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Abstract

Indoor localization is an active research area since traditional localization methods, such
as global navigation satellite systems (GNSS), are ineffective in indoor environments. One
promising solution is to make use of anomalies in the magnetic field caused by ferromag-
netic materials within buildings. By constructing a magnetic field map in an indoor location,
the spatial variability in the magnetic field can be utilized to aid in inferring the location.
Gaussian process regression (GPR) is frequently used to model the magnetic field and provide
magnetic field predictions as well as the corresponding predictive uncertainty. In addition to
mapping an entire building or room, the existing literature has also been studying mapping
in close proximity to the sensor, as this provides valuable information for odometry purposes.
Magnetic field measurements are obtained using sensors known as magnetometers. Magne-
tometer arrays, which are typically two- or three-dimensional fixed structures that contain
multiple magnetometers, are used to construct these local maps as they are capable of mea-
suring the magnetic field at multiple locations simultaneously. However, the time complexity
of GPR scales cubically with the number of data points. When these magnetometer arrays
are used, the size of the data increases rapidly. As a result, GPR can quickly become com-
putationally intractable in combination with arrays. In this thesis, building on prior work
that demonstrated the use of spatial derivatives of arrays for odometry purposes, we instead
analyze how effective the information on the array can be approximated using the spatial
derivative of the magnetic field to alleviate some of the computational burden. We analyze
this by examining the performance of using the spatial derivative computed from different
array configurations in terms of the number of magnetometers, their spacing, and noise levels,
and comparing it with using all magnetometer measurements on the array. Through simula-
tions, we show that the spacing is a key factor in determining the spatial derivative, and that
more magnetometers and less noise result in better estimates. It is shown that the spatial
derivative is not an effective approximation to the full information on the array. At least for
the arrays considered in this thesis, it did not reduce the computational burden sufficiently to
justify the resulting loss in map quality. In addition to examining which array configurations
perform best with spatial derivatives, we also evaluate which configurations yield accurate
maps for existing odometry methods that rely on arrays. We show that the array configuration
plays an important role and requires deliberate selection for optimal performance.
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Chapter 1

Introduction

Satellite navigation systems, such as global navigation satellite systems (GNSS) [22], are
widely used and valued for their affordability and ease of use in outdoor localization. How-
ever, they struggle to provide accurate and reliable locations in indoor and underground
environments [14]. GPS signals are significantly attenuated as they pass through obstacles,
rendering them ineffective in such environments. Indoor localization offers considerable ben-
efits for a large number of applications, for example, navigation for rescue/emergency teams
and navigation in large buildings such as airports and shopping centers [24]. Numerous indoor
localization techniques have been studied, including infrared-based methods [1], Bluetooth-
based methods [25], radio frequency identification (RFID) [36], and optical-based methods
[41]. However, these methods typically require additional infrastructure in order to function.
Besides the deployment costs, most of these techniques are also dependent on not having too
much interference between the sender and receiver, i.e., to some extent they should have a
clear line of sight. Examples that do not require expensive extra equipment are Wi-Fi [20]
and mobile camera-based techniques [17]. Wi-Fi is already available in virtually all buildings
and can be measured using mobile devices, such as a mobile phone. However, the accuracy
and reliability of the Wi-Fi-based method can deteriorate if there is no clear line of sight
between the sender and receiver. Furthermore, the quality and temporal variability of the
Wi-Fi also influences the accuracy of the method. Camera-based methods only require a
mobile camera, such as a mobile phone. However, it has the downside that it forces the
user to ensure that their phone is recording their surroundings. Despite the variety of indoor
localization techniques available, they still suffer from limitations related to additional infras-
tructure or line-of-sight requirements. Consequently, indoor localization remains an area of
active research [14, 28].

An alternative indoor localization approach that makes use anomalies in the magnetic field
has been explored in recent years [15, 32]. These anomalies give rise to spatial variations
in the magnetic field due to the presence of ferromagnetic materials in building structures
and furniture [32]. These variations provide the magnetic field with information about the
location. By constructing a global map, e.g. of a building, that links locations to the magnetic
field at any desired position, predictions of the magnetic field can be made and compared to
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2 Introduction

the measurements to obtain location-specific information. It is called a global map because
it maps the whole area of interest.

A major benefit of the magnetic field-based localization approach is that, unlike many of the
previously mentioned methods, no expensive additional equipment is required. The magnetic
field can be measured by magnetometers which are small, affordable sensors already integrated
into most smartphones nowadays. However, creating a magnetic field map does require access
to accurate locations where the corresponding measurements were taken, for which expensive
infrastructure would be necessary, undermining the method’s advantage. To address this,
simultaneous localization and mapping (SLAM) can be employed, allowing the map to be
constructed dynamically while navigating the area drift-free, where the location and map are
jointly estimated [19, 37]. Neither does this approach suffer from line-of-sight requirements,
as the magnetic field penetrates obstacles such as walls and furniture.

The magnetic field can be utilized not only for obtaining absolute location estimates through
global magnetic field maps, but also for obtaining changes in location and orientation, called
magnetic field odometry. From here on, position and orientation are together called pose.
Unlike global mapping, magnetic field odometry relies on local maps instead of global maps.
In order to obtain these local maps, magnetometer arrays are used. A magnetometer array is a
fixed structure, typically a two- or three-dimensional, composed of multiple magnetometers,
which allows for measuring the magnetic field at multiple locations simultaneously. This
enables the creation of local maps that specify how the magnetic field changes locally. This
local information on how the magnetic field changes can be utilized to obtain estimates of the
pose changes. This process is very similar to visual odometry systems, as highlighted in [30].
Similarly to how a camera can capture an image of the surrounding environment, an array
of magnetometers produces an image-like measurement of the magnetic field. By comparing
two consecutive ’images’, pose changes can be estimated based on the observed shift.

To create a magnetic field map, whether for global or local maps, and be able to make magnetic
field predictions at different locations, an interpolation method has to be used. Such an
interpolation method enables the estimation of the magnetic field at locations where no direct
measurements were taken. The interpolation method provides a continuous representation
of the magnetic field based on finite measurements. Two different techniques are commonly
used for this purpose, both capable of incorporating physical knowledge of how the magnetic
field evolves. Typically either Gaussian process regression (GPR) [19, 32, 35, 37] is used or
a polynomial model [29, 30]. Both methods can account for the curl- and divergence-free
properties of the magnetic field, as formulated by Maxwell in 1865 [23].

In this thesis, the magnetic field is modeled using Gaussian processes (GPs), a supervised
machine learning method [27]. GPs can capture highly complex and nonlinear functions, even
with limited data, and have been shown to produce accurate maps in [19, 32, 35, 37]. As GPs
provide a probabilistic framework for their regression tasks, they provide a full probability
distribution of their predictions. Hence, the actual predicted value is obtained as well as the
associated probabilistic uncertainty. Since localization methods combine data from multiple
sensors using probabilistic filtering techniques such as extended Kalman filters (EKFs) and
particles filters, the predictive uncertainty allows one to weight the influence of the mag-
netic field prediction accordingly. However, GPs have the downside that the computational
complexity scales cubically with the number of data points.

One particular method that uses these arrays for magnetic field odometry, which will be
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3

referred to as the derivative-based odometry method, was first introduced by Vissière et
al. in 2007 [39]. By using the spatial derivative of the magnetic field, derived from the
array of magnetometers, the velocity can be estimated. When combined with accelerometers
and gyroscopes, this approach forms a magnetic-field-aided inertial navigation system (INS),
significantly reducing the error growth rate compared to an INS without magnetic odometry
[2, 3, 7, 42]. A more recent method, inspired by this approach that also relies on the spatial
information provided by the array, compares two consecutive measurements from the array
to infer the change in pose [16, 29, 30]. However, unlike the derivative-based method, this
method utilizes all spatial information from the array rather than reducing it to the spatial
derivative. First, a local magnetic field model is learned from all measurements on the array
at a certain time instant, then at the next time instant the new measurements are compared
to the model created at the previous time step to infer the change in pose. Unlike a global
map, this local map only models the magnetic field based on the measurements of the array
at a single time instant. From now on, this approach will be referred to as the model-
based odometry approach. These two magnetic odometry methods illustrate that the spatial
information captured by the array provides useful information for odometry and localization
purposes in general.

A promising class of techniques that is currently being studied, involves incorporating these
magnetic odometry methods into SLAM. Note that the focus of this thesis is not on SLAM,
but the results are useful for it. SLAM relies not only on location estimates from the map but
also heavily on odometry data, typically from accelerometers and gyroscopes, to track changes
in pose. For this technique to be effective, so-called loop closures are essential, which involve
revisiting previously mapped regions to correct pose estimates that have drifted away over
time. However, for the system to work properly, accurate odometry information is needed to
ensure reliable loop closures and increase the path length between these closures [16]. Includ-
ing magnetic odometry methods into SLAM has the potential to improve odometry precision,
leading to more reliable loop closures and improved overall performance. A magnetic-field-
aided INS based on the model-based odometry method was tested using real-world data in
[16] and has the potential to be implemented into SLAM. An alternative technique currently
under active investigation does not explicitly implement a magnetic odometry method in
SLAM, but uses all magnetometers on the array to create the global map. The odometric
information could potentially be inherently captured this way in the global map, eliminating
the need for a separate odometry method.

In summary, there are two methods that make use of magnetic-field maps for indoor local-
ization. The first is global localization, which relies on a global map and provides location
estimates in the area of interest. The second is magnetic odometry, which uses a local map
to estimate the pose change. In contrast to the global localization, the magnetic odome-
try methods must use magnetometer arrays to be useful. Although the global localization
method does not necessarily need an array, it would likely benefit from one when combined
with SLAM because of its odometric properties. Since both of these two methods can make
use of arrays to construct maps, this thesis analyzes how arrays can be used effectively and
efficiently to create magnetic field maps. Specific attention will be paid to analyzing how
accurately information from the array can be approximated using a single measurement in
combination with the spatial derivative. Using the spatial derivative reduces the number
of data points compared to using all magnetometers on the array. Since GPs scale cubi-
cally with the number of data points, the algorithm runs into computational problems very
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4 Introduction

quickly. Reducing the number of data points by using the spatial derivative could alleviate
some of the computational burden. The idea of approximating the array measurements with
the spatial derivative arises from the derivative-based method, as they already approximate
the array measurement with the spatial derivative. Approximating the information on the
array is particularly relevant when the array is used to create a global map, as the number of
data points increases quickly with the size of the array. This is, for instance, the case where
the array is incorporated into SLAM to create global maps. The following research question
is considered in this thesis:

How can magnetic field measurements from a magnetometer array be utilized ef-
fectively and efficiently to create magnetic field maps with Gaussian process re-
gression?

. To address this question, three sub-questions will be examined:

• How does the array configuration influence the accuracy with which the measurements
of the magnetometer array can be approximated using a single measurement combined
with the spatial derivative?

• How do different methods of computing the spatial derivative compare in terms of
accuracy and computational efficiency?

• How does using a single measurement combined with the spatial derivative affect the
accuracy and computational efficiency of magnetic field mapping compared to using all
measurements on the array?

- What is the outcome of this comparison for global maps?

- What is the outcome of this comparison for local maps?

The first sub-question aims to find the reliability with which the magnetometer array mea-
surements can be approximated using the spatial derivative from a two-dimensional array
for different array configuration. Several variables will be analyzed: the number of magne-
tometers on the array, the spacing between the magnetometers and the noise level present
in the measurements. The goal is to find how these variables interact to produce accurate
derivatives and to identify the effect of the individual variables. This is particularly directly
useful for the derivative-based odometry method, as it directly computes and uses the deriva-
tive. Hence, using an array that can accurately and reliably compute the spatial derivative
is crucial. However, having access to the variance of the spatial derivative estimate is also
essential to use them as measurements to GPs. This allows the derivatives to be used for
mapping purposes as well. The second sub-question will investigate three distinct techniques
for computing the spatial derivative. Their properties will be compared across the differ-
ent array configurations. Both the accuracy of the methods as well as the time required to
compute the derivative will be considered. The goal of the final sub-question is to examine
whether there is a difference in map quality between the local odometry map and the global
map for either using the spatial derivative or all measurements. The aim of this question is to
examine whether the spatial derivative is relatively more suitable for odometry applications
or for global mappings.
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This thesis consists of four additional chapters. Chapter 2 provides the necessary background
on GPR, magnetic field mapping and modeling, and magnetometer arrays. It establishes
the foundation for the subsequent research. Chapter 3 covers the methods and experimental
setups used in this research. All results are based on simulations and no real-world experi-
ments are conducted. The chapter begins by introducing the three methods for computing
the spatial derivative from the array. Subsequently, it explains the approach for including
spatial derivative measurements into GPR for magnetic field mapping. Finally, the simulation
setups for the different experiments are described. This includes the setup for evaluating the
variance of the spatial derivative estimates for the different array configurations, as well as
the setups for assessing the map quality in terms of accuracy and computational efficiency.
The latter will be done for both the global and local odometry maps. In Chapter 4, the
results of the experiments that are needed to answer the research questions are presented
and illustrated with figures. Among other things, it shows which array configurations provide
the most accurate spatial derivative and how well the spatial derivative performs at creating
local and global maps. Finally, Chapter 5 discusses the results of Chapter 4 and draws the
necessary conclusions to answer the research questions. In addition, suggestions are also given
for future work.
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Chapter 2

Background

This chapter provides the background information essential to understand the methods and
results discussed in this thesis. Furthermore, the two odometry methods and simultaneous
localization and mapping (SLAM) are explained in slightly more detail to highlight the po-
tential contributions of this thesis for the different applications. The chapter begins with a
general introduction to Gaussian process regression (GPR) in Section 2-1. Section 2-2 gives
a short introduction to magnetic fields and how they can be measured. The mapping and
modeling of the magnetic field using GPR is subsequently presented in Section 2-3. Together,
these first three sections make clear how magnetic field maps can be constructed using GPR.
Subsequently, we shift the focus towards using magnetometer arrays and the spatial deriva-
tive. Section 2-4 shows the properties of the spatial derivative inherited by the curl- and
divergence-free properties. Finally, Section 2-5 introduces magnetometer arrays and mag-
netic odometry methods and examines how the results of this thesis could contribute to those
odometry methods.

2-1 Gaussian process regression

GPR is a supervised machine learning method [27]. Machine learning methods are used to
try to find a latent function that describes unknown behavior or phenomena. To achieve this,
data sets with input-output pairs are required as examples. In contrast to many machine
learning methods that start by assuming that the underlying function can be captured by
a to-be-determined model with a certain amount of parameters, Gaussian processes (GPs)
instead are non-parametric. An advantage of GPs is that they allow incorporating prior
knowledge about the form of the latent function, such as smoothness, to constrain possible
realizations. Even with small amounts of data, highly complex and nonlinear functions can
be captured rather accurately with GPs. As GPs provide a probabilistic framework for their
regression tasks, they provide a full probability distribution of their predictions. Hence, the
actual predicted value is obtained as well as the associated probabilistic uncertainty. However,
GPs have the downside that the computational complexity increases rapidly as the data set
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8 Background

grows. The time complexity scales cubically with respect to the number of data points. This
poses challenges in scalability. The main goal of this thesis is to determine the extent to
which the spatial derivative can approximate the full information from the magnetometer
array, thereby reducing the computational cost.

GPs are stochastic processes for which the input space is divided into a range of discrete input
values. Each input point in this range is considered a separate random variable. This implies
that a Gaussian process is completely defined by its mean and its covariance function. The
mean and covariance functions are defined as

m(x) = E[f(x)]
k(x, x′) = E

[(
f(x) − m(x)

)(
f(x′) − m(x′)

)]
,

(2-1)

where x is the input and f(x) the output of the latent function. and a Gaussian process as

f(x) ∼ GP
(
m(x), k(x, x′)

)
. (2-2)

The same notation as used in Rasmussen’s book on Gaussian processes [27] is used here.

The covariance function of a multivariate Gaussian distribution specifies the correlation be-
tween the input random variables. A high covariance between two random variables means
that they are strongly correlated, and as a result, the two corresponding outputs will have
very similar values. In the case of GPs, the covariance function is designed by the engineer to
incorporate prior knowledge about the system and is called the kernel function. The kernel
function is used to measure the similarity between inputs. It should be able to evaluate any
possible input pair, ensuring that GPs can give distributions for all input locations. For this
reason, GPs can be interpreted to produce distributions over functions. The number of input
points can be made arbitrarily large and, as the limit goes to infinity, a function is obtained.

2-1-1 Prior Distribution

The kernel function has to be chosen manually and contains prior knowledge of how the inputs
are correlated with each other. This puts constraints on the possible function realizations that
one can obtain from a GP. The kernel must therefore be chosen with care. One typical choice
for a kernel is the squared exponential (SE) kernel which is given by

k(x, x′) = σ2
f exp

(
− ||x − x′||2

2l2

)
. (2-3)

This kernel has a high correlation between points close to each other which decreases expo-
nentially as the distance increases. By considering a certain number of test input points, X∗,
and a kernel matrix, K(x, x′), the possible output points can be inferred from the multivariate
normal distribution. Note that no observations are included yet and therefore the distribution
is called the prior distribution. The possible values, f∗ are given by the normal distribution

f∗ ∼ N
(
0, K(X∗, X∗)

)
. (2-4)

Note that the mean of this distribution is set to zero. It is common to set it to zero, but not
necessary. It is possible to use a fixed function or even a fixed basis function as the mean.
For more details, see Section 2.7 of [27].

J.M. Beurskens Master of Science Thesis



2-1 Gaussian process regression 9

The plot on the left of Figure 2-1 shows a typical example of a prior distribution with an
SE kernel. The kernel function should be chosen so that potential samples from the prior
distribution represent what the function outputs are expected to look like.
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Figure 2-1: Left: A plot showing four samples drawn from a typical prior distribution with a SE
kernel. The shaded region represents the confidence interval with twice the standard deviation.
Right: A plot showing the mean of the posterior distribution in dark blue after three data points
have been observed. The shaded region represents the confidence interval with twice the standard
deviation. The underlying function is displayed by the red line.

2-1-2 Posterior Distribution

The goal of a Gaussian process is to learn the underlying probability distribution that de-
scribes the data. If one has training data consisting of training inputs, X, and training
outputs, f , the joint distribution of the training and test outputs is given by[

f
f∗

]
∼ N

(
0,

[
K(X, X) K(X, X∗)
K(X∗, X) K(X∗, X∗)

])
. (2-5)

To arrive at the distribution of the test output points, the joint distribution must be condi-
tioned on the training data. The conditional distribution of a multivariate normal distribution
can be found by explicitly working out the law of conditional probability in PDF form

p(f∗|f) = p(f∗, f)
p(f) . (2-6)

This gives rise to the following normal distribution

f∗|X∗, X, f ∼ N
(
K(X∗, X)K(X, X)−1f ,

K(X∗, X∗) − K(X∗, X)K(X, X)−1K(X, X∗)
) (2-7)

and is called the posterior distribution. Note that f∗ is also conditioned on X∗ and X since
these input locations are required to evaluate the covariance matrices. Naturally, those in-
fluence the distributions. Also note that this posterior distribution is valid if the mean is set
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10 Background

to zero. If the mean is set to some function, the equation will look slightly different. The
predictions of the test output points are given by the mean of the distribution of Eq. (2-7)
and the uncertainty is given by the variances on the diagonal of the covariance matrix. The
plot on the right in Figure 2-1 shows the mean and confidence interval of the posterior dis-
tribution after three observations. As the input moves further away from the training points,
the uncertainty increases quickly.

Noisy Observations

Unlike what was omitted in the previous sections, the training outputs very often suffer to
some degree from noise. The actual function values, f , are unknown and cannot be measured
directly. Instead, a measurement corrupted with noise is available: y = f(x)+ϵ. It is usually
assumed that this noise is zero mean white noise and has an indepentend and identically
distributed (IID) Gaussian distribution with a variance of σ2

nI. This model can be written as

f(x) ∼ GP
(
m(x), k(x, x′)

)
y = f(x) + ϵ

(2-8)

The noise term also gives rise to an alteration in the distribution of y and receives an additional
variance term on the diagonal of the covariance matrix as

y ∼ N
(
0, K(X, X) + σ2

nI
)
. (2-9)

The joint distribution between y and f∗ is given by[
y
f∗

]
∼ N

(
0,

[
K(X, X) + σ2

nI K(X, X∗)
K(X∗, X) K(X∗, X∗)

])
. (2-10)

This joint distribution gives rise to the following posterior distribution

f∗|X∗, X, y ∼ N
(
K(X∗, X)

(
K(X, X) + σ2

nI
)−1y,

K(X∗, X∗) − K(X∗, X)
(
K(X, X) + σ2

nI
)−1

K(X, X∗)
) (2-11)

2-1-3 Hyperparameters

The squared exponential kernel in Eq. (2-3), like any other kernel, is subject to several hyper-
parameters. In this case, the signal variance σf and the lengthscale l are the hyperparameters.
These are the settings that can be modified to change the behavior of the kernel. The signal
variance indicates how much variance is present in the output data. This is the variance
that can be observed when there are no observations available or nearby, see Figure 2-1.
The lengthscale controls how fast the correlation between points farther apart from each
other decreases. This determines how nonlinear the data are. A small lengthscale leads to a
rapid decrease in the correlation between points that are farther apart, as can be verified in
Eq. (2-3). This would result in a flexible and nonlinear approximation of the function. Larger
lengthscales give rise to less spatially varying functions.

