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Revisiting the Past: A comparative study for semantic segmentation of 
historical images of Adelaide Island using U-nets 

Felix Dahle *, Roderik Lindenbergh, Bert Wouters 
Department of Geoscience & Remote Sensing, Delft University of Technology, the Netherlands  

A B S T R A C T   

The TriMetrogon Aerial (TMA) archive is an archive of historical images of Antarctica taken by the US Navy between 1940 and 2000 with analogue cameras. The 
analysis of such historic data can give a view of Antarctica’s glaciers predating modern satellite imagery and provide unique insights into the long-term impact of 
changing climate conditions with essential validation data for climate modelling. However, the lack of semantic information for these images presents a challenge for 
large-scale computer-driven analysis. 

Such information can be added to the data using semantic segmentation, but traditional algorithms fail on these scanned historical grayscale images, due to 
varying image quality, lack of colour information and artefacts in the images. To address this, we present a deep-learning-based U-net workflow. Our approach 
includes creating training data by pre-processing and labelling the raw images. Furthermore, different versions of the U-net are trained to optimize its hyper-
parameters and augmentation methods. With the optimal hyper-parameters and augmentation methods, a final model has been trained for a use-case to segment 118 
images covering Adelaide Island. 

We tested our approach by segmenting challenging historical images using a U-net model with just 80 training images, achieving an accuracy of 73% for 20 
validation images. While no test data is available for our use case, a visual examination of the segmented images shows that our method performs effectively. 

The comparison of the hyper-parameters and augmentation methods provides directions for training other U-net-based models so that the presented workflow can 
be used to segment other archives with historical imagery. Additionally, the labelled training data and the segmented images of the test are publicly available at htt 
ps://github.com/fdahle/antarctic_segmentation.   

1. Introduction 

Historical imagery archives provide valuable information about 
various parts of the world from the pre-satellite era. In recent years, 
there has been a growing trend of digitizing such archives and using 
these as a data source in geo-sciences (Cowley and Stichelbaut, 2012; 
Heisig and Simmen, 2021). However, despite their potential, they 
remain under-exploited as most images are only available as scans 
without any metadata. This lack of metadata makes extracting infor-
mation challenging as it requires a significant amount of manual work to 
incorporate them into scientific research. 

One such historical imagery archive is the TMA archive, where TMA 
stands for TriMetrogon Aerial, a system of cameras that takes vertical, 
left oblique, and right oblique images simultaneously for topographic 
mapping. The U.S. Navy collected this archive of historical imagery of 
Antarctica between 1946 and 2000, with a particular focus on the 
Antarctic Peninsula (USGS, 2018). These photographs were primarily 
used for topographic mapping and provide a historical snapshot of many 
parts of Antarctica. Fig. 1 shows an example image from this dataset. 

This data set holds valuable information on historical ice topography 
and coverage in this area, for which few other data sources are available. 
In combination with recent observations, the TMA archive provides a 
unique opportunity to study multi-decadal changes in the state of the 
Antarctic Ice Sheet (Cook et al., 2016; Kunz et al., 2012; Cook and 
Vaughan, 2010). The data set, however, presents several challenges to 
its use. For example, as can be seen in Fig. 1, parts of the images can be 
obstructed by clouds or suffer from degradation due to the vinegar 
syndrome (decomposing of the film when stored for a longer time (Allen 
et al., 1987), see lower left part of the image). Furthermore, the archive 
consists of around 330.000 images, without any additional information 
on the content or quality of the images and with only an approximate 
geo-localization provided, making it difficult to find specific features in 
the image archive. Adding semantic information to the TMA image 
archive would significantly increase its usability. For example, this 
would allow researchers to find images on the boundary of ice and water 
to study areal changes of ice shelves and marine-terminating glaciers, 
detect rock outcrops, and provide information about the usability of 
individual images for specific research purposes, e.g. in terms of cloud 
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cover or variability of the image. 
Recent examples of adding semantic information can be found in 

(Nambiar et al., 2022; Wang et al., 2022; Heidler et al., 2021), where 
satellite imagery is segmented. In modern satellite imagery, information 
is available in multiple bands and with high contrast, so that segmen-
tation is easily applicable. However, semantic segmentation of historical 
imagery is more challenging. The images are only available in grayscale 
with less contrast, making them less informative for segmentation. As a 
result, the algorithms developed for satellite imagery segmentation 
cannot directly be applied to historical imagery. Due to these problems, 
semantic segmentation of historical imagery is rare but some successful 
examples have been reported, such as (Mboga et al., 2020) and (Dias 
et al., 2020). In both cases, machine learning algorithms were used to 
apply semantic segmentation. However, these examples targeted a very 
diverse environment with very distinct classes, unlike the more mono-
tone scenes in Antarctica. 

Another big challenge for the semantic segmentation of historical 
imagery is the lack of training data: labelled data is often only available 
for modern data sources and cannot be used for historical images. Thus, 
all training data must be manually created beforehand, which is time- 
consuming, resulting in limited availability. 

To address these challenges, we propose using a U-net for the se-
mantic segmentation of the TMA archive. A U-net, originally developed 
for medical purposes by (Ronneberger et al., 2015), is a type of neural 
network specifically designed for image segmentation with a small 
amount of training data. Recently, U-nets gained popularity and are also 
extensively used for semantic segmentation in geo-science (Hartmann 
et al., 2021; Baumhoer et al., 2019; Heffels and Vanschoren, 2020; 
Kattenborn et al., 2019). In a previous paper (Dahle et al., 2022), we 
were able to create a semantic segmentation of part of the TMA histor-
ical imagery, even under challenging conditions, with an average ac-
curacy of 74% over six classes using 67 images. 

In this contribution, we build upon the use case and establish a fully 
operational workflow for the semantic segmentation of historical im-
agery of the cryosphere. To achieve this, we investigate the impact of 
different model parameters on the quality of the segmentation. It is 
worth noting that so far, most studies use default parameter settings and 
standard losses for training. However, adapting these parameters can 

lead to significantly improved results as shown in (Kugelman et al., 
2022; Solórzano et al., 2021; Jadon, 2020). Nevertheless, these 
parameter comparisons often focus on a single parameter, and a holistic 
approach considering multiple parameters simultaneously is absent. 
Moreover, such comparisons are typically conducted on larger datasets 
with better image quality, making it challenging to extrapolate the 
findings to historical imagery segmentation. 

To demonstrate the performance of our model, successive to the 
parameter evaluation, we apply the semantic segmentation to a 
geographical subset of the TMA archive, specifically Adelaide Island (see 
Fig. 2). The island is situated in the eastern part of the Antarctic 
Peninsula and is an enclosed area with a variety of different classes. As it 
features multiple flight paths, images are taken by different cameras. 

2. Data 

As input data, we utilize aerial images from the TMA archive. All 
pictures within the archives were made in triples, as can be seen in 
Fig. 3. Each image is associated with a unique identification number that 
comprises the flight line, roll, and frame. The roll indicates the direction 

Fig. 1. Example of a historical image from the TMA archive (Antarctic Penin-
sula 1969). 

