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Global linear parameter-varying modelling of
flapping-wing dynamics using flight data

S. F. Armanini ∗, M. Karásek †, and C. C. de Visser ‡

Delft University of Technology, Delft, 2629HS, The Netherlands

Taking full advantage of the favourable flight properties of biologically-inspired flapping-wing

micro aerial vehicles requires having insight into their dynamics and providing adequate control in

all flight conditions. Due the high complexity of flapping flight and limited availability of accurate

flight data, however, global models are not readily available, particularly models validated with

flight data and suitable for practical applications. This paper proposes an approach for global

modelling of nonlinear flapping-wing dynamics, constructing a linear parameter-varying model

from a set of local linear models. The model parameters and scheduling functions are determined

using system identification, from free-flight data collected on a real test platform over a significant

part of the flight envelope. The resulting model allows for the dominant parts of the dynamics to

be accurately represented across the considered range of conditions. With 25 parameters overall, it

significantly improves on the starting point of 46 local models with 12 parameters each. Moreover,

a single model that adapts to the flight condition provides flexibility and continuous coverage,

highly useful for simulation and control applications. While in the explored part of the flight

envelope nonlinearity was found to be limited, the approach is scalable and expected to also cover

larger variations.
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I. Introduction

Flapping-wing micro aerial vehicles (FWMAVs) are attracting an ever-increasing interest from

the aerospace community. Inspired by natural flyers, they can achieve outstanding manoeuvrability

and efficiency at very small scales and low flight velocities. Thanks to their unique properties,

FWMAVs are expected to fill in the gap between fixed-wing and rotating-wing vehicles, allowing

for unprecedented performance, particularly for flight in complex cluttered environments. Despite

significant progress in understanding flapping-wing flight [1, 2, 3, 4], however, FWMAVs remain

challenging to model, due to their unsteady aerodynamics and complex time-varying dynamics.

One particular challenge is to obtain models covering different flight conditions. Particularly

low-order models of flapping-wing (aero)dynamics typically have a limited applicability range or

have not been validated in different conditions with free-flight data [5, 6, 7, 8, 9, 10, 11, 12].

However, it is essential to know how a system behaves in all its operating conditions to ensure

an effective performance. Moreover, global models are valuable, if not indispensable, to provide

realistic simulation possibilities, support the development of new controllers and allow for more

advanced control approaches. A limited validity domain is particularly constraining for FWMAVs,

which can often operate in very different flight regimes. In the context of control and simulation,

an added challenge is that models must be not only accurate, but also computationally efficient and

suitable for practical use. Hence, simplified models are preferable when they achieve sufficient

accuracy. When flight data are available, an alternative to complex and computationally expensive

numerical or first-principles models is therefore system identification. This approach is not yet

widespread due to the difficulty of obtaining suitable data, however existing work [5, 13, 14, 15, 6,

7, 16] shows it can yield models that are realistic, relatively simple and applicable for control.

This paper addresses the challenge of global data-driven modelling of flapping-wing vehicles,

using the example of an existing FWMAV. Starting from free-flight data, we identified a model of

the time-averaged longitudinal vehicle dynamics that covers a significant part of the flight enve-

lope for the current vehicle configuration. Based on preliminary data analysis and local modelling

results, the global dynamics were approximated using a linear parameter-varying (LPV) modelling

approach, starting from a set of local linear time-invariant (LTI) models. LPV modelling is based
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on the idea that a global model can be obtained by interpolating between (often linear) local mod-

els [17, 18, 19]. While many effective global model identification approaches have been suggested

in the aerospace literature [20, 21, 22], the LPV approach is attractive due to its simplicity, in terms

of flight testing, modelling and implementation, avoiding high-order model structures and global

identification experiments. LPV control and modelling have been applied to a variety of dynamic

systems, including aircraft [23, 24, 25, 26, 27, 28, 29, 30], but not yet FWMAVs. Hence, while the

aim of this study was to develop an accurate low-order global model for a specific FWMAV, it also

generally investigated the applicability of an LPV approach to model flapping-wing dynamics.

Given that no first principles model of the test platform was available, we opted for an identi-

fication approach, involving two steps: firstly, local linear models were identified from free-flight

data collected on the vehicle; secondly, a set of interpolating functions were determined to com-

bine these models into a global LPV model. Potential scheduling variables were selected based

on analysis of the flight data and of the local models, while the scheduling functions defining the

LPV model were determined using stepwise regression [31]. The resulting global model was eval-

uated through comparison with both flight data and local models. To evaluate the robustness and

reliability of the results, evaluations were also performed using validation data.

This paper is organised as follows. Section II describes the test vehicle and flight data used.

Section III introduces the local models at the basis of the global modelling approach and briefly

evaluates these models and the flight data, focusing on the observations relevant for global mod-

elling. Section IV outlines the LPV modelling approach used to transition from the local models

to the global model. Section V presents the final model structure and results, and evaluates the

obtained LPV model in comparison to flight data. Section VI summarises the main conclusions.

II. Methods and experimental data

A. Test vehicle

The subject of this study was a four-winged FWMAV [32] (cf. Fig. 1) with a 280mm wing span,

flapping frequencies of 10-15Hz and a flight envelope ranging from near hover to fast forward

flight. While speeds up to 7m/s were previously achieved on this FWMAV by shifting its centre
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of gravity (CG) through physically moving parts of the payload (e.g. battery, wings), the speeds

achievable in the standard configuration range from approximately near hover to 1.5m/s. The

mylar foil wings have an ‘X’-configuration, allowing for increased lift production thanks to the

clap-and-peel effect. The T-shaped styrofoam tail provides static stability and separates most of

the manoeuvring from the wing flapping, such that conventional fixed-wing control mechanisms

can be used. This type of vehicle has been the subject of extensive previous research and details of

the design can be found in Ref. [32]. The mass and inertia properties of the specific FWMAV used

in this study are given in Table 1. Fig. 1b shows the body-fixed coordinate frame used in this study,

centred at the vehicle’s CG. Contrary to convention, the z-axis was defined to be aligned with the

fuselage, to avoid singularities due to the large typical pitch attitude of this FWMAV (cf. Fig. 3a),

while avoiding the lack of physical interpretability of quaternions. The forces and moments were

defined accordingly (X force aligned with xB axis, M moment around yB axis, etc.), with signs

following a right-hand convention. Note that a nose-down pitch rate is thus positive.

a) Test platform (DelFly II [33]); LED
markers used for tracking circled

b) Body-fixed coordinate frame, centred at the CG

Figure 1: Test platform used in this study and body-fixed coordinate system xB, yB, zB

Table 1: Mass and inertia properties of the test platform.

Property Value

m[kg] 0.0235
xCG[m] (below fuselage) 0.0096
yCG[m] 0
zCG[m] (from wing leading edge) - 0.0695
Ixx, Iyy, Izz[Nm

2] 7.5× 10−5, 6.6× 10−5, 1.9× 10−5

Ixy, Iyz, Ixz[Nm
2] 0, 0, 8.5× 10−6
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B. Flight data acquisition

The modelling discussed in this paper was based on a set of flight data collected on the test ve-

hicle. The data were collected using a motion tracking system (24 OptiTrack Flex13 cameras,

covering a 10m×10m×7m volume) in combination with an on-board inertial measurement unit

(IMU) attached to the vehicle. The tracking system was used to measure the positions of seven

active LED markers attached to the vehicle at the positions shown in Fig. 1a, allowing for the re-

construction of body position and orientation, control surface deflections and wing leading edge

movement, all at 120Hz. The 6-axis IMU, incorporated in the vehicle’s Lisa/S autopilot, was used

to measure linear accelerations and angular velocities at 512Hz. A sensor fusion approach based

on extended Kalman filtering was applied to combine the different measurements, leading to accu-

rate high-resolution measurements [34]. The flight tests involved elevator doublets (cf. Sec. III),

executed by the autopilot when triggered by the pilot [35]. A detailed discussion of the hardware,

test setup and data processing can be found in Refs. [36] and [35], which describe earlier flight

tests conducted on the same type of FWMAV.

C. Flight test data

In line with aerospace convention, the flight envelope was defined in terms of combinations of the

angle of attack (AOA) and velocity. Additionally, the flapping frequency was initially considered

as a third variable influencing the flight regime. Flight test conditions were selected on the basis

of previous tests on the same platform [35, 37], and covered trim velocities ranging approximately

from 0.5 to 1.3m/s, AOAs from 40 to 80◦, and flapping frequencies from 10 to 14Hz (cf. Fig. 2).

While in absolute terms this range is small, considering the small scale of the vehicle the range

is significant and in fact represents almost the entire flight envelope achievable with the current

vehicle configuration. CG shifts can be used to further enlarge the flight envelope (cf. Sec. A),

however, due to the restricted test flight space and because the current study constitutes an inves-

tigation into the modelling methodology, no CG shifts were considered. Moreover, flight testing

revealed noticeable changes in flight behaviour already within the aforementioned range.

46 short (2-5s) manoeuvres for system identification were recorded. Due to the manual trim-
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Figure 2: Trim conditions for each of the 46 datasets analysed (V0 := ||V ||0; validation sets as grey circles).

ming procedure and inevitable slight differences between separate flights, the exact same flight

condition could not be replicated repeatedly. Rather, a grid of trim conditions was covered, cf.

Fig. 2. The test manoeuvres were subdivided into five similarly sized groups (cf. Fig. 2) to fa-

cilitate the selection of suitably distributed validation sets. It can be seen in the figure that the

data do not uniformly cover the potentially achievable rectangular domain given by the upper and

lower bounds of the velocity and AOA. Instead, a limited area around a two-dimensional line is

covered. This does not point to incompleteness of the data, rather, it suggests that there is some

correlation between velocity and AOA, and that the inherently stable FWMAV is pulled towards an

equilibrium condition. The typical operating conditions of the vehicle thus fall within this range.

The coverage within the range considered is also not even: in particular, there is a sparser region

in the middle. Finally, it should be noted that the choice of variables to define the flight envelope

is to some extent arbitrary, however the chosen selection was found to be effective.

III. Flight envelope analysis and local modelling

Two steps were performed prior to developing global models, to glean information on the

system and select a global modelling approach. Firstly, the collected flight data were evaluated,

and, secondly, local linear models were identified. Both evaluations focused on the time-averaged

behaviour, under the assumption that the flapping component can be neglected due to time-scale
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separation, found to be acceptable for system-level dynamic analysis of this entomopter [16]. This

assumption was also introduced to simplify the evaluation of the global modelling approach. For

analogous reasons, only the longitudinal dynamics were considered. This section discusses the

findings of the aforementioned preliminary evaluations. The local models also constitute the basis

of the global modelling process developed subsequently in this paper.

A. Local model estimation

While flapping-wing dynamics are highly complex, warranting investigation into multi-body mod-

elling [38, 9, 39, 40], several studies have demonstrated that for basic considerations, e.g. in the

context of design and control work, the conventional fixed-wing aircraft equations of motion rep-

resent a suitable description for many insects and FWMAVs [4, 41, 42, 16]. Thus, local models

were obtained using a simplified approach, shown in previous work to yield accurate local models

for the studied test platform [16]. The time-averaged longitudinal dynamics were assumed to have

the following linear time-invariant (LTI) structure [16]:


∆q̇
∆u̇
∆ẇ

∆Θ̇

 =


Mq

Iyy
Mu

Iyy
Mw

Iyy
0

Xq
m
− w0

Xu
m

Xw
m

g cos(Θ0)
Zq
m

+ u0
Zu
m

Zw
m

g sin(Θ0)
1 0 0 0




∆q
∆u
∆w
∆Θ

 +


Mδe

Iyy
Xδe
m
Zδe
m

0

∆δe (1)

The above model structure is based on the nonlinear fixed-wing aircraft equations of motion, with

minor differences in the linearisation process (e.g. accounting for the large pitch attitude in flight).

