables and constraints in500

the problem formulation is reduced in comparison to BWFLnet (see Table 3). This results in a501

smaller computational load for the solution of the primal NLP problem for NYnet within OA/ER502
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by the solver IPOPT. However, computing optimal valve locations for NYnet is more challenging503

in comparison to the case of BWFLnet. This is due to the larger number of binary variables (i.e.504

candidate valve locations, see Table 3) included in the problem formulation and the highly looped505

topology of NYnet, which increases the degree of symmetry of the resulting MINLP. The presence506

of multiple demand conditions does not affect the combinatorial difficulty of the problem, since507

the number of binary variables remains the same. Some nodes experience low pressure, thus we508

set the minimum pressure at demand nodes to 6m, relaxing this value to zero for those nodes with509

no demand. The friction head loss model used in NYnet is the DW formula, which we approxi-510

mate using smooth quadratic function as described by Eck and Mevissen (2015). For the purpose511

of computing the approximation, we consider values of the Reynolds number between 4000 and512

the value corresponding to a velocity of 3 m
s . However, during the optimisation process, the maxi-513

mum allowed velocity is set to 12 m
s , as few network pipes are subject to very high velocities. We514

formulate and solve Problem (12) on NYnet.515

As observed in the previous sections, in the case of nonconvex constraints OA/ER is applied516

as a heuristic, hence the quality of the computed solutions depends significantly on algorithmic517

initialisation. OA/ER results in poor quality solutions for nv = 2,3,4,5 when it is initialised using518

the solution of Problem (12) with nv = 0. Therefore, we initialise OA/ER by means of the solution519

of the NLP relaxation of Problem (12), obtained by ignoring the binary constraints in (12) and520

allowing variables z+j and z−j to assume any value between 0 and 1, for all j ∈ {1, . . . ,np}. With521

such initial point, in instances with nv = 1,2,3, the algorithm converges to good quality solutions,522

which are reported in Table 8 together with the computational performance. Table 8 shows that the523

solution of the continuous relaxation of Problem (12) requires a substantial computational effort524

from IPOPT - this is expected, as continuous relaxations of MINLPs are known to be difficult to525

solve. However, we observe that the solution of the primal NLP problem at iteration 1 requires a526

reduced number of IPOPT iterations with respect to what reported for BWFLnet - see also Table 4.527

On the contrary, the number of simplex iterations and nodes visited by GUROBI is larger than what528

reported in Table 4 for BWFLnet.529
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The cases of nv = 4,5 show the limitations of the application of OA/ER to the network in study.530

In particular, after two iterations of OA/ER no feasible solutions for nv = 4 was generated and the531

optimisation process was manually terminated. At the same time, the reported solution of the532

master MILPs is computationally expensive, with a large number of nodes visited by the branch533

and bound procedure. During an outer approximation algorithm, the generation of infeasible binary534

choices is not unexpected. Binary cuts are included in the formulation of the master MILP to535

prevent the algorithm from generating the same infeasible binary assignments more than once.536

As a consequence, it is possible that OA/ER would eventually produce a feasible solution, in a537

sufficiently large number of iterations. However, for the purpose of the present study, we decided538

to interrupt the iterative search after two consecutive infeasible binary solutions, because of time539

constraints. The complexity of the considered problem is further amplified for nv = 5. In this540

case, the optimisation process was manually interrupted during the first iteration of the OA/ER541

algorithm, with GUROBI experiencing very slow progress towards the solution of the master MILP.542

In fact, after a longer CPU time than what reported for the entire run with nv = 4, the relative543

optimality gap is still equal to 7.90%.544

We investigate the effect of the presented model reduction routine on the dimension of NYnet545

and hence on the size of the corresponding combinatorial problem for optimal placement and546

operation of control valves. Numerical tests on NYnet show that no further reduction is possible547

when εthres > 19 and that the maximum decrease in the number of pipes is around 25% - see Figure548

