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Nomenclature
Abbreviations and acronyms

ABM = Adams-Bashforth-Moulton method
BS = Bulirsch-Stoer method
CNES = Centre National d’Études Spatiales
DE = Differential Evolution
DLR = German Aerospace Center
DOPRI = Dormand and Prince method
GNC = Guidance Navigation and Control
jDE = self-adaptive Differential Evolution
KDE = Kernel Density Estimation
LEO = Low Earth Orbit
MEE = Modified Equinoctial Elements
PDF = Probability Density Function
PaGMO = Parallel Global Multi objective Optimizer
RK = Runge-Kutta method
RK7(8) = Runge-Kutta-Fehlberg 7(8) integrator
Tudat = TU Delft Astrodynamics Toolbox

Latin symbols

𝑎 = semi-major axis [m]
𝑐 = speed of light [m/s]
𝐴 = area [mኼ]
𝐶ፃ , 𝐶ፒ , 𝐶ፋ = drag, side, and lift coefficient [-]
𝐶ፑ = radiation pressure coefficient [-]
𝐶𝑅 = crossover factor [-]
Cፁ,ፀ = transformation matrix from reference frame 𝐴 to 𝐵 [-]
𝐷 = drag force [N]
𝑒 = eccentricity [-]
𝐸 = expected number of casualties [-]
ጂፄ
ጂ፭ = power of the Sun [W]
𝑓, 𝑔, 𝑗, 𝑘 = second to fifth modified equinoctial element [-]
𝐹 = mutation factor [-]
F = force vector [N]
𝐺 = gravitational constant [mኽ/sኼ/kg]
𝐺 = number of generations [-]
ℎ = altitude with respect to the spheroid [m]
𝐻 = Hamiltonian [-]
𝑖 = inclination [rad]
𝐼 = MEE retrograde factor [-]
𝐾 = ballistic coefficient [mኼ/kg]
𝑙 = true longitude [rad]
𝐿 = lift force [N]
𝑚 = mass [kg]
𝑀 = mass of celestial body [kg]
𝑛 = number of samples [-]
𝑁 = number of casualties [-]
𝑁𝑃 = number of individuals in the population [-]
𝑝 = semi-latus rectum [m]
𝑃 = radiation pressure [Pa]
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𝑃፧፦ = Legendre polynomial of degree n and order m [-]
𝑃።,፣ = probability of impact in point (𝑖, 𝑗) [-]
𝑞 = dynamic pressure [Pa]
𝑟 = distance to center of mass of central body [m]
r = Cartesian position vector [m]
𝑅 = mean equatorial radius of central body [m]
𝑠𝑓 = shadow function [-]
s = Cartesian position vector perturbing body [m]
𝑆 = side force [N]
𝑡 = time [s]
𝑇 = magnitude of the thrust force [N]
𝑈 = gravitational potential [J]
U = trial parameter vector of individual [-]
𝑣 = velocity [m/s]
V = mutated parameter vector of individual [-]
𝑥, 𝑦, 𝑧 = Cartesian position coordinates [m]
x̂, ŷ, ẑ = unit vectors defining axis of reference frame [-]
X = parameter vector of individual [-]

Greek symbols

𝛼 = thrust steering pitch angle [rad]
𝛽 = thrust steering yaw angle [rad]
𝛾 = flight path angle [rad]
𝛿 = geocentric latitude [rad]
𝜖 = reflectivity satellite [-]
𝜂 = flattening parameter spheroid [-]
𝜃 = true anomaly [rad]
𝜅 = tolerance [-]
𝜆 = geodetic latitude [rad]
𝜆ዅ = costate [-]
𝜇 = standard gravitational parameter [mኽ/sኼ]
𝜇∗ = log normal mean [-]
𝜉 = probability of changing parameter 𝐹 and 𝐶𝑅 [-]
𝜌 = density [kg/mኽ]
𝜎 = bank angle [rad]
𝜎∗ = log normal standard deviation [-]
𝜏 = geocentric longitude [rad]
𝜙 = geodetic longitude [rad]
𝜒 = heading angle [rad]
𝜔 = argument of perigee [rad]
𝜔ፄፚ፫፭፡ = rotational rate of the Earth [rad/s]
Ω = longitude of ascending node [rad]

Subscripts

𝐴 = aerodynamic reference frame
𝐴 = aerodynamic perturbation
𝐵 = body reference frame
𝑐 = casualty
𝐺 = gravitational perturbation
ℎ = human
𝐼 = inertial planetocentric reference frame
𝑛𝑚 = spherical harmonics degree and order
𝑁𝑇𝑊 = NTW reference frame
𝑜𝑐 = occulted
𝑟 = reference
𝑅 = rotating planetocentric reference frame
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𝑅𝑃 = radiation pressure perturbation
𝑆𝑆 = Sun-satellite line
𝑇𝐵 = third body perturbation
𝑉 = vertical reference frame

Superscripts

̇ = differentiation with respect to time
̂ = unit vector
ᖣ = parameter belongs to individual mass element d𝑚
∗ = scaled with shadow function
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Abstract
Currently, an increasing amount of debris is floating in Low Earth Orbit (LEO) endangering space op-
erations. Left-over rocket stages and non-operational satellites increase the risk of in-orbit collisions,
which in turn, increase the amount of debris floating in the LEO region. The current use of the space
environment is not sustainable, and therefore, measures need to be taken to reduce the amount of
space debris. Currently, ESA set a requirement that all launched objects need to re-enter within 25
years with a maximum risk of 1 casualty per 10000 re-entries.

One method to meet both of these requirements is to employ a semi-controlled de-orbit strategy
for end-of-life satellites using electric low-thrust propulsion. In this strategy the satellite is controlled
from the end-of-life orbit down to low altitudes (120 to 200 km). From this altitude the satellite follows
a ballistic trajectory towards the surface of the Earth. The target of such maneuver is to phase the
impact probability track, which is the result of uncertainties in the applied models, with the Earth, such
that the resulting impact track covers mostly uninhabited areas. Controlling only a part of the re-entry
results in mass savings on the satellite compared to fully controlled entries. These fully controlled
entries require larger thrust levels, which in general, require propulsion systems which are heavier
and less fuel efficient than electric low-thrust propulsion systems. Because the mass of a satellite is
strongly related to mission costs, the semi-controlled de-orbit strategy is an interesting alternative for
fully controlled de-orbit strategies. Furthermore, the semi-controlled strategy can reduce the risk of
casualties compared to the uncontrolled case. Recent studies found reductions of the casualty risk of
more than one order of magnitude. However, these studies made assumptions to calculate the casualty
risk of such semi-controlled entries but did not investigate the effect of these assumptions properly.
Therefore, the objective of this thesis, is to provide insights into the effects of these assumptions.
Furthermore, the extent to which the casualty risk can be reduced is investigated. Current literature
mostly focuses on reaching the requirement set by ESA, while it is also interesting to see the actual
reductions possible such that the strategy is employed more often and the risk for the human population
is reduced.

To fulfill the objective of this thesis, two optimization strategies are carried out. First, the control
profile for the complete semi-controlled de-orbit strategy is optimized for minimum casualty risk using a
differential evolution algorithm. The simulation of the complete strategy provides insight into the extent
if the reduction in casualty risks achievable with the semi-controlled de-orbit strategy. Furthermore, this
method allows for the preliminary investigation of the achievable states at the point where to controls
are turned off. These states are expected to have a large influence on the value of the resulting casualty
risk and are therefore important for analyzing the semi-controlled de-orbit strategy. Second, the initial
state of the ballistic trajectory, at the point where the controls are turned off, is also optimized for
minimum casualty risk using a differential evolution algorithm. This optimization method is applied
to reduce the computational effort of the optimization and allows for easier calculation of the effects
of the assumptions made in previous research. In case similar impact tracks are achieved for both
optimizations, future analysis of the semi-controlled de-orbit strategy can be performed which less
computational effort.

Employing a semi-controlled low-thrust de-orbit strategy can reduce the casualty risk with 2 to 3
orders of magnitude with respect to an uncontrolled de-orbit strategy. Large ballistic coefficients are
beneficial for the reduction of the casualty risk. Furthermore, orbits with high inclinations results in
larger reductions of the casualty risk with respect to low inclination orbits. Also the results for low
inclination orbits are less sensitive to errors in the re-entry state caused by imperfections in the GNC
system of the satellite during the de-orbit maneuver. The lower sensitivity is the result of a better
configuration of the impact track with respect to the large land masses on Earth. To find optimal impact
tracks on the Earth, it is sufficient to optimize only the last 150 km of the trajectory. In case an accurate
estimation for the value for the casualty risk is needed, higher fidelity models must be applied and the
uncertainties in initial state at 150 km need to be investigated in more detail. The assumptions made in
previous research influence the results with less than 33% and can easily be applied when an optimal
impact track is sought for with low fidelity models. For investigating the range of re-entry conditions
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x 0. Abstract

for which the resulting casualty risk is below the set requirement, some of the assumptions cannot be
applied since it limits the solution space for the GNC system to target. Furthermore, in case an accurate
value for the risk needs to be found, high-fidelity models are required and in that case, the effect if the
assumptions is too large.
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1
Introduction

The amount of space debris in Low Earth Orbit (LEO) is increasing, this is caused by amongst others,
left-over rocket upper stages, non-operational satellites, and fragments of satellite caused by the in-
tentional or accidental break-up of satellites. This debris poses a large problem for space operations
nowadays as the risk for collisions is increasing. Currently, thousands of pieces of space debris need to
be tracked and satellites frequently require orbit maneuvering to avoid debris to safeguard operations
[1]. The current use of the space environment is not sustainable. Therefore, to limit the contribution of
the end-of-life satellites to the space debris problem, action is taken. This is mainly accomplished by
decreasing the perigee of the satellites, such that the satellites re-enter the atmosphere within 25 years
after mission completion. The 25 year limit is a requirement for all European space missions as defined
in Ref. [2]. Examples of missions that decrease their perigee at the end-of-life are the Upper Atmo-
sphere Research satellite, the Akari satellite, and the ERS-2 satellite [3]1. However, these re-entries
are uncontrolled, resulting in impact locations of the debris that can be at any latitude between plus and
minus the value of the inclination of the orbit. In contrast, another option for the disposal of a satellite
at end-of-life is to perform a controlled re-entry. Such a re-entry utilizes high-thrust engines to steer
the satellite towards uninhabited areas of the Earth. However, these controlled re-entries require either
the addition of a propulsion system or additional fuel on board of the satellite, both of which increase
the launch mass, which is in turn closely related to the cost of the space mission.

In an effort to limit the amount of space debris in the future, ESA has defined the ’Space Debris
Mitigation Policy for Agency Project’ in Ref. [2] and the corresponding implementation guidelines in
Ref. [4]. The policy demands controlled re-entries over unpopulated areas if the casualty risk for
uncontrolled re-entry exceeds a value of 10ዅኾ. This casualty risk is defined as the probability of having
at least one casualty resulting from the re-entry. Luckily, to date, there are no confirmed casualties
as a result of the impact of debris from space. The method of calculating this casualty risk for both
controlled and uncontrolled re-entry is extensively described in Ref. [4].

For satellites between 700 kg and 2500 kg, adding a high-thrust propulsion system to perform a
controlled re-entry at end-of-life is expensive in terms of the mass required [1]. Below this mass range,
the risk is often below the limit that has been set for the casualty risk. For higher masses a controlled
re-entry is necessary as the casualty risks are too high and controlled re-entry is required. To limit
the costs of the end-of-life strategy for space missions, use can be made of a semi-controlled re-entry
utilizing an electric low-thrust propulsion system. Electric low-thrust propulsion systems are often lighter
and more fuel efficient than high-thrust propulsion systems, reducing the impact on the launch mass
and therefore the mission costs [5]. In a semi-controlled re-entry strategy, the satellite is slowed down
according to a controlled thrust profile from its end-of-life orbit down to the Earth. However, the last part
of the re-entry is dominated by large atmospheric perturbations. Due to these perturbations, the attitude
control system is no longer capable of providing accurate controls to maintain the desired attitude [6].
The altitude limit for the attitude control system is located around 150 km altitude [6]. The controls are
turned off at this altitude and the satellite continues on an uncontrolled trajectory towards the surface,

1NASA Orbital Debris Program Office, “Orbital Debris Quaterly News October 2011 and January 2012” https://
orbitaldebris.jsc.nasa.gov/quarterly-news/newsletter.html retrieved 16/1/2017

1

https://orbitaldebris.jsc.nasa.gov/quarterly-news/newsletter.html
https://orbitaldebris.jsc.nasa.gov/quarterly-news/newsletter.html


2 1. Introduction

hence the name semi-controlled re-entry. The point where the controls are turned off, determines the
orientation of the impact probability track on the Earth. The associated casualty risk of the end-of-life
disposal maneuver is minimized by an optimal placement of this impact track on the Earth.

ESA is investigating the different end-of-life strategies for LEO satellites in order to reduce the
contribution of non-operational satellites to the space debris problem. Therefore, ESA announced a
statement of work in Ref. [1]. This requested research is a follow-up on feasibility studies performed by
the German Aerospace Center (DLR) and Centre National d’Études Spatiales (CNES) [6, 7]. Reference
[7] recommends to put non-operational satellites in an orbit with a lifetime between 15 and 40 years.
Note that this study formed the basis of the 25 year requirement set later by ESA in Ref. [2]. The use
of electric propulsion systems to perform a semi-controlled re-entry was not found to be the optimal
solution in terms of mass. This is because none of the considered satellites in Ref. [7] are equipped
with electric propulsion systems. Therefore, an electric propulsion system needed to be added to the
satellites, which was not effective in terms of mass, and made that particular solution undesirable.
However, the study notes that if an electric propulsion system would have already been on board
of the satellite, and if the satellites have enough power and mass, the outcomes of the study could
be significantly different [7]. Currently more satellites are equipped with electric propulsion systems
for station-keeping purposes and the power generation and efficiency of the engines have increased
[8, 9]. These factors all increase the feasibility of a semi-controlled disposal strategy.

To further analyze the semi-controlled disposal strategy, a study on the feasibility of low-thrust
propulsion de-orbit strategies was performed by CNES [6]. This study reports that semi-controlled
strategies could reduce the risk in comparison with uncontrolled re-entries with a factor 10 [6]. These
results are promising, but there are still some gaps in the current knowledge to verify the feasibility of
semi-controlled disposal strategy. For example, current efforts have not investigated the trajectory from
the end-of-life orbit towards atmospheric capture in detail. Since the achievable states at atmospheric
capture are determined by the end-of-life trajectory, it is essential to verify the combination of the con-
trolled and uncontrolled part of the de-orbit maneuver. Furthermore, the resulting range of achievable
states at capture could influence the results presented in Ref. [6], because that work makes assump-
tions to simplify the controlled part of the re-entry. The assumptions made in Ref. [6] are the following.
First, a normally distributed impact probability function was used for the calculation of the casualty risk
of the end-of-life disposal maneuver. Also, this probability function is assumed to be constant for all
possible latitudes of the point of atmospheric capture. And finally, the orbit at atmospheric capture has
a flight path angle of 0∘ and the point of atmospheric capture can be located at any latitude between
plus and minus the value for the inclination [6].

This thesis investigates the impact of these assumptions by simulating the complete semi-controlled
disposal strategy from the end-of-life orbit down to the ground. For the sake of comparison, this thesis
employs the same cases as used in Ref. [6]. The considered cases have distinct characteristics,
allowing to investigate a large range of LEO satellites for which this strategy could be viable. The
simulations of the semi-controlled disposal strategy are performed using the TU Delft Astrodynamics
Toolbox (Tudat), which is ”a set of C++ libraries that support astrodynamics and space research” 2.
Using this toolbox, the trajectory of the satellite is simulated from the end-of-life orbit to the ground. This
trajectory is controlled by the low-thrust propulsion system on-board the satellite down to the altitude
where the controls are turned off because the atmospheric perturbations are too large. This trajectory
is optimized by using the Parallel Global Multi-objective Optimizer (PaGMO) developed by ESA [10].
The control profile is constructed using the method of control parameterization based on optimal control
theory, in order to limit the number of control parameters for the optimization [11]. From the point where
the controls are turned off, the satellites follows a ballistic trajectory. During this phase uncertainties
in atmospheric density and incomplete knowledge of the satellite parameters causes uncertainties in
the location of the satellite. These uncertainties result in an impact probability distribution function
(PDF) around the nominal impact point. This PDF does not resemble continuous distributions known
from probability theory as was found in Ref. [12, 13]. Therefore, a non-parametric method called
Kernel Density Estimation (KDE) is used to find the impact PDF. Combining the knowledge of the
nominal trajectory and the PDF, a probability impact track on the Earth can be constructed. This impact
track, in combination with a population map of the Earth and information about the size of the satellite
that survived the re-entry, results in a value for the casualty risk. The population map is obtained
2Astrodynamics & Space Missions, “TU Delft Astrodynamics Toolbox”, https://github.com/Tudat/tudat retrieved
26/02/2018
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1.1. Research questions 3

from Ref. [14] which uses population data from national and subnational administrative units for the
construction of the population map. The same data is used in risk assessment tools such as ESAs
Debris Risk Assessment and Mitigation Analysis tool and NASAs Debris Assessment Software [15, 16].
The information about the size of the satellite surviving entry is found from literature in Ref. [4].

To fulfill the objective of this thesis, two optimization strategies are carried out. First, the control
profile for the complete semi-controlled disposal strategy is optimized for minimum casualty risk using
a differential evolution algorithm. As the complete strategy is simulated this gives insight into what
casualty risks are achievable with the trajectory. Furthermore, this strategy allows for the investigation
of the achievable states at the point where to controls are turned off, since the values for the thrust are
low, the achievable flight path angles are small. The achievable flight path angles are further reduced
by the drag which circularizes the orbit. The states at the points where the controls are turned off are
expected to have a large influence on the value of the resulting casualty risk and are therefore important
for analyzing the semi-controlled de-orbit strategy. Second, the initial state of the ballistic trajectory,
at the point where the controls are turned off, is also optimized for minimum casualty risk using a dif-
ferential evolution algorithm. This optimization strategy is applied to reduce the computational effort
of the optimization, since the low-thrust maneuver from the end-of-life orbit towards the point where
to controls are turned off requires several months of thrusting, which is computationally intensive. It
is interesting to see whether both optimization strategies find similar optimal impact tracks. In case
similar impact tracks are achieved, future analysis of the semi-controlled disposal strategy can be per-
formed which less computational effort. The results of both optimizations are essential to verify that
the optimized states of ballistic trajectory optimization are actually achievable by the satellites under
consideration and to verify the results of Ref. [6] which did not perform an analysis of the controlled
part of the strategy.

1.1. Research questions
The research presented in this thesis will perform the next step of the investigation on the feasibility of
the semi-controlled end-of-life de-orbit strategy. To clearly define the aim of this research, the following
research questions have been formulated:

1. What is the reduction in casualty risk possible by employing a semi-controlled end-of-life disposal
strategy compared to an uncontrolled strategy?
(a) What is the effect of only propagating the uncontrolled part of the disposal strategy compared

to propagating the complete disposal strategy from the end-of-life orbit?
(b) What is influence of different ballistic coefficients and/or different initial mass of the satellite

on the calculated casualty risk?
(c) To what extent does the inclination of the end-of-life orbit affect the calculated casualty risk?

2. To what extent do the assumptions made in Ref. [6] affect the calculated casualty risk of the
semi-controlled disposal strategy?
(a) What is the effect of assuming a circular orbit at the point of atmospheric re-entry for the

calculation of the casualty risk?
(b) What is the effect of scaling the casualty risk with the average population growth with respect

to regional expected population growth?
(c) What is the effect of assuming a normally distributed impact probability function for the cal-

culation of the casualty risk with respect to a non-parametric probability function dependent
on the location of the atmospheric re-entry?

1.2. Report outline
The outline of this research is structured as follows. First, in Chapter 2, the dynamical model used in the
simulations is described. This chapter contains the used framework and discusses the discretization
of the control profile to reduce the amount of control parameters used in the optimizations. Following
this, the necessary numerical methods are described in Chapter 3. These methods are required for
the numerical propagation of the satellite cases and both optimizations. Furthermore, it is required
to find the associated casualty risks for both optimizations. Next, in Chapter 4, the different satellite
cases from Ref. [6] are discussed, as well as the assumptions made during this research. Chapter 4
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also contains the investigations that have been carried out to limit the computational effort for the
optimizations. Furthermore, intermediate results are discussed, which are subsequently integrated
into the simulator for the optimizations. The chapter concludes with the results from the validation of
the complete simulation setup, and an overview of setup for both optimization strategies. After that,
the results are presented in Chapter 5, where the results for all cases are discussed, and a general
discussion of the findings is presented. Then, in Chapter 6, the sensitivity of the obtained results is
analyzed and the assumptions made in Chapter 4 are assessed for validity. The report ends with the
conclusions, recommendations, and implications of this research in Chapter 7.



2
Dynamical model

This chapter contains the dynamical framework for this research. It forms the groundwork on which
the optimizations are performed. To correctly model the state of the satellite, and all perturbations
on the satellite, first the relevant reference frames and state representations are described in Sec-
tions 2.1 and 2.2 respectively. Next, the transformations between these reference frames and states
are discussed in Section 2.3, as these are used in all stages of the research. Then, two relevant sets of
equations of motion are described in Section 2.4, where the first set utilizes a Cartesian state represen-
tation for the propagation of the satellite, and the second set employs Modified Equinoctial Elements
used for the parameterization of the control. The perturbing accelerations which are fed into the equa-
tions of motion are described in Section 2.5. Finally, in Section 2.6, the parameterization of the controls
is discussed.

2.1. Reference frames
The reference frames used in this research are described below.

• Inertial planetocentric reference frame, x̂ፈ , ŷፈ , ẑፈ: this reference frame has an inertial orienta-
tion and is centered on the center of mass of the central body. The ẑፈ-axis points North along the
rotational axis of the central body and the x̂ፈ-axis is pointing to the Vernal Equinox on January 1,
2000, 12:00 (noon) [17]. The ŷፈ-axis completes the right-handed system [18].

• Rotating planetocentric reference frame, x̂ፑ , ŷፑ , ẑፑ: this reference frame is centered on the
center of mass of the central body and co-rotates with the central body. The ẑፑ-axis points North
along the rotational axis of the central body, the x̂ፑ-axis intersects the equator at zero longitude,
and the ŷፑ completes the right-handed system [18].

• Vertical reference frame, x̂ፕ , ŷፕ , ẑፕ: the origin is located at the center of mass of the satellite.
The ẑፕ-axis points in the direction of the local vertical along the radial component of the gravita-
tional acceleration. The x̂ፕ-axis points towards the Northern Hemisphere and lies in the meridian
plane. The ŷፕ-axis completes the right-handed system [18].

• Normal tangential W (NTW) reference frame, x̂ፍፓፖ , ŷፍፓፖ , ẑፍፓፖ: the origin is located at the
center of mass of the satellite. The x̂ፍፓፖ-axis lies in the orbital plane and points outward away
from the direction of Earth. The ŷፍፓፖ-axis is tangent to the velocity vector, and the ẑፍፓፖ-axis is
normal to the orbital plane and completes the right-handed system [19]. This reference frame is
used for the control parameterization as discussed in Section 2.6.