Fig. 2. Adelaide island with the position of cameras (red dots). (For interpre-
tation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 
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the camera was facing, while the frame is a unique identifier for each 
image position on a flight line. For example, the identifier 
“CA026433R0058″ corresponds to an image captured during flight 
0264, using the right roll (33R1), and has a frame number of 0058. 

In total, this archive consists of around 330.000 grayscale images, 
which were digitally scanned in 2009 by the United States Geological 
Survey (USGS) at a resolution of 25 μm/1000dpi and made publicly 
available at their website (University of Minnesota, 2023) and their 
ftp-server (Polar Geospatial Center, 2023). With this resolution, all 
features on the historical images are recognizable and even small objects 
or objects in the distance can be identified. However, the scanning 
process was not flawless, as in many images scanning artefacts (e. g. 
Newton rings) are introduced. 

The images are available as TIFF files with an image size of around 
10000 × 10000 pixels and an 8-bit depth. It is important to note that 
these images are not geo-referenced, and only have a manually esti-
mated indication of their position. Although the photo centre (position 
of the camera) is reported for every picture in the Antarctic Polar Stereo- 
graphic coordinate system (EPSG:3031), a visual inspection has revealed 
that these coordinates can be inaccurate by several kilometres. 

We define six different classes to be segmented in the images, as 
described in Table 1, together with some notes of their influence on the 
segmentation. Examples of the classes are shown in Fig. 4. 

To train our model, we selected random images from the Antarctic 
Peninsula. This region is one of the most varying areas of the Antarctic 
with a diverse landscape, resulting in the most number of classes during 
segmentation. However, as there was no labelled training data available, 
we created the training data ourselves, as will be described in section 
3.2. 

3. Methodology 

In the following, the data pre-processing, the creation of the training 
data, and different attributes and design decisions of the segmentation 
process are explained. We compare the training and validation perfor-
mance of different model parameters, and based on this, choose the best- 
performing combination of parameters. These are used to train a final 
segmentation model for more epochs. The parameters of this model can 
be found in subsection 4.3. 

3.1. Data pre-processing 

During pre-processing, the prevalent borders in the images, as can be 
seen in Fig. 3, must be removed. These borders do not contain any se-
mantic information for the scenes and will only limit the efficiency of the 
model. All images contain fiducial marks that describe the limits of the 
borders. Using the free library of dlib (King, 2009) and computer vision 
algorithms (e.g canny edge detection or Hough transform), these fidu-
cial points can automatically be recognized and used to separate the 
inner part of the images from the borders.2 Contrast enhancement, like 
used by (McNabb et al., 2020) for historical images cannot be used on 
the data: for some images, it improves the segmentation quality, but for 
other images with scanning errors it actually decreases the quality of the 
image and therefore does not improve the general quality of the model. 

3.2. Training data 

To generate the training data, we applied an unsupervised neural 
network for image segmentation to the raw images. This process pro-
duced preliminary image segments by identifying and grouping similar 
regions within the images. Various models of unsupervised segmenta-
tion are available, such as those described by (Kirillov et al., 2023) and 
(Kanezaki, 2018). For this study, we adopted the approach outlined by 
Kanezaki, which follows three main criteria: (1) pixels with comparable 
features are aggregated under the same label; (2) pixels that are spatially 
contiguous are also grouped under a single label; and (3) the overall 
number of unique labels is minimized to simplify the segmentation. 

However, the unsupervised segmented images must be further pro-
cessed to use them for training as they contain misclassified pixels and 
do not always match the images perfectly. Furthermore, these segments 
only have consecutive numbers as labels and contain no semantic in-
formation. The following steps were applied to improve the unsuper-
vised images: (1) Renumbering segments: The segments created by the 
unsupervised segmentation could consist of multiple, non-connected 
parts. These parts are assigned a new number so that every unique 

Fig. 3. Example image triple from Antarctic TMA, consisting of a left-oblique, a vertical and a right-oblique image.  

Table 1 
Description of classes.  

Class Notes 

Ice Only close to the water 
Snow Most dominant class and can be found on almost every image 
Rocks Small structures scattered in the images, usually easy to segment 
Water Second most dominant class 
Clouds Most difficult to segment; can contain traces of other classes beneath 
Sky Can only be found on oblique imagery 
Unknown Used when a pixel cannot be attributed to another class. 

Not existing in the final segmentation & no loss will be calculated for 
this class.  

1 33 is a number describing that the camera is looking right, similar to a left 
(31L) and a vertical (32V) roll. 2 Code is available on https://github.com/fdahle/Antarctic_TMA. 
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Fig. 4. Example for the classes with the class being the prominent feature in the image.  

Fig. 5. Examples of self-labelled images with raw images at the top, the unsupervised segmentation in the middle (colours are assigned randomly) and the final 
obtained ‘ground truth’ at the bottom. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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segment has its own number as a label. (2) Removing small segments: we 
remove segments under a threshold size of 20 pixels to simplify the 
segmentation. Smaller segments are often considered to be noise or 
irrelevant to the classification task. (3) Filling voids: The removed seg-
ments from the previous step are filled with their surrounding pixels by 
using a watershed algorithm (Kornilov and Safonov, 2018). (4) Sepa-
rating segments: Sometimes, only one segment is created, where in re-
ality two different classes are present. For instance, in Fig. 5, which 
displays some examples of self-labelled training data, the classes sky and 
snow at the top of the left middle image are incorrectly merged in one 
single segment. These segments are separated manually after visual 
inspection. 

To facilitate efficient labelling, we developed a tool in Python that 
allows segmenting images using the steps mentioned above. This en-
ables for example relabelling of already labelled images together with 
adapting segments (e.g. separating).3 

To distinguish the segments and assign the correct classes, the spatial 
context of the images must be known. However, due to the limited 
quality of the images, a correct assignment is not always possible. 
Creating labelled images is very time-consuming so the number of im-
ages for training and validation was limited to a total of 80 images. Of 
these, 80% was used as a training set and 20% as a validation set. As the 
data is highly imbalanced in class occurrences (see Table 2), the images 
cannot be assigned randomly to one of the two sets. This would have 
resulted in an unequal class distribution in both sets, making the model 
biased towards certain classes. Instead, the classes are divided using 
iterative stratification (Sechidis et al., 2011). This is a technique where a 
data set is divided into smaller subgroups all containing a similar 
composition of classes as the whole data set. Using this technique en-
sures an equal class distribution for both the training and validation set. 

