
Blind segmentation of time-
series
A two-level approach

Vana Panagiotou

Te
ch

ni
sc

he
Un

ive
rs

ite
it

D
elf

t

BLIND SEGMENTATION OF TIME-SERIES

A TWO-LEVEL APPROACH

by

Vana Panagiotou

in partial fulfillment of the requirements for the degree of

Master of Science

in Electrical Engineering

at the Delft University of Technology,

to be defended publicly on Monday October 26, 2015 at 14:00 PM.

Supervisor: Dr. ir. Richard Heusdens , TU Delft

Thesis committee: Dr. ir. Richard Heusdens, TU Delft
Dr. ir. Richard Hendriks, TU Delft
Prof. dr. ir. Geert Leus, TU Delft
Dr. ir. Aki Härmä, Philips Research

ii

©2015

Vana Panagiotou

All rights reserved

ABSTRACT

Change-point detection is an indispensable tool for a wide variety of applications which
has been extensively studied in the literature over the years. However, the development of
wireless devices and miniature sensors that allows continuous recording of data poses new
challenges that cannot be adequately addressed by the vast majority of existing methods.
In this work, we aim to balance statistical accuracy with computational efficiency, by de-
veloping a hierarchical two-level algorithm that can significantly reduce the computational
burden in the expense of a negligible loss of detection accuracy. Our choice is motivated
by the idea that if a simple test was used to quickly select some potential change-points
in the first level, then the second level which consists of a computationally more expen-
sive algorithm, would be applied only to a subset of data, leading to a significant run-time
improvement. In addition, in order to alleviate the difficulties arising in high-dimensional
data, we use a data selection technique which gives more importance to data that are more
useful for detecting changes than to others. Using these ideas, we compute a detection
measure which is given as the weighted sum of individual dissimilarity measures and we
present techniques that can speed up some standard change-point detection methods.
Experimental results on both artificial and real-world data demonstrate the effectiveness
of developed approaches and provide a useful insight about the suitability of some of the
state-of-the-art methods for detecting changes in many different scenarios.

Keywords - change-point detection, segmentation, time-series data, data selection tech-
niques, speedup

iii

ACKNOWLEDGMENTS

The research reported in this thesis has been conducted in partial fulfillment of the
requirements for the Degree of Master of Science in Electrical Engineering at the Delft Uni-
versity of Technology and was financially supported by Philips Research, Eindhoven. This
work would not have been possible without the help and support of many people that I am
grateful to.

First and foremost, I would like to express my heartfelt appreciation and gratitude to
my supervisor Dr. Aki Härmä from Philips Research, who believed in me and gave me the
great opportunity to carry out my Master thesis at Philips Research. His scientific advice,
guidance and unconditional support in both professional and personal life was the key in
achieving the thesis’ objectives. Our valuable discussions and his constructive comments
and suggestions from the very beginning to the end have had a great impact on my work
and have significantly helped me in improving my thesis report.

I am also profoundly grateful to my academic supervisor, Associate Professor Richard
Heusdens who helped me to shape my research interests and connected me to this work
in the first place. His long-lasting guidance, support and encouragement throughout my
Master studies at TU Delft were invaluable for the successful completeness not only of this
project but also of much of the work required for the Master’s program. Grateful acknowl-
edgement is extended to the other members of the thesis committee, Professor Richard
Hendriks and Professor Geert Leus for taking the time to evaluate my thesis.

I would also like to express my sincere gratitude to Silvia Bertagna de marchi, Natalia
Díaz Rodríguez, Rim Helaoui and Dietwig Lowet for the interesting meetings and project
ideas that we together developed at Philips Research. Special thanks to Silvia for spending
time on reading my thesis and providing comments and criticism that helped me shape the
report into its present form.

Last, but certainly not least, I heartily thank my parents, sister, grandmother and friends
for their love, patience, sacrifice and constant support throughout my long educational
journey. Very special thanks go to my friend Marina for her countless help and assistance
during the past two years. I would be still far away from this achievement without those
people.

You all made it happen! Thank you!

Vana Panagiotou
Delft, October 2015

v

ACKNOWLEDGMENTS vii

To my grandmother

CONTENTS

1 Introduction 1

1.1 Problem Statement: Definitions and notation . 1

1.2 Segmentation Categories . 2

1.3 Applications . 3

1.4 Properties of a segmentation algorithm . 5

1.5 Thesis goal and outline . 5

2 Literature review 7

2.1 Segmentation methods overview . 7

2.2 General Framework of window-based change-point detection 13

2.3 Parametric Change-point Detection methods . 15

2.4 Non-parametric Change-point Detection methods 15

2.4.1 Direct Density Estimation Methods . 18

3 Methodology 22

3.1 Where does the problem arise in traditional methods? 22

3.2 A two-level change-point detection test: General Overview 23

3.3 First-Level algorithm . 24

3.4 Second-Level algorithm . 28

3.4.1 Data Selection Step . 29

3.4.1.1 Hilbert-Schmidt independence Criterion (HSIC) 32

3.4.2 Jensen Shannon divergence (JSD) based on k-nearest neighbor (kNN)
density estimation . 32

3.5 Modified algorithm for online detection . 34

3.6 Speeding-up existing change-point detection algorithms 34

4 Experiments 38

4.1 Performance metrics . 38

ix

x CONTENTS

4.2 Experiments on Artificial Datasets . 40

4.2.1 Data with fixed change-step . 40

4.2.2 Data with random change-step. 41

4.2.3 Artificial data results . 44

4.3 Experiments on Real-World Datasets . 48

5 Conclusions and future work 59

A Appendix A - Performance Tables 61

Bibliography 64

1
INTRODUCTION

1.1. PROBLEM STATEMENT: DEFINITIONS AND NOTATION

One of the fundamental characteristics of any information and database system is its
tendency to evolve and change over time [1]. Identifying the transitions from one state of a
system to another is a critical issue that constitutes the subject of change-point detection
analysis and concerns many scientific fields. Over the years, many different terms, includ-
ing segmentation, event detection, zonation analysis, breakpoint detection and concept
drift, have been used to describe the same problem. In this thesis, we will use the most
widely known terms change-point detection and segmentation interchangeably.

In the time-series context, change detection is the process of segmenting a data series
into different regimes or segments, by identifying the points where the statistical properties
change [2]. These points are known in the literature as change-points [3].

The idea behind the segmentation analysis is that data series do not behave as station-
ary along the whole timeline, but can be represented by approximately stationary intervals
or segments. In this way, the signals can be partitioned into homogeneous segments with
similar properties such that the subsequence within a segment is contiguous, while succes-
sive segments, which are separated by the change-points, are heterogeneous with respect
to each other [4]. However, in practical situations, the location, size and number of seg-
ments are generally unknown and should be inferred only from the recorded time-series.

In the context of segmentation, time-series are defined as a set of n observations of
d-dimensional vectors Y = [y1,y2, . . . ,yn], where yi ∈ Rd , i = 1, . . . ,n corresponds to time-
ordered observations, i.e., Y is a d ×n matrix. Although in this definition, each observation
at time t , yt , is assumed to be multivariate, a reduction to the univariate case can be easily
obtained, by substituting d = 1.

The goal of segmentation is to find the intervals of homogeneity by identifying the num-
ber of change-points, m, as well as their locations, τ1:m = (τ1,τ2, ...,τm). Each change-point
position is an integer between 1 and n − 1 inclusive and typically the number of change
points m is much less than n. Moreover, the change-points are assumed to be ordered so
that τi < τ j if and only if i < j [5].

1

2 1. INTRODUCTION

(a) Overlapping (b) Non-overlapping

(c) Tight

Figure 1.1: Type of segments.

Generally, every segment i is limited by its starting and ending points, τi ,st ar t and τi ,end ,
respectively. A pair of segments i − 1 and i can then be overlapping (τi−1,end > τi ,st ar t),
non-overlapping (τi−1,end < τi ,st ar t), or tight (τi−1,end +1 = τi ,st ar t) , as illustrated in Fig-
ure 1.1. An overlapping segmentation method on time-series data could be beneficial in
defining overlapping clusters for classification data mining, where an object can belong to
more than a single segment [6]. On the other hand, non-overlapping segmentation is useful
for applications where we want clearly delineated segments with no intersection between
them. Tight segmentation is a special category of the non-overlapping case, which aims to
remove huge jumps and discontinuities between successive segments. This work will focus
entirely on tight segmentation. In that way, the sequence of observations is partitioned into
m +1 blocks or segments, as follows [5, 7]:

[
y1:d

1 , ...,y1:d
τ1

]
,
[

y1:d
τ1+1, ...,y1:d

τ2

]
, ...,

[
y1:d
τm+1, ...,y1:d

n

]
(1.1)

1.2. SEGMENTATION CATEGORIES

Time-series segmentation methods have been studied in a number of different contexts
over the years and, hence, there has been a wide variety of proposed techniques that can
generally be classified into one of the following categories:

• Aided or Blind

Segmentation methods differ mainly in how much prior information and external
knowledge is used for the time-series processing. Aided algorithms use some sort of
external knowledge or previously obtained data, whereas in blind algorithms there is
no prior information regarding the signal [8].

• Offline or Online

Segmentation algorithms are further distinguished on the basis if the entire batch of
data is available from the beginning or it arrives in real-time at a specific rate [9, 10].
Other terms used to describe the offline setting are batch, a posteriori, retrospective

1.3. APPLICATIONS 3

or fixed sample change detection. Two of the major drawbacks of these algorithms
are the large storage requirements and the inability to provide online service to solve
any potential problems that might arise. On the other hand, the online algorithms
intend to detect changes with minimum delay while using only finite computational
resources. They are also known in the literature as sequential, incremental or stream-
ing methods.

• Univariate or Multivariate

Univariate change detection methods consider data which consist of only one vari-
able at each time step, whereas multivariate approaches can handle time-series that
span multiple dimensions within the same time range [11]. Although, most research
has been conducted on univariate time-series data, multivariate segmentation en-
ables the incorporation of multiple variables into the change detection process and
consequently enhances the overall accuracy of the algorithm [12, 13].

• Parametric or Non-Parametric

Parametric methods rely on assumptions about the data (e.g., they assume that the
samples are drawn from a Gaussian distribution) and even about the parameters of
the assumed distribution (e.g., mean and standard deviation). On the contrary, non-
parametric tests make no such assumptions about the data [14, 15]. If the considered
assumptions of parametric methods are correct, they can produce more accurate and
precise results. Moreover, they have the advantage of being simple and fast to com-
pute as opposed to the non-parametric ones. However, if the assumptions are incor-
rect, parametric methods can be very misleading and this is the reason why they are
often not considered robust [16].

1.3. APPLICATIONS

Modern world is changing rapidly and various technologies have been developed over
the past years to monitor activities in almost all aspects of personal and professional life
ranging from health, economy and entertainment to industry. The ability to detect changes
in the system’s behavior is of the utmost importance, since the reported changes can be
utilized to adapt the system to the new state, prevent potential emergency situations or
mitigate the consequences that those changes entail.

Change-point detection analysis encompasses a wide variety of applications and holds
a tremendous potential for the advance of technology in the future [17]. The origins of
this field can be traced back to 1924, when Walter Shewhart [18] developed a simple con-
trol chart approach for process monitoring and quality improvement in the manufacturing
industry. In this framework, it was assumed that the product quality follows a normal dis-
tribution and any variation from that distribution indicates a deterioration in the quality
that should be appropriately detected and corrected.

Change-point detection is particularly beneficial in the biomedical and healthcare fields.
As an example of a biomedical application, change-point detection methods are used to
identify the regions of genome amplification and deletion in tumor cells by analyzing the

4 1. INTRODUCTION

Figure 1.2: The general architecture of an online change-point detection system for health monitoring [33].

array-based comparative genomic hybridization (array-CGH) data [19, 20]. Another exam-
ple of this category is the detection of epileptic seizures or the different sleep stages mea-
sured by the electroencephalogram (EEG) signal [21]. Aside from that, with the increasing
prevalence of sensor-based applications in the daily use of smartphones and wearable de-
vices, change detection in time-series data has become a crucial component of many Hu-
man Activity Recognition (HAR) tasks, such as health, wellness or fitness monitoring [22].

Figure 1.2 shows the general architecture of an online change detection system for
health monitoring. The sensors forward the recorded data to a coordinator device, such as
a wrist-worn smart watch, a tablet or a smart phone. All the collected data are then trans-
mitted using long-range communications (e.g., through 3G/4G or WiFi) to remote servers
that can be accessed by a variety of consumer devices (e.g., computers), which can finally
process the data in real-time and send a notification if a significant change or abnormal-
ity has been detected. Sometimes, the coordinator device includes professional embed-
ded software to process the recorded data directly without the intermediate transmission
to a server [23]. Thus, it becomes clear that the goal of an online change detection sys-
tem for health monitoring is to combine data from multiple sensors/sources in order to
identify important events as quickly as possible and under resource-limited constraints. In
such cases, the computational complexity becomes a critical issue as much as the algo-
rithm’s performance and robustness. In addition, the system may have to deal with high-
dimensional data recorded from a large number of sensors.

Time-series segmentation methods are a cornerstone in many other disciplines, such as
environmental science and especially the climatology [24], meteorology [25], finance [26],
speech segmentation and voice activity detection (VAD) [27], satellite tracking [28], traffic
control [29], robotics [30], safety-warning systems [31] and many others.

Note that segmentation can also be used as a pre-processing step for a variety of data
mining tasks, including data representation, clustering, classification and visualization [4].
In classification, for example, by exploiting dynamically established windows obtained by
segmentation, we can achieve better results and avoid the common errors associated with
a fixed window approach [32].

1.4. PROPERTIES OF A SEGMENTATION ALGORITHM 5

1.4. PROPERTIES OF A SEGMENTATION ALGORITHM

Since time-series segmentation can be applied in fundamentally different scientific dis-
ciplines, it is obvious that there is a wide variety of ways of formulating and solving this
problem. This means that a universal algorithm which results in an optimal solution for all
cases does not exist, and therefore, the system requirements depend heavily on the type of
application. However, it is desirable for any segmentation algorithm to satisfy a number of
basic criteria [4, 34] :

• Generality: It is very important to create an algorithm capable of providing accurate
segmentation results regardless of the nature of the data.

• Accuracy: Any approach should achieve a high rate of correctly identified segmen-
tation boundaries with as few incorrectly determined (false positives) boundaries as
possible.

• Scalability: It is always preferable to design an algorithm that is able to handle high-
dimensional data with thousands of observations along time.

• Complexity: For efficiency reasons, the computational time and the processing la-
tency must be sufficiently low. In many cases, system resources, such as the memory
or the computing power, should also be taken into account.

Hence, there are many issues, which directly or indirectly determine the choice of the
algorithm, and that researchers should examine beforehand in order to select the most
appropriate approach for each situation.

1.5. THESIS GOAL AND OUTLINE

As technology continues to evolve and permeate every aspect of personal and profes-
sional life, it becomes more and more necessary to track changes in the state of a system in
a fast and efficient manner and answer questions like:

• Did a change occur?

• Did more than one change occur?

• When did the change (changes) occur and how can we estimate its (their) location?

Although change-point detection has a long history of research, the explosive growth
in both sample size and dimensionality of data poses new challenges that cannot be ade-
quately addressed by the vast majority of existing methods. The primal goal of this thesis is
to alleviate the difficulties associated with large datasets, by developing a flexible method
that can perform equally well on a variety of datasets. In addition, since in many cases
it may be difficult to decide which of the many proposed methods is more suitable for a
particular problem, we intend to test many different approaches and come up with some

6 1. INTRODUCTION

guidelines that may help engineers and scientists to select a good method for the problem
at hand.

The remainder of this thesis is organized as follows. Chapter 2 provides a literature re-
view of the various segmentation and change-point detection techniques that have been
developed over the years. In Chapter 3, we propose a new approach and some modifi-
cations to existing methods that can help to alleviate the difficulties that arise with large
and/or real-world datasets. In Chapter 4, we report experimental results on artificial and
real-world datasets and show how the different methods behave under several scenarios.
Finally, the thesis is concluded in Chapter 5, in which we summarize our contributions and
propose some possible extensions for future work.

2
LITERATURE REVIEW

2.1. SEGMENTATION METHODS OVERVIEW

Several methods have been proposed so far in the literature to address the segmenta-
tion and change-point detection problems. In this section we will describe and compare
the most well-known approaches for estimating change-points and segmenting the time-
series data.

It should be noted that, in some contexts, segmentation has been used to simply com-
press the original time-series into a more compact representation and not to identify the
change-points [35]. In this case, the data are partitioned into homogeneous segments and
each segment is represented by a model or a single value (e.g., its mean value). The key
components of a segmentation method formulated in that way are the model (linear, poly-
nomial, regression, etc.) that will be fitted to the data to create a more compact represen-
tation and a stopping criterion that will be used to determine when to stop creating new
segments. Many of those algorithms may also require information from the user, such as
the desired or maximum number of segments and a maximum value for the reconstruction
error, which determines the loss of accuracy in the data representation. Then, the problem
is transformed into that of finding the segmentation which minimizes this reconstruction
error [36].

Hence, it becomes clear that whenever the goal is to transform the data into another
representation, there is a distinction between change-point detection and segmentation.
Nevertheless, most of the times, the two terms have been used interchangeably in the lit-
erature, since, by definition, the transition points between successive segments are con-
sidered as the change-points. As our interest is in identifying the changes, except from the
most important algorithms used exclusively for identifying change-points, we will also ex-
plain how the methods that were initially designed for data compression have been used in
the change detection framework.

In the following paragraphs, we denote by n the length of the time-series and by m the
desired number of segments. Depending on how the data are processed, change-point de-
tection and segmentation algorithms can be roughly divided into the following categories

7

8 2. LITERATURE REVIEW

or their hybrids:

1. Dynamic programming based segmentation

An optimum segmentation for compression purposes can be found by a dynamic
programming (DP) based approach [37]. Given a time series, an upper bound on
the number of segments and the segment error of each possible segment, these al-
gorithms search all possible segmentations and select the one whose overall error is
minimal.

In the change detection framework, the initial problem is divided into subproblems
and an overall solution is obtained by combining the solutions of the subproblems.
Existing approaches for identifying change-points via dynamic programming are mainly
based on least-square fitting. However, the dynamic programming approaches face
several challenges[38]. First, the number of change-points cannot be estimated accu-
rately; when we have an upper bound mmax on the total number of change-points,
the DP algorithm will always return mmax change-points. This means that the DP
algorithm cannot find the true number of change-points and this constitutes a sig-
nificant restriction for the applicability of those methods in real-world applications.
Second, the computational complexity of DP based methods is very high. In par-
ticular, the running time of the first DP algorithm developed by Bellman [39] was of
order O(nm), which was later improved to O(n3m), O(n+n2m), O(n2log n+n2m) or
O(n2m) by some alternative techniques [40]. However, when the size of the data is
very large, even the fastest DP algorithms become computationally very demanding
and not well-suited to the segmentation task.

2. Heuristics

The prohibitively high running time of dynamic programming based algorithms led
the scientists to develop heuristic methods that do not necessarily construct an opti-
mum segmentation, but produce good results in many cases and take less time than
dynamic programming methods. These heuristic methods save time by considering
only some possible segments to hopefully obtain a good segmentation and compress
the data appropriately [37].

According to [4, 41–43] most of the heuristic methods, which convert time-series into
segmented versions, can be grouped into one of the following three categories:

• Sliding Window: a window slides over the data and each segment is grown until
an error criterion is met. The same process repeats with the next available data
point which was not included in the previously approximated segment.

• Top-Down: starting with only one segment, the time-series is recursively parti-
tioned until an error criterion is met.

• Bottom-Up: starting from the best possible short segments, segments are merged
until an error criterion is met.

A brief description for each of the three categories in the context of both data com-
pression and change identification follows below.

2.1. SEGMENTATION METHODS OVERVIEW 9

(a) Sliding Window

The Sliding Window algorithm [4, 43] works by anchoring the first point of the
time series tk and step-by-step extending the segment to the right by including
tk+1, tk+2, . . . as long as the reconstruction error remains below a user-specified
threshold. At some point ti the threshold is exceeded, so the sequence from the
anchor tk to ti−1 is considered as a segment. The above process repeats with the
anchor locating at the data point ti until the entire time-series has been seg-
mented. When sliding window methods are considered for detecting change-
points, they look ahead in the time-series until they come up against a point
that is considerably different from the points of the current window.

These algorithms have the advantage of being online and simple with little com-
putational requirements, since only a restricted history of past data values needs
to be maintained. However, they lack a global view of the data and when they
are used to create a more compact representation of the data they generally pro-
duce very poor results and tend to over-segment time-series that contain noisy
observations.

(b) Top-Down

The Top-Down method [4, 43] starts by considering the entire time-series as
a segment and then splits it at the best location, in a way that the difference
between these two segments is maximum. If the reconstruction error of the
new segments is below a user-specified threshold, the segmentation process
stops. Otherwise, the algorithm recursively continues splitting each of the newly
formed segments until all created segments have reconstruction errors below
the threshold. The procedure remains the same for change detection, although
a different stopping criterion should be used here (e.g., a maximum allowed
number of change-points).

