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Summary 
 
Accurate numerical simulation of coupled fluid flow and heat transfer in heterogeneous geothermal reservoirs 
demand for high resolution computational grids. The resulting fine-scale discrete systems--though crucial for 
accurate predictions--are typically upscaled to lower resolution systems due to computational efficiency 
concerns. Therefore, advanced scalable methods which are efficient and accurate for real-field applications are 
more than ever on demand. To address this need, we present an algebraic dynamic multilevel method for flow 
and heat transfer in heterogeneous formations, which allows for different temperature values for fluid and rock. 
The fine-scale fully-implicit discrete system is mapped to a dynamic multilevel grid, the solution at which are 
connected through local basis functions. These dynamic grid cells are imposed such that the sub-domain of 
sharp gradients are resolved at fine-scale, while the rest of the domain remains at lower (coarser) resolutions. In 
order to guarantee the quality of the local (heat front) components, advanced multiscale basis functions are 
employed for global (fluid pressure and rock temperature) unknowns at coarser grids. Numerical test cases are 
presented for homogeneous and heterogeneous domains, where ADM employs only a small fraction of the fine-
scale grids to find accurate complex nonlinear thermal flow solutions. As such, it develops a promising scalable 
framework for field-scale geothermal simulations. 
 
 



Introduction

Geothermal energy is an attractive resource to reduce the carbon footprint in the environment while
providing affordable energy to society, and is expected to increase its contribution for years to come
(Bertani, 2012; Lund et al., 2011; Burnell et al., 2012, 2015). The successful implementation of the field-
scale projects, now more than ever, depends on accurate highly-resolved models that describe the flow
and transport of mass and heat in heterogeneous (possibly fractured and faulted) reservoirs (OSullivan
et al., 2001; Axelsson et al., 2003). In addition, when operated close to the faults, the geomechanical
impact of the fluid-driven heat transfer becomes a key aspect in maintaining the safety standards (David
and Jenny, 2016; Norbeck et al., 2018; Norbeck and Horne, 2016; Deb and Jenny, 2017).

The field-relevant simulation approaches face a number of challenges, among which some stand out.
One of the main challenges is due to the highly heterogeneous fine-scale rock hydraulic and conductive
properties, which demands for high resolution grids over the entire domain of study. At the same time,
as another important challenge, the coupling of heat and mass transfer can impose sever stability issues
for which proper formulation (choice of unknowns) and careful coupling treatments are crucial (Wong
et al., 2018; Praditia et al., 2018). Fluid physics, production geochemistry (Morel and Morgan, 1972;
Leal et al., 2017), and geomechanical effects (Rossi et al., 2018) are also among the challenges that
collectively contribute to the complexity of development of next-generation geothermal simulators, with
both their demand for high-resolution grids and nonlinear coupling. As such, of particular interest is
to develop a stable simulation method which is scalable to the field-relevant applications and avoid
excessive use of upscaled coefficients.

This paper describes a scalable framework for field-scale simulation of the geothermal reservoirs. The
fine-scale reference system is obtained by using the fully-implicit flow-heat (i.e., Pressure-Temperature
(P-T)) integration scheme, where the fluid (and possibly rock) properties are obtained after each P-
T Newton updates. The fully-implicit nature of the discrete formulation would ensure its stability in
presence of strong non-linear terms. The fine-scale system considers both conductive and convective
heat transfer terms, and allows for different temperature values for the fluid and reservoir rock. Such
a consideration would increase the simulation accuracy, specially for heterogeneous (and fractured)
systems, where the fluid and rock heat transfer regimes can be in very different time scales.

The given fully-implicit system at fine-scale is then mapped to an algebraically-developed dynamic
multilevel resolution. The dynamic multilevel resolution is obtained based on a front tracking technique,
where the sub-domain of sharp gradients are being resolved at the fine scale, and the rest of the domain in
a hierarchical nested coarser resolutions. Similar to the ADM framework (Cusini et al., 2016), the map
between the solution (unknowns) at different resolutions is constructed by local basis functions, which
are computed only at the beginning of the time-dependent simulation. Note that these basis functions
will never get updated through out the entire simulation. Here, we develop local basis functions to
interpolate the solution for pressure (P), rock (Tr) and fluid (Tf ) temperatures. For the pressure and
rock temperatures, multiscale basis functions (Hou and Wu, 1997; Jenny et al., 2003; Hajibeygi et al.,
2008; Wang et al., 2014) are developed for the ADM multilevel system. Due to its similarities with the
phase saturation equation, the fluid temperature from coarser to finer scales are obtained using constant
interpolation functions. The dynamic grid is expected to capture the heat front; in another words, when
coarser grids are employed, the temperature gradients are smaller than the prescribed threshold. Note
that the scope of this paper is about structured grids, and that unstructured multiscale basis functions
(Møyner and Lie, 2016; Bosma et al., 2017; Parramore et al., 2016) are required for unstructured ADM.