3.3. U-net 

In this work, we utilize a U-net (Ronneberger et al., 2015), a model 
popular for image segmentation, which was adapted successfully for 
geospatial tasks (e.g., (Heidler et al., 2021), (Baumhoer et al., 2019)). In 
this model, convolutional neural networks (CNN) and fully convolu-
tional networks (FCN), two special types of neural networks (Jiang et al., 
2019), are combined in a U-formed structure. This architecture offers 
several advantages that are particularly relevant to our study. It can 
accommodate input images of varying sizes and is specifically designed 
to perform well even when training data are scarce; a situation we 
encounter with our set of 80 training images. Such a constrained dataset 
typically limits the efficacy of other well-established segmentation 
models like FCNs, Deeplab (Chen et al., 2017), and SegNet (Badrinar-
ayanan et al., 2016), particularly when segmenting small structures 
within the images. Despite the computational intensity required by the 
U-net during the training phase, the resulting model is computationally 
efficient. 

Our baseline U-net model consists of four layers, as depicted in Fig. 6. 
This structure is based on (Kattenborn et al., 2019) and contains mul-
tiple encoders (the contracting path) and multiple decoders (the 
expansive path). The encoders, situated on the left half of the figure, are 

a classical classification network where convolution blocks are applied 
followed by a max-pool downsampling to encode the input image into 
feature representations at multiple different levels. The decoders, 
located on the right half of the figure, semantically project the 
discriminative features learnt by the encoder onto the higher resolution 
pixel space to achieve dense classification at the pixel level. The decoder 
consists of up-sampling and concatenation followed by regular convo-
lution operations. 

Each encoder/decoder in the network is built using the same com-
ponents with the same attributes. The components include Conv2D, 
BatchNorm, Dropout, ReLU, MaxPool2D, and ConvTranspose2D. 
Conv2D is a convolutional layer that convolutes to additional feature 
maps with a kernel size of 3, followed by a stride of 1 to maintain image 
size. BatchNorm normalizes the input batch of 4 images by re-centering 
and scaling to make the network more stable and to converge faster 
(Ioffe and Szegedy, 2015). Dropout temporarily disables 20% of the 
nodes in the block during training, making the learning process more 
challenging, but reducing the chance of overfitting. ReLU is the activa-
tion function used in our network, which is short for rectified linear units 
(Goodfellow et al., 2016). It essentially removes all negative values from 
the output by setting them to zero. MaxPool2D downsizes the image to 
reduce the computational cost, using a kernel size of 3 with a stride of 2 
to halve the image. ConvTranspose2D is a transposed convolutional 
layer that doubles the output image size compared to the input image 
size, also using a kernel size of 3 and a stride of 2. 

The U-net model used in this work reduces the image size while 
increasing the number of feature maps in each encoding block, except 
for the first encoder/decoder, effectively reducing the computational 
cost. After all encoders/decoders are applied, the output image size 
equals the input image size and consists of 6 channels, one per class, 
each containing a value between 0 and 1 describing how likely it is for 
each pixel to belong to that particular class. The segmented image is 
generated by applying the sigmoid function (Goodfellow et al., 2016) to 
the data and selecting the class with the highest probability for each 
pixel. 

The parameters in Table 3 are commonly used in neural networks 
and remain consistent for all combinations of different segmentation 
models. The Adam-optimizer, a popular optimization algorithm in ma-
chine learning, is used to adapt the learning rate during run-time for 
faster convergence and better performance (Kingma and Adam, 2014). 
As the memory size of the used GPU (NVIDIA Tesla P100 with 16 GB 
RAM) is limited, all data is split up into batches of the maximum possible 
size and the results of all batches together are averaged. None of the 
models of this study were pre-trained, as then we can ensure complete 
control over the structure and parameters of the segmentation models. 

3.4. Tests 

Different parameters of the U-net will be tested for their performance 
in image segmentation. For every parameter, a new model is trained. All 
models are applied on the same dataset, having the same images in the 
training and validation set. The model with the parameters described in 
Table 4 is used as a baseline. For every test category, only the specific 
parameter of this category is changed. Tests for parameters will be done 
within six categories: additional layer components, learning rate, losses, 
number of layers, input size and augmentation, as elaborated below. 
Due to time and performance constraints, every model is trained for 
exactly 500 epochs with no early stopping. 

3.4.1. Additional layer components 
Next to the model components that are required for the model to 

learn, it is common to add additional components to each layer of the 
model. These components can help against overfitting as well as 
improve the quality of the model. For our segmentation, we use dropout 
and batch normalization, two commonly deployed elements in modern 
CNN architectures (Garbin et al., 2020b). Dropout layers, as utilized by 

Table 2 
Class composition of train and validation set in percentage.   

Ice Snow Rocks Water Clouds Sky Other 

Train 6.99 67.74 2.52 7.6 7.34 6.27 1.55 
Validation 2.98 60.9 0.37 10.12 20.62 4.45 0.55 
Complete 6.04 66.12 2.01 8.2 10.5 5.84 1.31  

3 The tool can be found at https://github.com/fdahle/Antarctic_TMA. 
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(Baumhoer et al., 2019), randomly set a percentage of neuron weights to 
0 during training, withholding information from the model. This tech-
nique improves the model’s robustness against overfitting but may also 
make it more challenging for the network to interpret the data. Alter-
natively, (Garbin et al., 2020a) recommends using batch normalization, 
which re-centres and re-scales the inputs to the layers, resulting in 
improved generalization and faster training. In order to quantify the 
influence of these components, we are testing both components as a first 
step, each separately and also using none of these components. 

3.4.2. Learning rate 
The learning rate is a number between 0 and 1 and influences how 

quickly a model can adapt to new data and determines how much the 
weights of a model are changed at every training iteration. A very small 
learning rate may result in very long training times because the weights 
only change by a very small amount. Increasing the learning rate will 
speed up the process, but comes with the danger of learning sub-optimal 
weights too fast and, therefore, leading to worse model quality. In our 
tests, we compare learning rates of 0.0001, 0.001, 0.01 and 0.1. 

3.4.3. Losses 
In machine learning, a loss function is an essential component for the 

learning process to accomplish its assigned task. The loss function allows 
describing numerically how well the prediction fits the model. During 

training, this information is used to change the parameters of the model. 
The loss is usually expressed as a numeric value starting from 0, where a 
value of 0 indicates perfect predictions of the data with no deviations, 
and higher values indicate worse predictions of the model. As the class 
‘unknown’ should not be prevalent in the final classification, no loss is 
calculated for this class. Numerous loss functions are available for 
different applications, including image segmentation as documented in 
(Jadon, 2020). Here, we compare three common loss functions for se-
mantic segmentation. In the following equations xi describes the input, yi 
is the target and C is the number of classes.  

1. Weighted Cross-Entropy loss 

The cross-entropy loss is one of the most commonly used loss func-
tions in machine learning, with the weighted cross-entropy loss being an 
adaption for imbalanced data sets, as we deal with in our study. Based on 
a term from information theory, cross-entropy measures the entropy 
between two different probability class distributions. It is calculated 
with equation (1). Here wi is the weight of a class and pi its probability. 
The weight of the classes is the inverse probability of each class. 