The main disadvantage of this approach is its inherent inflexibility which stems
from the fact that the boundaries determined in the previous iterations remain
unchanged until the end of the segmentation process. In actual fact, the bound-
aries identified as best location points at the initial steps of the algorithm will
generally not be optimal in the later steps of the process, leading thus to a not
optimally segmented time-series. Moreover, although the algorithm performs
quite well, it can be used only in an offline setting and does not scale well with
the size of the data.

(c) Bottom-Up

The Bottom-Up algorithm [4, 43], as the natural complement to the Top-Down
algorithm, begins by splitting the entire time series of length n into a large num-
ber (typically n/2) of very small segments with equal lengths. In the following
step, the cost of merging each pair of consecutive segments (including left and
right neighbor) is calculated, and the algorithm starts iteratively merging the
pairs that cause the smallest increase in the error. The above process repeats
until the reconstruction error exceeds a predefined threshold. When this strat-
egy is exploited in the change-point detection problem, it starts by finding the

10 2. LITERATURE REVIEW

(a) Sliding Window (b) Top-Down

(c) Bottom-Up

Figure 2.1: Sliding Window, Top-Down and Bottom-Up segmentation examples. For each of the three dif-
ferent segmentation categories, the first, an intermediate and the last step of the segmentation procedure is
depicted. In all plots, the true segmentation boundaries are represented by triangles and the estimated by
vertical dotted lines and circles.

smallest possible homogeneous segments and then it uses some measure of
similarity to compare the formed segments and combine them accordingly. A
stopping criterion is also required here.

The Bottom-Up algorithm scales linearly with the size of the data and produces
high quality results. However, it belongs to the category of offline methods and,
thus, it is inefficient for processing of real-time data.

Figure 2.1 illustrates the differences among the three heuristic methods when the
same data were used for all of them. As we can see, the sliding window algorithm
over-segments the data due to the noisy samples, the top-down is highly affected
from the first wrong identified boundary, while the bottom-up method seems to cor-
rectly identify the different segments.

3. "Hybrid" Online Segmentation algorithm

An algorithm called SWAB (Sliding Window And Bottom-up), was introduced in [44],

2.1. SEGMENTATION METHODS OVERVIEW 11

in order to combine the advantages of online (Sliding Window) and offline (Bottom-
Up) algorithms. It basically includes two steps; the Sliding Window step that per-
forms a harsh pre-segmentation and the Bottom-Up step which improves the previ-
ously obtained result. In the context of data compression, the algorithm uses a buffer
of size w to store a number of data points that initially should be sufficient enough
to create 5 to 6 segments. Then, Bottom-Up is applied to the data in the buffer and
the leftmost segment (oldest) is reported. The data corresponding to the reported
segment are removed from the buffer and a number of new points is added.

The SWAB algorithm scales linearly with the size of the dataset and produces high
quality segmentation results. However, defining the size of the initial buffer is of high
importance for achieving an efficient performance. A large size of the initial buffer
will convert the SWAB method into a Bottom Up method, while a small buffer size
will convert it to a Sliding Window method.

There have also been developed probabilistic, clustering based and many other seg-
mentation methods that have been used exclusively for identifying the change-points.

4. Probabilistic based segmentation algorithms

In [7], Barry and Hartigan introduced a model for multiple change-point analysis
known as the Product Partition Model (PPM). This model, which assumes that the
number and positions of the change points are random, is capable of providing the
product estimates for the parameters of interest at each individual time, as well as
the posterior distributions of the partitions and the number of change points. Prior
distributions are assumed for the means, variances and for the probability that each
individual time is a change-point [45].

Recently, Ferreira et al. [46] proposed a product partition model, which, compared
with the original model of Barry and Hartigan [7] , includes across-cluster depen-
dence between the segments (or clusters). This dependence is introduced into the
model through the prior distributions of the parameters. The experimental compar-
ison of those two methods revealed that although they demonstrated similar perfor-
mance regarding the estimation of the number and positions of the change-points,
the method with the incorporated dependence presented a substantial improvement
in the parameter estimates.

There have also been proposed bayesian based segmentation techniques [47, 48]
which assume that the data originate from a probabilistic distribution and use a crite-
rion to find the number and location of segments. Among the most commonly used
criteria are the AIC (Akaike Information Criterion), BIC (Bayesian Information Crite-
rion), MDL (Minimum Description Length) and MML (Minimum Message Length)
with the latter providing the best performance compared to the others [47]. Approxi-
mations of the above methods which are suitable for processing of large amounts of
data are described in [48].

Hidden Markov Models (HMM) are often used to detect segmentation boundaries
[49]. In this case, each segment corresponds to a state in the HMM, and, hence,

12 2. LITERATURE REVIEW

a change-point occurs when switching from one state to another. However, these
methods have several undesirable properties and require a large computational time.

5. Clustering based segmentation algorithms

The problem of segmenting time series can be formulated as a clustering problem
with the constraint that all time points of a cluster must be successive in time. Based
on this idea, a fuzzy clustering approach [50] and a generalized Eigen-decomposition
[51] have been exploited to segment non-stationary or chaotic time-series.

6. Window-based segmentation algorithms

The window-based algorithms compare small pieces (or windows) of data with their
neighbors by using a dissimilarity measure, and if the difference between the two
windows is above a threshold then a change-point occurs [3, 14, 52–57]. The ma-
jor advantage here is that this technique is applicable in both the online and offline
frameworks. However, sometimes it may be difficult to select a good threshold and
thus a sufficient performance may not be achieved. This category of algorithms will
be discussed in more detail in Section 2.2.

7. Other segmentation algorithms

In [58], Magnusson proposes a bottom-up, level-by-level search for repeated tempo-
ral patterns, named T-patterns, in symbolic time-series, where each symbol repre-
sents the onset of a specific event. The algorithm is based on the detection of pos-
sible relationships between pairs of events and the creation of binary trees of such
temporal dependencies in a hierarchical way.

In [52], Chung et al. propose an evolutionary time series segmentation algorithm
which allows the user to determine a set of pattern templates and search for them
during the segmentation process. In addition, Perceptually Important Points (PIP)
can be used to adjust the lengths of the segments in order to achieve a better match
with the predefined patterns. However, this approach is not suitable for applications
in which users do not know what patterns they want. As a special case of this tech-
nique, [59] focuses on stock time-series where a set of stock patterns is generated and
exploited in the procedure.

Yin et al. [60] proposed a segmentation method for financial time-series based on
Turning Points (TPs), which correspond to local maximum and minimum points and
represent the change in the trend of the stock. In more detail, the first stage of the
algorithm divides the time-series into different periods such that each segment has a
single trend during that period. At the second step of the algorithm small trends are
merged into more significant ones to better form the segmentation boundaries.

A threshold-free online time-series segmentation has been proposed in [61]. It is
based on the concurrent estimation of two models (a model with one regressive seg-
ment and a temporal mixture model with two regressive components) and uses the
Bayesian Information Criterion (BIC) to select the best model between them. The
potential change-points of the time-series are derived from the proportions of the
temporal mixture model.

2.2. GENERAL FRAMEWORK OF WINDOW-BASED CHANGE-POINT DETECTION 13

In [62], change-points are detected in time-series by minimizing a cost function that
depends on covariance matrix using a low-complexity Pruned Exact Linear Time (PELT)
method. Since graphical models are known to be powerful tools for describing com-
plex systems, this method generates graphical models (Copula Gaussian graphical
models, with and without hidden variables) for each stationary segment based on
their covariances in order to determine the number and location of change-points.

2.2. GENERAL FRAMEWORK OF WINDOW-BASED CHANGE-POINT

DETECTION

The window-based technique is a powerful way of dealing with large datasets and on-
line applications and, as a consequence, various approaches to change-point detection
have been investigated within this framework. In the rest of this chapter we will describe
the most important aspects of this concept and we will introduce some of the most well-
known methods following this strategy.

It may be noted here that the window-based framework has always been referred to as
“sliding window”. However, it should not be confused with the sliding window segmenta-
tion approach that was described in the previous section. Although both techniques share
the idea of sliding a window over the data, the way that they process the data is funda-
mentally different. In the rest of this document, unless otherwise noted, the term "sliding
window" is used to refer to the window-based framework.

The main idea underlying the sliding window based change-point detection method
is to compare data samples extracted from two windows: the reference or past window
and the testing or present window. Depending on the sliding step, there are two com-
monly used approaches to segment data series using the sliding window method. The first
approach employs non-overlapping sliding windows, where consecutive windows do not
share common data samples. The second approach employs overlapping sliding windows
which share some common data samples. In addition, we consider two types of windows
depending on whether the number of samples in the window is fixed (fixed-size window)
or variable (variable-size window). The choice of window widths and sliding step depends
on the application requirements.

We will now present how the detection is performed using the general framework de-
picted in Figure 2.2. We consider time series data of the form Y = [y1,y2, . . . ,yn], where
yi ∈ Rd , i = 1, . . . ,n . At time position t , two non-overlapping windows w1 and w2 are gen-
erated containing the subsets yt = {y1:d

i }i=t−l1+1,. . . ,t and y′
t = {y1:d

i }i=t+1,. . . ,t+l2 , respectively,
where l1 is the size of window w1 and l2 is the size of window w2. For the sake of simplicity,
we consider that the two data sequences contain the same number of samples v and we
denote them as YYY := {y1:d

i }i=t−v+1,. . . ,t and YYY ′ := {y ′1:d
j } j=t+1,. . . ,t+v , respectively.

The change-point detection problem can now be transformed into a hypothesis testing
problem, where the null hypothesis H0 is tested against the alternative hypothesis H1 as
below [14]:

14 2. LITERATURE REVIEW

l1 l2

Time t

Current time

yt yt'

yt

Figure 2.2: General change-point detection framework based on the sliding-window approach. The data
samples y1:d

t , t = 1,2, . . . are represented by circles.

{
H0 : D(YYY ,YYY ′) ≤ η, No change occurs

H1 : D(YYY ,YYY ′) > η, A change occurs
(2.1)

where D(YYY ,YYY ′) is a distance function or metric which measures the dissimilarity of the two
windows and η is a threshold used to decide whether a change occurs or not. More specif-
ically, the higher the dissimilarity measure is, the more likely the point t is a change-point.
We consider that a change occurs when the dissimilarity measure between the windows
exceeds the specified threshold, which is actually a parameter that can control the sensibil-
ity/robustness tradeoff. The windows are then slid throughout the whole signal to get the
distance function.

Hence, it becomes clear that the detection performance depends strongly on the dis-
similarity measure selected and the key issues that now need to be addressed are what kind
of dissimilarity measure should be used and how it can be estimated from the data samples.

There have been proposed many methods that consider the dissimilarity measure as a
distance between two underlying probability distributions P and P ′ with probability den-
sity functions (PDFs) p(y) and p ′(y) computed from the sets of samples YYY and YYY ′, respec-
tively. This distance can be expressed as the likelihood density ratio p(y)

p ′(y) , or as the density

difference p(y)− p ′(y), or as a divergence measure. However, since only the two sets of
samples are available, several density estimation methods have been proposed to effec-
tively estimate the densities and compute the above distances [3, 17, 52, 54–57, 63]. Other
methods assume that the data originate from some unknown model, e.g., an autoregressive
model [64], and identify the changes by comparing the constructed models. Alternatively,
the data samples could be compared directly without any model assumptions [14, 65]. All
the above-mentioned different ways of comparing the two sets of samples can be further
divided into parametric and non-parametric (see Section 1.2). Each of these categories
will be explored in detail in the following sections. Note also that the change-point detec-
tion methods can be applied either to raw or filtered data, or even in sequences of features
derived from the data. In this work, the detection is performed by using only raw data.

2.3. PARAMETRIC CHANGE-POINT DETECTION METHODS 15

2.3. PARAMETRIC CHANGE-POINT DETECTION METHODS

Parametric methods generally model the data with a pre-fixing model and incorporate
some sort of knowledge into the detection scheme. A common assumption made in these
approaches is that the underlying distribution functions, corresponding to the two win-
dows, belong to some known family, such as the Gaussian. The unknown parameter sets of
the PDFS, denoted by θ and θ′, are estimated by the data samples and the resulting PDFs,
p(y; θ̂) and p ′(y; θ̂′), are compared via a likelihood ratio p(y)

p ′(y) [17, 63] or by using a diver-
gence measure, such as the Kullback Leibler (KL) divergence [66]. Some pioneering works
based on this concept include the Generalized Likelihood-Ratio (GLR) [63] and cumulative
sum methods (CUSUM) [17]. However, these approaches are particularly problematic in
high-dimensional problems, since usually in these cases a large number of noisy features
is present and it has been known that density estimation tends to be degraded by noise
[65].

There are also parametric change-point detection approaches which rely on the Bayes
decision theory (Bayesian approaches) [14]. In these methods, a joint prior distribution is
placed over the number and location of change-points and an observation model describes
the distribution of the data, given the change-points. However, selecting suitable priors for
both the unknown parameters θ and θ′ of the PDFs and the frequency of change-points is
an important issue [67]. A widely known method of this category is the parametric Bayesian
change-point test of Barry and Hartigan [7].

Some other parametric methods that have attracted increasing attention in recent years
are the subspace methods, which have been thoroughly studied in the area of control the-
ory [68–70]. By using a pre-designed time-series model, a subspace is detected by Principal
Component Analysis (PCA) from trajectories in past and present data samples, and their
dissimilarity is measured by the distance between the subspaces. The most promising
approach in this category is the subspace identification, which compares the subspaces
spanned by the columns of an extended observability matrix generated by a state-space
model with system noise [69].

Generally, the methods described above are limited by relying on pre-specified models,
such as probability density functions or state-space models, for tracking specific statistics
including the mean and the variance. This actually means that the parametric methods
tend to be less flexible in real-world scenarios and more efficient methods should be devel-
oped.

2.4. NON-PARAMETRIC CHANGE-POINT DETECTION METHODS

To overcome the disadvantages of the parametric methods, many non-parametric ap-
proaches have been described in the literature. These methods can be divided into two
main categories based on how they compute the dissimilarity measure between the two
sets of samples. The first category considers the dissimilarity as a distance between two
underlying PDFs, which, as was mentioned above, can be computed as a density ratio, or
a density difference or a divergence measure. The second category compares the data se-
quences directly (for example by means of a rank statistics test). All these strategies are

16 2. LITERATURE REVIEW

further described in the following paragraphs.

Density estimation methods

One way to deal with the density estimation problem, is to first estimate the two den-
sities separately and then compare the estimated densities, p̂(y;θ) and p̂(y;θ′), using a dis-
similarity measure. In general, density estimation can be approached in two ways: by Ker-
nel Density Estimation (KDE) or by k-Nearest Neighbor (kNN) density estimation [71].

In Kernel Density Estimation, an estimate of the density is made by centering normal-
ized kernels on each sample and computing weighted averages. The kernels typically have
a bandwidth parameter, which is estimated by means of cross validation [71]. For well-
behaved low dimensional distributions, KDE often performs well. However, as the dimen-
sionality and non-uniformity of the problem increase, more and more weights in the KDE
become small and, thus, the estimation accuracy is negatively affected [71, 72]. Addition-
ally, the choice of an appropriate bandwidth is a critical issue for achieving a high perfor-
mance, and since in this approach it is estimated by means of cross-validation, the compu-
tational expense is further increased.

With k-Nearest Neighbor density estimation, the density is estimated by computing the
volume required to include the k nearest neighbors of the current sample [71–73]:

p(
−→
θ) = 1

N

k

ρk (
−→
θ)d vd

(2.2)

where ρk (
−→
θ) represents the distance to the k-th nearest neighbors, d the number of di-

mensions and N the number of included samples. Furthermore, vd denotes the volume of
the unit ball in ∈Rd and is given by:

vd = πd/2

Γ(d/2+1)
(2.3)

where Γ corresponds to the Gamma function. The major benefit of using kNN estimate is
that this estimator adapts to the local sampling density, adjusting its volume where sam-
pling is sparse [71]. However, this kind of estimation has not received much attention in
the literature, because it has been known to be biased and less accurate in many cases and
especially in high-dimensional data [73]. In addition, similar to the KDE approach, this
estimator also suffers from a loss of accuracy when estimating high-dimensional densities
[71].

There have also been proposed non-parametric approaches that use a density-ratio
based dissimilarity measure calculated directly without going through separate density es-
timation of p(y) and p ′(y) [52, 65, 74]. The rationale of this idea is that knowing the two
densities implies knowing the density ratio, but not vice versa; knowing the ratio does not
necessarily imply knowing the two densities since such decomposition is not unique, as
illustrated in Figure 2.3. This is often referred to as Vapnik’s principle [75]: “If you possess
a restricted amount of information for solving some problem, try to solve the problem di-

2.4. NON-PARAMETRIC CHANGE-POINT DETECTION METHODS 17

Figure 2.3: Rationale of direct density-ratio estimation.

rectly and never solve a more general problem as an intermediate step. It is possible that the
available information is sufficient for a direct solution but is insufficient for solving a more
general intermediate problem.”

Well known recent direct density-ratio estimation techniques are the Kernel Mean Match-
ing (KMM) [76], the Kullback-Leibler Importance Estimation Procedure (KLIEP) [57] based
on the Kullback-Leibler divergence, the WKV method [77], the unconstrained Least Squares
Importance Fitting (uLSIF) [78] and its robust extension named relative uLSIF (RuLSIF)
[54] that both rely on the Pearson-divergence. In statistical machine learning, avoiding
density estimation is essential because it is often more difficult than direct density-ratio
estimation. However, as with density estimation based methods, the performance of direct
density-ratio estimation methods is likely to be degraded by noisy data [65].

An alternative way of comparing the PDFs corresponding to the two data sequences is
by computing the difference p(y)−p ′(y) instead of the ratio p(y)

p ′(y) . In general, density differ-
ences would be more desirable than density ratios because density ratios can sometimes
diverge to infinity even under mild conditions (e.g., Gaussian assumption), whereas den-
sity differences are always finite as long as each density is bounded [55]. One such method
is the recently developed Least-Squares Density Difference (LSDD) method [55], which di-
rectly estimates the difference without separately estimating the two densities.

Rank statistics methods

Nonparametric approaches have also been performed based on rank statistics, to avoid
the difficulties associated with density estimation [14, 15]. These methods compare the
sample sets YYY and YYY ′ directly without any intermediate density estimation step. How-
ever, they tend to be less accurate in high-dimensional problems because of the curse of
dimensionality [52, 79]. Kernel Change Detection (KCD) [14], which belongs to this cat-
egory, builds a dissimilarity measure based on One-class Support Vector Machine (SVM)
coefficients. Although KCD is robust to outliers, its performance is deteriorated by noisy
features. In [65], a kernel-based independence measure called additive Hilbert-Schmidt
independence Criterion (aHSIC), which is defined as the weighted sum of the HSIC scores,
was used as a detection measure. A big advantage of this method is that it basically incor-
porates feature selection such that only important features are being used to compute the
aHSIC score.

The direct density estimation methods, KLIEP, uLSIF, RuLSIF and LSDD, that have at-
tracted much attention in recent years due to their high performance rate in the non-
parametric setup are briefly described in the following subsection.

18 2. LITERATURE REVIEW

2.4.1. DIRECT DENSITY ESTIMATION METHODS

The goal of direct density estimation methods is to compare the probability distribu-
tions P and P ′ corresponding to the sample sets YYY = {y1:d

i }i=t−v+1,. . . ,t and YYY ′ = {y ′1:d
j } j=t+1,. . . ,t+v

in a direct way without seperately estimating the densities p(y) and p ′(y).

The direct density-ratio estimation methods use the divergence D(P,P ′) as the plausi-
bility of change-points, where D(P,P ′) denotes the f -divergence that was introduced inde-
pendently by Csiszàr [80] and Ali and Silvey [81], and is defined by the following formula
[52, 80, 81]:

D(P,P ′) =
∫

p ′(y) f

(
p(y)

p ′(y)

)
dy (2.4)

where f is a convex function such that f (1) = 0, and p(y) and p ′(y) are assumed to be
strictly positive. Moreover, since the f -divergence is asymmetric (i.e., D(P,P ′) 6= D(P ′,P)),
the above divergence is symmetrized into a new dissimilarity measure D(P,P ′)+D(P ′,P).

The f -divergence incorporates various popular divergences, such as the Kullback-Leibler
(KL) divergence by f (t) = t · log t and the Pearson (PE) or χ2-divergence by f (t) = (t −1)2

[82]:

• KL divergence: K L(P,P ′) =
∫

p(y) log

(
p(y)

p ′(y)

)
dy

• Pearson divergence: PE(P,P ′) =
∫

p ′(y)

(
p(y)

p ′(y)
−1

)2

dy

The key restriction of direct density-ratio estimation methods is to avoid estimating the
densities p(y) and p ′(y) when estimating the ratio or importance p(y)

p ′(y) . In order to meet this
requirement, the ratio has to be modeled by the following kernel model [3, 52, 54–56]:

g (y;θ) = p(y)

p ′(y)
:=

v∑
`=1

θ`K (y,y`) (2.5)

where θ := (θ1, ...,θv)T are parameters to be learned from the data samples and K (y,y′) is a
kernel basis function. In practice, the Gaussian kernel is used:

K (y,y′) = exp

(
−‖y−y′‖

2σ2

)
(2.6)

whereσ(>0) is the kernel width which is usually determined based on cross-validation. The
remaining question of this procedure is how to accurately estimate the kernel model using
only the data samples.