An LTI model of the dynamics was identified from each of the 46 flight manoeuvres (cf. Sec. C),

resulting in 46 local models. In each manoeuvre, elevator doublets were used to excite the system,

having been found, in previous work, to provide suitable excitation, and generally to be an effective

compromise given the limited testing space and the linear modelling approach [37, 35] (for turther

discussion of the input design see [35, 43]). From each dataset, the parameters (stability and

control derivatives) in Eq. 1 were determined using a maximum likelihood estimator, as described

in Ref. [16]. Details on the local modelling process can be found in Refs. [16, 35].

With the exception of one case (test # 9), where the estimation data were somewhat unsteady

prior to the manouevre and adversely affected the result, the identified local models were found
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to be accurate for the corresponding conditions. Table 2 shows the average RMSE and output

correlation over all flight tests, for each state. As seen in the table – and discussed in Ref. [16]

in the context of similar local modelling work – the accuracy is slightly lower for the velocities,

especially w, for which the data appeared to be less informative. By contrast, the pitch dynamics

are captured accurately, possibly because they are more affected by the elevator inputs used.

In an attempt to better excite the velocity dynamics, throttle signals (causing changes in flap-

ping frequency) were also initially tested, however they did not yield a significant improvement. It

is possible that the velocity dynamics do not vary as significantly as the pitch dynamics, or cannot

be excited independently, or would require longer tests (hence a different setup) to be captured. For

the purposes of this study, elevator doublets were deemed to provide a sufficient level of accuray,

therefore more complex inputs, e.g. based on optimal input design [44, 45], were not considered.

Table 2: Metrics quantifying performance of local models (Eq. 1) (avg.±std. dev. over all flight datasets).

Variable Output corr. RMSE(% of meas. range)

q 0.96± 0.10 4.2± 3.0
u 0.94± 0.10 6.2± 3.9
w 0.93± 0.15 6.8± 5.3
Θ 0.97± 0.06 3.9± 2.6

B. Data and local model analysis

The flight data were analysed to establish how and to what extent the system dynamics change in

different flight conditions and hereby to guide the modelling approach. Fig. 4a shows the average

flight-measured responses to the same input signal obtained in different ranges of flight conditions

(for better readability, the data are divided into three groups in these plots). It can be seen that

different trim conditions lead to visible differences in the system response – in both magnitude and

especially phase. Moreover, these differences are small – they are likely to be significant, given the

overall small scale of the modelling problem, however they are also difficult to model accurately

with real, noisy flight data. From flying experience with the studied FWMAV, there were known to

be noticeable differences in flight behaviour within the range of conditions considered. However,

one additional goal of this study was to evaluate whether a global model is necessary in this range,
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a) Time lapse of example identification manoeuvre (time step≈0.27s)
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data

Figure 3: Local model identification input manoeuvre and results example.

and whether such small-scale differences can be modelled using real-world data.

Next, the obtained local models were considered. As observed in previous work [37, 16], the

longitudinal dynamics of the FWMAV (Fig. 4b) are characterised by one oscillatory pole and two

aperiodic poles, all of which are stable, except in two of the identified local models, which have

an unstable real pole. These two models are most likely unstable due to the more noisy/unsteady

identification data they were determined from. In view of our limited knowledge of the vehicle

dynamics, interpreting the identified models is not straightforward, however the types of eigenval-

ues found are in agreement with most results in the flapping-wing literature [4, 41, 42, 11] (though

in insects the oscillatory mode is unstable). The oscillatory mode seems comparable to a short

period mode (with the most dominant state being the pitch rate), while, as for other flapping-wing

flyers, no phugoid appears to exist. While the faster aperiodic mode varies somewhat between

datasets and is not easy to interpret, it is interesting to note that the slower aperiodic pole, identified
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Figure 4: System dynamics and output versus flight condition (average for groups of datasets, cf. Fig. 2)

more consistently, involves all states to a fairly significant extent (average normalised eigenvector

|v4| = [0.42, 0.28, 0.16, 0.11]T ).

As anticipated from the flight data analysis, several trends were found in the system dynamics.

With increasing velocity and decreasing AOA, the oscillatory pole pair moves towards lower fre-

quencies, while the damping varies only to a minor extent and less clearly. The slower aperiodic

pole moves from approximately -1 to -10 (considering all datasets) with increasing velocities, in-

dicating an increase in stability. The faster pole, by contrast, varies less and less consistently – the

latter may be due to insufficiently informative data, as discussed previously. It was indeed found

that some of the parameters connected to the w-velocity were estimated less effectively, resulting

in higher variances (cf. Sec. D), which in turn may have affected this particular eigenmode. Some

trends were also observed in the control behaviour, with the vehicle becoming more responsive

to elevator deflections at higher velocities. As expected, this is mainly evident in the pitch rate

response to the elevator, whilst the (indirect) effect on the velocities is both less significant overall

and less affected by the flight condition (cf. Sec. D).

The system dynamics are discussed and shown in more detail in Sec. C, after the final model

structure has been established. However, the initial evaluation in this section already shows that the

dynamics vary within the operating domain considered, motivating the need for global modelling.
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C. Main conclusions for global modelling

From the analysis in the previous sections, two main conclusions were drawn that are relevant for

global modelling. Firstly, it was found that LTI models of the suggested form (Eq. 1) achieve a

high accuracy at the local level and can represent the system dynamics in the entire flight envelope

region analysed. This implies that the simplest approach for global coverage is to somehow com-

bine the available local models – an approach that is also advantageous from a control perspective,

as many established control methods are available for LTI systems. Secondly, within this region,

there is a correlation between the local system dynamics and the flight conditions the respective

local models refer to. These two points suggest that linear models provide a suitable local de-

scription, but also that the flight dynamics are in fact nonlinear, at least to some extent, and hence

that global modelling is relevant. Based on these observations, a linear-parameter-varying (LPV)

approach was deemed a suitable and indeed advantageous way to model the observed nonlinearity.

The preceding analysis also raised a number of questions to be considered in the global mod-

elling process. As discussed, one challenge identified was the fact that the observed differences

between local models are, in an absolute sense, small. They may still have a considerable impact,

given the “micro” problem scale, but are also challenging to model using noisy flight data. Another

challenge found was the fact that some components of the local dynamics could not be identified

as reliably as the rest, possibly due to insufficient excitation (cf. also Sec. D). While the aforemen-

tioned factors complicate the global modelling process, the overall accuracy of the local models

was nonetheless high. Furthermore it is possible for a global model to improve on local results,

by ignoring single outlier results in favour of overall trends. To improve the final result as far as

possible and address the issue of unreliably-estimated components without recurring to additional

flight tests (which are always constrained by the available flight test setup, cf. Sec. A), the local

model structure was re-assessed prior to the global modelling, as discussed in the next section.

D. Simplified local model

Given that the LPV model was constructed from the local models, an important preliminary step

was to ensure that the local results were as accurate and reliable as possible. While overall the
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local models were accurate, the local model structure was therefore revisited, to determine whether

the separate local model parameters were well-estimated and whether they were all necessary in

the model structure. Parameters that have no significant effect on the dynamics are estimated

inaccurately and can adversely influence the modelling results if kept in the model structure.

First, the estimated model parameters themselves were considered, i.e. how they were dis-

tributed and how much and in what way they varied. Some variation was expected, due to the

different flight conditions covered, however if the estimates for the same local parameter obtained

from different datasets vary erratically or to an implausible extent, the parameter is likely not esti-

mated reliably. It can for instance be observed in Fig. 5 that Xw and Zδe vary significantly between

different local models, in both magnitude and sign. Given that the final state-output predicted by

the local models was nonetheless accurate for all datasets, the significant variation suggests that

these parameters have no significant effect on the overall model and can be discarded from the local

model structure. To a lesser extent, similar observations were made for all Z-related parameters.

To evaluate the identifiability of single local model parameters, the estimated covariance ma-

trices (Cramér-Rao bounds) of the local models were considered next. Fig. 6 shows the estimated

standard errors (σ̂ := +

√
var(θ̂)) of the model parameters, specifically the distribution of the er-

rors obtained for all local models. It can be observed that for some of the parameters, particularly

those related to the Z-force and/or the w velocity, the standard errors tend to be higher, with values

frequently above 10% and reaching up to 50% in some cases. This implies that a lower confidence

can be placed on the estimated parameter values, which points to a lower identifiability and par-

tially explains the seemingly more random variation of said parameters with the flight condition.

For the remaining parameters, standard errors are mostly low for all datasets, typically below 5%

and often much lower – suggesting that the local values are reliable.

Finally, the estimated correlation coefficient between pairs of parameters in the local models

was considered. While the correlations between parameter pairs rarely exceed the critical value

of 0.9 [31], the values obtained provide insight into which parameters have similar effects. The

w velocity-related parameters were found to be generally more correlated to other parameters.

With one exception, the correlations between parameters were only found to exceed the critical
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value in isolated cases, all of these occurring in the same two local models, which presumably

were not effectively estimated as a whole. The exception is the parameter pair [Zq, Zδe ]: these

two parameters were found to be almost fully correlated (corr>0.98) in many of the local models,

suggesting that for one of the reasons mentioned in Sec. B they cannot be estimated separately

with reliability, and hence it is advisable to drop one of the two from the model structure.

Based on the preceding evaluation, the less reliably estimated local parameters were fixed to

zero a priori, i.e. excluded from the model structure, so that the main effects could be better cap-

tured by the remaining parameters, in turn facilitating the construction of an accurate global model

and improving the results. Specifically, the following parameters were discarded: Xw, Zu, Zδe . The

decision to discard Zu rather than Zw was to some extent arbitrary, as both parameters appeared to

be unreliable to a similar extent. Zq was retained because it was found to affect the result, despite

not being estimated very accurately. The following simplified model structure resulted:


∆q̇
∆u̇
∆ẇ

∆Θ̇

 =


Mq

Iyy
Mu

Iyy
Mw

Iyy
0

Xq
m
− w0

Xu
m

0 g cos(Θ0)
Zq
m

+ u0 0 Zw
m

g sin(Θ0)
1 0 0 0




∆q
∆u
∆w
∆Θ

 +


Mδe

Iyy
Xδe
m

0
0

∆δe (2)

Results were slightly better than for the original model, in terms of output accuracy (cf. Table 3),

consistency and reliability, while requiring fewer parameters. While the Z-equation parameters

were still less accurately estimated than the rest, the parameter covariances improved (cf. Fig. 7)

even for these parameters. The remaining parameters were estimated reliably (cf. also Sec. B), and

highly correlated parameters no longer occurred. The parameter trends given by the new model

structure are shown in Figs. 10-11, in the discussion of the scheduling results.

IV. Global modelling

A. LPV approach

Linear parameter-varying (LPV) modelling is related to the idea of gain scheduling in control [46,

47]. The underlying concept is that at every point in the operating domain of a system a lin-

earised model can be obtained, and that a function can be found to interpolate between these
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linearised models, based on one or more scheduling variables. As a result, the same model struc-

ture can be used to describe the entire operating domain, in dependence on a set of scheduling

variables. Ideally, the scheduling variables should be exogenous and independent of the system

dynamics [48, 49]. Hence, LPV methods are best suited to systems with clearly defined, dis-

crete operating conditions, where independent external scheduling variables can be easily defined.

Nonetheless, the LPV approach has been applied to systems that do not strictly meet this require-

ment, including aircraft [23, 24, 25]. Many aircraft applications in fact use a quasi-LPV approach

(sometimes also called stitching [30]), where the scheduling variables are (or depend on) system

states but are assumed to be independent. Furthermore, many aerospace examples of LPV mod-

elling linearise an available nonlinear model to obtain a linearised model structure that contains

the chosen scheduling variables [24, 29]. The aim is frequently to simplify the nonlinear model to

allow for simpler control approaches to be applied.