Weighted Cross Entropy Loss =
1
C

∑C

i=1
wiyilog(pi) (1)    

2. Focal loss 

The focal loss is another loss especially suited for imbalanced data-
sets. It was originally designed by (Lin et al.) for object detection but was 
used with success for semantic segmentation as well. The loss function is 
a dynamically scaled cross-entropy loss, where the scaling factor decays 
to zero as confidence in the correct class increases so that the model is 
focusing on harder examples. In equation (2), αi is a weighting factor for 
each sample, γ is a tunable focusing parameter and pi is the probability of 
a class. The value of these parameters depends on the dataset and 
typically involves setting the weighting factor higher for the minority 
class and experimenting with different values of gamma to balance the 
model’s ability to learn from hard examples and generalize to new data. 
Gamma is set to 2, and the weight of the classes is again the inverse 
probability of each class. 

Focal Loss =
1
C

∑C

i=1
− αi(i − pi)

γlog(pi) (2)    

3. DICE Loss 

Fig. 6. The U-net takes a grayscale image as input and returns for each pixel and class a probability, which can be used to create a segmented output image.  

Table 3 
Model parameters that remain consistent during all 
trainingsa  

Type Value 

Optimizer Adam 
Kernel size 3 
Batch size 4 
Training percentage 80% 
Validation percentage 20%  

Table 4 
Parameters of the baseline model.  

Parameter Setting 

Nr. of layers normal (4 layers) 
Learning rate 0.001 
Loss Cross entropy 
Input-size 1200 × 1200 (resized) 
Augmentation No Augmentation 
Overfitting Dropout & Batch normalization  

F. Dahle et al.                                                                                                                                                                                                                                   
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This loss is based on the Sørensen–Dice coefficient, which is used to 
estimate the similarity of two different samples. Like focal loss, it is 
mainly used to address a class imbalance in images, mainly due to a 
common imbalance of foreground and background pixels. It is calcu-
lated with equation (3). Here N describes the mini-batch size, a further 
and smaller subdivision of the batches. The choice of mini-batch size 
depends on factors such as available memory, dataset size, and model 
complexity, and is typically determined empirically by starting with a 
moderate size and adjusting based on performance and memory 
requirements. 

Dice loss =
2
∑N

i xiyi
∑C

i x2
i +

∑C
i y2

i
(3)  

3.4.4. Model depth 
This term describes how ‘deep’ the model is, so how many encoding 

and decoding layers the model has. The model size has a direct influence 
on the number of parameters/weights that are trained. Typically, 
increasing the number of layers improves the accuracy of a model. 
However, as more parameters need to be calculated, the training time 
and model size will increase. Furthermore, it is possible to over-fit the 
data. On the other hand, it is also important not to have too few layers, as 
complex scenarios may not be learned, which means the model is 
underfitting. 

To test the impact of model size, four different models with varying 
numbers of layers will be examined, including 2, 3, 4, and 5 layers. 

3.4.5. Input size 
Although the U-Net allows for flexibility in input image size, the 

images were resized prior to training. The images have an original size of 
around 10000 × 10000 pixels, which is too large to be used for training 
due to time and memory constraints. To address this issue, two different 
options were examined during parameter testing:  

1. Resizing images: all images are resized to 1200 × 1200 pixels. This 
method is easily applicable, does not change the total number of 
images and the complete image is still depicted. However, informa-
tion in the image is lost, especially texture, which is required for 
distinguishing classes with similar intensity values, like snow and 
clouds.  

2. Cropping images: instead of using the complete image for training, a 
crop of 256 × 256 is taken from the image. This can either be a crop 
from the same location in every image or a crop based on a random 
location. In this way, no information on texture is lost. Although this 
method preserves information on texture, it presents some chal-
lenges for the dataset used in this study. Due to the class imbalance, 
taking a random crop means that the crops may also be imbalanced. 
In this case, the dominant class would be present in the majority of 
random crops, whereas other classes would only be present in a few 
crops. To mitigate this issue, we use the inverted random crop. A 
weight is assigned to every class, based on the occurrence of the 
classes in the dataset (see Table 2; classes with a smaller occurrence 
get higher weights), and a random crop is taken with a weighting. 

3.4.6. Augmentation 
In some cases, there may not be sufficient data to train a model, i.e. 

due to the lack of training data or the creation of additional training data 
being too time-consuming. A prime example of these cases is medical 
imagery, e.g. where some forms of cancer are too rare to have an 
adequate number of examples (Ayalew et al., 2021). For these cases, it is 
possible to apply data augmentation, a technique that is used to syn-
thetically increase the amount of data, in order to provide a model with 
more samples and therefore increase the quality of the model. It is 
possible to either copy and adapt existing data or create completely 
synthetic data. An example of data augmentation in geo-sciences ap-
plications can be found in (Feng et al., 2022) for hyperspectral image 

classification. The augmented data are not created before the training 
nor added to the pool of available images. Instead, whenever the images 
are required for training an epoch of the model, they are randomly 
augmented with any of the augmentation methods, each applied with its 
own probability. 

For this paper, we focus on the first option. We test different 
augmentation methods, used individually and all combined. The 
following methods are tested: (1) Flipping: The images are randomly (p 
= 0.5) flipped vertically and/or horizontally. (2) Rotation: The images 
are randomly (p = 0.5) rotated 90◦ for a random number (1–3) of times. 
(3) Brightness: The pixel values in the images are randomly (p = 0.5) 
increased or decreased by a random number (from 1 to 10). (4) Noise: 
Gaussian noise is added randomly (p = 0.5) to the images. (5) 
Normalize: The image values are normalized from 0 to 255 to a range 
from − 1 to 1. Fig. 7 illustrates a visualization of these augmentation 
methods (except for normalization, as there is no visual change for this 
augmentation). 

In addition to the benefits conferred by an expanded training dataset, 
the implementation of image augmentations by flipping and rotating 
offers further advantages. These augmentations can simulate common 
scanning errors, such as images being captured upside-down or rotated 
by 90◦. By introducing these variations during training, the model can 
be conditioned to effectively process and segment such erroneously 
scanned images. Similarly, augmentations that adjust brightness and 
apply Gaussian noise enable the model to better handle images that are 
underexposed, overexposed, or affected by scanning artefacts. This 
preparatory step enhances the model’s robustness and its ability to 
generalize from a broader range of input conditions. 

3.5. Post-processing 

Another important step to further improve the segmentation quality 
is post-processing. Our post-processing consists of the following steps: 
First, the images are resized to 2000 × 2000 pixels to speed up the post- 
processing. Subsequently, patches with a size smaller than 50 pixels are 
removed from the segmentation and filled with the values of sur-
rounding pixels via the watershed algorithm. Next, the images made 
with cameras facing down vertically are checked for the presence of 
segments of the class sky. If present, these segments will be replaced 
with the value of the surrounding pixels via a watershed algorithm, since 
it is impossible for down-looking images to observe the sky. In non- 
vertical images, the class sky is enlarged to fill complete rows, when a 
row exceeds 50% of sky pixels. Furthermore, some combinations of the 
class sky are physically impossible. Examples would be small patches of 
the class sky that are located far away from the sky at the top of an image 
or small patches of the class snow inside the sky. As can be seen in Fig. 8, 
these patches are automatically recognized with computer vision 
methods, are removed and then again filled with the value of the sur-
rounding pixels. 