In the direct density-difference approach the L2-distance approximation between p(y)
and p ′(y), defined by [55]:

2.4. NON-PARAMETRIC CHANGE-POINT DETECTION METHODS 19

L2(P,P ′) :=
∫ (

p(y)−p ′(y)
)2 dy (2.7)

is used as the plausibility of change-points. This method basically follows the same idea as
stated above for the direct density-ratio approach, with the only difference that the kernel
model is used to model the difference p(y)−p ′(y) instead of the ratio p(y)

p ′(y) , i.e., in this case
the kernel model is defined as:

g (y;θ) = p(y)−p ′(y) :=
v∑
`=1

θ`K (y,y`) (2.8)

The exact methodology used in each of the four different direct density estimation ap-
proaches is briefly explained in the following paragraphs. We refer the interested reader to
the original papers for further details about each method.

• KLIEP (Kullback-Leibler Importance Estimation Procedure)

KLIEP [3, 56] is a direct density-ratio estimation algorithm that is suitable for estimat-
ing the KL divergence. The parameters θ in the kernel model g (y;θ) are determined
so that the KL divergence from p(y) to g (y;θ)p ′(y) is minimized. This means that
the initial problem can be transformed into a convex optimization problem with a
unique global optimal solution θ̂ that could be obtained, for example, by a gradient-
projection iteration. The solution to the optimization problem gives a density-ratio
estimator:

ĝ (y;θ) :=
v∑
`=1

θ̂`K (y,y`) (2.9)

and, finally, an approximator of the KL divergence can be computed by:

K̂ L := 1

v

v∑
i=1

log ĝ (yi) (2.10)

• uLSIF (unconstrained Least Squares Importance Fitting)

Recently, another direct density-ratio estimator called uLSIF has been proposed for
estimating the Pearson divergence [78]. This method fits the density-ratio model to
the true density-ratio under the squared loss, or in other words, the parameters θ
of the kernel model are determined so that a squared loss function is minimized.
The solution θ̂ of the corresponding convex optimization problem can be used to
estimate the PE divergence:

P̂E :=− 1

2v

v∑
j=1

ĝ (y′
j)2 + 1

v

v∑
i=1

ĝ (yi)2 − 1

2
(2.11)

uLSIF has some distinct advantages compared to the KLIEP method. First, its solu-
tion can be computed analytically and second, it achieves the optimal non-parametric

20 2. LITERATURE REVIEW

convergence rate. In addition, it has the optimal numerical stability and it is more ro-
bust than KLIEP [52, 78].

• RuLSIF (Relative unconstrained Least Squares Importance Fitting)

A major disadvantage of uLSIF is that depending on the condition of the denominator
density p ′(y), the density-ratio value p(y)

p ′(y) can be unbounded, (i.e., they can be infin-
ity) [52]. To overcome this problem, the relative density-ratio estimation was defined
as:

rα(y) = p(y)

p ′
α(y)

= p(y)

αp(y)+ (1−α)p ′(y)
(2.12)

where p ′
α(y) =αp(y)+ (1−α)p ′(y) is the α-mixture density and α ∈ [0,1).

Using this definition, the relative Pearson divergence was introduced by Yamada et
al. as [54]:

PEα(P,P ′) := PEα
(
P,αP + (1−α)P ′)= ∫

p ′
α(y)

(
p(y)

p ′
α(y)

−1

)2

dy (2.13)

The novelty of the relative density-ratio is that it is always bounded above by 1
α for

α > 0, even when the plain density-ratio p(y)
p ′(y) is unbounded. It has been shown that

when the relative density-ratio is exploited, the estimation accuracy is improved and
the convergence rate is faster compared to when the plain density-ratio is used. It
should also be noted that when α = 0, the relative density-ratio is reduced to the
plain density-ratio, and, thus, the RuLSIF method is transformed to the previously
explained uLSIF method [52].

In the same way as the uLSIF method, the parameters θ of the kernel model for
approximating the relative density-ratio are specified by minimizing a squared loss
function between the true and the estimated relative ratios. By using the solution θ̂

of the corresponding convex optimization problem, the relative PE-divergence can
be approximated as [54]:

P̂Eα :=− α

2v

v∑
i=1

ĝ (yi)2 − 1−α
2v

v∑
j=1

ĝ (y′
j)2 + 1

v

v∑
i=1

ĝ (yi)− 1

2
(2.14)

The superiority of RuLSIF over uLSIF lies in its better non-parametric convergence
property and its improved estimation accuracy, since its advantages regarding the
analytic solution, numerical stability and robustness are also present in the uLSIF
method [52, 54].

• LSDD (Least-Squares Density Difference)

For the density-difference estimation problem, Sugiyama et al. [55] proposed a method
called Least-Squares Density Difference (LSDD) that directly estimates the density
difference without separately estimating the two densities. As with the direct density-
ratio estimation methods, the density difference has to be modeled by a (Gaussian)

2.4. NON-PARAMETRIC CHANGE-POINT DETECTION METHODS 21

kernel model g (y;θ). Next, the algorithm fits the model to the true density difference
function under the squared loss. The solution θ̂ of the corresponding convex opti-
mization problem that minimizes the squared loss function gives a density difference
estimator ĝ (y;θ). This estimator can then be utilized in the L2-distance approxima-
tion between p(y) and p ′(y), which is then used to decide whether a change occurs
or not. This method has the advantage of providing a solution that can be computed
analytically in a computationally efficient and stable manner. Further, it achieves
the optimal convergence rate in a non-parametric setup and is more robust against
outliers than the Kullback-Leibler divergence [55].

3
METHODOLOGY

3.1. WHERE DOES THE PROBLEM ARISE IN TRADITIONAL METH-
ODS?

With the recent advancement of data collection technologies and data storage hard-
ware, massive amounts of large sample size and high-dimensional data (Big Data) are present
in almost all modern applications, and according to the estimates such growth in datasets
sizes is expected to accelerate in the future. This brings both opportunities and new chal-
lenges to research scientists. One the one hand, Big Data hold great promises for discov-
ering hidden structures and heterogeneities that are not possible to be determined with
small-scale of data. On the other hand, many computational and statistical challenges are
introduced, including noise accumulation, latent correlations, data redundancy, measure-
ment errors, corrupted and/or missing data in case a sensor reports malfunction as well as
heavy computational cost [83].

The traditional change-point detection algorithms are not designed to cope with this
kind of explosive growth in data. In general, these algorithms perform multivariate tests
to determine the change-points and since they make direct use of the correlations between
variables in an overarching way, they give a more comprehensive view of the data, providing
thus an extremely powerful tool for detection tests. However, their performance tends to
be degraded by noisy and corrupted data and they require particularly high demands of
computational resources due to their complex nature.

Recently, Yamada et al. [65], proposed a change-point detection measure called the
additive Hilbert-Schmidt Independence Criterion (aHSIC), which is given as the weighted
sum of the HSIC scores computed separately for each dimension of the data. An advantage
of the aHSIC measure over existing detection methods is that it can incorporate feature se-
lection during detection, and, thus, only data that are important for an abrupt change are
being used. The conducted experiments showed that aHSIC is suited for high-dimensional
time-series data and it is more robust as regards noise than existing multivariate measures
[65]. However, this approach considers only small sample size and high-dimensional sce-
narios, and it does not scale well to large datasets.

22

3.2. A TWO-LEVEL CHANGE-POINT DETECTION TEST: GENERAL OVERVIEW 23

To overcome the drawbacks mentioned above and effectively control the computation
cost, we propose a new algorithm with hierarchical structure that will be fully described in
the following sections.

3.2. A TWO-LEVEL CHANGE-POINT DETECTION TEST: GENERAL

OVERVIEW

Since real-world applications do not exhibit well-defined behavior, we will approach
the problem using a blind (non-parametric) segmentation algorithm that does not con-
sider any prior knowledge about the nature of the data or the changes. To design an ef-
fective statistical procedure that can be applied in both small- and large-scale datasets,
we need to address the problems associated with massive amounts of data in addition to
balancing the statistical accuracy and computational efficiency. For this purpose, we have
developed a Two-Level hierarchical blind segmentation method, as shown in Figure 3.1.
Our choice was motivated by the idea that if a simple test was used to quickly select some
potential candidates in the First-Level, then the Second-Level would be applied only to a
small portion of the data. For example, if we assume that the computational cost of com-
puting a divergence measure in one-dimensional data of length n is n ·O(l), then by quickly
selecting N << n candidates over the data, the cost is reduced to approximately N ·O(l).
Consequently, compared to the existing methods that require examination of all samples
in the dataset, our algorithm would be significantly faster.

Using this idea, our First-Level algorithm relies on a simple and easy-to-compute ap-
proach, because, as it was mentioned before, at this stage we are more interested in the
computational speed rather than the segmentation precision. More specifically, this pre-
selection step is based on the derivative of the filtered signal combined with a significant
extrema determination step and aims to detect the most likely change-points. It should be
noted that each dimension of the data is examined separately and thus we obtain a differ-
ent list of potential candidates for each dimension.

The Second-Level aims at validating or rejecting detections raised by the First-Level
and is based on the work presented in [65]. To deal with the problems associated with high
dimensional data, we first select data that are important in relation to a change in a super-
vised manner and then compute a dissimilarity measure by using only those selected data.
Our final detection measure is given as the weighted sum of the JSD scores, where JSD is the
Jensen Shannon divergence (JSD) based on k-nearest neighbor (kNN) density estimation.
Each JSD score is computed separately for each dimension using its corresponding candi-
dates from the First-Level. The proposed detection measure is called Hierarchical additive
Jensen Shannon divergence (HαJSD).

We will now introduce the notation used throughout the proposed algorithm and for-
mally describe our problem setting. Let Y = [y1, ...,yn] ∈ Rd×n denotes the input data. The
First-Level processes each vector yk separately and returns a list of potential change-points
per data dimension. In the Second-Level, we suppose that two non-overlapping d-dimensional
sequences YYY = {y1:d

i }i=t−v+1,. . . ,t and YYY ′ = {y ′1:d
j } j=t+1,. . . ,t+v with v samples each are ex-

tracted from the data in a sliding-window manner at time t . Note that we extract these

24 3. METHODOLOGY

First-Level

First-time derivative of
the filtered signal

Extrema detection

Potential change-
points per dimension

Input multi-
dimensional data

Second-Level

Data selection
(weights)

Dissimilarity measure
per dimension

Weighted sum of the
dissimilarity measures

Detected change-
points

Figure 3.1: The architecture of the proposed Two-Level change-point detection algorithm.

sequences v samples before and v samples after each time position corresponding to a
potential change-point. Using this framework as a basis, we compute the weighted dissim-
ilarity measure as:

D
(
YYY ,YYY ′)= d∑

k=1
αk · JSD

(
yT

k (t),y′T
k (t)

)
(3.1)

where yT
k (t) = [yk (t − v +1), ..., yk (t)]T and y′T

k (t) = [yk (t +1)..., yk (t + v)]T are the k-th data
samples of the two intervals,respectively, T is the matrix transpose, JSD is a dissimilarity
measure called Jensen Shannon divergence and ak ∈ [0,1] is a coefficient representing the
relevance of the corresponding data to a change.

The proposed algorithm is described in detail in the following sections.

3.3. FIRST-LEVEL ALGORITHM

The central idea of the First-Level algorithm lies in the observation that changes in the
original signal are represented by sharp spikes in the corresponding first-time derivative.
This means that change-points can be seen as positive or negative peaks of the derivative
signal. Note that the magnitude of the derivative signal depends not on the magnitude of
the original signal but on its rate of change. In addition, the derivative is equally sensitive
to a signal change irrespective of the level of the original signal. Thus, for two signals pre-
senting changes in the mean value with similar rates of changes but with different orders of
magnitude, the derivative will produce similar values for both of them [84]. All these prop-
erties make the derivative appealing for detecting changes in the time-series. However, the
process of computing the time derivative inherently increases the noise that is present in
the original signal. Therefore, the differentiation has to be preceded by filtering in order to
reduce the noise and enhance the prominent interest points of the time-series. We should
mention here that the idea of exploiting the extrema points of the filtered derivative signal
in the change-point detection problem has been investigated again in some recent research
works with very promising results [85–87].

3.3. FIRST-LEVEL ALGORITHM 25

(a) Raw data (b) Filtered data

(c) First-time derivative of the filtered data (d) Potential change-points in the derivative of
the filtered data (only a fragment is shown here)

Figure 3.2: Figure (a) depicts the original signal corrupted by noise, Figure (b) illustrates the filtered data,
Figure (c) shows the first-time derivate of the filtered signal and Figure (d) presents the potential change-
points as peaks of the derivative of the filtered data. The true segmentation boundaries are represented by
black triangles, the detected local maxima by red circles and the detected local minima by green circles.

To sum up, the change-point detection problem can be effectively transformed into a
peak detection problem, where by identifying the local maxima and minima of the deriva-
tive of the filtered signal, a list of potential change-points can be obtained. Hence, the
First-Level of our algorithm is divided into two main steps: the filtering and derivative com-
putation step and the extrema detection step.

Figure 3.2 provides an example of our First-Level algorithm. The benefit of using the
First-Level is more than obvious here: the original set of 1000 points is very quickly reduced
to only 350 points. The list of potential change-points contains all the right change-points
as well as many false detections. In the Second-Level of our algorithm, a test will be carried
out to remove the false detections from the list of candidates obtained in Level 1, without
removing the already correctly detected points.

First-time Derivative of the Filtered Signal

Unlike existing methods which utilize filters “inspired” from either domain knowledge
or intuition, we will use the approach described in [88], where the filter is optimized based
on the time-series. Major advantage of this technique is that the filter is adapted to the
particular dataset at hand. Moreover, as it was proven in [88], the underlying filter opti-
mization problem is reduced to a generalized eigenvalue problem and therefore it admits a

26 3. METHODOLOGY

Algorithm 1 Potential Extrema Determination

Input: D - First-time derivative of the filtered signal of size d×n
Output: L - A cell containing the extrema positions per dimension that were selected
from the algorithm as potential extrema

for j=1 to d do {for every dimension of the input signal}
{Identify extrema points}
x ← 0
for i=2 to n-1 do

if D[j , i] > D[j , i −1]∧D[j , i] > D[j , i +1] then
x ← x +1
a[j , x] = D[j , i] {Maxima amplitudes}
p[j , x] = i {Maxima positions}

end if
if D[j , i] < D[j , i −1]∧D[j , i] < D[j , i +1] then

x ← x +1
a[j , x] = D[j , i] {Minima amplitudes}
p[j , x] = i {Minima positions}

end if
end for
L{ j } ← p[j ,1 : x]

end for

simple, tractable solution. Besides that, this filter has the ability to preserve the most robust
extrema, i.e., the most desirable extrema that remain identifiable and unaffected when dis-
tortions are introduced into the signal. This is the reason why this filter is also referred to
as the "optimal" filter in this context. Examples of the filter’s frequency response using four
different datasets are given in Figure 3.4, where we can see that the filter shows a different
behavior depending on the data used.

Figure 3.3 illustrates why it is important to use a filter that can be adapted to different
datasets. Filtering too little will produce a time-series that shows too many extrema points,
whereas, filtering too much will remove too much of the interesting signal, such that im-
portant points may be overlooked [89].

The used filtering method is based on the observation that the extrema selection pro-
cess is equivalent to a geometric problem of partitioning data points in a hyperspace. Then,
the filtering operation can be interpreted as bounding the selected extrema by two hyper-
planes. The filter is basically an acausal linear FIR filter and the formulation problem is
transformed into that of determining the "optimal" coefficients for each particular time-
series data. It should be noted, however, that the filtering operation, although is data-
adaptive, may cause a loss of information in some cases. A complete explanation of how
this filter is derived is out of the scope of this thesis; we refer the interested reader to [88].

Once the filtered signal has been obtained, its first-time derivative can be computed
very easily and the problem of finding change points in the original signal can be reduced
to finding positive and negative peaks in the derivative signal.

3.3. FIRST-LEVEL ALGORITHM 27

Figure 3.3: The first picture shows the original time-series without any filtering; the following pictures show
the filtered time-series with increasing filtering scales, where the second picture still contains considerable
noise, the third suppresses the noise and preserves the interesting points, while the fourth suppresses both
the noise and some of the interesting points. [89]

(a) Accelerometer data (b) Respiration data

(c) Artificial data with shifting frequency (d) Artificial data with shifting variance

Figure 3.4: Frequency response of the filter for accelerometer data, respiration data , artificial data with shift-
ing frequency and artificial data with shifting variance.

28 3. METHODOLOGY

Change-point detection as peak detection of the filtered derivative

We used a two-step process for extrema detection. In the first step, all the extrema can-
didates are detected as described in the pseudocode given in Algorithm 1. However, not all
these extrema contain important information for detecting changes, and hence,the second
step involves pruning from the list of obtained extrema in order to cull the “weak” candi-
dates which would easily appear or disappear depending on the distortions introduced into
the underlying signal. Figure 3.5 shows an example of the extrema elimination step using
the same time-series data as in Figure 3.2. For this case, the initial list of 437 candidates
is reduced to 350 candidates, which offers an additional benefit of avoiding unnecessary
computations in the following steps of the algorithm.

For elimination of the non-significant extrema we take into account the amplitude dif-
ferences of the identified extrema with their neighbors as they were defined in [88], but we
also consider the proximity position information. More specifically, the significant extrema
determination is based on the following rule:

If two adjacent extrema are too close, then the extrema that has the lowest abso-

lute diferrence to its neighbors is considered to be not significant and it is discarded

from the list of candidates.

(3.2)

The threshold, Td , used to decide which extrema are considered to be too close was set
equal to the median value of the distances between the positions of the obtained extrema
and the amplitude differences of the extrema with their neighbors were computed as:

Ai = |ai −ai−1|+ |ai −ai+1|, i = 2, ..., x −1 (3.3)

where ai is the amplitude of the i th detected extrema and x is the total number of extrema.
Having defined these quantities, the rule 3.2 can be mathematically formulated as follows:

if pi+1 −pi ≤ Td , then the candidate pc , where c = argmin(Ai , Ai+1) is discarded

from the list of candidates.
(3.4)

In the above equation, the terms pi and pi+1 represent two consecutive candidate posi-
tions. It is also possible to add an upper limit on the number of significant extrema. This is
very useful, especially in problems like change detection, where not all changes are neces-
sarily linked with significant extrema in the derivative signal. In our problem, we decided
to use a limit such that 3.5% of the points of the time-series are chosen as significant ex-
trema. Obviously, this is applicable only in case the number of potential extrema is suffi-
cient enough to reach that limit.

3.4. SECOND-LEVEL ALGORITHM

The Second-Level detection test is used to remove the incorrectly identified change-
points from the list of candidates and fine-tune the segmentation results. In order to com-

3.4. SECOND-LEVEL ALGORITHM 29

(a) Both significant and insignificant extrema (b) Only Significant extrema

Figure 3.5: Extrema detection step.

pute the detection measure defined in Equation 3.1, we first need to perform a data selec-
tion test in order to decide which data are important for detecting changes and compute
a dissimilarity measure per each dimension by using the corresponding candidates from
the First-level. We can then compute the final detection measure as the weighted sum of
the dissimilarity measures computed independently for each dimension. The next sections
thoroughly describe each step of the Second-Level algorithm and explain its suitability for
the problem of change-point detection.

3.4.1. DATA SELECTION STEP

Figure 3.6 provides an illustrative example of two intervals YYY and YYY ′ derived from a 4-
dimensional time-series, where only three of the dimensions are associated with a change,
and indicates why it is important to perform the final detection test using only relevant
data. Motivated by this observation, we used a data selection algorithm, which has been
designed to give more weight (i.e., importance) to the data that are more important for
predicting changes than to others. The importance of the data is represented by the co-
efficients ak ∈ [0,1] in Equation 3.1, with 1 indicating highest importance and 0 lowest
importance. For example, in Figure 3.6 the data of the fourth dimension will acquire a
small weight and, thus, the detection accuracy will not be negatively affected. This ap-
proach is also very useful for human activity change detection problems. For example,
when detecting the change from "Standing" to "Brushing teeth" using multi-sensor data, it
is reasonable to use only right/left hand information into the detection procedure [65].

Various approaches have been suggested in the literature to address the feature selec-
tion problem including the Least Absolute Shrinkage and Selection Operator (Lasso) based
algorithms. In this section, we first review the Lasso based feature selection methods and
indicate their limitations and then propose a method to overcome these limitations. Note
here that although these algorithms are generally called feature selection algorithms, the
selection in our problem is performed using raw data, and this is the reason why we use
the term data selection instead.

30 3. METHODOLOGY

t

𝑧: + 1𝑧: − 1

Figure 3.6: Example of two sequences YYY and YYY ′ as they were extracted from a 4-dimensional time-series. As
we can see only three sensors provide data that are relevant to the observed change.

Before describing how these algorithms work, let us first introduce the special notation
that will be used for their mathematical formulation. Using a pseudo-binary label zi ∈
{+1,−1}, the samples in YYY are annotated as z = [−1, ...,−1]T ∈ Rv and the samples in YYY ′ as
z = [1, ...,1]T ∈Rv and the whole set of labels is denoted as z = [z1, ..., zn]T ∈Rn .