In the current study, no baseline model was available, thus it was not possible to derive from

first principles an LPV model structure, where the scheduling variables could be defined intuitively

and related to physical parameters. Instead, the choice of scheduling variables functions was to

some degree arbitrary. The LPV model was implemented by scheduling the individual model pa-

rameters, i.e. the state-space matrices in Eq. 1, as described in Sec. B. Note that while the term

scheduling is adopted to describe the functions used to approximate the changes between local

models, the resulting global model is not identical to the local models at the flight conditions the

latter are estimated in. In fact, given that the baseline local models are themselves not ideal, true

descriptions of the system, and that the observed variation in local dynamics may not depend ex-

clusively on the chosen scheduling variables, it was considered inadvisable to interpolate between

the local models. Doing so would have resulted in highly complex functions, both counteracting

the object of simplified modelling, and almost inevitably producing a global model that captures

the error as well as the system dynamics. Instead, it was considered preferable to find a function

that approximates the most significant trends observed in a somehow optimal way. The chosen

approach was based on the assumption that the parameters are sufficiently uncorrelated to each

other (cf. also Sec. D) and that the model structure remains the same for all conditions considered.
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Both assumptions were already made, implicitly, in the local modelling process, and, while both

are not wholly valid, the local results suggests that they are acceptable.
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Figure 5: Local LTI model parameters versus flight velocity (cf. Fig. 2).
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Figure 6: Estimated standard errors for each local LTI parameter estimate, using the full model structure
(Eq. 1).

16 of 45

American Institute of Aeronautics and Astronautics



0 10 20 30 40 50
0

5

10

15

20

25

30

# 
oc

cu
rr

en
ce

s

std. err. [%]

M
q

a) σ̂(M̂q)

0 10 20 30 40 50
0

5

10

15

20

# 
oc

cu
rr

en
ce

s

std. err. [%]

M
u

b) σ̂(M̂u)

0 10 20 30 40 50
0

5

10

15

20

25

# 
oc

cu
rr

en
ce

s

std. err. [%]

M
w

c) σ̂(M̂w)

0 10 20 30 40 50
0

5

10

15

20

25

30

# 
oc

cu
rr

en
ce

s

std. err. [%]

X
q

d) σ̂(X̂q)

0 10 20 30 40 50
0

5

10

15

20

# 
oc

cu
rr

en
ce

s

std. err. [%]

X
u

e) σ̂(X̂u)

0 10 20 30 40 50
0

2

4

6

8

# 
oc

cu
rr

en
ce

s

std. err. [%]

Z
q

f) σ̂(Ẑq)
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Figure 7: Estimated standard errors for each local LTI parameter estimate, using the simplified model
structure (Eq. 2).

The following sections outline the LPV modelling approach formulated in this study. An in-depth

treatment of the general LPV modelling framework can be found in the literature [17, 49, 48].

B. Scheduling formulation

As for the local modelling, the first step in the global model identification process was to define a

model structure. For LPV modelling, this involves defining both a local model structure and a set

of scheduling functions to combine the local models. In view of the already available local models,

the structure of the LPV model was based on that of the local models (cf. Eq. 1), however in the
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Table 3: Metrics quantifying performance of simplified local models (Eq. 2); (avg.±std.dev. over all
datasets).

Variable Output corr. RMSE (% of meas. range)

q 0.97± 0.02 4.0± 1.2
u 0.96± 0.02 5.7± 1.9
w 0.94± 0.07 6.9± 3.2
θ 0.98± 0.02 3.9± 1.2

LPV model each parameter is a function of some of the states rather than a constant, i.e.:

ẋ = A(ρ)x + B(ρ)u (3)

where ρ is the vector of scheduling variables and the system matrices A and B depend on ρ.

Assuming the dependence on the scheduling variables is affine, this can be written out as:

A(ρ) = A0 + A1ρ(1) + A2ρ(2) + . . .+ Anρ(n) (4)
B(ρ) = B0 + B1ρ(1) + B2ρ(2) + . . .+ Bnρ(n) (5)

where the bracketed number denotes the corresponding component in the scheduling vector ρ, and

the matrices Ai and Bi are matrices of coefficients for the ith of the n elements in the scheduling

vector. The matrices on the right hand side do not have to be full, and in the current problem are

mostly sparse (cf. Eq. 16).

Once the underlying local model structure has been defined, the key question in devising an

LPV model structure is the selection of suitable scheduling variables. In conventional fixed-wing

problems, LPV models are typically scheduled based on either flight states, or configuration-related

variables [23, 28, 29, 30]. Based on the analysis in Sec. B and on previous work [37, 35], and

given that a single configuration (CG and geometry) was considered, functions of the (trim) angle

of attack (AOA), total velocity and flapping frequency were considered as a basis for scheduling

in the current model. Given that accurate results were found to be obtainable using only the AOA

and velocity, the remainder of this paper focuses on these two variables only. The scheduling

variables are thus directly related to the states, and the model formulation can be considered a

form of stitching [30]. Moving from the general notation in Eqs. 4–5 to the specific formulation
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used in this study, the scheduling vector ρ thus takes the form:

ρij(V0, α0) := V i
0α

j
0, i ∈ [0, d], j ∈ [0, d], (6)

where d is the maximum degree considered for each scheduling variable. Note that the full set

of possible combinations obtainable from Eq. 6 was merely the starting point for model structure

selection: the final model structure includes only a small number of these terms (cf. Sec. C).

Given that certain components of the local model structure are fully determined by kinematic

relations, the scheduling was limited to the aerodynamic terms, while the known parts of the lo-

cal model structure were kept at their known values, or determined from known expressions, as

clarified in Eq. 7. In some cases it may be more convenient, in practice, to directly interpolate the

entire matrices – in such cases it is straightforward to adjust the current model formulation to also

include the kinematic terms, particularly since all of these terms are either constant or known to be

related to the chosen scheduling states. The resulting LPV model takes the following form, where

tilde superscripts denote parameters estimated from the scheduling functions.

Ã(V0, α0) =


M̃q

Iyy
M̃u
Iyy

M̃w
Iyy

0
X̃q
m − w0

X̃u
m

X̃w
m g cos(Θ0)

Z̃q
m + u0

Z̃u
m

Z̃w
m g sin(Θ0)

1 0 0 0

 :=


0 0 0 0
−w0 0 0 g cos(Θ0)
u0 0 0 g sin(Θ0)
1 0 0 0

+
d∑
i=0

d∑
j=0

Aijρij(V0, α0)

(7)

B̃(V0, α0) =


M̃δe
Iyy
X̃δe
m
Z̃δe
m
0

 :=
d∑
i=0

d∑
j=0

Bijρij(V0, α0) (8)

As in Eqs. 4 and 5, Aij and Bij are constant matrices of coefficientsa, however, here their sub-

scripts indicate which component of the scheduling vector they refer to. Given that not all permu-

tations given by Eq. 6 were used in the final model structure, and that different parameters were

represented by different scheduling functions, several Aij and Bij matrices in the above equations

are either zero or sparse matrices. As a clarification, the LPV component of Eqs. 7 and 8 can be

written out for each parameter in the model structure (A and B matrices) as shown below for M̃q:

aAij and Bij contain the global model parameters, which are constant for all flight conditions
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M̃q(V0, α0) =
d∑
i=0

d∑
j=0

aMq,ijρij = aMq,00 + aMq,01ρ01 + . . .+ aMq,ddρdd (9)

Here aMq,ij denotes the set of constant global model parameters (contained in the Aij matrices in

Eq. 7), which are used to compute M̃q at any given flight condition, given the velocity and AOA.

Note that in the analogous of the above equation written for parameters in the local B matrix, the

global model parameters are denoted by a b instead of an a (e.g. bMδe,ij). The different notation

highlights the relation between the scheduling functions and the local model structure underlying

the global model. The derivation of the scheduling functions, and estimation of the global model

parameters they contain (Aij, Bij), are explained in the following section.

C. Scheduling function selection and global model parameter estimation

Clearly, Eqs. 4 and 5 result in a large number of terms even if a small polynomial degree d is chosen

for the scheduling functions. In fact, only a small number of terms were found to be required

on the right hand side of the equations, resulting in a relatively simple final result. To determine

which of the potential terms were necessary for an accurate global model, and to determine suitable

functions to describe each term in the LPV model, a stepwise regression was implemented, starting

from a candidate pool of model terms including all parameters shown in the above equation, up

to a degree of d = 3 for each model term. The maximum model degree was limited to avoid

excessively high orders that might have led to over-fitting. Additionally, lower-order functions are

more likely to retain a basic level of physical plausibility.

Given that considering the LPV model output (the model-predicted states) directly in the step-

wise regression would have required optimising the model structure for all scheduling functions

simultaneously, as well as for all flight conditions simultaneously, resulting in a computationally

expensive problem, the problem was simplified by assuming that all local model parameters were

entirely uncorrelated (cf. Sec. A). This was considered acceptable based on the low correlations

obtained between separate parameters in the local models (cf. Sec. D), and allows for each term

in the LPV model to be considered separately. It was thus assumed that finding the optimal model

structure for each sub-model would lead to a suitable (albeit not optimal) global model structure.
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A stepwise regression was thus conducted for each parameter in the Aij and Bij matrices

(M̃q, M̃u, etc.), in order to determine a scheduling polynomial to represent the parameter as a

function of the scheduling variables (V, α). This was attempted both with the AOA and velocity

alone, and with the two aforementioned variables together with the flapping frequency. Initial

results demonstrated that a high accuracy could be achieved even if the flapping frequency was

excluded – a solution considered preferable as it results in a simpler model structure.

Details on stepwise regression can be found in the literature (e.g., Refs. [50, 31, 51]); a concise

overview is given here for completeness. Stepwise regression is a model structure determination

process for problems that can be expressed as a linear regression, in the form:

z = XΘ + ε (10)

where Θ is a constant parameter vector, ε is the equation error, and z and X contain the output and

regressors, respectively, at each measurement point. Based on the previously stated assumption

of uncorrelated local model parameters, each parameter in the local model structure was treated

separately. Thus, for each local parameter (Mq,Mu, etc.), the above equation was constructed as

follows: the parameter vector contains the global model parameters (e.g. the a terms in Eq. 9)

used to represent the local model parameter considered; the output vector contains the values the

considered local parameter takes in each of the identified local models (z ∈ RnC×1, where nC is

the number of flight conditions considered); and the regressor matrix contains functions of V and

α computed from measurements at every flight condition, starting from all nx combinations given

by Eq. 6 (X ∈ RnC×nx). Each measurement instance (row of z, X and ε) therefore corresponds to

a different flight condition. Thus, for instance, for Mq, Eq. 10 takes the form,


Mq(V (1), α(1))
Mq(V (2), α(2))

...
Mq(V (nC), α(nC))

 =


ρ00(1) = 1 ρ01(1) = α(1) . . . ρdd(1) = V d(1)αd(1)
ρ00(2) = 1 ρ01(2) = α(2) . . . ρdd(2) = V d(2)αd(2)

...
...

. . .
...

ρ00(nC) = 1 ρ01(nC) = α(nC) . . . ρdd(nC) = V d(nC)αd(nC)



aMq,00

aMq,01

...
aMq,dd

 +


ε(1)
ε(2)

...
ε(nC)

 (11)
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The main limitation of the model formulation in Eq. 10 is that it cannot account for the error in

the velocity and AOA measurements, and only considers the error ε in the local model parameters,

assumed, as per convention, to be white Gaussian noise. Nonetheless, the aforementioned model

formulation provides a straightforward means to derive suitable scheduling functions, and was

subsequently found to yield accurate final results (cf. Sec. V).