Finally, some logical criteria are applied to handle the confusion of 
the classes rock and water. Whenever a cluster is smaller than a 
threshold of 100.000 pixels and does not neighbour any cluster of its 
class, the class is changed (i.e., a rock cluster gets changed to water and 
vice versa). 

3.6. Evaluation metrics 

The evaluation of the image segmentation results can be complex as 
both the accuracy and the correct localization of the segmented images 
must be considered. Furthermore, an imbalanced distribution of the 
prominent classes during segmentation can lead to a statistical bias with 
incorrect high evaluation scores (Müller et al., 2022). Finally, not all 
incorrect segmentation labels are equally wrong. For example, confusion 
between the classes ‘Ice’ and ‘snow’ may have fewer implications than 
confusion between the classes ‘sky’ and ‘snow’. 

Almost all commonly used metrics are based on a computation of a 
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confusion matrix, in which a pixel has one true class and one predicted 
class, which can result in four different outcomes: true positive (TP), 
true negative (TN), false positive (FP) and false negative (FN). Here, the 
models will be evaluated with the loss, accuracy and the F1-score. 
Precision and recall are important metrics required for the F1-score 
and therefore explained as well: (1) Accuracy: The most classical 
metric, which gives the percentage of pixels segmented correctly. 
However, this parameter is skewed by imbalanced datasets. If for 
example, 90% of an image contains the class ‘snow’, a model that learns 
to always classify every pixel to ‘snow’ will have an accuracy of 90%, 
even though the model is not useful. (2) Precision: a measure of quality, 
this parameter shows the number of correctly segmented pixels in 
relation to all pixels with this class attributed. It shows the ability of the 
model to segment a class with only pure results, with as few false 
segmented pixels as possible. Yet, it does not reflect the ability to capture 
all pixels of this class category. (3) Recall: a quantitative measure which 
shows the number of correctly segmented pixels in relation to all pixels 
with this class in reality. It indicates the ability of the model to segment 
as many pixels of a certain class correctly but does not take into account 
whether other classes are wrongly predicted as this class. (4) F1-Score: 
This parameter is a combination of both precision and recall using a 
harmonic mean. Only when both values have a high score, does the F1- 
score as well have a high score. It is generally seen as a more accurate 
score than accuracy for imbalanced datasets, even though it is less 
intuitive. 

4. Results & discussion 

In this section, we present the results of our study on optimizing 
hyper-parameters for semantic segmentation. We analyze the perfor-
mance of the model using various hyper-parameters and present our 
findings. Based on these results, we identify the optimal set of hyper- 
parameters and train a segmentation model with them. We evaluate 
the performance of the optimized model on a set of 20 test images and 
provide a detailed discussion of the results. Additionally, we apply the 
model in a use-case to a larger set of images of Adelaide Island in 
Antarctica to demonstrate its effectiveness in real-world scenarios. 

4.1. Performance of the base-model 

Fig. 9 displays the training and validation performance of the base 
model with the most basic parameter settings. Even with these most 
basic settings, the model is observed to be learning, as evidenced by the 
decreasing training loss and increasing evaluation values. 

During training, an interesting pattern emerges for the base model 
until around 500 epochs: The validation loss remains constant or even 
increases slightly, while the training loss is constantly decreasing. This is 
typically an indication of overfitting, where the model learns to just 
predict the training data, but not to create generalizations over the data. 
However, the evaluation parameter values continue to improve for 
testing and, importantly, for validation as well. 

Further experimentation with the base model using more unseen 
data, however, reveals that this model is still learning, as it can segment 
better than the same model with fewer iterations. Therefore, classical 
overfitting does not appear to be the case here. Instead, this phenome-
non can be explained by characteristics of the cross-entropy and the 
input data. Whereas most predictions improve (better scores for the 
evaluation parameters), other already bad predictions worsen (in this 
case the prediction of ‘ice’ as ‘snow’) and have a higher influence on the 
rising loss. Furthermore, the prediction probabilities for all classes may 
be increasing, for both incorrect and correct classes, which can further 
increase the loss. However, the right class is still maintaining the highest 
probability, so that the segmentation is not changing. Both phenomena 
combined can lead to a situation, in which the loss is rising, but the 
performance of the models is still improving. 

However, around epoch 500, the model is showing signs of over-
fitting, with an increase in validation loss and lower values for the 
evaluation parameters. 

4.2. Training & validation performance of individual parameters 

Fig. 10 displays the training and validation performance of the in-
dividual parameters. The evaluation performance of the models (accu-
racy & F1-score) generally increases for each combination, indicating 
that the models are learning to segment the model. However, depending 
on the exact parameters, the performance can differ drastically. The 

Fig. 7. Four different augmentation methods of the training images together with their probability.  

Fig. 8. For the initial segmented image (middle) post-processing is applied to improve the quality of the final segmentation (right). Here the sky is removed from the 
borders of the image. 
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average validation values over all different parameter tests are 0.47 for 
accuracy and 0.48 for the F1-score. 

The following can be noticed for the performance of the individual 
parameters: 

4.2.1. Additional components 
The results for the test with additional components align with the 

expectations. Dropout, in which a random percentage of the neurons is 
disabled so that they do not transmit information while learning, makes 
it harder for the model to train, leading to higher loss values for both 
training and validation. Even though the model’s performance is 
decreasing, the chance of overfitting is smaller. On the other hand, batch 
normalization increases the model’s performance, resulting in a smaller 
loss and increased performance for all evaluation parameters. For these 
reasons, both components were used in the subsequent tests. 

4.2.2. Learning rate 
In general, higher learning rates lead to worse model performance. In 

the extreme case of a learning rate of 0.1, the model is hardly learning 
anything and the loss remains nearly constant. The model is converging 
too fast to a sub-optimal solution and gets stuck iterating around it (see 
(Ketkar and Ketkar, 2017)). For lower learning rates, the model is 
improving and learning. With smaller learning rates, the weights are 
upgraded with smaller steps, allowing the model to converge to more 
optimal solutions at the cost of increased learning time. Notably, with a 
minimal learning rate of 0.0001, the model progresses in learning but 
requires a more extended period to achieve the performance level of a 
model trained with a learning rate of 0.001. 

4.2.3. Loss type 
All three loss functions allow the model to learn the image seg-

mentation and the evaluation values are improving. For the cross- 
entropy loss, the training loss is decreasing, but the validation loss re-
mains constant and even increases again at the end, as explained earlier. 
The focal loss yields minimal loss values in comparison to the other two 
losses. However, this is not related to a better performance of this loss, 
instead, the loss values are calculated differently. The evaluation per-
formance of this loss is the lowest of all losses. Whereas the cross entropy 
loss yields higher accuracy, the dice loss performs better for the F1- 
score. 