J.M. Beurskens Master of Science Thesis



2-2 Magnetic Fields 11

Determining suitable values can be a challenging task. It is crucial to find hyperparameters
that represent the latent function. A common method to find optimal values is to maximize
the marginal likelihood. The marginal likelihood represents the probability of generating the
observed values y given the input data X and can be computed by

p(y|X) =
∫

p(y|f , X)p(f |X)df . (2-12)

By maximizing the marginal likelihood with respect to the hyperparameters, one tries to
find the hyperparameters that maximize the probability of observing y given the data. For-
tunately, for GPs the marginalization over the function values f is analytically tractable.
Typically, the marginal log-likelihood is maximized for optimization purposes and is given by

log p(y|X, θ) = −1
2y⊺(K(X, X) + σ2

nI)−1y − 1
2 log |K(X, X) + σ2

nI| − n

2 log 2π, (2-13)

where θ denotes the hyperparameters and the kernel function K depends on these hyperpa-
rameters. The first term on the right-hand side puts a penalty on how well the data are fitted
and the second term on the complexity of the function. This ensures that there is a trade-off
between the fit and the complexity of the function. Note, however, that the objective func-
tion is nonlinear and as a result it is possible that multiple local optima exist. It is advisable
to start the optimization from multiple initialization points to capture the global optimum.
Sometimes the algorithm will find multiple values for the hyperparameters that all have very
similar performance with respect to the objective function. In that case, the engineer has to
decide which one suits the underlying function best.

To increase optimization efficiency, it is useful to include the partial derivatives of Eq. (2-
13) with respect to the hyperparameters. Depending on which kernel function is used, the
derivative will differ. In general, the partial derivative is given by

∂

∂θj
log p(y|X, θ) = 1

2y⊺K−1 ∂K

∂θj
K−1y − 1

2tr(K−1 ∂K

∂θj
)

= 1
2tr
(
(αα⊺ − K−1)∂K

∂θj
),

(2-14)

where α = K−1y and tr(·) is the trace operator.

2-2 Magnetic Fields

The magnetic field is a three-dimensional vector field with a direction and a magnitude.
The Earth generates a magnetic field that changes both spatially and temporally due to
variations in the Earth’s crust, core convection, Earth’s rotation, and solar wind interactions
[43]. However, on a small scale these variations are very small or they change slowly over
a very long period of time. Therefore, in this thesis, the assumption is made that, at least
locally at the scale of a building, the Earth’s magnetic field can be modeled as a vector field
with constant direction and magnitude. We denote the magnetic field with the function H(x),
where H : R3 → R3 and where x denotes the location in space.

Maxwell formulated the theory of the electromagnetic field in 1865 [23]. He described how
electric and magnetic fields are influenced by changes in the fields and by electric charges
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and currents. When the magnetic and electric fields are stationary and no free currents
are present, the magnetic field exhibits the property of being curl- and divergence-free. For
both properties to hold simultaneously, it is assumed that only external magnetic fields are
considered, excluding any internal fields within magnetic objects. The curl- and divergence-
free properties are respectively given by

∇ × H = 0,

∇ · H = 0.
(2-15)

Throughout this thesis, the assumption is made that the curl-free property holds at all time
and hence no free currents are present. This property is used to incorporate physical knowl-
edge of the magnetic field into the GP model. The divergence-free property is not imposed
in this thesis.

Anomalies in the magnetic field, which are caused by man-made structures that contain
ferromagnetic materials, induce deviations from the constant magnetic field of the Earth [31].
This variability in the magnetic field between different locations can be used as features in
indoor localization. By constructing a magnetic field map, the measurements of the magnetic
field can be compared to the map to obtain location-specific information. These measurements
are collected using small sensors known as magnetometers, which provide noisy measurements
of the magnetic field at a specific location denoted as

y = H(x) + ϵ, (2-16)

where y ∈ R3 denotes the noisy measurement and ϵ ∈ R3 the measurement noise, which is
assumed to be zero mean white noise with an IID Gaussian distribution. We also assume
that the measurements are bias-free.

In addition to using single magnetometers to measure the magnetic field, magnetometer ar-
rays can also be used to measure at several points simultaneously. Since the primary goal
of this thesis is to investigate how magnetic field measurements from magnetometer arrays
can be utilized effectively and efficiently to create magnetic field maps, magnetometer arrays
play a central role. A magnetometer array is a fixed structure, typically two- or three-
dimensional, composed of multiple magnetometers. In this thesis, we assume that the exact
spacing between the magnetometers is known. An array allows for measuring the magnetic
field at several locations simultaneously, providing information that can be used for odom-
etry purposes. So far, the literature on magnetic field localization has focused mainly on
two-dimensional arrays. These arrays are usually arranged in a flat, grid-like configuration.
Therefore, in this thesis, we will look into those two-dimensional arrays in a grid-like config-
uration as well. However, some studies related to the derivative-based odometry method use
three-dimensional arrays [2, 3, 8, 9]. In addition, there are other applications, such as the
localization of magnetic objects, that use three-dimensional arrays [13, 21, 33]. Insights from
these applications regarding derivative estimation are used in this thesis.

2-3 Magnetic Field Mapping using GPR

To map the magnetic field using GPR, a dataset with spatial coordinates as inputs and the
corresponding magnetic field measurements as outputs is required. The spatial coordinates
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2-3 Magnetic Field Mapping using GPR 13

can take any dimension from one-dimensional to three-dimensional. GPs can handle input
data of any dimension, provided that the kernel can measure the similarity between any two
inputs in terms of a scalar value. Regarding the magnetic field output, either the magnitude of
each measurement vector can be taken or the vector components can be considered separately
[15]. Using vector components provides more detailed information and is likely to result in
more accurate estimates. Furthermore, if the vector is used, it is still possible to retrieve
the orientation, whereas this information is lost when the magnitude is considered [15]. In
this thesis, the three components of the magnetic field are utilized. Additionally, only two-
dimensional spatial coordinates will be considered, with the z-components of the field always
set to zero.

2-3-1 Independent Component Modeling

A simple extension to incorporate vector outputs, as discussed in [31], is to model each compo-
nent of the magnetic field separately without any correlation between them. This is a reason-
able assumption, but also in [31] a method is introduced that does include cross-correlations
between the magnetic field components. This method will be discussed in Section 2-3-2. To
model the components separately, the kernel function can be extended as follows

k(x, x′) =


σ2

fx
exp

(
− ||x − x′||2

2l2x

)
0 0

0 σ2
fy

exp
(

− ||x − x′||2

2l2y

)
0

0 0 σ2
fz

exp
(

− ||x − x′||2

2l2z

)


(2-17)

where σfi
denotes the signal variance of the ith magnetic field component and l the length-

scale of the ith components [40]. Since each component is modeled by a separate GP, it is
possible to use separate hyperparameters for each output. This can be beneficial if there is
a clear distinction between the behavior in different directions. The optimization algorithm
can be three independent times to determine the hyperparameters. However, in [31] it argued
that independently determining the hyperparameters might yield suboptimal solutions, as
the parameters are even more inclined to converge to local optima and the magnetic field
components might show very different behavior. Therefore, they suggested sharing the pa-
rameters between the components and doing a single optimization run that takes into account
all components.

2-3-2 Incorporating Physical Properties into Magnetic Field Models

Instead of modeling each component of the magnetic field with a separate GP, a different
approach to improving the map involves including prior knowledge in the kernel function. In
2013, Wahlström et al. [40] studied how the well-understood characteristics of magnets and
their magnetic fields can be included in GPs. They exploited the divergence- and curl-free
properties of the magnetic field.

In [31] it is described how the curl-free property can be included in the model. A curl-free
vector field does not exhibit circulation around a fixed point in the domain. This indicates
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that any line integral of the vector field between two arbitrary points A and B in the domain
depends only on the difference between the values of the two points. The route taken to get
from point A to B has no influence, as shown in∫

P
H(x) · dx = φ(A) − φ(B), (2-18)

where φ : R3 → R. φ can be considered to be scalar potential, analogous to how, for example,
potential energy is the scalar potential of the gravitational field. Taking the gradient of
Eq. (2-18) gives rise to the relationship between the magnetic field and the scalar potential,
shown in

H = −∇φ. (2-19)

This relationship can be used to impose constraints on the potential output functions of the
GP, as demonstrated in [31]. By initializing a GP with the scalar potential, φ(x), as its
realization and using spatial coordinates as input, the magnetic field vector is obtained by
taking the negative gradient of φ(x). This can be represented in a model as

φ(x) ∼ GP
(
0, klin.(x, x′) + kSE(x, x′)

)
,

yi = −∇φ(x)|x=xi + ϵi.
(2-20)

The klin. was added to model the linear increase in the scalar potential due to the constant
influence of the Earth’s magnetic field. It is given by

klin.(x, x′) = σ2
lin.x⊺x′. (2-21)

Since Gaussian distributions, and therefore also GPs, are closed under linear operations, and
the gradient ∇ is a linear operator, it can incorporated into the GP. This gives rise to a
special kernel function that ensures that the GP outputs possess the curl-free property. This
model was computed to be

H(x) ∼ GP
(
0, σ2

lin.I3 + Kcurl(x, x′)
)
, (2-22)

where

Kcurl(x, x′) = σ2
f

(
I3 −

(x − x′

l

)(x − x′

l

)⊺
)

exp
(

− ||x − x′||2

2l2

)
. (2-23)

More detail on how linear operations are incorporated into GPs will follow in Section 3-1. In
[31] they implemented this method and showed that significant improvements can be made
compared to a standard GP that uses only a squared exponential kernel. More specifically,
predictions were shown to improve in terms of accuracy and the 95% confidence interval
became narrower. This modeling techniques, or a variation of it, has also been applied in
other magnetic field localization and SLAM implementations [19, 29, 31, 37]

Additionally, it is possible to incorporate the divergence-free property into the GP prior [29].
However, this approach, specifically in combination with GPs, is less commonly implemented.
Consequently, we decided to solely use the curl-free property throughout this thesis. However,
the following section in this chapter still considers the divergence-free property as well to
provide a comprehensive background. An alternative approach is to model the magnetic field
using a polynomial model [16, 29, 30], however, this method is not explored in this thesis.
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2-4 Constraining Spatial Derivative of Magnetic Field 15

2-4 Constraining Spatial Derivative of Magnetic Field

By including the curl- and divergence-free properties in the magnetic field model, it puts
constraints on the spatial derivative. These constraints reduce the degrees of freedom of the
Jacobian and, as a result, also the minimum number of magnetometers required to compute
the spatial derivative. Assuming that the magnetic field is stationary and that no electric
charges and currents are present, the magnetic field is curl- and divergence-free as shown in
Eq. (2-15).

2-4-1 First-Order Spatial Derivative

The divergence property yields that the trace of the Jacobian must be zero, as can be directly
observed from the definition

∇ · H(x) = 0
∂H1
∂x1

+ ∂H2
∂x2

+ ∂H3
∂x3

= 0.
(2-24)

This constraint reduces the number of independent terms in the Jacobian from nine to eight,
as shown in [10]. The curl-free property implies that the Jacobian matrix has to be symmetric,
as can also be inferred from the definition

∇ × H = 0

∂H3
∂x2

− ∂H2
∂x3

∂H1
∂x3

− ∂H3
∂x1

∂H2
∂x1

− ∂H1
∂x2


= 0.

(2-25)

This equation shows that the symmetric terms have to be equal. This reduces the number of
independent terms in the Jacobian even further from eight to five [10].

Since there are only five independent terms in the Jacobian, it is possible to reconstruct
an entire column of the Jacobian and only compute the values for the other two [33]. In
other words, an array that is positioned on a two-dimensional plane is already sufficient to
determine the full Jacobian. In [33] they equivalently showed that the Jacobian only has five
independent terms due to the curl- and divergence-free properties and it can be expressed as

J =



∂Hx

∂x

∂Hx

∂y

∂Hx

∂z

∂Hy

∂x

∂Hy

∂y

∂Hy

∂z

∂Hz

∂x

∂Hz

∂y

∂Hz

∂z


=

jxx jxy jxz

jxy jyy jyz

jxz jyz −jxx − jyy

 , (2-26)

where J denotes the Jacobian, x, y and z the spatial coordinates and j a single element of
the Jacobian matrix. The first index of j represents the magnetic field component that is
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considered, while the subsequent indices specify the coordinate with respect to which the
derivative is taken. This three-dimensional Jacobian in Eq. (2-26) confirms that, for instance,
the last column column can be written in terms of the components of the first two. This
shows that the spatial derivative can be computed using an array that lies in the x-y plane.
These constraints on the shape of the Jacobian matrix can be utilized to get better Jacobian
estimates that satisfy the behavior of the magnetic field.

However, note that this thesis only considers the curl-free property. The effect of this choice
on the Jacobian is further explained in Section 3-2.

2-4-2 Higher-Order Spatial Derivatives

The effect of the curl- and divergence-free properties can also be applied to higher-order spatial
derivatives. In [4] it was shown that using the curl- and divergence-free property, higher-
order spatial derivatives can also be derived from a two-dimensional planar arrangement of
magnetometers. Since this thesis does not take into account the divergence-free property,
only the curl-free property is considered here.

The effect of the curl-free property on higher-order spatial derivatives is analyzed in [4]. They
showed that any derivative of order n is equal to the derivative that uses any permutation
of the set of n derivative terms and the considered magnetic field component. Consider a
function ρ from {1, 2, . . . , n} to the three spatial coordinates {x, y, z}, and σ any permutation
on {1, 2, . . . , n}, with n > 1, then this property is given by

∂(n−1)Hρ(n)
∂ρ(1)∂ρ(2) . . . ∂ρ(n − 1) =

∂(n−1)Hρ(σ(n))

∂ρ
(
σ(1)

)
∂ρ
(
σ(2)

)
. . . ∂ρ

(
σ(n − 1)

) . (2-27)

They used the curl-free property from Eq. (2-25) and Schwarz’s theorem to prove this by
induction on n. For a first-order derivative, with n = 2, Eq. (2-25) immediately showed that
the property holds. Then Schwarz’s theorem showed that if it holds for n − 1 it also holds
for n, which completed the proof. The property in Eq. (2-27), simply put, means that the
indices of any element in a certain derivative matrix can be rearranged without changing the
variable. For instance, the elements jzyx = jxyz are equal.

2-5 Magnetic Odometry Methods

The aim of this thesis of using the spatial derivative as an approximation of the magnetometer
array originates from two magnetic odometry methods: the derivative-based [2] and the
model-based [30] odometry methods, which were briefly introduced in Chapter 1. These two
methods differ, among other things, in the information they use from the array. The model-
based odometry method uses all of the magnetometers on the array to determine the change in
pose. The derivative-based method, on the other hand, computes the spatial derivatives from
the information on the array and uses that to estimate the change in position. Essentially, the
derivative-based method approximates the information on the array, whereas the model-based
method does not. However, the derivative-based method does not necessarily use this spatial
derivative as an approximation to save computational resources; the method simply requires
the spatial derivative. Therefore, the main objective of this thesis is to analyze whether
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the spatial derivative could serve as an approximation to the complete information on the
array for mapping purposes using GPR. This approximation could, for instance, be utilized
for the model-based odometry method or SLAM implementations that include arrays. The
derivative-based and model-based odometry methods are explained in more detail here to give
more context on how arrays have been used before and to illustrate how the findings from
this thesis could potentially be useful for these methods.

Both methods are odometry techniques that rely on the spatial information captured by the
array. Odometry is the process of estimating the change in pose of a moving object, typically
based on motion data. Typically inertial measurement units (IMUs) are used to measure
acceleration and angular velocity. The integration of these variables would give rise to this
pose change, though it accumulates errors over time due to sensor errors [18]. Magnetic field
odometry works by analyzing how the magnetic field changes over time and how this relates
to the spatial information captured by the array. This also provides an estimate of the pose
change.

2-5-1 Derivative-Based Odometry Method

The derivative-based odometry method introduced in [39] derived a differential equation that
can explicitly compute the velocity based on the spatial derivative:

dH
dt

= −Ω × H + dH
dr v, (2-28)

where Ω denotes the angular velocity, r the position vector and v the velocity. In Eq. (2-28),
v is the only unknown. The time derivative of H can be straightforwardly determined using
a finite difference method, Ω is measured by the gyroscope and the spatial derivative of H
can be determined from the array.

A traditional inertial navigation system (INS) only utilizes the measurements from the ac-
celerometer and gyroscope to retrieve the pose estimate. Typically, state-space representa-
tions in combination with an extended Kalman filter (EKF) or observer are used to model
the dynamics and take the measurements into account. In [5, 6, 10, 39, 42], magnetic field
odometry is integrated into an INS by including Eq. (2-28) into the state-space representa-
tion. The spatial derivative is either used as a separate state or an input to the state-space
model. In either case, the spatial derivative needs to be computed from the array. Eq. (2-28)
links the magnetic field measurements to the velocity, ensuring observability of the velocity.
Without including the magnetic field odometry in the INS the velocity would not be observ-
able. Integration of the velocity then gives rise to the desired estimate of the position. In case
there is enough spatial variability in the magnetic field, this magnetic field-aided INS has a
position error that grows linearly with time.

The accuracy of this odometry method is largely dependent on the accuracy with which spatial
derivative can be derived. An important aspect influencing the accuracy of the derivative is
the calibration of the magnetometers. One can imagine that since the distance between
the magnetometers is small, it results in a similarly small difference in the magnetic field.
As a result, even minor calibration errors can significantly affect the measured difference in
magnetic field, leading to a large impact on the accuracy of the spatial derivative estimate.
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Therefore, in their following studies, they also put effort into further exploring calibration
schemes [11, 12].

Another important aspect is related to the configuration of the array, including the shape of
the array, the number of magnetometers, the spacing between the magnetometers and the
noise levels. All of these variables influence the accuracy of the spatial derivative estimates.
This is related to the first research sub-question and is investigated in this thesis. While
the derivative-based odometry method typically utilizes three-dimensional arrays, this the-
sis focuses mainly on two-dimensional arrays. Nevertheless, the results still give a general
understanding of how the different parts of the array configuration influence the derivative
estimates. Furthermore, it also emphasizes the importance of a suitable array configuration.

2-5-2 Model-Based Odometry Method

An alternative approach, inspired by the derivative-based odometry method, is the model-
based odometry technique [16, 29, 30]. Instead of directly evaluating the velocity from Eq. (2-
28), this method first constructs a local magnetic field map based on the measurements from
the array at a single time instant. The measurements at the next time step are then compared
to this local map to obtain an estimate of the change in pose [29, 30]. A polynomial model
is used to create the local map, and either a maximum likelihood estimator or a nonlinear
least squares method is used to compare the measurements at the next time step to the local
map, resulting in an estimate of the change in pose. In essence, this method relies on the
partial overlap between two consecutive series of measurements to infer the change in pose.
An advantage of this method compared to the derivative-based method is that an estimate
of the change in orientation is also obtained.

In [16], this method is integrated into a magnetic field-aided INS. This INS utilizes an error
state Kalman filter (ESKF) to account for the non-Euclidean space in which the quaternions
live. The state vector is augmented with the coefficients of the polynomial model, which
are updated iteratively during the time updates. When the new magnetic field measurements
come in, the measurement update is executed, correcting the error state. The nominal state is
then updated, and the error state is reset, leading to updated model coefficients. At the same
time, this measurement update ensures that the pose error is updated and corrected based on
the difference between the new magnetic field measurements and the expected measurements.
This method showed a location error of less than three meters in most cases after a two-
minute long trajectory using an array of 30 magnetometers. This implementation into an
INS demonstrates the functionality of magnetic field odometry and the importance of the
investigation of magnetometer arrays.

To the best of our knowledge, all studies regarding the model-based odometry method use
two-dimensional arrays so far. However, they do create models that are capable of making
predictions in all three dimensions. This is possible because the curl- and divergence-free
properties of the magnetic field impose constraints that allow the spatial derivative to be
determined from measurements that lie in a two-dimensional plane. In other words, a two-
dimensional array is enough to be able to tell how the magnetic field will evolve in all three
directions. This concept was explained in Section 2-4. Because of this effect, in [16] they
evaluate the performance of the magnetic field-aided INS for all three spatial directions using
a two-dimensional array.
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The accuracy of this odometry method in terms of location drift depends mainly on the
accuracy with which the local map can make predictions. A higher quality map would provide
more accurate estimates of the magnetic field, resulting in more precise pose change estimates
and reduced drift over time. A small contribution of this thesis to this odometry method lies
in testing different array configurations for the quality of the local map. Despite two key
differences between the typical implementation of this odometry method and the methods
used in this thesis, the results may still provide valuable insight into how the configuration
of the array influences the local mapping accuracy. The first key difference is that in [16]
they use a polynomial model to represent the magnetic field, and this thesis focuses on GPR.
And secondly, in [16] the divergence-free property is also included in the model and magnetic
field, whereas in this thesis only the curl-free property is considered. Nevertheless, this thesis
provides results that could be beneficial for this odometry method. Specifically, the map
quality of local maps for different array configurations when using all magnetometers on
the array is analyzed in this thesis. Finding an effective array configuration that produces
high-quality local maps could improve the performance of this odometry method.