The proposed ADM method constructs an accurate fully-implicit (thus stable) multi-level dynamic sys-
tem, which reduces the computational complexity and at the same time maintains the simulation accu-
racy to the desired tolerance levels. Note that the ADM solutions for pressure and temperature can be
interpolated to the finest scale, if needed, e.g., for phase property update. Numerical test cases for both
homogeneous and heterogeneous test cases are presented, as proof-of-the-concept, to illustrate the accu-
racy and applicability of the devised method. It is shown that only a small fraction of the fine-scale grid
cells are sufficient, if the developed multiscale-based prolongation and restriction operators are being
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used, to find a good approximate solution to the fine-scale expensive simulations.

The paper is organised as follows. The governing equations and the fine-scale discretisation are pre-
sented in the following section. The ADM method for geothermal simulations is described in Section 3.
Numerical results and concluding remarks are presented in Sections 4 and 5, respectively.

Governing equations & fine-scale discretization

Mass balance equation for non-isothermal single-phase flow in a heterogeneous porous medium is de-
scribed by

∂

∂ t

(
φρ f

)
−∇ ·

(
ρ f

1
µ f

K ·∇p
)
= ρ f q, (1)

where φ is the porosity of the rock, ρ f and µ f are fluid density and fluid viscosity, respectively. Ad-
ditionally, K is the rock permeability tensor and q is the source term. In addition, the energy balance
equation reads

∂

∂ t

(
φρ fU f

)
−∇ ·

(
ρ f H f

1
µ f

K ·∇p
)
= Ah(Tr−Tf )+ρ f H f q, (2)

for the fluid, and
∂

∂ t

(
(1−φ)ρrUr

)
−∇ ·

(
D ·∇Tr

)
= Ah(Tf −Tr), (3)

for the solid rock. Here, T is the temperature, U is the specific internal energy and H is the specific
enthalpy. In general, U and H can be expressed as non-linear functions of temperature and pressure.
The subscripts f and r indicate the fluid and the solid rock, respectively. Finally, D is the rock thermal
conductivity tensor, A is the area of heat exchange between the rock and the fluid and h is the conduction-
convection heat exchange coefficient (see Appendix). Remark that for most applications the area A is
so large that the fluid and the rock can be considered in thermal equilibrium (i.e., T = Tf = Tr). In
such a case, only two equations for the two unknowns P and T need to be solved. However, due to the
heterogeneous hydraulic and conductive properties, e.g., in presence of fractures or in regions with very
high convective terms (e.g., close to wells), such a hypothesis may not be valid.

Equations (1), (2) and (3), along with a set of constitutive laws, form a well-posed system of equations
for the three main unknowns, i.e., p, Tf and Tr. The equations are discretised with a finite-volume
scheme in space on a Cartesian grid and with an Euler backward method in time. Convective fluxes
are discretised employing a two-point flux approximation (TPFA). Since the equations are non-linear,
a Newton-Raphson iteration is employed to solve the system of equations iteratively. Thus, at each
non-linear iteration ν , a linearised system of the form Jν

0 δxν+1
0 =−rν

0 has to be solved, i.e.,Jmp JmTf
JmTr

J fp J fTf
J fTr

Jrp JrTf
JrTr


︸ ︷︷ ︸

Jν
0

 δ p
δTf

δTr


︸ ︷︷ ︸

δxν+1
0

=−

rm

r f

rr


︸ ︷︷ ︸

rν
0

. (4)

Here, Jν
0 , δxν+1

0 and rν
0 are the Jacobian (derivatives) matrix, the vector of updates and the residual vec-

tor, respectively. Also, each block Jeα
contains the derivatives of equation e with respect to the unknown

α , i.e. Jeα
= ∂ re/∂α . Subscripts m, f andr refer to equations of mass balance, energy balance in fluid

and energy balance in the rock, respectively. Note that JmTr
= 0 holds, i.e., the fluid properties depend

only on the fluid temperature Tf . The solution of the linear-system (4) is the most computationally ex-
pensive step for field-scale simulations on high-resolution grids. As such, field-scale relevant simulation
approaches aim to develop a sclaable solution strategy for this coupled nonlinear system.