Given an equation of the form of Eq. 10, the goal of the stepwise regression process is to

determine which of the nx regressors in X need to be retained in order to obtain an accurate

model. The stepwise regression thus begins from a pool of candidate regressors, constructed out of

permutations of the velocity and AOA, up to the chosen maximum model degree (here, 3; cf. also

Eqs. 6 and 9). At each step, the partial correlation of each regressor with the known output z is

computed, accounting for any already determined model terms (i.e. we compute the correlation of

the regressor to the original output z minus the contribution of the model terms included in previous

steps). The regressor xk leading to the highest partial correlation is considered for inclusion in the

model structure, and the (partial) F-statistic is calculated [51] to determine whether the contribution

of the selected regressor to the model is significant, i.e. whether F is above a chosen critical value:

Fk =
θ̂2
k

σ2(θ̂k)
> Fcrit (12)

where θ̂k is the considered parameter (which is multiplied by regressor xk in the model), and σ2

is the estimated variance of θk. If Eq. 12 holds, then the corresponding parameter θ̂k is included

in the model. Whenever a new model term has been added, the partial F-statistic of all regressors

previously included in the model structure must be re-computed, to assess whether their contribu-

tion remains significant after the additional variable has been included in the model structure. Any

of the previously included regressors whose F-statistic is below the chosen threshold is once again

removed from the model. These steps are repeated until some criterion is met: in this study, the

change in predicted square error and R2 coefficient were considered.

After selecting a model structure using the approach described above, the global model param-

eters were estimated using an ordinary least squares (OLS) estimator, which lends itself well to the

model formulation used in the regression. Using the same notation as in Eq. 10, the cost function
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to minimise, for each local parameter (‘output’ z), is given by:

J =
1

2
[z−XΘ]T [z−XΘ]T (13)

whereX∗ denotes the final, optimised set of regressors resulting from the stepwise regression. The

OLS estimator resulting from the minimisation process is then:

Θ̂ = (XTX)−1XTz (14)

The set of global model parameter vectors Θ̂ (one per local model term) allows for an LTI model to

be obtained in any part of the known flight envelope and, theoretically, also to extrapolate beyond

this. The latter however requires investigating the boundaries of the flyable envelope and the

nonlinearity of the system outside the explored region. The high-level process to determine the

scheduling functions and global model parameters is clarified in Fig. 8.

Scheduling functions 

𝐴 𝑉, 𝛼 = 𝑓(𝑉, 𝛼, 𝐴𝑖𝑗) 

𝐵 𝑉, 𝛼 = 𝑓(𝑉, 𝛼, 𝐵𝑖𝑗) 

Flight conditions of 
available local models 

𝑉, 𝛼 1,…,46 

Output variable z:  
local model parameters 
𝐴𝑙𝑜𝑐 1,…,46 , 𝐵𝑙𝑜𝑐 1,…,46 

Global LPV model 
parameters 

𝐴𝑖𝑗 , 𝐵𝑖𝑗 ≠ 𝑓(𝑉, 𝛼) 

Stepwise regression 

OLS estimation 

Candidate regressors 𝑿 
𝜌𝑖𝑗 𝑘 = 𝑉(𝑘)𝑖𝛼(𝑘)𝑗 , 

𝑖, 𝑗 ∈ 0, 𝑑 , 𝑘 = 1, … , 46 

Regressors 𝑿∗ selected 
to schedule each 

parameter 

Figure 8: LPV model construction process (X∗: final regressor matrix obtained after stepwise regression).

D. Average model for comparison

To provide a worst-case comparison for the developed LPV model, we defined an average model,

with a single set of parameters, which we applied to the entire flight envelope to establish to

what extent global modelling was needed for the test platform. To account for the non-uniform

distribution of the flight data, the average model was obtained by calculating a weighted average
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for each parameter in the local model structure from the parameter values of all the local models.

Each model parameter was weighted with its distance from the geometric centre (V̄ , ᾱ) of the flight

envelope, defined as the difference between maximum and minimum V and AOA, respectively, for

each of the two spatial coordinates: Each parameter in the average model was thus defined as,

θavg :=

{ ∑
θk(Vk,αk)rk∑

rk
if rk 6= 0∀k

θ(V̄ , ᾱ) if ∃rk(rk = 0)
, rk :=

√
(Vk − V̄ )2 + (αk − ᾱ)2 (15)

where θ represents any parameter in the A and B matrices defining the model structure (i.e.

Mq,Mu, etc.). The second clause of the equation was included to account for the possibility of

local models identified at the defined centre of the flight envelope. As no such models were avail-

able, effectively only the first clause was used. To ensure a fair comparison also in the validation

phase, only the estimation datasets were used to compute the average model.

As discussed previously, a distinction was made between the aerodynamic and purely kinematic

components of the LPV model. In an analogous way, two average models were considered. The

first is an overall weighted average, defined directly by Eq. 15: here also the kinematic terms are

averaged. The second involves averaging only the aerodynamic components according to Eq. 15,

while the kinematic terms are assumed to be known in any flight condition. In the evaluations that

follow, the latter ‘partial average’ model is used for comparison (henceforth, this model is termed

‘average’, while the overall average model is denoted as ‘full average’). The results obtained

with an overall average were somewhat less accurate than those obtained with a partial average,

but mostly in the same order of magnitude. In this sense, comparing the LPV model and partial

average can be considered a conservative evaluation of how useful the global model is.

V. LPV modelling results

A. Preliminaries

This section presents the obtained LPV model. Following an assessment of the scheduling results,

the final LPV model is evaluated and compared to (i) the original local models, in the conditions

where such models are available, (ii) the flight data collected in the same conditions, and (iii) the
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‘partial’ average model presented in Sec. D. Comparing to the local models shows how accurate

the LPV model is at reproducing the changing dynamics given by the local models. Comparing

to flight data provides additional insight, given that while in theory the best possible outcome

is for the LPV model to replicate the local models in the corresponding conditions, in fact it is

possible that the LPV model approximates the data better than the local models do, as it does

not represent a direct interpolation and may compensate for irregularities in single local models.

Finally, comparing to the average model evaluates whether a global model is necessary. Fig. 9

clarifies the relations between the three types of models.

Locally-valid models at 𝑽, 𝜶  

Scheduling functions 

𝐴 𝑉, 𝛼 = 𝑓(𝑉, 𝛼, 𝐴𝑖𝑗) 

𝐵 𝑉, 𝛼 = 𝑓(𝑉, 𝛼, 𝐵𝑖𝑗) 

Measured flight 
condition 𝑉, 𝛼  

LPV model-estimated 
parameters: 

𝐴 𝑉, 𝛼 , 𝐵 𝑉, 𝛼  

Local model parameters: 
𝐴𝑙𝑜𝑐,(𝑉,𝛼) , 𝐵𝑙𝑜𝑐,(𝑉,𝛼) 

Avg. model parameters: 
A𝑎𝑣𝑔 = const ≠ 𝑓 𝑉, 𝛼  

𝐵𝑎𝑣𝑔 = const ≠ 𝑓(𝑉, 𝛼) 

Local 
model 

available? 

LPV model output 
yLPV 

Local model output 
yloc 

Avg. model output 
yavg 

yes 

no 

Global model 
parameters 

𝐴𝑖𝑗 , 𝐵𝑖𝑗 = 𝑐𝑜𝑛𝑠𝑡 

Figure 9: Diagram clarifying the relationship between LPV model, set of local models and average model.

Similarly, it is important to distinguish between (a) global model parameters, (b) LPV model-

estimated local parameters, and (c) estimated local parameters. The LPV model contains a set of

global parameters (a), which are the same for all flight conditions. The LPV model can be used to

estimate local parameters (b): these are the values taken by the left hand side variables in Eqs. 7

and 8 (and all equations analogous to Eq. 9) if AOA and velocity values for a particular flight

condition are substituted into the right hand side of the equations. The set of resulting calculated

parameters yields an LTI model at the flight condition considered and can therefore be compared

to the original local model parameters (c) directly estimated in the same flight condition.

A number of flight test datasets were excluded from the model identification process and used

25 of 45

American Institute of Aeronautics and Astronautics



for validation. For this, nine datasets were selected at random, distributed uniformly among the

groups of datasets shown in Fig. 2, in relation to the group size. Different random selections were

attempted – given that the outcome remained comparable, suggesting a degree of robustness of the

modelling approach, in the remainder of this paper results are shown for one of the estimation-

validation selections only (validation datasets: 6, 3, 11, 16, 22, 31, 32, 41, 45; cf. Fig. 2).

B. Scheduling results

Prior to considering the complete LPV model, the estimated local model parameters were evalu-

ated and compared to the corresponding parameters predicted by the LPV model in the same flight

conditions. This gave an initial indication of the accuracy of the LPV model and provided further

insight into the adequacy of the model structure. Shortcomings in the LPV model are likely to be

related to one of the following causes: (i) the parameter is not estimated accurately in the local

models, (ii) the chosen scheduling variables are unsuited to represent the variation of the local pa-

rameter considered, or (iii) the local parameter is generally unaffected by the flight condition. The

first point may be due to insufficient excitation in the identification data, or because the param-

eter has a limited influence on the system dynamics, or because it is strongly correlated to other

parameters and cannot be identified independently from these – these points were addressed in

Sec. D. The second point was not considered further, as the local analysis (Sec. III) suggested that

the velocity and AOA are suitable to capture the most significant trends in the dynamics. The third

point is discussed in this section, in the context of the scheduling results. Based on this evaluation,

further minor adjustments were made to the model structure and the final LPV model was obtained.

The approach outlined in Sec. IV was applied, starting from the flight data presented in Sec. C

and the local model structure defined in Sec. D (Eq. 2), to obtain an LPV model covering the flight

envelope region explored in the current flight tests (cf. Fig. 2). The following scheduling functions

were obtained, following the stepwise regression process:

M̃q = aMq,00 + aMq,10V + aMq,30V
3 (16)

M̃u = aMu,00 + aMu,10V + aMu,20V
2 + aMu,30V

3 (17)

(M̃w = ρ10V0 + ρ20V
2 + ρ30V

3
0 ; average used) (18)
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M̃δe = bMδe,00 + bMδe,20V
2 + bMδe,21V

2α + bMδe,30V
3 (19)

X̃q = aXq,00 + aXq,21V
2α (20)

X̃u = aXu,00 + aXu,11V α + aXu,21V
2α (21)

X̃w = 0 (22)

X̃δe = bXδe,00 + bXδe,10V + bXδe,30V
3 (23)

(Ẑq = ρ12V0α
2
0 ; average used) (24)

Z̃u = 0 (25)

Z̃w = aXw,00 + aXw,01α + aXw,11V α + aXw,12V α
2 (26)

Z̃δe = 0 (27)

The bracketed expressions in the equations above denote parameters which were not scheduled in

the final model. As discussed above, next to ensuring a sufficient identifiability of the local model

parameters at the basis of the global model (cf. Sec. D), the LPV model can be further improved

by determining whether the local parameters are in fact significantly related to the flight conditions

and only scheduling the parameters that meet this requirement. While the dynamics of the local

models are related to the flight condition, this does not necessarily imply that each of the local

parameters is correlated to the flight condition. Some parameters were found to be important for

the system dynamics overall, but either not significantly affected by different flight regimes within

the range considered, or difficult to predict with simple functions of the AOA and velocity.

Figs. 10–11 show the local model parameters, the LPV model-estimated parameters for the

same flight conditions, and the average model parameters (based on Sec. D). While several pa-

rameters depend on both the velocity and AOA, the parameters are plotted against each of these

variables separately, to provide a clearer overview. It can be observed that most of the LPV model-

calculated parameters take on values close to those of the local models in the same conditions.

Where there is a trend with the flight condition, the scheduling sub-models reproduce it accurately,

e.g. as clearly seen for Mu,Mδe , Xq and Xu. The parameters connected to the Z force and w

velocity are less accurately predicted by the global model, as expected given their less reliable es-

timation in the local models. It is also clear that while some parameters display a clear correlation

with the flight condition, others display no clear trends even though they are estimated effectively

in the local models. This suggests that it is unnecessary to enforce on all local parameters a cor-
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Figure 10: Trim velocity versus: local model parameters, corresponding LPV model-estimated parameters,
average model parameters (at conditions in Fig. 2)

relation to the flight condition, and that similar or better results can be obtained by fixing some

parameters to constant values and only varying the remaining parameters. This would allow for

simpler, smaller models that still capture the main effects. Based on a visual evaluation, the local

model parameters Mw and Zq were found not to vary significantly with the flight regime.