2-5-3 Simultaneous Localization and Mapping (SLAM)

A potential application of these odometry methods and magnetometer arrays is in SLAM.
SLAM solves the problem of having to create a map required for indoor localization by jointly
estimating the global map and pose while exploring the area of interest [19, 37]. It uses
odometry data, typically from accelerometers and gyroscopes, to track its pose in the short
term and corrects it for drift by using the global map constructed along the way. Incorporation
of the magnetic odometry methods using magnetometer arrays is actively being studied and
has the potential to improve the overall performance.

Alternatively, instead of explicitly incorporating a magnetic odometry method that utilizes
the array into SLAM, the possibility of using all magnetometer measurements from the array
to create the global map is being studied. However, since the time complexity of GPs scales
cubically with the number of data points, using all magnetometers on the array could quickly
cause computational problems. By approximating the information on the array with a single
measurement and the spatial derivative, the computational burden can be reduced while still
capturing meaningful spatial information. This thesis explores the implementation of this
approximation and whether it is effective. Not only could the spatial derivative be used
as an approximation to information on the array for this particular SLAM application, but
it is applicable to any mapping application that uses arrays of measurements and suffers
from computational issues. The results of this thesis will shed light on whether the spatial
derivative is an effective and efficient approximation.
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Chapter 3

Methods

This chapter presents the methods required for implementing and using the spatial derivative
for magnetic field mapping. In Section 3-1, we analyze how previous studies have incorporated
derivatives in Gaussian process regression (GPR) and we build upon this approach to include
the spatial derivative into the curl-free Gaussian process (GP) model. Section 3-2 then in-
troduces how three existing derivative computation methods can be utilized to compute the
spatial derivative from a magnetometer array; the finite difference method, the linear least
squares (LLS) method and the local GP method. Finally, the simulation experiments de-
signed to answer the research questions are described in Section 3-3. Two types of simulation
are presented: the first assesses the accuracy of spatial derivative computation for the three
derivative estimation methods across various array configurations, while the second assesses
map quality using both the derivative and the full kernel.

3-1 Incorporating Spatial Derivatives into GPR

In order to make prediction of the magnetic field using GPR based on the spatial derivative,
the derivative has to be included into the GP prior. Incorporating the derivative into the
prior ensures that the model accounts for not only the field’s values but also the derivative.
First, linear operators are introduced and their application to GPs. Subsequently, based on
the existing literature, it is shown how derivatives can be included into GPs. This is then
used to incorporate the spatial derivative into the curl-free model.

3-1-1 Linear Operators

Linear operators are a more general form of functions that take functions as input and output
functions and have been studied extensively, for instance in [34] in combination with GPR.
Following the notation of [34], the application of the linear operator Lx to the function f(x)
will be denoted as g(x) = Lxf(x), where the subscript x indicates the variable on which the
operator is applied. It is assumed that the input domain of the original function has the same
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dimensionality as the functions produced by the operator. The output dimensionality may
change.
Gaussian processes are closed under linear operators, and therefore a GP remains a GP after
a linear operator has been applied [27]. Consider a GP that outputs a scalar and is denoted
by

f(x) ∼ GP
(
µf , Kff (x, x′)

)
. (3-1)

By considering the linear operator g(x) = Lxf(x), the mean and covariance function of the
GP prior change according to the operator. According to [34], the kernel functions that
describe the covariance between g(x) and f(x) are obtained as follows

Kgf (x, x′) = LxKff (x, x′)
Kfg(x, x′) = Kff (x, x′)L⊺

x′

Kgg(x, x′) = LxKff (x, x′)L⊺
x′ .

(3-2)

and the GP prior mean is given by
µg = Lxµf (3-3)

If the operator is applied from the right, it means that it operates on the second argument.
This gives rise to the GP prior for g(x) as

g(x) ∼ GP
(
Lxµf , LxKff (x, x′)L⊺

x′
)
. (3-4)

3-1-2 Applying the Derivative Operator on the Curl-Free GP Model

The information on linear operators in Section 3-1-1 can be used to obtain a GP that models
the spatial derivative of the curl-free GP from Eq. (2-22). That is because differentiation can
be represented by a linear operator as

Dxf(x) = ∇f(x) =


∂f(x)
∂x1...

∂f(x)
∂xn

 , (3-5)

where Dx is the derivative operator and n is the dimensionality of the input.
To obtain a GP prior that not only models the magnetic field H(x), but also the spatial
derivative Hd(x), a joint distribution of the magnetic field and the spatial derivative must
be derived. This distribution can be obtained by applying the derivative operator on the
curl-free GP from Eq. (2-22). This yields the following distribution[

H(x)
Hd(x)

]
∼ N

([
0

Dx0

]
,

[
Kcurl(x, x′) Kcurl(x, x′)D⊺

x′

DxKcurl(x, x′) DxKcurl(x, x′)D⊺
x′

])

= N
([

0
0

]
, Kcurl,d(x, x′)

)
,

(3-6)

where Hd(x) ∈ R9 is defined according to Eq. (3-5) as

Hd(x) = DxH(x) =


∂H(x)

∂x
∂H(x)

∂y
∂H(x)

∂z

 . (3-7)
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The derivation of Kcurl,d(x, x′) is provided in Appendix A. Later in the thesis it is useful if
sub-matrices of Kcurl,d(x, x′) are defined. Therefore, the following definitions are introduced

KKD
curl,d(x, x′) =

[
Kcurl(x, x′) Kcurl(x, x′)D⊺

x′

]
KDK

curl,d(x, x′) =
[

Kcurl(x, x′)
DxKcurl(x, x′)

] (3-8)

3-2 Derivative Estimation

An important aspect when computation a spatial derivative, is the choice of the derivative
estimation method. To examine the impact of these methods on the approximation of the
information on the array, three different numerical differentiation techniques are considered.
Each method is evaluated based on its accuracy in computing the first-order derivative and
the time required to perform the computation. The computational efficiency plays an essential
role, as the goal is to approximate the information on the array to significantly reduce the
computational time.

This thesis solely uses the curl-free property of the magnetic field to generate and model
the data. Consequently, the Jacobian consists of six independent terms instead of five when
the divergence-free property was also included, as shown in Section 2-4-1. We also chose to
align the array with the x-y plane. As a result, we are able to directly obtain estimates of
the components of the first two columns of the Jacobian. However, since the divergence-free
property is not included, the final column cannot be fully written in terms of the components
of the first two columns. That is because the divergence-free property is required to determine
the jzz component. Hence, from this setup, all but one component can be determined from a
two-dimensional array. The Jacobian is represented by

J =

jxx jxy jxz

jxy jyy jyz

jxz jyz jzz

 , (3-9)

where the off-diagonal terms are symmetric relative to the diagonal due to the curl-free
property. This property is included in all three following techniques.

By incorporating the curl-free property into the GP model, which was described in Section 2-
3-2 [31], the model takes these constraints on the Jacobian into account. As a result, part
of the structure of the Jacobian is already included in the model. Therefore, the amount of
additional information provided by the Jacobian is slightly reduced. Furthermore, including
the curl-free property reduces the minimum number of magnetometers required to compute
the derivative, which already suggests that it contains less information.

3-2-1 Finite Difference Methods

The most ubiquitous way to determine derivatives is through finite differences. Depending on
the number of magnetometers, different orders of finite difference schemes can be employed.
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To derive the coefficients of the finite difference schemes, the Taylor series expansion is utilized

f(x0 + ih) =
∞∑

n=0

(ih)n

n! f (n)(x0), (3-10)

where h denotes the spacing between measurement points and i ∈ Z. For instance, the
expansion at x−1 = x0 − h and x1 = x0 + h yields

f(x−1) = f(x0) − hf ′(x0) + h2

2! f ′′(x0) − h3

3! f (3)(x0) + h4

4! f (4)(x0) − O(h5),

f(x1) = f(x0) + hf ′(x0) + h2

2! f ′′(x0) + h3

3! f (3)(x0) + h4

4! f (4)(x0) + O(h5),
(3-11)

where xi = x0 + ih, for i = . . . , −1, 0, 1, . . . . By linearly combining the Taylor series ex-
pansions of the function f at different points, various orders of the approximation of f ′(x0)
can be obtained. Note that for this method, as well as for the subsequent two methods, a
measurement at the locations where the first-order derivative will be determined, f(x0), is
required. Therefore, in this thesis, where the spatial derivative is derived from the array, the
location x0 is chosen based on whether a magnetometer is present at the center of the array.
If so, x0 is selected at the center location. Otherwise, x0 is selected at the magnetometer
location positioned to the top right of the center.
Solving a finite difference equation yields only the derivative of one component of the magnetic
field in a single direction, meaning it provides just one element of the Jacobian. Since there
are six independent terms present in the Jacobian, see Eq. (3-9), six separate finite difference
equations must be solved to estimate the full Jacobian. However, since this thesis focuses
mainly on two-dimensional arrays and mapping, the z-direction is ignored most of the time,
leaving five components to be estimated from five equations. Each finite difference equation
uses magnetometers aligned in a specific direction to determine the spatial derivative along
that axis. As a result, not all magnetometers are used when computing the spatial derivative
with this method. Only those forming a cross pattern on the array are used. As the number
of magnetometers increases, the finite difference method uses a smaller proportion of the
available magnetometers.
For a two-by-two magnetometer array, where x0 is the top-right location, the only applicable
finite difference formulas are the well-known forward and backward difference. In this thesis,
the backward difference is used

f(x0) − f(x−1)
h

= f ′(x0) − h
f ′′(x0)

2! + h2 f (3)(x0)
3! − h3 f (4)(x0)

4! + O(h4)

= f ′(x0) + O(h),
(3-12)

providing a first-order approximation of f ′(x0). Three out of four magnetometers are used to
find the Jacobian matrix, except for the jzz component.
The three-by-three array has access to three magnetometers along each in-plane axis and can
combine Taylor series expansions of f(x−1), f(x0) and f(x1), where in this case x0 is indeed
the middle magnetometer. This results in the central difference approximation

f(x1) − f(x−1)
2h

= f ′(x0) + h2 f (3)(x0)
3! + O(h4)

= f ′(x0) + O(h2),
(3-13)
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which provides a second-order approximation of f ′(x0). This array configuration makes use
of five out of nine magnetometers on the array. Interestingly, due to the symmetry of the
central difference formula, all terms involving odd powers of h cancel out. This is why in the
first part of Eq. (3-13), O(h4) is added instead of O(h3). This cancellation due to symmetry
will have effects on the results, even for the least squares approach introduced later.

The four-by-four array can combine Taylor series expansions of f(x−2), f(x−1), f(x0) and
f(x1), where x0 is the magnetometer to the top right from the center of the array. It gives
rise to the following third-order approximation

2f(x1) + 3f(x0) − 6f(x−1) + f(x−2)
6h

= f ′(x0) + h3 f (4)(x0)
12 + O(h4)

= f ′(x0) + O(h3).
(3-14)

Finally, the five-by-five array can combine Taylor series expansions of f(x−2), f(x−1), f(x0),
f(x1) and f(x2). Together they yields a fourth-order central difference formula

−f(x2) + 8f(x1) − 8f(x−1) + f(x−2)
12h

= f ′(x0) − h4 f (5)

30 + O(h6)

= f ′(x0) + O(h4),
(3-15)

where due to the symmetry of the array, all odd powers of h again cancel out.

These are the four finite difference formulas used to compute the first-order derivative in the
finite difference method.

In this case, the curl-free property is also included to improve the estimate. The property
constrains the Jacobian in such a way that the matrix must be symmetric. By averaging the
derivative pairs that should be equal, some of the noise can be mitigated. This is done for
jxy and jyx, for jxz and jzx, and for jyz and jzy.

3-2-2 Linear Least Squares Method

An alternative approach also revolves around the use of the Taylor series expansion. In [33]
they use the Taylor series expansion of the magnetic field to solve for the first- and second-
order spatial derivative matrices. However, they make use of the so-called rotating modulation
method. This method requires one or more magnetometers on a spinning disk. In this thesis
a fixed array is considered, and hence this method cannot be applied. Instead, the Taylor
series expansion is tailored to an LLS problem. This fixed array requires more magnetometers
to compute the spatial derivative, which will be covered later in this section.

The nth-order Taylor series expansion of the magnetic field around the origin, expressed in
vector form, is given by

H(x) ≈ H(x0)+DxH(x0)(x−x0)+ 1
2
(
D2

xH(x0)
)
(x−x0)⊗2 + · · ·+ 1

n!
(
Dn

xH(x0)
)
(x−x0)⊗n,

(3-16)
where H(x) denotes the magnetic field function evaluated at location x, x0 again denotes
the location of the magnetometer assigned as the middle magnetometer, Dn

xH(x0) ∈ R3×3n

denotes the nth-order spatial derivative of the magnetic field where the derivatives of the
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different components get stacked in a long row matrix, and where (x − x0)⊗n denotes n
subsequent evaluations of the Kronecker products as (x − x0) ⊗ (x − x0) ⊗ · · · ⊗ (x − x0).

By capturing enough data points with the array at sufficiently varying locations and organizing
the measurements and positions into matrices, a full-rank system of equations can be formed,
which can be solved for the elements of the derivative matrices using LLS. The only term in
Eq. (3-16) that is nonlinear in the derivative elements is (x − x0)⊗i. Fortunately, this term
represents the relative distances between the magnetometers on the array and is assumed to
be a known variable and can be evaluated. Therefore, Eq. (3-16) is a linear expression in
the derivative elements, which are embedded in the Di

xH(x0) terms. To express the collected
data in the standard linear least-squares form, all N magnetometer measurements are first
arranged into the following matrices

∑n
i=1

1
i!D

i
xH(x0)(x1 − x0)⊗i∑n

i=1
1
i!D

i
xH(x0)(x2 − x0)⊗i

...∑n
i=1

1
i!D

i
xH(x0)(xN − x0)⊗i


≈

H(x1)
...

H(xN )

−

H(x0)
...

H(x0)

 , (3-17)

where the subscript xi denotes the specific magnetometer index. Subsequently, the Sympy
Python library was used to symbolically perform the operations in the left-hand side (LHS)
of Eq. (3-17) and to obtain the LLS expression. Fortunately, the LHS of the equation is inde-
pendent of the measurements themselves and depends only on the relative distances between
the magnetometers that are time-invariant. As a result, the LHS only has to be calculated
once using the Sympy library, rather than at each time step when new measurements arrive.
The right-hand side of Eq. (3-17) has to be computed every time step, but its computational
cost is negligible compared to solving the LLS.

Similarly to the finite difference method, various orders of approximation can be used. This
can be done by including more or fewer higher-order derivative terms in the Taylor series ex-
pansion. This method requires assigning symbolic variables to all spatial derivative matrices,
which will be estimated using LLS. To include the curl-free property, it must also be correctly
incorporated into the higher-order spatial derivatives. While Eq. (3-9) showed this for the
Jacobian, it can also be extended to higher-order derivatives. For instance, the second-order
spatial derivative, D2

xH(x0), can be derived using Eq. (2-27) to be

D2
xH(x0) = G =

[
Gx Gy Gz

]
,

Gx = ∂J

∂x
=

gxxx gxxy gxxz

gxxy gxyy gxyz

gxxz gxyz gxzz

 ,

Gy = ∂J

∂y
=

gxxy gxyy gxyz

gxyy gyyy gyyz

gxyz gyyz gyzz

 ,

Gz = ∂J

∂z
=

gxxz gxyz gxzz

gxyz gyyz gyzz

gxzz gyzz gzzz

 ,

(3-18)
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where g denotes the individual elements of the Hessian, G. Similarly, the elements of higher-
order spatial derivatives can be derived. Naturally, it is also possible to include the divergence-
free property in the higher-order spatial derivatives, but this is not covered in this thesis; see
[4] for more details.

Minimum Required Number of Magnetometers

Higher-order approximations require more measurements for the LLS method to be full-rank.
The number of independent terms in a nth-order derivative matrix can be derived using the
property of Eq. (2-27), which is derived from the curl-free property. This means that any
permutation of the indices of any element in a certain derivative matrix gives rise to an
element that is identical. For instance, the elements jzyx = jxyz are equal, since zyx is a
permutation of xyz and vice versa. Given this property, the number of independent elements
for an nth-order derivative matrix is equal to the number of n+1-combinations with repetition
of the set {x, y, z} with size k = 3 where the ordering does not matter. Using combinatorics
theory the number of independent variables of a n-order derivative matrix using the curl-free
property is given by(

n + k

n + 1

)
= (n + k)!

(n + 1)! · (k − 1)! = (n + 3)!
(n + 1)! · 2 = (n + 3)(n + 2)

2 , (3-19)

which indeed gives rise to six independent variables for the first-order derivative.

Since a Taylor series expansion consists of a sum of derivatives of increasing order, the total
number of unknown parameters for the LLS problem of an nth-order approximation corre-
sponds to the sum of the number of independent terms for each order. To compute the number
of magnetometers required to solve the LLS problem the reference measurement H(x0) from
Eq. (3-17) must also be taken into account. This is achieved by running the summation from
the zeroth-order instead of the first, effectively adding the additional three terms. This gives
rise to the following number of magnetometers for an nth-order approximation⌈∑n

i=0
(i+3)(i+2)

2
3

⌉
=
⌈

n∑
i=0

(i + 3)(i + 2)
6

⌉
, (3-20)

where ⌈·⌉ denotes the ceiling function. Since each magnetometer provides three measurements,
the summation was divided by three. The ceiling function was used to round the number up to
the nearest whole number, since of course it is not possible to use a fractional magnetometer.
However, note that the minimum number of required magnetometers does not mean that
that number is optimal. Since there is always noise present in the sensor measurements, it is
beneficial to have more sensors active so that noise errors can be averaged out.

Also note that Eq. (3-20) includes derivative elements that are related to the z-direction
and z-component as well. The minimum number of magnetometers required to determine
the spatial derivative for a two-dimensional mapping problem is slightly lower. For a two-
dimensional map with the curl-free property active, all derivative elements that contain two
or more z’s are unnecessary. For instance, jzz and jxzz do not provide useful information.
A single z in the derivative element is still useful as it specifies how the z-component of the
magnetic field evolves in a certain direction. However, as soon as a second z is introduced,
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it must specify how the z-component, or any derivative of the z-components, changes in the
z-direction. This is no longer applicable in two dimensions. Therefore, the number of useful
and independent terms in an nth-order approximation can be reduced by the number of n-1-
combinations from the set of three {x, y, z}. The n-1-combinations effectively fix two of the
indices of the derivative elements to be z. n-1-combinations with repetition from a set of size
k = 3 is(

n + k − 2
n − 1

)
= (n + k − 2)!

(n − 1)! · (n + k − 2 − n + 1)! = (n + 1)!
(n − 1)! · 2 = n(n + 1)

2 . (3-21)

Subtracting this equation from the summation in Eq. (3-20) gives rise to the minimum num-
ber of magnetometers required to solve an nth-order approximation for the useful derivative
elements, where the LLS problem solves for all independent and useful derivative elements.

⌈∑n
i=0

(i+3)(i+2)−i(i+1)
2

3

⌉
=
⌈∑n

i=0(2i + 3)
3

⌉
. (3-22)

Not coincidentally, the number of independent and useful terms in this equation for an nth-
order spatial derivative, 2n + 3, is equal to the number of independent terms in an nth-
order spatial derivative for a magnetic field that possesses both the curl- ánd divergence-free
property. This illustrates that the divergence-free property exactly constrains the derivative
elements that are related to the out-of-plane direction. However, the derivation of this num-
ber for a vector field free of curl and divergence is not provided in this thesis. Table 3-1
shows the minimum number of magnetometers required to obtain a full-rank LLS problem
for different orders of approximation. If fewer magnetometers are present than the minimum
required number, infinitely many solutions are possible, often resulting in a sub-optimal so-
lution. Therefore, the results will later show that it is always preferable to apply an order of
approximation to an array that has the specified minimum number of magnetometers.