7. In addition, Table 9 shows the reductions in model size achieved by the simplification procedure,549

when εthres = 3.550

We implement Algorithm 1 for solving Problem (12) on NYnet, with εthres = 3. As we can see551

from Table 10, in the cases of nv = 1,2,3, the two-stage approach results in the same solutions as552

those reported in Table 8, when OA/ER was directly applied to the full network model. In addition,553

as expected, the time required to generate a solution is smaller when the model is reduced. In554

particular, in the first stage of Algorithm 1, the number of nodes visited by the branch and bound555

procedure is reduced by up to a factor of 3.7, compared to what reported in Table 8. Nonetheless,556
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the gains in computational burden are not as significant as for the case of the BWFLnet model.557

The application of the model reduction algorithm did not enhance the ability of OA/ER to solve558

the considered problem for nv = 4,5. In particular, for nv = 4, no feasible solution was found559

after two iterations of OA/ER and the algorithm was interrupted. Furthermore, the method was560

manually terminated in the case nv = 5, as GUROBI showed a slow progress towards the solution561

of the master MILP. This limitation in impact of the model reduction algorithm is explained by562

the high density of the NYnet network model, where the forest and pipe sequences for contraction563

constitute a smaller fraction of the network.564

The challenging computational experience of the solver GUROBI is caused by the character-565

istics of the case study. Firstly, the number of binary variables involved in the formulation of566

Problem (12) for NYnet is an order larger than the number of binary variables corresponding to567

BWFLnet - see Figure 3. In addition, as observed at the beginning of this section, NYnet is highly568

looped and presents an higher level of connectivity than BWFLnet. As a result, the solution space569

for NYnet is characterised by an increased degree of symmetry, with multiple valve configurations570

resulting in similar AZP performances. It is well known that symmetry of an integer program571

results in the generation of a large enumeration tree within the branch and bound procedure and572

therefore should be detected and removed (Liberti 2012; Margot 2010). Therefore, in the case573

of networks that are not highly looped (i.e. np− nn � np) with 2np
nn
� 3, we expect the model574

reduction to considerably reduce the computational cost associated with the solution of the opti-575

mal valve placement and operation problem, as reported for the case of BWFLnet. In comparison,576

further investigation is needed on symmetry-breaking techniques to reduce the computational load577

required to optimally locate control valves in highly looped water networks with an high level of578

connectivity.579

CONCLUSIONS580

In this paper, we have proposed and investigated the application of model reduction and outer581

approximation with equality relaxation (OA/ER) algorithms for generating good quality solutions582

for the problem of optimal valve placement and operation in water distribution networks. The583
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numerical results reported in the manuscript suggest that OA/ER has enabled the convergence to584

good quality solutions when large operational water networks with a relatively low number of585

loops are considered. The numerical experience also indicates that OA/ER can fail to generate a586

solution for highly meshed network instances. Since the computational load of solving the consid-587

ered optimisation problem grows combinatorially with the network dimensions, we have proposed588

the application of model reduction techniques for water distribution networks. The reformulation589

of the considered optimisation problem on a reduced network model does not result in an equiva-590

lent MINLP and its solution can be severely sub-optimal. As a consequence, we have introduced591

an arbitrary parameter of the model reduction algorithm in order to regulate the trade-off between592

reducing computational complexity and potential sub-optimality of the solutions. The numerical593

results reported in the manuscript show that, when networks with a relatively lower number of594

loops are considered (e.g. more branched systems common in United Kingdom), significant com-595

putational gains can be made by integrating model reduction approaches and OA/ER algorithm,596

without affecting the quality of the solutions. Furthermore, we have demonstrated that the pro-597

posed model reduction routines have limited effect on highly looped, dense water networks where598

the problem presents high degree of symmetry (e.g. networks from United States). Future work599

will investigate the application of symmetry-breaking techniques for solving the problem of op-600

timal placement and operation of control valves in complex and highly looped water distribution601

networks.602
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NOTATION608

The following symbols are used in this paper:609

n0 number of water sources;

np, nn number of pipes and nodes, respectively;

nl number of loading conditions;

nv number of valves to be installed;

A12, A10 edge-node incidence matrices for the nn nodes and n0 water sources, respectively;

dt nodal demands at time t;

ξξξ vector of nodal elevations;

ht
max, ht

min vectors of maximum and minimum hydraulic heads at nodes, respectively;

w, ŵ full scale and reduced vectors of weights, respectively;