Lasso (Least Absolute Shrinkage and Selection Operator) [90] is a computationally effi-
cient linear feature selection method that optimizes the cost function:

min
α∈Rd

1

2
‖z−YTα‖2

2 +λ‖α‖1 (3.5)

where α = [α1, ...,αd]T is a coefficient vector, αk is the regression coefficient of the k-th
feature, ‖ · ‖1 and ‖ · ‖2 are the `1- and `2-norms, and λ> 0 is the regularization parameter.
The regression coefficients in Lasso represent the relevance of the corresponding features
to a change and they become zero for irrelevant features. Lasso is known to scale well with
both the number of data and the dimensionality. However, it can only capture linear de-
pendency between input features and output values (labels) and this is a critical limitation
[53, 91].

HSIC Lasso (Hilbert Schmidt Independence Criterion Lasso) [53] can select features
from high-dimensional data in a nonlinear manner by optimizing the cost function:

3.4. SECOND-LEVEL ALGORITHM 31

min
α∈Rd

‖L−
d∑

k=1
αkK

(k)‖2
F r ob +λ‖α‖1

s. t. α1, . . . ,αd ≥ 0

(3.6)

where K
(k) =ΓK(k)Γ andL=ΓLΓ are centered and normalized Gram matrices K(k)

i , j = K (yk,i , yk, j)

and Li , j = L(zi , z j) are Gram matrices, K (y, y ′) and L(z, z ′) are kernel functions, Γ = I v −
1
v 1v 1T

v is the centering matrix, I v is the v-dimensional identity matrix, 1v is the v-dimensional
vector with all ones, and ‖ · ‖F r ob is the Frobenius norm. After estimating α, each of its el-
ements is normalized as αk ← αk /

∑d
k=1αk , such that

∑d
k=1αk = 1. Note that due to the

normalization, the use of these coefficients in one-dimensional data does not provide any
information into the detection test (i.e., α= 1).

The first term in Equation 3.6 means that we are regressing the output kernel matrix L

by a linear combination of feature-wise input kernel matrices
{

K
(k)

}d

k=1
. This term can be

rewritten as [53]:

‖L−
d∑

k=1
αkK

(k)‖2
F r ob = HSIC(z,z)−2

d∑
k=1

αk HSIC(yT
k ,z)+

d∑
k,l=1

αkαl HSIC(yT
k ,yT

l) (3.7)

where HSIC(z,z) = tr (L L) and HSIC(yT
k ,y′T

k) = tr (K
(k)

K
(k ′)

) are kernel-based independence
measures called as HSIC, and tr (·) denotes the trace. Note that HSIC always takes a non-
negative value , and is zero if and only if two random variables are statistically independent
when a universal reproducing kernel [92] such as the Gaussian kernel is used. The HSIC
measure is further described in subsection 3.4.1.1.

From Equation 3.7, if the k-th feature yT
k has high dependence on the output z, HSIC(yT

k ,z)
takes a large value and thus αk will also be large. On the other hand, if yT

k and z are inde-
pendent, yT

k tends not to be selected by the `1- regularizer, which means that HSIC(yT
k ,z)

and αk are close to zero. Moreover, if yT
k and yT

l are strongly dependent (i.e., redundant
features), HSIC(yT

k ,yT
l) becomes large and thus either αk or αl tends to be zero. That is,

non-redundant features that have strong dependence on the output z, and hence are im-
portant for a change, tend to be selected by the HSIC Lasso and this is a very important
property for the change-point detection problem.

HSIC Lasso outperforms existing feature selection methods in small and high-dimensional
settings. However, it tends to be expensive compared to the simple Lasso for large-n and
high-d data [91]. In [53], a table lookup based approach was proposed to reduce the mem-
ory usage but the computational cost was still large. Another limitation of HSIC Lasso is
that it needs to tune the regularization parameter λwhich is usually difficult to be set man-
ually.

In [65], where feature selection is used for the first time in the change-point detection
context, the HSIC Lasso problem is solved using the Dual Augmented Lagrangian (DAL)
technique [93]. However, the computational expense of this approach makes it impractical

32 3. METHODOLOGY

for real-size problems. In this work to deal with a large and high-dimensional problem and
efficiently solve the HSIC Lasso we use the NN-LARS (Non-Negative Least Angle Regression
and Selection) algorithm proposed by [94]. A major advantage of the LARS based formu-
lation over Lasso is that LARS can find m features by iterating over m steps while Lasso
requires fine tuning the regularization parameter λ to obtain m features, which is a very
expensive procedure in large and high-dimensional problems. In addition, by using the
NN-LARS algorithm, the entire regularization path can be found for the cost of an ordinary
least squares solution [91, 94].

3.4.1.1. HILBERT-SCHMIDT INDEPENDENCE CRITERION (HSIC)

The HSIC (Hilbert-Schmidt independence Criterion) was first proposed in [95] for mea-
suring the dependence between two kernels. This criterion can be applied in feature selec-
tion algorithms to select a subset of features, such that the kernel constructed using the
selected feature subset maximizes HSIC when compared to a given kernel.

In order to compute HSIC we need to express it in terms of kernel functions. A uni-
versal kernel such as the Gaussian kernel allows HSIC to detect dependence between two
random variables [95]. Furthermore, it has been shown that the delta kernel is useful for
classification problems [96]. Therefore, we use the Gaussian kernel for inputs y and the
delta kernel for the outputs (labels) z. Before computing the kernel, the input data y need
to be normalized to have unit standard deviation. Then, we can use the Gaussian kernel:

K (y, y ′) = exp

(
− (y − y ′)2

2σ2
y

)
(3.8)

where σy is the Gaussian kernel width. In this work we set σy equal to the median distance
between points in the aggregate sample.

For the outputs (labels) z we use the delta kernel:

L(z, z ′) =
{

1 if z = z ′

0 otherwise
(3.9)

3.4.2. JENSEN SHANNON DIVERGENCE (JSD) BASED ON K-NEAREST NEIGH-
BOR (KNN) DENSITY ESTIMATION

In order to compute the final weighted detection measure and decide whether there is
a change or not, we should first compute a dissimilarity measure for each dimension of the
data using the corresponding candidates from the First-Level. More specifically, we need
to compare the sequences YYY and YYY ′ of v samples each, which are extracted in a sliding win-
dow manner at the candidate locations. A brief description of some of the most well-known
non-parametric dissimilarity measures was provided in Section 2.4. Of particular interest
are the recently proposed direct density estimation methods that either compute a density
ratio or a density difference directly without estimating the two densities separately. How-

3.4. SECOND-LEVEL ALGORITHM 33

ever, although these methods can give very accurate results in many circumstances, they
choose their parameters by means of cross-validation, which is a computationally expen-
sive procedure to be performed for each candidate.

A cheaper, though less accurate, way would be to use a density estimation algorithm to
estimate the densities corresponding to the two sequences separately, and then select an
appropriate measure to compare the estimated densities. kNN density estimation is prefer-
able over other ways of estimating a density, since it has the ability to adapt to the local
sampling density. Nevertheless, as it was mentioned in Section 2.4, this kind of estima-
tion has been known to be biased and similar to all density estimation methods, its accu-
racy is affected when estimating high-dimensional densities [71, 73]. Recently though, new
methodologies have been proposed to cancel the bias and compute consistent kNN-based
statistical measures [73]. In our setting, in particular, the disadvantages of kNN density es-
timation could be further mitigated by the fact that the dissimilarity measure is computed
for each dimension separately and that one additional step (i.e., the First-Level algorithm)
is used to find only the most relevant data for the density estimation procedure.

For all reasons mentioned above, the dissimilarity measure of our change detection ap-
proach will be based in the kNN density estimation, and more specifically, in the kNN-
based Jensen Shannon divergence (JSD) estimation, which was recently proposed by Van-
lier et al [71]. JSD, which presents many appealing properties and is very useful for detec-
tion purposes, is defined as the averaged Kullback-Leibler divergence (KL) [97]:

JSD(P,P ′) = 1

2
KL

(
P,

1

2

(
P +P ′))+ 1

2
KL

(
P ′,

1

2

(
P +P ′)) (3.10)

where P and P ′ are the two compared densities. Nevertheless, considering that only some
sample points of the densities are available, an exact calculation of the divergence is not
possible, and thus, the proposed kNN-based JSD estimation aims to provide an accurate
and efficient estimation of the original measure.

A complete explanation of this approach, which was originally developed to compute
the JSD between multivariate predictive densities of two competing models for optimal ex-
periment design purposes, can be found in [71]. Although we will not give the details of
this algorithm here, we should mention that it uses Markov Chain Monte Carlo (MCMC) to
sample from the posterior distributions and these posterior distribution values are used in
turn to sample from the predictive distributions, which was found to be a computationally
intensive procedure [98]. To keep the computational burden low and make as less assump-
tions as possible, we do not use any prediction method and instead we compute the non-
parametric kNN-based JSD measure directly from the two immediate sets of observations
YYY and YYY ′.

It should also be noted that this method is limited by its dependency on the value k,
i.e., the number of nearest neighbors that will be used in the density estimation. One way
to deal with this, would be to use cross-validation over multiple folds to find the best value
for k, but this would increase the running time of the algorithm. In this work, we propose a
fast and automatic data-driven k value selection method, which sets the number of nearest
neighbors k equal to the Euclidean pairwise distance between the two comparing sets of

34 3. METHODOLOGY

observations, YYY and YYY ′.

3.5. MODIFIED ALGORITHM FOR ONLINE DETECTION

As it was mentioned in Section 1.3, one of the numerous applications of change-point
detection algorithms is their use in online tracking systems. The hierarchical structure and
the low computational time of the two-level algorithm proposed in this thesis make it ap-
pealing for handling streaming data in real-time applications. However, since the First-
Level requires a larger number of observations than the Second-Level, where a sliding win-
dow of a few positions at a time is being utilized, the algorithm needs to be adapted in the
online context. For this purpose, we exploit the idea of the Sliding Window And Bottom-
up (SWAB) algorithm [44], which enables the combination of a sliding-window test and a
bottom-up test through a buffer, so that the advantage of having a more global view of the
data stream will not disappear.

Thus, by using a buffer to store a sufficient number of observations in the same man-
ner as in SWAB algorithm, the proposed Two-Level change detection test can be applied
in the set of observations that is currently present in the buffer, allowing a fast detection
of changes. Once the data that were stored in the buffer have been processed, they are
deleted and the buffer slides to the oldest received sample point that has not yet been pro-
cessed. Note that we have assumed here a perfect synchronization of the data across the
multimodal sensors. However, in practice, we should first synchronize the data since the
sampling rate varies among different kinds of sensors [99].

3.6. SPEEDING-UP EXISTING CHANGE-POINT DETECTION ALGO-
RITHMS

In this section we explain how our algorithm could be exploited to speed up some
standard change-point detection techniques and improve their performance. One way
to achieve that, would be to use the same hierarchical structure, described in the previ-
ous sections, where only the dissimilarity measure that is computed in the Second-Level
would be replaced. That is, we could compute another dissimilarity measure, instead of
the Jensen Shannon divergence (JSD) based on k-nearest neighbor (kNN) density estima-
tion. Then, the final detection measure would be given as the weighted sum of these dis-
similarity scores that were computed separately for each dimension of the data using their
corresponding candidates from the First-level.

However, many of the widely used methods require extremely large computational time
even for the simple case of one-dimensional data. Therefore, a combination of the above
idea with these computationally expensive methods, would increase dramatically the com-
putational time for large sample size and high-dimensional data, despite the fact that not
all the data samples would be used for the underlying computations. Hence, the above
modification can be efficiently used only with dissimilarity measures that require a rel-
atively small amount of time. One such measure is the Hilbert-Schmidt Independence
Criterion (HSIC), which has been utilized in the change-point detection problem by the

3.6. SPEEDING-UP EXISTING CHANGE-POINT DETECTION ALGORITHMS 35

First-Level

First-time derivative of
the filtered signal

Extrema detection

Potential change-
points per dimension

Input multi-
dimensional data

Second-Level

Multi-dimensional
dissimilarity measure

Detected change-
points

One set of potential
change-points for all

dimensions

Figure 3.7: The architecture of the modified Two-Level change-point detection algorithm using multivariate
dissimilarity measures.

additive HSIC (αHSIC) method. Thus, by combining the Two-Level change detection al-
gorithm presented in this thesis with the HSIC test, we propose a new detection measure
called Hierarchical additive Hilbert-Schmidt Independence Criterion (HαHSIC).

Let us now explain how the problem arises in the high-dimensional case. We assume
one-dimensional data of length n and computational cost n·O(l), when applying one of the
original existing methods (without any speeding up procedure). If we combine our Two-
Level algorithm with one of these methods, then the computational cost will be reduced
from n ·O(l) to N ·O(l) (where N << n). However, if we increase the data dimensional-
ity to m, the computational complexity of the modified method becomes approximately
m ·N ·O(l), which, for high-dimensional data, is generally much larger than n ·O(l ′), where
O(l ′) is the computational cost for multivariate data. Therefore, in order to speed up the
methods that involve heavy computations we should adapt our First-Level algorithm in the
multidimensional case in such a way that the cost of processing multivariate data, n ·O(l ′),
will be reduced to N ·O(l ′), with N << n . The procedure that will be used is described in
the following paragraphs and is depicted in Figure 3.7.

Modified First-Level algorithm for multivariate data

In order to speed up the change-point detection procedure for the computationally ex-
pensive multivariate methods, we first apply our First-Level algorithm, which processes
each dimension separately and returns a list of potential candidates per dimension. Then,
we concatenate the individual lists into a single one, which contains all the candidates (lo-
cations) that were detected at least in one dimension. For example, if we have 2-dimensional
data and the candidates (b,d , f , q, z) and (a,c,d , q, x) per dimension, respectively, then, we
obtain a final list of candidates (a,b,c,d , f , q, x, z). Afterwards, we apply a modified version
of the significant extrema detection process used in the last step of the original First-Level
algorithm. In that step, we had taken into account the amplitude differences and the prox-
imity position information of the identified extrema with their neighbors. However, now,

36 3. METHODOLOGY

(a) 10-dimensional raw time-series data (b) The new amplitude differences vector

Figure 3.8: This Figure illustrates how the modified First-level algorithm is computed for a 10-dimensional
time-series data. Figure (a) shows the raw data and Figure (b) shows the new amplitude difference vector that
will be exploited for the detection of the final candidates. The triangles and the vertical dotted lines represent
the true change-points and as we can see at these locations there are sharp spikes.

since we concatenated the individual lists of candidates into a single one, we should com-
pute a new vector with the amplitude differences between the candidates of the final list
and then apply the significant extrema determination rule 3.2, as it was explained in Sec-
tion 3.3. More specifically, the modified First-Level algorithm for multidimensional data
consists of the following steps:

1. The new list of candidates, Lnew , is obtained by concatenating the individual lists
L(1), . . . ,L(m), where m is the dimensionality of the data, into a single one, which
contains all the candidates that were detected at least in one dimension of the data.

2. For each candidate of the list Lnew , we retrieve all the dimensions where it was se-
lected as a candidate, as well as the amplitude differences of this candidate with its
neighbors for all detected dimensions, and then, we compute the mean value of the
retrieved amplitude differences.

3. Finally, we apply the significant extrema determination rule 3.2 to remove the can-
didates that are too close to each other and have the lowest absolute differences to
their neighbors, according to the new amplitude differences vector.

Here is an example to clarify the above procedure. Suppose we have 10-dimensional
data and we examine the candidate e of the list Lnew and let us assume that this candidate
was detected in the 1st , 2nd and 4th dimensions. Then, the new amplitude difference value
of this candidate with its neighbors is computed as: Anew (e) = A(1,e)+A(2,e)+A(4,e)

3 , where
A(1,e), A(2,e) ans A(4,e) are the amplitude differences of the candidate e with its neigh-
bors from dimensions 1,2 and 4, respectively. Figure 3.8 illustrates an example of the new
amplitude difference values of a 10-dimensional time series data presenting changes in the
mean value. As we can see, at the true change-points the amplitude differences have very
large values, and, hence, this is a very effective way of identifying the most likely change-
points. Note also that since the amplitude differences are computed in the derivative and

3.6. SPEEDING-UP EXISTING CHANGE-POINT DETECTION ALGORITHMS 37

not in the original signal, there is no possibility to add values of different orders of magni-
tude.

Once we have obtained the final list of candidates, we can compute a multivariate dis-
similarity measure using only these candidates, instead of examining all the observations.
Although this algorithm could be used in combination with all dissimilarity measures dis-
cussed in this thesis, our focus is on multivariate methods that have attracted a lot of atten-
tion in the literature the last years, as are the Least-Squares Density Difference (LSDD) and
the Relative unconstrained Least Squares Importance Fitting (RuLSIF) approaches. The
methods that are developed by using these two measures in combination with the modi-
fied First-Level algorithm presented in this section, are called Hierarchical LSDD (HLSDD)
and Hierarchical RuLSIF (HRuLSIF), respectively.

In the experimental section, we demonstrate the effectiveness of all modified methods
and we show that by using the First-Level algorithm either in combination with a univariate
or a multivariate dissimilarity measure, we basically obtain the same detection results as
with conventional approaches but with significant run-time improvements.

4
EXPERIMENTS

In this chapter we provide an experimental evaluation and comparison of the methods
that we developed with some of the most prominent algorithms proposed in the literature
for the change-point detection problem. We begin by presenting the metrics used for the
performance evaluation and then apply the different algorithms on both synthetic and real-
world datasets.

4.1. PERFORMANCE METRICS

One of the key issues associated with a change-point detection problem is the selection
of appropriate performance measures, or "metrics", that can ensure a meaningful analy-
sis of the system’s behavior. The most widely-known criteria used to evaluate the perfor-
mance of a change detection algorithm usually originate from information retrieval, ma-
chine learning and data mining fields. Change-point detection could actually be seen as a
classification problem, where in each time step the system has to decide whether a change
occurs (S+) or not (S−). A standard approach to evaluate such a system is to construct a
confusion matrix, as illustrated in Table 4.1, with the following entries:

• True Positive (TP): The number of change-points that are correctly identified as change-
points.

• False Positive (FP): The number of non change-points that are incorrectly identified
as change-points.

• False Negative (FN): The number of change-points that are incorrectly identified as
non change-points.

• True Negative (TN): The number of non change-points that are correctly identified
as non change-points.

However, the strategy that assigns a ground truth label in every point at the time-series
and forms a vector s ∈ {S+,S−}1:n , where n is the length of the data, is rather a naïve ap-
proach for the change-point detection problem, since the temporal adjacency is not taken

38

4.1. PERFORMANCE METRICS 39

Ground Truth
Change-point Non change-point

Predicted
Change-point T P F P

Non change-point F N T N

Table 4.1: Confusion matrix.

into account. For almost all applications, a segmentation s = S+ at time t would be consid-
ered as a good-enough hit if the target segmentation point S+ was located in the immediate
neighborhood (t ∓ ε) = S+, where ε is a tolerated deviation. But, in the above-mentioned
naïve approach, such a result would lead to both a false positive and a false negative re-
sult, as there is not an exact match between the ground truth and the predicted labels. This
means that the evaluation metric has to be modified to incorporate temporal neighbor-
hood in a small area around a real segmentation point. Furthermore, the evaluation result
depends not only on a particular segmentation decision in time, but on the result in con-
junction with the predicted labels in the temporal neighborhood; or in other words, while
one segmentation at the right location is desirable, multiple segmentation points at the
same location have to be penalized [100].

One more issue associated with the change-point detection problem is that in most
cases there are many more points where there is no change (S−) than points where there is
a change (S+), i.e., we have a heavily imbalanced dataset regarding the class distribution.
Hence, some basic evaluation measures, such as the accuracy, which do not take into con-
sideration the distribution of the classes, are invalid in our problem context. Another one
well-known classification measure that is problematic in our case is the Receiver Operat-
ing Characteristic (ROC) curve, which describes the relationship between the False Positive
Rate (FPR):

F PR = F P

F P +T N

and the True Positive Rate (TPR):

T PR = T P

T P +F N
.

The problem here is that, because of the small values that FPR adopts, only a small area
of the ROC curve is covered [100]. For that reason, in 2012, Kawahara and Sugiyama [56],
defined the True Positive Rate and False Positive Rate in the following way:

T PR = ncr

ncp

F PR = n f

nal

(4.1)

40 4. EXPERIMENTS

(a) ROC curve computed with
the original TPR and FPR defi-
nitions

(b) ROC curve computed with
the TPR anf FPR definitions of
Kawahara and Sugiyama

(c) Change detection score

Figure 4.1: Figures (a) and (b) show the ROC curves computed with the original classification measures and
the measures of Kawahara and Sugiyama, respectively, and Figure (c) depicts the corresponding change de-
tection score. The true change-points are marked by vertical dotted lines and triangles.

where ncr denotes the number of times change-points are correctly detected, ncp the num-
ber of all change points, n f the number of times non change-points are detected by mistake
and nal the number of all detection alarms.

Figure 4.1 shows how the ROC curve differs when using the original classification mea-
sures instead of those of Kawahara and Sugiyama. As it can be observed, the maximum
value of FPR is around 0.15 when using the original measures. In this case, by extending
the FPR to reach the point (1,1) in order to calculate the area underneath, we will obtain
an AUC value equal to 0.974 (against to 0.831 when using the measures of Kawahara and
Sugiyama), which is clearly unrealistic, as it can be seen by the change detection score used
to create these plots.