Table 3-1: Minimum required number of magnetometers to solve an nth-order approximation for
all independent and useful derivative elements according to Eq. (3-22)

Order of approx. 1st 2nd 3rd 4th 5th

Min. magnetometers 3 5 8 12 16

3-2-3 Local GP Method

The final method to estimate the spatial derivative is to make use of GPs. Using the joint
distribution of the magnetic field and the spatial derivative, similar to the distribution from
Eq. (3-6), but now adapted for a single array, the spatial derivative can be estimated. Instead
of adding a spatial derivative for each magnetic field measurement into the joint distribution,
only one spatial derivative is added for all measurements on the array. The spatial derivative
serves as test data and the magnetometer measurements serve as training data. It is assumed
that the noise on the measurements of the magnetic field is zero mean white noise with an
independent and identically distributed Gaussian distribution, as stated in Section 2-2. This
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joint distribution is given by


y1(x1)
y2(x2)

...
yN (xN )
Hd(x0)

 ∼ N
(


0
0
...
0
0

 , Klocal,d

)
, (3-23)

Klocal,d =


Kc(x1, x1) + Σ Kc(x1, x2) . . . Kc(x1, xN ) Kc(x1, x0)D⊺

x0

Kc(x2, x1) Kc(x2, x2) + Σ . . . Kc(x2, xN ) Kc(x2, x0)D⊺
x0

...
... . . . ...

...
Kc(xN , x1) Kc(xN , x2) . . . Kc(xN , xN ) + Σ Kc(xN , x0)D⊺

x0

Dx0Kc(x0, x1) Dx0Kc(x0, x2) . . . Dx0Kc(x0, xN ) Dx0Kc(x0, x0)D⊺
x0


where xi denotes the locations of the magnetometers on the array, Σ the diagonal covariance
matrix of the white noise with an indepentend and identically distributed (IID) Gaussian
distribution, N is the number of magnetometers on the array, x0 is the location of the mag-
netometer that is assigned as the middle magnetometer. Although x0 is the same as one
of the xi’s, it is named differently since it depends on the size of the array which ones are
equal. Kc is shorthand notation for Kcurl to save some space. By conditioning the derivative
Hd(x0) on all magnetic field measurements yi using Eq. (2-11), the posterior distribution of
the spatial derivative is obtained. This distribution again provides an estimate of the mean
as well as the uncertainty of the estimate in terms of the covariance matrix. Essentially, this
method uses the same data as would be used for constructing a local magnetic field map, but
instead of making a prediction of the field it predicts the spatial derivative, hence the name
local GP method. Like the LLS method, this method also utilizes all magnetometers present
on the array.

Ultimately, the spatial derivative predictions are meant to be used as training data for con-
structing the magnetic field map. In noisy GPR, it is necessary to provide a covariance matrix
of the noise in the measurements. Fortunately, this local GP method immediately provides
this covariance matrix along with the prediction. In contrast, the other two methods do not
offer this directly, so the noise in their estimates must be determined from the data.

This method incorporated the curl-free property through the use of the kernel Kcurl that is
being used. However, since the GP model depends on the hyperparameters, these have to be
specified for the method to function properly, adding a layer of complexity. That said, in case
the spatial derivatives are to be used for magnetic field mapping using GPR, determining these
hyperparameters would be necessary regardless. However, in the case of this thesis, since all
data are simulated using certain hyperparameters, which will be specified in Section 3-3, the
exact same ones will be applied to predict the spatial derivatives. In other words, the exact
same model that was used to generate the data is used to predict the spatial derivatives. This
might give this method a slight advantage over the other techniques. This advantage would,
however, not carry over to real-world data.

In contrast to the other two methods, no order of approximation has to be specified for
this technique. This has the advantage that the most accurate estimate is always obtained,
whereas for the other two, an optimal order of approximation must be selected.
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3-3 Simulation Setups

In this section, setups for several simulation experiments are explained. However, first, the
array configurations that are considered are introduced. Next, we describe the setup for
determining the variance of the spatial derivative estimate error for the different derivative
estimation methods. Subsequently, the simulation setups used to evaluate the map quality
across the various array configurations are outlined. These setups are evaluated for two
distinct cases. The first case utilizes all magnetometers on the array to create the map, which
will be referred to as the full kernel. The second case uses only the magnetometer in the
center of the array in combination with the spatial derivative estimate at that location, which
will be referred to as the derivative kernel. If there is no center magnetometer available, the
neighboring magnetometer to the top right is used along with the derivative estimate at that
location. Both kernels include the curl-free property.

All data is generated by sampling from GP priors. The prior from Eq. (3-6), either with
or without the derivative part, is used for this purpose. The hyperparameters were set to
fixed values for all simulations, except for the measurement noise. The values σlin. = 15 µT,
σf = 5 µT were set to the same values used in [30], and the lengthscale was set to l = 0.5. The
measurement noise σy ∈ R, which acts on each of the axis of the magnetometer identically,
differs per simulation setup.

All simulations and other code implementations were carried out in Python. Less compu-
tationally demanding tasks were performed on a 2017 HP ZBook Studio G4 laptop (Intel
Core i7-7700HQ @ 2.80 GHz, 8 GB RAM), while most of the tasks, particularly the more
demanding ones, such as generating the data and making predictions with GPR, were done
in the cloud. Several cloud services were used. The cloud service provided by the TU Delft
was used, as well as the cloud services of Google and IBM. Throughout the process, virtual
machines with different specifications were used. Typically, depending on the specific task,
virtual machines with 16 or 8 vCPUs were used with 64 or 32 GB of RAM.

3-3-1 Array Configuration

This thesis focuses mainly on two-dimensional arrays. To further limit the possible configu-
rations, only square arrays are considered, as their symmetrical configuration appears to be
beneficial for deriving the spatial derivative. Several of those square, two-dimensional array
configurations are studied to determine the effect of three different variables: the spacing
of magnetometers, the number of magnetometers, and the noise level of the magnetometers.
Spacing refers to the physical distance between adjacent magnetometers on the array. Since it
is impractical to plot all these three variables against each other and would require immense
amounts of data, the decision was made to compare the spacing against the number of magne-
tometers and against the noise level. These are probably the most interesting combinations.
That is because the optimal spacing to accurately estimate the derivative is not immediately
obvious. A spacing that is too small causes the noise to have a large impact on the small
difference in the magnetic field being measured. A spacing that is too large, on the other
hand, results in a significant change in the function between measurements, making it difficult
to determine the derivative. In contrast, it is obvious that more magnetometers and less noise
would give rise to better derivative estimates. Hence, plotting the number of magnetometers
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against the noise level would likely not give very interesting insights into which configuration
provides the most accurate derivatives.

Another important consideration for how well the spatial derivative can be computed with
a certain configuration, is how rapidly the field changes. This variable is parameterized by
the lengthscale l in GPs and specifies the distance in the input space over which a significant
change in the output can be observed. Hence, a small lengthscale results in a rapidly changing
field and a large value in a more gradually changing field. For instance, if the field is rapidly
changing, a much smaller spacing is desired to ensure the field does not vary too much between
the magnetometers; otherwise, the derivative estimate would be compromised. Through
simulation, it was confirmed that the ratio between the lengthscale and the spacing determines
the relative accuracy with which the spatial derivative can be determined, which is explained
in Appendix B in Section B-1. That is, the relative accuracy of the derivative estimate is the
same if the lengthscale and the spacing both scale with the same factor. To avoid the need to
consider this lengthscale as a separate variable, a new variable is introduced as the lengthscale
over the spacing, which will be referred to as ls. This dimensionless variable ensures that the
results can be applied to any lengthscale. The physical interpretation is equal to the average
number of magnetometers per lengthscale. A small value means that there are very few
magnetometers relative to the lengthscale (larger spacing), whereas a large value means that
there are many magnetometers relative to the lengthscale (smaller spacing).

Similarly, the impact of the noise on the quality of the signal is always in relation to the
signal variance. To express this relation, the noise-to-signal ratio (NSR) ratio is used. When
the noise is small relative to the signal, i.e. a small NSR, a more accurate estimate of the
derivative can be obtained than if the NSR is large. The NSR is computed as

NSR = Pnoise
Psignal

, (3-24)

where Psignal is the power of the signal and Pnoise the power of the noise. To compute the
power of a signal, one also has to take into account the mean of the signal. However, in the
case of magnetic field mapping, since only the anomalies, or deviations from the constant
Earth’s magnetic field, are of interest, the mean of the signal does not provide any additional
information. Neither does it for computing the spatial derivative. Therefore, if the mean was
subtracted from the signal, the amount of relevant information would be preserved for this
application. As a result, the power of the useful part of the signal can be considered to be
equal to the zero-mean equivalent of the signal. For a signal that has a zero mean, the power
is equal to the variance. Since the measurement noise is modeled as white noise, the noise
signal is a zero-mean signal as well. Therefore, the NSR can be computed as

NSR =
σ2

y

σ2
f

(3-25)

Similarly to the dimensionless variable ls, the NSR also ensures that the results of this thesis,
as long as the NSR match, can be applied to any combination of signal and noise variance.
Section B-2 in Appendix B shows that if the NSR stays the same, the derivative can be
computed with the same relative accuracy. Note, though, that if the standard deviation of the
signal increases, the signal’s magnitude scales equally. As a result, the standard deviation of
the derivative error also scales by the same factor. However, since both the signal’s magnitude
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and the standard deviation of the derivative error scale equally, the relative accuracy of the
derivative estimation remains the same.

Several array configurations are considered. The variable values that will be considered are
given in Table 3-2. In the simulations and result, ls is compared with the number of magne-

Table 3-2: Considered Variables Values for Array Configurations

Variable Values
Spacing [m] 0.01, 0.013, 0.02, 0.03, 0.05, 0.07, 0.1, 0.12, 0.15, 0.17, 0.2, 0.25, 0.3, 0.357

ls [-] 50, 38.5, 25, 16.7, 10, 7.1, 5, 4.2, 3.3, 2.9, 2.5, 2, 1.7, 1.4
Number of mags. 2 × 2, 3 × 3, 4 × 4, 5 × 5

σ2
y [µT] 0.12, 0.32, 0.52, 0.72, 0.92

NSR [-] 0.040%, 0.36%, 1.0%, 1.96%, 3.23%

tometers and the measurement noise.

3-3-2 Variance of Spatial Derivative Estimate Error

In order to use the spatial derivative as training data for GPR, the variance of the derivative
estimates must also be provided for all the desired array configurations. To achieve this, a
simulation experiment was conducted by placing one hundred arrays within a random mag-
netic field in a grid-like structure. For each of the hundred arrays, the spatial derivative was
estimated. Then these derivative estimates were compared to the true derivatives to calculate
the variance of the derivative error. This process was repeated 70 times to assess the uncer-
tainty in the variance estimate. By performing this analysis across all array configurations
and all derivative estimation methods, the most effective array configuration and method can
be identified. Figure 3-1 shows an example of the setup to determine the variance of the
derivative estimate. It only shows the magnitude of the magnetic field, but to determine the
variance of course the individual components are used.

We generated all data by sampling from the GP priors at the desired locations. This is done by
first drawing samples from a standard normal distribution with mean zero and unit variance
as the same size as the desired kernel from Eq. (3-6) using the Numpy library in Python. By
applying the Cholesky decomposition to the kernel matrix and multiplying the samples from
the standard normal distribution with the decomposed L of the kernel, the samples from the
kernel are obtained. Before applying the Cholesky decomposition, jitter of size 1e−8 is added
to the kernel to ensure positive definiteness and numerical stability. This process of drawing
samples from a kernel matrix K is given by

Z ∼ N (0, IK)
LLT = chol(K + 1e−8I)

s = LZ ∼ N (0, K),
(3-26)

where Z are the samples from the standard normal distribution, s are the desired samples
and IK the identity matrix with the same size as K.

For each of the arrays in Figure 3-1 the spatial derivative is evaluated using one of the proposed
derivative estimation methods, where the magnetic field measurements are corrupted with a
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Figure 3-1: Example of the magnitude of a generated magnetic field with one hundred magne-
tometer arrays spread over the area in a grid. These magnetic field maps are used to estimate
the variance of the derivative estimate. Each black dot represents a magnetometer, with each
number indicating an array.

certain amount of white noise. These results are then used to determine the variance of the
derivative estimate error for that particular map as

σ2
d,i =

∑100
i=1(Ĥd,i − Hd,i)2

100 − 1 , (3-27)

where σd,i denotes the standard deviation of the ith component of the spatial derivative, Hd,i

the ith component of the spatial derivative and Ĥd,i the corresponding estimate. The standard
deviation of all components together in a vector is indicated by σd ∈ R9. By repeating this
process for 70 different randomly generated maps, a variance of the variance of the derivative
estimate error is obtained, providing an indication of the uncertainty of the variance. In
addition to the randomly generated magnetic field, the noise realizations also differ between
the 70 iterations.
This procedure is applied to all the desired different array configurations and all derivative
estimation methods, giving rise to several different plots. Note, however, that in the case
of the local GP method, the variance of the derivative estimate is already provided by the
GP. Since the model used to generate the magnetic field is identical to the GP model used
to make the derivative estimate, the variance provided by the GP is also identical to if one
were to manually determine the variance using Eq. (3-27). This was verified experimentally,
as can be observed in Appendix D.
Additionally, a preliminary experiment is also performed on a three-dimensional cubic array to
examine how the results from the two-dimensional array might transfer to three-dimensional
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arrays. This experiment also evaluates the variance of the derivative estimate error for several
numbers of magnetometers and follows the exact same procedure as for the two-dimensional
arrays. The experiment is limited to the local GP method since including the variance can be
computed analytically. The other methods were excluded because of the large computational
demand and time required to manually compute the variance, especially for three-dimensional
arrays.

3-3-3 Map Quality: Local Odometry and Global Maps

Once the variance of the derivative estimate error has been determined, the spatial derivative
can be used as training data for GPR. Two scenarios are analyzed. First, the derivative and
full kernel are applied to a global map with a fixed trajectory. The derivative kernel uses
a single measurement at the center of the array along with the spatial derivative, while the
full kernel uses all magnetometers on the array. The comparison between the two kernels
aims to reveal whether the reduction in computational cost justifies the loss in map accuracy.
In the second scenario, both kernels are applied to a local map, where only a single time
instant of measurements from an array is used to make predictions in the neighborhood. This
process mimics how the magnetic field is used for the model-based odometry method, since the
method relies on making predictions in close proximity to the single set of measurements from
the array. Comparison of the two kernels should provide insight into whether the derivative
kernel might be more suitable for odometry or global mapping purposes. However, since the
number of data points for the local map is significantly lower compared to a global map, it is
less likely to encounter computational issues. Therefore, it is less common to need a reduction
in computational burden, which reduces the number of potential use cases for the derivative
kernel for odometry purposes. Only in the case that the update frequency is really high or if
little computational power is available could the derivative kernel potentially be useful.

Global Map

In case of the global map, the map quality for the derivative and the entire kernel is evaluated
for locations far away and close to the training data. The map will be evaluated for the
different array configurations to determine which configurations provide the most accurate and
reliable predictions while considering computational cost. For each considered configuration,
70 simulations will be run to account for the variability in the measurement noise. Both
the trajectory and the map are fixed between the simulations. Hence, the only difference
between the simulations are the realizations of the measurement noise. The trajectory and
map were kept constant between the simulations to avoid too much variability and ensure
more consistent and comparable results. Not only is it important to analyze whether the
predictions are close to the true magnetic field, but also how accurate the uncertainty is.
Therefore, the map was selected so that test data that are near and far from training data
is considered. Figure 3-2 shows the trajectory and magnetic field map used to evaluate the
two kernels. At the first 43 time instances, arrays are present on the global map and serve as
training data, and the last 57 points are single points and serve as test data.

The magnetic field values and spatial derivatives in Figure 3-2 are all generated using Eq. (3-
26) and Eq. (3-6). To make predictions using the full kernel, the training locations Xall and
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Figure 3-2: The trajectory of the array and the magnetic field used for evaluating the derivative
and the full kernel. The black dots indicate the magnetometers used to obtain the training data
and the white dots the test data. This particular instance uses an array of three by three and a
spacing of seven centimeters, ls = 7.1.

test locations X∗ are introduced as follows

Xall =

X1
...

Xna

 , Xi =

 xi,1
...

xi,nm

 , X∗ =

 x∗
1
...

xn∗

 , (3-28)

where Xall denotes the locations of the magnetometers on all arrays, Xi the locations of
the ith array, na the number of arrays, xi,j the location of the jth magnetometer on the ith

array, nm the number of magnetometers on the array, x∗
i the ith test data location and n∗

the number of training points. The training data of all magnetometers on the array of the
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magnetic field and the test data are introduced as

Yall =


Yall,1
Yall,2

...
Yall,na

 , Yall,i =

 H(xi,1) + ϵy
...

H(xi,nm) + ϵy

 , F∗ =

H(x1)
...

H(xn∗)

 , (3-29)

where Yall denotes the magnetic field measurements of all magnetometers, Yall,i the magnetic
field measurements of the ith array, ϵy ∼ N (0, σ2

yI3) is the magnetometer measurement noise
and F∗ the predictions of the magnetic field. The joint distribution of the training and test
data is given by[

Yall
F∗

]
∼ N

(
0,

[
Kcurl(Xall, Xall) + Ina ⊗ σ2

yI3 Kcurl(Xall, X∗)
Kcurl(X∗, Xall) Kcurl(X∗, X∗)

])
. (3-30)

The notation of using vectors of locations as inputs to the kernels, rather than single locations,
indicates that the kernel is evaluated for all possible pairs of locations between the two arrays,
resulting in a matrix where each entry corresponds to a kernel evaluation between a pair of
locations.

The predictions of the magnetic field at the test locations are now determined by substituting
the kernels from the joint distribution into the posterior distribution from Eq. (2-11). This
provides the posterior distribution of F∗ conditioned on Yall.

To make predictions using the derivative kernel, the spatial derivative for each array is com-
puted using the noisy measurements. These will be included in the training data. The test
locations X∗ are equivalent as for the full kernel, but the training locations Xder are given by

Xder =

 x1,0
...

xna,0

 , (3-31)

where xi,0 denotes the magnetometer that is assigned as the middle one on the ith array. The
training data including the magnetic field as well as the corresponding spatial derivative are
introduced as

Yder =



H(x1,0) + ϵy

Hd(x1,0) + ϵd

H(x2,0) + ϵy

Hd(x2,0) + ϵd
...

H(xna,0) + ϵy

Hd(xna,0) + ϵd


, (3-32)

where Yder denotes the measurement data including the magnetic field and the spatial deriva-
tive at the middle magnetometer of each array and ϵd ∼ N (0, σ2

d) the noise on the spatial
derivative estimates. The joint distribution of the training and test data is given by[

Yder
F∗

]
∼ N

(
0,

[
Kcurl,d(Xder, Xder) + Ina ⊗ σ2

y,d KDK
curl,d(Xder, X∗)

KKD
curl,d(X∗, Xder) Kcurl(X∗, X∗)

])
, (3-33)
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where σ2
y,d = diag(σ2

yI3, σ2
d), Kcurl is defined in Eq. (2-23), Kcurl,d in Eq. (3-6), and KDK

curl,d
and KKD

curl,d in Eq. (3-8). Equivalent to the full kernel, the predictions for the derivative kernel
are determined using Eq. (2-11) to compute the posterior distribution of F∗ conditioned on
Yder.

Local Odometry Map

In addition to comparing the derivative kernel with the full kernel for the global map, the
comparison will also be made for a local map. Whereas the focus of the global map is more
on evaluating the map quality for test points that are further away from the training data,
the local map solely analyzes test points that are close or even within the range of the array.
This is a better indicator of odometry performance. The following simulation experiment is
designed with the model-based odometry approach in mind to evaluate how well the different
configurations and kernels are capable of making predictions that are relevant for this kind
of odometry approach.

Equivalent to the global map, the local map will be evaluated for the different array config-
urations. For each configuration, multiple simulations will be run to obtain an average map
quality. In contrast to the global map, though, not only will the measurement noise vary
between simulations, but the map will as well. This approach ensures that the results are
not biased towards a specific spatial derivative. In the case of the global map, many different
spatial derivatives are considered because many array locations are included in a single simu-
lation, which makes it reasonable to use only a single map. However, the local map focuses on
one array with only a single spatial derivative. This could give rise to biased results because
certain configurations might be better suited for that particular derivative. Hence, the deci-
sion was made to not fix the map for all simulations. Given the increased variability between
simulations compared to the global map, a larger number of simulations per configuration is
desired. Therefore, 200 simulations are conducted per configuration instead of 70.

This experiment is inspired by at what locations the model-based odometry method, which
was introduced in Section 2-5-2, has to evaluate the model [29, 30]. This method creates a
local magnetic field map based solely on the measurement of all magnetometers on the array
at the current time step. Then at the next time step it compares the next measurements to
the local map and finds the pose change that is most likely. In this process, it evaluates the
local map several times at the location estimates of all magnetometers on the array as they
progress to shift towards the final estimate. Therefore, this experiment will use a model based
on a single set of measurements from an array to evaluate the magnetometer locations of a
shifted version of this array. To obtain sufficient test data, six shifted versions of the array in
different directions are considered per simulation.