• Body reference frame, x̂ፁ , ŷፁ , ẑፁ: the origin is located at the center of mass of the satellite.
The x̂ፁ-axis points along the direction of the thrust acceleration. The ẑፁ-axis points downward in
nominal mode. The ŷፁ-axis completes the right-handed system [18].

• Aerodynamic reference frame (airspeed based), x̂ፀ, ŷፀ, ẑፀ: the origin is located at the center
of mass of the satellite, the x̂ፀ-axis in the direction of the velocity relative to the rotating plane-
tocentric frame 𝑅. The ẑፀ-axis is aligned with the lift force but opposite in direction. The ŷፀ-axis
completes the right-handed system.

5
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2.2. State representation
The state representations used in this research are discussed below.

• Cartesian state representation [𝑥, 𝑦, 𝑧, �̇�, �̇�, �̇�]: where 𝑥, 𝑦, and 𝑧 are the position coordinates,
and �̇�, �̇�, �̇� the velocity components. This state representation is used in Tudat for the propa-
gation of the satellite. The propagation of the equations of motion is performed in the inertial
planetocentric reference frame as discussed in Section 2.1.

• Keplerian elements state representation [𝑎, 𝑒, 𝑖, 𝜔, Ω, 𝜃]: where 𝑎 is the semi-major axis, 𝑒 and
𝑖 the eccentricity and inclination. 𝜔 the argument of perigee, Ω the longitude of the ascending
node and 𝜃 the true anomaly. This state representation is used for visualization of orbits as these
elements are easily interpretable for users. It is further used to set the initial orbit of the satellite.
Note that this state representation has singularities at 𝑒 = 0, 𝑒 = 1, 𝑖 = 0, 𝑖 = 𝜋, where either 𝜔
or Ω are undefined.

• Spherical orbital state representation [𝑟, 𝜏, 𝛿, 𝛾, 𝜒, 𝑣]: where 𝑟 is the distance between the satel-
lite and the center of mass of the central body. 𝜏 and 𝛿 are geocentric longitude and latitude.
Furthermore, 𝛾 and 𝜒 are the flight path angle and heading angle respectively and 𝑣 indicates
the magnitude of the velocity. This state representation is used to set the flight path angle for the
initial state of the Monte Carlo simulations in Section 4.5.

• Geodetic state representation [ℎ, 𝜙, 𝜆]: where ℎ is the altitude above the spheroid, 𝜙 the geode-
tic longitude, and 𝜆 the geodetic latitude. TheWSG-84 spheroid is used for the shape of the Earth
because this is used in both Tudat1 and by the population map as discussed in Section 3.4 [14].
The coordinates are relative to the rotating planetocentric reference frame 𝑅 as discussed in Sec-
tion 2.1. This representation is used to find the population density on the surface of the Earth for
the calculation of the casualty risk as described in Section 3.4.

• Modified Equinoctial Elements (MEE) state representation [𝑝, 𝑓, 𝑔, ℎ, 𝑘, 𝑙] : where 𝑝 is the
semi-latus rectum, 𝑓, 𝑔, ℎ and 𝑘 the second, third, fourth, fifth equinoctial elements and 𝑙 the
true longitude. MEE are nonsingular for all eccentricities and inclinations. The reference cases
discussed in this thesis are near circular as described in Section 4.1. The behavior of MEE is
much more stable for near circular orbits compared to Keplerian elements [20]. Therefore, this
elements set is used in this thesis for the control parameterization as discussed in Section 2.6.
This results in more stable behavior for the thrust steering angles.

2.3. Transformations
Transformations between any two reference frames𝐴 and𝐵 are performedwith transformationmatrices
denoted by Cፁ,ፀ. The rotation sequence used for all transformations is 1-3-21. The transformations
between the 𝐼, 𝑅, 𝑉, 𝑁𝑇𝑊, 𝐵 and 𝐴 reference frames, are described in Ref. [18] and are already
extensively tested and validated within Tudat. Therefore, the rotation matrices are not given here.
Only a description of what parameters are required to perform each of these transformations is given
by:

Cፈ,ፑ(𝜔ፄፚ፫፭፡ , 𝑡), (2.1a)
Cፑ,ፕ(𝜏, 𝛿), (2.1b)

Cፕ,ፍፓፖ(𝛾, 𝜒), (2.1c)
Cፍፓፖ,ፁ(𝛼, 𝛽), (2.1d)

Cፍፓፖ,ፀ(𝜎), (2.1e)

where 𝜔ፄፚ፫፭፡ is the rotational rate of the Earth, 𝑡 the time from January 1, 2000, 12:00 (noon), 𝛼
and 𝛽 the thrust steering angles as will be discussed in Section 2.6, and 𝜎 indicates the bank angle.

In Eq. (2.2) the transformations between state representations are shown. The transformations be-
tween state representations are described in Ref. [21] and are already extensively tested and validated
with Tudat. Therefore, Eq. (2.2) merely describes what parameters are required to perform each of the
relevant transformations. Parameters in brackets indicate what additional information is required.

1Astrodynamics & Space Missions, “TU Delft Astrodynamics Toolbox”, https://github.com/Tudat/tudat retrieved
26/02/2018

https://github.com/Tudat/tudat
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Cartesian
(᎙)⟵⟶ Kepler, (2.2a)

Cartesian ⟵⟶ Spherical, (2.2b)
Cartesian

(ፑ,᎔,᎗)⟵−−⟶ Geodetic, (2.2c)

Kepler
(᎙,ፈ)⟵⟶ MEE, (2.2d)

where 𝜇 is the standard gravitational parameter, 𝐼 the retrograde factor where 𝐼 = 1 for posigrade
and 𝐼 = −1 for retrograde orbits [22], 𝑅 the mean equatorial radius of the central body, 𝜂 the flattening
parameter as given by the WSG-84 spheroid, and 𝜅 the tolerance for the iterative procedure to find the
coordinates.

As the MEE are important for the control parameterization discussed in Section 2.6, the state trans-
formation between Keplerian elements and MEE as shown in Eq. (2.2d) is described in more detail
here. This also gives an idea of the expected behavior for the control parameterization verification
as described in Appendix A.1. The MEE can be expressed in terms of Keplerian elements as [22]:

𝑝 = 𝑎(1 − 𝑒ኼ), (2.3a)
𝑓 = 𝑒 cos(𝜔 + 𝐼Ω), (2.3b)
𝑔 = 𝑒 sin(𝜔 + 𝐼Ω), (2.3c)

ℎ = tanፈ(𝑖/2) cosΩ, (2.3d)
𝑘 = tanፈ(𝑖/2) sinΩ, (2.3e)
𝑙 = 𝜔 + 𝐼Ω + 𝜃. (2.3f)

Note that parameters 𝑓 and 𝑔 are both dependent on 𝑒, 𝜔, and Ω. Similarly, parameters ℎ and 𝑘 are
depending on 𝑖 and Ω. Equation (2.3) shows the advantage of MEE over Keplerian elements. For
near zero eccentricity orbits, the value for 𝜔 could have rapid oscillations as the result of perturbation
on the orbit. However, the variations in parameters 𝑓 and 𝑔, which contain information about 𝜔, are
small for low values of eccentricity and does not exhibit such large oscillations [22]. When using these
parameters for the control steering angles as defined in Section 2.6 the resulting control profile is also
much more stable.

2.4. Equations of motion
The translational state of the satellite in the inertial reference frame as described in Section 2.1 is
defined by the Cartesian position vector rፈ = [𝑥ፈ , 𝑦ፈ , 𝑧ፈ], and the velocity vector ṙፈ = [�̇�ፈ , �̇�ፈ , �̇�ፈ]. The
translational equations of motion are given by[19]

dኼrፈ
d𝑡ኼ =

dṙፈ
d𝑡 = r̈ፈ =

∑F
𝑚 , (2.4)

where r̈ፈ are all perturbing accelerations in the inertial reference frame 𝐼 as will be discussed in Sec-
tion 2.5, and F the perturbing forces acting on the satellite. 𝑚 indicates the mass of the satellite. The
Gaussian variational equations for MEE as described in Section 2.2 are given in Eq. (2.5) [23, 24].
These are used for the control parameterization as discussed in Section 2.6. Note that the variational
equation for the true longitude is not provided, because it is not used in the control parameterization as
will be discussed in Section 2.6. This parameter is not used in the control parameterization because
only the value of the true longitude at the end of the disposal maneuver is of interest which is controlled
by correctly timing the re-entry into the atmosphere.

d𝑝
d𝑡 = √

𝑝
𝜇
2𝑝
𝑤 �̈�ፍፓፖ , (2.5a)

d𝑓
d𝑡 = √

𝑝
𝜇 (�̈�ፍፓፖ sin 𝑙 +

((𝑤 + 1) cos 𝑙 + 𝑓) �̈�ፍፓፖ
𝑤 − 𝑔

(ℎ sin 𝑙 − 𝑘 cos 𝑙) �̈�ፍፓፖ
𝑤 ) , (2.5b)

d𝑔
d𝑡 = √

𝑝
𝜇 (−�̈�ፍፓፖ cos 𝑙 +

((𝑤 + 1) sin 𝑙 + 𝑔) �̈�ፍፓፖ
𝑤 − 𝑓

(ℎ sin 𝑙 − 𝑘 cos 𝑙) �̈�ፍፓፖ
𝑤 ) , (2.5c)

dℎ
d𝑡 = √

𝑝
𝜇
𝑠ኼ
2𝑤 �̈�ፍፓፖ cos 𝑙, (2.5d)

d𝑘
d𝑡 = √

𝑝
𝜇
𝑠ኼ
2𝑤 �̈�ፍፓፖ sin 𝑙, (2.5e)
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with auxiliary variables

𝑠ኼ = 1 + ℎኼ + 𝑘ኼ,
𝑤 = 1 + 𝑓 cos 𝑙 + 𝑔 sin 𝑙,

and �̈�ፍፓፖ, �̈�ፍፓፖ, and �̈�ፍፓፖ are the perturbing accelerations in the 𝑁𝑇𝑊 frame as discussed in Sec-
tion 2.1. Equation (2.5) shows that the value of the semi-latus rectum, 𝑝, is controlled by thrusting in
the direction of velocity. Parameters ℎ and 𝑘, which are related to the inclination and longitude of as-
cending node as shown in Eq. (2.3), are influenced by thrusting perpendicular to the orbital plane. The
remaining parameters 𝑓 and 𝑔 are influenced by any direction of the thrust, since these are related to
the eccentricity and argument of perigee, which are influenced by perturbations within the orbital plane
but also related to the longitude of ascending node with is influenced by thrusting perpendicular to the
orbital plane.

2.5. Perturbations
For correct modeling of the satellite orbit, multiple perturbations need to be incorporated into the model.
This section describes the perturbations used in the simulations, which are all used in the equations
of motion in Eq. (2.4). In Section 4.3 an analysis of these perturbations will be performed to find the
perturbations which need to be taken into account during the optimizations. All perturbations in this
section are combined in r̈ፈ with:

r̈ፈ = r̈ፀ,ፈ + r̈ፆ,ፈ + r̈ፓፁ,ፈ + r̈ፑፏ,ፈ + r̈ፓ,ፈ , (2.6)

where the first subscript indicates the source of the perturbing acceleration and the second subscript in-
dicates the reference frame in which it is expressed. The perturbations discussed are the aerodynamic
perturbations, 𝐴, the gravitational and third body perturbations, 𝐺 and 𝑇𝐵 respectively. The radiation
pressure perturbation, 𝑅𝑃, and the propulsive perturbations 𝑇.

Perturbations due to dynamic solid tide, relativity, albedo and third body perturbations other than
the Sun and the Moon are left out of the investigation entirely, based on Ref. [21].

2.5.1. Aerodynamic
The NRLMSISE-00 atmosphere is used as atmospheric model providing the air density used for the
calculation of the aerodynamic drag of the satellite [25]. The model extends from the Earth’s surface
until 2000 km altitude, well within the LEO orbits analyzed in this research [25]. The uncertainty for
the density calculation of NRLSMISE-00 was found to be log-normally distributed with 𝜇∗ = 0.98 and
𝜎∗ = 1.31 [12] . The model requires date, geodetic coordinates, local solar time, magnetic index, and
the 10.7 cm solar radiation flux index as input [25]. Furthermore, the model is available in Tudat, where
these parameters are obtained from the current state of the satellite, the solar radiation flux index is
obtained from Ref. [26]. The coverage of the complete region from the surface of the Earth to 2000
km, the known accuracy, and its availability make this model suited for this research.

The density obtained from this model is used to calculate the aerodynamic accelerations. These
are given by[18]:

r̈ፀ,ፀ = −
1
𝑚 [

𝐷
𝑆
𝐿
] = − 1𝑚 [

𝐶ፃ𝑞𝐴፫
𝐶ፒ𝑞𝐴፫
𝐶ፋ𝑞𝐴፫

] , (2.7)

where 𝐷, 𝑆, and 𝐿 are the drag, side, and lift force respectively, 𝐶ፃ, 𝐶ፒ, and 𝐶ፋ the dimensionless
coefficients for the forces. Furthermore, 𝑞 = ኻ

ኼ𝜌𝑣ኼፀ is the dynamic pressure where 𝜌 is the atmospheric
density which can be found from the NRLMSISE-00 atmospheric model discussed above and 𝑣ፀ the
speed in the aerodynamic frame 𝐴, which is, by assuming no wind, equal to the velocity of the satellite in
the rotating planetocentric reference frame 𝑅 as discussed in Section 2.1. Finally, 𝐴፫ is the aerodynamic
reference area. In this research only drag is considered as aerodynamic perturbation. Therefore 𝐶ፒ =
𝐶ፋ = 0 and Eq. (2.7) is rewritten to include the ballistic coefficient[19]:

r̈ፀ,ፀ = −𝐾𝑞 [
1
0
0
] , (2.8)
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where
𝐾 = 𝐶ፃ𝐴፫

𝑚 .

The aerodynamic perturbing acceleration is subsequently transformed to the body frame 𝐵 and to the
inertial frame 𝐼 with Eq. (2.1).

2.5.2. Gravitational
The gravitational potential of the Earth can be written as[21]:

𝑈 = 𝜇
𝑟

ጼ

∑
፧዆ኺ

፧

∑
፦዆ኺ

(𝑅𝑟 )
፧
𝑃፧፦ (sin 𝛿) (𝐶፧፦ cos𝑚𝜏 + 𝑆፧፦ sin𝑚𝜏) , (2.9)

where 𝜇 the gravitational parameter of the Earth, 𝑅 the mean equatorial radius of the Earth, and 𝑟 the
distance between the center of mass of the central body and the satellite. Furthermore, 𝑃፧፦ is the
associated Legendre polynomial of degree 𝑛 and order 𝑚. 𝜏 is the geocentric longitude, and 𝛿 the
geocentric latitude. And finally, coefficients 𝐶፧፦ and 𝑆፧፦ are given as[21]:

𝐶፧፦ =
2 − 𝛿ኺ፦
𝑀

(𝑛 −𝑚)!
(𝑛 + 𝑚)! ∫

𝑠፧
𝑅፧𝑃፧፦ (sin 𝛿

ᖣ) cos(𝑚𝜏ᖣ)𝜌(s)𝑑ኽsd𝑚, (2.10)

𝑆፧፦ =
2 − 𝛿ኺ፦
𝑀

(𝑛 −𝑚)!
(𝑛 + 𝑚)! ∫

𝑠፧
𝑅፧𝑃፧፦ (sin 𝛿

ᖣ) sin(𝑚𝜏ᖣ)𝜌(s)𝑑ኽsd𝑚, (2.11)

where 𝛿ኺ፦ = 1 for 𝑚 = 0 and 𝛿ኺ፦ = 0 for 𝑚 ≠ 0, 𝑀 is the mass of the celestial body, 𝜏ᖣ and 𝛿ᖣ indicate
the geocentric longitude and latitude of individual mass element d𝑚 respectively. Furthermore, s is the
distance to an individual mass element d𝑚 inside the Earth. These coefficients describe the internal
mass distribution of the Earth. These coefficients cover a large range of magnitudes, and can give rise
to truncation errors during simulations. Therefore, these coefficients are normalized as[21]:

[�̄�፧፦�̄�፧፦] =
√ (𝑛 +𝑚)!
(2 − 𝛿ኺ፦)(2𝑛 + 1)(𝑛 − 𝑚)!

[𝐶፧፦𝑆፧፦] , (2.12)

�̄�፧፦ = √
(2 − 𝛿ኺ፦)(2𝑛 + 1)(𝑛 − 𝑚)!

(𝑛 + 𝑚)! 𝑃፧፦ . (2.13)

The gravitational accelerations on the satellite in the inertial planetocentric reference frame 𝐼 can then
be found by substituting r, Eqs. (2.12) and (2.13) in Eq. (2.9)[21]:

r̈ፆ,ፑ = ∇𝑈 (2.14)

In this research the coefficients are obtained from the EGM96 gravitational model [27]. This set is
already implemented in the Tudat repository2. In Section 4.3 the required values for 𝑛 and 𝑚 are
found. Since higher order and degree results in larger computational effort, a trade-off needs to be
performed.

The celestial bodies surrounding the Earth also cause a perturbation on the trajectory of the satellite,
most notably the Sun and the Moon [21]. The acceleration due to these third bodies can be estimated
by approximating the mass of the third body as a point mass. The acceleration in the inertial reference,
𝐼, is as:

r̈ፓፁ,ፈ = 𝐺𝑀(
s− r
|s− r|ኽ −

s
|s|ኽ) , (2.15)

where 𝐺 is the gravitational constant, r the Cartesian coordinates of the satellite and s the Cartesian
coordinates of the perturbing body.
2Astrodynamics & Space Missions, “TU Delft Astrodynamics Toolbox”, https://github.com/Tudat/tudat retrieved
26/02/2018

https://github.com/Tudat/tudat
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2.5.3. Solar radiation
The radiation of the Sun perturbs the orbit of satellites due to reflection of this radiation on the surface
of the satellite. The radiation pressure acting on the satellite is calculated as[21]:

𝑃 = Δ𝐸
Δ𝑡

1
4𝜋𝑟ኼፒፒ𝑐

, (2.16)

where ጂፄ
ጂ፭ is the power of the Sun, 𝑟ፒፒ is the distance between the satellite and the Sun, and 𝑐 the

speed of light. The power of the Sun is assumed constant, the relative position of the Sun with respect
to the Earth is obtained from SPICE by providing the local time [28, 29]. For the calculation of the
resulting perturbing acceleration a simple cannonball model is used, which approximates the shape
of the satellite as a sphere. This is relatively simple to implement, and a higher fidelity model is only
required if this perturbation is significant compared to the other perturbations as will be investigated in
Section 4.3. The accelerations due to the radiation pressure, 𝑃, are calculated as [21]:

r̈ፑፏ,ፈ = —𝑃𝐶ፑ
𝐴፫ r̂ፒፒ
𝑚 , (2.17)

where 𝐴፫ is the reference surface area normal to the Sun-satellite line, and 𝐶ፑ = 1 + 𝜖 is the radiation
pressure coefficient, where 𝜖 is the reflectivity of the satellite, 𝜖 = 0 for full absorption, 𝜖 = 1 for a fully
reflective surface.

2.5.4. Propulsive perturbation
One of the most relevant perturbations in this research is the propulsive perturbation. It is responsible
for steering the satellite to the correct state until the thrust is turned off. The thrust is defined in the
𝑁𝑇𝑊 frame as discussed in Section 2.1, with thrust steering angles for pitch, 𝛼 and yaw, 𝛽, as shown
in Fig. 2.1. These steering angles are a function of the costate parameters as will be discussed in
Section 2.6. The acceleration due to this thrust is given by Eq. (2.18).

𝑧𝑁𝑇𝑊 

 

𝑦𝑁𝑇𝑊 

 

𝑥𝑁𝑇𝑊 

 

Earth 𝛼 

 

𝛽 
𝑇 

𝑣 

Figure 2.1: Steering angles in the NTW frame.

r̈ፓ,ፍፓፖ =
𝑇
𝑚 [

sin𝛼 cos𝛽
cos𝛼 cos𝛽

sin𝛽
] , (2.18)

where 𝑇 is the magnitude of the thrust force. The acceleration is given in the 𝑁𝑇𝑊 frame and is
transformed to the 𝐼 frame using the Eq. (2.1) before inserting it in Eq. (2.6).

The amount of thrust available depends on whether the satellite is in eclipse. A conical shadow
model is implemented as described in Ref. [21] to determine whether the satellite is in eclipse. The
eclipse situation is presented in Fig. 2.2.

When the satellite is in the umbra region, as indicated in Fig. 2.2, all sunlight is blocked by the
Earth and no light is incident on the satellite. Therefore, the satellite is unable to provide thrust. In
penumbra region, only part of the sunlight is blocked and there is still some sunlight incident on the



2.6. Control parameterization 11

Figure 2.2: Conical shadow model as described in Ref. [21].

satellite. The engines can operate on less power in this region, providing only part of the maximum
thrust. The amount of thrust in the penumbra region is found by a shadow function, which is calculated
with a simple model of two overlapping circles as seen by the satellite in the penumbra region as shown
in Fig. 2.3 [21].

Figure 2.3: Occultation of the Sun by the Earth. Blue region indicates occulted area [21].

where 𝑎 and 𝑏 are the apparent radii of the Sun and Earth respectively, 𝑐 indicates the apparent
distance between the Sun and the Earth as seen by the satellite. The shadow function 𝑠𝑓, ∈ [0, 1]
indicates the remaining fraction of sunlight and is calculated by[21]:

𝑠𝑓 = 1 − 𝐴፨፜
𝜋𝑎ኼ , (2.19)

where 𝐴፨፜ is the occulted area of the Sun by the Earth indicated in blue in Fig. 2.3. The occulted
area can be calculated by[21]:

𝐴፨፜ = 𝑎ኼ cosዅኻ (
𝐴𝐸
𝑎 ) + 𝑏

ኼ cosዅኻ (𝑐 − 𝐴𝐸𝑏 ) − 𝑐𝐸𝐶, (2.20)

where parameters 𝐴𝐸, 𝐸𝐶 are the lengths as indicated in Fig. 2.3. For a detailed derivation of 𝐴፨፜
the interested reader is referred to Ref. [21]. The thrust of the satellite is then scaled as:

𝑇∗ = 𝑠𝑓𝑇. (2.21)

This thrust is then substituted in Eq. (2.18).

2.6. Control parameterization
To control the satellite during the disposal maneuver, the direction of the thrust needs to be specified
at every moment in time. Defining a flexible thrust profile requires the specification of the thrust direc-
tion at many points in time. This results in many parameters to be optimized, increasing the required
computational effort of the problem. To reduce the amount of parameters required, the control profile
is parameterized by applying the necessary condition from optimal control theory [11]. The advantage
of this method compared to specifying the thrust angles at several nodes in time, is that one can define
the optimal thrust direction at any point in the orbit with just 5 parameters. For example, the thrust
direction for maximum change of the eccentricity is different for all positions along the orbit. Requir-
ing many nodes if the thrust steering angles itself are chosen as control parameters. With the method
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used in this research, this can be done with only 5 parameters. The same holds for varying other orbital
elements.