In this work, we develop the Algebraic Dynamic Multilevel method for fully-coupled geothermal simu-
lations, which is described in the next section.
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ADM method for geothermal systems

ADM solution strategy

The linear system (4) describes a fully-resolved fine-scale discrete equation. ADM method provides a
solution to this system on a dynamic multilevel grid, in an algebraic procedure, the resolution of which
is defined based on an error-estimate (front-tracking) based strategy. The fine-scale grid containing
N f = N f x×N f y×N f z grid cells is considered. ADM imposes set of nl levels of hierarchically nested
coarse grids, with coarsening ratio of γ l

x×γ l
y× γ l

z . Here, the index l refers to the level of coarsening (i.e.,
l = 0 corresponds to fine-scale resolution and l = n represents the nth level of coarsening). Therefore,

γ
l = (γ l

x,γ
l
y,γ

l
z) =

(N f x

Nlx
,
N f y

Nly
,
N f z

Nlz

)
(5)

holds. The ADM grid at each time-step (where solution is provided) is constructed as uniun of grid-cells
at different resolutions in different part of the domain. The mapping of fine-scale system to the dynamic
multilevel grid is achieved algebraically by applying sequences of restriction (R) and prolongation (P)
operators. Therefore, at each iteration, the ADM system reads

R̂l−1
l . . . R̂0

1 J0 P̂1
0 . . . P̂l

l−1︸ ︷︷ ︸
JADM

δ x̂l =− R̂l−1
l . . . R̂0

1 r0︸ ︷︷ ︸
rl

, (6)

where R̂l−1
l is the restriction operator that maps the part of the vector of solutions which are at resolution

l−1 (δ x̂l−1) to resolution l (δ x̂l). Correspondingly, P̂l+1
l is the prolongation operator that maps the part

of the entire solution vector which are at level l to level l−1. Once the system is solved at ADM resolu-
tion, the approximated solution at fine-scale resolution δx′0 (reference fine-scale solution is represented
as δx0) can be achieved by

δx0 ≈ δx′0 = P̂1
0 . . . P̂l

l−1 δxl. (7)

The static multilevel prolongation operator Pi
i−1 is constructed for the entire domain. However, only a

fraction of the domain needs to go through this map at each time-step. This dynamically constructed
map, which is presented as P̂i

i−1 in Eq. (6), is the so-called ADM prolongation operator. The static
multilevel prolongation operator has a block structure as

Pi
i−1 =

(Pp)
i
i−1 0 0

0 (PTf )
i
i−1 0

0 0 (PTr)
i
i−1


Ni−1×Ni

. (8)

Likewise, the static multilevel restriction operator reads

Ri−1
i =

(RP)
i−1
i 0 0

0 (RTf )
i−1
i 0

0 0 (RTr)
i−1
i


Nl×Nl−1

. (9)

Here, the multilevel restriction operator is finite-volume based as to ensure mass conservation on multi-
level ADM grid.

In this work, (Pp)
i
i−1 and (PTr)

i
i−1 blocks are constructed following a multilevel multiscale procedure

For fluid temperature. However, the prolongation block for fluid temperature is defined as (PTf )
i
i−1 =

[(RTf )
i−1
i ]

T
, where the superscript T indicates the transpose operator.
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Grid selection criterion

In this work, at each time step n, the grid resolution is chosen explicitly (based on the solution at time-
step n− 1) by employing a temperature based criterion. Let ΩI

l and ΩJ
l be the set of two neighbouring

coarser cells I and J at resolution level l, which contain the index of all finer resolution cells they include.
Also, i and j are fine cell indices, belonging to the sets ΩI

l and ΩJ
l , respectively. The criteria for grid

refinement can be defined as

∆T̄IJ =
max

(
|Ti−Tj|

)
|Tinj−Tprod|

∀ i ∈Ω
I
l and ∀ j ∈Ω

J
l . (10)

Here, Tinj and Tprod are the injection and production temperatures, respectively. A grid-block I at grid
resolution level l is refined to resolution (l−1) if

∆T̄IN > tol, (11)

where, N indicates all grid-blocks at resolution l neighbouring cell I. For the numerical examples of this
article, the variable used for the coarsening criterion is the fluid temperature. Additionally, refinement is
imposed around wells to ensure that the effect of source terms is captured accurately.