In this work, in order to avoid providing overly optimistic results and solve the problems
associated with imbalanced datasets, we decided to use the recently proposed definitions
of TPR and FPR, as they were given above.

4.2. EXPERIMENTS ON ARTIFICIAL DATASETS

First, we examine how the investigated methods behave in different scenarios using
two groups of artificial datasets with fixed and random change-steps. The data with fixed
change-steps are denoted as "Group 1" and the data with random change-steps as "Group
2".

4.2.1. DATA WITH FIXED CHANGE-STEP

In this section, we describe three synthetic time-series datasets as they were introduced
in [101]. The datasets are defined in the univariate context and will later be extended to the
multivariate case:

• Dataset 1 (Jumping mean): The following 1-dimensional second-order autoregres-
sive model is used to generate n data samples:

4.2. EXPERIMENTS ON ARTIFICIAL DATASETS 41

y(t) = 0.6 · y(t −1)−0.5 · y(t −2)+εt (4.2)

where εt is a Gaussian distribution modeling the noise with mean µ and standard
deviation 1.5. The initial values are set as y(1) = y(2) = 0. A change-point is inserted
at every 100 time steps by setting the noise mean µ at time t as:

µN =
{

0 N = 1

µN−1 + N
16 N = 2, . . . , n

100 −1

where N is a natural number such that 100(N −1)+1 ≤ t ≤ 100N , giving a total n
100 of

change-points.

• Dataset 2 (Scaling variance): The same auto-regressive model as in Dataset 1 is used,
but here the noise mean is equal to 0 and a change-point is inserted at every 100 time
steps by setting the noise standard deviation σ at time t as:

σN =
{

1 N = 1,3, , . . . , n
100 −1

ln
(
e + N

4

)
N = 2,4. . . , n

100 −2

• Dataset 3 (Changing frequency): 1-d dimensional data samples of size n are gener-
ated as:

y(t) = si n(ωx)+εt (4.3)

where εt is a origin-centered Gaussian noise with standard deviation 0.8. A change-
point is inserted at every 100 points by changing the frequency ω at time t as:

ωN =
{

1 N = 1

ωN−1ln
(
e + N

4

)
N = 2,4. . . , n

100 −1

Note that in the above datasets later change-points are more significant than earlier
ones. This allows us to explore the ability of each algorithm to detect change-points with
different significance. Examples of these datasets are shown in Figure 4.2.

4.2.2. DATA WITH RANDOM CHANGE-STEP

For a more complete comparison of the different techniques, we have also generated
synthetic time-series datasets with random change-point positions and random change
values. As in the previous section, the datasets are first defined in the univariate context:

• Dataset 1 (Shifting mean): The following 1-dimensional model is used to generate n
data samples characterized by changes in the mean value:

42 4. EXPERIMENTS

(a) Dataset 1: Jumping mean (b) Dataset 2: Scaling variance

(c) Dataset 3: Changing frequency

Figure 4.2: Group 1 - Artificial time-series data with fixed change-step. The true change-points are marked by
vertical dotted lines and triangles.

yt =
{
µ1 +εt εt ∼ N (0,σ2), t = 1, ..., p

µ2 +εt εt ∼ N (0,σ2), t = p +1, ..., p ′−1
(4.4)

where yt is the response variable, µ1 and µ2 are the means before and after the un-
known change at time p, respectively, and εt is a Gaussian noise with mean 0 and
standard deviation σ2.

• Dataset 2 (Shifting variance): The following 1-dimensional model is used to gener-
ate n data samples presenting changes in the variance:

yt =
{
µ+εt εt ∼ N (0,σ2

1), t = 1, ..., p

µ+εt εt ∼ N (0,σ2
2), t = p +1, ..., p ′−1

(4.5)

where σ2
1 and σ2

2 are the standard deviations before and after the unknown change at
time p, respectively, and µ is the overall mean.

• Dataset 3 (Shifting mean and variance): The following 1-dimensional model is used
to generate n data samples that experience changes in both the mean and the vari-
ance:

4.2. EXPERIMENTS ON ARTIFICIAL DATASETS 43

(a) Dataset 1: Shifting mean (b) Dataset 2: Shifting variance

(c) Dataset 3: Shifting mean and variance (d) Dataset 4: Changing distribution

Figure 4.3: Group 2 - Artificial time-series data with random change-step. The true change-points are marked
by vertical dotted lines and triangles.

yt =
{
µ1 +εt εt ∼ N (0,σ2

1), t = 1, ..., p

µ2 +εt εt ∼ N (0,σ2
2), t = p +1, ..., p ′−1

(4.6)

where µ1,σ2
1 and µ2,σ2

2 are the means and standard deviations before and after the
unknown change at time p, respectively.

• Dataset 4 (Changing distribution): Time-series of this category are generated by us-
ing a sequence of independent random numbers, where the originating distributions
before and after the unknown change-point positions are different. In this simula-
tion, we use in total six distributions, namely Chi-Square, Exponential, Geometric,
Poisson, Rayleigh and Student’s T, and, thus, there are many possible transitions be-
tween different segments. Gaussian noise with mean 0 and standard deviation σ2 is
also added in these time-series data.

It is interesting to note that since the change-points have random positions in the above
datasets, we can generate time-series with as many change-points as we want. However,
in order to allow easy comparison among them we always inserted the same number of
change-points (equal to 0.01 of the data length) in all time-series of this category. Examples
of these datasets are given in Figure 4.3.

44 4. EXPERIMENTS

4.2.3. ARTIFICIAL DATA RESULTS

In this section, we illustrate the behavior of the proposed methods and compare their
performance with three popular non-parametric algorithms from the categories of rank
statistics (αHSIC), direct density-difference estimation (LSDD) and direct density-ratio es-
timation (RuLSIF) using synthetic datasets. More specifically, for each experiment we test
7 different algorithms: the proposed HαJSD (Hierarchical additive Jensen Shannon diver-
gence), the existing approachesαHSIC, LSDD and RuLSIF, and their modifications HαHSIC
(Hierarchical αHSIC), HLSDD (Hierarchical LSDD) and HRuLSIF (Hierachical RuLSIF), as
they were presented in Section 3.6.

The experiments were conducted on a Linux-based cluster system of Philips Research
using Matlab R2014a. For LSDD and RuLSIF we use publicly available codes [102] and [103],
respectively. In addition, the parameters of these methods are chosen by grid search via 5-
fold cross-validation and the α value in RuLSIF is set equal to 0.1. For data selection by
HSIC Lasso in the αHSIC method we use the publicly available code [104] and we fix the
regularization parameter λ at 0.01. Note that in the data selection procedure of the modi-
fied HαHSIC method, the HSIC Lasso problem is solved using the NN-LARS algorithm, as
it was discussed in Section 3.4.1. For all methods which use a sliding window procedure,
each window contains v = 50 sample points. Moreover, each of the experiments was run
50 times with different random seeds and the reported results are the averages calculated
over all 50 runs.

All examined methods are compared in terms of the ROC curves, the Area Under the
ROC Curve (AUC) values and the time consumption. The AUC obtains a value in the range
[0,1] and is a very useful indicator of the performance. In general, the closer the ROC gets
to the left-top corner, i.e., (FPR,TPR) = (0,1), the closer the AUC gets to 1 and the better the
algorithm is. For all considered methods, the ROC curves are constructed by examining
the list of the obtained change-point scores. More specifically, a detection alarm at the
time point t is regarded as correct if there exists a true alarm at point t∗ such that t ∈ [t∗−
10, t∗+10]. Following the strategy of the previous researchers [14, 105], peaks of a change-
point score are regarded as detection alarms. We then setup a threshold η for filtering out
all alarms whose change-point scores are lower than or equal to η. Initially, we set η to be
equal to the score of the highest peak. Then by lowering η gradually, both TPR and FPR
become non-decreasing. Finally, for each η, we plot TPR and FPR on the graph, and thus a
monotone ROC curve is drawn. If we want to evaluate the performance of the First-Level of
our algorithms separately, since in this case there is no change-point score computed, we
simply compare the detected points with the ground truth ones.

Most research works on change-point detection considered only small datasets for the
evaluation procedure (for example 5,000 sample points and only one dimension). In this
work, in order to test the performance in high-dimensional data as well, we will extend the
above artificial datasets in the multidimensional case, where the change-points occur at
the same location among the different dimensions, while the data of each dimension are
randomly generated by the model corresponding to each dataset. The effect of having large
sample-size datasets will also be examined in our experiments.

First, we consider one-dimensional time series with a fixed number of samples in order

4.2. EXPERIMENTS ON ARTIFICIAL DATASETS 45

(a) Group 1: Jumping mean (b) Group 2: Shifting mean

(c) Change-point score obtained by the
HαJSD method for data in Figure (a)

(d) Change-point score obtained by the
HαJSD method for data in Figure (b)

Figure 4.4: Time-series samples (upper) and the change-point score obtained by the HαJSD method (lower).
The true change-points are marked by vertical dotted lines and triangles.

to explore how the algorithms perform on each specific dataset. Figure 4.4 shows examples
of two datasets and the corresponding change-point score obtained by the HαJSD method.
As can be seen, the change-points were correctly detected in both cases. Tables 4.2 and 4.3
describe the mean and standard deviation of the AUC values as well as the computational
time over 50 runs, and Figure 4.5 illustrates ROC curves averaged over 50 runs with different
random seeds for each of the 7 datasets.

HαJSD HαHSIC αHSIC

AUC AUC AUC
mean std

Time(min)
mean std

Time(min)
mean std

Time(min)

Group 1
Jumping mean 0.836 0.013 0.179 0.810 0.012 0.050 0.815 0.011 0.115
Scaling variance 0.855 0.019 0.186 0.856 0.016 0.066 0.863 0.015 0.124
Changing frequency 0.786 0.027 0.162 0.739 0.025 0.057 0.771 0.019 0.138

Group 2
Shifting mean 0.931 0.021 0.140 0.914 0.018 0.042 0.893 0.018 0.167
Shifting variance 0.806 0.022 0.150 0.808 0.022 0.049 0.815 0.018 0.158
Shifting mean and variance 0.848 0.018 0.165 0.852 0.016 0.052 0.839 0.015 0.116
Changing distribution 0.831 0.018 0.184 0.821 0.024 0.055 0.823 0.021 0.114

Average 0.842 0.046 0.167 0.829 0.054 0.053 0.831 0.039 0.133

Table 4.2: Mean AUC values and standard deviation, and mean computational time of the methods that use
a data selection technique combined with a univariate score for data of size 1×5,000. The best methods in
terms of mean AUC values are described in boldface.

46 4. EXPERIMENTS

HLSDD LSDD HRuLSIF RuLSIF

AUC AUC AUC AUC
mean std

Time(min)
mean std

Time(min)
mean std

Time(min)
mean std

Time(min)

Group 1
Jumping mean 0.833 0.014 0.863 0.854 0.013 2.542 0.818 0.016 1.702 0.829 0.013 4.182
Scaling variance 0.861 0.019 0.953 0.884 0.017 2.320 0.865 0.013 1.656 0.872 0.013 4.529
Changing frequency 0.772 0.024 0.975 0.823 0.020 2.503 0.762 0.023 1.532 0.806 0.018 4.414

Group 2
Shifting mean 0.920 0.017 1.038 0.908 0.017 2.184 0.929 0.020 1.611 0.919 0.021 4.312
Shifting variance 0.797 0.026 0.796 0.798 0.022 2.065 0.822 0.021 1.634 0.827 0.018 4.091
Shifting mean and variance 0.829 0.019 0.926 0.812 0.018 2.177 0.863 0.018 1.601 0.850 0.017 4.046
Changing distribution 0.825 0.020 0.911 0.822 0.020 2.239 0.839 0.024 1.636 0.843 0.021 4.196

Average 0.834 0.047 0.923 0.843 0.041 2.290 0.843 0.051 1.625 0.849 0.037 4.253

Table 4.3: Mean AUC values and standard deviation, and mean computational time of the methods that com-
pute a multivariate score for data of size 1×5,000. The best methods in terms of mean AUC values are de-
scribed in boldface.

The experimental results show that although all methods perform approximately the
same, the running time differs from one method to the other. For example, while the RuL-
SIF method achieves the highest average AUC value, the proposed HαJSD method provides
basically the same result (reduced by a value of only 0.007) with a significant run-time im-
provement (of a factor of about 25.47). It is interesting to note also that by exploiting the
hierarchical idea, the αHSIC, LSDD and RuLSIF methods are sped up by a factor of 2.51,
2.48 and 2.62, while the AUC values are reduced only by a value of 0.002, 0 and 0.006, re-
spectively. In addition, Figure 4.5 shows that there are no significant differences in perfor-
mance of the examined methods for each specific dataset in terms of AUC values. Worth
mentioning is also the fact that all methods, except from the LSDD, show the worst perfor-
mance in the dataset with the shifting frequency and the best performance in the dataset
with the random changes in the mean value, as depicted in Figures 4.5 (c)-(d).

Investigation of the sample-size of the data

In order to investigate the sensitivity of the performance on different values of the sam-
ple size n in terms of AUC values and computational time we will test all methods using
one-dimensional data of increasing sample size. Figures 4.6 (a)-(b) show the AUC values
and the computational time of all examined methods averaged over all 7 datasets for sam-
ple size n = 5,000, 10,000, and 50,000. The detailed tables for all datasets and methods are
provided in Appendix A.

As can be seen, the running time is approximately linear to the number of samples n,
while the performance remains at the same levels as sample size increases. In addition, the
speedup of αHSIC, LSDD and RuLSIF methods seems to be unaffected by the number of
samples, remaining at a factor of about 2.5 for all these methods, whereas the AUC values
are maintained at the same levels as in conventional methods. It is noteworthy that the
standard deviation of AUC for all methods becomes higher for larger sample sizes, with the
RuLSIF method showing the highest increase and the HαJSD method showing the lowest
increase.

4.2. EXPERIMENTS ON ARTIFICIAL DATASETS 47

(a) Group 1: Jumping mean (b) Group 1: Scaling variance (c) Group 1: Changing frequency

(d) Group 2: Shifting mean (e) Group 2: Shifting variance (f) Group 2: Shifting mean and
variance

(g) Group 2: Changing distribution

Figure 4.5: Average ROC curves of HαJSD, HαHSIC,αHSIC, HLSDD, LSDD, HRuLSIF and RuLSIF methods for
synthetic datasets of size 1×5,000.

Investigation of dimensionality

In order to determine how the dimensionality of data affects the performance of algo-
rithms we consider data of 5,000 samples along time with an increasing dimensionality.
Figures 4.7 (a)-(b) display the AUC values and the computational time of all examined
methods averaged over all 7 datasets for dimensionality d = 1, 25 and 50. The detailed
tables for all datasets and methods are provided in Appendix A.

As can be noticed, although all methods except from LSDD and HLSDD, present higher
AUC values as the dimensionality of data increases from 1 to 25, their performance is not
further increased for higher-dimensional data. In particular, the methods that demonstrate
the most significant improvement in performance with higher AUC values are the HαJSD
and HαHSIC methods. On the contrary, the LSDD and HLSDD methods perform substan-

48 4. EXPERIMENTS

(a) Average AUC values and standard deviation (b) Mean computational time (in minutes)

Figure 4.6: Figure (a) shows the average AUC values and standard deviation of all methods for sample size
n = 5,000,10,000 and 50,000, and Figure (b) shows the corresponding computational times.

tially worse as the dimensionality of data increases. The opposite behavior is observed
in the computational time, which grows dramatically for the HαJSD, HαHSIC and αHSIC
methods that compute a weighted sum of univariate dissimilarity measures, whereas it re-
mains constant for HLSDD, LSDD, HRuLSIF and RuLSIF methods that compute a multi-
variate dissimilarity measure. However, the relationship between the computational time
of the HαJSD, HαHSIC and αHSIC methods and the data dimensionality does not appear
to be linear, since the time tends to increase sharply as the dimensions are increased from
1 to 25 and less steeply thereafter. We should mention here that when the dimensionality is
increased from 1 to 2 only HαJSD and HαHSIC methods present higher AUC values, while
all others perform relatively the same. The results stated above (i.e., the better performance
for all methods except from LSDD and HLSDD and the worse performance for LSDD and
HLSDD) appear when the dimensions are increased to 4. As regards the computational
time, it raises sharply for HαJSD, HαHSIC and αHSIC methods after the dimensions have
been increased to 4, while it always remains stable for all other methods. Moreover, it is
worth noting that although the speedup of the LSDD and RuLSIF methods is not affected
by the number of dimensions, remaining at a factor of about 2.5, theαHSIC method is sped
up by a factor of about 2.5, 6.5 and 4.8 for 1-, 25- and 50-dimensional data, respectively. In
all cases, the AUC values are maintained at the same levels as in conventional methods.
The last point to consider is that the HαHSIC method presents the lowest increase in the
standard deviation of AUC, whereas the highest increase is shown in the LSDD method.

4.3. EXPERIMENTS ON REAL-WORLD DATASETS

In the previous section we compared the change-point detection methods using two ar-
tificial datasets with fixed and random change steps. In this section, we investigate how the
methods perform in real-world datasets. All parameters are selected in the same manner
as described above for the synthetic datasets.

The real-world dataset used here is the publicly available PAMAP2 dataset, which is a

4.3. EXPERIMENTS ON REAL-WORLD DATASETS 49

(a) Average AUC values and standard deviation (b) Mean computational time (in minutes)

Figure 4.7: Figure (a) shows the average AUC values and standard deviation of all methods for dimensionality
d = 1,25 and 50, and Figure (b) shows the corresponding computational times.

subset of the project Physical Activity Monitoring for Aging People (PAMAP) [106]. This
dataset provides human activity information recorded from 9 subjects, wearing 3 inertial
measurement units (IMUs) and a heart rate (HR) monitor and performing a total of 18 dif-
ferent everyday, household and sport activities, such as walking, cycling and house clean-
ing. Each IMU contains two 3-axis MEMS accelerometers, a 3-axis MEMS gyroscope and
a 3-axis magneto-inductive magnetic sensor, all sampled at 100 Hz. To obtain heart rate
information, the BM-CS5SR HR monitor from BM innovations GmbH was used, providing
heart rate values with approximately 9 Hz [107, 108].

The sensors were placed onto 3 different body positions [108]. A chest sensor fixation
includes one IMU and the heart rate chest strap. The second IMU is attached over the wrist
on the dominant arm, and the third IMU on the dominant side’s ankle. In addition, an
inertial data collection unit was carried by the subjects in a pocket fixed on their belt, to
collect the data from different sensors. Figure 4.9 illustrates the placement of all IMUs and
the data collection unit. The duration of recorded activities for all Subjects except Subject
9 was about 1 hour, resulting in a total of 8 hours of data. More information about the data
collection protocol, the subjects and the performed activities can be found in [107, 108].

Note that since this is a realistic dataset, there are many missing values in the data due
to wireless data dropping or problems with the hardware setup. To deal with this issue and
obtain valid time-series measurements, we reconstructed the missing values using cubic
spline interpolation. Figure 4.8 provides an example of accelerometer, gyroscope, magne-
tometer and heart-rate data as they were recorded for one subject along with their annota-
tions.

First, we will investigate how the methods work for each type of data separately. For
this reason, we use all available data from Subject 2 (the subject with the longest time-series
along time) and Subject 9 (the subject with the shortest time-series along time). Tables 4.4 -
4.5 for Subject 2, and 4.6 - 4.7 for Subject 9, describe the AUC values and the computational
time when each of the 10 different data was used separately, as well as when all sensors were
used together resulting in 28-dimensional data. As can be noticed from these tables, there

50 4. EXPERIMENTS

(a) Heart Rate

(b) Accelerometer

(c) Gyroscope

(d) Magnetometer

Figure 4.8: Raw-time series data recorded by Subject 1 in PAMAP2 dataset. The recorded data originate from
the heart rate, accelerometer, gyroscope and magnetometer sensors and are provided along with their anno-
tations.

are significant differences in performance between Subjects 2 and 9, and, hence, we will
analyze the results separately.

For Subject 2, the HαJSD and HαHSIC methods exhibit their best performance in terms
of AUC values when using accelerometer data, whereas for HLSDD, LSDD, HRuLSIF and
RuLSIF methods the best performance is observed when using gyroscope data. On the
other hand, all methods, except from HRuLSIF and RuLSIF, perform worst for the heart
rate data, while the HRuLSIF and RuLSIF methods present their worst performance for
accelerometer and magnetometer data obtained from the ankle IMU. The αHSIC method
was tested only for a few data due to its excessive computational time. Overall, the HαJSD
method shows the best performance in five out of eleven different cases (10 types of data
and their combination), the LSDD method in three cases, the HαHSIC in two cases and the
RuLSIF only in one case. As regards the computational time, it is worth observing that the
HαJSD and HαHSIC methods, which compute a weighted sum of univariate dissimilarity

4.3. EXPERIMENTS ON REAL-WORLD DATASETS 51

Figure 4.9: Placement of the three IMUs and the data collection unit [109].

measures, have relatively low running times for all data, except from the case where all data
sensors are combined in one, whereas for HLSDD, LSDD, HRuLSIF and RuLSIF methods
the running time is generally higher.