The orbits of the considered satellite cases, as will be discussed in Section 4.1, are nearly circular.
Therefore, Modified Equinoctial Elements (MEE), as described in Section 2.2, are used to avoid the
singularities which would arise when using Keplerian elements, as discussed in Section 2.4. The use
of this elements set is advised and used in [22, 30].

The method described below is based on the work of [11, 31–33] where this method for parameter-
ization is successfully developed and applied. Note that this method is not used to solve a two-point
boundary-value problem, the method is only used to parameterize the thrust direction in an efficient
manner.

The control laws are derived from the Gaussian variational equations for MEE as shown in Eq. (2.5).
First, the Hamiltonian for the optimal control problem is defined by[33]:

𝐻 = 𝜆፩
d𝑝
d𝑡 + 𝜆፟

d𝑓
d𝑡 + 𝜆፠

d𝑔
d𝑡 + 𝜆፡

dℎ
d𝑡 + 𝜆፤

d𝑘
d𝑡 , (2.22)

where 𝜆ዅ indicate the costates of the different MEE, which can be seen as a weight for the importance
of changing that specific MEE. As discussed in Section 2.4, only the first five MEEs are used. The
thrust direction of the satellite is modeled with, 𝛼 and 𝛽. To derive the control laws, the variational
equations as found in Eq. (2.5) and the acceleration components from Eq. (2.18) are substituted into
Eq. (2.22). To clarify the derivation of the control law, all terms without 𝛼 or 𝛽 are grouped. This results
in the following Hamiltonian[11]:

𝐻 = (Λ፟ኻ + Λ፠ኻ) sin𝛼 cos𝛽 + (Λ፩ + Λ፟ኼ + Λ፠ኼ) cos𝛼 cos𝛽 + (Λ፟ኽ + Λ፠ኽ + Λ፡ + Λ፤) sin𝛽, (2.23)

with constants:

Λ፩ = 𝜆፩
𝑇
𝑚√

𝑝
𝜇
2𝑝
𝑤 , Λ፟ኻ = 𝜆፟

𝑇
𝑚√

𝑝
𝜇 sin 𝑙, Λ፟ኼ = 𝜆፟

𝑇
𝑚√

𝑝
𝜇
((𝑤 + 1) cos 𝑙 + 𝑓)

𝑤 ,

Λ፟ኽ = −𝜆፟
𝑇
𝑚√

𝑝
𝜇
𝑔 (ℎ sin 𝑙 − 𝑘 cos 𝑙)

𝑤 , Λ፠ኻ = −𝜆፠
𝑇
𝑚√

𝑝
𝜇 cos 𝑙, Λ፠ኼ = 𝜆፠

𝑇
𝑚√

𝑝
𝜇
((𝑤 + 1) sin 𝑙 + 𝑔)

𝑤 ,

Λ፠ኽ = −𝜆፠
𝑇
𝑚√

𝑝
𝜇
𝑓 (ℎ sin 𝑙 − 𝑘 cos 𝑙)

𝑤 , Λ፡ = 𝜆፡
𝑇
𝑚√

𝑝
𝜇
𝑠ኼ
2𝑤 cos 𝑙, Λ፤ = 𝜆፤

𝑇
𝑚√

𝑝
𝜇
𝑠ኼ
2𝑤 sin 𝑙.

The control law for the pitch angle can be found by differentiating the Hamiltonian with respect to 𝛼 and
equating it to zero:

d𝐻
d𝛼 = (Λ፟ኻ + Λ፠ኻ) cos𝛼 cos𝛽 − (Λ፩ + Λ፟ኼ + Λ፠ኼ) sin𝛼 cos𝛽 = 0, (2.24)

which can be rewritten to[11]:

tan𝛼 =
Λ፟ኻ + Λ፠ኻ

Λ፩ + Λ፟ኼ + Λ፠ኼ
, (2.25)

using basic geometry, the following can be obtained.

sin𝛼 =
±(Λ፟ኻ + Λ፠ኻ)

√(Λ፟ኻ + Λ፠ኻ)ኼ + (Λ፩ + Λ፟ኼ + Λ፠ኼ)ኼ
, (2.26)

cos𝛼 =
±(Λ፩ + Λ፟ኼ + Λ፠ኼ)

√(Λ፟ኻ + Λ፠ኻ)ኼ + (Λ፩ + Λ፟ኼ + Λ፠ኼ)ኼ
. (2.27)

The sign can be found by checking the Legendre Clebsch condition: dᎴፇ
dᎎᎴ > 0. This results in the

following optimal control law for the pitch angle [11]:

sin𝛼 =
−(Λ፟ኻ + Λ፠ኻ)

√(Λ፟ኻ + Λ፠ኻ)ኼ + (Λ፩ + Λ፟ኼ + Λ፠ኼ)ኼ
, (2.28)
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cos𝛼 =
−(Λ፩ + Λ፟ኼ + Λ፠ኼ)

√(Λ፟ኻ + Λ፠ኻ)ኼ + (Λ፩ + Λ፟ኼ + Λ፠ኼ)ኼ
. (2.29)

A similar approach can be followed to obtain the optimal control law for the yaw steering angle 𝛽. The
resulting control law is given by[11]:

sin𝛽 =
−(Λ፟ኽ + Λ፠ኽ + Λ፡ + Λ፤)

√(Λ፟ኽ + Λ፠ኽ + Λ፡ + Λ፤)ኼ + ((Λ፟ኻ + Λ፠ኻ) sin𝛼 + (Λ፩ + Λ፟ኼ + Λ፠ኼ) cos𝛼)
ኼ
, (2.30)

cos𝛽 =
−((Λ፟ኻ + Λ፠ኻ) sin𝛼 + (Λ፩ + Λ፟ኼ + Λ፠ኼ) cos𝛼)

√(Λ፟ኽ + Λ፠ኽ + Λ፡ + Λ፤)ኼ + ((Λ፟ኻ + Λ፠ኻ) sin𝛼 + (Λ፩ + Λ፟ኼ + Λ፠ኼ) cos𝛼)
ኼ
. (2.31)

The values for cos𝛼, sin𝛼, cos𝛽 and sin𝛽 can be inserted into the propulsive perturbation as shown
in Eq. (2.18). In this research the values for the costates are varied during the disposal maneuver by
defining the costates at two points in time and linearly interpolate in between. This has been done to
gain the flexibility of the optimizer to first focus on e.g. inclination changes which are most efficient at
high altitudes, and then focus on decreasing the semi-major axis of the satellite to eventually impact
on the surface of the Earth.





3
Numerical methods

This chapter contains the relevant numerical methods used in this research. First, the implemented
integrator is discussed in Section 3.1, as the this has a large effect on the precision of the simulations
and the required computational effort. Next, in Section 3.2 the implemented optimization technique is
discussed. Here, the classical differential algorithm is discussed, after which this technique is advanced
with a self-adaptive version of the algorithm, which removes the need for tuning the parameters that are
used. Furthermore, the Kernel Density Estimation (KDE) is discussed in Section 3.3. This method is re-
quired to create the impact probability functions used to obtain the casualty risk. Finally, the calculation
of this casualty risk is described in Section 3.4.

3.1. Integrator
During the first phase of the disposal maneuver, as discussed in Chapter 1, only small perturbations
are encountered for which large steps can be taken in the integration. But, when the altitude of the
satellite decreases, the perturbations on the satellite increase and smaller steps are required for the
integration of the satellite. To limit the computational effort, care must be taken for the selection of the
employed integrator. Employing a fixed step size integrator would either result in large computational
effort, when a small step size is selected to account for the perturbations in the last part of the entry,
or it would result in large errors at a later stage during the de-orbit maneuver when a large step size
is selected. Therefore, this is not a viable option for this thesis. Variable step size integrators use
the differences between methods of neighboring order to estimate the truncation error. Based on this
error, the step size is adjusted to reduce the computational effort while restricting the error made within
set tolerance. Examples of such variable step size integrators are the Runge-Kutta-Fehlberg (RK),
Bulirsch-Stoer (BS), Dormand and Prince (DOPRI), and Adams-Bashforth-Moulton(ABM) integrators
[21, 34, 35]. Figure 3.1 shows the maximum position error for the different integrator methods over 1
week of propagation time plotted against the number of function evaluations [36]. This gives information
about the computational efficiency of the different methods available.

In Fig. 3.1 it can be seen that the RK7(8) integrator reaches higher accuracies for similar number of
function evaluations compared to the lower order Runge-Kutta integrators. Both the ABMmethods and
BS methods perform better than the RK integrators. However, these methods were not implemented
in Tudat at the start of this research. Therefore, the RK7(8) integrator is used in this work. For future
work it is recommended to consider using a different integrator to decrease the computational effort.
Figure 3.2 shows the position error over time for different tolerances for the RK7(8) integrator, this
figure is used for the selection of the tolerance used in the simulations.

The de-orbit maneuver takes 2 to 3 months with the satellite characteristics as will be described in
Section 4.1, the build-up of error needs to be limited to reasonable values during this period. Errors
in the order of a few kilometer are assumed reasonable for this research, since the position influence
of the thrust over the course of 3 months is much larger as will be shown in Section 4.3. Errors in
the trajectory of this research can therefore be compensated by the guidance navigation and control
(GNC) system of the satellite during the de-orbit maneuver. Furthermore, the impact track, as will be
discussed in Section 4.5, has a length of thousand of kilometers and a width of 100 km, this makes

15
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Figure 3.1: Integrator comparison, maximum position error after one week of integration for different amount of function
evaluations for different integration methods [36].

Figure 3.2: Integrator settings comparison, absolute position errors for the different tolerance settings of
Runge-Kutta-Fehlberg7(8) integrator[36].

errors of a few kilometer irrelevant for this research. Following the asymptotic behavior observed in
Fig. 3.2 to 3 months resulted in a tolerance of 10ዅኻኺ for the RK7(8) integrator used in this thesis. For this
tolerance setting errors in the order of 10ኽ m are present. To verify the feasibility of the semi-controlled
de-orbit strategy, higher accuracies are not required and will increase the computational effort of the
simulations.

3.2. Differential evolution
The optimization problem in this research cannot be solved using calculus based approaches, be-
cause of the complex population distribution on Earth, and the non-normal impact probability distri-
bution resulting from the uncertainty of the atmospheric and satellite parameters. Therefore, a global
optimization method has to be applied. Promising methods to solve global optimization problems are
meta-heuristic methods such as Particle Swarm Optimization (PSO), Genetic Algorithms (EA), and
Differential Evolution (DE) [37–39]. The advantage of such techniques is that they only require in-
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formation about the objective of the optimization, therefore removing the need for differentiability and
continuity of the optimization problem [39]. This makes the algorithms suitable for a large range of prob-
lems. The methods are increasingly popular for early stage low-thrust transfer trajectory optimization
[40–43]. The differential evolution method has been selected for this research, since previous work
in low-thrust trajectory optimization employing control parameterization showed good results for this
method [32, 33, 44]. However, the classic differential evolution (DE) employed in previous research
requires tuning of crossover and mutation parameters which could be a time-consuming task [45]. This
has been solved by the development of the self-adaptive differential evolution algorithm jDE, which re-
moves the need of tuning the parameters for the crossover and mutation parameters [46]. The classic
DE algorithms, as well as the jDE algorithms are both available in ESA’s Parallel Global Multi-objective
Optimizer (PaGMO) and are easy to integrate within the code in this research. PaGMO does contain
many other optimization algorithms, but the DE is selected because of its heritage in low-thrust opti-
mization in combination with Tudat as discussed in Refs. [32, 33] and due to its simple implementation
[32].

In Section 3.2.1 the classic DE algorithm is explained. It gives an overview of the parameters used
by the algorithm, the initialization of the population, and the mutation and crossover of genes inside this
population. Then in Section 3.2.2 the classic DE algorithm is extended by implementing self-adaptive
parameters as developed in Ref. [46].

3.2.1. Classic differential evolution
A graphical representation of the DE algorithm is shown in Fig. 3.3. The first step is to create a popula-
tion with possible candidates for the solution of the optimization problem. This population has size 𝑁𝑃
and the individuals X።,ፆ are parameter vectors of length 𝐷. The parameters of the individuals are ran-
domly initialized for the first generation, 𝐺 = 1, after which the population is evolved every generation.
The evolution is performed by taking the weighted difference between two random selected individuals
X፫ኼ,ፆ and X፫ኽ,ፆ and adding them to a base vector X፫ኻ,ፆ. This results in the mutated vector V።,ፆ. The
weight used for the weighted differences is indicated by parameter 𝐹. Next, crossover is performed
between the mutated vector and a selected target vector X፭,ፆ and the result is called the trial vector
U።,ፆ. The number of crossovers is determined by the crossover factor 𝐶𝑅 and is shown in Fig. 3.4. An
objective function then determines whether the trial vector performs better than the target vector. If so,
the target vector is replaced by this trial vector in the next generation. These steps are repeated 𝑁𝑃
times, such that all individuals have the role of the target vector once per generation.

This DE strategy can be described as the DE/rand/1/bin strategy, denoting that the base vector
is chosen at random (/rand/), uses single differences for the mutation (/1/) and uses binomial experi-
ments for the crossover of parameters (/bin) between the trial and target parameter vector [39]. Other
variants, e.g., use the best individual for the base vector and/or use double weighted differences such
as DE/best/1/bin and DE/best/2/bin [47, 48], or use the difference between the best of the current
generation and the target vector such as DE/current-to-best/2/bin [47]. In addition, exponential func-
tions are used for the crossover as used in DE/rand/1/exp or DE/rand/2/exp [49]. In this research the
DE/rand/2/bin strategy is applied, based on the recommendations in [10]. The size of the population in
this research is 𝑁𝑃 = 10𝐷. Values between 5𝐷 and 10𝐷 are suggested in [39]. In Refs. [32, 33] lower
values are used but based on some small tests these lower values resulted in premature convergence
for the problem at hand.

3.2.2. Self-adaptive differential evolution
The problem with any of the strategies in Section 3.2.1 is that, besides the population size 𝑁𝑃 and
the number of generations 𝐺, also the parameter for mutation, 𝐹, and the crossover rate, 𝐶𝑅, need to
be selected. These parameters influence the efficiency of the search and the quality of the solution
[45, 46]. Tuning these parameters is a time-consuming task. Therefore, jDE algorithm is implemented.

The jDE algorithm adds the parameters 𝐹 and 𝐶𝑅 to the optimization parameter vector, X።,ፆ. These
parameters are evolved in the optimization, alongside the original parameters. Good performing pa-
rameters for 𝐹 and 𝐶𝑅 are more likely to produce good offspring and therefore remain in the population.
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Figure 3.3: Overview of the evolution of the population in the DE algorithm [10].

Figure 3.4: Crossover of parameters between the mutated and trial vector in the DE algorithm [33].

The evolution of these parameters is described as[10]:

𝐹።,ፆዄኻ = {
𝐹፥ + 𝑟𝑎𝑛𝑑(1)𝐹፮ , if 𝑟𝑎𝑛𝑑(2) < 𝜉
𝐹።,ፆ , otherwise

, (3.1a)

𝐶𝑅።,ፆዄኻ = {
𝑟𝑎𝑛𝑑(3), if 𝑟𝑎𝑛𝑑(4) < 𝜉
𝐶𝑅።,ፆ , otherwise

, (3.1b)

where 𝐹፥ and 𝐹፮ are the lower and upper bounds for 𝐹 respectively and set to 0.1 and 0.9 respectively
as suggested in [46], 𝜉 is a number indicating the probability of adjusting parameter 𝐹 or 𝐶𝑅, set to 0.1
as suggested in [10]. 𝑟𝑎𝑛𝑑(𝑖) indicates the 𝑖፭፡ draw from a uniform random distribution ∈ [0, 1]. 𝐹።,ፆዄኻ
and 𝐶𝑅።,ፆዄኻ are both obtained before the mutation step as shown in Fig. 3.3, such that they influence
the mutation and crossover of generation (𝐺 + 1). As the values of 𝐹 and 𝐶𝑅 are developed during the
optimization alongside the original parameter vector, the optimization is likely to be slower compared
to a tuned DE. However, since tuning could be a time-consuming task, longer run times for the final
optimization are accepted, as overall, time is saved. The value for 𝑁𝑃 is set to 10𝐷 as discussed in
Section 3.2.1. If premature convergence occurs, the value for 𝜉 could be adjusted to higher values.
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However, the value of 0.1 used in this research, worked for all problems in Ref. [10]. Therefore, varying
this parameter has not been investigated in this thesis.

3.3. Kernel density estimation
The results from the Monte Carlo simulation as will be described in Section 4.5 are not resembling
known continuous Probability Density Functions (PDF), i.e., uniform, normal, or exponential PDFs. This
is the result of a thinner atmosphere near the poles, resulting in different shapes of the PDF depending
on the location of re-entry. Therefore, by approximating the distribution with known continuous PDFs,
some characteristics of the actual PDF could be missed and errors are introduced in the calculation of
the casualty risk. Therefore, the non-parametric method of Kernel Density Estimation (KDE) is used.
The KDE approximates the PDF by the summation of multiple PDFs with the mean located at the
location of each individual sample. With this method, PDF shapes other than the known continuous
PDFs can be constructed from the sample data. The PDF is constructed using[50]:

𝑃(𝑡) = 1
𝑛ℎ

፧

∑
።዆ኻ
𝐾 (𝑡 − 𝑡።ℎ ) , (3.2)

where 𝑡 indicates the independent variable of the impact time, 𝑡። indicates the impact time of sample 𝑖,
𝑛 are the number of samples, ℎ the bandwidth of the kernel determining the smoothness of the resulting
function, 𝐾 indicates the kernel function. In this study, a Gaussian function is used for all samples:

𝐾(𝑢) = 1
√2𝜋

𝑒 ᎳᎴ፮Ꮄ . (3.3)

where 𝑢 = ፭ዅ፭ᑚ
፡ . The smoothness of the KDE is determined by the selected bandwidth, ℎ. Too high

values of ℎ causes over-smoothing, thereby not capturing the relevant details of the distribution. For
too small values of ℎ, the function is under-smoothed and this the effect of individual samples becomes
too large. In Ref. [50] a rule of thumb is presented to determine the value of ℎ, solely based on the
sampled data in case a Gaussian kernel is employed. The parameter ℎ is derived from the standard
deviation of the data set with[50]:

ℎ = 𝜎 ( 43𝑛)
ኻ/኿
. (3.4)

Thismethod for bandwidth selection is implemented in software packages such asMatlab®1 and Python
2 and applied in research in Ref. [12]. With this method, a PDF can be constructed per location of re-
entry and for different values of the flight path angle at these points as will be discussed in Section 4.5.

3.4. Casualty risk calculation
The variable number of casualties, 𝑁, is discrete and finding the probability, 𝑃, requires integration
over the probability space corresponding to the expected number of casualties (𝐸 = 𝑁). To do so,
the underlying discrete probability function for the number of casualties is required, i.e., the probability
distribution of having exactly 1, 2, 3, etc, casualties. However, this function is difficult to determine.
Therefore, the following method is applied which erases the need of this underlying discrete probability
function. In this case the probability of at least one casualty 𝑃(𝑁 ≥ 1) needs to be lower than the limit set
in the mitigation guidelines in Ref. [4], which is set to 10ዅኾ as discussed in Chapter 1. By applying the
Markov’s Inequality the underlying discrete probability function is not required. The Markov’s inequality
gives an upper limit for the probability, 𝑃, and relates the casualty risk, 𝑃 to the expectation, 𝐸 follows[4]:

𝑃(𝑁 ≥ 𝑎) ≤ 𝐸
𝑎 , (3.5)

where 𝑎 is an integer number in this case equal to 1, since the probability of at least 1 casualty is sought
for, resulting in:

𝑃(𝑁 ≥ 1) ≤ 𝐸 = 𝑁. (3.6)
1MathWorks, “Kernel Distribution,” https://nl.mathworks.com/help/stats/kernel-distribution.html retrieved
2/04/2018, 2018

2The SciPy community, “scipy.stats.gaussian kde” goo.gl/1CHmLH retrieved 2/04/2018, 2016

https://nl.mathworks.com/help/stats/kernel-distribution.html
goo.gl/1CHmLH
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The casualty risk probability, 𝑃, can be approximated by the casualty expectation assuming that 𝑁 is
low. The casualty expectancy is found with Eq. (3.7) [4].

𝐸 =
፧

∑
።዆ኻ

፦

∑
፣዆ኻ
𝑃።,፣𝜌(𝜙።,፣ , 𝜆።,፣)𝐴፜ , (3.7)

where 𝑖 and 𝑗 indicate the cross-track, and along-track location indexes of the impact points respec-
tively, where the along-track deviation, as will be found in Section 4.5, is split in 𝑛 intervals such that
the covered along-track distance per impact point (𝑖, 𝑗) is lower than the resolution of the population
map discussed below, the cross-track deviation is split in 𝑚 intervals for the same reason, resulting in
an impact area with 𝑛 ⋅ 𝑚 impact points. Furthermore, 𝑃።,፣ is the probability that the satellite crashes
in point (𝑖, 𝑗), 𝜌(𝜙።,፣, 𝜆።,፣) is the population density at point (𝑖, 𝑗), and 𝐴፜ is the casualty area. These
parameters are discussed below.

The values for 𝑃።,፣ are obtained by multiplication of the along-track and cross-track probabilities.
The along-track PDF is found empirically using a Monte Carlo simulation, by varying the density of the
atmosphere and the ballistic coefficient of the satellites as discussed in Section 4.5. The probability 𝑃።,፣
is then found by integrating this distribution over a length Δ𝑡 in which the impacting satellite covers 2 km
of the Earth, justification of this value is discussed below. Drag is the only aerodynamic perturbation
considered in this research as will be discussed in Section 4.2. Consequently, no cross-track deviations
due to aerodynamic perturbations occur in the simulations. Therefore, the probability in cross-track
direction is assumed constant over a range of +/-50 km relative to the unperturbed ground track at 40
km altitude. This assumption was made to account for any cross-track deviations not captured in the
simulation. The cross-track probability of each cross-track point 𝑗 is ኻ

፦ . The value of the cross-track
deviation range is based on literature in Ref. [15, 51]. In the last 40 km altitude only limited distance is
covered by the satellite as the motion is mostly vertical, as will be discussed in Section 4.4. Therefore,
the propagation is stopped at this altitude to reduce the computational effort of the simulation.

The map of population densities for all locations on Earth is obtained from Ref. [14]. The popula-
tion map has a 12.5 arc-minute resolution. This amounts to 2 km at 85∘ latitude (highest inhabitated
lattitude). Therefore, the size of any of the impact points in the simulations can not be larger than 2x2
km as this would result in skipping of some entries of the population density data. The latest population
map of the Earth with exact data is from 2015 and is shown in Fig. 3.5.

Figure 3.5: Population density Earth 2015 [14].