Numerical results for two 2D test cases are presented, as a proof of concept, in the next section.

Numerical results

A 2D 216m× 54m geothermal reservoir is considered with both a homogeneous (case 1) and a het-
erogeneous (case 2) permeability fields. A 216× 54 Cartesian grid is imposed on the domain. A cold
water injector well is present in the bottom left corner of the reservoir whereas a production well is situ-
ated in the top right corner. Both wells are pressure-constrained with bottom hole pressures of 300MPa
and 10MPa, for injection and production respectively. The temperature of injected water is at 300K
whereas the reservoir has an initial temperature of 400K. No-flow boundary condition is considered for
all boundaries. The fluid and rock properties employed are presented in Table 1. The correlations to
compute the remaining fluid properties are available in the Appendix.

Table 1 Fluid and rock properties. 

Property value
Rock conductivity (D) 4 J

smK
Rock density (ρr) 2750 kg

m3

Rock specific heat (Cpr ) 790 J
kg·K

Porosity (φ ) 0.2
Grain diameter 0.001 m
Fluid specific heat (Cp f ) 4200 J

kg·K
Fluid conductivity (k f ) 0.591 J

smK

The accuracy of the ADM method is studied by comparing its results against those obtained by fine-scale
simulations. The performance of ADM is reported in fraction of number of active grid cells compared
to total number of fine-scale grid cells. The ADM error at time step t is calculated as

εx(t) =
‖xFS(t)− xADM(t)‖2

‖xFS(t)‖2
, (12)

where, x represents a generic variable (i.e., p or T ) and the subscript FS refers to fine-scale. The
sensitivity of ADM results to the tolerance employed for the coarsening criterion is also studied.

Test Case 1: 2D homogeneous reservoir

An isotropic homogeneous permeability, K = 10−15 m2, is considered. All simulations are run until 300
days of injection is reached.
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Figure 1 shows a comparison between ADM with coarsening criterion of 5% as described in Eq. (11).
It can be seen from Fig. 1 that the resolution is kept at fine-scale resolution around wells and on the area
surrounding the temperature front. Note that the diffuse temperature front is well captured by the ADM
method.

(a) Pressure

(b) Fluid Temperature

(c) Rock Temperature

Figure 1 Pressure, fluid temperature, and rock temperature solution after 300 days of injection in 
homogeneous reservoir. Fine-scale solution (left) is approximated by ADM solution with 5% tolerance 
(right).

Figure 2 shows ADM errors, as described in Eq. (12), for each time step. Smaller tolerance value (i.e., 
higher sensitivity to temperature changes) leads to higher percentages of active grid cells involved during 
simulation and consequently more accurate results. Note that at the beginning of the simulation, coarser 
grids are employed regardless of what tolerance value is employed and the region around the wells are 
always kept at fine-scale resolution.

(a) Pressure Error (b) Temperature Error (c) Rock Temperature Error

Figure 2 Error of ADM solution (pressure, fluid temperature and rock temperature) with 
5%,10%,20% and 50% tolerances compared to fine-scale solution in homogeneous reservoir.

Figure 3 (left) shows the percentage of active grid cells employed over 20 simulation time-steps. In 
general, number of active grid cells increases as the temperature front progresses from injection well. 
Thereafter, by advancement of the temperature front, number of active grid cells increases to a plateau 
and may start decreasing again due to employment of more coarse grid cells are in the area with lower 
temperature changes. Moreover, Fig. 3 (right) shows the average errors and average fraction of the 
ADM active grid cells over the whole simulation time. It can be seen that the average error increases 
proportionally to ADM tolerance.
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Figure 3 Percentage of active grid cells for each time step for different tolerances (left), and average 
error and active grid cells with respect to ADM tolerance (right).

Test Case 2: 2D heterogeneous reservoir

A 2D heterogeneous reservoir which is populated with isotropic permeability field extracted from SPE10 
top layer is considered and shown in Fig. 4.

Figure 4 The heterogeneous isotropic permeability field used in test case 2.

Figure 5 presents the simulation results of pressure, fluid temperature and rock temperature. Similar to 
the results of test case 1, ADM is able to track the temperature front by keeping fine-scale grid resolution 
neighbouring the front, while applying coarser grids where fine-scale i s not n eeded. In r egions with 
higher permeability, temperature front advances further due to convection dominance. Consequently, 
one might observe non-unified distribution of fine-grid cells.