A quantitative evaluation of the accuracy of the LPV model – and of the degree of correlation

of local parameters and flight conditions – was also obtained by computing, for each parameter, the

correlation between local parameter estimates obtained in all flight conditions and corresponding

LPV model-predicted parameters. Additionally, probability values (p-values) were considered to
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Figure 11: Trim AOA versus: local model parameters, corresponding LPV model-estimated parameters,
average model parameters (at conditions in Fig. 2)

evaluate the significance of said correlations. Based on these metrics, shown in Table 4, it was

found that most of the parameters in the simplified local model structure are modelled effectively

by the chosen LPV formulation, with the exception ofMw and Zq, which do not display significant

trends with the flight condition, and hence are not accurately predicted by the scheduling functions.

Xδ and Zw are also significantly less correlated to the flight conditions compared to the remaining

parameters, however the obtained results suggest they may still be possible to model.

On the basis of all the preceding considerations, the parameters Mw and Zq were fixed to

average values (obtained from the average model in Eq. 15. The following LPV model structure
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Table 4: Full model structure: correlation (and p-values) between LPV model-estimated parameters and
local model parameters.

Param. corr(θ̃LPV , θ̂loc) p-value Param. corr(θ̃LPV , θ̂loc) p-value Param. corr(θ̃LPV , θ̂loc) p-value

Mq 0.61 �0.001 Xq 0.78 �0.001 Zq 0.06 0.73
Mu 0.75 �0.001 Xu 0.83 �0.001 Zw 0.55 0.002
Mw 0.22 0.23 Xδe 0.52 0.003
Mδe 0.71 �0.001

was thus chosen for the final, simplified (subscript ‘simp’) global model:

Ãsimp(V, α) =


M̃q(V )
Iyy

M̃u(V )
Iyy

M̄w
Iyy

0
X̃q(V,α)

m − w0
X̃u(V,α)

m 0 g cos(Θ0)
Z̄q
m + u0 0 Z̃w(V,α)

m g sin(Θ0)
1 0 0 0

 , B̃simp(V, α) =


M̃δe (V,α)

Iyy
X̃δe (V )
m
0
0

 (28)

where a bar superscript indicates that the corresponding parameter is fixed to the same constant

value (given by Eq. 15) regardless of the flight condition, and not computed from a scheduling

function. Note that the parameters in Eq. 28 are estimated from the global model, as denoted

by the tilde superscript, and can therefore be calculated in any flight condition. The scheduling

functions used to obtain the unknown parameters in the above expression were given previously

in Eq. 16, except for Mw and Zq, which are fixed to average values. Substituting the global model

parameters into Eq. 16 gives the following final scheduling functions:

M̃q = −1.49× 10−4 − 6.98× 10−4V + 1.42× 10−4V 3 (29)

M̃u = −8.42× 10−4 − 3.60× 10−3V + 3.28× 10−3V 2 (30)

M̃w = −1.44× 10−3 (31)

M̃δe = 8.26× 10−2 + 2.04× 10−1V 2 − 0.10× 10−1V 2α− 6.25× 10−2V 3 (32)

X̃q = 1.24× 10−2 + 1.60× 10−2V 2α (33)

X̃u = −1.39× 10−1 + 8.25× 10−2V α− 1.37× 10−1V 2α (34)

X̃w = 0 (35)

X̃δe = −1.29× 10−1 + 1.56× 10−1V − 8.10× 10−2V 3 (36)

Z̃q = −4.15× 10−3 (37)

Z̃u = 0 (38)

Z̃w = −3.87× 10−1 + 3.46× 10−1α + 3.67× 10−1V α− 3.48× 10−1V α2 (39)
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Z̃δe = 0 (40)

Note that the above equations require the velocity to be given in m/s and the angle of attack

in “rad”. The simplified model structure was found to yield somewhat improved results, while

requiring only approximately half the number of parameters, therefore it represents an attractive

solution. Additionally, it improves upon the original model structure in terms of reliability, by only

including well-estimated parameters and only scheduling those parameters that vary significantly

with the flight condition. The local and global modelling results shown in the remainder of this

paper are all based on the simplified model given by Eq. 2. The estimated local parameters are

listed in the appendix. Ultimately, rather than by its parameters, a model must be judged by its

dynamic properties and the output it predicts. These points are discussed in the next subsections.

C. System dynamics

The resulting model was first evaluated in terms of the system dynamics. This evaluation also

provided more detailed insight into the dynamics of the test vehicle, which are therefore discussed

further in this section. Fig. 12 shows the poles obtained from the LPV model in the 46 differ-

ent flight conditions considered, the corresponding 46 local models, and the average model (cf.

Sec. D). The poles obtained from each model are also shown separately in Fig. 13, with colour

shades illustrating the changes with flight velocity. Lastly, to evaluate each component of the dy-

namics, the poles of each of the models (or set of models) are plotted separately in Fig. 14, against

the flight conditions the LPV model was evaluated at (corresponding to the conditions where local

models were available). In the interest of clarity, the complex pole is split into real and imaginary

components. Results obtained from validation data are highlighted in the plots. For the sake of

clarity, in this section the flight condition is shown only in terms of the velocity – trends with the

AOA were in most cases approximately inversely correlated.

As suggested in Sec. B, there are trends between system poles and flight conditions, however

this is not the case, to the same extent, for all the poles. The trends that emerged more clearly

from the local modelling are replicated accurately by the LPV model, while, as expected, unclear

variations in the local modelling results led to unclear global modelling results. This points to
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Figure 12: Poles of LPV, local and average models; overall average (with fixed kinematics) also shown.
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Figure 13: Poles of LPV, local and average models; colour shades indicate changing flight velocity.

shortcomings in the underlying local models rather than in the LPV model.

The complex pole displays a clear trend with the flight condition, as evident from Figs. 14b

and 14a, and the corresponding trajectory in Fig. 13. The imaginary component clearly decreases

in magnitude at higher velocities, indicating that the frequency decreases. This trend is accurately

captured by the LPV model. Interestingly, the average model, which considers the changing kine-

matics only, shows an opposite trend in the imaginary component, suggesting that the trend seen in

the local model oscillatory dynamics (particularly in the frequency) is predominantly determined

by the aerodynamics rather than the kinematics. By contrast, the real component of the complex

pole displays a considerably smaller overall variation and the local model-obtained values are more

scattered, particularly in the low velocity range. Nonetheless, there appears to be a trend, which is
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Figure 14: Poles versus corresponding trim velocity: LPV, local and average models (val=validation).

captured by the LPV model, with the damping initially increasing, in the lower velocity range (up

to V ≈ 0.8m/s), and then decreasing again at even higher velocities. The average model displays

a very similar result in the high velocity range, but the trend does not reverse at low velocities,

suggesting that at low velocities the aerodynamics play a more dominant role in determining the

overall dynamic behaviour, compared to the (body) kinematics. There also appears to be a ‘sweet

spot’ for the platform, where the damping is highest – this is in agreement with piloting experience

on the FWMAV. However, the significant amount of seemingly random variation in the local data

implies that the results for this eigenmode must be verified further.

The faster of the two real poles (p3) shows only a vague trend, decreasing somewhat at higher

velocities, however there is significant variation between the local model results, and further/better

data would be required to ascertain this trend. In view of this variation, while the LPV model

captures a part of the trend, the result is not clear, especially in the high velocity range. Here,
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the LPV and average models are almost identical – this may be because of the parameters that

were fixed to constant values or excluded from the model structure, which implies that parts of the

LPV model-predicted dynamics (i.e. the parts associated with the Z-force) are very close to those

predicted by the average model. Despite the somewhat unclear result, it should be noted that since

this is the fastest pole, it should play a limited part in the overall response. The slower pole (p4)

displays a very clear trend with the flight condition, which is captured with accuracy by the LPV

model. The average model, by contrast, barely captures this trend, suggesting that this component

of the dynamics too is determined by the aerodynamics rather than the kinematics. It can also be

seen that this pole becomes unstable at very low velocities and clearly unstable at hover.

Overall, the damping decreases at low velocities. At higher velocities, the real poles become

more negative but the oscillatory pole seems to eventually become unstable. The oscillatory com-

ponent decreases in frequency, in agreement with the observed flight behaviour of the FWMAV.

The significant differences between LPV and average model trends suggest that the aerodynamics

indeed change with changing flight conditions, and that they influence the overall flight behaviour

more than the kinematics. Overall the LPV model is accurate in capturing the trends emerging from

the data and can be used to predict the changing system dynamics in different conditions. Further

effects may become evident with new identification data where the linear velocity dynamics are

better excited – this may provide more insight on the fast aperiodic pole p3.

D. Output match

Figs. 15 and 16 show examples of the output predicted by the LPV model, compared to the flight

data, the output of the corresponding local models, and the output of the average model. Result

examples are shown for both estimation and validation datasets, with the specific datasets selected

from different parts of the flight envelope so as to present a basic overview. A more comprehensive

overview is given in Figs. 17–19, which show statistical metrics (RMS errors and output correlation

coefficients) evaluating the performance of the LPV model for all datasets. These figures also show

the difference in performance, respectively, between LPV and average models, and between LPV

and local models. The same information is also summarised in Table 5.
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data loc LPV avg

b) Test #14 (low velocity/high AOA condition)
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data loc LPV avg

c) Test #26 (intermediate velocity/AOA condi-
tion)
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data loc LPV avg

d) Test #38 (high velocity/ low AOA condition)

Figure 15: Output example: LPV, average and local models, versus flight data (estimation sets)

As anticipated from the scheduling results (Sec. B), the LPV model approximates the flight data

effectively, reaching a high accuracy in both the estimation and the validation tests. The validation

results, in particular, suggest that the model can be used to predict the flight behaviour where no

local models are available. While the local models are consistently more accurate than the LPV

results computed in the same conditions – as expected, given that the local models were used to

construct the LPV model and considered correct a priori – the differences between the set of local

models and the LPV model are small. There are also isolated cases where the LPV model displays

a marginally better performance than the corresponding local model (cf. Fig. 19) – these are cases

where the relevant local model is less accurate, e.g. due to less clean identification data, suggesting

that the LPV model is more dependable and can help to circumvent locally inaccurate models.
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data loc LPV avg

a) Test #3 (low velocity/ high AOA condition)
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data loc LPV avg

b) Test #11 (low velocity/ high AOA condition)

0 0.5 1 1.5 2 2.5 3
−200

0

200

∆q
 [d

eg
/s

]

0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

∆u
 [m

/s
]

0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

∆w
 [m

/s
]

0 0.5 1 1.5 2 2.5 3
−20

0

20

∆Θ
 [d

eg
]

 

 

data loc LPV avg

c) Test #22 (intermediate velocity/AOA condi-
tion)
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data loc LPV avg

d) Test #45 (high velocity/ low AOA condition)

Figure 16: Output example: simplified LPV, average and local models, versus flight data (validation sets)

The LPV model is accurate and scalable, and hence brings a significant improvement compared

to the use of a single average model. Fig. 18 highlights that the LPV model consistently achieves

a higher accuracy than the average model (cf. also Figs. 15 and 16). While the differences are of a

small magnitude, the small scale of the entire problem implies that seemingly negligible changes

may have a significant effect, as discussed in Sec. III. This also means that the achievable modelling

accuracy is limited and emphasises the effect of inaccuracies in the scheduling. Indeed, it can

be remarked that although the LPV scheduling is effective overall and yields results (parameters

and eigenvalues) significantly closer to the local results than the average model (cf. Secs. B and

refsec: results dynamics), the difference in the resulting output is less noticeable. It appears that

the modelling errors involved are large enough to affect the final result, even though per se they
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appear to be small, and the main trends are replicated accurately by the LPV model.