The casualty area of a surviving fragment of the satellite, 𝐴፜,፤, leading to a casualty is given by[4]:

𝐴፜,፤ = [√𝐴።,፤ +√𝐴፡]
ኼ

(3.8)
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where 𝐴።,፤ is the projected area of fragment 𝑘 of the satellite which survived the re-entry and 𝐴፡ is
the cross-section of the average human. A graphical representation of this is shown in Fig. 3.6. The
complete casualty area 𝐴፜ is found by a summation over all 𝑢 fragments:

𝐴፜ =
፮

∑
፤዆ኻ

𝐴፜,፤ (3.9)
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Figure 3.6: Graphical representation of the casualty area.

However, finding the cross-section of the different fragments of the satellite requires detailed re-
entry analysis. This analysis includes the simulation of the different components of the satellite and
calculating heat-loads and ablation of material. To simplify the calculation of the casualty area, Ref.
[4] found a coarse relation between the re-entry mass of the satellite and the resulting casualty area
by performing these simulations. The re-entries of multiple satellites from circular orbits have been
simulated with high-fidelity models with two debris assessment software tools in Ref. [4]. These simu-
lations split the satellite into multiple fragments of simple shapes such as cylinders, and spheres. These
fragments resemble the different components of the satellite and are given dimensions and material
properties corresponding to the different satellite components. The outer shapes are ablated during
entry because of the encountered heat-load due to the atmosphere, when the outer shapes have been
completely burned-up, the inner shapes are released. Again, when these components are burned-up
the components inside these shapes are released. The area of the surviving fragments are then in-
serted into Eq. (3.9). The results of these simulations are shown in Fig. 3.7. The resulting relation for

Figure 3.7: Relation between entry mass and casualty area from simulation with two different software tools and high-fidelity
models.

the total casualty area was found to be:

𝐴፜ = 5.6𝑚ኻ/ኾ − 15. (3.10)
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Since this relation is used in this thesis, some accuracy is lost compared to high-fidelity models. How-
ever, this study aims to provide general information about the feasibility of the semi-controlled re-entry
strategy. For that purpose, using this relation is extremely relevant. Note that for accurate determina-
tion of the risk for specific satellites, this relation is not sufficiently accurate since the risks can be two
to three times larger or smaller due to the casualty area as shown in Fig. 3.7.



4
Simulation setup

This chapter gives an overview of the setup of the simulation. First, the cases used in both optimiza-
tions, as shortly explained in the introduction, are discussed in Section 4.1. Second, the assumptions
made throughout the research are discussed in Section 4.2. Next, in Section 4.3, the perturbations
on the satellite, as described in Section 2.5, are analyzed and the relevant perturbations are selected
for the optimizations. In Section 4.4, justification is provided for propagating down to 40 km altitude
instead of propagating to the ground to reduce the computational effort of the simulation. The impact
probability density function, used for the calculation of the risk is treated in Section 4.5. Following this,
in Section 4.6 the used control cut-off altitude of 150 km altitude is discussed. Section 4.7 describes the
validation of the complete model after all the verification activities, as will be described in Appendix A,
are performed. Finally, the setup of both optimization problems are described in Sections 4.8 and 4.9,
for the optimization of the complete setup and the last 150 km, respectively.

4.1. Simulation cases
In Ref. [6] relevant cases are found for this research. For the sake of completeness, the parameters are
repeated in Table 4.1. For the four cases, satellites in LEO with different masses are considered, which
results in different casualty areas, as discussed in Section 3.4. In addition, different ballistic coefficients
are considered, which have an effect on the impact PDF as found in Section 4.5. Furthermore, the
cases assume different inclinations, which could affect the casualty risk, as the satellite travels more
above densely populated areas. The different assumed thrust levels have an effect on the achievable
state at 150 km altitude. The orbits are all have an eccentricity of 0.

Table 4.1: Simulation cases used in both optimizations. Same cases as used in [6].

a [km] i [deg] m [kg] K [mኼ/kg] T [mN]

Case 1: PARASOL 7078 98.28 120 0.01833 8
Case 2: SMOS 7098 98.445 630 0.03515 30
Case 3: SPOT5 7200 98.6 3000 0.015 140
Case 4: SPOT5LIKE 7200 51 3000 0.015 140

4.2. Assumptions
This section sums up the different assumptions made in this research and a justification is provided for
each assumption. It is assumed that:

• The Guidance Navigation and Control (GNC) system of the satellite is perfect down to an
altitude of 150 km, after which it is cut-off. The effect of this assumption is that the state
at 150 km altitude is precise, although in reality the satellite will not be able to maneuver the
satellite to an exact state at 150 km altitude. This assumption has been made based on previous

23
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research in Ref. [6, 52]. Furthermore, the impact of the thrust from this altitude down to the
surface is negligible compared to the effect of the atmosphere as will be described in Section 4.6.
Furthermore, from this altitude downwards, the perturbations on the satellite are likely to be too
extreme for the GNC to guarantee correct pointing. Therefore, the control is cut-off at this altitude.
The impact of this assumption is investigated in Section 6.1.

• Drag is the only aerodynamic perturbation. Often the drag is considered the only perturbation
for re-entry predictions [13, 51, 53]. As drag is the main contributor for the ground-track dispersion
and to reduce the computational effort of the simulation, this is the only aerodynamic perturbation
considered.

• The population density distribution from 2015 is used to calculate the casualty risks. This
is the most recent population density map available with exact data [14]. In Section 6.3, the effect
on the risk of future population growth will be assessed. To justify this, note that for the feasibility
assessment of the semi-controlled de-orbit strategy, mostly the change in casualty risk compared
to the uncontrolled risk is of interest.

• Three degrees of freedom are considered and the satellite is modeled as a random tum-
bling sphere. Previous studies [12, 13] indicated that six degrees of freedom propagation is
required for accurate modeling of entries. However, since the effect of the attitude of the satellite
is largest for large bodies, such as left-over rocket stages, and the satellites in this thesis are
more cube-like satellites, six degrees of freedom propagation is not required for this research [6].
To account for the loss of accuracy of three degrees of freedom propagation, large bounds are
used for the ballistic coefficient variations in the Monte Carlo analysis which will be described in
Section 4.5. Furthermore, as this thesis wants to provide information about the feasibility of the
semi-controlled entry in general, detailed analysis for very specific cases are not of interest here.

• The impact probability distribution for a flight path angle of 0∘ at 150 km altitude is used for
the calculation of the risk. This assumption is made to reduce the complexity of the optimization
problem. As will be discussed in Section 4.5, different flight path angles have similar effect as
changing the true anomaly of the satellite at 150 km altitude, this results in multiple optima with
the same resulting impact track on the Earth. The effect of this assumption is investigated in
Section 6.1.

• The thrust of the satellite is directly influenced by eclipses. No use is made of on-board
batteries to continue thrusting during eclipses. Therefore, the amount of available power is directly
related to the amount of available thrust. As discussed in Section 2.5.4, a shadow function is used
to scale the thrust level according to the amount of input power. Using batteries on-board the
satellite could increase the efficiency of the de-orbit maneuver, since energy can be stored and
used at the points in orbit where thrusting is most effective. In that case, the satellite can even
thrust during eclipse. If the orbit is optimized for minimum fuel mass, the effect of this assumption
should be investigated.

4.3. Perturbation analysis
This section describes what perturbations are taken into account during the optimization. Case 1, as
described in Section 4.1 is simulated for 1 orbital revolution for radii between 6500 km and 7000 km.
The absolute position differences are compared to an reference orbit with only central gravity taken
into account are plotted in Fig. 4.1.

The spherical harmonics up to degree and order two are the dominant perturbations in Fig. 4.1 and
therefore need to be included in the simulations. The drag is the second most important perturbation
for low altitudes. For low altitudes, the contribution of the drag on the deviation is two to three orders
of magnitude larger than the contribution of the spherical harmonics of degree and order three to five,
third-body perturbations and the radiation pressure. Compared to the inaccuracies in the atmospheric
density, as described in Section 2.5.1, where deviations of 10% are not uncommon, the contributions
of the spherical harmonics of degree and order three to five, third-body perturbation, and the radiation
pressure are not significant.

For larger altitudes, the influence of the thrust is one order of magnitude larger compared to these
perturbations. Considering that the inaccuracies in thrust are ±5%, the contributions of the spherical
harmonics of degree and order three to five, third-body perturbation, and the radiation pressure are not
significant for larger altitudes either. The GNC system of the satellite is assumed capable of compen-
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Figure 4.1: Maximum position differences encountered in one orbital revolution. Perturbations are compared to a reference
orbit with only central gravity taken into account. ፒፇ፧፦ indicate the effect of spherical harmonics up to degree and order ፧

and፦, compared to ፒፇ(፧ ዅ ኻ)(፦ ዅ ኻ).

sating for these smaller perturbations, as discussed in Section 4.2, since these perturbations are only a
small portion of the perturbations which could be achieved by the thrust. Finding the exact capabilities
of GNC systems for semi-controlled de-orbit strategies is considered out of scope of this research and
is left for future work. Another advantage of leaving out spherical harmonics of degree and order three
and higher is the reduction of computational effort. A spherical harmonics model with higher degree
and order requires the evaluation of many more sinusoids as shown in Eq. (2.9). These sinusoids need
to be evaluated at every integration point and therefore it is computational intensive.

Also, the long term effects of the perturbations are analyzed to verify the exclusion of the spherical
harmonics of degree and order three to five, third-body perturbations and radiation pressure. The
analysis for 10 orbital revolutions are shown in Fig. 4.2.
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Figure 4.2: Maximum position differences encountered during 10 orbital revolution. Perturbations are compared to a reference
orbit with only central gravity taken into account. ፒፇ፧፦ indicate the effect of spherical harmonics up to degree and order ፧

and፦, compared to ፒፇ(፧ ዅ ኻ)(፦ ዅ ኻ).

From Fig. 4.2 it was found that for an increase of the simulation time by one order of magnitude, the
deviations due to the spherical harmonics, third body perturbations and radiation pressure increase with
less than one order of magnitude. This effect is attributed to periodic nature of the other perturbations
and the secular nature of the propulsive perturbation. Similar behavior is observed for the aerody-
namic perturbation. The findings from the propagation over 10 orbital revolution justify the decision of
excluding these perturbations from the optimization.

To summarize this section, the perturbations taken into account in this research are:
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• atmospheric drag,
• thrust,
• spherical harmonics up to and including degree and order two.

For the remainder of this thesis, these are the only perturbations considered.

4.4. Propagation termination altitude
As the satellite is propagated down to the surface, the aerodynamic perturbations increase. This re-
duces the velocity of the satellite which requires a small step size of the integrator, and in turn, large
computational effort to keep the deviations within the tolerances. The distance covered in the last part
of the re-entry is investigated in Fig. 4.3.
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Figure 4.3: Coordinates of last part of entry for PARASOL case with random initial conditions, blue crosses indicate trajectory
propagated to 1 km altitude, red circles indicate trajectory to 40 km altitude.

Figure 4.3 shows that the deviation of in the last 40 km of the re-entry is small. Only a difference
of 0.04∘ in longitude direction is observed and 0.2∘ in latitude direction for this case. Also, the differ-
ences observed are only in along-track direction. The ground distance covered in this last 40 km is
approximately 22 km. This is very limited when considering that the impact track length is between
4 ⋅ 10ኾ to 1 ⋅ 10኿ km long as will be discussed in Section 4.5. Furthermore, the propagation from 150
km altitude down to 40 km altitude requires 92 steps with the integrator settings as discussed in Sec-
tion 3.1. For the propagation of the last 40 km, an additional 183 integration steps are required. To
verify whether the same behavior is seen for other cases and initial conditions, simulations have been
performed for varying initial conditions for all four cases as discussed in Section 4.1. The results are
shown in Table 4.2.

Table 4.2: Maximum and average deviations in coordinates and absolute ground distance in the last 40 km of the re-entry. 73
simulations per case are used with equally spaced values for the initial true anomaly.

average Δ𝜙 [deg] max Δ𝜙 [deg] average Δ𝜆 [deg] max Δ𝜆 [deg] average Δ𝑑 [km] max Δ𝑑 [km]
Case 1: PARASOL 0.50 2.0 0.16 0.26 23.8 33.2
Case 2: SMOS 0.056 0.69 0.088 0.14 10.4 17.5
Case 3: SPOT5 0.13 2.0 0.23 0.31 27.3 38.0
Case 4: SPOT5LIKE 0.25 0.46 0.13 0.20 27.1 32.0

Table 4.2 shows larger differences in coordinates compared to the ones found in Fig. 4.3. The
maximum values for the coordinate deviations occurred when the satellite impacts at one of the poles,
this is expected as the distance covered per degree longitude at the poles is smaller. The resulting
along-track distance in the last 40 km is small and in the range between 10 and 40 km. Such variations
are small compared to the total length of the impact track. The differences in the number of integration



4.5. Impact probability distribution 27

steps required for the propagation were similar for all simulated cases. The reduction of integration
steps and the relatively small differences in the last 40 km justifies the decision for only propagating to
40 km altitude.

4.5. Impact probability distribution
To find the along-track impact PDF, a Monte Carlo simulation with 2000 samples is performed. The
satellites as described in Section 4.1, are propagated from circular orbits at 150 km altitude downwards,
since at this altitude it is assumed that the controls of the satellites are turned-off as pointed out in
Section 4.2 and will be described in more detail in Section 4.6. The satellites are propagated from this
initial orbit down to 40 km altitude as discussed in Section 4.4.

In the Monte Carlo simulation a multiplication factor with respect to the baseline value is used to
change the density and ballistic coefficient in the simulation. The distribution and corresponding pa-
rameters of these multiplication factors are given below.

• Density atmosphere, log-normally, with 𝜇∗ = 0.98 and 𝜎∗ = 1.13.
• Ballistic coefficient, uniformly, with bounds [0.8, 1.2].

The density parameters for the log-normal distribution are obtained from Ref. [12]. The range for the
ballistic coefficient is based on the work in Ref. [13]. Smaller bounds are only recommended for high-
fidelity six degrees of freedom propagation [13]. No thrust is considered for the uncontrolled phase
of the de-orbit strategy, from 150 km altitude downwards. Therefore, for the Monte Carlo simulation
discussed here, the only perturbations are the drag and the spherical harmonics up to degree and
order 2. As stated in Section 4.2, it is assumed that the GNC system of the satellites is perfect down to
150 km altitude. Thus, no uncertainties are present in the state at 150 km altitude. The impact of this
assumption will be investigated in Section 6.1. The PDFs are constructed for different values for the
true anomaly, 𝜃, and flight path angle, 𝛾, at 150 km altitude. The impact PDFs for the PARASOL case
are shown in Fig. 4.4.

From Fig. 4.4 it can be observed that the results do not follow a normal distribution as was assumed
in Ref. [6]. The camel-like shape seen in the results is the effect of the flattening of the Earth. The
atmosphere is thinner at the poles at a given distance from the center of mass of the Earth. Therefore a
circular orbit makes ”dips” into the atmosphere at the equator. Furthermore, Fig. 4.4 shows that the true
anomaly of the re-entry point at 150 km altitude has a large effect on the impact PDF. The true anomaly
mostly affects the shape of the distribution and produces minor shifts of the complete distribution as
the satellite follows different trajectories relative to the atmosphere, due to the flattening of the Earth.

The effect of the flight path angle is also clearly visible in Fig. 4.4. It can be seen that steeper
entry angles result in shorter impact times, this can be seen from the shift of the complete function
forward in time. This behavior is attributed to the higher densities encountered by the satellite, since
the satellite reaches lower altitudes for steeper entries compared to less steep entries. The shift is also
observed in the shift of the nominal trajectory forward in time indicated by the blue and red dash-dotted
lines. The large shift observed for 𝜃 = 120∘ shows that most of the samples crash half an orbit earlier
compared to the samples from 𝛾 = 0∘. Important to note is that the length of the impact track (3𝜎-range),
remains relatively constant for varying flight path angle. Since the impact track is constructed around
the nominal impact point, any shift of the distribution function is accounted for automatically during the
propagation to 40 km altitude in the optimizations. Also, it can be seen that the shapes for steeper entry
angles show similarities with an increased true anomaly, i.e. the shape of the distribution for 𝛾 = −0.1∘
of Fig. 4.4(b) resembles the shape of the Fig. 4.4(c) for 𝛾 = 0∘. The same can be observed between
Fig. 4.4(d) and Fig. 4.4(f), and between Fig. 4.4(f) and Fig. 4.4(a).

Based on the differences in shape and impact time observed for changing values of the true anomaly,
the location of re-entry must be taken into account for the probability distribution during the optimization
of the complete strategy and the optimization of the last 150 km.

The variations due to different flight path angles are not taken into account during both optimizations,
since varying the value of the flight path angle has a similar effect as varying the true anomaly. This
would increase the difficulty of the optimization, since multiple entry locations can achieve the same
casualty risk. Since the optimization of the complete de-orbit strategy already requires large computa-
tional effort, increasing the complexity is likely to increase this effort even further. For the optimization
of the last 150 km, the flight path angle is also set to 0∘. The effect of assuming this circular entry
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Figure 4.4: Impact probability distributions for PARASOL for different values of true anomaly and flight path angle, time
indicates time between 150 km and 40 km altitude

condition is investigated in Section 6.1. Note that any shift of the distribution as shown in Fig. 4.4 is
accounted for as the impact track is constructed around the nominal impact point.

The results for true anomalies between 180∘ and 360∘ are the same as the ones shown in Fig. 4.4
due to the symmetry of the Earth and its atmosphere. Therefore, these are not shown here as this
would be a repetition of what is shown already.

A more detailed view at the distribution of Fig. 4.4(a) is shown in Fig. 4.5.
Figure 4.5 shows that the length of the impact track in this thesis covers a larger range than the

range used by the impact predications in Ref. [54]. In Ref. [54] it is assumed that the nominal impact
time +/-20% gives the 2𝜎 confidence interval of the impact probability. Similar results were also found
in Ref. [13]. From the Monte Carlo analysis in this research, only a 82% confidence interval is reached
within the +/-20% bounds. For other values of the true anomaly and flight path angle, confidence
intervals between 75% and 88% are found. The lower bound of the +/-20% interval is close to the 2𝜎
lower bound, but the upper bound predicts earlier entries compared to the found PDF and is closer to
the 1𝜎 upper bound. Similar results where found for the other values of true anomaly and flight path
angle. The longer impact tracks resulting from the described Monte Carlo simulation in this section,
compared to the method used in Ref. [54], results in a larger area on the surface of the Earth. For a
larger impact area, it is more difficult to only cover uninhabited area. Therefore, the resulting risks are
likely to be larger than those calculated with the method described in Ref. [54]. Based on the findings
from this Monte Carlo, the casualty risks calculated with the +/-20% bounds in other research, e.g., in
Ref. [54] are underestimated.

The above discussion focused on the first case discussed in Section 4.1. However, similar behavior
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Figure 4.5: Impact PDF PARASOL for ᎕ ዆ ኺ, ᎐ ዆ ኺ

was found for the other cases. The differences are discussed below.
The second case (SMOS), impacts much earlier and also the length of the impact track was found

to be shorter. Both observations are expected, since the ballistic coefficient for the SMOS case is much
larger. The confidence intervals within +/-20% of the nominal crash time showed values between 80%
and 95%. Suggesting that the +/-20% method works better for higher values of ballistic coefficient.

The third case (SPOT5), shows very similar results as the PARASOL case. This is to be expected,
since they have similar ballistic coefficients. The results of the last case (SPOT5LIKE) shows similar
distributions to the PARASOL case, but the impact times are shifted forward. This can be explained by
the lower inclination of the SPOT5LIKE case, which results in smaller variations in altitude caused by
the flattening of the Earth. Therefore, the satellite encounters on average higher densities compared
to higher inclination orbits.

4.6. Control cut-off altitude
In Section 4.2 the assumption was made that the control of the satellite is cut-off at 150 km altitude.
This assumption is necessary because only three degrees of freedom are simulated and only drag is
considered. Therefore, torques on the satellite are not known and a cut-off altitude based on encoun-
tered torques is not feasible. Furthermore, the satellite parameters required for the assessment of the
torques are specific per satellite and this thesis aims to provide general information about the feasibility
of the semi-controlled de-orbit strategy, and using such specific parameters reduces the generality of
the research.

An initial range for the cut-off altitude is based on literature. The GOCE satellite was functional to
altitudes as low as 115 km [52]. It did however switch off its engines at 229 km altitude. The feasibility
study for semi-controlled entry performed by CNES used a control cut-off altitude of 150 km [6]. The
effect of the control cut-off altitude on the impact time is investigated within the range from 90 km to 250
km altitude. The data is generated by propagation of the satellite cases as discussed in Section 4.1
from a circular orbit at 250 km altitude down to 40 km altitude. The thrust is directed in the direction of
the velocity, resulting in maximum deceleration of the satellite. The thrust is cut-off at different altitudes
resulting in different impact times. Δ𝑡 on the y-axis indicates the differences in impact time compared
to thrusting down to 90 km altitude.

Figure 4.6 shows differences in impact time in the order of 10ኼ s for control cut-off altitudes below
150 km. Thus the influence of the thrust in the last 150 km on the impact time is small. Especially when
comparing these numbers to the length of the probability impact track as shown in Section 4.5 which
cover a period of several hours. The differences in impact times for higher cut-off altitudes are much
larger. In that region the GNC system still has a large influence on the impact time of the satellite.
Based on these results, the control cut-off altitude of 150 km is used in the simulation.

For the calculation of the casualty risk of specific satellite cases, for example for future satellites of
which all details are known, this altitude assumption should be revisited, and/or an uncertainty in the
state at 150 km altitude needs to be implemented after a more detailed analysis of the GNC capabilities
in the controlled part of the entry is performed. However, such detailed analysis is out of scope of this
research, and is left for future work on this topic.
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Figure 4.6: Effect of control cut-off altitude on impact time. The results are relative to the impact time for a cut off altitude of
90 km.

4.7. Validation
This section describes the validation of the model. The verification activities can be found in Appendix A
and were performed before the validation in this section. These are located in the appendix to improve
readability of this chapter. In Appendix A.1 the verification of the control parameterization is discussed.
Then, in Appendix A.2, the verification of the entire software chain for the propagation and optimization
is performed. Finally in Appendix A.3 the verification of the optimization employing simple population
maps is discussed. To validate the complete setup of the simulation, analytical values for the un-
controlled casualty risk, 𝐸ፚ፧, are compared with the uncontrolled risks from simulations, 𝐸፬።፦ and the
values for the uncontrolled casualty risks as found in Ref. [6], 𝐸ፂፍፄፒ.

The analytical uncontrolled risk is calculated with[4]:

𝐸ፚ፧ =
𝑁።
𝐴።
𝐴፜ , (4.1)

where 𝑁። the total population count between plus and minus the value of the inclination and 𝐴። the area
of the slice of sphere between plus and minus the inclination. Note that population above the latitude
with the same value as the inclination cannot be hit by debris as the satellite does not cover the area.

