
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Direct demodulation
for alternative
Shack-Hartmann
alignment
Combining Fourier demodulation
with curvature sensing

Systems & Control Master Thesis
Seppe Kuipers



Direct demodulation
for alternative

Shack-Hartmann
alignment

Combining Fourier demodulation
with curvature sensing

by

Seppe Kuipers

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Thursday May 30, 2024 at 1:30 PM.

Student number: 4496248
Project duration: February 9, 2023 – May 30, 2024
Thesis committee: Prof. dr. ir. M. Verhaegen, TU Delft, supervisor

Dr. O. A. Soloviev, TU Delft, daily supervisor
Dr. R. Van de Plas, TU Delft, committee member

Cover: The VLT’s new deformable secondary mirror by ESO/E. Vernet
Style: TU Delft Report Style, with modifications by Daan Zwaneveld

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/


Preface

I would like to express my gratitude to Oleg for supervising me during this thesis. The silly seminars
were a nice constant throughout the project and helped me immensely throughout. Many problems
were cleared up through these presentations.
I would also like to thank Dimitri for his feedback and his knowledge on things related to the lab.
I would like to thank my friends for letting me vent over the course of more than a year. The most
important hypothesis is now confirmed: it turns out that it is actually possible to obtain a masters
degree in Delft.
I would like to thank my parents, without whom of course none of this would have been possible.
And finally I would like to thank the inventor of peanut butter, Marcellus Gilmore Edson, from the
bottom of my heart.

Seppe Kuipers
Delft, May 2024

i



De Tour win je in bed
JOOP ZOETEMELK



Abstract

The Shack-Hartmann wavefront sensor is a widely-used device to measure the light wavefront. Cur-
rently, the sensor is used as a gradient sensor, which is achieved by placing the microlens array in
the plane conjugate to the deformable mirror and the aberration. The resulting spot pattern is then
transformed into a gradient through the use of centroiding: the measurement of the relative movement
of all spots compared to the reference image.
As an alternative to the traditional alignment, alternative alignment moves the Shack-Hartmann wave-
front sensor: the CCD is now optically conjugated to the deformable mirror and the aberrations, and
not the gradients but the curvature of the wavefront is measured. This changes the behaviour of the
Shack-Hartmann sensor: instead of the amount of spots remaining the same and the CCD region oc-
cupied by them changing, the amount of spots starts to change but the CCD region occupied by them
remains the same in the face of aberrations. Curvature measurements can be used directly to actuate
bimorph and membrane deformable mirrors, bypassing the need for complex control schemes.
As an alternative to centroiding Fourier demodulation can also be used to convert the information
measured by the wavefront sensor into gradients. For large aberrations where the spots stray out of
their subapertures and the centroiding algorithm breaks down this method is especially suited.
In this thesis it is shown that a synergy exists between alternative alignment and Fourier demodulation.
Large aberrations no longer occupy a huge region on the CCD, instead changing the amount of spots,
and the movement of the spots outside of their subapertures is no longer a problem as there is no need
for rigidly defined subapertures.
The combined use of alternative alignment and Fourier demodulation was tested on simulations, both
for square and circular apertures, and for cases with extra added Poisson noise. Finally real-life experi-
ments were also conducted using circular apertures.
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1
Introduction

1.0.1. The necessity of wavefront sensing
Wavefront measurements play a crucial role in today’s society. All large telescopes in the world depend
on wavefront sensing and correction using a deformable mirror. Wavefront sensing is used in the industry
to detect imperfections in manufacturing, and the medical world uses wavefront sensing to determine
the aberration in a patient’s eye. Wavefront sensing is an important and widely used tool, and as such, a
lot of effort is spent on coming up with ways to improve the performance of currently existing wavefront
sensing methods. This thesis aims to contribute to these improvements.

1.1. An Overview of Adaptive Optics
The basic principle for adaptive optics throughout this thesis is as follows: a wavefront sensor measures
the incoming wavefront for deformations. This information is used to calculate which deformations
are present, and how to counteract them using a deformable mirror. These calculated corrections are
then sent to the deformable mirror, which changes shape to make the incoming wavefront as flat as
possible. This main focus of this thesis lies in exploring the combination of Erez N. Ribak’s method of
Fourier demodulation as a way to read out a Shack-Hartmann sensor with Oleg A. Soloviev’s alternative
physical setup in which the CCD of the wavefront sensor is placed in the plane optically conjugated to
the deformable mirror. In the subsequent parts of the introduction the following things will be dealt
with:

• The principle of adaptive optics
• Shack-Hartmann sensor and wavefront reconstruction method
• Reconstruction methods

1.1.1. The Principle of Adaptive Optics
To start, the conventions and basic principles and ideas used throughout the paper are laid out. The
object is located in the object plane which has coordinates ξ = (ξ, η), the pupil is located in the
pupil plane which has coordinates x = (x, y), and the image is located in the image plane which has
coordinates u = (u, v). The line going from the object to the image is called the optical axis z. The
object plane and the image plane are said to be optically conjugate planes. This convention can be seen
in figure 1.1.