L j Length of pipe j;

qmax
j maximum flow allowed across pipe j;

ΦΦΦ(·), ΦΦΦP(·) friction head loss functions for full scale and reduced network models, respectively;

a j, b j positive coefficients of the friction head loss function for link j;

Qmax diagonal matrix with diagonal elements equal to qmax
1 , . . . ,qmax

np
;

e vector composed of ones;

M+,M− diagonal matrices of large positive constants;

ht , ĥt full scale and reduced vectors of unknown hydraulic heads at time t, respectively;

qt , q̂t full scale and reduced vectors of unknown flows at time t, respectively;

z+, z− vectors of binary variables for the full scale network model;

ẑ+, ẑ− vectors of binary variables for the reduced network model;

ηηη t , η̂ηη full scale and reduced vectors of unknown additional head losses, respectively;

P, V index sets of pipes and nodes in the reduced network model, respectively;

εthres parameter used within the model reduction routine;

ẑb vector used to define binary cuts.

610
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TABLE 1. ToyNet data

Link D (m) L (m) CHW Node d (m3/s) ξ (m)

P1 0.40 1000 70 V1 0.03 50
P2 0.30 1000 100 V2 0 100
P3 0.25 1000 100 V3 0 35
P4 0.30 1000 100 V4 0.05 30
P5 0.25 1000 100 V5 0.01 90
P6 0.25 1000 100 V6 0.01 5
P7 0.25 1000 100
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TABLE 2. Network topological characteristics for the two case studies

Name np nn n0 nl
np−nn

np

2np
nn

BWFLnet 2369 2310 2 24 0.025 2.051
NYnet 14830 12523 7 1 0.156 2.368
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TABLE 3. Problem size for the two case studies

Name No. cont. var. No. bin. var. No. lin. const. No. nonlin. const.

BWFLnet 169152 4738 285234 56856
NYnet 42183 29660 86674 14830
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TABLE 4. Overall performance of OA/ER applied to the full network model BWFLnet

AZP CPU time OA/ER iter Simplex iter BB nodes IPOPT iter

nv = 1 44.84 m 315 s
0 - - 2
1 147336 47 19
2 0 0 -

nv = 2 39.61 m 680 s
0 - - 2
1 1017019 1090 43
2 68159 0 -

nv = 3 36.43 m 4527 s
0 - - 2
1 4765154 5428 49
2 95564 0 -

nv = 4 34.49 m 31987 s
0 - - 2
1 25428435 42738 86
2 0 0 -

nv = 5 33.40 m 87667 s
0 - - 2
1 44096088 78042 57
2 0 0 -
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TABLE 5. Subsequent reductions of BWFLnet dimensions, with εthres = 1,2.

εthres = 1 εthres = 2
|P|/np |V |/nn |P|/np |V |/nn

Initial 1 1 1 1
Forest-Core decomposition 0.72 0.72 0.61 0.60

Final 0.46 0.44 0.35 0.34
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TABLE 6. Computational performance of Algorithm 1 applied to BWFLnet with εthres = 1.

AZP CPU time OA/ER iter Simplex iter BB nodes IPOPT iter

nv = 1 44.84 m 68 s

Stage 1
0 - - 2
1 62729 19 26
2 0 0 -

Stage 2
0 - - 2
1 34881 0 19
2 0 0 -

nv = 2 39.61 m 206 s

Stage 1
0 - - 2
1 213185 235 42
2 0 0 -

Stage 2
0 - - 2
1 37946 0 43
2 86836 0 -

nv = 3 36.43 m 599 s

Stage 1
0 - - 2
1 925233 703 28
2 0 0 -

Stage 2
0 - - 2
1 42009 6 49
2 41815 0 -

nv = 4 34.49 m 3289 s

Stage 1
0 - - 2
1 4948463 9022 35
2 0 0 -

Stage 2
0 - - 2
1 41745 3 86
2 0 0 -

nv = 5 33.40 m 8856 s

Stage 1
0 - - 2
1 11499816 18133 46
2 0 0 -

Stage 2
0 - - 2
1 51172 7 57
2 46693 0 -
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TABLE 7. Computational performance of Algorithm 1 applied to BWFLnet with εthres = 2.