The values for the uncontrolled risk from simulations are obtained as follows. For all four cases
considered, 200 samples are propagated from an initial altitude of 150 km. The state of each sample
is randomly initialized from an uniform distribution. The average of of risks is taken as the value for the
uncontrolled risk, 𝐸፬።፦. The state has the following bounds:

Δ𝑖 ∈ [−4∘, 4∘],
Ω ∈ [0∘, 360∘],
𝜃 ∈ [0∘, 360∘],

where Δ𝑖 is the difference in inclination with respect to the end-of-life orbit. These bounds will be
discussed in Section 4.9

The results of the validation are shown in Table 4.3. 𝐸፬።፦,፬፜ፚ፥፞፝ is the uncontrolled risk from the
simulations but scaled for population growth to the indicated entry year as this is also done in [6].
Population growth between 2015 and 2040 is expected to be 25% and between 2015 and 2050, 33%
[55], thus the risk is increased with these percentages based on the entry year.

Table 4.3 shows good agreement between the analytical uncontrolled risk and the simulated un-
controlled risk. The order of magnitude is correct and the differences are 32% at maximum. Even more
interesting is the close approximation with the values found in Ref. [6]. Even though, two completely
different methods are used to find the uncontrolled casualty risk, the uncontrolled risks scaled for pop-
ulation growth are well within one order of magnitude from the values in Ref. [6]. For the PARASOL



4.8. Optimization complete de-orbit strategy 31

Table 4.3: Comparison between uncontrolled re-entry risks calculated analytically, by simulations with a random initial state,
the simulated risk scaled for population growth, and the risks found in the study performed by CNES in Ref. [6].

Case 1: Case 2: Case 3: Case 4:
PARASOL SMOS SPOT5 SPOT5LIKE

𝐸𝑛𝑡𝑟𝑦 𝑦𝑒𝑎𝑟 2050 2040 2050 2050
𝐸ፚ፧ 5.1219 ⋅ 10ዅ኿ 1.8919 ⋅ 10ዅኾ 3.8347 ⋅ 10ዅኾ 4.7788 ⋅ 10ዅኾ
𝐸፬።፦ 3.9095 ⋅ 10ዅ኿ 1.6433 ⋅ 10ዅኾ 2.8975 ⋅ 10ዅኾ 4.3280 ⋅ 10ዅኾ
𝐸ፚ፧/𝐸፬።፦ 1.31 1.15 1.32 1.10
𝐸፬።፦,፬፜ፚ፥፞፝ 5.1997 ⋅ 10ዅ኿ 2.0541 ⋅ 10ዅኾ 3.8536 ⋅ 10ዅኾ 5.7562 ⋅ 10ዅኾ
𝐸ፂፍፄፒ 5.20 ⋅ 10ዅ኿ 5.26 ⋅ 10ዅ኿ 3.11 ⋅ 10ዅኾ 4.59 ⋅ 10ዅኾ
𝐸፬።፦,፬፜ፚ፥፞፝/𝐸ፂፍፄፒ 1.00 3.91 1.24 1.25

case, exact agreement with the uncontrolled risk in [6] was found. This perfect agreement could be
caused by the casualty area, calculated with Eq. (3.10), which has the same values as was found in
[6] with high fidelity models. It should be noted that in Ref. [6], the strategy for calculating the risk is
different, since a detailed analysis is performed of a fragmented satellite. This includes the calculation
of the demise of the different objects. The casualty risk is then based on the left over area and en-
ergy per fragment. The largest deviation is found for the SMOS case. This is likely due to the large
ballistic coefficient compared to the other considered cases, and the fact that the casualty area in this
research is only based on the mass at re-entry, and therefore, does not take aerodynamic properties
of the satellite into account.

The close approximation of the simulations with both the analytical solution and the risks, as stated
in [6], validate the model used in this thesis. Furthermore, the casualty risks found in this research are
consistently overestimated. Therefore, if risks below the limit of 10ዅኾ are found, it can be said with high
confidence that the actual risk is indeed meeting the requirement.

4.8. Optimization complete de-orbit strategy
This section provides details on the optimization of the complete de-orbit strategy. The objective func-
tion for the differential evolution optimization is given by:

𝐽 = 𝐸, (4.2)

where 𝐸 is the casualty expectancy equivalent to the casualty risk as described in Section 3.4. The
control parameters are the costates given at two nodes as described in Section 2.6. To find the control
profile the costates are linearly interpolated between those nodes. This results in 10 control parameters
which are:

u = [𝜆𝜆𝜆ኺ, 𝜆𝜆𝜆ኻ], (4.3)

with

𝜆𝜆𝜆። =
⎡
⎢
⎢
⎢
⎣

𝜆፩,።
𝜆፟,።
𝜆፠,።
𝜆፡,።
𝜆፤,።

⎤
⎥
⎥
⎥
⎦

(4.4)

The optimization is limited to two nodes, because the optimization was already slow for these 10 pa-
rameters, increasing the search space even more would further slow it down. The explanation for the
bounds for the control parameters can be found in Appendix A and are repeated here alongside the
parameters for the differential evolution.

𝜆፩,፟,፠ ∈ [−0.1, 0.1], (4.5)
𝜆፡,፤ ∈ [−10000, 10000], (4.6)
𝑗𝐷𝐸 = 𝐷𝐸/𝑟𝑎𝑛𝑑/2/𝑏𝑖𝑛, (4.7)
𝑁𝑃 = 100, (4.8)

𝐺 = 120, (4.9)
𝑛𝑜𝑑𝑒𝑠 = 2, (4.10)

𝜅፱ = 10ዅዂ, (4.11)
𝜅፟ = 10ዅዂ, (4.12)
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where 𝜅፱ is the tolerance for the individuals in the population, indicating minimum difference within
the control parameters of the population. Furthermore, 𝜅፟ is the tolerance for the fitness in the popula-
tion, meaning that the optimization is terminated when difference between best and worst individuals in
the population is below this threshold. The seed for initializing the population is arbitrarily set to 12345.

4.9. Optimization last 150 km
The optimization from 150 km altitude has the same objective function as the first optimization as
given by Eq. (4.2). The control parameters for this optimization are the initial state at 150 km altitude.
The eccentricity is set to zero as discussed in Section 4.5, the argument of perigee is set to zero as
the eccentricity is zero the location is controlled by varying the true anomaly. The influence of zero
eccentricity is investigated in the sensitivity analysis in Section 6.1. The three parameters left are

u = [Δ𝑖, Ω, 𝜃] (4.13)

where Δ𝑖 is the deviation from the baseline inclination as given in Section 4.1. The bounds for the
control parameters and parameters for the differential evolution are as follows

Δ𝑖 ∈ [−4∘, 4∘], (4.14)
Ω ∈ [0∘, 360∘], (4.15)
𝜃 ∈ [0∘, 360∘], (4.16)

𝑁𝑃 = 30, (4.17)

𝐺 = 800, (4.18)
𝑗𝐷𝐸 = 𝐷𝐸/𝑟𝑎𝑛𝑑/2/𝑏𝑖𝑛, (4.19)
𝜅፱ = 10ዅዂ, (4.20)
𝜅፟ = 10ዅዂ, (4.21)

The bounds for Δ𝑖 where found by a simulation in which the direction of the thrust is set for maxi-
mum inclination change. The satellite is propagated for 3 months to find the minimum and maximum
inclination change possible during the controlled part of the de-orbit maneuver. The bounds for Ω and 𝜃
cover all possible entry locations at 150 km altitude. Note that a much smaller population for the DE is
used for this optimization compared to the optimization of Section 4.8, because less control parameters
are used. The seed for initializing the population is arbitrarily set to 12345.



5
Results and discussion

This chapter contains the results of this thesis in which the feasibility of the semi-controlled end-of-
life de-orbit strategy is investigated. Chapter 2 provided the necessary dynamical framework for the
modeling of the satellites considered in this thesis. The numerical methods in Chapter 3 provided the
theory for numerical simulations of the satellites. The simulation setup has been discussed in detail in
Chapter 4. Recall that two optimization strategies are employed in this thesis as described in Chapter 1
and Sections 4.8 and 4.9. The first optimization covers the complete semi-controlled end-of-life de-orbit
maneuver. Starting at the initial end-of-life orbit the satellite is controlled by defining the direction of the
low-thrust propulsion over time. Once the altitude is reached where the attitude of the satellite cannot
be guaranteed, the low-thrust propulsion system is turned off and follows a ballistic trajectory towards
the surface of the Earth. The second optimization only considers the ballistic part of the trajectory in the
last 150 km, since this removes a large portion of the computational effort arising from the controlled
phase of the disposal maneuver. The results for the different satellite cases stated in Section 4.1 are
presented and discussed one by one in Sections 5.1 to 5.4 respectively. Then a general discussion on
the results follows in Section 5.5.

5.1. Case 1: PARASOL
The results for both optimization strategies for the PARASOL case are shown in Fig. 5.1. The satellite
parameters for the PARASOL case are described in Section 4.1. Note that the orbit is retro-grade and
therefore, the start of the impact track of Fig. 5.1(a) is located in west Africa going upwards. The start of
Fig. 5.1(b) is located near Europe and the end of the impact track is located underneath South America.
The start of the worst case impact track as shown in Fig. 5.1(c) is located at the bottom of the figure
and the end of the impact track is located underneath India.

Both optimizations reduced the risk considerably compared to the uncontrolled case (3.9095 ⋅10ዅ኿)
as found in Section 4.7. The result of the optimization of the complete setup as shown in Fig. 5.1(a)
was found after 71 generations and resulted in casualty risk well below the requirement specified in [1].
The result of the optimization of the last 150 km as shown in Fig. 5.1(b) was found after 79 generations
and shows an improved results over the result found in the optimization of the complete setup.

In Fig. 5.1(a) it can be observed that the part of the impact track with the highest impact probability
is located near Australia. The largest contributions to the found risk are from the region in west Africa
where the population density is high. The contributions of the other two regions indicated are about a
third of that in Africa. It interesting to see that the contributions of the region in Papua New Guinea and
that of the region east of Papua New Guinea result in a similar contribution to the casualty risk. This
is caused by a high population density but low probability in Papua New Guinea, and a low population
density but high probability in the other region.

The optimization of the last 150 km provided similar results while reducing the casualty risk one
order of magnitude. This is caused by a shift of the impact track in the direction of the end of the impact
track due to which west Africa is not covered anymore. As can be seen in Fig. 5.1(b), the inclination of
this optimum impact track is closer to 90∘ as the orbit reaches higher latitudes. The inclination change
observed is−3.9∘ which is close the bound as discussed in Section 4.9. Note that a negative inclination
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(a) Complete setup. Calculated risk is ኼ.዁ኽኼኻ ⋅ ኻኺᎽᎹ.
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(b) Last 150 km. Calculated risk is ኾ.ኾዂኺኻ ⋅ ኻኺᎽᎺ.
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(c) Last 150 km, worst case scenario. Calculated risk is ኼ.ዀኻ኿዁ ⋅ ኻኺᎽᎶ.

Figure 5.1: Optimal impact tracks case 1: PARASOL. The population density is indicated in gray scale, the red squares
indicate the areas responsible for the major portion of the casualty risk. Note that the width of impact track is exaggerated.

change results in an orbit reaching higher latitudes. The part of the impact track with highest probability
is moved away from Australia. Therefore, the results of the second optimization are expected to be
less sensitive to variations in the state at 150 km altitude. The largest contribution to the risk for the
optimization of the last 150 km is now located in Papua New Guinea. The second and third largest
contributions are from the region in Australia and from the region east of Papua New Guinea.

In Fig. 5.1(c) the impact track and associated risk is shown for an optimization of the last 150 km
for maximum casualty risk. This is done as an additional verification of the calculated risks. Several
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important observations can be made from Fig. 5.1(c). First, the high impact probability is located above
Asia where the population density is high. Second, the inclination is decreased with respect to the end-
of-life orbit of the satellite as described in Section 4.1 which is the opposite behavior as found for
minimizing the casualty risk. The risk found is 5 times as high as the uncontrolled risk as found in
Section 4.7 and it clearly shows the advantage of the semi-controlled disposal strategy as the risks can
be reduced dramatically.

The trajectory of the satellite for the optimum of the optimization of the complete setup is shown in
Fig. 5.2 together with control profile.
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(f) Yaw thrust steering angle.

Figure 5.2: Optimal low-thrust trajectory case 1: PARASOL down to 150 km altitude, together with optimal thrust profile.

From Fig. 5.2 it can be seen that the transfer down to the 150 km altitude requires 2 months of
thrusting. This required 2.8 kg of fuel with the engine properties as discussed in Table 4.1. Figure 5.2(a)
clearly shows that the orbit is first increased for 10 days. From this point, the inclination is steady
decreased over time as shown in Fig. 5.2(c). Note that the optimum for the optimization from 150 km
altitude also decreased its inclination. The increase and decrease of the semi-major axis as shown in
Fig. 5.2(a) is also clearly reflected in the thrust profile indicated in Fig. 5.2(e), where the direction of
the thrust acceleration is first in the direction of the velocity and after 10 days it is flipped and the thrust
acceleration is against the direction of the velocity. The behavior of the inclination corresponds to the
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control profile of the yaw angle as shown in Fig. 5.2(f). Note that the yaw angle is adjusted throughout
the orbit, since the trajectory covers many orbital revolutions the plot has a solid color. However,
general behavior can still be observed from Fig. 5.2(f) After the point where the control for the pitch
switches direction, the yaw angle is large, and the effect on the time derivative of the inclination change
is clearly visible. Then over time, the yaw angle decreases, which can also be seen in the value for the
inclination. The value for the longitude of ascending node is increasing steadily over time due to the
J2 perturbation, this behavior is expected for retro-grade orbits. The eccentricity of the orbit remains
close to zero for the complete trajectory as shown in Fig. 5.2(b).

5.2. Case 2: SMOS
The results for both optimization strategies for the SMOS case are shown in Fig. 5.3. The satellite
parameters for the SMOS case are described in Section 4.1.
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(a) Complete setup. Calculated risk is ኻ.ኻዃዀኼ ⋅ ኻኺᎽᎺ.
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(b) Last 150 km. Calculated risk is ኻ.ዀዃኾዃ ⋅ ኻኺᎽᎻ.

Figure 5.3: Optimal impact tracks case 2: SMOS. The population density is indicated in gray scale, the red squares indicate the
areas responsible for the major portion of the casualty risk. Note that the width of impact track is exaggerated.

Note that the orbit is retro-grade and therefore, the start of the impact track in Fig. 5.3(a) is located at
180∘ longitude going downwards. In Fig. 5.3(b) the start of the impact track is located west of Australia
going down and ends just before Papua New Guinea. The risks that are found are very small compared
to the uncontrolled case (1.6433 ⋅ 10ዅኾ) as found in Section 4.7. The result of the optimization of the
complete setup as shown in Fig. 5.3(a) was found after 117 generations and resulted in casualty risk
well below the requirement specified in [1]. The result of the optimization of the last 150 km as shown
in Fig. 5.3(b) was found after 111 generations and again shows an improvement over the risk found
in Fig. 5.3(a). Figure 5.3 shows the effect of a high ballistic coefficient. The impact track length is
decreased significantly with respect to the PARASOL case as shown in Fig. 5.1. As the impact track
is shorter, a smaller region is covered and lower casualty risks can be achieved.
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In Fig. 5.3(a) it can be observed that the part of the impact track with the highest impact probability is
located near Australia comparable with the PARASOL case. The largest contributions to the found risk
is from the region to the east of Papua New Guinea where a small region with high population density
is located, the probability is relatively low at this point. The second largest contribution to the casualty
risk is located in the Atlantic Ocean. Here a small island is located. As the probability of impact is high,
this results in a significant contribution to the casualty risk.

The optimization of the last 150 km provided similar results while reducing the casualty risk by an
additional order of magnitude. The inclination change observed in Fig. 5.3(b) is 3.2∘ which is again
close to the bound as discussed in Section 4.9. However, for this case, the inclination is increased,
resulting in an impact track achieving lower latitudes. In general it is expected that for lower inclinations
more inhabitable area is covered, increasing the casualty risk. But, since the impact track is short,
the impact track mostly covers oceans resulting in low risks. Also, the part of the impact track with
highest probability is shifted towards the Atlantic Ocean, reducing the casualty risks near Australia.
Furthermore, the impact track is shifted to the left, such that is nicely located in the middle of the
Atlantic Ocean and is expected to be less sensitive to variations of the state at 150 km altitude. The
sensitivity will be investigated in Chapter 6.

The trajectory of the SMOS case for the optimum of the optimization of the complete setup shows
the same behavior as the PARASOL case shown in Fig. 5.2. Therefore, the figures are not shown
here, but can be found in Appendix B. The transfer takes almost 80 days. This is caused by the
control profile which increases the altitude of the orbit for a longer period of time. Interesting to note is
that the inclination is decreased for the optimization of the complete setup while the inclination for the
optimization from 150 km is increased. Since the optimization of the complete setup is more complex,
this solution was not found. The transfer required 13.7 kg of fuel with the engine parameters as shown
in Table 4.1, which is comparable to the PARASOL case when taking into account to larger dry mass
of the satellite.

5.3. Case 3: SPOT5
The SPOT5 case is interesting, as it considers the most massive satellite of all considered cases with
a low ballistic coefficient. This results in a long impact track and higher casualty risk as the casualty
area is much larger compared to the other cases. The length of the impact track makes targeting of
uninhabited area more complex. The satellite parameters are discussed in Section 4.1. The results for
both optimization strategies are shown in Fig. 5.4.

Note again, that the orbit is retro-grade and therefore, the start of the impact track in Fig. 5.4(a)
is located below Africa going upwards. The start of the impact track for the optimization from 150 km
altitude as shown in Fig. 5.4(b) is located in west Africa going upwards. Both optimizations reduced
the risk compared to the uncontrolled case (2.8975 ⋅ 10ዅኾ) as found in Section 4.7, a reduction of two
orders of magnitude has been achieved. The effect of the long impact track and large mass of the
satellite is clearly seen in the results as the possible reductions are much less compared to the other
cases. The result of the optimization of the complete setup as shown in Fig. 5.4(a) was found after 114
generations and resulted in casualty risk well below the requirement specified in [1]. The result of the
optimization of the last 150 km as shown in Fig. 5.4(b) was found after 702 generations. However, it
should be noted that similar results to Fig. 5.1(a) where already found at generation 7 with only a third
of the population used during the optimization of the complete setup. The SPOT5 case has a slightly
lower ballistic coefficient compared to the PARASOL case, this is directly reflected in the length of the
impact track when comparing Fig. 5.4 with Fig. 5.1.

In Fig. 5.4(a) it can be observed that the part of the impact track with the highest impact probability
is located near Australia. The findings are similar to that of the PARASOL case. The largest contri-
butions to the found risk are from the region in west Africa where the population density is high. The
contributions of the other three regions indicated are about half that of the contribution of west Africa.
It interesting to see that the contributions of the regions in Papua New Guinea and Brazil, and that of
the region east of Papua New Guinea result in a similar contribution to the casualty risk. This is caused
by a high population density but low probability in Papua New Guinea and Brazil, and a low population
density but high probability in the other region.

The optimization of the last 150 km provided similar results while reducing the casualty risk even
further. The orbit shows large similarities with the optimization of the complete setup. Note that the
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(a) Complete setup. Calculated risk is ኿.ኻዀዂ኿ ⋅ ኻኺᎽᎸ.

-150 -100 -50 0 50 100 150

Longitude [deg]

-80

-60

-40

-20

0

20

40

60

80

L
a

ti
tu

d
e

 [
d

e
g

]

1

2

3

4

5

6

7

Im
p

a
c
t 

p
ro

b
a

b
ili

ty

10 -5

(b) Last 150 km. Calculated risk is ኻ.ኽ዁ኺዀ ⋅ ኻኺᎽᎸ.

Figure 5.4: Optimal impact tracks case 3: SPOT5. The population density is indicated in gray scale, the red squares indicate
the areas responsible for the major portion of the casualty risk. Note that the width of impact track is exaggerated.

largest difference is the length of the impact track. This is caused by different entry locations between
the optima of the complete setup and the optimization of the last 150 km. The track is similar, since
the trajectory of the complete setup can have non-zero flight path angles at re-entry. Therefore, the
same nominal impact points can be achieved with different re-entry locations. This results in a different
impact probability distribution as shown in Section 4.5. The inclination change observed in Fig. 5.4(b)
is −3.2∘ which is again close to the bound as discussed in Section 4.9. Notice that similar behavior for
the inclination change is found compared to the PARASOL case in Section 5.1 which also has a long
impact track. Also, the part of the impact track with highest probability is shifted towards the Atlantic
Ocean, reducing the casualty risks near Australia. Three regions are responsible for the major part of
the found casualty risk as shown in Fig. 5.4(b). The regions in Brazil and Papua New Guinea have a
high population density but the impact probability is low. The region east of the Papua New Guinea
has low population density but high probability.

The trajectory of the SPOT5 case for the optimum of the optimization of the complete setup shows
the same behavior as the PARASOL case shown in Fig. 5.2. Therefore, the figures are not shown
here, but can be found in Appendix B. The transfer takes over 80 days. This is caused by the lower
thrust to mass ratio for the SPOT5 satellite compared to the other cases as described in Table 4.1. The
transfer required 68.2 kg of fuel with the engine parameters as shown in Table 4.1. The fuel mass is
comparable with the other cases considering the total mass of the satellite.

5.4. Case 4: SPOT5LIKE
This case is the same as the SPOT5 case except it has an inclination of 51∘ instead of 98.6∘. The
results for both optimization strategies are shown in Fig. 5.5.
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(b) Last 150 km. Calculated risk is ዀ.ኾ኿ኾ዁ ⋅ ኻኺᎽᎸ.

Figure 5.5: Optimal impact tracks case 4: SPOT5LIKE. The population density is indicated in gray scale, the red squares
indicate the areas responsible for the major portion of the casualty risk. Note that the width of impact track is exaggerated.

This time the orbit is pro-grade, so the start of the impact track of Fig. 5.5(a) is located in south of
Africa going east. The start of Fig. 5.5(b) is located near Australia also going to the right.

Both optimizations reduced the risk compared to the uncontrolled case (4.3280 ⋅ 10ዅኾ) as found
in Section 4.7, a reduction of two orders of magnitude has been achieved. The risks are higher than
those found for a higher inclination as discussed in Section 5.3 which indicates the difficulty of finding
low casualty risk trajectories for low inclination orbits. However, most orbits in the LEO region are
stationed in a sun-synchronous orbit with high inclination [56], for which it is easier to find low risk
trajectories. The result of the optimization of the complete setup as shown in Fig. 5.5(a) was found
after 84 generations and resulted in casualty risks well below the requirement specified in [1]. The
result of the optimization of the last 150 km as shown in Fig. 5.5(b) was found after 628 generations.
However, it should be noted that similar results to Fig. 5.1(a) where already found at generation 1 with
only a third of the population used during the optimization of the complete setup.

In Fig. 5.5(a) it can be observed that the part of the impact track with the highest impact probability
is located in the Pacific Ocean. The value of the risk is almost fully build-up from the contributions in
North America where the population densities are relatively high and the probability of impact is also
high.