It is interesting to note also that, by exploiting the hierarchical idea, the LSDD and RuL-
SIF methods are sped up by a factor of about 4.2 and 4.3 on average, while the AUC values
are reduced by a value of 0.029 and 0.017 on average, respectively. For both these methods
the best speed-up is achieved with the one-dimensional heart rate data and the worst with
the combination of all sensor data. Finally, the highest loss in accuracy is observed for heart
rate data.

In Subject 9, which contains only a few samples (8,477 samples along the time vec-
tor, having a duration of about 1.5 min), the methods display different behavior in many
cases. First of all, the HαJSD method presents its best performance in terms of AUC values
for chest magnetometer data, the HαHSIC method for chest gyroscope data, the αHSIC
method for chest accelerometer data, the LSDD method for hand magnetometer data, and
the HLSDD, HRuLSIF and RuLSIF methods for data combined from all sensors. On the
other hand, the worst performance in HαJSD, HαHSIC, HLSDD and LSDD methods is ob-
served for heart rate data, and in aHSIC, HRuLSIF and RuLSIF methods for ankle magne-
tometer data. Overall, the HαJSD method shows the best performance in four out of eleven
different cases, the LSDD in four cases and the HLSDD in three cases. The computational
time among different methods follows the same behavior as in Subject 2, with the only dif-
ference that here all running times are kept at lower levels.

Furthermore, note that by exploiting the hierarchical idea, the LSDD and RuLSIF meth-
ods are sped up by a factor of about 5.37 and 4.86 on average, while the AUC values are
reduced by a value of 0.011 and 0.028 on average, respectively. It is surprising to observe
that the αHSIC method is sped up by a factor of 21.46 on average, while the AUC values are
increased by a value of 0.049 on average. This may be explained by the fact that sometimes
the First-Level algorithm rejects some false positives that could have strongly affected the
method’s performance. Moreover, the best speed-up for αHSIC method is achieved with
the hand gyroscope data and for RuLSIF and LSDD methods with the one-dimensional
heart rate data. On the contrary, the worse speed-up for αHSIC method is obtained with

52 4. EXPERIMENTS

Subject 2 HαJSD HαHSIC αHSIC

AUC Time(min) AUC Time(min) AUC Time(min)

Hand Accelerometer 0.853 54.429 0.855 23.553 0.672 829.124
Hand Gyroscope 0.826 44.379 0.820 19.430 - -
Hand Magnetometer 0.877 78.350 0.857 32.771 - -
Ankle Accelerometer 0.865 64.686 0.713 28.051 - -
Ankle Gyroscope 0.748 59.453 0.750 25.888 - -
Ankle Magnetometer 0.855 86.383 0.749 36.695 - -
Chest Accelerometer 0.930 51.565 0.934 22.619 - -
Chest Gyroscope 0.808 51.140 0.822 22.515 - -
Chest Magnetometer 0.843 89.880 0.788 39.699 - -
Chest Heart Rate 0.537 6.074 0.542 2.112 0.577 10.952

All sensors 0.844 715.898 0.829 394.338 0.560 2662.543

Table 4.4: AUC values and computational time of all methods that use a data selection technique combined
with a univariate score for Subject 2. The best methods in terms of AUC values are described in boldface.
Runs of αHSIC method with excessive computational time were cancelled.

Subject 2 HLSDD LSDD HRuLSIF RuLSIF

AUC Time(min) AUC Time(min) AUC Time(min) AUC Time(min)

Hand Accelerometer 0.766 77.148 0.755 224.343 0.581 222.885 0.584 966.656
Hand Gyroscope 0.652 75.598 0.717 302.553 0.653 218.124 0.629 894.574
Hand Magnetometer 0.772 85.724 0.794 257.944 0.534 231.858 0.540 854.153
Ankle Accelerometer 0.829 80.492 0.848 242.080 0.331 225.435 0.356 817.667
Ankle Gyroscope 0.902 83.714 0.912 211.195 0.410 224.395 0.434 650.301
Ankle Magnetometer 0.800 93.742 0.838 221.281 0.331 231.904 0.330 611.790
Chest Accelerometer 0.840 80.666 0.857 221.112 0.515 226.018 0.553 684.007
Chest Gyroscope 0.809 80.606 0.830 218.673 0.642 220.781 0.654 630.526
Chest Magnetometer 0.840 97.220 0.853 216.226 0.400 238.993 0.418 635.427
Chest Heart Rate 0.384 19.772 0.510 381.586 0.584 55.384 0.629 878.493

All sensors 0.581 189.825 0.577 226.000 0.548 321.020 0.567 597.564

Table 4.5: AUC values and computational time of all methods that compute a multivariate score for Subject
2. The best methods in terms of AUC values are described in boldface.

heart rate data, for LSDD method with ankle gyroscope data and for RuLSIF method with
chest gyroscope data. Finally, the LSDD method shows the worst loss in accuracy for heart
rate data and the RuLSIF method for chest magnetometer data, while the αHSIC method
shows the higher increase in accuracy for data combined from all sensors.

In order to investigate how the methods behave when combining data across different
types of sensors, we use all available sensor data (i.e., accelerometer, gyroscope, magne-
tometer and heart rate from hand, chest and ankle IMUs) resulting in 28-dimensional data.
Tables 4.8 - 4.9 describe the AUC values and the computational time for all methods and
all subjects of PAMAP2 dataset. The AUC values and standard deviation of all methods av-
eraged over all subjects as well as the running time for processing the whole dataset of 9
subjects are given in Table 4.10 and Figure 4.10.

As can be seen from Table 4.10 and Figure 4.10, the proposed HαJSD method demon-

4.3. EXPERIMENTS ON REAL-WORLD DATASETS 53

Subject 9 HαJSD HαHSIC αHSIC

AUC Time(min) AUC Time(min) AUC Time(min)

Hand Accelerometer 0.958 0.635 0.916 0.275 0.838 11.013
Hand Gyroscope 0.870 0.559 0.837 0.310 0.792 12.885
Hand Magnetometer 0.996 0.867 0.911 0.480 0.894 11.194
Ankle Accelerometer 0.928 0.923 0.792 0.507 0.769 12.115
Ankle Gyroscope 0.932 0.784 0.940 0.449 0.885 10.510
Ankle Magnetometer 0.789 1.003 0.685 0.488 0.613 9.195
Chest Accelerometer 0.934 0.835 0.926 0.473 0.902 9.341
Chest Gyroscope 0.942 0.759 0.943 0.430 0.878 10.125
Chest Magnetometer 0.990 1.267 0.911 0.681 0.883 8.720
Chest Heart Rate 0.764 0.100 0.683 0.045 0.681 0.163

All sensors 0.962 10.383 0.927 7.099 0.800 37.630

Table 4.6: AUC values and computational time of all methods that use a data selection technique combined
with a univariate score for Subject 9. The best methods in terms of AUC values are described in boldface.

Subject 9 HLSDD LSDD HRuLSIF RuLSIF

AUC Time(min) AUC Time(min) AUC Time(min) AUC Time(min)

Hand Accelerometer 0.975 1.332 0.982 5.816 0.789 2.489 0.808 9.946
Hand Gyroscope 0.938 1.106 0.961 5.870 0.780 1.994 0.786 10.828
Hand Magnetometer 0.985 1.279 0.991 4.593 0.827 2.377 0.878 7.998
Ankle Accelerometer 0.955 1.279 0.951 4.523 0.613 2.368 0.613 7.920
Ankle Gyroscope 0.956 1.345 0.954 4.531 0.825 2.474 0.828 7.767
Ankle Magnetometer 0.912 1.281 0.948 4.454 0.545 2.370 0.574 7.547
Chest Accelerometer 0.981 1.349 0.980 4.798 0.888 2.478 0.890 7.708
Chest Gyroscope 0.963 1.289 0.965 5.171 0.867 2.516 0.868 7.665
Chest Magnetometer 0.888 1.393 0.892 6.833 0.749 2.540 0.873 11.230
Chest Heart Rate 0.561 0.412 0.614 7.735 0.692 0.782 0.735 12.829

All sensors 0.990 1.385 0.990 5.707 0.931 2.469 0.964 9.904

Table 4.7: AUC values and computational time of all methods that compute a multivariate score for Subject
9. The best methods in terms of AUC values are described in boldface.

strates the highest performance in terms of AUC values among all competitive methods.
This result confirms the advantage of combining the First-Level algorithm with the data
selection technique of the Second-Level algorithm when different types of data have to be
processed at the same time. Note also that the HαJSD method presents the lowest AUC
standard deviation value, indicating that its performance is nearly the same across all sub-
jects. However, this method requires a relatively high computational time, which can be
explained by the fact that by increasing the data dimensionality, the cost of computing the
weights and the univariate scores for all dimensions is increased as well. On the other hand,
the worst performance in terms of AUC values is observed in theαHSIC, HRuLSIF and RuL-
SIF methods. The αHSIC method, in addition, requires excessive amounts of running time
to compute its change detection dissimilarity measure. It is worth noting also that by using
the First-Level algorithm, the αHSIC method is sped up by a factor of 5.77, while its AUC
value is increased by a value of 0.326, and the LSDD and RuLSIF methods are sped up by
a factor of 1.24 and 1.90, while their AUC values are reduced by a value of 0.002 and 0.019,

54 4. EXPERIMENTS

HαJSD HαHSIC αHSIC
Subject ID

AUC Time(min) AUC Time(min) AUC Time(min)

1 0.778 613.688 0.737 335.229 0.332 2111.330
2 0.844 715.898 0.829 394.338 0.560 2662.543
3 0.889 427.226 0.870 225.026 0.531 1552.933
4 0.802 547.395 0.760 294.222 0.309 1697.059
5 0.780 595.304 0.754 326.498 0.407 2127.035
6 0.819 765.688 0.796 577.874 0.515 2088.429
7 0.882 694.517 0.862 282.561 0.478 1679.935
8 0.878 682.899 0.850 368.433 0.522 2263.983
9 0.962 10.383 0.927 7.099 0.800 37.630

Table 4.8: AUC values and computational time of all methods that use a data selection technique combined
with a univariate score for data obtained from all sensors of all 9 subjects. The best methods in terms of AUC
values are described in boldface.

HLSDD LSDD HRuLSIF RuLSIF
Subject ID

AUC Time(min) AUC Time(min) AUC Time(min) AUC Time(min)

1 0.857 148.240 0.851 189.367 0.279 257.833 0.294 488.195
2 0.581 189.825 0.577 226.000 0.548 321.020 0.567 597.564
3 0.691 83.246 0.723 127.501 0.624 156.277 0.650 339.933
4 0.788 120.801 0.783 165.536 0.272 219.714 0.288 441.507
5 0.820 144.742 0.820 188.562 0.358 253.287 0.362 504.186
6 0.757 135.874 0.759 182.414 0.502 241.509 0.512 486.197
7 0.792 150.478 0.788 158.068 0.388 234.700 0.420 419.937
8 0.832 192.326 0.836 204.896 0.426 336.868 0.446 554.326
9 0.990 1.385 0.990 5.707 0.931 2.46 0.964 9.904

Table 4.9: AUC values and computational time of all methods that compute a multivariate score for data
obtained from all sensors of all 9 subjects. The best methods in terms of AUC values are described in boldface.

respectively.

In the last experimental set, only accelerometer data obtained from hand and chest
IMUS will be used, because these are the most common mounting positions for wearable
lifestyle sensors. Tables 4.11- 4.12 for hand data and 4.13 - 4.14 for chest data describe the
AUC values and the computational time for all methods and all subjects of PAMAP2 dataset.
The average AUC values and the total running time for processing the hand and chest ac-
celerometer data of all 9 subjects are summarized in Table 4.15 and Figure 4.11. Note that
in this experiment we use data as they were originally obtained from the PAMAP2 dataset,
where we have replaced the missing values by zeros and not by valid measurements.

By comparing the results of Tables 4.11 - 4.15, we can see that there are no signifi-
cant differences in performance of methods between hand and chest data. Overall, the
best performance in terms of AUC values for both hand and chest data is achieved by the
LSDD method, which, in addition, shows the lowest AUC standard deviation value. Never-
theless, the computational time of this method is quite high. It should be noted here, that
the HαJSD and HαHSIC methods provide quite good results in substantially lower running

4.3. EXPERIMENTS ON REAL-WORLD DATASETS 55

AUC

mean std
Total time (hours)

HαJSD 0.848 0.060 84.217
HαHSIC 0.821 0.063 46.855
αHSIC 0.495 0.145 270.348
HLSDD 0.790 0.113 19.449
LSDD 0.792 0.110 24.134
HRuLSIF 0.481 0.206 33.728
RuLSIF 0.500 0.212 64.029

Table 4.10: AUC values and standard deviation of all methods averaged over all subjects using data obtained
from all sensors (28-dimensional data). The table also gives the running time of each method for processing
the whole dataset of 9 subjects corresponding to a total of 8 hours of data. The best method in terms of AUC
values is described in boldface.

(a) Average AUC values and standard deviation (b) Total computational time (in hours)

Figure 4.10: Figure (a) shows the average AUC values and standard deviation of all methods using a com-
bination of all sensor data, and Figure (b) shows the corresponding running times for processing the whole
dataset of 9 subjects comprising a total of 8 hours of data.

times. On the other hand, the worst performance in terms of AUC values is obtained by
HRuLSIF method and in terms of computational time by αHSIC method. Finally, by using
the First-Level algorithm, the αHSIC method is sped up by a factor of 27. 19, while its AUC
value is increased by a value of 0.208 on average, and the LSDD and RuLSIF methods are
sped up by a factor of 2.65 and 2.75, while their AUC values are reduced by a value of 0.005
and 0.014 on average, respectively.

56 4. EXPERIMENTS

HαJSD HαHSIC αHSIC
Subject ID

AUC Time(min) AUC Time(min) AUC Time(min)

1 0.684 47.049 0.738 20.265 0.484 639.979
2 0.853 54.111 0.853 23.968 0.676 687.502
3 0.872 31.129 0.839 14.004 0.671 366.383
4 0.829 41.752 0.687 18.835 0.449 471.818
5 0.768 44.123 0.749 19.938 0.533 522.662
6 0.852 42.364 0.808 19.349 0.598 530.451
7 0.798 41.666 0.811 18.889 0.603 450.154
8 0.804 50.334 0.892 23.064 0.525 586.039
9 0.958 0.678 0.916 0.304 0.839 11.393

Table 4.11: AUC values and computational time of all methods that use a data selection technique for ac-
celerometer data obtained from the hand IMU of all 9 subjects. The best methods in terms of AUC values are
described in boldface.

HLSDD LSDD HRuLSIF RuLSIF
Subject ID

AUC Time(min) AUC Time(min) AUC Time(min) AUC Time(min)

1 0.809 65.277 0.807 173.436 0.409 195.769 0.428 532.009
2 0.770 79.501 0.754 214.387 0.586 228.770 0.589 613.598
3 0.797 43.573 0.795 117.926 0.625 128.570 0.638 360.465
4 0.871 57.465 0.876 149.957 0.357 168.902 0.361 462.391
5 0.917 66.088 0.917 165.820 0.439 190.196 0.449 518.692
6 0.858 63.834 0.854 162.247 0.567 186.649 0.580 484.556
7 0.877 55.399 0.876 139.101 0.542 157.805 0.539 551.024
8 0.860 72.544 0.885 181.540 0.450 208.643 0.452 552.578
9 0.975 1.464 0.982 4.309 0.789 4.245 0.808 12.610

Table 4.12: AUC values and computational time of all methods that compute a multivariate score for ac-
celerometer data obtained from the hand IMU of all 9 subjects. The best methods in terms of AUC values are
described in boldface.

4.3. EXPERIMENTS ON REAL-WORLD DATASETS 57

HαJSD HαHSIC αHSIC
Subject ID

AUC Time(min) AUC Time(min) AUC Time(min)

1 0.653 46.888 0.718 21.626 0.454 600.395
2 0.931 49.966 0.934 22.373 0.705 659.639
3 0.862 34.329 0.887 15.543 0.574 357.876
4 0.760 40.253 0.702 18.265 0.473 469.414
5 0.765 42.719 0.745 19.866 0.543 521.523
6 0.811 44.104 0.806 20.236 0.606 525.603
7 0.813 40.451 0.799 18.337 0.614 444.284
8 0.827 50.074 0.818 23.231 0.639 802.313
9 0.934 0.824 0.925 0.369 0.902 11.755

Table 4.13: AUC values and computational time of all methods that use a data selection technique combined
with a univariate score for accelerometer data obtained from the chest IMU of all 9 subjects. The best meth-
ods in terms of AUC values are described in boldface.

HLSDD LSDD HRuLSIF RuLSIF
Subject ID

AUC Time(min) AUC Time(min) AUC Time(min) AUC Time(min)

1 0.873 66.379 0.878 174.431 0.303 188.980 0.327 522.278
2 0.837 77.940 0.857 221.486 0.515 224.918 0.553 614.033
3 0.817 43.848 0.830 118.729 0.444 128.436 0.464 354.092
4 0.851 58.002 0.869 151.447 0.325 165.879 0.340 462.345
5 0.892 65.417 0.905 166.448 0.421 189.553 0.436 500.684
6 0.874 64.382 0.877 167.390 0.501 184.658 0.523 483.348
7 0.901 54.271 0.906 139.458 0.496 160.531 0.509 427.570
8 0.872 71.792 0.873 216.641 0.486 205.186 0.511 579.957
9 0.981 1.369 0.980 4.297 0.889 4.257 0.891 12.332

Table 4.14: AUC values and computational time of all methods that compute a multivariate score for ac-
celerometer data obtained from the chest IMU of all 9 subjects. The best methods in terms of AUC values are
described in boldface.

58 4. EXPERIMENTS

Hand Accelerometer Chest accelerometer

AUC AUCMethods
mean std

Total time
(hours) mean std

Total time
(hours)

HαJSD 0.824 0.076 5.887 0.817 0.088 5.827
HαHSIC 0.810 0.075 2.644 0.815 0.086 2.664
αHSIC 0.598 0.120 71.106 0.612 0.134 73.213
HLSDD 0.859 0.063 8.419 0.878 0.047 8.390
LSDD 0.861 0.069 21.812 0.886 0.042 22.672
HRuLSIF 0.529 0.132 24.493 0.487 0.169 24.207
RuLSIF 0.538 0.135 68.132 0.506 0.165 65.944

Table 4.15: AUC values and standard deviation of all methods averaged over all subjects using data from hand
and chest IMUs. The table also gives the running time of each method for processing the whole dataset of 9
subjects corresponding to a total of 8 hours of data. The best methods in terms of AUC values are described
in boldface.

(a) Average AUC values and standard deviation (b) Total computational time (in hours)

Figure 4.11: Figure (a) shows the average AUC values and standard deviation of all methods using accelerom-
eter data from the hand and chest IMUs, and Figure (b) shows the corresponding times for processing the
whole dataset of 9 subjects comprising a total of 8 hours of data.

5
CONCLUSIONS AND FUTURE WORK

In this work, we developed a non-parametric hierarchical algorithm for change-point
detection, whose key idea is that if a simple test was used to quickly select some candidates
in the First-Level, then the Second-Level, which in general requires higher computational
time, would be applied only to a small subset of data, leading to a significant run-time im-
provement. In addition, in order to alleviate the difficulties arising in high-dimensional
data, we used a data selection algorithm which has been designed to give more weight
to the data that are important for identifying changes than to others. Using these ideas,
we computed the final detection measure as the weighted sum of dissimilarity measures
computed individually for each dimension of data. The hierarchical structure of the pro-
posed algorithm has been further exploited to speed up some conventional change-point
detection techniques that compute a univariate dissimilarity measure, and it has also been
modified in such a way that it can be used in combination with multivariate dissimilar-
ity measures. Experimental results on both artificial and real-world data demonstrate the
usefulness of all developed methods.

To sum up the obtained results, we can say that the HαJSD method, proposed in this
thesis, exhibits high performance in general for both artificial and real-world datasets and
is particularly advantageous when different types of data have to be processed at the same
time. The results of existing approaches revealed that the LSDD method, which performs
very well in most cases for both artificial and real-world datasets, presents a high variabil-
ity in performance in some cases, while the αHSIC and RuLSIF methods seem to perform
better for artificial than for real-world data.

As regards the computational time, it is worth observing that HαJSD, αHSIC and its
modification HαHSIC that compute a weighted sum of univariate dissimilarity measures,
present low running times for small- and large-sample size datasets with low dimensional-
ity, and high running times when the data dimensionality is increased. On the other hand,
LSDD, RuLSIF and their modifications HLSDD and HRuLSIF, that compute a multivari-
ate dissimilarity measure require high running times for both small- and large sample size
datasets. However, these methods appear to be unaffected by an increase of the data di-
mensionality.

59

60 5. CONCLUSIONS AND FUTURE WORK

One of the main contributions of this work relies on the hierarchical structure of the
proposed algorithms, which offers the great benefit of improving the computational time
of traditional methods while maintaining their performance unaffected. For all examined
methods the highest speedup is observed for low-dimensional and large sample size data,
while the lowest speedup appears for high-dimensional data. For LSDD and RuLSIF meth-
ods in particular, the AUC values remain basically at the same levels (with only a slight de-
crease), whereas for αHSIC method the AUC values when using real-world data are always
increased. This could be explained by the fact that in many cases the First-Level algorithm
rejects some false positives that could have negatively affected the detection test.