Table 5: Percentage of considered conditions where LPV model performs better than average/local models.

RMSE: % cases better than corr: % cases better than

State Avg.(est.) Loc.(est.) Avg.(val.) Loc.(val.) Avg.(est.) Loc.(est.) Avg.(val.) Loc.(val.)

q 87 10 100 11 84 6 100 11
u 81 6 89 11 77 6 67 11
w 81 10 44 0 77 13 67 11
Θ 84 10 100 0 81 16 100 0

Overall, the LPV model is accurate and offers several advantages over both the average model

and the set of local models. Unlike the average model, the LPV model does not deteriorate in

accuracy as the flight conditions change. Figs. 18 and 19 show that in the central part of the flight

envelope the LPV and average model results are similar, but that the average model increasingly

loses accuracy at flight conditions increasingly different from those in the middle of the envelope.

This can also be seen in the output (Fig. 15): especially at low velocities, the discrepancy between

average model and flight data is clear. This effect would become more pronounced if a wider flight

envelope were considered (e.g. through changes to the vehicle configuration), hence an average

model is not a robust solution, and is inadequate for high-accuracy applications.

By contrast, the LPV model retains a similar performance throughout the domain considered,

with the exception of isolated outliers, whose decreased performance can be traced back to the

estimation data. It represents a scalable solution that can be extended to cover a vaster flight enve-

lope, and can be used effectively to predict how the system dynamics change. While less accurate

than the local models – as expected, since the estimation process minimises the difference between

LPV model and closest local model –, the LPV model has the advantages of higher flexibility,

continuous coverage and a smaller overall model size (a total of 25 parameters, as opposed to 12

parameters per flight condition). Additionally, whereas single local models may be inaccurate, e.g.

due to inaccurate identification data, if the majority of the original local models are accurate, the

LPV model can bypass local errors in favour of the more significant overall trends.

The modelling approach itself is therefore considered effective and useful when dealing with

FWMAVs that can be locally represented by LTI models (the most widespread formulation in the
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literature). Whether the suggested approach remains effective when considering more significant

variation (e.g. including the effect of CG shifts, which would allow for higher velocities) must

be verified, however the approach remains theoretically applicable. The fact that the LPV model

remains accurate at the edges of the considered region suggests that some further extrapolation

could be handled. More generally, the LPV approach has the advantage of simplicity, in both the

model structure and the identification requirements.
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Figure 17: LPV, average and local model-obtained results, compared to flight test data.

VI. Conclusions

A linear parameter-varying (LPV) model identification approach was developed to represent

the time-averaged longitudinal dynamics of a flapping-wing micro aerial vehicle. This involved,

firstly, estimating local models of the dynamics, using 46 sets of free-flight data collected in dif-

ferent flight conditions, and, secondly, determining a set of scheduling functions to express the

dependency of these models on the flight condition they represent. The obtained scheduling func-

tions accurately model the key dynamic properties of the vehicle, and hence constitute a useful

means of predicting and simulating the system dynamics in different flight conditions. With a sig-

nificantly lower number of parameters, the global model achieves an only slightly lower accuracy

than the set of local models, while additionally providing continuous coverage across the condi-
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Figure 18: LPV and average model-obtained results, compared to flight data (validation sets: filled mark-
ers)
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Figure 19: LPV and local model-obtained results, compared to flight data (validation sets: filled markers).

tions considered, and thus also increased flexibility. The model requires few measurements, and is

computationally light and easily interpretable. These properties make it suitable for simulation and

control work. Moreover, the model retains an approximately constant accuracy up to the edges of

the covered flight envelope, suggesting that some extrapolation is possible and that the approach
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may remain effective to represent more significant variation, provided linear models remain effec-

tive locally. The modelling process also yielded information on the dynamics of the test vehicle,

showing that these vary with the angle of attack and flight velocity and providing insight into how

they vary. The observed trends are consistent with flight experience, corroborating the obtained re-

sults. Improved results may be obtainable with more informative and extensive flight data, leading

to more accurate local models and hence a more accurate global model. The suggested approach

is also applicable to account for different vehicle configurations in a single model: this type of

extension would involve larger changes and hence more fully exploit the LPV approach.

References
[1] Ellington, C. P., “The Aerodynamics of Hovering Insect Flight. I. The Quasi-Steady Analysis,” Philo-

sophical Transactions of the Royal Society B: Biological Sciences, Vol. 305, No. 1122, 1984, pp. 1–15.
doi:10.1098/rstb.1984.0049.

[2] Ellington, C. P., van den Berg, C., Willmott, A. P., and Thomas, A. L. R., “Leading-edge vortices in
insect flight,” Nature, Vol. 384, 1996, pp. 626–630. doi:10.1038/384626a0.

[3] Dickinson, M. H., Lehmann, F.-O., and Sane, S. P., “Wing Rotation and the Aerodynamic Basis of
Insect Flight,” Science, Vol. 284, No. 5422, 1999, pp. 1954–1960. doi:10.1126/science.284.5422.1954.

[4] Taylor, G. K. and Thomas, A. L. R., “Dynamic flight stability in the desert locust Schisto-
cerca gregaria,” Journal of Experimental Biology, Vol. 206, No. 16, Aug. 2003, pp. 2803–2829.
doi:10.1242/jeb.00501.

[5] Grauer, J., Ulrich, E., Hubbard, J. E., Pines, D., and Humbert, J. S., “Testing and System Identification
of an Ornithopter in Longitudinal Flight,” Journal of Aircraft, Vol. 48, No. 2, March 2011, pp. 660–
667. doi:10.2514/1.C031208.

[6] Caetano, J. V., de Visser, C. C., de Croon, G. C. H. E., Remes, B., De Wagter, C., and Mulder, M.,
“Linear Aerodynamic Model Identification of a Flapping Wing MAV Based on Flight Test Data,” Int.
Journal of Micro Air Vehicles, 2013. doi:10.1260/1756-8293.5.4.273.

[7] Armanini, S. F., de Visser, C. C., and de Croon, G. C. H. E., “Black-box LTI Modelling of Flapping-
wing Micro Aerial Vehicle Dynamics,” AIAA Atmospheric Flight Mechanics Conf., 2015, AIAA Paper
15-0234. doi:10.2514/6.2015-0234.

[8] Berman, G. J. and Wang, Z. J., “Energy-minimizing kinematics in hovering insect flight,” Journal of
Fluid Mechanics, Vol. 582, 2007, pp. 153–168. doi:10.1017/S0022112007006209.

[9] Orlowski, C. T. and Girard, A. R., “Averaging of the Nonlinear Dynamics of Flapping Wing Mi-
cro Air Vehicles for Symmetrical Flapping,” AIAA Journal, Vol. 49, No. 5, 2011, pp. 969–981.
doi:10.2514/1.J050649.

[10] Khan, Z. A. and Agrawal, S. K., “Force and moment characterization of flapping wings for micro air
vehicle application,” American Control Conf., 2005, pp. 1515–1520. doi:10.1109/ACC.2005.1470180.

40 of 45

American Institute of Aeronautics and Astronautics

http://dx.doi.org/10.1098/rstb.1984.0049
http://dx.doi.org/10.1038/384626a0
http://dx.doi.org/10.1126/science.284.5422.1954
http://dx.doi.org/10.1242/jeb.00501
http://dx.doi.org/10.2514/1.C031208
http://dx.doi.org/10.1260/1756-8293.5.4.273
http://dx.doi.org/10.2514/6.2015-0234
http://dx.doi.org/10.1017/S0022112007006209
http://dx.doi.org/10.2514/1.J050649
http://dx.doi.org/10.1109/ACC.2005.1470180


[11] Xiong, Y. and Sun, M., “Stabilization control of a bumblebee in hovering and forward flight,” Acta
Mechanica Sinica, Vol. 25, No. 1, 2009, pp. 13–21. doi:10.1007/s10409-008-0184-8.

[12] Wu, J. and Sun, M., “Control for going from hovering to small speed flight of a model insect,” Acta
Mechanica Sinica, Vol. 25, No. 3, 2009, pp. 295–302. doi:10.1007/s10409-009-0241-y.

[13] Finio, B. M., Perez-Arancibia, N. O., and Wood, R. J., “System identification and linear time-invariant
modeling of an insect-sized flapping-wing micro air vehicle,” 2011 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2011, pp. 1107–1114. doi:10.1109/IROS.2011.6094421.

[14] Duan, H. and Li, Q., “Dynamic model and attitude control of Flapping Wing Micro Aerial
Vehicle,” IEEE Int. Conf. on Robotics and Biomimetics (ROBIO), Dec. 2009, pp. 451–456.
doi:10.1109/ROBIO.2009.5420689.

[15] Chand, A. N., Kawanishi, M., and Narikiyo, T., “Parameter Estimation for the Pitching Dynamics of
a Flapping-Wing Flying Robot,” IEEE Int. Conf. on Advanced Intelligent Mechatronics (AIM), 2015,
pp. 1552–1558. doi:10.1109/AIM.2015.7222763.

[16] Armanini, S. F., de Visser, C. C., de Croon, G. C. H. E., and Mulder, M., “Time-varying model
identification of flapping-wing vehicle dynamics using flight data,” Journal of Guidance, Control, and
Dynamics, Vol. 39, No. 3, 2016, pp. 526–541. doi:10.2514/1.G001470.
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[49] Tóth, R., Modeling and Identification of Linear Parameter-Varying Systems an Orthonormal Basis
Function Approach, Phd thesis, Delft University of Technology, 2008.

[50] Jategaonkar, R., Flight Vehicle System Identification A Time Domain Methodology, AIAA Progress in
Astronautics and Aeronautics, Reston, VA, USA, 2006, ISBN: 1-56347-836-6.

[51] Klein, V. and Batterson, J. G., “Determination of airplane model structure from flight data using splines
and stepwise regression,” Tech. Paper 2126, NASA, 1983.