(a) Pressure

(b) Fluid Temperature

(c) Rock Temperature

Figure 5 Pressure, fluid temperature, and rock temperature solution after 300 days of injection in 
heterogeneous reservoir. Fine-scale solution (left) is approximated by ADM solution with 5% tolerance 
(right).

The error between ADM and fine-scale solution for each time step is presented in Fig. 6. It can be seen
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that a good approximation of fine-scale solution is provided by ADM, by applying only a fraction of the
fine-scale grid cells.

(a) Pressure Error (b) Temperature Error (c) Rock Temperature Error

Figure 6 Error of ADM solution with 5% tolerance compared to fine scale solution in heterogeneous 
reservoir.

Figure 7 (left) shows the percentage active grid cells versus simulation time-steps. Number of grids 
employed is dynamically changing based on evolution of temperature front in the reservoir. Figure 7 
(right) shows average of errors and active grid cells over the entire simulation time, which involves 20 
time steps.

Figure 7 Percentage of active grid cells versus simulation time-steps for different tolerances (left), and 
average error and active grid cells with respect to ADM tolerance (right). These plots are provided for 
heterogeneous test case.

Conclusions

An Algebraic Dynamic Multilevel method for fully-coupled simulation of thermal single phase flow was 
presented in this work. Here, the fine-scale system is mapped in to a  multilevel dynamic grid using a 
sequence of multilevel restriction and prolongation operators. The fine-scale resolution is used around 
the wells and on the position of the temperature front (detected via the coarsening criterion). However, 
different levels of coarse grids are employed wherever the fine-scale resolution is not needed.

Numerical results for 2D homogeneous and heterogeneous test cases were presented. ADM results 
on both test cases were compared to fine-scale solution. Moreover, The sensitivity of ADM to different 
tolerances of coarsening criterion on fluid temperature was studied. The results, with different amount of 
dynamic active grid cells, show that ADM is able to provide accurate results by employing only a fraction 
of the fine-scale grid cells in the domain. Note that despite allowing for non-thermal equilibrium between 
fluid and rock, for the studied cases, the fluid and rock temperatures were quite cl ose. The rarefaction 
of the fluid temperature profile (highly diffused temperature front) results in  the employment of  more 
fine-scale grid cells in the region surrounding the cold front. Obviously, the convection-conduction ratio 
influences the sharpness of the temperature f ront. Nevertheless, the ADM provides a  robust algebraic 
framework which provides a scalable simulation method for non-isothermal fluid flows.
One can assume that by increasing the size of the domain, the average percentage of active grid cells
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reduces. Therefore, ADM casts a promising simulation approach for real-field geothermal reservoir
simulations.
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Appendix: correlations

The following correlations were employed to compute fluid and rock properties in the numerical exper-
iments.

Fluid viscosity: Viscosity-temperature relationship reads (Al-Shemmeri, 2012)

µ f (T ) = 2.414×10−5×10
247.8

T−140 .

Fluid density: Fluid density is defined as function of pressure and temperature (Coats, 1977) as

ρ f (P,T ) = ρ f s (T ) [1+ cw (T )(P−Ps)] ,

where PS = 1bar. cw (T ) and ρ f s (T ) are obtained from empirical correlations (Praditia et al.,
2018; Wagner and Kretzschmar, 2008), i.e.,

cw (T ) =
(
0.0839T 2 +652.73T −203714

)
×10−12

ρ f s (T ) =−0.0032T 2 +1.7508T +757.5.

Fluid Entalphy: Fluid entalphy is defined as function of pressure and temperature (Coats, 1977) as

H f (P,T ) = uws +Cp f (T −Ts)+
P
ρ f

,

where uws = 420000 J
kg .

Heat exchange coefficient: Heat exchange coefficient h is given as (Nield and Bejan, 2006)

1
h
=

Dp

Nuk f
+

Dp

10 D
,

where Dp is the grain diameter and D is the rock heat conductive coefficient. Note that Nu is the
Nusselt number, which is defined as

Nu =
0.225

φ
P0.33

r R0.67
e ,
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where Pr (Nield and Bejan, 2006) and Re (Zeng and Grigg, 2006) are the Prandtle and Reynolds
numbers, respectively, i.e.,

Pr =
Cp f µ f

k f
.

and
Re =

ρ fV Dp

µ f
.

Here V is the Darcy velocity.
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