The optimization of the last 150 km provided similar results while reducing the casualty risk even
further and is shown in Fig. 5.5(b). Compared to Fig. 5.5(a) the impact track is moved in the direction
of the end of the impact track. The result of this is, that the south of Africa is not covered by the impact
track, furthermore, the impact probabilities in North America are reduced. The region with the highest
contribution to the casualty risk is located in the north west of the United States, followed by the region
in the north east of the United States. The inclination change observed in Fig. 5.5(b) is 3.4∘ which is
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again close to the bound as discussed in Section 4.9. It is interesting to see that the optimum has a
larger inclination compared to the end-of-life orbit as it increases the probability of impacting in North
America. It is likely that for lower inclinations the impact track covers Africa which has a high population
density. Note that the part of the impact track with highest probability is located very close to Africa, it
is expected that the results are much more sensitive to variations in the initial state at 150 km altitude
compared to the other cases discussed. The sensitivity for the initial state is investigated in Section 6.1.

The trajectory of the SPOT5LIKE case for the optimum of the optimization of the complete setup
shows different behavior for the semi-major axis and eccentricity as shown in Fig. 5.6 with respect to
the other cases. The figures for the other relevant Kepler elements and the control profile are similar.
Therefore, these figures are not shown here, but can be found in Appendix B.
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Figure 5.6: Optimal low-thrust trajectory case 4: SPOT5LIKE down to 150 km altitude

As can be seen in Fig. 5.6(a) the transfer takes over 100 days. This is longer than the SPOT5
case which has the same parameters except for the inclination as shown in Table 4.1. Due to the lower
inclination of the SPOT5LIKE case, the satellite is in eclipse more often and cannot thrust continuously.
This is also reflected in a reduction of the used fuel mass. The transfer of the SPOT5LIKE case required
58.8 kg of fuel. This is almost 10 kg less than used for the SPOT5 case. Furthermore, note the different
behavior of the eccentricity of the satellite shown in Fig. 5.6(b). The eccentricity is increased steadily.
The effect of the atmosphere can be clearly seen in the last part of the transfer where the eccentricity
is reduced again. This circularization is a known effect caused by the atmosphere as the perigee of the
orbit encounters higher drag which reduces the apogee while the perigee is effected to a lesser extend.

5.5. General discussion of results
A summary of the casualty risks for all cases is shown in Table 5.1. Table 5.1 includes the minimal
casualty risks for the optimization of the complete setup, the minimal casualty risks for the optimization
of the last 150 km, the maximum casualty risks found by optimizing the last 150 km, and the values for
uncontrolled casualty risks.

Table 5.1: Summary casualty risk results for both optimizations compared against the risk of uncontrolled entry.

Case 1: Case 2: Case 3: Case 4:
PARASOL SMOS SPOT5 SPOT5LIKE

𝐸ፂፒ,፦።፧ 2.7321 ⋅ 10ዅ዁ 1.1962 ⋅ 10ዅዂ 5.1684 ⋅ 10ዅዀ 2.6802 ⋅ 10ዅ኿
𝐸ኻ኿ኺ፤፦,፦።፧ 4.4801 ⋅ 10ዅዂ 1.6949 ⋅ 10ዅዃ 1.3706 ⋅ 10ዅዀ 6.4547 ⋅ 10ዅዀ
𝐸ኻ኿ኺ፤፦,፦ፚ፱ 2.6156 ⋅ 10ዅኾ 1.9295 ⋅ 10ዅኽ 1.8634 ⋅ 10ዅኽ 2.6182 ⋅ 10ዅኽ
𝐸፮፧፜፨፧፭፫፨፥፥፞፝ 3.9095 ⋅ 10ዅ኿ 1.6433 ⋅ 10ዅኾ 2.8975 ⋅ 10ዅኾ 4.3280 ⋅ 10ዅኾ

All cases considered met the set requirement of 𝐸 < 10ዅኾ. In general, large reductions in casualty
risks can be achieved by applying a semi-controlled disposal strategy. Note that the casualty risks for
the uncontrolled entry is in between the minimum and maximum values for the casualty risks, further
strengthening the validation of the casualty risk calculation as described in Section 4.7. Some similar-
ities were found between the different cases. First, the optimal tracks for all cases cover both oceans
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where risks are low. Second, Papua New Guinea and Australia are covered by all optimal impact
tracks, since it is exactly located on the route over both oceans. In Australia the impact track cover
the region with low population density. The effect of the different parameters of the cases discussed in
Section 4.1 is also clear. First, the impact of the ballistic coefficient. Lower ballistic coefficients resulted
in longer impact tracks, resulting in higher casualty risks. This is because for long impact tracks a shift
in along-track direction may decrease the risk at one end of the track, but is likely to increase the risk on
the other side. This effect can be seen in Figs. 5.4 and 5.5 where shifting the impact track increases the
probability of impact in two of the indicated regions but decreases the probability in the other indicated
region(s). Furthermore, the mass of the satellite directly relates to the casualty risk. This is already
clear when investigating Eq. (3.10), but is again shown from the results. No clear behavior was found
for adjustments to the inclination. Some of the results showed an increase and some a decrease in in-
clination. The best solution depends the length of the impact track and the initial inclination. This initial
inclination does have a clear effect on the casualty risk as shown in Sections 5.3 and 5.4. Inclinations
lower than 51∘ are likely to be problematic, since the track cannot go underneath Africa and over the
Unitited States at the same time.

The resulting impact tracks from the optimization of the last 150 km resembled the optima from
the optimization of the complete setup. Comparing the states at 150 km altitude did not show similar
values. As the simulations in the complete setup have flight path angles which are non-zero, similar
nominal impact points can be achieved with large differences in the state at 150 km altitude. During
the optimization of the complete setup, some near zero values for the flight path angle at 150 km
altitude were found. The low values for the flight path angles are caused by the circulization due to the
atmosphere as can be see clearly from Fig. 5.6(b). These findings confirms that the states found in the
optimization of the last 150 km can be achieved by a correct thrust profile.

The optimization of the last 150 kmwas performed, since the optimization of the complete setup was
computationally intensive, this is clearly shown when comparing the run times of both optimizations as
shown in Table 5.2. Note that the value for the run times for the complete setup, as shown in Table 5.2,

Table 5.2: Overview of run times for the different cases for both optimization strategies. Performed on Intel Xeon processor
(type E5-2683 v3.0) with a clock speed of 2.0 GHz

Case 1: Case 2: Case 3: Case 4:
PARASOL SMOS SPOT5 SPOT5LIKE

Complete setup 59 h 69 h 77 h 101 h
Last 150 km, average of 5 runs 0.18 h 0.14 h 1.2 h 1.2 h

are based on one run. This is because the run times were too large to run multiple times. The run-times
for the optimization from 150 km altitude are much lower and includes larger differences between the
cases. The large differences in run-times between the first two cases and the SPOT5 cases are caused
by the tolerance settings for the optimization. The risks for the PARASOL and SMOS cases are much
lower. Therefore, the population is faster converged since the tolerance is used to check the absolute
difference between the worst and best individual in the population.

The behavior of the optimization algorithm is shown in Fig. 5.7 where the best casualty risk per
generation is shown for all cases. The behavior of the optimizer for the complete setup is shown in
Fig. 5.7(a). This clearly shows the differences in found risks between the first two cases and the SPOT5
cases. The requirement is fulfilled at the first generation. Most improvements of the casualty risks are
observed in the first 30 generations. The behavior of the optimization of the last 150 km is shown in
Fig. 5.7(b). All cases already found an individual with a risk below the set requirement in generation 1.
Most of the reduction in casualty risk is achieved within the first 100 generations. The optimization of
the PARASOL and SMOS case both converged well before the generation limit.
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Figure 5.7: Best individuals of the jDE algorithm per generation.



6
Sensitivity analysis

This chapter investigates the effect of the assumptions made in Section 4.2 and the decisions made to
reduce the computational effort of the optimization in Chapter 4. In Section 6.1, the sensitivity of devi-
ations in initial state at 150 km are investigated. Then, in Section 6.2, the sensitivity of the optimization
algorithm to different seeds for the random number generator is investigated. Next, in Section 6.3, the
effect of population growth in the future is analyzed. Finally, in Section 6.4 the effect of assuming a nor-
mal distribution on the calculated casualty risk is investigated with respect to the KDE PDF employed
in this research.

6.1. Exact state at 150 km altitude
To investigate the sensitivity of the assumption of a perfect GNC system down to 150 km altitude,
the optimized trajectories from the optimization of the last 150 km in Chapter 5 are perturbed at initial
conditions. The longitude of ascending node and the true anomaly of the orbit are varied in the range of
[-2∘, 2∘] and [-10∘, 10∘] respectively and are compared to the optimized results. These parameters are
selected since they cover two important error sources resulting from the controlled part of the disposal
strategy. The longitude of ascending node covers the phasing with the Earth, if the satellite arrives
a bit later at the correct latitude and altitude, the longitude is decreased. Any errors in the trajectory
causing the satellite to enter at a different latitude is captured by varying values of the true anomaly.
Furthermore, the effects of these parameters can be clearly related to the impact track figures as shown
in Chapter 5, i.e., an increase in values for the true anomaly result in a shift of the impact track in along-
track direction and changes to the longitude of ascending node shift the impact track in longitudinal
direction. During the controlled part of the disposal strategy, higher deviations in along-track directions
are expected compared to the cross-track deviations. Therefore, the true anomaly is varied over a
larger range. Furthermore, the flight path angle is varied from 0∘ to −0.1∘. The highest flight path
angles encountered during the optimization of the complete setup were −0.06∘, the investigated range
is stretched to −0.1∘ to account for future improvements of the low-thrust propulsion engines which
could increase the thrust to mass ratio resulting in steeper entries. These flight path angles were also
considered in Section 4.5. The following sections will treat the cases separately, in the same order as
before; PARASOL, SMOS, SPOT5, SPOT5LIKE.

6.1.1. Case 1: PARASOL
The results of the sensitivity analysis regarding variations in initial conditions at 150 km altitude, for the
PARASOL case are shown in Fig. 6.1. The casualty risks resulting from different initial conditions are
indicated by colors ranging from dark blue to yellow corresponding to the magnitude of the casualty
risk.

The lowest casualty risks for a flight path angle of zero are found at the center of the sensitivity map
as shown in Fig. 6.1(a). This indicates that the optimizer performed well in finding the minimum risk.
All considered regions surrounding the optimum have risks well below the requirement that has been
set in Ref. [1]. The observed variations are discussed using the baseline impact track as shown in
Fig. 5.1(b). The influence of all three parameters is discussed sequentially.
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Figure 6.1: Sensitivity of the optimal impact track of the PARASOL case to deviations in the state at 150 km.

The increased casualty risk for both negative and positive values for ΔΩ, are caused by the impact
track covering more densely populated areas to the left and right of the impact track in Papua New
Guinea. The casualty risk is increased with one order of magnitude within the considered range.

The effect of the differences in the true anomaly are also clearly visible in Fig. 6.1(a). For the found
optimum, both negative and positive values for Δ𝜃 increase the casualty risk. Shifting the probability
function in the direction of the end of the impact track, results in higher casualty risks in Papua New
Guinea and Australia, but a decrease in casualty risk at the islands to the east of Papua New Guinea.
Shifting the probability function in the direction of the start of the impact track (negative Δ𝜃) has the
opposite effect. The casualty risks are increased with less than one order of magnitude within the
considered range.

Finally, the effect of the flight path angle is large when comparing the differences in casualty risks
between Figs. 6.1(a) to 6.1(d). The casualty risk is increased with two orders of magnitude between
flight path angles of 0∘ and −0.1∘. Note that an area of high casualty risk arises on the right hand side.
This is caused by the earlier impact for steeper entries, which shifts the complete impact track in the
direction of the start of the impact track. Steeper entries, dive further into the atmosphere resulting in
higher drag and thus a higher deceleration leading to earlier impact. For more negative values of the
flight path angle, the impact track covers southern Europe and west Africa. The casualty risk is even
further increased when also a longitude shift to the right is present causing the track to cover an even
larger portion of Europe.

6.1.2. Case 2: SMOS
The results of the sensitivity analysis regarding variations in initial conditions at 150 km altitude, for
the SMOS case are shown in Fig. 6.2. The casualty risks resulting from different initial conditions are
indicated by colors ranging from dark blue to yellow corresponding to the magnitude of the casualty
risk.

The lowest casualty risks for a flight path angle of zero are found at the center of the sensitivity map
as shown in Fig. 6.2(a). This indicates that the optimizer performed well in finding the minimum risk. All
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Figure 6.2: Sensitivity of the optimal impact track of the SMOS case to deviations in the state at 150 km.

considered regions surrounding the optimum have risks well below the requirement that has been set
in Ref. [1]. The sensitivity maps for the SMOS case in Fig. 6.2 are resembling that of the PARASOL
case in Fig. 6.1, but the overall casualty risks are one order of magnitude lower.

The casualty risks for the SMOS case are close to zero. Therefore, pointing out where the increased
values for the risk originate from is not evident from the figures. The impact track is located such that
both to the right and left of the optimal impact track of Fig. 5.3(b) the population density is slightly higher.
Also increasing the true anomaly of the satellite increases the casualty risks in the regions at the end
of the impact track but decreases the risk at the start of the impact track simultaneously.

The region with the highest risks is located in the lower left of Figs. 6.2(a) to 6.2(d) opposite to the
location of the high risk region for the PARASOL case. Note that the trajectory in Fig. 5.3(b) is located
close to the coast of Australia. A shift of the impact track to the left causes the impact track to sideswipe
the coast of Australia. The effect of small variations in the flight path angle is marginal, the shape of the
sensitivity map is similar. For a large difference in flight path angle the resulting risks in the sensitivity
map do change. However, all casualty risks are well below the casualty risk requirement set in Ref. [1].
The higher risks in Fig. 6.2(d) are the result of the impact track shifting in the direction of the start of the
impact track, this is caused by the steeper entry angles which results in higher probability of impact in
Australia which is the main contributer to the casualty risk for the left hand side of the figures in Fig. 6.2.

6.1.3. Case 3: SPOT5
The results of the sensitivity analysis regarding variations in initial conditions at 150 km altitude, for the
SPOT5 case are shown inFig. 6.3.

The effect of ΔΩ and Δ𝜃 are similar to the PARASOL and the SMOS case as shown in Figs. 6.1
and 6.2. For positive values of Δ𝜃 the impact track is shifted in the direction of the end of the impact
track, increasing the risk in Brazil and Papua New Guinea but simultaneously the risk in the region east
of Papua New Guinea is reduced. For negative values of Δ𝜃 the impact track covers west Africa which
has a high population density, simultaneously the risks in Brazil and Papua New Guinea are reduced.
This behavior is reflected in the sensitivity map in Fig. 6.3 where the differences are reasonably small.
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Figure 6.3: Sensitivity of the optimimum of the SPOT5 case to deviations in state at 150 km. The green rectangle indicates the
minimum casualty risk, red rectangles indicate violations of the casualty risk requirement.

The found risks for a value of the flight path angle of 0 are all one to two orders of magnitude lower
than the set requirement as shown in Fig. 6.3(a). The overall risks are increased for more steep entries.
The casualty risks for steep entries as shown in Fig. 6.3(d) are close to the set requirement. This is
caused by the shift of the impact track in the direction of the start. For such high entry angles the track
covers west Africa which has high population density which causes the increase in casualty risk.

6.1.4. Case 4: SPOT5LIKE
The results of the sensitivity analysis regarding variations in initial conditions at 150 km altitude, for
the SPOT5LIKE case are shown in Fig. 6.4. The configuration of the impact track found in Fig. 5.5(b)
suggested sensitive behavior because the impact track is located close to high population densities in
the north of America, west Africa and Papua New Guinea. This sensitive behavior was indeed found,
as can be seen in Fig. 6.4. Note that the casualty risk requirement is violated for all values of the flight
path angle. The violations are all located in the upper right corner. This is attributed to the shift of the
impact track to the right resulting in the coverage of west Africa. The part of the impact track which
covers west Africa has high probability. This is clearly reflected by the steep increase in risk in the upper
right corner. The flight path angle has much lower effect as for the other cases. This is to be expected
as the start and end of the impact track are located in a region with low population densities and these
points are not surrounded by large population concentrations as was the case for the PARASOL and
SPOT5 where the start of the impact track was located close to west Africa.

6.1.5. General discussion on the sensitivity to deviations in state at 150 km.
In general, systematic behavior was found for deviation in the state of the satellite at 150 km altitude.
For all cases, changing the value of the longitude of ascending node caused some parts of the trajectory
to cover regions with higher population density. Changing the value of true anomaly resulted in similar
behavior. The impact probability in part of the covered regions were increased, resulting in higher risks.

The effect of the flight path angle was found to bemarginal for values up to−0.05∘. Large differences
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Figure 6.4: Sensitivity of the optimimum of the SPOT5LIKE case to deviations in state at 150 km. The green rectangle
indicates the minimum casualty risk, red rectangles indicate violations of the casualty risk requirement.

were observed for entry angles of −0.1∘ in the PARASOL and SPOT5 case. This value for the flight
path angle significantly moved the impact track in the direction of start of the impact track, which caused
the impact track to cover west Africa. As the population density in west Africa is high, this resulted in a
large increase in casualty risk.

It is important to note that the variations in flight path angle due to an imperfect GNC system are likely
small and will not effect the results considerably. These variations are small, since the maximum value
found for the flight path angle, during the optimization of the complete setup, was found to be 0.06∘,
which required dedicated thrusting during the complete controlled part of the disposal strategy. The
impact of errors in the GNC stystem is further reduced by the circularization of the orbit caused by the
atmosphere. For the optimization of the complete setup, the shift caused by a non zero flight path angle
is taken into account as the impact track is constructed around the nominal impact point. However, the
changes in shape of the impact PDFs for different flight path angles, as found in Section 4.5, were not
taken into account. The optimization of the last 150 km assumed a flight path angle of zero. The entry
conditions for the optimal values of the two optimization methods were not located close to each other
which is possible as similar nominal impact locations can be achieved with a different combination of the
entry location and the flight path angle. For finding the optimal impact track, neglecting the flight path
angle for the optimization from 150 km altitude is accurate enough as optimal solutions were found with
both optimization strategies which showed large similarities. However, it should be taken into account
when a range of entry states is sought for with minimal risks for the GNC system to target.

Finally, only the inclination of the end-of-life orbit was found to affect the sensitivity of the results
as is clearly seen when comparing the SPOT5 and SPOT5LIKE case which have the same ballistic
coefficient and mass but have different inclination. The mass and ballistic coefficient did not influence
the sensitivity behavior of the results. Those parameters merely define the limits of the achievable
casualty risks.

In Table 6.1 the impact on the values for the casualty risk are shown for different values of uncertainty
in the initial state. The flight path angle is not considered here as it is expected that the errors in that
parameter caused by an imperfect GNC system are small. A block of 1x1 indicates an uncertainty of
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0.5∘ in longitude of ascending node and 2∘ in true anomaly and is assumed uniformly distributed.

Table 6.1: Impact on casualty risk for different levels of uncertainty in the initial state at 150 km altitude. The values indicate the
average of a block of ፧ ፱ ፧ pixels centered at the optimal value as shown in the sensitivity maps at the start of this section.

Case 1: Case 2: Case 3: Case 4:
Size of block PARASOL SMOS SPOT5 SPOT5LIKE

3x3 +21% +13% +40% +19%
5x5 +80% +74% +68% +37%
7x7 +138% +293% +101% +93%

The values shown in Table 6.1 are used to put the deviations as will be found in Sections 6.3 and 6.4
in perspective. The uncertainty of the 3x3 block in km is approximately 170x670 km, at the equator. It
is likely that the GNC system is able to put the satellite in the correct location within these margins.

6.2. Seed variability
In this section the seed used in the optimization is varied in order to guarantee that the obtained results
are robust. The seeds used for this sensitivity analysis are [12345, 12346, 12347, 12348, 12349]. The
first seed is the one used for generating the results in Chapter 5. The evolution of the best casualty
risks are shown in Fig. 6.5. Only the first 100 generations are shown as the major improvements are
made there. The resulting optimal casualty risks are displayed in Table 6.2.
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Figure 6.5: Convergence for different seeds of the jDE algorithm

Table 6.2: Optimal casualty risks for the second optimization using different seeds. The seed of 12345 was used for the results
in Chapter 5.

Case 1: Case 2: Case 3: Case 4:
Seed PARASOL SMOS SPOT5 SPOT5LIKE

12345 4.4801 ⋅ 10ዅዂ 1.6949 ⋅ 10ዅዃ 1.3706 ⋅ 10ዅዀ 6.4547 ⋅ 10ዅዀ
12346 4.3331 ⋅ 10ዅዂ 1.7340 ⋅ 10ዅዃ 1.3558 ⋅ 10ዅዀ 6.4439 ⋅ 10ዅዀ
12347 4.4162 ⋅ 10ዅዂ 1.6722 ⋅ 10ዅዃ 1.3631 ⋅ 10ዅዀ 6.3738 ⋅ 10ዅዀ
12348 4.5227 ⋅ 10ዅዂ 1.6725 ⋅ 10ዅዃ 1.3586 ⋅ 10ዅዀ 6.3675 ⋅ 10ዅዀ
12349 4.2005 ⋅ 10ዅዂ 1.6844 ⋅ 10ዅዃ 1.2408 ⋅ 10ዅዀ 6.5232 ⋅ 10ዅዀ

Table 6.2 shows similar casualty risks for the different seeds for the random number generator. As
all cases show similar behavior and the values for the casualty risks are similar, this makes it more
likely that the optimum found is the global optimum.
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6.3. Population growth
This section investigates the effect of the population growth on the resulting casualty risks. Not only the
average growth is taken into account but also regional differences are taken into account. Projections
of future population density distributions and the exact population density distributions from the past
are obtained from Ref. [14]. Expected regional differences for the population density between 2015
and 2020 are shown in Fig. 6.6.
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Figure 6.6: Population growth between 2015 and 2020, blue indicate decrease in population, red an increase [14].

Figure 6.6 shows mostly an increase of population density in the areas crossed by the optimal
impact tracks in Chapter 5, Africa, Australia, and Papua New Guinea.

The resulting casualty risks, when using the population distribution for 2000 and the expected pop-
ulation distribution for 2020, are shown in Table 6.3. The casualty risks are compared against the
average population growth of the world. The average population growth between 2000 and 2015 was
20% and the population is expected to grow 5.6% between 2015 and 2020 [55].

Table 6.3: Effect of projected regional population growth on the casualty risk of the optima.