4.2.4. Model depth 
Regardless of the model depth, the segmentation model is able to 

improve, but the two-layer model is less capable of learning segmenta-
tion, resulting in higher loss and lower evaluation parameters. To a 
limited extent, this also holds for three and five layers, whereas four 
layers are the sweet spot with the best loss and evaluation parameters. 
With more layers, too many parameters are included, so the model is 
overfitting. With fewer parameters, the model lacks the complexity to 

capture the relationship between the input and output variables for 
segmentation (underfitting). 

4.2.5. Input size 
When comparing the performance of the different input sizes in 

Fig. 10, an interesting behaviour similar to the lost type can be noticed. 
For training and validation, the model with resized input data has a 
higher accuracy, while cropping the input data yield better F1-scores for 
both. These conflicting results suggest that neither input size out-
performs the other in terms of overall evaluation metrics. However, 
considering the better validation loss values and that the F1-score is 
better suited to evaluate imbalanced data sets, cropped images seem to 
be a better choice. Comparing the models for the different input sizes 
visually reveals that the resized model is better at giving the correct 
classes, whereas the cropped model is more accurate in extracting 
boundaries between classes. 

4.2.6. Augmentation 
Including augmentation data in the model did not have the desired 

effect, as most single methods have a higher loss and yield worse eval-
uation performance than the model without augmentation. The only 
exception is the ‘noise’ augmentation, which delivers better perfor-
mance at the end of the model training. Combining all the augmentation 
methods leads to the worst results in terms of both loss and evaluation 
metrics. Using a single augmentation method only has a small influence. 
However, some augmentation methods, like applying ‘rotation’ and, to a 
smaller extent, ‘flipping’ decrease the performance of the model even 
further. This is in line with the findings of (Engstrom et al., 2019), who 
reported that perturbations such as translations and rotations can 
degrade the performance of a neural network. 

4.3. Numerical quantification 

The insights from the tests for individual parameters are used to train 
a new model with the combination of the best-performing hyper-pa-
rameters. These parameters are described in Table 5. 

Both dropout and batch normalization are used against overfitting. 
The learning rate of 0.001 and model depth of 4 are used as the best- 
performing parameters. For the augmentation parameters, only noise 
was included, as it brings the most performance gain. For the loss type 
and input size, there is no single best-performing hyper-parameter or 
optimal solution, as it depends on whether accuracy or F1-score is more 
important. 

During the training of some initial models, it was noticed through 
visual inspections that the model using cropped input data is better at 
detecting the boundaries between classes, whereas the model with 
resized input data excels at detecting the correct classes. This effect can 
even be enhanced by combining the different input sizes using different 
losses: dice loss for cropped input data and cross-entropy loss for resized 

Fig. 9. Results for base model with loss, accuracy and F1-score for both validation and training data.  
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Fig. 10. Results for the models with the different parameters discussed in subsection 3.4 with each test showing loss, accuracy and F1-score for both validation and 
training data. For displaying purposes, the loss values for focal loss are exaggerated by factor 10. 
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input data. Therefore, we utilize the strengths of both combinations to 
further improve the quality of the segmentation by using both models 
together and merging the results. The segmented from cropped image 
serves as the base segmentation, and some clusters (enclosed segments 
of the same class values) from the segmentation of the resized images are 
used as well: The position and class of a cluster from the resized image 
replace the classes at the same position in the cropped image, as the 
segmentation performs better for the classes sky, ice, and clouds in the 
resized model. Fig. 11 visualizes this combining step: The cropped seg-
mentation is the base image, whereas clouds & ice from the resized 
segmentation are taken from the resized image. 

The final segmentation is therefore based on a combination of two 
models with the best-performing parameters for each cropped and 
resized imagery. The first model utilizes crops of 512 × 512 pixels and 
the dice loss, while the second model utilizes resized images of 1200 ×
1200 pixels and the cross-entropy loss. The cropped model was trained 
for 500 epochs, while the resized model was trained for 360 epochs. The 
total training time was 74 h for the cropped model and 45 h for the 
resized model. 

The model’s numerical quantification is based on an evaluation of 20 
semi-manually labelled (see subsection 3.2) images as ground truth. 
These images are randomly selected from the complete archive. Fig. 12 
visualizes the segmentation of all twenty evaluation images with the 
optimal model. The accuracy, precision, recall, and F1-score are 0.73, 
0.84, 0.72, and 0.71, respectively, based on the right confusion matrix of 
Fig. 13. 

The difference between the confusion matrix of the base model and 
the optimized model is evident. In the base settings, the model tends to 
classify pixels as snow with a high probability due to the imbalance of 
the dataset, where snow is the most dominant class. However, the only 
two exceptions are the classes water and sky, which have opposite 
colour values (black instead of white). In contrast, the model with 
optimized hyper-parameters performs better in terms of correct classi-
fications. Although the accuracy for some classes may have decreased, 
such as sky from 0.69 to 0.66 or snow from 0.9 to 0.81, this is likely due 
to the introduction of noise into the data (In return the model performs 
better on under- or overexposed images) Nonetheless, the model with 
additional hyper-parameters is more stable and better suited to handle 
new, unseen data. 

When looking at the example images of Fig. 12, for every image the 
general semantic meaning can be extracted successfully. However, for 
some scenarios and images, the model underperforms. Notably, in im-
ages T4 and T15, rock structures are accurately recognized, but the 
model fails to distinguish between snow and sky, particularly when 
snow covers a significant portion of the ground. This can possibly be 
attributed to the underexposure of the camera, in which the ground is 
too dark and resembles the sky of the training data. The augmentation 
could not help to mitigate this, so more underexposed imagery could be 
included in the training data to address this limitation, as it would teach 
the model to differentiate correctly between underexposed snow and 
sky. Another challenge for the model is distinguishing between water 
and rocks, as both share similar attributes for the network. However, 
with post-processing, most of these confusions can be cleared and the 
correct class can be assigned. 

It is worth noting that mismatches between classification and eval-
uation may be due to errors in the ground truth data. Generating ground 
truth data is a time-consuming process, and limitations in the accuracy 
of the data may occur, especially when dealing with small structures. 
Additionally, there may be limitations in correctly assigning classes. For 
example, clouds may not completely obstruct the surface beneath them, 
and distinguishing between the clouds and the surface beneath can be 
challenging. Ice often gets covered with snow, leading to confusion 
between the two classes. In image T10, the ground truth data identifies 
the entire image as snow, although the model correctly identifies small 
rock structures. This leads to lower evaluation scores as it is counted as 
an error. Nonetheless, it is essential to acknowledge these limitations 
when interpreting evaluation results. 

When compared to the evaluation conducted in (Dahle et al., 2022), 
the current assessment, at first sight, does not demonstrate significant 
improvement in quantitative performance. However, the current study 
utilized a new set of images that featured more complex scenery, with a 
higher proportion of cloud cover and greater underexposure. This poses 
significant challenges for semantic segmentation models as they obscure 
important details and create inconsistencies in image quality. Despite 
these more challenging conditions, the new model performed well, 
maintaining its performance on even more difficult images. 