Since the quality of the local map is heavily influenced by the distance between the center
of the local map and the prediction locations, several distances will be analyzed separately.
From here on, those distances will be referred to as the step size, in line with the meaning of
this distance when the local map is used for odometry. Similarly to how the spacing between
the magnetometers was made dimensionless by dividing the lengthscale by the spacing, the
step size is also made dimensionless. This new variable is introduced as

lss = l

step size . (3-34)
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One can imagine that if the magnetic field changes rapidly in value, a smaller step size should
provide similar results as when the field changes less quickly and a larger step size is used. By
making the variable in this way dimensionless, the effect of the lengthscale can be neglected.
The physical meaning of llss is the number of steps that fit within a lengthscale. Table 3-3
shows the step sizes that will be considered in the experiment.

Table 3-3: Considered Step Sizes for Local Map Quality

Variable Values
Step size [m] 0.01, 0.02, 0.05, 0.075, 0.1, 0.125

lss [-] 50, 25, 10, 6.7, 5

Figure 3-3 shows an example of a local map used for this experiment. The three components
of the magnetic field are shown in the three plots. A single three-by-three magnetometer
array is located at the center of the map, indicated by the black dots, which specifies the
training data. The white dots indicate the test data and specify five shifted versions of the
array in five different directions with a distance equal to the step size. The five test arrays
are evenly spaced along the circle around the original array. To ensure that the exact same
test locations are not used for all simulations, the positions of the test arrays on the circle
differ per simulation, while keeping the spacing constant.
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Figure 3-3: An example of a simulation used for the local map. The black dots indicate the
array used as training data and the white dots the test data. This particular simulation uses an
array of three by three with a spacing of 15 centimeters, ls = 3.3. The test points specify shifted
version of the array in different directions with a distance equal to the step size. The step size in
this particular simulation is equal to five centimeters, lss = 10

The procedure for making predictions for the local map is almost identical to that of the global
map. The only difference lies in the number of training and test data points. Therefore, only
the locations and magnetic field vectors are briefly introduced here. Using the full kernel, the
training locations Xall and test locations X∗ for the local map are introduced as

Xall =

 x1
...

xnm

 , X∗ =

X∗
1

...
Xn∗

a

 , X∗
i =


x∗

i,1
...

x∗
i,nm

,

 (3-35)

where n∗
a is the number of test arrays, which in this experiment is fixed to five, and where

x∗
i,j is the location of the jth magnetometer on the ith test array. The training data of all
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magnetometers on the array of the magnetic field and the test data are introduced as

Yall =

 H(x1) + ϵy
...

H(xnm) + ϵy

 , F∗ =


F∗

1
...

F∗
n∗

a

 , F∗
i =


H(x∗

i,1)
...

H(x∗
i,nm

)

 , (3-36)

where xi denotes the ith magnetometer on the array.

The joint distribution of the training and test data is equivalent to the one given for the global
map in Eq. (3-30), but using Eq. (3-35) and Eq. (3-36). The predictions of the magnetic field
at the test locations are now again determined by substituting the kernels from the joint
distribution into the posterior distribution from Eq. (2-11).

For the derivative kernel the training locations Xder and the training data Yder are given by

Xder =
[
x0
]

, Yder =
[

H(x0) + ϵy

Hd(x0) + ϵd

]
, (3-37)

where x0 denotes the middle magnetometer on the array. The joint distribution, required to
compute the prediction at the test locations, is equivalent to the one used for the global map
in Eq. (3-32), but uses the training locations and data defined here.
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Chapter 4

Results

In this chapter, the results of the experiments introduced in Section 3-3 are presented. First,
Section 4-1 provides the results on the variance of the derivative estimate error for the dif-
ferent array configurations and derivative estimation methods. These results will show which
derivative estimation method provides the most accurate derivative estimate and for which
array configuration they are obtained, addressing the first research sub-question and part of
the second. This needs to be addressed, as it is crucial to use an accurate spatial derivative
in the derivative kernel before examining whether it can serve as an approximation to the
full kernel. In addition, results on the computational efficiency of the derivative estimation
methods are discussed, addressing the last part of the second research sub-question. Sec-
tion 4-2 subsequently presents the results of the experiment assessing the map quality for the
derivative and the full kernel, evaluated for both the global and local odometry map. The
derivative and the kernel will be compared to each other in terms of mapping quality and
computation time to examine whether the derivative kernel is a viable solution to alleviate
part of the computational burden. This answers both parts of the third research sub-question.

The results on the spacing are measured in the dimensionless variable ls. However, to more
clearly link these results to reality, some of the results will be translated back to their original
variable by using typical values for the lengthscale. Typical lengthscale values depend to a
large extent on characteristics of the building and on how close the magnetic field is measured
to the floor. Closer measurements result in greater fluctuations in the field and a smaller
lengthscale, and vice versa. In the literature, there seems to be a distinction between studies
that use smaller and larger lengthscales, for instances in [30, 26] smaller lengthscales are used
and in [19, 38] larger ones. Therefore, the main results on ls will also be translated into
spacing for both scenarios. For the smaller lengthscales, a representative value of l0 = 0.15
is used, which is used in [30]. For the larger lengthscales, a value of l1 = 1.2 is used, which
is in the range of values used in [19, 38]. To quickly express an ls value in terms of spacing
for l0 and l1, the following notation will be used: ls = 1(l0 : 0.15 m, l1 : 1.2 m), where in this
example l0 gives rise to a spacing of 0.15 m and l1 to a spacing of 1.2 m.

Similarly, to more clearly link the results for the measurement noise to real-world scenarios,
we will focus specifically on an noise-to-signal ratio (NSR) of 1%. This is also, for example,
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the NSR used in [37]. To the best of our knowledge, this is a typical NSR value. In this
thesis, an NSR of 1% translates to a measurement noise of σy = 0.5 µT.

4-1 Spatial Derivative Estimates

Several experiments were conducted that considered different array configurations and deriva-
tive estimation methods to evaluate the accuracy of the spatial derivative estimate. This
section will first examine and analyze the result from these experiments. The setups of these
simulation experiments were presented in Section 3-3-2. The computational efficiency of the
different derivative estimation methods will then be discussed.

4-1-1 Variance of Spatial Derivative Estimate Error

This section focuses on with which accuracy the spatial derivative estimate can be deter-
mined for the three derivative estimation methods that were introduced in Section 3-2. These
methods will be analyzed and compared with each other for the various array configurations.
In practice, it is possible to construct a magnetometer array of any desired size and shape.
These different configurations heavily influence the accuracy of the derivative estimate. A
higher accuracy of the derivative estimate is beneficial for the derivative kernel and yields a
higher quality map. This shows the importance of the array configuration. In Section 3-3-2
the simulation experiment that is used to determine the variance of the derivative estimate
error is introduced. This experiment simulates random magnetic fields, and derivatives are
estimated for magnetometer arrays placed in these fields. The variance of the estimation
error is computed by comparing the true derivative to the estimates. This approach identifies
the accuracy of the derivative estimation methods for various configurations. As the three
different methods yield similar results for the various configurations, not all results are pre-
sented for each method to prevent repetition. Since finite difference method will turn out to
provide less accurate derivative estimates and the local Gaussian process (GP) method has
more uncertainty regarding how well the results translate to real-world data, the main focus
will be on the linear least squares (LLS) method.

The first-order spatial derivative consists of nine terms, or six independent terms when the
curl-free property is applied. Five of these terms are important when the derivative is used
for creating a two-dimensional magnetic field map, as the zz-component plays no role. Due
to the curl-free property, different components have different variances. For instance, the
xy/yx-component generally has a lower variance than the xx- and yy-components, since
it has access to more data. Specifically, it can use how the x-component changes in the y-
direction, as well as how the y-component changes in the x-direction. This gives rise to a more
accurate estimate for the xy/yx-components. Furthermore, the variance of the zz-components
is nearly constant across all variables, as there is no information available about magnetic
field changes in the z-direction. As a consequence, the derivative estimates always yield zero,
resulting in a variance of approximately 300 µT2 for all variables. Therefore, estimates for
any derivative component with a variance greater than 300 µT2 are even less accurate than
always estimating zero. However, in the main sections of this thesis, instead of showing the
variance of the derivative estimation error for all or one of the components of the derivative,
a combined term is introduced. This combined term is the mean of the variances of the six
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relevant components for creating a two-dimensional map: the xx-, xy-, yx-, yy-, zx- and
zy-components. This saves a significant amount of space and has the advantage that it better
represents how well the spatial derivative can be used for creating a map as it considers all
relevant components. The confidence interval/standard deviation of this new mean variance
term is taken as the mean of the confidence intervals/standard deviations of the individual
components. Figures showing the variances for all the individual components will be included
in Appendix C.

Variance Using the Linear Least Squares Method

This section focuses on the LLS method, which is described in Section 3-2-2. First, the
results on the effect of the number of magnetometers on the array are presented, followed
by the results on the effect of the measurement noise. Figure 4-1 shows the variance of the
combined components of the spatial derivative error when the LLS method is used. The
measurement noise was set to σy = 0.5 µT, which equals a NSR of 0.01.
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Figure 4-1: Relationship between the mean variance of the combined components of the spatial
derivative estimate error and ls using the LLS method. The relationship is plotted for different
number of magnetometers on the array and the different order of approximations of the LLS
method. The color of each bar denotes the number of magnetometers on the array, and the shade
of the color the order of approximation of the LLS method. The bars on top of the lines indicate
the 95% confidence interval. The variance of the measurement noise is set to σ2

y = 0.52 µT
(NSR=1%).

When first inspecting the general trend of this figure, it is clear that neither small nor large
values of ls give rise to the best estimate with the lowest error variance. For spacings ls > 10
the variance continues to increase, and the same holds true for ls < 2.5. When ls is large,
that is, the spacing is small relative to the lengthscale, the noise negatively influences the
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estimate of the spatial derivative. This is because, when the spacing is small relative to the
lengthscale, the difference in magnetic field measured by the magnetometers, which is used to
compute the derivative, is small compared to the measurement noise. As a result, the noise
has a relatively large impact on this small difference in magnetic field, preventing an accurate
computation of the spatial derivative. However, very small values of ls, which means a large
spacing relative to the lengthscale, do not provide the most accurate estimates either. In this
case, the magnetometers are spaced too far apart, meaning that the measured differences in
the magnetic field are no longer representative of the local derivative. Instead, they serve more
as separate measurements with less correlation with each other. The optimal spacings for all
the different magnetometers on the array lie in a range from ls = 2.5 (l0 : 0.06 m, l1 : 0.48 m)
to ls = 10 (l0 : 0.015 m, l1 : 0.12 m). The lowest overall variance is found with a five-by-five
array at ls = 3.3 (l0 : 0.045 m, l1 : 0.33 m) with a variance of 2 µT2. However, variances at
ls = 2.9, ls = 7.1 and ls = 10 are very similar.
When examining the effect of the order of the LLS method, several points stand out. Higher-
order approximations provide better estimates when more magnetometers are present and ls
is on the lower end. For instance, if the number of magnetometers is only two by two, there
are insufficient measurements to accurately evaluate the higher-order spatial derivatives, as
can be observed from Table 3-1. As a result, the higher-orders provide almost identical results
compared to the lower-orders. However, if more magnetometers are available on the array,
the higher-order terms can be uniquely determined and start to provide more accurate results
of the first-order derivative. Since now a higher-order model can be fitted, which better
represents the local behavior of the function, the accuracy of the first-order spatial derivative
estimate also improves. However, the degree to which higher-order approximations improve or
even deteriorate accuracy also depends on ls. As can be observed from the figure, if ls is small
(approximately ls < 5), the higher-orders do improve the accuracy in case there are sufficient
measurements. But if ls grows (approximately ls > 5), the higher-order approximations start
performing worse than the lower-orders. This can be attributed to two factors. First, since
the spacing is small and the measurement of the magnetic field values are quite close to
each other, the evolution of the field can already be approximated rather well with lower-
order approximations. Second, since the relative impact of the noise increases as the spacing
becomes smaller, higher-order approximations start to overfit to the noise as they are more
complex models. The lower-orders suffer less from overfitting, and hence perform relatively
well compared to the higher-orders. Figure C-1 in Appendix C shows the variances of the
derivative estimates for all relevant components of the Jacobian.
By reducing the data in Figure 4-1 so that only the order of approximation is shown that
provides the best result, Figure 4-2 is obtained, where the annotations denote the order of
approximation used for that particular data point. This provides a clearer line graph to
compare the number of magnetometers.
The optimal order of approximations in Figure 4-1 are in line with the minimum required
number of magnetometers from Table 3-1. Almost none of the data points indicate an optimal
order of approximation that is higher than the corresponding number of magnetometers on
the array would allow for, based on Table 3-1. Only the first three ls values of the two-by-two
array indicate a second-order approximation, while five magnetometers are required. However,
if we examine the first three ls values for the blue lines in Figure 4-1, we can observe that the
higher-order approximations yield virtually the same variance as the first-order. Overall, this
suggests that the theoretical results from Table 3-1 indeed apply to this particular setup.
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Figure 4-2: Relationship between the mean variance of the combined of the spatial derivative
estimate error and ls using LLS method with the order of approximation that gave rise to the
lowest variance. The relationship is plotted for different number of magnetometers on the array.
The variance of the measurement noise is set to σ2

y = 0.52 µT (NSR=1%). To ensure that the
confidence intervals do not overlap, some of the lines are shifted to the right, but they do still
correspond to the same ls

Figure 4-2 shows that larger grids provide better estimates of the spatial derivative. Especially
the grids that have a magnetometer at the center of the array, so the three-by-three and five-
by-five grids, perform relatively well compared to the others. This is probably due to the
symmetry that allows for more effective utilization of the magnetometers to compute the
derivative. Additionally, arrays with more magnetometers generally yield better estimates.
Particularly at smaller spacings of ls ≥ 7.1, using more magnetometers yields notably more
accurate estimates, despite the fact that the same order is used across the different arrays
in this region. This can be attributed to arrays with more magnetometers being better at
averaging out the noise, which plays a more prominent role at smaller spacings. Apart from the
fact that more magnetometers provide more accurate estimates, the range for which accurate
estimates are obtained is significantly larger as well. This can again partially be attributed
to the fact that more magnetometers are better at averaging out the noise, but also that it
can use larger order of approximations at smaller spacings. Figure C-2 in Appendix C shows
the mean variance for the individual components for the order that gave rise to the lowest
variance.

Figure 4-3 shows the mean variance of the combined components of the spatial derivative
error for different measurement noise values when the LLS method is used. The number
of magnetometers was set to five by five. The noise value 0.1 µT, 0.3 µT, 0.5 µT, 0.7 µT
and 0.9 µT correspond to the following NSR values 0.040%, 0.36%, 1.0%, 1.96% and 3.23%,
respectively.
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Figure 4-3: Relationship between the variance of the xx-component of the spatial derivative
estimate error and ls using the LLS method. The relationship is plotted for different measurement
noise level and different order of approximations of the LLS method. The color of each bar in the
figure denotes the measurement noise, and the shade of the color the order of approximation of
the LLS method. The bars on top of the lines indicate the 95% confidence interval. The number
of magnetometers for all configurations was set to five by five.

While some similar observations can be drawn from Figure 4-3, it also provides new insights.
Specifically, the plot verifies that the noise has a relatively large impact on the derivative
accuracy at smaller spacings. For instance, at ls = 1.4 a larger noise value does not influ-
ence the variance much, but at ls = 50 an increased noise level significantly deteriorates the
derivative estimate. Furthermore, the plot also illustrates that higher-order approximations
suffer more from noisy measurements than lower-order approximations. This can be clearly
observed at intermediate values of ls, for instance, at ls = 4.2. There, the blue lines show
that for small noise values higher-order approximations provide significantly better estimates,
whereas if the noise increases, see, for instance, the black lines, the higher- and lower-orders
perform equally well. In fact, the lower-order approximations are not much influenced by
noise. Only if ls increases, the impact of the noise becomes apparent for lower-order approx-
imations. Ultimately, the optimal order of approximation varies not only with the spacing
and number of magnetometers, but also with the measurement noise.

Another interesting observation is that the first- and second-order, as well as the third- and
fourth-order approximations, yield the exact same variance. This is also evident in Figure 4-1
for array configurations with a magnetometer in the center of the array. The reason that
two consecutive orders provide the exact same derivative estimate in the case of a symmetric
array configuration, relates to a phenomenon that was described in Section 3-2-1. There, it
was shown that using the Taylor series expansion with a symmetric setup, the even-order
spatial derivatives dropped out of the approximation. Since the LLS method is also based on
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the Taylor series expansion, applying a first-order LLS method means the second-order does
not contribute in (3-16). Therefore, every odd-order LLS method produces the same spatial
derivative estimate as the subsequent even-order. As a result, in the case of a symmetric array,
the extra computational power required for an even-order LLS method is never justified when
compared to the preceding odd-order. Figure C-3 in Appendix C shows the variance for all
individual components.

By reducing the data in Figure 4-3 so that the values of the orders that resulted in the
lowest variance are shown, Figure 4-4 is obtained. The two local minima in Figure 4-4 that
are present for all noise levels are caused by the fact that the different orders yield the best
results for different spacings. The figure also clearly illustrates the effect of the measurement
noise on the optimal ls. As the noise level decreases, the optimal ls value shifts toward larger
values, indicating that less noise gives rise to a tighter optimal spacing. This is because,
in the absence of noise and with perfect measurement, a spacing that goes to zero in the
limit would produce the best derivative estimate. Therefore, by decreasing the noise and its
impact, the optimal spacing becomes tighter. Figure C-4 in Appendix C shows the variance
for all individual components.
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Figure 4-4: Relationship between the mean variance of the combined components of the spatial
derivative estimate error and ls using the LLS method with the order of approximation that gave
rise to the lowest variance. The number of magnetometers for all configurations was set to five
by five.

Overall, the results of the LLS method indicate that arrays with the highest number of mag-
netometers and the lowest noise levels can provide the most accurate derivative estimates.
Hence, to get the most accurate derivative estimate, one should use as many magnetometers
with the lowest possible noise. However, in practice, there is always a trade-off between per-
formance and costs. Symmetric arrays with a magnetometer in the center perform relatively
well. These arrays with up to five by five magnetometers achieve their lowest variance at an
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optimal spacing that generally lies in a wide range from ls = 2.5 (l0 : 0.06 m, l1 : 0.48 m)
to ls = 10 (l0 : 0.015 m, l1 : 0.12 m). The exact optimal spacings depend on the number of
magnetometers and the level of noise: increasing the number of magnetometers or decreasing
the noise level shifts the optimal spacing towards tighter spacings and vice versa. To select a
suitable spacing given a certain number of magnetometers, Figure 4-1 and Figure 4-2 should
be consulted. If the measurement noise of the magnetometers deviates from the NSR=1%
used in those figures, the spacing can be adjusted according to Figure 4-3 and Figure 4-4.
When doing so, however, it should be taken into account that those figures are based on
arrays with five by five magnetometers. Arrays with fewer magnetometers are more sensitive
to noise, and the impact of the noise on the optimal spacing is more pronounced. Selecting
the optimal spacing in practice is challenging, as these results do not perfectly translate to
real-world conditions. Real-world magnetic field measurements are likely to be noisier due to
sensor errors [18], for instances due to biases. In addition, assumptions regarding the curl-free
property and known distances between magnetometers might not hold entirely in practice,
introducing additional noise. Therefore, it is advisable to select a spacing closer to the larger
spacings of the optimal range, as more noise tends to shift the optimal spacings toward that
direction.

When selecting an order of approximation to use for a certain chosen array, we again suggest
to initially base it on the number of magnetometers in Figure 4-1 and Figure 4-2. If the NSR
deviates significantly from the NSR=1% used in those figures, any possible alterations can be
made again based on Figure 4-3 and Figure 4-4.

As a general recommendation, a symmetric array of five by five with a spacing of ls = 2.9
(l0 : 0.052 m, l1 : 0.41 m) is a reliable choice that performs well for a wide range of noise levels
using the LLS method.

Variance Using the Finite Difference Method

Another commonly used method for computing derivatives is the finite difference method,
described in Section 3-2-1. In this thesis, due to its widespread use, it serves mainly as
the baseline for comparing the other methods. Figure 4-5 shows the mean variance of the
combined components of the derivative estimate error using the finite difference method for
different number of magnetometers. This figure shows that the optimal spacing for the finite
difference method is located at ls = 2 (l0 : 0.075 m, l1 : 0.6 m) with a grid of five by five
magnetometers and a fourth-order approximation. However, the difference with a second-
order central difference scheme at an ls of 2.9 is rather small. Interestingly, for most values
of ls the second-order central difference scheme performs better than higher-orders, which is
again due to the fact that higher-order approximations tend to overfit to the noise if ls is
large.