Another interesting conclusion of this study is that a universal algorithm which results
in an optimal solution for all cases does not always exist and, thus, if we have prior knowl-
edge of the nature of the data, we can utilize it in order to select the most suitable algorithm.
It should be noted also that even though we investigated a number of different scenarios
with various sample sizes and dimensionalities, the huge variety of change-point detection
applications does not allows us to derive general assertions. However, the obtained results
provide a certain insight into the change detection problem and can serve as a tool to shape
the scientists expectations of the behavior of examined methods.

We are convinced that with the development of wireless devices and miniature sensors
that can continuously record data, the importance of fast change detection techniques will
increase. Therefore, as a future work we can apply the proposed hierarchical algorithms
to many other change-point detection techniques in order to improve their computational
times. Another important future challenge comes from the use of multi-sensor data and in-
dicates why data selection techniques, as the one used in the HαJSD method presented in
this thesis, should be incorporated in the change detection procedure. We leave the appli-
cation of such selection methods to change detection problems as future work. Moreover,
investigating the performance of the examined methods over other real datasets, such as
respiration and music datasets, is a possible extension of this work.

A
APPENDIX A - PERFORMANCE TABLES

HαJSD HαHSIC αHSIC

AUC AUC AUC
mean std

Time(min)
mean std

Time(min)
mean std

Time(min)

Group 1
Jumping mean 0.861 0.005 0.316 0.814 0.006 0.089 0.810 0.005 0.228
Scaling variance 0.872 0.010 0.317 0.873 0.007 0.105 0.877 0.007 0.279
Changing frequency 0.783 0.019 0.279 0.740 0.015 0.086 0.776 0.013 0.243

Group 2
Shifting mean 0.943 0.013 0.257 0.926 0.012 0.089 0.904 0.012 0.238
Shifting variance 0.805 0.015 0.306 0.804 0.015 0.104 0.813 0.012 0.248
Shifting mean and variance 0.850 0.013 0.316 0.854 0.012 0.095 0.840 0.012 0.284
Changing distribution 0.829 0.015 0.311 0.816 0.018 0.087 0.817 0.015 0.245

Average 0.849 0.052 0.300 0.832 0.059 0.094 0.834 0.044 0.252

Table A.1: Mean AUC values and standard deviation, and mean computational time of the methods that use
a data selection technique combined with a univariate score for data of size 1×10,000. The best methods in
terms of mean AUC values are described in boldface.

HLSDD LSDD HRuLSIF RuLSIF

AUC AUC AUC AUC
mean std

Time(min)
mean std

Time(min)
mean std

Time(min)
mean std

Time(min)

Group 1
Jumping mean 0.844 0.008 1.787 0.850 0.008 4.603 0.810 0.006 3.364 0.812 0.006 7.993
Scaling variance 0.879 0.010 1.864 0.895 0.008 4.434 0.885 0.008 3.043 0.888 0.008 8.015
Changing frequency 0.769 0.019 1.774 0.825 0.014 5.136 0.760 0.018 3.006 0.809 0.014 8.190

Group 2
Shifting mean 0.930 0.010 1.693 0.917 0.010 5.125 0.939 0.012 3.070 0.929 0.013 8.426
Shifting variance 0.794 0.015 1.776 0.796 0.014 4.902 0.820 0.014 3.313 0.825 0.012 8.513
Shifting mean and variance 0.824 0.012 1.790 0.806 0.011 5.224 0.865 0.014 3.190 0.851 0.014 8.824
Changing distribution 0.817 0.014 1.984 0.812 0.012 4.764 0.835 0.017 3.729 0.836 0.015 8.600

Average 0.837 0.054 1.810 0.843 0.047 4.884 0.845 0.058 3.245 0.850 0.044 8.366

Table A.2: Mean AUC values and standard deviation, and mean computational time of the methods that
compute a multivariate score for data of size 1×10,000. The best methods in terms of mean AUC values are
described in boldface.

61

62 A. APPENDIX A - PERFORMANCE TABLES

HαJSD HαHSIC αHSIC

AUC AUC AUC
mean std

Time(min)
mean std

Time(min)
mean std

Time(min)

Group 1
Jumping mean 0.920 0.002 1.862 0.924 0.001 0.408 0.911 0.001 1.504
Scaling variance 0.858 0.006 1.754 0.913 0.003 0.464 0.914 0.003 1.418
Changing frequency 0.749 0.007 1.895 0.704 0.005 0.498 0.747 0.006 1.330

Group 2
Shifting mean 0.944 0.006 1.877 0.927 0.006 0.524 0.903 0.008 1.383
Shifting variance 0.815 0.006 1.780 0.808 0.003 0.499 0.814 0.003 1.278
Shifting mean and variance 0.852 0.004 1.833 0.856 0.005 0.471 0.838 0.005 1.263
Changing distribution 0.829 0.005 1.909 0.813 0.008 0.482 0.812 0.007 1.261

Average 0.852 0.065 1.844 0.849 0.082 0.478 0.848 0.063 1.348

Table A.3: Mean AUC values and standard deviation, and mean computational time of the methods that use
a data selection technique combined with a univariate score for data of size 1×50,000. The best methods in
terms of mean AUC values are described in boldface.

HLSDD LSDD HRuLSIF RuLSIF

AUC AUC AUC AUC
mean std

Time(min)
mean std

Time(min)
mean std

Time(min)
mean std

Time(min)

Group 1
Jumping mean 0.930 0.002 8.489 0.914 0.002 21.052 0.929 0.001 14.700 0.924 0.001 40.513
Scaling variance 0.910 0.004 8.184 0.916 0.002 21.700 0.925 0.003 14.020 0.924 0.002 39.440
Changing frequency 0.730 0.008 8.471 0.787 0.008 22.641 0.720 0.006 14.726 0.772 0.006 38.923

Group 2
Shifting mean 0.932 0.005 7.966 0.918 0.006 21.993 0.941 0.006 14.975 0.930 0.008 39.772
Shifting variance 0.796 0.009 8.119 0.799 0.004 21.825 0.821 0.008 14.702 0.826 0.006 39.308
Shifting mean and variance 0.825 0.003 8.020 0.803 0.004 21.732 0.867 0.006 14.676 0.850 0.006 39.332
Changing distribution 0.813 0.005 8.197 0.809 0.006 21.937 0.834 0.008 14.398 0.835 0.006 39.283

Average 0.848 0.077 8.207 0.849 0.063 21.840 0.862 0.079 14.600 0.866 0.061 39.510

Table A.4: Mean AUC values and standard deviation, and mean computational time of the methods that
compute a multivariate score for data of size 1×50,000. The best methods in terms of mean AUC values are
described in boldface.

HαJSD HαHSIC αHSIC

AUC AUC AUC
mean std

Time(min)
mean std

Time(min)
mean std

Time(min)

Group 1
Jumping mean 0.896 0.007 6.848 0.901 0.007 3.730 0.799 0.006 23.816
Scaling variance 0.975 0.004 6.811 0.960 0.005 4.036 0.876 0.008 24.341
Changing frequency 0.917 0.008 6.608 0.907 0.012 3.588 0.794 0.020 23.412

Group 2
Shifting mean 0.991 0.011 6.905 0.991 0.011 3.647 0.991 0.008 24.682
Shifting variance 0.979 0.010 6.208 0.980 0.010 3.624 0.952 0.013 24.269
Shifting mean and variance 0.985 0.011 6.263 0.983 0.011 3.563 0.956 0.009 22.921
Changing distribution 0.975 0.011 6.227 0.981 0.011 3.587 0.943 0.011 23.778

Average 0.960 0.037 6.553 0.958 0.038 3.682 0.902 0.080 23.888

Table A.5: Mean AUC values and standard deviation, and mean computational time of the methods that use
a data selection technique combined with a univariate score for data of size 25×5,000. The best methods in
terms of mean AUC values are described in boldface.

63

HLSDD LSDD HRuLSIF RuLSIF

AUC AUC AUC AUC
mean std

Time(min)
mean std

Time(min)
mean std

Time(min)
mean std

Time(min)

Group 1
Jumping mean 0.787 0.015 0.936 0.784 0.019 2.504 0.878 0.006 1.719 0.881 0.007 4.355
Scaling variance 0.677 0.016 0.916 0.672 0.017 2.530 0.898 0.004 1.792 0.896 0.004 4.397
Changing frequency 0.546 0.004 1.042 0.537 0.003 2.406 0.761 0.023 1.781 0.806 0.019 4.280

Group 2
Shifting mean 0.677 0.053 1.000 0.723 0.052 2.478 0.985 0.011 1.499 0.989 0.011 4.285
Shifting variance 0.609 0.033 1.026 0.607 0.034 2.307 0.911 0.015 1.775 0.921 0.014 4.277
Shifting mean and variance 0.682 0.068 0.972 0.665 0.070 2.328 0.983 0.011 1.788 0.984 0.011 4.481
Changing distribution 0.615 0.031 1.011 0.605 0.029 2.470 0.982 0.011 1.576 0.983 0.011 4.255

Average 0.656 0.076 0.986 0.656 0.082 2.432 0.914 0.081 1.704 0.923 0.068 4.333

Table A.6: Mean AUC values and standard deviation, and mean computational time of the methods that
compute a multivariate score for data of size 25×5,000. The best methods in terms of mean AUC values are
described in boldface.

HαJSD HαHSIC αHSIC

AUC AUC AUC
mean std

Time(min)
mean std

Time(min)
mean std

Time(min)

Group 1
Jumping mean 0.885 0.006 13.584 0.889 0.005 7.748 0.797 0.006 36.419
Scaling variance 0.977 0.005 13.462 0.957 0.005 7.516 0.877 0.005 36.191
Changing frequency 0.910 0.009 13.352 0.909 0.009 7.375 0.790 0.020 35.310

Group 2
Shifting mean 0.986 0.013 13.220 0.986 0.013 7.212 0.983 0.013 35.334
Shifting variance 0.983 0.012 13.447 0.984 0.011 7.119 0.967 0.011 35.468
Shifting mean and variance 0.984 0.014 13.131 0.983 0.013 7.569 0.969 0.014 35.234
Changing distribution 0.982 0.010 13.703 0.986 0.010 7.802 0.964 0.012 36.297

Average 0.958 0.042 13.414 0.956 0.041 7.477 0.907 0.085 35.750

Table A.7: Mean AUC values and standard deviation, and mean computational time of the methods that use
a data selection technique combined with a univariate score for data of size 50×5,000. The best methods in
terms of mean AUC values are described in boldface.

HLSDD LSDD HRuLSIF RuLSIF

AUC AUC AUC AUC
mean std

Time(min)
mean std

Time(min)
mean std

Time(min)
mean std

Time(min)

Group 1
Jumping mean 0.742 0.012 1.073 0.748 0.014 2.326 0.875 0.003 1.612 0.874 0.005 4.075
Scaling variance 0.698 0.009 1.041 0.694 0.011 2.375 0.928 0.003 1.833 0.922 0.003 4.025
Changing frequency 0.111 0.011 0.999 0.117 0.012 3.272 0.774 0.016 1.772 0.824 0.014 4.047

Group 2
Shifting mean 0.366 0.037 0.955 0.370 0.038 2.538 0.977 0.013 1.658 0.983 0.013 4.662
Shifting variance 0.343 0.078 1.017 0.359 0.060 2.270 0.878 0.020 1.785 0.891 0.018 3.899
Shifting mean and variance 0.720 0.022 0.962 0.711 0.019 2.154 0.980 0.014 1.908 0.979 0.013 4.993
Changing distribution 0.762 0.016 0.970 0.753 0.018 2.571 0.984 0.010 1.622 0.985 0.010 5.127

Average 0.535 0.258 1.002 0.536 0.252 2.501 0.914 0.077 1.741 0.923 0.063 4.404

Table A.8: Mean AUC values and standard deviation, and mean computational time of the methods that
compute a multivariate score for data of size 50×5,000. The best methods in terms of mean AUC values are
described in boldface.

BIBLIOGRAPHY

[1] John F. Roddick, Lina Al-Jadir, Leopoldo Bertossi, Marlon Dumas, Florida Estrella,
Heidi Gregersen, Kathleen Hornsby, Jens Lufter, Federica Mandreoli, Tomi Männistö,
Enric Mayol, and Lex Wedemeijer, “Evolution and Change in Data Management -
Issues and Directions,” SIGMOD Rec., vol. 29, pp. 21–25, Mar. 2000.

[2] Gordon J. Ross, Dimitris K. Tasoulis, and Niall M. Adams, “Online Annotation and
Prediction for Regime Switching Data Streams,” in Proceedings of the 2009 ACM Sym-
posium on Applied Computing, SAC ’09, (New York, NY, USA), pp. 1501–1505, ACM,
2009.

[3] Yoshinobu Kawahara and Masashi Sugiyama, “Change-Point Detection in Time-
Series Data by Direct Density-Ratio Estimation,” in Proceedings of the SIAM Inter-
national Conference on Data Mining, SDM 2009, (Nevada, USA), pp. 389–400, 2009.

[4] Miodrag Lovrić, Marina Milanović, and Milan Stamenković, “Algorithmic Methods
For Segmentation of Time Series: An overview,” Journal of Contemporary Economic
and Business Issues (JCEBI), vol. 1, no. 1, pp. 31–53, 2014.

[5] Idris A. Eckley, Paul Fearnhead, and Rebecca Killick, “Analysis of changepoint mod-
els,” in Bayesian Time Series Models (David Barber, A. Taylan Cemgil, and Silvia Chi-
appa, eds.), pp. 205–224, Cambridge University Press, 2011.

[6] Phipps Arabie, J. Douglas Carroll, Wayne DeSarbo, and Jerry Wind, “Overlapping
Clustering: A New Method for Product Positioning,” Journal of Marketing Research,
vol. 18, no. 3, pp. 310–317, 1981.

[7] Daniel Barry and J. A. Hartigan, “Product Partition Models for Change Point Prob-
lems,” The Annals of Statistics, vol. 20, pp. 260–279, Mar. 1992.

[8] Md. Mijanur Rahman and Md. Al-Amin Bhuiyan, “Dynamic Thresholding on Speech
Segmentation,” International Journal of Research in Engineering and Technology,
vol. 02, pp. 404–411, Sept. 2013.

[9] Babak Azimi-Sadjadi and P. S. Krishnaprasad, “A Particle Filtering Approach to
Change Detection for Nonlinear Systems,” EURASIP Journal on Advances in Signal
Processing, vol. 2004, no. 15, pp. 2295–2305, 2004.

[10] O. Seidou and T. B. M. J. Ouarda, “Recursion-based multiple changepoint detection
in multiple linear regression and application to river streamflows,” Water Resources
Research, vol. 43, July 2007.

64

BIBLIOGRAPHY 65

[11] Kumar Vasimalla, “A Survey on Time Series Data Mining,” International Journal of
Innovative Research in Computer and Communication Engineering (IJIRCCE), vol. 2,
pp. 170–179, Oct. 2014.

[12] Timothy Patterson, Sally McClean, Chris Nugent, Shuai Zhang, Leo Galway, and
Ian Cleland, “Online Change Detection for Timely Solicitation of User Interac-
tion,” in Ubiquitous Computing and Ambient Intelligence. Personalisation and User
Adapted Services (Ramón Hervás, Sungyoung Lee, Chris Nugent, and José Bravo,
eds.), no. 8867 in Lecture Notes in Computer Science, pp. 116–123, Springer Inter-
national Publishing, Dec. 2014.

[13] Hesam Komari Alaei, Seyed Iman Pishbin, and Karim Salahshoor, “A New PCA
Cluster-Based Granulated Algorithm Using Rough Set Theory for Process Monitor-
ing,” International Journal of Database Theory and Application, vol. 4, no. 4, pp. 1–12,
2011.

[14] Frédéric Desobry, Manuel Davy, and Christian Doncarli, “An Online Kernel Change
Detection Algorithm,” IEEE Transactions on Signal Processing, vol. 53, pp. 2961–2974,
Aug. 2005.

[15] David S. Matteson and Nicholas A. James, “A Nonparametric Approach for Multiple
Change Point Analysis of Multivariate Data,” Journal of the American Statistical Asso-
ciation, vol. 109, pp. 334–345, June 2013. arXiv: 1306.4933.

[16] Long Yu and Zhongqing Su, “Application of Kernel Density Estimation in Lamb Wave-
Based Damage Detection,” Mathematical Problems in Engineering, vol. 2012, Aug.
2012.

[17] Michèle Basseville and Igor V. Nikiforov, Detection of Abrupt Changes: Theory and
Application. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.

[18] Walter A. Shewhart, Economic control of quality of manufactured product. New York:
D. Van Nostrand Company, Inc., 1931.

[19] Nancy R. Zhang and David O. Siegmund, “A Modified Bayes Information Criterion
with Applications to the Analysis of Comparative Genomic Hybridization Data,” Bio-
metrics, vol. 63, pp. 22–32, Mar. 2007.

[20] Weil R. Lai, Mark D. Johnson, Raju Kucherlapati, and Peter J. Park, “Comparative anal-
ysis of algorithms for identifying amplifications and deletions in array CGH data,”
Bioinformatics (Oxford, England), vol. 21, p. 3763, Oct. 2005.

[21] M. F. Mohamed Saaid, W. A. B. Wan Abas, H. Aroff, N. Mokhtar, R. Ramli, and Z.
Ibrahim, “Change Point Detection of EEG Signals Based on Particle Swarm Optimiza-
tion,” in 5th Kuala Lumpur International Conference on Biomedical Engineering 2011
(Noor Azuan Abu Osman, Wan Abu Bakar Wan Abas, Ahmad Khairi Abdul Wahab,
and Hua-Nong Ting, eds.), no. 35 in IFMBE Proceedings, pp. 484–487, Springer Berlin
Heidelberg, 2011.

66 BIBLIOGRAPHY

[22] Akin Avci, Stephan Bosch, Mihai Marin-Perianu, Raluca Marin-Perianu, and Paul
Havinga, “Activity Recognition Using Inertial Sensing for Healthcare, Wellbeing and
Sports Applications: A Survey,” in Proceedings of the 23th International Conference on
Architecture of Computing Systens, ARCS 2010, (Hannover, Germany), pp. 167–176,
VDE Verlag, 2010.

[23] Sana Tmar-Ben Hamida, Elyes Ben Hamida, and Beena Ahmed, “A New mHealth
Communication Framework for Use in Wearable WBANs and Mobile Technologies,”
Sensors, vol. 15, pp. 3379–3408, Feb. 2015.

[24] Henri Caussinus and Olivier Mestre, “Detection and correction of artificial shifts in
climate series,” Journal of the Royal Statistical Society: Series C (Applied Statistics),
vol. 53, pp. 405–425, Aug. 2004.

[25] Daniela Jarušková, “Change-Point Detection in Meteorological Measurement,”
Monthly Weather Review, vol. 124, pp. 1535–1543, July 1996.

[26] David Allen, Michael McAleer, Robert Powell, and Abhay Singh, “Nonparametric
Multiple Change Point Analysis of the Global Financial Crisis,” KIER Working Paper
866, Kyoto University, Institute of Economic Research, May 2013.

[27] R. Tahmasbi and S. Rezaei, “Change Point Detection in GARCH Models for Voice
Activity Detection,” IEEE Transactions on Audio, Speech, and Language Processing,
vol. 16, pp. 1038–1046, July 2008.

[28] Ryan Turner, “Bayesian change point detection for satellite fault prediction,” in Pro-
ceedings of Interdisciplinary Graduate Conference (IGC), (Cambridge, UK), pp. 213–
221, 2010.

[29] David C. Carslaw, Karl Ropkins, and Margaret C. Bell, “Change-point detection of
gaseous and particulate traffic-related pollutants at a roadside location,” Environ-
mental Science & Technology, vol. 40, pp. 6912–6918, Nov. 2006.

[30] Luis J. Manso, Pedro Nunez, Sidnei da, and Paulo Drews-Jr, “A Novel Robust Scene
Change Detection Algorithm for Autonomous Robots Using Mixtures of Gaussians,”
International Journal of Advanced Robotic Systems, vol. 11, no. 18, p. 1, 2014.

[31] Amadou Ba and Sean A. McKenna, “Water quality monitoring with online change-
point detection methods,” Journal of Hydroinformatics, vol. 17, p. 7, Jan. 2015.

[32] Javier Ortiz Laguna, Angel García Olaya, and Daniel Borrajo, “A Dynamic Sliding Win-
dow Approach for Activity Recognition,” in User Modeling, Adaption and Personal-
ization (J. A. Konstan, Ricardo Conejo, José L. Marzo, and Nuria Oliver, eds.), no. 6787
in Lecture Notes in Computer Science, pp. 219–230, Springer Berlin Heidelberg, 2011.

[33] “ASSIST - Heterogeneous Integration - Research Expertise Nanofab Labs and
Cleanroom at Penn State.” http://www.mri.psu.edu/facilities/nanofab/
research-areas/assist.asp.

http://www.mri.psu.edu/facilities/nanofab/research-areas/assist.asp
http://www.mri.psu.edu/facilities/nanofab/research-areas/assist.asp

BIBLIOGRAPHY 67

[34] T. Dasu, S. Krishnan, D. Lin, S. Venkatasubramanian, and K. Yi, “Change (Detection)
You Can Believe in: Finding Distributional Shifts in Data Streams,” in Advances in In-
telligent Data Analysis VIII (N. M. Adams, C. Robardet, A. Siebes, and J.-F. Boulicaut,
eds.), no. 5772 in Lecture Notes in Computer Science, pp. 21–34, Springer Berlin Hei-
delberg, 2009.