Our model’s segmentation approach closely resembles that of human 
labellers. It performs well in scenes that are easily recognizable by 
humans while encountering similar difficulties in challenging scenes. 
However, the model surpasses human capabilities in segmenting smaller 
structures with greater accuracy (for example T10 or T14 of Fig. 12). On 
the other hand, the model struggles with under- or overexposed images. 
Despite this limitation, the model’s speed is a significant advantage over 
human labellers, taking only 10 s on a standard computer to segment an 
image compared to 20 min on average for a human (based on the cre-
ation of the training data for this model). 

Overall, while the model shows promising results in adding semantic 
information to the images, there is still room for improvement, 

Table 5 
Parameters of the final model used for the numeral quantification.  

Parameter Value 

Additional components Dropout & Batch normalization 
Learning rate 0.001 
Loss Dice Loss & Cross entropy 
Model depth 4 layers 
Input size Cropped & Resized 
Augmentation Noise  

Fig. 11. Example for combining two models with the images from left to right: raw image, cropped segmentation, resized segmentation and final segmentation after 
post-processing. 
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Fig. 12. Segmentation of twenty randomly selected images (Test image T1 - T20). For each triplet, the raw image is on the left, the manually created ground truth in 
the middle and the results of the segmentation on the right. 
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particularly in distinguishing between snow and clouds. Future research 
could focus on improving the model’s performance and incorporating 
validation data to evaluate its accuracy further. 

4.4. Use-case Adelaide island 

To demonstrate the capabilities of our optimized segmentation 
model beyond the validation set of 20 images, we applied the model to 
the vertical images of Adelaide Island from 1969 and quantified the 
results. Fig. 14 shows the 118 segmented vertical images of Adelaide 
Island, that were roughly geo-referenced based on the camera positions 
shown in Fig. 2. It is important to note that the position is only an 
approximation based on the (uncertain) reported camera positions, 
which is evident from the difference in coastline positions between the 
segmentation and the base map. 

Due to the lack of validation data for Adelaide Island, we cannot 
provide a numerical assessment of the segmentation model’s perfor-
mance in this area. However, a visual inspection of the segmented im-
ages reveals that the model successfully adds semantic information to 
the images, particularly in differentiating between land, water, and ice, 
as is shown by the segmentations in bounding boxes A and B. Never-
theless, the model has limitations, as can be seen in bounding box C 
where it struggles to differentiate between snow and clouds, especially 
in the centre of the clouds, where there is significant visual overlap with 
snow. However, due to the limited data quality of these images, these 
areas are also difficult to segment for humans. 

5. Conclusion 

In this work, we successfully segmented an archive of historical 
aerial imagery of Antarctica using a U-net-shaped neural network. We 
compared and discussed the training and validation performance of 
different hyper-parameters. Combining the best-performing parameters, 
we applied a model on a test set and segmented images of Adelaide 
Island. 

Several other segmentation methods exist, e.g., k-means clustering, 
random forest approaches, or other deep-learning-based approaches 
(Lateef and Ruichek, 2019). However, these methods seem unsuitable 
for this dataset, as they require either better quality data or much more 
labelled training data. 

The proposed model is able to get the semantic meaning of a scene 
for the historical images of the TMA archive, even when using grayscale 

images with low contrast, conditions for which many other segmenta-
tion models would fail. The created model successfully learns to 
distinguish between most of the different classes with a certain confi-
dence and does not get disrupted by unfavourable conditions, like poor 
image quality, limited spectral information, difficult semantic classes 
and only a few training images. 

To our knowledge, no other semantic segmentation model exists that 
can work under these conditions. Based on the added information 
through segmentation, specific images with certain attributes can be 
selected, such as images located at the ice-ocean boundary, or images 
containing sky. This greatly facilitates case-specific inquiries into local 
conditions within the archive, thereby enabling various applications 
related to the historical conditions of Antarctica. 

In theory, almost every combination of model parameters allows 
training a model for semantic segmentation and getting some mean-
ingful output. However, the tests demonstrate that selecting the correct 
parameters can impact the segmentation’s quality and even can account 
for training with a limited number of images and/or images with sub- 
optimal quality. The findings can be extended to the segmentation of 
other historical imagery to enable a better selection of hyper-parameters 
at the start of the segmentation. 

When it comes to parameter selection for semantic segmentation, we 
suggest the following guidelines: parameters such as model depth, 
learning rate, and the choice of loss function have a direct impact on the 
model and therefore have the biggest influence on the quality of the 
model. While data augmentation is beneficial, particularly when dealing 
with a limited number of images, its impact is not as strong. However, it 
is important to keep in mind that there is no universally optimal 
parameter that can be applied across all scenarios; the choice of pa-
rameters must be tailored to the specific characteristics of the dataset 
and the objectives of the study. 

Even though the training time of both models (cropped and resized) 
takes a significant amount of time, the segmenting of an image itself is 
fast, with an average time of around 10 s per image, including post- 
processing. As a next step, we aim to extend the application of the 
model beyond Adelaide Island and use it to segment the entire TMA 
archive of 300.000 images, which will allow easy access to the data and 
encourage its further usage by the community. Besides filtering for 
specific classes, segmentation allows to correct oblique images which 
were scanned upside-down, so that the sky is at the top. It also enables 
the detection of rock outcrops in the images, which can then be used to 
address the poor geo-location of the imagery by matching with present- 

Fig. 13. Normalized confusion matrix for the base model (left) and the optimized model (right) with real classes on the left and predicted classes on the top.  
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day outcrop data sets (Burton-Johnson et al., 2016). Furthermore, it can 
help improve applications, such as Structure-from-motion to create 3D 
models (Child et al., 2020), by excluding irrelevant tie points (i.e. 
identical points in overlapping images) in the classes “water” and “sky”. 
Tie-points detected in these classes are often of worse quality due to 
movements inside the class. The removal of these points enhances the 
quality of the 3D models and is a necessary step to automatize the 
process so that in future efforts the TMA Archive can be used to create 
historical 3D models at a large scale. 

To enhance the model’s robustness and generalization capabilities, it 
is possible to employ an even broader spectrum of augmentation tech-
niques. For instance, incorporating affine transformations can effec-
tively simulate various forms of image deformation. The application of 
Gaussian blur is beneficial for mimicking atmospheric disturbances or 
the blurring effects associated with cameras being out of focus. How-
ever, we expect that the most effective option would be to increase the 

size of the training data set. However, even though other historical 
cryospheric datasets exist, e.g., for Svalbard, Greenland or Alaska (Girod 
et al., 2018; Bjork et al., 2012; Knuth et al., 2023), these archives do not 
currently contain segmented images. Therefore, they cannot be used as 
training data without further manual work. A viable alternative is to 
acquire labelled training data from modern satellite images (e.g., 
Sentinel-2) and artificially degrade them to resemble historical data. 
Another possible option would be to include metadata of the images as 
additional data sources, such as whether an image is taken with an 
oblique- or vertical-facing camera, the flight height or even the date 
when the picture was taken (to account for seasonal effects). However, 
these additional sources should be selected carefully, as this would limit 
the use of this model for other images where these additional metadata 
are not available. 