Compared to the LLS method in Figure 4-2, the finite difference method performs worse for
practically all spacings. Only for ls < 1.7 is the variance quite similar. Moreover, the LLS
method performs remarkably better, especially at small spacings. This can be explained by
the fact that measurement noise plays a large role for small spacings and the LLS method
uses all magnetometers on the array and is hence better at averaging out the noise. The
finite difference method only uses magnetometers that form a cross on the array. This also
explains why, especially for arrays with many magnetometers, the LLS method performs
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Figure 4-5: Relationship between the mean variance of the combined components of the spatial
derivative estimate error and ls using the finite difference method with the order of approximation
that gave rise to the lowest variance. The annotations denote the order of approximation that
resulted in the lowest variance. The variance of the measurement noise is set to σ2

y = 0.52 µT
(NSR=1%).

better compared to the finite difference method. For the finite difference method, larger
arrays have many unused magnetometers, whereas for smaller arrays, a larger portion of the
available magnetometers is used. Similar comparison observations can be drawn from the
figure showing the different noise values. Therefore, these results are shown in Figure C-5 in
Appendix C.

Unless an array with ls < 1.7, corresponding to spacings larger than (l0 : 0.088 m, l1 : 0.71 m),
is already available, it is better to apply the LLS method instead of the finite difference.
If this finite difference method is implemented, it is optimal to use an array with five by
five magnetometers, a fourth-order approximation and an ls = 2 (l0 : 0.075 m, l1 : 0.6 m).
However, since a three-by-three array with a smaller spacing of ls = 2.9 (l0 : 0.052 m, l1 :
0.41 m) and a second-order approximation is significantly smaller and does not perform much
worse, this might be a good option as well.

Variance Using the Local GP Method

Finally, the local GP method, described in Section 3-2-3, is analyzed and compared with the
other two methods. The uncertainties, which are provided along the predictions in Gaussian
process regression (GPR), depend solely on the kernel and relative input locations, as can
be observed in Eq. (2-7), meaning that the variance remains the same across simulations.
Therefore, it is not necessary to run multiple simulations in order to determine the variance,
as each simulation would yield the same variance. Due to this reduced computational burden,
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the decision was made to include even larger magnetometer arrays in the analysis. Arrays
of up to nine by nine magnetometers are included. It was experimentally verified for arrays
with up to five by five magnetometers that the variance provided by the GPR was practically
identical to if the variances were computed manually by running 70 simulations of Figure 3-1.
These results are shown in Appendix D.
Figure 4-6 presents the variance for arrays with different numbers of magnetometers using the
local GP method. This method also shows that array configurations with a magnetometer
at the center of the array perform relatively well. In fact, the variances corresponding to
arrays with a central magnetometer closely follow those of arrays with one additional mag-
netometers, while notably outperforming the one with one fewer. Additionally, this figure
also demonstrates that increasing the number of magnetometers helps to average out the
measurement noise, increasing the optimal ls value. This not only shifts the optimal value to
a smaller spacing, but also widens the range of ls values for which an accurate estimate can
be computed.
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Figure 4-6: Relationship between the mean variance of the combined components of the spatial
derivative estimate error and ls using the local GP method. The variance of the measurement
noise is set to σ2

y = 0.52 µT (NSR=1%).

Compared to the LLS method in Figure 4-2 the local GP method in Figure 4-6 produces
variances that are generally slightly lower. In addition to taking the curl-free property into
account, as in the other two methods, this technique also takes the whole model into account.
Hence, it is aware of the hyperparameters l, σf , σlin. and the amount of measurement noise
σy. This is probably the reason why the performance is better. The information on the noise
probably gives the local GP method an advantage over the LLS method at small spacings.
The local GP method appears to converge to a variance of approximately 200 for ls > 50,
which is equal to the variance obtained when always predicting zero. The variance of the
LLS method for ls > 50 in Figure 4-2, on the other hand, appears to grow unbounded
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and does not converge. The other hyperparameters, particularly l and σf , describe how the
magnetic field evolves over space. This information is especially useful for arrays with a larger
spacing, as it helps characterize how the magnetic field evolves between the measurements.
The variance using the local GP method performs significantly better at larger spacings
compared to the LLS method. As a consequence, the local GP method typically reaches
its optimal spacings at larger spacings compared to the LLS method. For instance, for a
3 × 3 grid, the local GP method has an optimum at approximately ls = 3, whereas the LLS
method at approximately ls = 4. This shows that due to the awareness of the model the
local GP method can capture the spatial derivative more accurately at larger spacings. To
what extent these advantages are transferred to real-world data is unknown. The range of
optimal spacings of the local GP method is similar to the range of the LLS method, but it
is slightly shifted toward larger spacings. When considering arrays up to five by five, the
optimal spacings lie in an approximate range from ls = 2 (l0 : 0.075 m, l1 : 0.6 m) up to ls = 7
(l0 : 0.021 m, l1 : 0.17 m). Arrays with more magnetometers have a wider range and a smaller
optimal spacing. The figure illustrating the variance for various values of the measurement
noise is shown in Figure C-6 in Appendix C.

Effect of Hyperparameter Uncertainty on Local GP Method

To better understand what the effect is of using hyperparameters that do not exactly match
the underlying model, a simulation experiment is conducted in which the hyperparameters are
varied. The hyperparameters of the underlying model that are used to generate the magnetic
field are kept constant. Only the hyperparameters associated with the local GP method are
varied from one array to another. The following hyperparameters are changed: σf , l, σy and
σlin.. Each hyperparameter is perturbed using a uniform distribution from -0.4 to 0.4 times its
original value. This results in a mean absolute perturbation of 20% for each hyperparameter.
Figure 4-7 shows the comparison of the variance of the derivative estimate error between
varying the hyperparameters and using the underlying true hyperparameters.

The figure illustrates that the variance based on the varying hyperparameters is higher than
the corresponding variance using the true hyperparameters. The largest increase in variance
is observed for larger spacings. The variance increases for larger spacings because the larger
distance between the magnetometers requires the GP to rely more on the model to accurately
predict the magnetic field and spatial derivative. However, the accuracy of this model de-
creases due to the varying hyperparameters. In the case of smaller spacings, the model plays
a less crucial role. Because of the fact that the modeling errors result in a less accurate deriva-
tive estimate at larger spacings, the optimal spacings tend to shift to smaller spacings, albeit
very slightly. Figure C-7 in Appendix C shows the comparison for all different components
of the spatial derivative.

When comparing the variances with the varying hyperparameters from Figure 4-7 to the vari-
ances obtained using the LLS from Figure 4-2, it can be observed that the difference between
the local GP method and the LLS method has become even smaller. The advantage that
the local GP had compared to the LLS method, particularly at larger spacings, is dimin-
ished. However, despite the variable hyperparameters, the local GP method still provides
lower variances than the LLS method.

Overall, if the accuracy with which the hyperparameters can be determined is similar to the
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Figure 4-7: Comparison of the mean variance of the spatial derivative estimate error between
using varying hyperparameters and true hyperparameters using the local GP method for arrays
with different number of magnetometers. Only the confidence interval for the simulation with
varying hyperparameters is shown, the other simulation with true hyperparameters is based on
the analytic variance. The variance of the measurement noise is set to σ2

y = 0.52 µT (NSR=1%).

uncertainty used in this experiment or better, the local GP method appears to be the better
option. However, in practice, more uncertainties and errors are present, such as sensor errors
and modeling assumptions. To what extent these factors exactly influence the local GP and
LLS methods remains unknown.

In practice, selecting an optimal spacing for the local GP method should be done similarly to
the LLS method. However, Figure 4-7 showed that errors in modeling assumptions and hyper-
parameters shift the optimal spacing to smaller spacings, since larger arrays rely more on the
model. This phenomenon is specific for the local GP method, as it makes more assumptions
on the model than the LLS method. Increased noise levels still shift the optimal spacing to
larger spacings, as can be observed in Figure C-7 in Appendix C. As a general recommenda-
tion, a symmetric array of five-by-five with a spacing of ls = 6 (l0 : 0.025 m, l1 : 0.2 m) is a
reliable choice, even if the hyperparameters and model do not represent the underlying mag-
netic field very accurately. However, if the hyperparameters represent the underlying model
well, a larger spacing of ls = 2.5 (l0 : 0.06 m, l1 : 0.48 m) is also a good recommendation.

Three-Dimensional Cubic Array Configuration

All the results so far are related to two-dimensional arrays. However, at least some of the
studies on the derivative-based odometry method used three-dimensional arrays [2, 3, 8, 9]. To
examine how the results relate to three-dimensional arrays, an experiment was simulated on
three-dimensional cubic arrays using the local GP method. Note that the three-dimensional

J.M. Beurskens Master of Science Thesis



4-1 Spatial Derivative Estimates 53

arrays used in the derivative-based odometry method are not structured in a cubic configu-
ration but more in a tetrahedron-like structure. Therefore, neither do these results directly
apply to those studies. Figure 4-8 compares the mean variance of the combined spatial deriva-
tive components for cubic arrays to planar arrays. It illustrates that, while the overall shape
of the variance for the cubic structure is still very similar to that of the planar structure, the
optimal spacing is slightly smaller. The reason for this decrease is probably that significantly
more magnetometers are present and that, even though the extra magnetometers are at dif-
ferent heights, the noise can be averaged out better, resulting in a smaller optimal spacing.
This idea is supported by the fact that most of the improvements of the derivative estimate
lie in the region of smaller spacings, where noise plays a larger role.

The cubic structure affects the variance of certain components of the derivative more than
others. Figure C-8 in Appendix C illustrates this. All elements that include at least one
z in the index show a significant improvement. The additional magnetometers that extend
into the z-direction now allow us to compute the zz-component, whereas with the planar
structure this was impossible before. Additionally, the xz- and yz-components also show a
great improvement because of the extra information on how the x- and y-components change
in the z-direction.

Overall, based on this preliminary experiment, extending the planar grid structure to a three-
dimensional cubic structure does not fundamentally change how the array configuration in-
fluences the accuracy of the derivative estimate. In other words, the results from a two-
dimensional array transfer probably transfer reasonably well to a three-dimensional array.
However, the increased number of magnetometers and improved capability of averaging out
the noise result in a smaller optimal spacing. Therefore, even though some of the studies
related to the magnetic field odometry method utilize three-dimensional array, the results
from this thesis are still useful. When applying the results to a three-dimensional cubic array,
one should use a spacing that is slightly smaller than the optimal spacing for the correspond-
ing two-dimensional array. However, if not a cubic structure is utilized but a more sparse
three-dimensional array, a similar optimal spacing is likely to apply as for the two-dimensional
array. That is because a sparse three-dimensional array does not have the benefit of the in-
crease in the number of magnetometers. Therefore, it is not necessarily better at averaging
out the noise.

4-1-2 Computational Efficiency of Derivative Estimation Methods

When implementing the derivative kernel, the derivative must be computed repeatedly. There-
fore, computational time also plays an important role, especially in combination with an it-
erative algorithm such as simultaneous localization and mapping (SLAM) or any odometry
method. Since this thesis focuses on the efficient use of magnetometer arrays, the computa-
tional efficiency of the derivative estimation methods is also analyzed. Figure 4-9 shows the
computation times for the various methods. The calculations were performed in Python on
a virtual machine in the IBM cloud with 8 vCPUs. Since the programming language and
code are not optimized for high-speed computations, only parts of the estimation process are
considered in the computation time. For the local GP method, the time required to fill the
kernels is ignored, only the computation of the inverse and the matrix operations required
to compute the predictions and uncertainty as specified in Eq. (2-7) are considered. These
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Figure 4-8: Comparison of the mean variance of the spatial derivative estimate error between two-
and three-dimensional arrays using the local GP method. The relationship is plotted for different
number of magnetometers. The variance of the measurement noise is set to σ2

y = 0.52 µT
(NSR=1%).

functions are implemented using the Numpy library and are highly optimized and should be
the bottleneck when this method is implemented for high-speed computations, specifically
the inverse computation. Furthermore, since this method is likely to be implemented within
an iterative algorithm where the derivative must be computed at each time step, the kernels
have only to be computed once beforehand. After all, the relative distances between the
magnetometers remain the same from time step to time step, resulting in the same kernels.
This also justifies excluding the filling of the kernels from the computation time. For the LLS
method, the bottleneck is related to solving the system of linear equations. The whole left-
hand side of Eq. (3-17) is independent of the measurements itself and can be computed once
beforehand using Sympy and is therefore ignored in the computation time. The right-hand
side differs from time step to time step and is included. The computation time of the finite
difference method includes the evaluation of the equations in Section 3-2-1. The reason that
some bars for orders are missing for the finite difference method for configurations with a
certain number of magnetometers is that there are not sufficient magnetometers to evaluate
the higher orders.

The figure shows that there is a clear uptrend in computation time as the number of magne-
tometers and the order of approximation increase. The finite difference method is significantly
faster than the other two methods, as it only has to do basic arithmetic operations such as
addition, subtraction, multiplication, and division. It is typically between ten and one hun-
dred times faster. Depending on the order, the LLS and local GP method exhibit a more
similar computational time. For higher-order approximation, the LLS method generally has
a computational time within the same order of magnitude as the local GP method, whereas
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Figure 4-9: Computation times for the local GP, the finite difference and the LLS method.
The finite difference and LLS method also make the distinction between the different order of
approximations.

for lower orders, it is considerably faster.

Although the finite difference method generally has a higher variance compared to the LLS
and local GP methods, the simplicity of implementation and low computational time make
it a possible solution in scenarios where these factors outweigh the need for more accurate
estimates. The difference in computation time between the local GP and LLS method are
smaller. If computational resources are very limited, it is probably beneficial to opt for a
lower-order approximation using the LLS method. This approach offers a shorter computation
time compared to the local GP method and the higher-order LLS approximations. Then one
should select a relatively small spacing, depending on the exact number of magnetometers
and noise level, in an approximate range from ls = 6 (l0 : 0.025 m, l1 : 0.2 m) to ls = 15
(l0 : 0.01 m, l1 : 0.08 m), as can be observed in Figure 4-2 and Figure 4-4. While the resulting
variance is slightly worse, it is comparable to variances at larger spacings when larger-order
approximations are used, but with the benefit of a lower computation time. Although, even
for the method that requires the most computational power, the computation time is still
under one millisecond. In case computation resources are not very limited, it is probably best
to use a higher-order LLS method or the local GP method.

4-2 Map Quality: Derivative Kernel and Full Kernel

The goal of this thesis is to study how magnetometer arrays can be used effectively and
efficiently to create magnetic field maps. The main focus is on comparing the derivative
kernel and the full kernel. Using the results from Section 4-1, this section evaluates the global
and local map qualities achieved with both kernels and explores which configurations yield
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the highest quality maps. The simulation experiments to assess the map quality for the global
and local maps were described in Section 3-3-3. Section 4-2-1 examines the global map quality
and Section 4-2-2 the local map quality.

To quantify the map quality, the mean standardized log loss (MSLL) performance metric is
utilized. The MSLL is a metric typically used for probabilistic regression, as it can take into
account the predictive variance. That is, it not only evaluates the accuracy of the predictions,
but also how well the model quantifies the uncertainty [27]. Therefore, it can be used for GPR.
It is given by

MSLL = 1
N

N∑
i=1

(
1
2 log 2πσ2

∗,i + (f∗,i − f̄(x∗,i))2

2σ2
∗,i

)
, (4-1)

where σ2
∗,i = V[f∗,i] is the predictive variance of the GPR. Since the MSLL is defined as a

loss function, a lower value denotes a better score and a better prediction.

4-2-1 Global Map Quality

We want to compare the accuracy and computational efficiency of the derivative kernel with
the full kernel. To that end, both kernels are evaluated for the global map. The global
map represents a predefined magnetic field map with a predefined trajectory, with the data
selected such that test locations are considered that are both far and near from the training
data. This evaluation contributes to answering research the third sub-question.

Global Map Quality Using Derivative Kernel

Figure 4-10 shows the results on using the derivative kernel on the global map from Figure 3-2
for arrays with multiple number of magnetometers using the LLS method. The figure shows
the map quality where for each array configuration the order of approximation was used that
gave rise to the lowest mean variance of the spatial derivative. The map quality is given in
terms of MSLL.

The figure shows that the results for the x- and y-components are very similar and do not
appear to change significantly between each other. This similarity between the x- and y-
component will be apparent throughout the remainder of this thesis, as the array moves in
the xy-plane and hence there is no fundamental difference between the x- and y-direction
that would give rise to different behavior. However, the z-direction does cause a different
behavior, since the array neither extends nor moves along this axis. The figure shows that
the map quality of the z-component is generally significantly worse. The performance of each
component for a two-dimensional map is mainly determined by the accuracy with which the
spatial derivative of that particular component can be determined in the x- and y-directions.
For instance, the map quality of the z-component of the magnetic field depends on the estimate
accuracy of the z-component in the x- and y-directions, i.e. the xz- and yz-components of the
Jacobian. Similarly, the map quality of the x- and y-components of the magnetic field depends
on the xx- and xy-components, and the yy- and xy-components, respectively. Since in general
the xx-, xy- and yy-components have better estimates than the xz- and yz-components, as
can be observed in Figure C-2 in Appendix C, the map quality for the x- and y-components
of the magnetic field is better in general. Especially the xy-component of the Jacobian has
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Figure 4-10: Map quality using the derivative kernel for different number of magnetometers and
ls values using the LLS method. The different plots indicate the quality for the different magnetic
field components. The variance of the measurement noise is set to σ2

y = 0.52 µT (NSR=1%). To
prevent the overlap of the confidence interval some of the plotted lines are shifted slightly to the
right.

relatively accurate estimates. This is because the xy-component has twice as much data due
to the fact that the curl-free property implies that the xy- and yx-components have to be
equal. As a result, the xy-component is the main contributor to good estimates of the x- and
y magnetic field components. This leads to the fact that using the derivative kernel, a two-
dimensional array is slightly better at predicting the x- and y-components of the magnetic
field when only the curl-free assumption is used.

Since the only underlying variable that differs between simulations when using the derivative
kernel is the accuracy with which the spatial derivative can be estimated, it is reasonable
to assume that this is the only variable that causes differences in the map quality. As a
result, it makes sense that the map quality follows a pattern very similar to the variance
of the derivative estimate error present in the corresponding figures. This can be observed
when comparing Figure 4-10 with Figure C-2 in Appendix C. Similarly to the figures that
illustrate the variances of the derivative estimate error, the map quality figure also shows that
increasing the number of magnetometers improves the map quality. Furthermore, larger arrays
with more magnetometers also tend to allow for a wider range of effective ls values for which
a good performance is obtained. For a grid of five by five, the best performance is obtained
roughly for ls values between 2.5 (l0 : 0.06 m, l1 : 0.48 m) and 10 (l0 : 0.015 m, l1 : 0.12 m).
While arrays with fewer magnetometers also reach their optimal values approximately within
this range, their effective intervals are typically narrower.

The map quality using the derivative kernel for different values of measurement noise is shown
in Figure 4-11. Similarly to the map quality figures regarding the number of magnetometers,
the x- and y-component perform relatively similarly, whereas the z-component performs no-
tably worse. Furthermore, the patterns and trends are again very similar to the corresponding
derivative error variance plots in Figure C-4 in Appendix C. Less noise significantly improves
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the map quality at each spacing and also slightly shifts the optimum ls value toward smaller
spacings.
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Figure 4-11: Map quality using the derivative kernel for different measurement noise and ls
values using the LLS method. The different plots indicate the quality for the different magnetic
field components. The number of magnetometers for all configurations was set to five by five.
To prevent the overlap of the confidence interval some of the plotted lines are shifted slightly to
the right.

Global Map Quality Using Full Kernel

Figure 4-12 illustrates the map quality across arrays with different numbers of magnetometers
when using the full kernel. It shows that arrays with more magnetometers outperform the
smaller ones, and that small ls values notably result in better performance than large values.
The optimal ls value for all grids is located at the largest spacing at ls = 1.4. This is because
the arrays become so large that the training points start to overlap with the test data. The
x- and y-components of the magnetic field give almost identical performance, whereas again
the z-component performs slightly worse. This again arises from the fact that the curl-free
property is incorporated in the GP model and that the array moves in the xy-plane, resulting
in relatively less information on how the z-component evolves.

When comparing the map quality using the derivative kernel from Figure 4-10 to the full
kernel from Figure 4-12, it is clear that the map quality using the full kernel outperforms the
derivative kernel for each combination of ls and the number of magnetometers. This is in line
with expectations as the derivative kernel serves as an approximation to the full kernel.

Figure 4-13 illustrates the map quality when the full kernel is used for different values of
measurement noise. It again clearly shows that the full kernel consistently outperforms the
derivative kernel from Figure 4-11, indicating that, also for different measurement noise values,
the derivative kernel serves as an approximation.