Appendix: Local model parameters and test conditions

Table 6: Flight test trim conditions

test # V [m/s] α[deg] ff [Hz] test # V [m/s] α[deg] ff [Hz] test # V [m/s] α[deg] ff [Hz] test # V [m/s] α[deg] ff [Hz]

1 0.52 62.78 13.78 13 0.57 75.44 13.60 25 0.97 54.29 12.77 37 1.05 47.17 12.13
2 0.59 60.80 13.79 14 0.60 73.15 14.26 26 0.91 61.83 12.33 38 1.11 54.13 11.79
3 0.62 73.41 13.57 15 0.79 61.85 13.39 27 0.98 53.80 12.93 39 1.07 50.06 12.23
4 0.65 65.97 13.99 16 0.78 67.55 13.92 28 1.02 53.13 12.87 40 1.13 50.78 12.10
5 0.51 73.68 15.15 17 0.70 62.67 13.28 29 0.98 55.44 12.39 41 1.09 53.02 12.01
6 0.65 66.78 13.33 18 0.73 67.84 12.85 30 0.96 51.94 12.42 42 1.15 45.80 12.30
7 0.67 76.99 13.13 19 0.80 65.17 13.00 31 0.98 55.09 12.30 43 1.21 49.34 12.23
8 0.65 65.77 13.74 20 0.71 59.23 14.02 32 1.01 52.49 12.21 44 1.21 43.12 12.39
9 0.65 77.01 13.86 21 0.90 64.23 11.97 33 1.04 48.70 12.56 45 1.17 50.36 12.31

10 0.65 70.48 13.35 22 0.91 56.53 12.55 34 0.98 60.29 12.12 46 1.30 42.23 12.43
11 0.59 74.09 13.27 23 0.98 52.88 12.65 35 1.15 47.29 12.52
12 0.64 67.42 13.74 24 0.95 57.84 12.45 36 1.06 52.95 12.47
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Table 7: Simplified local model: estimated parameters and standard deviations (θ̂(σ̂)), cf. Eq. 2

Param. Model #
1 2 3 4

Mq −5.43 × 10−4(3.89 × 10−6) −5.05 × 10−4(2.63 × 10−6) −5.26 × 10−4(2.28 × 10−6) −5.22 × 10−4(3.00 × 10−6)

Mu −1.66 × 10−3(2.78 × 10−5) −1.99 × 10−3(1.59 × 10−5) −1.27 × 10−3(1.00 × 10−5) −1.90 × 10−3(2.01 × 10−5)

Mw −2.26 × 10−3(6.44 × 10−5) −1.14 × 10−3(3.68 × 10−5) −1.35 × 10−3(1.31 × 10−5) −1.04 × 10−3(3.85 × 10−5)

Mδe 2.13 × 10−3(1.77 × 10−5) 1.93 × 10−3(1.38 × 10−5) 2.12 × 10−3(1.13 × 10−5) 1.73 × 10−3(1.34 × 10−5)

Xq 1.97 × 10−2(1.49 × 10−4) 2.20 × 10−2(1.24 × 10−4) 2.10 × 10−2(8.10 × 10−5) 2.44 × 10−2(2.26 × 10−4)

Xu −1.37 × 10−1(5.40 × 10−4) −1.33 × 10−1(4.33 × 10−4) −1.45 × 10−1(2.96 × 10−4) −1.28 × 10−1(7.97 × 10−4)

Xδe −6.45 × 10−2(7.98 × 10−4) −7.12 × 10−2(6.06 × 10−4) −4.60 × 10−2(4.29 × 10−4) −6.78 × 10−2(1.02 × 10−3)

Zq −4.89 × 10−3(1.74 × 10−4) −5.92 × 10−3(1.36 × 10−4) 7.86 × 10−5(1.80 × 10−4) −6.26 × 10−3(2.13 × 10−4)

Zw −3.59 × 10−2(1.18 × 10−3) −3.24 × 10−2(8.76 × 10−4) 8.30 × 10−3(5.41 × 10−4) −2.96 × 10−2(1.50 × 10−3)

Param. Model #
5 6 7 8

Mq −4.88 × 10−4(1.96 × 10−6) −7.55 × 10−4(4.06 × 10−6) −7.80 × 10−4(7.29 × 10−6) −6.99 × 10−4(4.59 × 10−6)

Mu −1.69 × 10−3(1.30 × 10−5) −2.88 × 10−3(1.19 × 10−5) −1.89 × 10−3(2.06 × 10−5) −1.82 × 10−3(1.56 × 10−5)

Mw −1.25 × 10−3(2.84 × 10−5) −2.14 × 10−4(1.43 × 10−5) −2.35 × 10−3(3.72 × 10−5) −2.03 × 10−3(2.35 × 10−5)

Mδe 1.85 × 10−3(1.01 × 10−5) 2.56 × 10−3(1.19 × 10−5) 2.68 × 10−3(2.45 × 10−5) 2.13 × 10−3(1.52 × 10−5)

Xq 2.10 × 10−2(2.65 × 10−4) 2.02 × 10−2(1.24 × 10−4) 2.23 × 10−2(1.99 × 10−4) 1.47 × 10−2(1.43 × 10−4)

Xu −1.14 × 10−1(8.32 × 10−4) −1.26 × 10−1(5.07 × 10−4) −1.23 × 10−1(6.71 × 10−4) −1.50 × 10−1(5.64 × 10−4)

Xδe −5.78 × 10−2(8.49 × 10−4) −4.24 × 10−2(4.80 × 10−4) −6.02 × 10−2(8.05 × 10−4) −5.20 × 10−2(5.64 × 10−4)

Zq −9.73 × 10−4(1.33 × 10−4) −4.66 × 10−3(1.08 × 10−4) −1.14 × 10−2(1.23 × 10−4) −5.76 × 10−3(9.45 × 10−5)

Zw 1.52 × 10−3(6.89 × 10−4) 2.44 × 10−3(3.44 × 10−4) −2.73 × 10−2(4.42 × 10−4) −1.40 × 10−2(4.25 × 10−4)

Param. Model #
9 10 11 12

Mq −6.29 × 10−4(3.25 × 10−5) −3.08 × 10−4(2.26 × 10−6) −5.12 × 10−4(3.83 × 10−6) −4.90 × 10−4(3.15 × 10−6)

Mu −1.11 × 10−3(1.70 × 10−4) −1.69 × 10−3(1.53 × 10−5) −1.03 × 10−3(2.53 × 10−5) −1.31 × 10−3(1.47 × 10−5)

Mw −6.58 × 10−3(1.94 × 10−4) −4.98 × 10−4(2.41 × 10−5) −2.41 × 10−3(4.08 × 10−5) −1.58 × 10−3(1.97 × 10−5)

Mδe 1.60 × 10−3(7.54 × 10−5) 1.16 × 10−3(9.48 × 10−6) 1.66 × 10−3(1.37 × 10−5) 1.81 × 10−3(1.30 × 10−5)

Xq 6.38 × 10−3(6.36 × 10−4) 1.66 × 10−2(1.49 × 10−4) 1.92 × 10−2(1.20 × 10−4) 1.58 × 10−2(1.20 × 10−4)

Xu −9.56 × 10−2(2.03 × 10−3) −1.53 × 10−1(6.17 × 10−4) −1.51 × 10−1(4.77 × 10−4) −1.40 × 10−1(4.94 × 10−4)

Xδe −2.89 × 10−2(1.97 × 10−3) −2.27 × 10−2(5.82 × 10−4) −3.46 × 10−2(5.37 × 10−4) −2.51 × 10−2(6.27 × 10−4)

Zq −1.83 × 10−2(1.32 × 10−3) −3.19 × 10−3(3.05 × 10−4) −2.88 × 10−3(2.09 × 10−4) 3.71 × 10−4(2.11 × 10−4)

Zw −7.63 × 10−2(3.17 × 10−3) −2.33 × 10−2(1.08 × 10−3) −7.81 × 10−3(1.00 × 10−3) 1.41 × 10−2(6.48 × 10−4)

Param. Model #
13 14 15 16

Mq −5.36 × 10−4(2.75 × 10−6) −6.10 × 10−4(2.79 × 10−6) −7.96 × 10−4(5.43 × 10−6) −5.88 × 10−4(1.06 × 10−5)

Mu −2.03 × 10−3(1.22 × 10−5) −2.22 × 10−3(1.54 × 10−5) −1.11 × 10−3(1.92 × 10−5) −1.85 × 10−3(5.17 × 10−5)

Mw −8.08 × 10−4(1.69 × 10−5) −1.54 × 10−3(2.01 × 10−5) −2.77 × 10−3(2.80 × 10−5) −2.75 × 10−3(1.02 × 10−4)

Mδe 2.13 × 10−3(1.38 × 10−5) 2.06 × 10−3(1.40 × 10−5) 2.51 × 10−3(2.01 × 10−5) 1.57 × 10−3(1.93 × 10−5)

Xq 1.83 × 10−2(9.88 × 10−5) 2.51 × 10−2(2.30 × 10−4) 2.52 × 10−2(3.55 × 10−4) 2.13 × 10−2(1.34 × 10−4)

Xu −1.47 × 10−1(4.44 × 10−4) −1.36 × 10−1(1.00 × 10−3) −1.33 × 10−1(1.45 × 10−3) −1.51 × 10−1(6.02 × 10−4)

Xδe −4.09 × 10−2(4.53 × 10−4) −6.99 × 10−2(1.08 × 10−3) −7.31 × 10−2(1.61 × 10−3) −3.88 × 10−2(4.90 × 10−4)

Zq 5.17 × 10−4(2.30 × 10−4) −1.96 × 10−3(8.62 × 10−5) −3.61 × 10−3(1.21 × 10−4) −1.64 × 10−2(5.88 × 10−4)

Zw 4.41 × 10−3(8.45 × 10−4) 1.22 × 10−2(4.72 × 10−4) −5.91 × 10−3(5.02 × 10−4) −9.14 × 10−2(3.32 × 10−3)

Param. Model #
17 18 19 20

Mq −4.94 × 10−4(3.00 × 10−6) −4.95 × 10−4(3.61 × 10−6) −7.24 × 10−4(5.31 × 10−6) −6.12 × 10−4(4.52 × 10−6)

Mu −1.48 × 10−3(9.26 × 10−6) −1.43 × 10−3(1.82 × 10−5) −1.63 × 10−3(3.61 × 10−5) −1.90 × 10−3(2.38 × 10−5)

Mw −7.73 × 10−4(9.74 × 10−6) −1.64 × 10−3(2.05 × 10−5) −1.58 × 10−3(3.77 × 10−5) −1.41 × 10−3(1.68 × 10−5)

Mδe 1.75 × 10−3(1.38 × 10−5) 2.11 × 10−3(1.68 × 10−5) 2.43 × 10−3(1.65 × 10−5) 2.17 × 10−3(1.66 × 10−5)

Xq 2.08 × 10−2(1.45 × 10−4) 2.08 × 10−2(1.14 × 10−4) 1.89 × 10−2(2.98 × 10−4) 2.38 × 10−2(2.30 × 10−4)

Xu −1.62 × 10−1(6.29 × 10−4) −1.61 × 10−1(5.64 × 10−4) −1.60 × 10−1(1.12 × 10−3) −1.80 × 10−1(1.00 × 10−3)

Xδe −5.01 × 10−2(6.24 × 10−4) −4.09 × 10−2(5.86 × 10−4) −1.94 × 10−2(1.23 × 10−3) −4.99 × 10−2(7.12 × 10−4)

Zq 9.00 × 10−4(1.36 × 10−4) −9.19 × 10−4(1.97 × 10−4) −6.76 × 10−3(3.04 × 10−4) −2.31 × 10−3(1.80 × 10−4)

Zw 2.15 × 10−2(4.60 × 10−4) −5.21 × 10−3(6.70 × 10−4) −2.72 × 10−2(8.39 × 10−4) −1.41 × 10−2(3.53 × 10−4)

Param. Model #
21 22 23 24

Mq −5.55 × 10−4(6.26 × 10−6) −7.44 × 10−4(3.31 × 10−6) −5.09 × 10−4(5.31 × 10−6) −8.52 × 10−4(5.53 × 10−6)

Mu −1.87 × 10−3(3.37 × 10−5) −1.40 × 10−3(1.15 × 10−5) −2.63 × 10−3(2.39 × 10−5) −6.71 × 10−4(2.55 × 10−5)

Mw −1.27 × 10−3(2.27 × 10−5) −1.49 × 10−3(9.91 × 10−6) 9.76 × 10−5(1.19 × 10−5) −2.60 × 10−3(2.51 × 10−5)

Mδe 1.27 × 10−3(1.76 × 10−5) 2.78 × 10−3(1.38 × 10−5) 2.54 × 10−3(2.00 × 10−5) 2.82 × 10−3(1.62 × 10−5)

Xq 2.98 × 10−2(2.51 × 10−4) 2.00 × 10−2(1.79 × 10−4) 9.98 × 10−3(3.03 × 10−4) 2.93 × 10−2(2.00 × 10−4)

Xu −1.92 × 10−1(1.36 × 10−3) −1.69 × 10−1(8.51 × 10−4) −1.65 × 10−1(1.73 × 10−3) −1.60 × 10−1(8.24 × 10−4)

Xδe −5.69 × 10−2(7.41 × 10−4) −4.24 × 10−2(6.20 × 10−4) 6.49 × 10−2(1.02 × 10−3) −6.33 × 10−2(8.17 × 10−4)

Zq −2.58 × 10−3(2.68 × 10−4) −3.56 × 10−3(1.06 × 10−4) 3.14 × 10−3(1.25 × 10−4) −8.00 × 10−3(1.74 × 10−4)