Fig. 14. 118 raw images (left) and segmented images (right) for Adelaide island.  
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6 Annex 

Table 6 displays all images that were used during the training and validation of the models and the respective class composition per image.  

Table 6 
Class composition per image  

Image Sea ice Snow Rocks Water Clouds Sky Other set 

CA135431L0337 4.6 20.8 0 6.8 36.6 12.8 18.4 train 
CA135431L0343 0 0 0 0 72.2 10.9 16.9 train 
CA135433R0343 0.5 0 0 19.2 65.9 9.6 4.9 train 
CA135631L0036 29.8 0 0 8.7 59.6 0 1.9 train 
CA135632V0032 23.3 0 0 42.9 33.4 0 0.4 train 
CA135633R0037 0 2.8 0 1.1 83 11.1 2.2 train 
CA139132V0154 0 98 2 0 0 0 0 train 
CA179231L0038 70.8 16.4 3.5 0.8 0 8.6 0 train 
CA180031L0060 0 89 2.2 0 0 08.8 0 train 
CA181331L0123 0 86.5 0.8 0 0 10 2.7 train 
CA181332V0125 0 97.5 0 0 0 0 2.5 train 
CA181333R0125 0 97.3 0.1 0 0 2.7 0 train 
CA182433R0047 0 90.4 0.2 0 0 8.1 1.3 train 
CA182433R0050 0 85.3 0.4 0 0 12.3 2 train 
CA182933R0037 0 88.4 0 0 0 11.6 0 train 
CA183431L0012 0 99.2 0 0 0 0 0.8 train 
CA183432V0034 0 100 0 0 0 0 0 train 
CA183432V0045 0 95 3.7 0 0 0 1.3 train 
CA183532V0067 0 98.9 0 0 0 0 1.1 train 
CA183533R0058 0 86.2 1.7 0 0 12.1 0.1 train 
CA184333R0078 0 89.2 0 0 0 9.8 1 train 
CA184431L0143 0 84.5 4.6 0 0 9.1 1.8 train 
CA184432V0094 0 99.7 0 0 0 0 0.3 train 
CA184432V0113 0 100 0 0 0 0 0 train 
CA184432V0115 0 100 0 0 0 0 0 train 
CA184432V0154 0 99.6 0 0 0 0 0.4 train 
CA184531L0226 0 83.1 1.4 0 0 15.1 0.4 train 
CA184532V0199 0 99.6 0 0 0 0 0.4 train 
CA184532V0201 0 100 0 0 0 0 0 train 
CA184532V0219 0 100 0 0 0 0 0 train 
CA184532V0229 0 96.5 3.5 0 0 0 0 train 
CA184532V0231 0 87.1 12 0 0 0 0.9 train 
CA184533R0206 0 88.9 1.8 0 0 9.3 0 train 
CA184533R0229 0 83.4 4.1 0 0 12.6 0 train 
CA184533R0238 0 84.5 2.5 0 0 11.8 1.1 train 
CA184733R0095 0 94 0 0 0 6 0 train 
CA212333R0050 0 83.6 0.4 0 0 14.3 1.7 train 
CA213731L0035 8.9 26 0.5 55.3 0 7.7 1.6 train 
CA213731L0038 0 20.9 1.6 53.8 08.6 5.9 9.3 train 
CA213733R0050 3.5 27.3 0.1 52.2 0 14.8 2.1 train 
CA214732V0011 3.9 49.2 2.2 37.4 6 0 1.3 train 
CA214831L0099 0.1 23.2 1.9 48.9 13.5 10.2 2.1 train 
CA214832V0090 0 97.1 2 0 0 0 0.9 train 
CA214833R0100 0.1 55 3.5 25.5 0.7 12.3 2.9 train 
CA214932V0146 0 89.9 9.6 0 0 0 0.4 train 
CA215032V0257 0 78.8 20.6 0 0 0 0.6 train 
CA215131L0274 0 76.6 10.2 0 0 11.8 1.3 train 
CA215131L0288 0 73.4 16.3 0 0 10.2 0.1 train 
CA215132V0275 0 37.3 7.8 0 54.2 0 0.6 train 
CA215331L0411 0 74.2 11.6 0 0 11.9 2.3 train 
CA215333R0402 0 83.2 1.5 0 0 12.9 2.4 train 
CA215731L0063 0 85.4 6.7 0 0 7.7 0.2 train 
CA216631L0328 27.2 55.6 4.3 5.9 0 6.1 0.8 train 
CA216632V0331 85.6 0 0 13.9 0 0 0.4 train 
CA216633R0325 78.4 0.1 0.1 14.1 0 7.4 0 train 
CA216633R0332 88.6 0 0 4.1 0 7.3 0 train 
CA216731L0333 0 82.7 7.3 0 0 9.9 0 train 
CA216733R0338 0 89.4 0.3 1.3 0 9 0 train 
CA216733R0346 0 90.9 0.1 0.8 0 8.2 0 train 
CA216733R0367 0 90.5 0.5 0 0 9 0 train 
CA512933R0013 1.1 0 0 70.6 14.2 13.5 0.6 train 

(continued on next page) 
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Table 6 (continued ) 

Image Sea ice Snow Rocks Water Clouds Sky Other set 

CA035131L0077 45.8 0 0 40.2 0 14 0 val 
CA135431L0352 3.2 8.2 0.2 3.9 83.8 0 0.8 val 
CA135432V0337 0 0 0 48.6 50.3 0 1.1 val 
CA135433R0350 5.1 0 0 32 49.9 9.1 3.9 val 
CA135632V0031 26 0 0 24.5 72 0 0.8 val 
CA168431L0207 0 0 0 43.1 45.5 11.3 0 val 
CA172032V0190 0 100 0 0 0 0 0 val 
CA172733R0183 0 92.2 1 0 0 6.8 0 val 
CA180031L0079 0 0 0 0 90.3 9.6 0.1 val 
CA182033R0051 0 87.7 1.8 0 0 10.5 0 val 
CA182431L0059 0 93 2 0 0 5 0 val 
CA183032V0009 0 99.5 0 0 0 0 0.5 val 
CA183432V0005 0 99.6 0 0 0 0 0.4 val 
CA183432V0041 0 99.8 0.2 0 0 0 0 val 
CA183433R0044 0 92.2 0 0 0 7.3 0.5 val 
CA183531L0087 0 86.8 0.4 0 0 11 1.8 val 
CA183532V0060 0 99.7 0 0 0 0 0.3 val 
CA184332V0060 0 98.4 1.5 0 0 0 0.2 val 
CA184432V0105 0 100 0 0 0 0 0 val  
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