Overall, this section indicates that the full kernel has a large advantage compared to the
derivative kernel at large spacings, as it can measure the magnetic field close to the test
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Figure 4-12: Map quality using the full kernel for different number of magnetometers and ls
values using the LLS method. The different plots indicate the quality for the different magnetic
field components. The variance of the measurement noise is set to σ2

y = 0.52 µT (NSR=1%). To
prevent the overlap of the confidence interval some of the plotted lines are shifted slightly to the
right.

data. This provides a lot more relevant information than the pure local information that the
derivative kernel uses. However, whether the higher map quality of the full kernel outweighs
the extra required computational power compared to the derivative kernel is analyzed in
Section 4-2-3. Furthermore, the optimal spacings that provide the highest map quality all
appear to be equal to the spacings that resulted in the lowest variance in Section 4-1-1.
When using a magnetometer array, it is more effective to select the configuration based on
the optimal findings in Section 4-1-1, as the results in this section are significantly noisier but
yield the highest map quality for the same configurations.

4-2-2 Local Odometry Map Quality

Since magnetometer arrays have shown potential for odometry purposes, the local odometry
map is also analyzed for the full kernel and derivative kernel. The local odometry map
will predict the magnetic field at the magnetometer locations on arrays that are shifted in
different directions with a certain step size. This comparison aims to examine whether the
derivative kernel is better suited for global or local maps, or whether there is no significant
difference between the two. The main reason to opt for the derivative kernel is due to its
favorable computational time compared to the full kernel. However, since local maps consist
of significantly fewer data points compared to global maps, the computational burden of
odometry is significantly lower compared to global mapping. As a result, the derivative kernel
becomes relevant for local maps only if the update frequency is high or if little computational
power is available. Apart from the comparison between the derivative kernel and the full kernel
to assess whether the derivative kernel could effectively reduce the computational burden in
specific scenarios, the individual results per kernel in this section provide useful information
as well. Specifically, these results will show which array configuration is likely to yield the
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Figure 4-13: Map quality using the full kernel for different measurement noise and ls values
using the LLS method. The different plots indicate the quality for the different magnetic field
components. The number of magnetometers for all configurations was set to five by five. To
prevent the overlap of the confidence interval some of the plotted lines are shifted slightly to the
right.

best odometry performance for both kernels. While these results related to the derivative
kernel are valuable, the results on which configuration performs best for the full kernel are
equally significant, since odometry using all magnetometers has already been implemented in
[16, 29, 30].

Note that the results of the derivative kernel in this section are based on the local GP derivative
estimation method, described in Section 3-2-3. We made this decision for practical reasons.
However, the results using the LLS method, described in Section 3-2-2, would be very similar
and the conclusions would not have been different.

Local Map Quality Using Derivative Kernel

Figure 4-14 shows the local map quality using the derivative kernel for arrays with different
numbers of magnetometers and different step sizes relative to the lengthscale lss. Only the
x-component is shown, since the y-component has almost identical performance and the z-
component slightly worse, as expected by now. Three different factors play an important role
for this local map quality: the size of the array, the accuracy with which the spatial derivative
can be determined, and the step size. The size of the array is crucial here because the test
points are shifted versions of the original array. Therefore, if the size of the array is larger,
then part of the test points lie further away from the middle magnetometer, where the spatial
derivative is determined. The derivative is only accurate within a limited range around that
point. As a result, the figure illustrates that as the spacing increases, the array becomes
larger and the performance deteriorates. This can be observed, for instance, for the five-by-
five array with a spacing of ls < 10. Similarly, as the array consists of more magnetometers,
which give rise to a larger array, the performance decreases compared to arrays with fewer
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magnetometers for spacings of approximately ls < 10.

However, arrays with more magnetometers perform better at smaller spacings of approxi-
mately ls > 10. At smaller spacings, the array size does not differ as much between arrays
with different numbers of magnetometers, which reduces its effect. Therefore, the second
factor, the accuracy with which the spatial derivative can be determined, starts to dominate
as the spacing decreases. As a result, the arrays with more magnetometers perform better at
smaller spacings as they provide a more accurate derivative estimate.

Finally, the step size also influences the performance. A larger step size overall means that
the test points lie further away from the middle magnetometer, which decreases the perfor-
mance. Additionally, it can be observed that the difference in performance between arrays
with different numbers of magnetometers is smaller at small step sizes, specifically at small
spacings of ls > 10. This is because as the step size decreases, the test points lie closer to
the middle magnetometer. This results in the fact that the prediction is more based on the
measured magnetic field itself and not so much on the spatial derivative estimate anymore.
This also leads to the optimal spacing shifting very slightly towards smaller spacings as the
step size decreases. That is because the contribution of the spatial derivative becomes smaller
and hence it is more favorable to have a very small spacing such that the test points lie close
to the middle magnetometer. The optimal spacing that is relevant for determining the spatial
derivative becomes less important.

Figure C-9 in Appendix C illustrates the local map quality for various NSR values. Lower
noise values improve the map quality, but barely change the optimal spacing.

Overall, this derivative kernel achieves the highest local map quality scores for five-by-five
arrays with a spacing in the range from ls = 16.7 (l0 : 0.009 m, l1 : 0.072 m) to ls = 50
(l0 : 0.003 m, l1 : 0.024 m) depending on the step size. For smaller step sizes, the best
performance is obtained at the smaller spacings of the range, whereas in the case of larger
step sizes, the optimum shifts towards the larger spacings. Therefore, when the derivative
kernel would be implemented in a model-based odometry approach, it is best to select the
spacing of the array based on the range of step sizes that is expected to occur the most in
that particular application.

However, the performance of the derivative kernel for this model-based odometry scenario
is not optimal due to two conflicting effects. The optimal spacing to determine the spatial
derivative is typically on the larger side, as can be observed in Figure 4-6, which, in general,
should provide the highest quality maps. However, this leads to moderately large array sizes,
which, in turn, reduce the quality of the local map due to the increased distance between
the spatial derivative and the test points. As a result, these effects prevent that the optimal
spacing for computing the spatial derivative also provides the highest map quality for the
model-based odometry approach. Whether the derivative kernel is still a suitable choice also
depends on the performance of the full kernel and the computational time, which will be
analyzed next.

Local Map Quality Using Full Kernel

Figure 4-15 shows the local map quality using the full kernel for arrays with different numbers
of magnetometers and different step sizes. Whereas in Section 4-2-1 the global map quality
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Figure 4-14: Local map quality using the derivative kernel for arrays with different numbers of
magnetometers and ls values using the local GP method. The different plots indicate the quality
for the different relative step sizes lss. To prevent the overlap of the confidence interval some of
the plotted lines are shifted slightly to the right.

using the full kernel really benefits from large spacings as it results in a much broader coverage
of the area, the local map quality does not. The local map quality is more dependent on finer
spacings, where the best performance is achieved when most of the test points nicely fall within
the range of the array. There is always this trade-off between covering more test points within
the array by choosing a larger spacing and keeping the resolution of the measurement high by
choosing a smaller spacing. In other words, larger spacings have the advantage that the size
of the array is larger and the step size is relatively small compared to the size of the array,
which ensures that most test points fall within the range of the array. Smaller spacings,
however, give rise to a higher resolution and have the advantage that the test points that fall
within the span of the array can be predicted more accurately. This trade-off affects arrays
differently depending on the number of magnetometers.

This trade-off can be observed in Figure 4-15. For instance, the three-by-three array achieves
the highest map quality at spacings that are approximately equal to the step size. For example,
at a step size of lss = 6.7 it has the highest map quality at a spacing of 5 < ls < 7.1. Arrays
with more magnetometers achieve the best performance at spacings that are smaller than
the step size. For instance, at the same step size of lss = 6.7, the five-by-five array performs
best at a spacing of approximately ls = 10. This can be explained by the fact that the outer
rim of arrays with more magnetometers contains a lower proportion of the total number of
magnetometers compared to arrays with fewer magnetometers. The outer rim of the test
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arrays is always the first region to extend beyond the range of the training array. For arrays
with fewer magnetometers the proportion of this outer rim is larger. Therefore, it is more
favorable to have a larger spacing such that, because of the relatively smaller step size, the
test points extend slightly less over the array’s range. In this case, the higher coverage that
a larger spacing offers, carries more weight compared to having a larger resolution. Arrays
with more magnetometers benefit more from a smaller spacing and a higher resolution than
the higher coverage since the proportion of magnetometers on the outer rim is smaller.

Apart from the difference in optimal spacing between arrays with different numbers of magne-
tometers, Figure 4-15 also shows that arrays with more magnetometers provide higher quality
local maps compared to arrays with fewer magnetometers. This holds true for all step sizes.
As the number of magnetometers increases, the proportion of the test array that falls within
the range of the training array increases. Additionally, the figure also shows that as the step
size decreases, the optimal spacing becomes smaller. For instance, whereas at a step size of
lss = 5 a five-by-five array has an optimal spacing of approximately ls = 7.1, at a step size
of lss = 25 the optimal spacing is approximately ls = 25. This is because as the step size
decreases, it becomes possible to use smaller spacings as most of the test points fall within the
range of an array with such a smaller spacing. The smaller spacings increase the resolution
of the training points, and hence the map quality. Equivalently, the optimal map quality also
increases as the step size decreases.

Figure ?? in Appendix C illustrates the local map quality for various NSR values. Lower
noise values improve the map quality and very slightly shift the optimal spacing to smaller
spacings. However, the difference is very small and should play a minor role in determining
the optimal spacing.

Overall, the results illustrate that the highest local map quality is obtained for five-by-five
arrays with a very small spacing of ls = 50 and an equally small step size of lss = 50.
Naturally, even more magnetometers and smaller spacing and step sizes would result in even
higher map qualities. However, in practice, the step size cannot be freely selected and is
dependent on the specific application and the available computational power. In the event
that a frequently occurring range of step sizes is known, or the performance of a certain range
of step sizes calls for improvement, the spacing between the magnetometers can be selected
based on the results in Figure 4-15. When all step sizes are considered, a five-by-five array
with a spacing in the range from approximately ls = 10 (l0 : 0.015 m, l1 : 0.12 m) to ls = 16.7
(l0 : 0.009 m, l1 : 0.072 m) yields the highest overall map quality.

When comparing the map qualities of the full and the derivative kernel for the equivalent
combinations of array configuration and step size, the full kernel consistently outperforms
the derivative kernel. However, in a practical implementation of a magnetic field odometry
method, the step size would not be a constant variable, as it would vary depending on the
speed of the considered entity as well as the computational speed of the algorithm and/or
design choices. The optimal spacing of both the full kernel and the derivative kernel depends
on the step size. However, the step size has a significantly larger impact on the optimal
spacing for the full kernel than it does for the derivative kernel. The full kernel really has to
match the spacing to the step size to ensure that the majority of the test points fall nicely
within the range of the array. As a result, the derivative kernel has a relative advantage
over the full kernel when the step sizes vary significantly between iterations. However, which
kernel is ultimately preferable also depends on the computational efficiency of both methods,
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Figure 4-15: Local map quality using the full kernel for arrays with different numbers of mag-
netometers and ls values using the local GP method. The different plots indicate the quality for
the different relative step sizes lss. To prevent the overlap of the confidence interval some of the
plotted lines are shifted slightly to the right.

which will be analyzed next.

4-2-3 Computational Efficiency: Curl-Free Derivative Kernel and Curl-Free All
Kernel

The theoretical time complexity of GPs is O(N3) [27], where N is the number of data points.
In the case of the full kernel, the number of data points is N = 3m2n, where m is the number
of magnetometers along each axis and n the number of times the array takes a series of
measurements. This gives rise to a time complexity of O(m6n3). The derivative kernel has
N = 12n data points, which gives rise to a time complexity of O(n3)
To assess the computational efficiency of the two kernels in practice, 700 simulations were run
for each kernel, each using a single set of measurements from an array to predict the magnetic
field at one location. The filling of the kernels is again excluded from the computation time,
because the implementation with Python is not the most time-efficient way. Only the inverse
and matrix operations described in Eq. (2-7) are taken into account, as they are efficiently
implemented using the Numpy library. Figure 4-16 illustrates the mean computation time
for the arrays with different numbers of magnetometers and kernels. As expected, the com-
putation time for the derivative kernel is independent of the number of magnetometers. This
is because the number of data points does not increase with the number of magnetometers
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because each time a single measurement and the spatial derivative are used. This results in
12 data points, 9 from the spatial derivative and 3 from the magnetic field. In contrast, the
computation time of the full kernel does grow quickly as the number of magnetometers in-
creases. It should be noted that for the 2×2 grid, the computation times for both kernels are
very similar, which is expected since the full kernel then also uses 12 data points. This allows
for a quick comparison between the derivative and the full kernel with an equal computation
time.

First, when comparing the global map quality between the derivative kernel in Figure 4-10
and the full kernel in Figure 4-10 for the 2×2 grid, it is evident that the full kernel consistently
has a better optimal score than the derivative kernel. Specifically, the full kernel with a grid
of two by two achieves an optimal MSLL of −0.2 at large spacings of ls = 1.4, whereas the
derivative kernel with the most magnetometers only approximately reaches an optimal MSLL
of 0.4. This demonstrates that for global maps, at least for the map used in this simulation
experiment, a large array with only four magnetometers provides better map quality than a
more densely packed array with magnetometers whose information is approximated using the
derivative kernel. With fewer, widely spaced magnetometers, the measurements effectively
serve as individual measurements, providing completely new information and yielding more
spatial information per unit of computational power. Furthermore, even if more computa-
tional power is available, the full kernel has more flexibility to optimally utilize this power. In
addition to using the extra computational power by increasing the path length and collecting
more data, the full kernel also has the possibility of using an array with more magnetometers.
The derivative kernel can only increase the path length.

These conclusions probably do not depend on the measurement noise. Comparing the global
map quality for the different kernels across the different measurement noise values in Figure 4-
11 and Figure 4-13, illustrates that the amount of improvement of the map quality for lower
measurement values at the optimal spacing is very similar between the full and the derivative
kernel. The improvement in the full kernel is even slightly larger than in the derivative kernel.
As a result, a different noise level should not alter the conclusion that an array with a widely
spaced grid of 2 × 2 provides a higher map quality than a more densely packed array with
more magnetometers whose information is approximated with the derivative kernel.

In case of the local map quality, it is no longer beneficial for the full kernel to utilize an
array that spans a very large range with few magnetometers. In addition, step sizes must
be taken into account. When examining the 2 × 2 grid for the full kernel in Figure 4-15 it
turns out that a spacing of approximately ls = 5.1 performs well across all considered step
sizes, achieving a mean map quality of approximately 0.7 with a worst MSLL of 1.05 at a step
size of lss = 4. In comparison, the derivative kernel in Figure 4-14 performs optimally with
spacings of approximately ls = 25, yielding a mean map quality of approximately 0.94 and a
worst MSLL of 1.2 at a step size of lss = 4. This demonstrates that also for local maps when
various step sizes are considered, the full kernel yields higher-quality maps than the derivative
kernel for the same computational power. The performance of the derivative kernel can be
improved by increasing the number of magnetometers to obtain a better derivative estimate.
However, the amount of improvement this would yield is unknown.

Initially, one might expect that for the local map the derivative kernel could be useful when
many but very noisy magnetometers are available. In the case where the full kernel only used a
two-by-two array with an NSR of 3.23% to save computational power, it would be sensitive to
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the measurement noise as few magnetometers are used. If the derivative kernel now used a five-
by-five array with the same NSR it could still provide a reasonable accurate spatial derivative
according to Figure 4-4. However, it appears that even in this scenario the full kernel yields
a higher local map quality for all step sizes for a certain spacing. The corresponding figures
and some additional elaboration are shown in Section C-1 in Appendix C. If the derivative
kernel has access to even more magnetometers and/or if the measurement noise is larger, it
is possible that the derivative kernel would outperform the full kernel eventually.
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Figure 4-16: Computation times for making a single prediction with the derivative kernel and
the full kernel for different number of magnetometers.
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Chapter 5

Conclusion

Magnetometer arrays are a promising tool for creating magnetic field maps and odometry
purposes, both for local and global maps. However, since the time complexity of Gaussian
processes (GPs) scales cubically with the number of data points, using all magnetometers on
the array to create maps can be extremely computationally demanding. Therefore, in this
thesis, we analyzed whether the spatial derivative could be used as an approximation to the
full information on the array. In addition, we also examined which array configurations are
likely to yield the best performance for the derivative- and model-based odometry methods.
This gave rise to the research question of this thesis: How can magnetic field measurements
from a magnetometer array be utilized effectively and efficiently to create magnetic field maps
with Gaussian process regression?. This thesis addresses this research question by analyzing
the optimal array configuration for global and local maps. Two ways of including the measure-
ment were compared to each other: using all magnetometers on the array to create the map,
also referred to as the full kernel, and using a single magnetometer plus the spatial deriva-
tive, referred to as the derivative kernel. The derivative kernel approximates the information
from the array with the spatial derivative and a single measurement. This approach signif-
icantly reduces the number of data points for Gaussian process regression (GPR), thereby
also lowering the computational cost.

The derivative kernel requires the computation of the spatial derivative from the array. A
crucial aspect to computing this spatial derivative is the array configuration. This is covered
in the first research sub-question: How does the array configuration influence the accuracy
with which the spatial derivative can be computed?. In this thesis, three aspects of the array
configuration were analyzed: the number of magnetometers, the spacing between the mag-
netometers and the measurement noise. First of all, the results showed that arrays with
more magnetometers generally provided more accurate derivative estimates than arrays with
fewer. Specifically, arrays with a magnetometer in the center performed relatively well be-
cause of the symmetrical distribution of the measurements. In terms of spacing, neither very
small nor very large spacings yielded the most accurate derivatives. Small spacings lead to
noise-dominated measurements, while large spacings caused the magnetometers to be too far
apart, leading to measurements that are no longer representative of the local field changes.
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Generally, for arrays up to five by five the optimal spacings lie in a range of approximately
2 < ls < 7 for the local GP and 2.5 < ls < 10 for the linear least squares (LLS) method. The
exact optimal spacing depends on the number of magnetometers and the level of noise: in-
creasing the number of magnetometers or decreasing the noise level shifts the optimal spacing
towards tighter spacings. Furthermore, the results showed that arrays with more magnetome-
ters generally performed better for all spacings. The arrays with more magnetometers span a
larger area and are better at averaging out the noise, which improves the derivative estimates.
As a result, the range of spacings that produce accurate estimates is larger for arrays with
more magnetometers. In practice, however, it is advisable to use spacings that are on the
higher side of the range, as the smaller spacings are more prone to noise and errors, and in
practice it is likely that more measurement errors are present due to calibration and modeling
errors. The analysis of the measurement noise confirmed that noise plays a more prominent
role for smaller spacings. Lower noise levels slightly shifted the optimal spacing to tighter
spacings and improved the overall derivative estimate. Additionally, although the results
are mainly based on two-dimensional arrays, it was shown with a preliminary experiment
that using a three-dimensional array does not fundamentally change the effects of the array
configurations described so far. Since more magnetometers are used in a three-dimensional
array, the optimal spacing shifted to smaller spacings, but the underlying relationships remain
unchanged. Therefore, the results of two-dimensional arrays probably transfer quite well to
three-dimensional arrays when the tighter spacings are taken into account.

The second research sub-questions states: How do different methods of computing the spatial
derivative compare in terms of accuracy and computational efficiency?. The LLS, local GP
and finite difference methods were analyzed. The local GP method yielded the most accurate
estimates. The results were better than the LLS method for all variables. The fact that
the local GP method showed better performance is partially because it utilizes the exact
same model that was used to generate the data, making it aware of the lengthscale and
measurement noise. However, based on an experiment in which the hyperparameters varied
with a mean absolute perturbation of 20% with respect to the true ones, the results indicated
that the estimates were still marginally more accurate compared to the LLS method. Both the
LLS and the local GP method significantly outperformed the finite difference method. The
finite difference method showed decent performance for large spacings that is comparable
to the performance of the other two methods. However, as the spacing became smaller,
the performance quickly deteriorated due to the limited number of magnetometers, making
it more susceptible to noise. In terms of computational efficiency, the local GP and LLS
methods are of the same order of magnitude where the LLS method is typically a little faster,
except for large arrays with a high order of approximation. Then the LLS method is slightly
slower. The finite difference method is one to two orders of magnitudes faster than the
other two. Overall, if computational resources are very limited, the finite difference method
might be an option. If not, then the local GP and LLS method are more suitable. Among
these, if the hyperparameters can be determined with a fairly accurate accuracy in the entire
area of interest, the local GP is likely the better choice. However, if a more straightforward
implementation and setup is desired, the LLS method may be the preferred choice.