Case 1: Case 2: Case 3: Case 4:
PARASOL SMOS SPOT5 SPOT5LIKE

𝐸ኼኺኺኺ 3.6894 ⋅ 10ዅዂ 1.9769 ⋅ 10ዅዃ 1.0311 ⋅ 10ዅዀ 5.6415 ⋅ 10ዅዀ
𝐸ኼኺኻ኿ 4.5103 ⋅ 10ዅዂ 1.7208 ⋅ 10ዅዃ 1.3733 ⋅ 10ዅዀ 6.4840 ⋅ 10ዅዀ
𝐸ኼኺኼኺ 4.8000 ⋅ 10ዅዂ 1.6434 ⋅ 10ዅዃ 1.5175 ⋅ 10ዅዀ 6.7305 ⋅ 10ዅዀ
Δ 2000→2015 +22.3% -13.0% +33.2% +14.9%
Δ 2015→2020 +6.4% -4.5% +10.5% +3.8%

First, observations are made for the differences between 2015 and 2020 after which the differences
over the period from 2000 to 2015 are discussed. The PARASOL, SPOT5 and SPOT5LIKE case follow
the trend of the average population growth on the Earth. The SPOT5 case has a slightly larger increase
in casualty risk which is caused by an above average population growth in Africa. The SPOT5LIKE
case has a slightly lower increase in casualty risk which is caused by a decrease of population den-
sity in Canada and the north of the United States. The SMOS case shows a decrease of the risk in
Table 6.3. The largest contributions for the casualty risk of the SMOS case originate from population
concentrations in the east of Russia, the population in this area has decreased over time and therefore
a reduction is seen in the casualty risks for the SMOS case. Between 2015 and 2020 the same be-
havior is observed. The PARASOL, SPOT5 and SPOT5LIKE cases increase with a similar rate as the
average population of the world, the PARASOL case is again closest to the average rate, the SPOT5
case a slightly larger increase and the SPOT5LIKE case is a little bit below the average. Again, a
decrease in risk is observed for the SMOS case.
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The results in Table 6.3 shows that there is no need for accurate regional population growth models.
Using the average population growth to scale the casualty risks introduces errors below 12% for the
cases with higher risks and a maximum error of 35% for the SMOS case. The errors are below 1% per
year for all cases except the SMOS case for which the error is just below 2% per year. To put these
numbers in perspective, the differences found here over a period of 15 years are comparable to the
increase of the casualty risk due to an uncertainty of 1.5∘ in longitude of ascending node and 6∘ in true
anomaly.

Using only the worlds average population growth to scale the risks as is done by the software used
Ref. [6] and other debris risk assessment tools such as Ref. [15] is appropriate. In case the precision
of the GNC system of the satellite is known, and high-fidelity risk calculations are made, a slightly
more accurate predictions can be performed using a population map with regional population growth
expectations.

6.4. Effect of a normally distributed impact probability function
This section investigates the effect of using a normally distributed impact PDF for the calculation of the
risk. The casualty risk of the optimal impact track is calculated using the KDE PDF from the optimal
result and compared to a normally distributed PDF. The PDFs used by the original optimizations and
the normal distribution used in this sensitivity analysis are shown in Fig. 6.7.
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Figure 6.7: Overview of the used PDFs for the sensitivity analysis of normally distributed PDF vs the KDE PDF.

The casualty risks calculated using the normally distributed PDF are compared to the baseline
casualty risks in Table 6.4.

Table 6.4 indicates small differences in casualty risks between the different cases considered. The
small increase for the PARASOL case originates from the overestimation of the impact probability in
the end of the PDF as shown in Fig. 6.7(a). This point is located over Papua New Guinea and Australia
which are the main contributers to the casualty risk of the optimal solution. The same reasoning can
be applied to the SMOS case. In the optimal track of the SMOS case, the region with the largest
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Table 6.4: Effect of assuming a normally distributed PDF instead of using a KDE PDF.

Case 1: Case 2: Case 3: Case 4:
PARASOL SMOS SPOT5 SPOT5LIKE

𝐸ፊፃፄ 4.4801 ⋅ 10ዅዂ 1.6949 ⋅ 10ዅዃ 1.3706 ⋅ 10ዅዀ 6.4547 ⋅ 10ዅዀ
𝐸ፍ፨፫፦ፚ፥ 4.8140 ⋅ 10ዅዂ 1.8824 ⋅ 10ዅዃ 1.3605 ⋅ 10ዅዀ 5.5309 ⋅ 10ዅዀ
Δ𝐸 +7.5% +11.1% -0.8% -14.3 %

contribution to the casualty risk is located in eastern Russia at the end of the impact track. The normal
distribution overestimates the probability at this point as shown in Fig. 6.7(b). For the SPOT5 case,
the normal PDF shows good agreement with the KDE PDF at the regions which contribute most to the
casualty risk as shown in Fig. 6.7(c). For the SPOT5LIKE case, a decrease in the found casualty risk
is observed. This is caused by the underestimation of the probability in the first part of the impact track
as shown in Fig. 6.7(d). This part part of the PDF corresponds to the region in the north west of the
United States which is one of the main contributers to the minimum casualty risk.

The values of the differences shown here are small. Comparing them to the values in Table 6.1
shows that small uncertainties in the state at 150 km altitude have a much larger influence on the results
than the shape of the distribution. Therefore, using the more detailed impact PDF is not necessary for
the optimization of state at 150 km altitude for the semi-controlled disposal strategy.





7
Conclusions and recommendations

This thesis investigated the feasibility of the semi-controlled end-of-life disposal strategy employing low-
thrust electric propulsion. This research aims to bridge two main gaps for the feasibility of this strategy.
First, the extent to which the casualty risk can be reduced by using this strategy. Second, the effect of
assumptions made in previous research. This chapter concludes the research of this thesis. First, in
Section 7.1 the research questions for this thesis are answered. Next, in Section 7.2 recommendations
are provided for future work. Finally, the implications of this work are given in Section 7.3.

7.1. Conclusions
In this thesis two research questions with associated subquestions were formulated to bridge the sci-
entific gaps in current literature. The answers to these questions will be provided separately.

1. What is the reduction in casualty risk possible by employing a semi-controlled end-of-life
disposal strategy compared to an uncontrolled strategy?
To answer this research question, the trajectory of the disposal strategy for different cases have
been optimized with the following assumptions: the satellite is propagated with three degrees of
freedom, the satellite is accurately controlled down to 150 km altitude, a population map from
2015 is used, and drag, thrust, and a spherical harmonic gravity field of degree and order 2 are
considered the only perturbations. These assumptions were stated in Section 4.2. Justification
for these assumptions is presented in Chapters 4 and 6. For all cases the risk was reduced
significantly compared to the values for the uncontrolled disposal strategy. The parameters for
all cases can be found in Table 4.1. The risk for the PARASOL case was reduced by 3 orders
of magnitude, from 3.9095 ⋅ 10ዅ኿ to 4.4801 ⋅ 10ዅዂ. For the SMOS case the risk was decreased
with 5 orders of magnitude, from 1.6433 ⋅ 10ዅኾ to 1.6949 ⋅ 10ዅዃ. This large reduction is possible
as the satellite has a large ballistic coefficient which results in a much shorter impact track. For
the SPOT5 and SPOT5LIKE cases, reductions of two orders of magnitude were found. The risks
decreased from 2.8975 ⋅ 10ዅኾ and 4.3280 ⋅ 10ዅኾ to 1.3706 ⋅ 10ዅዀ and 6.4547 ⋅ 10ዅዀ for the SPOT5
and SPOT5LIKE case respectively. The SPOT5 satellite has a lower ballistic coefficient resulting
in a longer impact track. For the SPOT5LIKE case the least improvement in casualty risk was
found. Due to the low inclination of this case it was more difficult to position the impact track
favorably. Uncertainty in the calculated values for the casualty risks are expected to be less than
32% for the PARASOL, SPOT5 and SPOT5LIKE cases, as found in Section 4.7 by comparing
uncontrolled risks with values from literature. The uncertainty for the casualty risk of the SMOS
case is larger as the effect of the ballistic coefficient on the casualty area is not taken into account
since a simple relation is used which is solely based on the entry mass of the satellite as discussed
in Section 3.4.

(a) What is the effect of only propagating the uncontrolled part of the disposal strategy
compared to propagating the complete disposal strategy from the end-of-life orbit?
To answer this subquestion, a second optimization was performed, which only simulated the
ballistic part of the entry from an altitude of 150 km. The second optimization was performed

53
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under the following assumptions: the satellite is propagated with three degrees of freedom,
the state of the satellite at 150 km altitude is exact, the flight path angle at 150 km altitude is
fixed to 0∘, a population map from 2015 is used, and drag, thrust, and a spherical harmonic
gravity field of degree and order 2 are considered the only perturbations. These assumptions
are described in more detail in Section 4.2. Justification for these assumptions is presented
in Chapters 4 and 6. The impact tracks of both optimizations were found to be highly similar.
The casualty risks found were also similar. The optimization from 150 km altitude managed
to improve the solution of the complete setup up to 1 order of magnitude for the considered
cases.
Besides comparable risks, the run-times of the optimization of the last 150 km are only a
fraction of those of the complete setup. The optimization of the complete disposal maneuver
required 59 to 101 h. The optimizations of the last 150 km only required run-times of 0.12
to 1.2 h. Future research on the topic should definitely split the problem in two pieces. First,
the capabilities of the satellite in the transfer from end-of-life orbit down to 150 km altitude
need to be found. Then use this knowledge to find the optimal entry point. When this is
performed, the trajectory from end-of-life orbit down to 150 km can be optimized. Note that
a-priori knowledge is required for the bounds of the state at 150 km altitude which need to
be found from simulations of the controlled part of the disposal strategy.

(b) What is influence of different ballistic coefficients and/or different initial mass of the
satellite on the calculated casualty risk?
To answer this subquestion, the results of the optimization from 150 km altitude for the
PARASOL, SMOS and SPOT5 cases are compared. The same assumptions have been
made as discussed above. The ballistic coefficients of the cases are 0.01833, 0.03515,
and 0.015 mኼ/kg for the PARASOL, SMOS and SPOT5 case respectively. The masses of
the satellite are 120, 630, and 3000 kg respectively. The high ballistic coefficient of the
second case resulted in a shorter impact probability track. This impact track did not cross
any densely populated areas on the Earth and therefore, achieved much lower casualty
risks compared to the other cases. The casualty risk for the SMOS case was found to be
1.6949⋅10ዅዃ. The lower ballistic coefficients of the PARASOL and SPOT5 case resulted in a
longer impact probability track and therefore it was not possible to find an impact track which
did not cross any densely populated area. This resulted in higher values for the casualty
risk, the casualty risk for the PARASOL and SPOT5 case were 4.4801 ⋅ 10ዅዂ and 1.3706 ⋅
10ዅዀ respectively. The difference in risk between these cases is caused by the slightly
lower ballistic coefficient for the SPOT5 case, increasing the impact track compared to the
PARASOL case. Also, the SPOT5 satellite has a much higher mass. The resulting casualty
area is therefore 7.5 times as large and the casualty risk scales linearly with this value as
indicated in Section 3.4. Therefore, designing satellites with large ballistic coefficients and
low mass is beneficial for the casualty risk.

(c) To what extent does the inclination of the end-of-life orbit affect the calculated casu-
alty risk?
To answer this subquestion, the results of both optimizations discussed above are compared
for the two SPOT5 cases with inclinations of 98.6∘ and 51∘ respectively. The optimal solution
of the SPOT case has a casualty risk of 1.3706⋅10ዅዀ, for the SPOT5LIKE case, which has the
lower inclination, a casualty risk of 6.4547 ⋅ 10ዅዀ was found which is almost 5 times as high.
Furthermore, the results of the SPOT5LIKE case are much more sensitive to uncertainties
in the state at 150 km altitude as found in Section 6.1. This is caused by the configuration of
the impact track on the population map. The optimal track lays very close to Africa which has
a high population density. Small deviations in the longitude of ascending node causes the
satellite to cover this region and the casualty risk easily increases to above the casualty risk
limit set by ESA in [1]. When the track is shifted in the opposite direction the risks in North
America increase significantly. This sensitive behavior is expected in general, low inclination
impact tracks will cover populated area somewhere on the Earth. Therefore, extra care must
be taken when designing satellites in LEOwith low inclination. The requirements for the GNC
system will likely be more strict with respect to the GNC requirements for the same satellite in
a higher inclination orbit. To limit the casualty risk of future space missions, high inclination
orbits are preferred, as the optimal impact tracks are less sensitive to deviations at 150 km
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altitude.

2. To what extent do the assumptions made in Ref. [6] affect the calculated casualty risk of
the semi-controlled disposal strategy?
The answer to this research question is based on the outcome of the subquestions. Therefore,
the answer is provided after all subquestions are answered.

(a) What is the effect of assuming a circular orbit at the point of atmospheric re-entry for
the calculation of the casualty risk?
To answer this subquestion, a sensitivity analysis was performed in Section 6.1, where the
value of the flight path angle at the point of atmospheric re-entry was varied from 0∘ to a value
of −0.1∘. This variation of flight path angle shifts the impact track PDF forward in time. The
shape of the distribution for steeper entry angles resembles the shape found for a negative
change in the true anomaly of the point of atmospheric re-entry. Due to this effect, the re-
entry states between the two optimization strategies employed did not show similar values.
When performing the optimization of only the last 150 km, the flight path angle needs to be
varied. This gives a larger range of possible re-entry conditions which can be targeted with
a separate optimization of the controlled part of the trajectory. For the values of the flight
path angles up to −0.05∘ the impact on the casualty risk is marginal. The variations in flight
path angle due to an imperfect GNC system are small. The maximum value of the flight path
angle encountered during simulations was −0.06∘ which required dedicated thrusting during
the complete controlled part of the disposal maneuver. This is caused by the atmosphere
which circularizes the orbit. The low accelerations from the low-thrust propulsion systems
available to date are not able to change the eccentricity of the orbit to a large enough extend
to increase the flight path angle much further. Since the thrust has limited effect on the
flight path angles, the errors due to an imperfect GNC will have an even lower impact on the
flight path angles and therefore the risk. For finding the optimal impact track on the Earth,
neglecting the flight path angle for the optimization from 150 km altitude is accurate enough
as similar optimal solutions were found with both optimization strategies employed in this
research. However, the flight path angle should be taken into account when a range of entry
states is sought for, which can be used by the GNC system as target.

(b) What is the effect of scaling the casualty risk with the average population growth with
respect to regional expected population growth? To answer this research question, the
casualty risks for the optimal trajectory of four different cases for populations maps from
the years 2000, 2015 and 2020 are compared. The casualty risk differences found with the
different population maps are compared with the average growth of the population. The
average population growth between 2000 and 2015 was 20%. The casualty risk of the
optimal trajectory of the PARASOL case increased with 22.3% between 2000 and 2015.
The population growth in the covered regions followed the trend of the population growth
of the world. The risk of the SPOT5 case increased with 33.3%. The regions covered by
the optimal impact track of the SPOT5 case covered regions with higher regional population
growth compared to the average population growth. The increase of the SPOT5LIKE case
was only 14% since the population density in Canada and the north of the United States
increased with less that the average world population growth. The SMOS case showed a
decrease in risk of 13% over the period from 2000 to 2015 since the covered regions showed
a decrease in population. The average population growth in the period between 2015 and
2020 is expected to increase with 5.6%. All cases except the SMOS case followed this trend.
The differences in casualty risks between 2015 and 2020 are 6.4%, -4.5%, 10.5% and 3.8%
for the PARASOL, SMOS, SPOT5 and SPOT5LIKE case respectively. Similar behavior was
found as for the period between 2000 and 2015.
These results shows that there is no need for accurate regional population growth models.
Using the average population growth to scale the casualty risks introduces errors below 1%
per year for all cases except the SMOS case. For that case the error is within 2% per year.
These differences are marginal if compared against the uncertainty in the calculated risk of
30%. For high-fidelity casualty risk calculation of specific cases, these regional differences
should be considered, as the uncertainty in the calculated risk is lower.

(c) What is the effect of assuming a normally distributed impact probability function for
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the calculation of the casualty risk with respect to a non-parametric probability func-
tion dependent on the location of the atmospheric re-entry?
To answer this subquestion, the calculation of the casualty risk for the optimal trajectories
is repeated with a normal probability density function(PDF). Four cases are again consid-
ered which are described in Table 4.1. The PDF in this thesis is constructed using the
non-parametric method of kernel density estimation (KDE) as discussed in Section 4.5. The
difference in the casualty risks between both the KDE PDF and the normal PDF are 7.5%,
11.1%, -0.8% and -14.3% for the PARASOL, SMOS, SPOT5 and SPOT5LIKE case respec-
tively. The increase of the risk for the PARASOL case is caused by an overestimation of
the impact probability in Papua New Guinea. For the SMOS case the increased value of
the casualty risk originates from an overestimation of the impact probability in the eastern
part of Russia. For the SPOT5 case the impact probabilities in the regions which contributed
most to the total casualty risk were similar. When the region of largest contribution to the
total casualty risk was located in the middle of the impact track the results would be much
different as large differences between the PDFs are present in the middle. However, for the
optimal results this part of the impact track is located in the Atlantic Ocean and therefore the
impact is low. For the decrease in risk as found for the SPOT5LIKE case is caused by an
underestimation of the probability of impact in the north-west of the United States which is
the region with the largest contribution to the total casualty risk. The differences in risk are
small when comparing to the uncertainty in the risk calculation in general. Therefore, using
a normal PDF for the impact probability is accurate enough for finding an optimal impact
track on the Earth and to get an estimate of the resulting casualty risk. For high-fidelity ca-
sualty risk calculation of specific cases, a non-parametric distribution is recommended, as
the uncertainty in the calculated risks in that case are lower.

By combining the answers of the subquestions stated above, the second research question can
be answered. The effects of the assumptions in [6] on finding the optimal trajectory are small.
Using non zero flight path angles are relevant for finding the range of conditions which could be
targeted in the controlled part of the entry. For the finding the value of the minimum casualty risk,
taking the flight path angle into account is not required. Using the average population growth
to scale the casualty risk to a future impact year introduces minor errors in the calculated risk.
However, the uncertainty of the low-fidelity model introduces larger errors in the calculated risk.
The impact of using a normal PDF instead of a non-parametric PDF is also small compared to the
uncertainties of the calculation of the risk. Using a non-parametric PDF and regional population
growth expectations are only recommended for high-fidelity casualty risk calculation but are not
required for finding the re-entry point resulting in minimum risk.

7.2. Recommendations
Based on the results and conclusions of this research recommendations are given in this section. These
topics require attention for future research into the feasibility of the semi-controlled end-of-life disposal
strategy and to limit the casualty risk of future end-of-life satellite disposals.

First, a detailed analysis is required for the controlled part of the disposal maneuver. The limitations
of the GNC system of representative satellites need to be investigated, i.e., satellites in LEO equipped
with low-thrust propulsion of which the uncontrolled risk is above 1 in 10000. The accuracy to which the
state of the satellite can be controlled at the point of re-entry is important for a more detailed calculation
of the casualty risk of a satellite. A better knowledge of these capabilities increase the accuracy of the
risks found in this thesis.

Second, a more robust optimization needs to be performed of the last 150 km. If the knowledge of
the accuracy of the GNC system on representative satellites is increased, this can be taken into account
during the optimization. This should result in an optimum which is less sensitive to perturbations in the
state at 150 km and behavior as seen in Section 6.1 for the SPOT5LIKE case is avoided.

Furthermore, for the design of future satellite missions it is recommended to have a large ballistic
coefficient and minimize the mass of the satellite, since this reduces the length of the impact track and
the casualty area of the satellite, resulting in smaller casualty risks.

Finally, it is recommended for future preliminary assessments of the casualty risks for semi-controlled
re-entries, that only the uncontrolled phase is simulated. The computational effort of optimizing the
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complete trajectory is too large. If an optimized trajectory for the controlled phase is required, it is rec-
ommended to use a different integrator, since integrators are available which achieve similar accuracies
with less function evaluations. Furthermore, the application of multi-threading for the optimization could
to reduce the run-times considerably. The method of orbital averaging could also help in reducing the
computational effort as is used in other low-thrust optimizations. However, it must be investigated down
to which altitude this method is valid. Another solution would be to find the altitude from which the GNC
system is still capable of achieving the desired states at re-entry from any state at that altitude above
the Earths surface. In that case the first part from end-of-life orbit does not need to be propagated
reducing a large part of the computational effort.

7.3. Implications
The results obtained in this thesis can be brought to a broader perspective. This research formed
the next step in the investigation of the feasibility of the semi-controlled end-of-life disposal strategy.
Applying this strategy can greatly reduce the expected casualty risks of de-orbiting satellites to far
below the requirement currently set. With the current launch rate of 357 launched objects and the
current requirement, on average at least 1 person will die every 28 year due to debris from space. This
number is likely larger as many of the large orbiting bodies result in much higher risks. For example
the Tiangong-1 space station which de-orbited recently had a probability larger than 1 in 5000. When
applying the semi-controlled re-entry strategy on average 1 person dies every 2800 years, which is a
much more reassuring number for the population on the Earth. Ultimately, (semi-)controlled entries are
applied to all satellites at end-of-life.





A
Verification

This chapter gives an overview of the verification activities performed. The activities described in this
chapter verify the correct implementation of the numerical methods as described in Chapter 3 First, in
Appendix A.1 the basic implementation of the control parameterization is verified. Next, in Appendix A.2
the implementation of the optimization is verified. This is done by targeting different orbital elements
with the costates as control parameters. Also a combination of elements is targeted for. Then, an
optimization is performed for minimizing the casualty risk with simplified population maps and a small
impact track in Appendix A.3.

A.1. Control parameterization
The implementation of the control parameterization as discussed in Section 2.6 is verified in this section.
An arbitrarily chosen satellite is propagated with constant values for the costates. The direction of the
thrust and the change of the orbit over time is checked for correct behavior. The initial orbital elements
are 𝑎 = 20000 km, 𝑒 = 0, 𝑖 = 0 rad, 𝜔 = 0 rad, Ω = 0 rad, 𝜃 = 0 rad. Furthermore, the thrust of the
satellite is 10 N, and the mass of the satellite is 800 kg. The costates are set to 1⋅10ዅዃ unless otherwise
stated. Furthermore, only the central gravity and the thrust are taken into account as perturbations.
The satellite is simulated for one orbital revolution to indicate the direction of the thrust and for multiple
revolutions to indicate the long term effect of such a thrust profile. The verification results for the first
costate is shown in Fig. A.1. The cross in the figures indicates the starting position of the satellite, the
arrows indicate the direction of the thrust and the blue dot indicates the Earth.

In Fig. A.1(a) the direction of the thrust acceleration is shown for a positive value for 𝜆፩. Note that
all other costates are set to a small value. As expected the thrust acceleration is directed against
the flight direction, causing a deceleration of the satellite. This is also reflected in the orbital behavior
when the satellite is propagated for a longer period as shown in Fig. A.1(b). It can be seen that the
semi-latus rectum of the satellite is reduced since the satellite moves closer to the central body. Note
that, a positive value of 𝜆፩ results in a decrease in 𝑝, this is because the control parameterization, as
discussed in Section 2.6, specifies the direction of the thrust, which is opposite to the thrust acceleration.
Therefore, the behavior seen here is the expected behavior. In Figs. A.1(c) and A.1(d) the acceleration
and trajectory for a negative value of 𝜆፩ is shown. Note that the opposite effect is observed compared
to Figs. A.1(a) and A.1(b). The thrust acceleration is in the direction of the velocity. This increases the
semi-latus rectum which can be seen by the satellite spiraling outward. The behavior seen in Fig. A.1
is exactly as expected.