AZP CPU time OA/ER iter Simplex iter BB nodes IPOPT iter

nv = 1 44.84 m 57 s

Stage 1
0 - - 2
1 52616 21 21
2 0 0 -

Stage 2
0 2 - -
1 34881 0 19
2 0 0 -

nv = 2 39.61 m 141 s

Stage 1
0 - - 2
1 121604 137 32
2 0 0 -

Stage 2
0 - - 2
1 37946 0 43
2 86836 0 -

nv = 3 36.50 m 370 s

Stage 1
0 - - 2
1 538511 518 20
2 0 0 -

Stage 2
0 - - 2
1 41547 5 47
2 40774 0 -

nv = 4 34.55 m 1781 s

Stage 1
0 - - 2
1 2121801 6159 27
2 74406 0 -

Stage 2
0 - - 2
1 42466 3 79
2 0 0 -

nv = 5 33.46 m 7401 s

Stage 1
0 - - 2
1 11189820 22695 74
2 0 0 -

Stage 2
0 - - 2
1 50593 7 39
2 45438 0 -
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TABLE 8. Overall performance of OA/ER applied to the full network model NYnet

AZP CPU time OA/ER iter Simplex iter BB nodes IPOPT iter

nv = 1 30.80 m 610 s
0 - - 235
1 94485 41 11
2 73872 0 −

nv = 2 30.49 m 2112 s
0 - - 581
1 983186 6177 18
2 66746 0 -

nv = 3 26.68 m 7601 s
0 - - 1084
1 7618460 43185 18
2 0 0 -

nv = 4 - 819189 s
0 - - 978
1 273950103 1173708 Infeasible

2 202464015 970874 Infeasible

nv = 5 - 1032790 s
0 - - 1168
1 173250345 4299016 -
2 - - -
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TABLE 9. Subsequent reductions of NYnet dimensions, with εthres = 3.

εthres = 3
|P|/np |V |/nn

Initial 1 1
Forest-Core decomposition 0.81 0.78

Final 0.76 0.71
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TABLE 10. Computational performance of Algorithm 1 applied to NYnet with εthres = 3.

AZP CPU time OA/ER iter Simplex iter BB nodes IPOPT iter

nv = 1 30.80 m 573 s

Stage 1
0 - - 237
1 85557 42 12
2 66823 0 -

Stage 2
0 - - 27
1 30284 3 11
2 30697 0 13

nv = 2 30.80 m 1513 s

Stage 1
0 - - 746
1 400713 3078 14
2 55245 0 -

Stage 2
0 - - 29
1 31120 11 Infeasible

2 31949 7 14
3 72626 0 -

nv = 3 26.68 m 2379 s

Stage 1
0 - - 644
1 2231130 17193 20
2 57614 0 -

Stage 2
0 - - 32
1 29088 11 18
2 29383 0 -

nv = 4 - 36584 s Stage 1
0 - - 882
1 21942579 290218 Infeasible

2 23802048 334473 Infeasible

nv = 5 - 83857 s Stage 1
0 - - 1334
1 53282719 1455812 -
2 - - -
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Fig. 1. ToyNet layout
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Fig. 2. ToyNet reduced model
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Model reduction:

• Separate forest from core of the network

• Eliminate “leafy loops”

• Contract sequence of consecutive core

links connected by zero-demand nodes

and with an elevation difference below

the threshold

Stage 1: solve the restriction

of the MINLP problem on the

reduced model –

i.e. Problem (30)

Use optimal valve locations for

the reduced model to define

candidate valve locations for the

full network

Stage 2: solve the optimal

placement MINLP problem for

the full network model with

restricted candidate locations –

i.e. Problem (31)

Input network’s properties and set

an elevation threshold

START

END

Fig. 3. Flowchart of Algorithm 1
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Inlet 1

Inlet 2

Fig. 4. BWFLnet with current valve configuration
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Fig. 5. Values of |P|/np corresponding to εthres ∈ {0,1,2, . . . ,28}
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Fig. 6. NYnet
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Fig. 7. Values of |P|/np corresponding to εthres ∈ {0,1,2, . . . ,19}
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