The third research sub-question addresses: How does using a single measurement combined
with the spatial derivative affect the accuracy and computational efficiency of magnetic field
mapping compared to using all measurements on the array?. The first part of this sub-question
focuses on: "What is the outcome of this comparison for global maps?". The results showed
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that the derivative kernel approximates the information captured by the array which is used
in its entirety by the full kernel. This holds for all combinations of array configurations
considered. In particular, array configurations that performed well in estimating the spatial
derivative also yielded the highest map quality. Naturally, the full kernel provided a higher
map quality by explicitly using all magnetometer measurements. Excluding the required
time to compute the spatial derivative, the computational efficiency of the derivative kernel is
constant for all arrays with different numbers of magnetometers. The full kernel using a two-
by-two grid has an almost identical computation time as the derivative kernel. However, using
their optimal spacings, the full kernel with a two-by-two grid has a significantly better global
map quality than the derivative kernel with a five-by-five grid. The highest map quality
for the full kernel is generally obtained for the largest considered spacing of ls = 1.4 and
as a result uses the four magnetometers as highly valuable individual measurements, which
measure the magnetic field closely to the test points. But even for smaller spacings that do
not come close to overlapping the test point, does the full kernel yield equal or higher map
quality. This shows that in the case of computational constraints, it is more favorable to use
fewer magnetometers or just collect more data points instead of using the spatial derivative.

Finally, the derivative and full kernel were also applied to a local map to answer the second
part of the third research sub-question: What is the outcome of this comparison for local
maps?. Since for the local odometry map the full kernel no longer benefits from an array with
very large spacings, the gap in map quality between the derivative kernel and the full kernel
is reduced. Additionally, since the optimal spacing for the full kernel depends more on the
step size, a compromise must be made to select a spacing that performs reasonably well for all
possible step sizes. This trade-off leads to a spacing that has sub-optimal performance for most
step sizes. In this case, a five-by-five array with a spacing of approximately 10 < ls < 16.7
yields the best overall performance. The derivative kernel does not suffer as much from the
variable map quality due to different step sizes as the full kernel and produces the highest
overall map quality for a five-by-five array with a spacing in the range of 16.7 < ls < 50.
Nevertheless, for a two-by-two grid with optimal spacing, the full kernel still yields a higher
local map quality compared to the derivative kernel with optimal configuration. Although
the difference in map quality between the full and derivative kernels is less than for the global
map, it is still more advantageous to use the full kernel with a grid with fewer magnetometers
in case of computational constraints.

To answer the main research question, two approaches for utilizing the magnetic field mea-
surements to create magnetic field maps were analyzed in this thesis: the full kernel and the
derivative kernel. The derivative kernel served as an approximation to the full kernel while
reducing the computational load. However, neither for local odometry nor global mapping did
the derivative kernel prove to be a better alternative to the full kernel. It did not sufficiently
reduce the computational burden to justify the resulting loss in map quality. The full kernel
provided higher map qualities for an equivalent computation time. More spatially distributed
measurements were found to be more useful than additional local information. The optimal
array configuration varied between kernel and map types. Naturally, more magnetometers
generally led to better map quality. For the derivative kernel, the best results for the global
were achieved with arrays that included a magnetometer in the center, producing the most ac-
curate spatial derivatives and the highest map quality. Typically, the optimal spacing became
smaller as the number of magnetometers increased or the noise decreased. In case of the local
map, the spacing influences the location of the test points which shifts the optimal spacing to

Master of Science Thesis J.M. Beurskens



70 Conclusion

smaller spacings compared to the global map. For the full kernel, the best global map quality
was obtained with very large spacings, as each measurement contributed completely new and
relatively uncorrelated information. For the local map quality, the full kernel showed that the
optimal spacing depends on the step size, suggesting that the spacing should be chosen based
on the most common range of step sizes. Increasing the number of magnetometers decreased
the optimal spacing to find a new balance in the trade-off between achieving sufficient overlap
between the test and training points and maintaining a high resolution.

The results related to the accuracy with which the spatial derivative can be determined for
different array configurations can be valuable to the derivative-based odometry method, as
this method directly computes the derivative. More accurate derivative estimates should
reduce the drift rate. Additionally, incorporating the results of the full kernel using the local
map into the model-based odometry method should provide modest improvements. This is
because this method relies on evaluating the magnetic field at the next time step based on
the local model. More accurate predictions could reduce the drift rate.

While this thesis provides valuable insights into the use of magnetometer arrays, specifically
the use of the spatial derivative, several opportunities for further research can be expanded
upon. The first suggestion is to examine whether the derivative kernel might yield higher-
quality maps in a three-dimensional setup relative to the full kernel. The spatial derivative
probably still provides the same amount of information relative to the larger space, whereas
the information of an array with four magnetometers has become significantly more sparse.
To accurately compute the spatial derivative in three dimensions, however, the array config-
uration should also probably be extended into a three-dimensional structure. Furthermore,
the optimal array configurations for a three-dimensional array would also have to be studied.

The second suggestion concerns the determination of the spatial derivative. Instead of relying
on computing the spatial derivative at each time step again, an extended Kalman filter (EKF)
can be used to filter the derivative [42]. This requires the dynamics of the spatial derivative,
which naturally includes the second-order spatial derivative. Fortunately, an estimate of this
derivative can also be directly estimated from the LLS method. In [42] it was demonstrated
using simulations that filtering the spatial derivative significantly improved the accuracy of
the spatial derivative, as well as the position estimation.

The final suggestion is to analyze the effect of incorporating the divergence-free property
into the model and data along with the curl-free property. This thesis solely included the
curl-free property in the models, and as a result also in the generated simulation data. The
potential effects of the divergence-free property on optimal array configurations and map
qualities remain unknown.
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Appendix A

Curl-Free Derivative Kernel Derivation

This appendix provides additional information to Section 3-1-2 on how the curl-free derivative
kernel is obtained.

In order to use the spatial derivative as a measurement for Gaussian process regression (GPR)
the joint distribution of the magnetic field and the spatial derivative must be derived. This
distribution is given by[

H(x)
Hd(x)

]
∼ N

([
0
0

]
,

[
Kcurl(x, x′) Kcurl(x, x′)D⊺

x′

DxKcurl(x, x′) DxKcurl(x, x′)D⊺
x′

])

= N
([

0
0

]
, Kcurl,d(x, x′)

)
.

(A-1)

The mean of this distribution is a vector of zeros as the mean offset is captured by the curl-free
kernel. The elements of Kcurl,d(x, x′) are obtained by applying the derivative operator on the
curl-free kernel. For a clear overview, the kernel of the curl-free Gaussian process (GP) is
given here again

Kcurl(x, x′) = σ2
lin.I3 + σ2

f

(
I3 −

(x − x′

l

)(x − x′

l

)⊺
)

exp
(

− ||x − x′||2

2l2

)
. (A-2)

A-1 First-Order Derivative of Curl-Free Kernel

Since reporting the full derivative of the curl-free kernel with respect to all components
of x is too extensive, they are given with respect to a single arbitrary component. As a
result, instead of giving DxKcurl(x, x′), ∂Kcurl(x,x′)

∂xp
is computed, where xp denotes the pth ∈

{0, 1, 2} component of x. To compute the derivative of matrices, first the (i, j)th component
is given to subsequently extend them to the full matrix derivative. To simplify the process
of computing the full derivative of the curl-free kernel in Eq. (A-2), the derivatives of the
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individual components are computed. The (i, j)th component of the first relevant matrix
term is given by ((x − x′

l

)(x − x′

l

)⊺
)

i,j

=
(xi − x′

i

l

)(xj − x′
j

l
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, (A-3)

where xi and xj denote the ith ∈ {0, 1, 2} and jth ∈ {0, 1, 2} components of x respectively.
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where δp,i is the Kronecker delta function. This element-wise derivative can be written in
matrix form as

∂
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where ep is the standard basis column vector with 1 in the pth position and 0 elsewhere.

The derivative of the scalar exponent term can be computed to be

∂

∂xp
exp

(
− ||x − x′||2

2l2

)
= ∂

∂xp
exp

(
− (x − x′)T (x − x′)

2l2

)
= −

xp − x′
p

l2
exp

(
− ||x − x′||2

2l2

)
.

(A-6)

Based on the derivatives of these individual components in Eq. (A-5) and Eq. (A-6), the
derivative of Kcurl(x, x′) with respect to xp can be computed using the product rule as
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(A-7)
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This provides the first part of the Kcurl,d(x, x′) kernel. When taking the derivative with
respect to x′

p one can observe in Eq. (A-2) that the difference between taking the derivative
with respect to x′

p or xp is a minus sign. As a result, the derivative with respect to x′
p is equal

to the derivative with respect to xp up to a minus sign

∂Kcurl(x, x′)
∂x′

p

= −∂Kcurl(x, x′)
∂xp

. (A-8)

A-2 Second-Order Derivative of Curl-Free Kernel

The only remaining derivative to compute is the second-order derivative of the curl-free kernel
with respect to both xp and x′

q, where x′
q denotes the qth ∈ {0, 1, 2} component of x′. To

simplify this derivation, the derivative of individual components in Eq. (A-7) are computed
first.

∂(xp − x′
p)

∂x′
q

= −δp,q = −e⊺
peq. (A-9)

The next term is a matrix term again for which the derivative of the (i, j)th component is
computed first.

∂
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)
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∂x′
q

=
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j)
∂x′
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In matrix form this derivative is given by

∂ep(x − x′)⊺
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q . (A-11)

Similarly, the derivative of the term (x − x′)e⊺
p is given by

∂(x − x′)e⊺
p

∂x′
q

= −eqe⊺
p. (A-12)

The derivative of Eq. (A-5) with respect to x′
q instead of xp is slightly different

∂
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The derivative of Eq. (A-6) with respect to x′
q instead of xp is equal up to a factor of minus

one. Utilizing these derivative terms, the derivative of Eq. (A-7) can be computed using the
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product rule as
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(A-14)

Finally, using the derivatives from Eq. (A-7), Eq. (A-8) and Eq. (A-14), the covariance of the
full joint distribution between the magnetic field and the spatial derivative is given by
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Appendix B

Dimensionless Variables

B-1 Lengthscale-To-Spacing Ratio

This section will show that as long as the ls ratio stays remains the same, the relative accuracy
with which the spatial derivative can be determined also remains constant. This has the
advantage that the result from this thesis can be applied to any magnetic field with any
particular lengthscale. To show that the relative accuracy indeed remains the same, two
different simulations are run. One involves determining the variance of the derivative error
estimate for a lengthscale of l = 0.5 and the standard magnetometer spacings that are shown
in Table 3-2 using the analytical solution from the Gaussian process (GP). This gives rise
to the standard ls ratios that are also depicted in Table 3-2. The other simulation used a
lengthscale and magnetometers spacings that are half the size. This ensures that the ls ratios
remain the same, while the magnetic field varies more quickly over shorter distances. Figure B-
1 illustrates the results, where the dashed lines indicate the larger lengthscale and the solid
lines the smaller lengthscale. The figure shows that the variances between the simulations
with the different lengthscales have the same shape but that size is exactly four times larger.
However, one also has to take into account the magnitude of the spatial derivatives. Decreasing
the lengthscale by a factor of two causes the magnetic field to change more rapidly, resulting
in the magnitude of the spatial derivative increasing by a factor of two. As a consequence,
the variance of the spatial derivative increases by a factor of four. Since both the variance
of the spatial derivative itself and the estimate error scale by the same factor, the relative
accuracy stays constant.

B-2 Noise-To-Signal Ratio

Similar to Section B-1, this section will show that as long as the noise-to-signal ratio (NSR)
remains the same, the relative accuracy with which the spatial derivative can be determined
also remains the same. This makes sure that the results from this thesis concerning the
different measurement noise values also apply to magnetic fields with different signal variances.
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Figure B-1: Comparison between the effect of different lengthscales while keeping the ls constant.
The mean variance of the derivative estimate error is computed analytically using the local GP
method. The darker and dashed lines indicate the simulation with the smaller lengthscale and
the lighter and solid lines the larger lengthscale.

Two simulations with different measurement noise variances and signal variances were run,
while keeping the NSR constant to verify this. These results are very similar to the analysis
of ls in Section B-1 and the plots are, in fact, identical. Figure B-2 shows the results, where
the darker and dashed lines indicate the simulations with σy = 1µT and σf = 10µT and the
lighter and solid lines the simulations with σy = 0.5µT and σf = 5µT , both resulting in a
NSR of 1%.

When examining the figure, it can be seen that the shapes of variances for both simulations
are exactly the same. Since the standard deviation of the signal, represented by the dashed
lines, scales by a factor of two, the magnitude/amplitude of the magnetic field signal scales
by the same factor. As a consequence, the magnitude/amplitude of the spatial derivative
also scales by this factor. This results in the fact that the variance of the derivative estimate
error scales by a factor of 22 = 4. This is the factor with which the variance of the dashed
lines scales compared with solid lines. As the variance of the spatial derivative itself and the
variance of the derivative estimate error scale by the same amount, the relative accuracy of
the estimate remains the same.
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Figure B-2: Comparison between the effect of different values of the measurement noise variance
and the signal variance while keeping the NSR constant. The mean variance of the derivative
estimate error is computed analytically using the local GP method. The darker and dashed lines
indicate the simulations with a σy = 1µT and a σf = 10µT and the lighter and solid lines the
simulations with a σy = 0.5µT and a σf = 5µT . All simulations have an NSR of 1%.
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Appendix C

Additional Results

This appendix provides additional results that were too specific and not relevant enough for
the main sections of the thesis.

Figure C-1 shows the variance of the spatial derivative estimate error for all individual com-
ponents of the spatial derivative for arrays with different numbers of magnetometers using
the linear least squares (LLS) method.
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Figure C-1: Relationship between the variance of the spatial derivative estimate error and ls
using LLS method for all components. The relationship is plotted for the different order of
approximations and the different number of magnetometers on the array. The variance of the
measurement noise is set to σ2

y = 0.52 µT (noise-to-signal ratio (NSR)=1%).

Figure C-2 shows the variance of the spatial derivative estimate error for all individual com-
ponents of the spatial derivative for arrays with different numbers of magnetometers using
the LLS method.
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Figure C-2: Relationship between the variance of the spatial derivative estimate error and ls
using LLS method with the order of approximation that gave rise to the lowest variance. The
relationship is plotted for different measurement noise values. The variance of the measurement
noise is set to σ2

y = 0.52 µT (NSR=1%).

Figure C-3 shows the variance of the spatial derivative estimate error for all individual com-
ponents of the spatial derivative for different noise levels using the LLS method.
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Figure C-3: Relationship between the variance of the spatial derivative estimate error and ls
using LLS method with the order of approximation that gave rise to the lowest variance. The
relationship is plotted for different number of magnetometers on the array. The grid size for all
configurations was set to five by five.

Figure C-4 shows the variance of the spatial derivative estimate error for all individual com-
ponents of the spatial derivative for different noise levels using the LLS method.
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Figure C-4: Relationship between the variance of the spatial derivative estimate error and ls
using LLS method with the order of approximation that gave rise to the lowest variance. The
relationship is plotted for different number of magnetometers on the array. The grid size for all
configurations was set to five by five.

Figure C-5 shows the mean variance of the spatial derivative estimate error for different noise
levels using the finite difference method.
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Figure C-5: Relationship between the mean variance of the spatial derivative estimate error and
ls using the finite difference method with the order of approximation that gave rise to the lowest
variance. The grid size for all configurations was set to five by five.

Figure C-6 shows the mean variance of the spatial derivative estimate error for different noise
levels using the local Gaussian process (GP) method.
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Figure C-6: Relationship between the analytical mean variance of the spatial derivative estimate
error and ls using the local GP method for different noise levels. The grid size for all configurations
was set to five by five.

Figure C-7 shows the comparison between using varying hyperparameters and true hyperpa-
rameters for all relevant components of the spatial derivative.
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Figure C-7: Comparison of the variance of the spatial derivative estimate error between for all
components using varying hyperparameters and true hyperparameters using the local GP method
for arrays with different numbers of magnetometers. Only the confidence interval for the simu-
lation with varying hyperparameters is shown, the other simulation with true hyperparameters is
based on the analytic variance. The variance of the measurement noise is set to σ2

y = 0.52 µT
(NSR=1%).

Figure C-8 shows the comparison between using a three-dimensional cubic structure and
using a two-dimensional array when using the local GP method for different numbers of
magnetometers.
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Figure C-8: Comparison of the variance of the spatial derivative estimate error between two-
and three-dimensional arrays using the local GP method for all components. The relationship is
plotted for different grid sizes. The variance of the measurement noise is set to σ2

y = 0.52 µT
(NSR=1%).

Figure C-9 shows the local map quality using the derivative kernel for different levels of
measurement noise. It shows that the measurement noise does not significantly shift the
optimal spacing. We would expect that the optimal spacing shifts to larger spacings as the
noise increases. This effect can perhaps be observed for larger step sizes, as for those the
influence of the spatial derivative is larger. However, the differences are small and too noisy
to conclude for certain.
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Figure C-9: Local map quality using the derivative kernel for arrays with different noise levels
and ls values using the local GP method. The different plots indicate the quality for the different
relative step sizes lss. The grid size for all configurations was set to five by five.

Figure C-10 shows the local map quality using the full kernel for different levels of measure-
ment noise. It shows that the measurement noise shifts the optimal spacing to slightly smaller
spacings. This effect can mainly be observed for larger step sizes.
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Figure C-10: Local map quality using the full kernel for arrays with different noise levels and ls
values using the local GP method. The different plots indicate the quality for the different relative
step sizes lss. The grid size for all configurations was set to five by five.

C-1 Local Map Quality with High Measurement Noise

If we consider magnetometers with high measurement noise and fix the full kernel to use an
array of two by two magnetometers, the derivative kernel has a relative advantage as it can
use many more magnetometers and average out some of the noise. Figure C-11 shows the
local map quality using the full kernel with a two-by-two array. If we consider the black line
with an NSR of 3.23%, an optimal spacing that performs well across all step sizes is lss = 4.
This yields a mean MSLL of approximately 1.17.
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Figure C-11: Local map quality using the full kernel for arrays with different noise levels and ls
values using the local GP method. The different plots indicate the quality for the different relative
step sizes lss. The grid size for all configurations was set to two by two.

When considering the derivative kernel with a five-by-five array and an NSR of 3.23% from
Figure C-9, the optimal spacing across the step sizes is approximately given by ls = 25. This
yields a mean MSLL of approximately 1.37. The difference in performance is still about the
same as for the comparison with the smaller measurement noise in Section 4-2-3. This shows
that the difference in the number of magnetometers between the full and derivative kernels
should be significantly greater before the derivative kernel outperforms the full kernel.
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Appendix D

Local GP Method: Analytical and
Manual Variances

Since in the main content of this thesis the spatial derivative estimate using the local Gaussian
process (GP) method is evaluated based on the analytical variance provided by the GP, it
is necessary to show that this analytical variance is indeed equal to the variance that is
computed manually based on 70 simulations demonstrated by Figure 3-1. Figure D-1 shows
the comparison between the manually computed variance and the analytical variance. When
comparing the dotted to the solid lines, one can observe that the variances are indeed virtually
identical.
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Figure D-1: Comparison between the analytically and manually computed mean variances of
the spatial derivative using using the local GP method. The darker and dashed lines denote
the analytical variance and the solid and lighter lines the manual variance. The variance of the
measurement noise is set to σ2

y = 0.52 µT (noise-to-signal ratio (NSR)=1%).

Note, however, that the analytical and manual variances are equal only because of the fact
that the experimental data is generated using the same model as was used for making the
spatial derivative predictions. If the hyperparameters are not exactly the same, discrepancies
will arise.
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Glossary

List of Acronyms

EKF extended Kalman filter
ESKF error state Kalman filter
GP Gaussian process
GPR Gaussian process regression
GNSS global navigation satellite systems
IID indepentend and identically distributed
INS inertial navigation system
IMU inertial measurement unit
LHS left-hand side
LLS linear least squares
MSLL mean standardized log loss
RFID radio frequency identification
SLAM simultaneous localization and mapping
NSR noise-to-signal ratio

List of Symbols

ϵ Measurement noise
Ω Angular velocity
ϵd Measurement noise of the spatial derivative estimate
ϵy Measurement noise of magnetometer
σd Standard deviation of spatial derivative estimate
Σ White noise covariance matrix
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σlin. Magnitude scale hyperparameter
σf Signal variance
σy Standard deviation measurement noise
φ Scalar potential function

F∗ Magnetic field predictions
G Hessian
H(x) Magnetic field function
Hd(x) Spatial derivative function of the magnetic field
r Position
v Velocity
x Location
X∗ Test locations
x0 Location of middle magnetometer
Xall Training locations full kernel
Xder Training locations derivative kernel
y Magnetic field measurement
Yall Magnetic field measurements for full kernel
Yder Magnetic field and spatial derivative measurements for derivative kernel
Dx Derivative operator
h Magnetometer spacing
J Jacobian
Kcurl,d(x, x′) Curl-free derivative kernel function
l Lengthscale
l0 Small representative lengthscale
l1 Small representative lengthscale
ls Lengthscale over spacing
N Number of magnetometers
Pnoise Power of noise
Psignal Power of signal
x First spatial coordinate
y Second spatial coordinate
z Third spatial coordinate
Klocal,d Curl-free derivative kernel for local GP
Kcurl(x, x′) Curl-free kernel function
lss Lengthscale over step size
t Time
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