The verification results for the second costate is shown in Fig. A.2.
As described in Eq. (2.3), modified equinoctial element 𝑓 is related to the Keplerian element 𝑒, and

the cosine of 𝜔 + Ω. This relation is also visible in Fig. A.2(b), which shows the long term effect of a
thrust acceleration in the direction indicated in Fig. A.2(a). The eccentricity is increased. Furthermore,
the perigee (𝜔+Ω) is located at 180∘ such that the value for 𝑓 is most negative (cos(180∘)). Again note
that, a positive value of 𝜆፟ results in a decrease in 𝑓, this is because the control parameterization, as
discussed in Section 2.6, specifies the direction of the thrust, which is opposite to the thrust acceleration.
For a negative value of 𝜆፟ as shown in Figs. A.2(c) and A.2(d) the eccentricity is also increased while the
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Figure A.1: Resulting direction of the thrust and change of satellite orbit for the verification of ᎘ᑡ.

perigee is located at the other side of the central body at 0∘ to maximize the value of 𝑓. The directions
of the thrust acceleration as indicated in Figs. A.2(a) and A.2(c) have similar orientations as described
in [11, 32] for maximum eccentricity change. The behavior seen in Fig. A.2 is thus exactly as expected.

The verification results for the third costate is shown in Fig. A.3.
As described in Eq. (2.3), modified equinoctial element 𝑔 is related to the Keplerian element 𝑒, and

the sine of 𝜔 + Ω. Therefore, the same behavior as Fig. A.2 is expected but with the perigee located
90∘ further in clockwise direction as shown in Fig. A.3. This is exactly what is observed.

The verification results for the fourth costate is shown in Fig. A.4.
As described in Eq. (2.3), modified equinoctial element ℎ is related to the tangent of Keplerian

element 𝑖, and the cosine of Ω. This relation is also visible in Fig. A.4(b), which shows the long term
effect of a thrust acceleration in the direction indicated in Fig. A.4(a). The inclination is increased.
Furthermore, the longitude of ascending node is located at 180∘ such that the value for ℎ is most
negative (cos(180∘)). Again note that, a positive value of 𝜆፡ results in a decrease in ℎ, this is because
the control parameterization, as discussed in Section 2.6, specifies the direction of the thrust, which is
opposite to the thrust acceleration. For a negative value of 𝜆፡ as shown in Figs. A.4(c) and A.4(d) the
inclination is also increased while the perigee is located at the other side of the central body at 0∘ to
maximize the value of ℎ. The directions of the thrust acceleration as indicated in Figs. A.4(a) and A.4(c)
have similar orientations as described in [11, 32] for maximum inclination change. The behavior seen
in Fig. A.2 is thus exactly as expected.

The verification results for the fifth costate is shown in Fig. A.5.
As described in Eq. (2.3), modified equinoctial element 𝑘 is related to tangent of Keplerian element

𝑖, and the sine of Ω. Therefore, the same behavior as Fig. A.4 is expected but with the longitude of
ascending node located 90∘ further in clockwise direction as shown in Fig. A.5. This is exactly what is
observed.

All results shown above verify the correct implementation of the control parameterization and the
control parameterization can be applied to the optimization problem.
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Figure A.2: Resulting direction of the thrust and change of satellite orbit for the verification of ᎘ᑗ.
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Figure A.3: Resulting direction of the thrust and change of satellite orbit for the verification of ᎘ᑘ
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Figure A.4: Resulting direction of the thrust and change of satellite orbit for the verification of ᎘ᑙ.
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Figure A.5: Resulting direction of the thrust and change of satellite orbit for the verification of ᎘ᑜ.
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A.2. Differential evolution
This section describes the verification of the the entire software chain of this thesis. It is verified whether
the propagation of the satellite in the environment is correctly linked to the optimization employing the
jDE algorithm. The dynamical model used is discussed in Chapter 2 and the numerical methods applied
are discussed in Chapter 3. The setup of the simulator is: discussed in Chapter 4. To verify the software
chain, several cases are used which provide information about the correct linking of the propagation and
optimization. First, the orbital parameters and satellite parameters used for the analysis are discussed.
Next, single orbital elements are targeted. Finally, combinations of orbital elements are used as target.

A.2.1. Initial conditions and objective function
Aerodynamic drag is neglected and only the central gravity is used. The initial parameters for all the
optimizations are:

𝑎 = 20 ⋅ 10ዀ m,
𝑒 = 0.2,
𝑖 = 28.5∘,

𝜔 = 0∘,
Ω = 0∘,
𝜃 = 0∘,

𝑚 = 400 kg,
𝐼፬፩ = 2000 s,
𝐹፭፡፫፮፬፭ = 10 N.

The objective function used by the jDE algorithm is defined in Eq. (A.1).

𝑓 =
፧

∑
፤዆ኺ

𝑊፤ ⋅ 𝐽፤ ⋅ (1 + 1000𝑃።) (A.1)

where 𝑓 is the value of the objective function, 𝑛 is the number of cost functions used, 𝑊፤ the weight
assigned to cost function 𝐽፤ as given in Eq. (A.2). Finally, 𝑃። is the penalty function with value 0 or
1 depending on whether a constraint for that cost function is violated. By assigning weights in this
objective function, specific orbital elements can be targeted for. Furthermore, in case a targeted orbital
element is not close to the desired value a penalty is given to force the optimization to search for
solutions within a desired range of the orbital elements. This is only relevant for optimizations with
multiple targets. The weights are assigned at in the upcoming sections as they are different for each
investigated case. The constraints indicating the desired range for the orbital elements are:

Δ𝑎 < 1 ⋅ 10኿ m
Δ𝑒 < 0.01

Δ𝑖 < 0.015 rad
Δ𝜔 < 0.015 rad

ΔΩ < 0.015 rad

𝐽፭ =
|𝑡፭ − 𝑡፥፛|
𝑡፮፛ − 𝑡፥፛

(A.2a)

𝐽ፚ,...,጖ =
Δ𝑂𝐸

|𝑂𝐸። − 𝑂𝐸፭| + 𝜖
(A.2b)

where 𝑡፭ is the transfer time, 𝑡፥፛ the lower bound for the transfer time used in the optimization and 𝑡፮፛
the upper bound. Furthermore, OE are the orbital elements [𝑎, 𝑒, 𝑖, 𝜔, Ω], subscript 𝑖 and 𝑡 are indicating
the initial and target orbital element respectively. 𝜖 is a small number added such that the function does
not result in NaN values when initial and target OE are the same. Note that the true anomaly is omitted,
this element changes rapidly and is therefore not useful in the optimization of the transfer trajectory.
The controls are shown in Eq. (A.3), the costates are defined at two nodes and are linearly interpolated
in between. The nodes are located at 𝑡፥፛ and 𝑡፮፛.

u = [𝜆𝜆𝜆ኺ, 𝜆𝜆𝜆ኻ] (A.3)

with
𝜆𝜆𝜆። = [𝜆፩,። , 𝜆፟,። , 𝜆፠,። , 𝜆፡,። , 𝜆፤,።] (A.4)

The settings for the jDE are as follows:
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𝑡፥፛ = 0 h
𝑡፮፛ = 33 h
𝜆፩,፟,፠,፡,፤ ∈ [−10, 10]

𝑁𝑃 = 33
𝐺 = 1000
𝑗𝐷𝐸 = 𝐷𝐸/𝑟𝑎𝑛𝑑/2/𝑏𝑖𝑛

𝜅፱ = 10ዅዂ
𝜅፟ = 10ዅዂ

A.2.2. Single orbital element targeting
The first case has one target, which is a semi major axis of 23 ⋅ 10ዀ m, the weights𝑊። for the objective
functions are all zero except 𝑊ፚ = 1.0. Case 2 targets an eccentricity of 0.6, the weights 𝑊። for the
objective functions are all zero except 𝑊 = 1.0. Case 3 targets an inclination of 18.5∘, the weights 𝑊።
for the objective functions are all zero except 𝑊። = 1.0. Case 4 targets an argument of periapsis of
45.0∘, the weights𝑊። for the objective functions are all zero except𝑊። = 1.0. Case 5 targets a longitude
of the ascending node of 20.0∘, the weights𝑊። for the objective functions are all zero except𝑊። = 1.0.
Table A.1 shows the results of the optimization. The column ’Gen’ indicates in which generation the
last improvement of the objective occurred. The elements which are not targeted are grayed out.

Table A.1: Verification of single orbital element targeting, ጂ indicate the absolute difference with respect to the target orbit.

Case Gen Δ𝑎 [m] Δ𝑒[-] Δ𝑖 [deg] Δ𝜔 [deg] ΔΩ [deg]

# 1 87 2.9286 4.2868e-03 5.25036e-08 23.9425 0.0000
# 2 97 9.3606e06 1.5768e-08 5.7764e-07 1.6364 0.0000
# 3 517 6.8683e06 3.6534e-02 4.6591e-04 1.5375 6.8244
# 4 61 2.6496e07 6.5286e-02 1.4807e-07 1.9009e-05 0.0000
# 5 631 2.5822e06 1.1762e-01 5.9638 2.1250e01 4.6338e-02

Table A.1 shows that the the optimization converges to the correct orbital elements. However, only
single orbital elements are targeted which can be seen in the large differences in the other elements.
The convergence of case 3 and case 5 is slower compared to the other cases. These cases correspond
to a change in inclination and longitude of the ascending node. These are slowly varying elements and
could be more difficult for the optimizer since only little effect can be seen over small time periods as a
much larger Δ𝑣 is required to accomplish a change in these parameters. This effect must be considered
in the optimizations of this study. Figure A.6 shows the convergence progress of case 3 and 5.
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Figure A.6: Convergence progress for the optimization with targets ። and ጖.

A.2.3. Multiple orbital elements targeting
When targeting only a single orbital element, as done in Appendix A.2.2, large differences arise in the
orbital elements which are not targeted. In this section also these other parameters are targeted. This
increases the complexity for the optimizer. Several cases were investigated to verify the optimization
with multiple objectives. The target orbit for the optimization is defined by the following orbital elements:
𝑎 = 23 ⋅ 10ዀm, 𝑒 = 0.6, 𝑖 = 18.5∘, 𝜔 = 45.0∘, and Ω = 20.0∘. The initial conditions are as described in
Appendix A.2.1. The other simulation parameters are the same as in Appendix A.2.2. The weights are
shown in Table A.2. The results are shown in Table A.3.
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Table A.2: Weights multiple orbital element targetting verification

Case 𝑊፭ 𝑊ፚ 𝑊 𝑊። 𝑊Ꭶ 𝑊጖
# 1 1.0 10.0 10.0 0.0 0.0 0.0
# 2 1.0 0.0 10.0 10.0 0.0 0.0
# 3 1.0 10.0 0.0 10.0 0.0 0.0
# 4 1.0 10.0 0.0 0.0 10.0 10.0

Table A.3: Verification of multiple orbital element targeting

Case Gen 𝑡፭፨፟ [s] Δ𝑎 [m] Δ𝑒 [-] Δ𝑖 [deg] Δ𝜔 [deg] ΔΩ [deg]

# 1 742 1.0755e05 3.6448e04 2.1921e-04 2.1921e04 10.000 20.145
# 2 990 8.7949e04 5.5813e06 1.3074e-03 6.8391e-03 46.741 13.950
# 3 785 1.4248e04 1.3851 0.40429 10.000 21.057 20
# 4 322 2.7425e04 44.508 0.42685 10.000 1.4928e-02 20

These results shown in Table A.3, confirms that the optimization with multiple targets is more dif-
ficult. It requires more generations to find a solution. The errors between the final and target orbit
are larger than found in the single target case in Table A.1. Notice the bad performance in inclination
and longitude of ascending node in case 3 and 4. Δ𝑖 = 10∘ for case 3, which means no inclination
change was performed at all. The same holds for the ΔΩ = 20 in case 4, indicating that no change
in longitude of ascending node was performed at all. This again shows that care must be taken with
the slowly varying inclination and longitude of ascending node. The good performance in inclination
of case 2 could be the result of the high eccentricity, since inclination changes at large apogee are
more effective. Considering the results of this section and Appendix A.2.2, it can be concluded that
the optimization of the trajectories is working properly, and is considered verified. Furthermore, for the
optimization in this thesis, the bounds for 𝜆፡ and 𝜆፤ are set 1⋅10኿ times as large as the other costates to
increase the probability of the optimizer to change the inclination or longitude of ascending node of the
orbit to reduce the casualty risks. If this is not implemented, the out-of-plane freedom of the optimizer
is not used are optimal solution could be left out.

A.3. Optimization with simple population map
This section shows the results of the verification of the optimization algorithm with simple population
maps. Two cases are considered, one with population depending on the latitude with the highest
population density around the equator as shown in Fig. A.7(b), and one with the a longitude dependent
population map as shown in Fig. A.8(b). The target is to minimize the amount of casualties inside an
impact track of specified dimensions . The following parameters for the satellite and the jDE are used
for both cases.

𝑡፦ፚ፱ = 4 days,
ℎ፞፧፝ < 90 km,
𝐾 = 0.0025 mኼ/kg,
𝐼፬፩ = 2000 s,

𝐹፭፡፫፮፬፭ = 10 N,
𝑚 = 400 kg,
𝜆፩,፟,፠ ∈ [−0.1, 0.1],
𝜆፡,፤ ∈ [−10000, 10000],

𝑁𝑃 = 120,
𝐺 = 100,
𝑗𝐷𝐸 = 𝐷𝐸/𝑟𝑎𝑛𝑑/2/𝑏𝑖𝑛,

where 𝑡፦ፚ፱ is the maximum simulation time, this was selected to limit the computational burden of
the optimization, ℎ፞፧፝ is the altitude at which the simulation is stopped, at this altitude the amount of
casualties is calculated. 𝐾, 𝐼፬፩, 𝐹፭፡፫፮፬፭, 𝑚 the ballistic coefficient, specific impulse, thrust and mass
of the satellite respectively, chosen arbitrary. At first the costate bounds were all set to ∈ [−100, 100]
as used in Appendix A.2. Similar behavior as in Appendices A.2.2 and A.2.3 was found, which was
the difficulty of finding a solution with an inclination change or longitude of ascending node change
required. It was found that the contribution of the other costates (𝜆፩,፟,፠) were too large and therefore
the optimizer had problems finding the trajectories with large changes in 𝑖 of Ω. This has been fixed
by changing the bounds of the costates to the values above as already discussed in Appendix A.2.3
Without these larger bounds for 𝜆፡ and 𝜆፤, no change in the inclination was observed at all. The values
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for the bounds of the costates as shown in this section are used for the optimization of the actual
problem in Chapter 5 and for all verification cases in this chapter. The objective function is given by
Eq. (A.5) which is a simplified version of Eq. (3.7) used in the optimizations in this thesis.

𝐽 = 𝐸 =
፧

∑
።

፦

∑
፣
𝜌(𝜙።,፣ , 𝜆።,፣), (A.5)

where 𝑛 = 20 is the number of equally spaced along-track points and 𝑚 = 2 the number of equally
spaced cross-track points. These values are chosen arbitrarily. 𝑖 and 𝑗 indicate the individual impact
points. Furthermore, 𝜌(𝜙።,፣ , 𝜆።,፣) is the population density at coordinates (𝜙።,፣ , 𝜆።,፣) of point (𝑖, 𝑗). The
points are located around the nominal impact point, where points (𝑖, 1) are located at the start of the
track with an along-track distance to the nominal point of ጂ፝ᑒᑥኼ , where Δ𝑑ፚ፭ is the along-track length
of the impact track. Furthermore, points (𝑖, 𝑚) are located at the end of the impact track at a distance
ጂ፝ᑒᑥ
ኼ from the nominal point. Similarly, the points (1, 𝑗) are located at a cross-track distance of ጂ፝ᑔᑥኼ

in negative ŷፁ axis direction as specified in Section 2.1, where Δ𝑑፜፭ is the cross-track length of the
impact track. Furthermore, the points (𝑛, 𝑗) are located at a cross-track distance of ጂ፝ᑔᑥኼ in positive ŷፁ
axis direction. The controls are the same as in the optimizations of this thesis and repeated in Eq. (A.3).

A.3.1. Latitude dependent population map
The first case uses a population map with the population centered around the equator. The population
density decreases towards the poles. The following additional parameters are used for this case:

𝑎 = 6938 km,
𝑒 = 0,

𝑖, 𝜔, Ω, 𝜃 = 0∘,
Δ𝑑ፚ፭ = 1000 km,

Δ𝑑፜፭ = 100 km.

In Fig. A.7 the best orbit is shown after 100 generations.
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Figure A.7: Verification of optimization with equatorial centered population map.

The verification results presented in Fig. A.7 show the increase of the inclination to decrease the
amount of population at the impact location. Furthermore, it demonstrates the timing capability of the
optimizer by crashing exactly at the highest latitudes. Furthermore, the altitude is first increased before
decreasing again to 90 km altitude. This can be explained by the number of nodes used, namely
two. With only two nodes the system is not capable of a constant semi-major axis during inclination
change since it has to decrease the altitude at some point to below 90 km. To have enough time for
the inclination change, it first increases its altitude. A three node optimization potentially removes this
unnecessary movement.
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The best costates after 100 generations are:

𝜆𝜆𝜆ኺ =
⎡
⎢
⎢
⎢
⎣

−3.384 ⋅ 10ዅ኿
8.495 ⋅ 10ዅኼ
−1.059 ⋅ 10ዅኼ
−7.300 ⋅ 10ኽ
9.375 ⋅ 10ኽ

⎤
⎥
⎥
⎥
⎦

𝜆𝜆𝜆ኻ =
⎡
⎢
⎢
⎢
⎣

3.435 ⋅ 10ዅ኿
−3.990 ⋅ 10ዅኼ
3.058 ⋅ 10ዅኽ
−4.691 ⋅ 10ኽ
6.001 ⋅ 10ኽ

⎤
⎥
⎥
⎥
⎦

These costates confirm the behavior described above. The altitude is first increase as 𝜆ኺ,፩ is negative,
then it is decreased as seen by the positive value for 𝜆ኻ,፩. The values for 𝜆፡ and 𝜆፤ are large at the first
node, but at the second node the focus is on the reduction of the altitude. The effects of parameters 𝜆፡
and 𝜆፠ are opposite in direction between the first and second node. The effect of these parameters is
likely counteracted due to this. The simulation time was limited (4 days). Therefore, optima reaching
higher latitudes were not achieved since the satellite needs to reach altitudes below 90 km within 4
days. The optimum used the full 4 days for the maneuver. The findings of this section verify the correct
linking of the propagation and the optimization for targets which require an inclination change, and
verifies the timing capability of the software chain.

A.3.2. Longitude dependent population map
The second case uses a population map which is dependent on the longitude. The density increases
from 0∘ longitude towards ±90∘ longitude and decrease again towards 180∘ longitude. The following
additional parameters are used for this case:

𝑎 = 6938 km,
𝑒 = 0,

𝜔,Ω, 𝜃 = 0∘,
𝑖 = 90∘,

Δ𝑑ፚ፭ = 2000 km,
Δ𝑑፜፭ = 100 km

In Fig. A.8 the best impact track after 100 generations is shown. The rotational motion of the planet
is the same as that of the Earth.

-6

-4

-2

0

-5

2

106

Z
 [

m
]

4

6

106

Y [m]

-50

X [m]
106

0
5

5

(a) Orbit from turquoise to purple, crash location in black.

-150 -100 -50 0 50 100 150

Longitude [deg]

-80

-60

-40

-20

0

20

40

60

80

L
a

ti
tu

d
e

 [
d

e
g

]

(b) impact tracks, dashed line indicates initial track, dotted line
indicates final track, red area is impact zone, white star is center
of impact zone.

Figure A.8: Verification of optimization with longitude dependent population map.
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The results in Fig. A.8 show the timing capability of the optimizer. The semi-major axis is first
increased and then decreased until impact, in this time, the planet underneath, is rotated such that the
crash occurs at a longitude with low population density. The optimization converges to an impact with
a low population density.

The best costates after 100 generations are:

𝜆𝜆𝜆ኺ =
⎡
⎢
⎢
⎢
⎣

−2.397 ⋅ 10ዅ኿
−6.577 ⋅ 10ዅኼ
1.471 ⋅ 10ዅኼ
8.606 ⋅ 10ኻ
−8.786 ⋅ 10ኻ

⎤
⎥
⎥
⎥
⎦

𝜆𝜆𝜆ኻ =
⎡
⎢
⎢
⎢
⎣

8.054 ⋅ 10ዅኼ
−6.382 ⋅ 10ዅኼ
−8.433 ⋅ 10ዅኼ
4.865 ⋅ 10ኽ
7.141 ⋅ 10ኼ

⎤
⎥
⎥
⎥
⎦

These costates confirm the behavior described above. The altitude is first slightly increased as 𝜆ኺ,፩ is
negative, then it is decreased as seen by the large positive value for 𝜆ኻ,፩. Note that the satellite crashes
much earlier than the satellite in Appendix A.3.1. The nodes are spaced 4 days apart. Therefore, the
costates at the first node mostly determine the trajectory of the satellite. The costates affecting the
inclination of the orbit 𝜆፡ and 𝜆፤ are relatively low at the first node, indicating that the focus is on the in
plane movement of the satellite. The other costates do not indicate clear behavior. The results of this
optimization clearly indicate the timing capabilities of the optimizer which is considered important for
minimizing the casualty risk. The findings of this section verify the correct linking of the propagation and
the optimization for impact timing. Based on the findings of bothAppendix A.3.2 and Appendix A.3.1
the complete software chain for the propagation and optimization as implemented in this research is
verified.
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Figure B.1: Optimal low-thrust trajectory case 1: PARASOL down to 150 km altitude, together with optimal thrust profile.
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Figure B.2: Optimal low-thrust trajectory case 2: SMOS down to 150 km altitude, together with optimal thrust profile.
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Figure B.3: Optimal low-thrust trajectory case 3: SPOT5 down to 150 km altitude, together with optimal thrust profile.



72 B. Optimal low-thrust trajectories.

0 20 40 60 80 100 120

Time [days]

6.5

6.6

6.7

6.8

6.9

7

7.1

7.2

7.3

a
 [

m
]

106

(a) Semi-major axis.

0 20 40 60 80 100 120

Time [days]

0

0.005

0.01

0.015

e
 [
-]

(b) Eccentricity.

0 20 40 60 80 100 120

Time [days]

50.9

50.92

50.94

50.96

50.98

51

51.02

i 
[d

e
g
]

(c) Inlination

0 20 40 60 80 100 120

Time [days]

0

50

100

150

200

250

300

350

400

 [
d

e
g

]

(d) Longitude of ascending node.

0 20 40 60 80 100 120

Time [days]

0

50

100

150

200

 [
d

e
g

]

(e) Pitch thrust steering angle.

0 20 40 60 80 100 120

Time [days]

-100

-50

0

50

100

 [
d
e
g
]

(f) Yaw thrust steering angle.

Figure B.4: Optimal low-thrust trajectory case 4: SPOT5LIKE down to 150 km altitude, together with optimal thrust profile.
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