1



1.1. An Overview of Adaptive Optics 2

Figure 1.1: A general imaging system to illustrate the coordinates and planes used throughout this paper [16]

Light is emitted in waves that travel across planes in R2 through time t. The waves emitted at the
surface of the object are defined by

w(x) = a(x) exp (−iϕ(x)) (1.1)

where a is the amplitude of the wave, and ϕ its phase. Light emitted at the same time instance t at the
surface of the object is called a wavefront. The definition of a wavefront is that its phase ϕ is constant
across its surface. In figure 1.2 multiple wavefronts can be seen.
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Figure 1.2: The concept of the wavefront illustrated [16]

As these waves set out, their shape is spherical, and as they travel further and further their shape slowly
changes into a more flat one, until after an infinite amount of distance the resulting wave is perfectly
flat. This phenomenon is illustrated in figure 1.3.

Figure 1.3: The flattening of spherical waves with distance [4]

1.1.2. Diffraction
Because of the difference in shape, physicists have divided the space behind an aperture into two regions.
One is the near-field region, the region where light waves are still mostly spherical. Here the Fresnel
diffraction or near-field diffraction is used to calculate the propagation of waves through the field. It is



1.1. An Overview of Adaptive Optics 4

equal to: [3]

A (xo, yo) ≈ e−ik∆z

iλ∆z

∫∫
R2
A(x, y)e−i k

2∆z ((xo−x)2+(yo−y)2)dx dy (1.2)

For the far-field, the region where light waves lose their spherical shape and become mostly flat, Fraun-
hofer diffraction, or far-field diffraction is used to calculate the propagation of light waves through the
field. To define the transition from near-field to far-field the dimensionless Fresnel number, defined as
F = r2/(L ·λ), is used, where r is the radius of the aperture, L is the distance from the aperture, and λ
is the wavelength of light. If F > 1 the near-field equation has to be used, and if F ≤ 1 the Fraunhofer
diffraction approximation can be sued. The Fraunhofer diffraction integral is equal to [3]

A (xo, yo) ≈ e−ik∆ze−i k
2∆z (x2

0+y2
0)

iλ∆z

∫∫
R2
A(x, y)e−i k

2∆z (xox+yoy)dx dy (1.3)

Diffraction is a process by which the light is spread out as a result of passing through an aperture or
across an edge. The maximum image quality that can therefore be achieved using adaptive optics is to
make the system diffraction-limited. This means that the residual error of the wavefront reconstruction
should be smaller than the effects of diffraction.

1.1.3. Image quality
The Fraunhofer diffraction approximation is equal to taking the Fourier transform of the input field
A(x) multiplied by the pupil function P (x) – equal to one inside the systems aperture, and zero outside
of it – and a phase term. Looking only at the intensity, as in a Shack-Hartmann sensor, the squared
field distribution is given by [3]

I(u) = 1
λ2f2

∣∣∣∣∫∫
R2
A(x)P (x)e−i 2π

λf (xu+yv)dx
∣∣∣∣2

≡ 1
λ2f2 |F(A(x)P (x))|2 (1.4)

The point spread function (PSF) is the image of a point source. The PSF is the impulse response of
the optical system. It is equal to the image of a point p0 that is affected by diffraction and possible
aberrations. The resulting image p1 contains information on the aberrations present in the system. If
the system is free of aberrations i.e. diffraction-limited, meaning ϕ(x) is a constant, its PSF is equal to
the Airy pattern or Airy disk.

Figure 1.4: The Airy disk: the point-spread function of a diffraction-limited system [16]

On the left side of figure 1.4 is a 3-D plot of the Airy function, and on the right side a top-view is seen.
The inner black ring defines the diffraction-limited resolution, and is located at a distance 1.22λ/D
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from the center. For systems that are not diffraction-limited, the ring contracts and its distance to the
center shrinks. The PSF is equal to [3]

p(u) =
∣∣∣F (

P (x)e−iϕ(x)
)∣∣∣2

(1.5)

The distance from the center of the PSF to the first dark ring can be used to assess the quality of an
image. The angular distance 1.22λ/D mentioned above is Rayleigh’s resolution criterion. More resolu-
tion criteria exist: Abbe’s resolution criterion and Sparrow’s resolution criterion. These are defined as
a distance of λ/D and 0.94λ/D respectively. For Rayleigh’s resolution criterion the minimum resolv-
able separation between two points is the diameter of the central disk of the PSF. Out of the three,
Rayleigh’s is strictest. Abbe’s resolution criterion is more lenient and is used in the world of microscopy.
Sparrow’s resolution criterion is the most lenient of all, being the ultimate minimal distance needed
before the two patterns form a single new one.