Zw −2.74 × 10−2(7.57 × 10−4) −2.29 × 10−2(4.13 × 10−4) 1.23 × 10−2(4.60 × 10−4) −3.74 × 10−2(4.00 × 10−4)

Param. Model #
25 26 27 28

Mq −5.87 × 10−4(3.91 × 10−6) −7.12 × 10−4(4.32 × 10−6) −7.75 × 10−4(3.21 × 10−6) −7.77 × 10−4(6.19 × 10−6)

Mu −1.34 × 10−3(2.00 × 10−5) −1.81 × 10−3(1.50 × 10−5) −8.26 × 10−4(1.62 × 10−5) −1.20 × 10−3(4.54 × 10−5)

Mw −1.25 × 10−3(1.67 × 10−5) −1.30 × 10−3(1.44 × 10−5) −1.93 × 10−3(1.26 × 10−5) −2.28 × 10−3(3.11 × 10−5)

Mδe 2.32 × 10−3(1.65 × 10−5) 2.30 × 10−3(1.51 × 10−5) 2.72 × 10−3(1.15 × 10−5) 2.78 × 10−3(2.06 × 10−5)
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Xq 2.25 × 10−2(3.19 × 10−4) 2.59 × 10−2(1.49 × 10−4) 2.29 × 10−2(2.04 × 10−4) 2.45 × 10−2(4.76 × 10−4)

Xu −1.74 × 10−1(1.49 × 10−3) −1.73 × 10−1(6.89 × 10−4) −1.90 × 10−1(9.48 × 10−4) −2.17 × 10−1(2.58 × 10−3)

Xδe −4.35 × 10−2(1.67 × 10−3) −5.19 × 10−2(6.11 × 10−4) −5.57 × 10−2(9.12 × 10−4) −4.40 × 10−2(1.51 × 10−3)

Zq −4.43 × 10−3(1.54 × 10−4) −5.25 × 10−3(1.10 × 10−4) −1.89 × 10−3(1.12 × 10−4) −7.68 × 10−3(1.86 × 10−4)

Zw −1.96 × 10−2(5.51 × 10−4) −2.39 × 10−2(3.98 × 10−4) −1.57 × 10−2(2.92 × 10−4) −3.58 × 10−2(5.41 × 10−4)

Param. Model #
29 30 31 32

Mq −8.14 × 10−4(5.41 × 10−6) −5.80 × 10−4(2.49 × 10−6) −7.96 × 10−4(3.74 × 10−6) −4.94 × 10−4(2.63 × 10−6)

Mu −1.21 × 10−3(1.39 × 10−5) −2.19 × 10−3(8.94 × 10−6) −2.83 × 10−4(1.74 × 10−5) −1.14 × 10−3(1.22 × 10−5)

Mw −1.72 × 10−3(1.44 × 10−5) −5.13 × 10−4(5.21 × 10−6) −2.02 × 10−3(1.34 × 10−5) −9.03 × 10−4(9.02 × 10−6)

Mδe 3.07 × 10−3(2.15 × 10−5) 2.29 × 10−3(9.28 × 10−6) 2.70 × 10−3(1.34 × 10−5) 2.03 × 10−3(1.28 × 10−5)

Xq 2.81 × 10−2(2.27 × 10−4) 2.10 × 10−2(1.65 × 10−4) 1.98 × 10−2(4.30 × 10−4) 2.44 × 10−2(1.72 × 10−4)

Xu −1.67 × 10−1(1.09 × 10−3) −1.84 × 10−1(9.56 × 10−4) −1.62 × 10−1(1.82 × 10−3) −1.95 × 10−1(8.51 × 10−4)

Xδe −5.73 × 10−2(8.77 × 10−4) −4.55 × 10−2(4.00 × 10−4) −4.89 × 10−2(1.15 × 10−3) −4.85 × 10−2(8.56 × 10−4)

Zq −3.87 × 10−3(1.42 × 10−4) −3.19 × 10−3(7.68 × 10−5) −4.80 × 10−4(1.38 × 10−4) −1.65 × 10−4(1.41 × 10−4)

Zw −2.20 × 10−2(3.19 × 10−4) −1.55 × 10−2(2.98 × 10−4) −1.90 × 10−2(3.22 × 10−4) −1.30 × 10−2(4.70 × 10−4)

Param. Model #
33 34 35 36

Mq −6.82 × 10−4(2.41 × 10−6) −5.43 × 10−4(2.80 × 10−6) −6.35 × 10−4(3.49 × 10−6) −7.61 × 10−4(5.16 × 10−6)

Mu −1.17 × 10−3(9.55 × 10−6) −8.18 × 10−4(1.89 × 10−5) −1.56 × 10−3(1.51 × 10−5) −3.54 × 10−4(2.95 × 10−5)

Mw −1.21 × 10−3(7.38 × 10−6) −9.63 × 10−4(8.24 × 10−6) −7.86 × 10−4(8.60 × 10−6) −2.27 × 10−3(2.54 × 10−5)

Mδe 2.58 × 10−3(1.01 × 10−5) 2.09 × 10−3(1.39 × 10−5) 2.84 × 10−3(1.43 × 10−5) 2.65 × 10−3(1.92 × 10−5)

Xq 2.11 × 10−2(1.82 × 10−4) 2.94 × 10−2(2.22 × 10−4) 3.68 × 10−2(2.00 × 10−4) 2.99 × 10−2(2.69 × 10−4)

Xu −1.82 × 10−1(8.21 × 10−4) −2.30 × 10−1(1.44 × 10−3) −2.14 × 10−1(1.03 × 10−3) −1.49 × 10−1(1.14 × 10−3)

Xδe −3.56 × 10−2(5.62 × 10−4) −8.15 × 10−2(7.64 × 10−4) −1.02 × 10−1(9.06 × 10−4) −7.00 × 10−2(1.27 × 10−3)

Zq −2.28 × 10−3(9.14 × 10−5) −5.89 × 10−4(2.48 × 10−4) −5.07 × 10−3(1.28 × 10−4) −4.58 × 10−3(2.25 × 10−4)

Zw −1.94 × 10−2(2.81 × 10−4) −1.01 × 10−2(4.60 × 10−4) −2.86 × 10−2(3.58 × 10−4) −2.73 × 10−2(6.46 × 10−4)

Param. Model #
37 38 39 40

Mq −9.07 × 10−4(6.73 × 10−6) −7.74 × 10−4(5.00 × 10−6) −6.31 × 10−4(3.68 × 10−6) −6.23 × 10−4(4.23 × 10−6)

Mu −4.02 × 10−4(3.98 × 10−5) −3.63 × 10−4(2.01 × 10−5) −1.78 × 10−3(2.44 × 10−5) −1.07 × 10−3(2.21 × 10−5)

Mw −1.94 × 10−3(1.96 × 10−5) −1.39 × 10−3(1.18 × 10−5) −7.34 × 10−4(6.96 × 10−6) −1.25 × 10−3(1.27 × 10−5)

Mδe 3.15 × 10−3(1.63 × 10−5) 2.73 × 10−3(1.80 × 10−5) 2.28 × 10−3(1.55 × 10−5) 2.22 × 10−3(1.47 × 10−5)

Xq 2.66 × 10−2(3.28 × 10−4) 3.33 × 10−2(4.12 × 10−4) 3.99 × 10−2(2.81 × 10−4) 3.01 × 10−2(1.59 × 10−4)

Xu −1.83 × 10−1(1.21 × 10−3) −2.10 × 10−1(1.99 × 10−3) −2.71 × 10−1(1.76 × 10−3) −2.43 × 10−1(9.73 × 10−4)

Xδe −3.80 × 10−2(8.74 × 10−4) −7.02 × 10−2(1.80 × 10−3) −1.04 × 10−1(1.02 × 10−3) −7.69 × 10−2(6.79 × 10−4)

Zq −1.06 × 10−2(3.90 × 10−4) 1.24 × 10−3(2.15 × 10−4) 1.39 × 10−3(2.78 × 10−4) −7.85 × 10−3(2.27 × 10−4)

Zw −4.13 × 10−2(4.40 × 10−4) −1.46 × 10−2(3.21 × 10−4) −2.08 × 10−2(3.78 × 10−4) −3.17 × 10−2(3.58 × 10−4)

Param. Model #
41 42 43 44

Mq −4.97 × 10−4(3.56 × 10−6) −7.77 × 10−4(3.92 × 10−6) −6.98 × 10−4(4.29 × 10−6) −7.46 × 10−4(6.06 × 10−6)

Mu −1.09 × 10−3(2.61 × 10−5) −5.43 × 10−4(1.82 × 10−5) −6.29 × 10−4(1.82 × 10−5) −9.33 × 10−5(3.38 × 10−5)

Mw −7.71 × 10−4(1.33 × 10−5) −1.21 × 10−3(8.84 × 10−6) −1.44 × 10−3(1.38 × 10−5) −1.40 × 10−3(2.06 × 10−5)

Mδe 2.17 × 10−3(1.72 × 10−5) 3.09 × 10−3(1.51 × 10−5) 2.83 × 10−3(1.78 × 10−5) 3.07 × 10−3(2.38 × 10−5)

Xq 2.73 × 10−2(1.40 × 10−4) 3.27 × 10−2(1.53 × 10−4) 2.82 × 10−2(3.27 × 10−4) 3.27 × 10−2(2.12 × 10−4)

Xu −2.21 × 10−1(7.73 × 10−4) −2.30 × 10−1(7.34 × 10−4) −1.70 × 10−1(1.51 × 10−3) −1.98 × 10−1(9.04 × 10−4)

Xδe −6.63 × 10−2(6.78 × 10−4) −6.96 × 10−2(7.08 × 10−4) −5.35 × 10−2(9.03 × 10−4) −6.48 × 10−2(9.02 × 10−4)

Zq −9.46 × 10−4(3.67 × 10−4) −1.33 × 10−3(1.76 × 10−4) −9.55 × 10−3(2.01 × 10−4) −7.60 × 10−3(3.54 × 10−4)

Zw −1.58 × 10−2(8.34 × 10−4) −2.02 × 10−2(2.36 × 10−4) −3.18 × 10−2(3.92 × 10−4) −3.44 × 10−2(6.95 × 10−4)

Param. Model #
45 46

Mq −6.25 × 10−4(3.64 × 10−6) −6.70 × 10−4(3.04 × 10−6)

Mu −1.67 × 10−3(3.04 × 10−5) −2.22 × 10−3(1.71 × 10−5)

Mw −5.70 × 10−4(6.73 × 10−6) −5.81 × 10−4(8.09 × 10−6)

Mδe 2.50 × 10−3(1.94 × 10−5) 2.76 × 10−3(1.18 × 10−5)

Xq 3.42 × 10−2(3.00 × 10−4) 2.49 × 10−2(2.90 × 10−4)

Xu −2.75 × 10−1(2.20 × 10−3) −2.19 × 10−1(1.89 × 10−3)

Xδe −1.10 × 10−1(1.40 × 10−3) −5.26 × 10−2(1.22 × 10−3)

Zq 3.31 × 10−4(3.49 × 10−4) −6.06 × 10−3(1.00 × 10−4)

Zw −1.89 × 10−2(5.74 × 10−4) −2.99 × 10−2(2.50 × 10−4)

45 of 45

American Institute of Aeronautics and Astronautics


	Introduction
	Methods and experimental data
	Test vehicle
	Flight data acquisition
	Flight test data

	Flight envelope analysis and local modelling
	Local model estimation
	Data and local model analysis
	Main conclusions for global modelling
	Simplified local model

	Global modelling
	LPV approach
	Scheduling formulation
	Scheduling function selection and global model parameter estimation
	Average model for comparison

	LPV modelling results
	Preliminaries
	Scheduling results
	System dynamics
	Output match

	Conclusions
	References