[35] Luis Martí, Nayat Sanchez-Pi, José Manuel Molina, and Ana Cristina Bicharra Gar-
cia, “Anomaly Detection Based on Sensor Data in Petroleum Industry Applications,”
Sensors, vol. 15, pp. 2774–2797, Jan. 2015.

[36] Ella Bingham, “Finding Segmentations of Sequences,” in Inductive Databases and
Constraint-Based Data Mining (Sašo Džeroski, Bart Goethals, and Panče Panov, eds.),
pp. 177–197, Springer New York, 2010.

[37] Parvathi Chundi and Daniel J. Rosenkrantz, “Segmentation of Time Series Data,” in
Encyclopedia of Data Warehousing and Mining, Second Edition (John Wang, ed.),
pp. 1753–1758, IGI Global, 2009.

[38] Bingwen Zhang, Jun Geng, and Lifeng Lai, “Multiple Change-Points Estimation in
Linear Regression Models via Sparse Group Lasso,” IEEE Transactions on Signal Pro-
cessing, vol. 63, pp. 2209–2224, May 2015.

[39] Richard Bellman, “On the Approximation of Curves by Line Segments Using Dynamic
Programming,” Commun. ACM, vol. 4, p. 284, June 1961.

[40] Aristides Gionis and Heikki Mannila, “Segmentation algorithms for time series and
sequence data.” Tutorial at 5th SIAM International Conference on Data Mining, 2005.

[41] Erich Fuchs, Thiemo Gruber, Jiri Nitschke, and Bernhard Sick, “Online Segmentation
of Time Series Based on Polynomial Least-Squares Approximations,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 32, pp. 2232–2245, Dec. 2010.

[42] Andre Gensler, Thiemo Gruber, and Bernhard Sick, “Blazing Fast Time Series Seg-
mentation Based on Update Techniques for Polynomial Approximations,” in 2013
IEEE 13th International Conference on Data Mining Workshops (ICDMW), pp. 1002–
1011, Dec. 2013.

[43] Eamonn Keogh, Selina Chu, David Hart, and Michael Pazzani, “Segmenting Time Se-
ries: A Survey and Novel Approach,” in Data Mining In Time Series Databases (Mark
Last, Abraham Kandel, and Horst Bunke, eds.), vol. 57, pp. 1–22, World Scientific Pub-
lishing Company, 2004.

[44] Eamonn Keogh, Selina Chu, David Hart, and Michael Pazzani, “An Online Algorithm
for Segmenting Time Series,” in Proceedings of IEEE International Conference on Data
Mining (ICDM) 2001, (San Jose, CA), pp. 289–296, 2001.

[45] R. H. Loschi and F. R. B. Cruz, “Extension to the product partition model: computing
the probability of a change,” Computational Statistics & Data Analysis, vol. 48, no. 2,
pp. 255–268, 2005.

68 BIBLIOGRAPHY

[46] Jacqueline A. Ferreira, Rosangela H. Loschi, and Marcelo A. Costa, “Detecting
changes in time series: A product partition model with across-cluster correlation,”
Signal Processing, vol. 96, Part B, pp. 212–227, Mar. 2014.

[47] Jonathan J. Oliver, Rohan A. Baxter, and Chris S. Wallace, “Minimum Message Length
Segmentation,” in Research and Development in Knowledge Discovery and Data Min-
ing (Xindong Wu, Ramamohanarao Kotagiri, and Kevin B. Korb, eds.), vol. 1394 of
Lecture Notes in Computer Science, pp. 222–233, Springer Berlin Heidelberg, 1998.

[48] Leigh J. Fitzgibbon, David L. Dowe, and Lloyd Allison, “Change-Point Estimation Us-
ing New Minimum Message Length Approximations,” in PRICAI 2002: Trends in Arti-
ficial Intelligence (Mitsuru Ishizuka and Abdul Sattar, eds.), vol. 2417 of Lecture Notes
in Computer Science, pp. 244–254, Springer Berlin Heidelberg, 2002.

[49] Taketoshi Mori, Yu Nejigane, Masamichi Shimosaka, Yushi Segawa, Tatsuya Harada,
and Tomomasa Sato, “Online Recognition and Segmentation for Time-Series Mo-
tion with HMM and Conceptual Relation of Actions,” in 2005 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2005. (IROS 2005), pp. 3864–3870, Aug.
2005.

[50] Yevgen Gorshkov, Illya Kokshenev, Yevgeniy Bodyanskiy, Vitaliy Kolodyazhniy, and
Oleksandr Shylo, “Robust Recursive Fuzzy Clustering-Based Segmentation of Biolog-
ical Time Series,” in 2nd International Symposium on Evolving Fuzzy Systems, (Am-
bleside), pp. 101–105, Sept. 2006.

[51] Yadunandana N. Rao and Jose C. Principe, “A Fast On-line Generalized Eigende-
composition Algorithm for Time Series Segmentation,” in IEEE Adaptive Systems for
Signal Processing, Communications, and Control Symposium (AS-SPCC) 2000, (Lake
Louise, Alta.), pp. 266–271, 2000.

[52] Song Liu, Makoto Yamada, Nigel Collier, and Masashi Sugiyama, “Change-point De-
tection in Time-series Data by Relative Density-Ratio Estimation,” Neural Networks,
vol. 43, pp. 72–83, July 2013.

[53] Makoto Yamada, Wittawat Jitkrittum, Leonid Sigal, Eric P. Xing, and Masashi
Sugiyama, “High-Dimensional Feature Selection by Feature-Wise Kernelized Lasso,”
Neural Computation, vol. 26, pp. 185–207, Jan. 2014.

[54] Makoto Yamada, Taiji Suzuki, Takafumi Kanamori, Hirotaka Hachiya, and Masashi
Sugiyama, “Relative Density-Ratio Estimation for Robust Distribution Comparison,”
Neural Computation, vol. 25, no. 5, pp. 1324–1370, 2013.

[55] Masashi Sugiyama, Takafumi Kanamori, Taiji Suzuki, Marthinus Christoffel du
Plessis, Song Liu, and Ichiro Takeuchi, “Density-Difference Estimation,” Neural Com-
putation, vol. 25, pp. 2734–2775, June 2013.

[56] Yoshinobu Kawahara and Masashi Sugiyama, “Sequential change-point detection
based on direct density-ratio estimation,” Statistical Analysis and Data Mining, vol. 5,
pp. 114–127, Apr. 2012.

BIBLIOGRAPHY 69

[57] Masashi Sugiyama, Shinichi Nakajima, Hisashi Kashima, Paul Von Bünau, and Mo-
toaki Kawanabe, “Direct Importance Estimation with Model Selection And its Appli-
cation to Covariate Shift Adaptation,” in Advances in Neural Information Processing
Systems (NIPS) 2008, 2008.

[58] Magnus S. Magnusson, “Discovering hidden time patterns in behavior: T-patterns
and their detection,” Behavior Research Methods, Instruments, & Computers, vol. 32,
pp. 93–110, Mar. 2000.

[59] Fu-lai Chung, Tak-chung Fu, Robert Luk, and Vincent Ng, “Evolutionary Time Se-
ries Segmentation for Stock Data Mining,” in IEEE International Conference on Data
Mining (ICDM), pp. 83–90, 2002.

[60] Jiangling Yin, Yain-Whar Si, and Zhiguo Gong, “Financial Time Series Segmentation
Based On Turning Points,” in 2011 International Conference on System Science and
Engineering (ICSSE), (Macau, China), pp. 394–399, June 2011.

[61] Allou Samé and Gérard Govaert, “Online Time Series Segmentation Using Temporal
Mixture Models and Bayesian Model Selection,” in 11th International Conference on
Machine Learning and Applications (ICMLA), vol. 1, (Boca Raton, FL), pp. 602–605,
Dec. 2012.

[62] Hang Yu, Chenyang Li, and Justin Dauwels, “Network Inference and Change Point
Detection for Piecewise-Stationary Time Series,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), (Florence, Italy), pp. 4498–4502,
May 2014.

[63] Fredrik Gustafsson, “The Marginalized Likelihood Ratio Test for Detecting Abrupt
Changes,” IEEE Transactions on Automatic Control, vol. 41, pp. 66–78, Jan. 1996.

[64] Kenji Yamanishi, Jun-ichi Takeuchi, Graham Williams, and Peter Milne, “On-Line
Unsupervised Outlier Detection Using Finite Mixtures with Discounting Learning Al-
gorithms,” Data Mining and Knowledge Discovery, vol. 8, pp. 275–300, May 2004.

[65] Makoto Yamada, Akisato Kimura, Futoshi Naya, and Hiroshi Sawada, “Change-point
Detection with Feature Selection in High-dimensional Time-series Data,” in Proceed-
ings of the Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI
’13, (Beijing, China), pp. 1827–1833, AAAI Press, 2013.

[66] M. Seck, I. Magrin-Chagnolleau, and F. Bimbot, “Experiments on speech tracking in
audio documents using Gaussian mixture modeling,” in IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing 2001 (ICASSP ’01), vol. 1, (Salt Lake
City, UT), pp. 601–604, IEEE, 2001.

[67] Nick Whiteley, Christophe Andrieu, and Arnaud Doucet, “Particle Markov Chain
Monte Carlo for Multiple Change-point Problems,” Technical Report 0911, Depart-
ment of Mathematics, Bristol University, 2009.

[68] Valentina Moskvina and Anatoly Zhigljavsky, “An Algorithm Based on Singular Spec-
trum Analysis for Change-Point Detection,” Communications in Statistics - Simula-
tion and Computation, vol. 32, pp. 319–352, Jan. 2003.

70 BIBLIOGRAPHY

[69] Yoshinobu Kawahara, Takehisa Yairi, and Kazuo Machida, “Change-Point Detection
in Time-Series Data Based on Subspace Identification,” in 7th IEEE International
Conference on Data Mining (ICDM 2007), (Omaha, NE), pp. 559–564, IEEE, Oct. 2007.

[70] Tsuyoshi Idé and Koji Tsuda, “Change-Point Detection using Krylov Subspace Learn-
ing,” in Proceedings of the SIAM International Conference on Data Mining (SDM 2007)
(C. Apte, ed.), (Minneapolis, MN, USA), pp. 515–520, Society for Industrial and Ap-
plied Mathematics, Apr. 2007.

[71] Joep Vanlier, Christian A. Tiemann, Peter AJ Hilbers, and Natal AW van Riel, “Opti-
mal experiment design for model selection in biochemical networks,” BMC Systems
Biology, vol. 8, p. 20, Feb. 2014.

[72] Marcin Budka, Bogdan Gabrys, and Katarzyna Musial, “On Accuracy of PDF Diver-
gence Estimators and Their Applicability to Representative Data Sampling,” Entropy,
vol. 13, pp. 1229–1266, July 2011.

[73] Sylvain Boltz, Eric Debreuve, and Michel Barlaud, “High-dimensional statistical dis-
tance for region-of-interest tracking: Application to combining a soft geometric con-
straint with radiometry,” in IEEE Conference on Computer Vision and Pattern Recog-
nition 2007 (CVPR ’07), (Minneapolis, MN), pp. 1–8, IEEE, June 2007.

[74] Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori, Density Ratio Estimation
in Machine Learning. Cambridge: Cambridge University Press, 2012.

[75] Vladimir N. Vapnik, Statistical Learning Theory. New York: Wiley-Interscience, 1 edi-
tion ed., Sept. 1998.

[76] Jiayuan Huang, Arthur Gretton, Karsten M. Borgwardt, Bernhard Schölkopf, and Alex
J. Smola, “Correcting sample selection bias by unlabeled data,” in Advances in Neural
Information Processing Systems (NIPS), pp. 601–608, 2006.

[77] XuanLong Nguyen, Martin J. Wainwright, and Michael I. Jordan, “Estimating diver-
gence functionals and the likelihood ratio by convex risk minimization,” IEEE Trans-
actions on Information Theory, vol. 56, no. 11, pp. 5847–5861, 2010. arXiv: 0809.0853.

[78] Takafumi Kanamori, Shohei Hido, and Masashi Sugiyama, “A Least-squares Ap-
proach to Direct Importance Estimation,” Journal of Machine Learning Research,
vol. 10, pp. 1391–1445, Dec. 2009.

[79] Richard Bellman, Adaptive Control Processes: A Guided Tour. Princeton, New Jersey:
Princeton University Press, 1961.

[80] Imre Csiszár, “Information-type measures of difference of probability distributions
and indirect observations,” Studia Scientiarum Mathematicarum Hungarica, vol. 2,
pp. 299–318, 1967.

[81] Syed Mustafa Ali and Simon Daniel Silvey, “A General Class of Coefficients of Diver-
gence of One Distribution from Another,” Journal of the Royal Statistical Society. Se-
ries B (Methodological), vol. 28, no. 1, pp. 131–142, 1966.

BIBLIOGRAPHY 71

[82] Nicolas Veyrat-Charvillon and François-Xavier Standaert, “Mutual Information Anal-
ysis: How, When and Why?,” in Cryptographic Hardware and Embedded Systems -
CHES 2009 (Christophe Clavier and Kris Gaj, eds.), no. 5747 in Lecture Notes in Com-
puter Science, pp. 429–443, Springer Berlin Heidelberg, 2009.

[83] Jianqing Fan, Fang Han, and Han Liu, “Challenges of Big Data Analysis,” National
Science Review, vol. 1, pp. 293–314, June 2014.

[84] Joseph I. Goldstein, Dale E. Newbury, Patrick Echlin, David C. Joy, A. D. Romig
Jr, Charles E. Lyman, Charles Fiori, and Eric Lifshin, “Image Formation and Inter-
pretation,” in Scanning Electron Microscopy and X-Ray Microanalysis, pp. 149–271,
Springer US, 1992.

[85] Pierre Raphael Bertrand, Mehdi Fhima, and Arnaud Guillin, “Off-Line Detection of
Multiple Change Points by the Filtered Derivative with p-Value Method,” Sequential
Analysis, vol. 30, pp. 172–207, Apr. 2011.

[86] Mohamed Elmi, “Detection of Multiple Change Points by the Filtered Derivative and
False Discovery Rate,” International Journal of Statistics and Probability, vol. 3, Dec.
2013.

[87] Dan Cheng and Armin Schwartzman, “Multiple Testing of Local Extrema for Detec-
tion of Change Points,” arXiv:1504.06384 [math, stat], Apr. 2015. arXiv: 1504.06384.

[88] Pramod K. Vemulapalli, Vishal Monga, and Sean N. Brennan, “Robust extrema fea-
tures for time-series data analysis,” IEEE transactions on pattern analysis and ma-
chine intelligence, vol. 35, pp. 1464–1479, June 2013.

[89] Shengfa Miao, Structural health monitoring meets data mining. PhD dissertation,
Universiteit Leiden, Dec. 2014.

[90] Robert Tibshirani, “Regression Shrinkage and Selection Via the Lasso,” Journal of the
Royal Statistical Society, Series B, vol. 58, pp. 267–288, 1994.

[91] M. Yamada, A. Saha, H. Ouyang, D. Yin, and Y. Chang, “N3lars: Minimum Redun-
dancy Maximum Relevance Feature Selection for Large and High-dimensional Data,”
arXiv:1411.2331 [cs, stat], Nov. 2014. arXiv: 1411.2331.

[92] Ingo Steinwart, “On the Influence of the Kernel on the Consistency of Support Vector
Machines,” Journal of Machine Learning Research, vol. 2, pp. 67–93, 2001.

[93] Ryota Tomioka and Masashi Sugiyama, “Dual-Augmented Lagrangian Method for Ef-
ficient Sparse Reconstruction,” IEEE Signal Processing Letters, vol. 16, pp. 1067–1070,
Dec. 2009.

[94] M. Morup, K. H. Madsen, and L. K. Hansen, “Approximate L0 constrained non-
negative matrix and tensor factorization,” in IEEE International Symposium on Cir-
cuits and Systems 2008 (ISCAS 2008), (Seattle, WA), pp. 1328–1331, IEEE, May 2008.

72 BIBLIOGRAPHY

[95] Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf, “Measuring
Statistical Dependence with Hilbert-Schmidt Norms,” in Algorithmic Learning The-
ory (Sanjay Jain, Hans Ulrich Simon, and Etsuji Tomita, eds.), no. 3734 in Lecture
Notes in Computer Science, pp. 63–77, Springer Berlin Heidelberg, Oct. 2005.

[96] Le Song, Alex Smola, Arthur Gretton, Justin Bedo, and Karsten Borgwardt, “Feature
Selection via Dependence Maximization,” Journal of Machine Learning Research,
vol. 13, pp. 1393–1434, May 2012.

[97] Jianhua Lin, “Divergence measures based on the Shannon entropy,” IEEE Transac-
tions on Information theory, vol. 37, pp. 145–151, 1991.

[98] Elizabeth G. Ryan, Contributions to Bayesian experimental design. Thesis, Queens-
land University of Technology, 2014.

[99] Andreas Bulling, Ulf Blanke, and Bernt Schiele, “A Tutorial on Human Activity Recog-
nition Using Body-worn Inertial Sensors,” ACM Computing Surveys, vol. 46, pp. 33:1–
33:33, Jan. 2014.

[100] André Gensler and Bernhard Sick, “Novel Criteria to Measure Performance of Time
Series Segmentation Techniques,” in Proceedings of the 16th LWA Workshops: KDML,
IR and FGWM, (Aachen, Germany), pp. 193–204, Sept. 2014.

[101] J. Takeuchi and K. Yamanishi, “A unifying framework for detecting outliers and
change points from time series,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 18, pp. 482–492, Apr. 2006.

[102] “Least-Squares Density-Difference (LSDD).” http://www.ms.k.u-tokyo.ac.jp/
software.html#LSDD. http://www.ms.k.u-tokyo.ac.jp/software.html#LSDD.

[103] “Change-Point Detection in Time-Series Data by Relative Density Ratio Estimation.”
http://sugiyama-www.cs.titech.ac.jp/~song/change_detection/.

[104] “Hilbert-Schmidt Independence Criterion Lasso (HSIC Lasso).” http://aiweb.
techfak.uni-bielefeld.de/content/bworld-robot-control-software/.

[105] Zaïd Harchaoui, Eric Moulines, and Francis R. Bach, “Kernel Change-point Analysis,”
in Advances in Neural Information Processing Systems 21 (D. Koller, D. Schuurmans,
Y. Bengio, and L. Bottou, eds.), pp. 609–616, Curran Associates, Inc., 2009.

[106] “Physical Acitivity Monitoring for Aging People.” http://www.pamap.org/index.
html.

[107] Attila Reiss and Didier Stricker, “Introducing a New Benchmarked Dataset for Activ-
ity Monitoring,” in 16th International Symposium on Wearable Computers (ISWC),
(Newcastle), pp. 108–109, IEEE, June 2012.

[108] Attila Reiss and Didier Stricker, “Creating and Benchmarking a New Dataset for Phys-
ical Activity Monitoring,” in Proceedings of the 5th International Conference on Perva-
sive Technologies Related to Assistive Environments, PETRA ’12, (New York, NY, USA),
pp. 40:1–40:8, ACM, 2012.

http://www.ms.k.u-tokyo.ac.jp/software.html#LSDD
http://www.ms.k.u-tokyo.ac.jp/software.html#LSDD
http://www.ms.k.u-tokyo.ac.jp/software.html#LSDD
http://sugiyama-www.cs.titech.ac.jp/~song/change_detection/
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/
http://aiweb.techfak.uni-bielefeld.de/content/bworld-robot-control-software/
http://www.pamap.org/index.html
http://www.pamap.org/index.html

BIBLIOGRAPHY 73

[109] A. Reiss and D. Stricker, “Towards Global Aerobic Activity Monitoring,” in Proceed-
ings of the 4th International Conference on Pervasive Technologies Related to Assistive
Environments, PETRA ’11, (New York, NY, USA), pp. 12:1–12:8, ACM, 2011.

	Introduction
	Problem Statement: Definitions and notation
	Segmentation Categories
	Applications
	Properties of a segmentation algorithm
	Thesis goal and outline

	Literature review
	Segmentation methods overview
	General Framework of window-based change-point detection
	Parametric Change-point Detection methods
	Non-parametric Change-point Detection methods
	Direct Density Estimation Methods

	Methodology
	Where does the problem arise in traditional methods?
	A two-level change-point detection test: General Overview
	First-Level algorithm
	Second-Level algorithm
	Data Selection Step
	Hilbert-Schmidt independence Criterion (HSIC)

	Jensen Shannon divergence (JSD) based on k-nearest neighbor (kNN) density estimation

	Modified algorithm for online detection
	Speeding-up existing change-point detection algorithms

	Experiments
	Performance metrics
	Experiments on Artificial Datasets
	Data with fixed change-step
	Data with random change-step
	Artificial data results

	Experiments on Real-World Datasets

	Conclusions and future work
	Appendix A - Performance Tables
	Bibliography