1.1.4. Turbulence
In astronomy, atmospheric turbulence is the primary source of aberration which decreases the resolu-
tion of the optical system. Turbulence can be described using Kolmogorov’s statistical theory [5]. An
important parameter in this model is the Fried parameter or the Fried coherence length, denoted by
r0. It describes the quality of optical transmission through the atmosphere due to turbulence. To be
precise, it describes the diameter of a circle over which the root means square wavefront aberration due
to turbulence is equal to 1 radian. Typical values lie between 5-20 cm, with 5 cm being only average
seeing conditions and 20 cm being about the best you can hope for on earth. For images with long
exposure time the Fried coherence length is the upper limit at which increasing the diameter of the
aperture becomes pointless. This means that without adaptive optics it would be pointless to construct
telescope mirrors of more than 20 cm in diameter, which would severely limit the amount of objects
that can be seen, as Rayleigh’s resolution criterion states that the diameter of the aperture needs to be
as large as possible to achieve high quality images.

To illustrate how an adaptive optics feedback control system would operate, an example is given where
a distant star is imaged. The star, located at a large distance from the optical system, emits light
which travels to the earth, where it arrives with it wavefront still flat, as the vacuum of space does not
cause any aberrations. The light then passes through the atmosphere where temperature, wind speed,
and pressure vary greatly between its different layers. This turbulence causes the wavefront to distort.
Once it reaches the optical system located on earths’ surface the aberrations have to be removed to get
a coherent image of the star. The light is captured by a telescope system and reflected off a deformable
mirror. The deformable mirror then directs the beam onto a beam splitter that divides the light
between the science camera and the wavefront sensor. The wavefront sensor analyses the disturbance
of the wavefront and sends a control input to the deformable mirror to change its shape, counteracting
the disturbance. To do this it needs to copy the negative shape of the measured deformation. In the
ideal scenario the system is fast and precise enough to make the system diffraction-limited, meaning
the outer telescope lens is the inhibiting factor of the image quality. Adaptive optics plays a huge
role in the telescoping world, as exposure times can be as long as 12 hours to compensate for the low
amount of distant light reaching the earth. Without the wavefront sensor analysing the aberrations and
the deformable mirror correcting them, turbulence would render any image with long exposure times
useless.

1.2. Classical Gradient-based Wavefront Reconstruction
This subsection details how to reconstruct the wavefront using a Shack-Hartmann wavefront sensor in
combination with either modal or zonal reconstruction algorithms. In the first subsection, an overview
is given of the Shack-Hartmann wavefront sensor. The modal and zonal algorithm approaches are
explained in the second subsection.
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1.2.1. Measuring the Wavefront
A range of sensors exist to measure the wavefront. Two important classes can be distinguished: the
pupil plane sensors and the focal plane sensors. Pupil plane sensors are placed in the plane optically
conjugated to the system pupil, whereas focal plane sensors measure the wavefront in their focal plane.
This paper deals only with pupil plane sensors and will elaborate on two of them: the Shack-Hartmann
wavefront sensor and the curvature sensor.

1.2.2. Shack-Hartmann sensor
The Shack-Hartmann sensor is a widely used tool to analyse the wavefront. It is a modified version of
the Hartmann sensor. The original Hartmann sensor from 1904 operates using an array of tiny holes
through which the incoming light passes. The light then goes on to hit a photoreceptive plate located
behind the grid. The aberrations in the wavefront are then measured by approximating them as a
network of piecewise tip/tilt aberrations. in 1971 Shack and Platt [8] modified the Hartmann sensor by
replacing the holes with lenslets. This greatly improved the light gathering ability or photon efficiency
of the sensor. This sensor has greatly surpassed the original Hartmann sensor in popularity, though it
should be noted that the original Hartmann sensor is still used today, mainly in the field of (extreme)
ultraviolet microscopy and lithography, for the simple reason that ultraviolet light is blocked by the
glass of the lenslets.

The Shack-Hartmann wavefront sensor is a popular pupil plane sensor. It operates by sampling the
wavefront across a grid of lenslets. This method has the advantage of approximating the wavefront
piecewise linearly, meaning it is fast enough for real–time control, but the downside is that the total
wavefront will be a piecewise linear approximation of the wavefront, which is nonlinear. As the wavefront
reconstruction speed plays an important role in adaptive optics, this approximation is acceptable. Below
are two figures showing schematically the way a Shack-Hartmann sensor operates.

Figure 1.5: 2D schematic of a Shack-Hartmann wavefront sensor [15]

Figure 1.6: 3D Schematic drawing showing the principle of the Shack-Hartmann wavefront sensor. [2]

Figure 1.5 shows a 2D-view of the Shack-Hartmann sensor. The incoming distorted wavefront is sampled
by the microlens array, which focuses the light on the CCD located behind it. In Figure 1.6 the same
in seen 3D. The shifting of the spots provides measurements for ∆x and ∆y, from which the wavefront
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can be reconstructed. For each subaperture located in the i-th row and j-th column in the lenslet array,
the local displacements are calculated using:

∆x(i, j) = κx
∂ϕ (xi, yj)

∂x
+ ηx(i, j)

∆y(i, j) = κy
∂ϕ (xi, yj)

∂y
+ ηy(i, j)

(1.6)

where the η’s represent the measurement noise and the effect of higher order aberrations that can not
be modelled by a simple tilt, and the κ’s are constants determined by the optical parameters such as
pupil size, distance between pupil and lens, etc.
The incoming light in a Shack-Hartmann sensor is often scattered across multiple pixels on the CCD
chip because of diffraction. This means the location of the center can be calculated using the following
equations:

sx(i, j) = γx

∑
u,v u∆xI(u, v)∑

u,v I(u, v)
∼=
∂ϕ (xi, yi)

∂x
+ ñx(i, j)

sy(i, j) = γy

∑
u,v v∆yI(u, v)∑

u,v I(u, v)
∼= αy

∂ϕ (xi, yi)
∂y

+ ñy(i, j),
(1.7)

where I(u, v) is equal to the intensity measured by the pixel in the u-th row and v-th column of
the camera, ∆x and ∆y equal to the spacing of the pixels along the x- and y-axis, γx and γy are
approximately 1

z , where z is the propagation distance between the aperture and detection planes.

1.2.3. Classical wavefront reconstruction
The classical approaches to wavefront analysis can be divided in two camps: the zonal (local) and
modal (global) methods. The zonal methods work by dividing the sensor area into a rectangular grid
of points. Then, using finite differences, the aberration is calculated in all of the grid points. Different
grid geometries exist. These will be presented in the next subsection. The modal approach operates
using a set of basis functions which are matched to the measured wavefront. Popular basis functions
are the Zernike polynomials and the Karhunen-Loève functions. The use of basis functions is preferred
over the use of zonal reconstruction when it comes to error propagation, ease of use, and speed [14].

Finite Difference Methods
The most popular zonal method is the finite difference method. It subdivides the sensor area into a
rectangular grid of points. Different zonal algorithms exist; popular ones include the Fried, Hudgin, and
Southwell geometries. These geometries subdivide the grid into subapertures, and within each of these
subapertures the local wavefront is then calculated using a least-squares approach. The total wavefront
is then obtained by combining all the subapertures. Below is a figure illustrating different geometries

Figure 1.7: Illustration of a) Fried, b) Hudgin, and c) Southwell sensor geometries. The x- and y-slopes are denoted by
the horizontal and vertical dashes respectively, and the phase points are denoted by the dots. [13]
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For Fried’s finite difference model the slopes are approximated in the following way:
∂ϕ (xi, yj)

∂x
≈ [(ϕ (xi+1, yj+1) + ϕ (xi+1, yj))− (ϕ (xi, yj) + ϕ (xi, yj+1))] / (2DL.)

∂ϕ (xi, yj)
∂y

≈ [(ϕ (xi+1, yj+1) + ϕ (xi, yj+1))− (ϕ (xi, yj) + ϕ (xi+1, yj))] / (2DL.) ,
where Dl is equal to

the size of the subaperture and i, j = 1, . . . , n. Now, using the centroid algorithm formulae

sx(i, j) = γx

∑
u,v u∆xI(u, v)∑

u,v I(u, v)
= αx

∂ϕ (xi, yi)
∂x

+ ñx(i, j)

sy(i, j) = γy

∑
u,v v∆yI(u, v)∑

u,D I(u, v)
= αy

∂ϕ (xi, yi)
∂y

+ n̄y(i, j),

The slopes can be calculated using

[
sx(i, j)
sy(i, j)

]
− α

2DL

[
−1 −1 1 1
−1 1 −1 1

] 
ϕ (xi, yj)
ϕ (xi, yj+1)
ϕ (xi+1, yj)
ϕ (xi+1, yj+1)

 +
[
nx(i, j)
ny(i, j)

]
,

where nx and ny are noise terms. One can now proceed by stacking the spatial measurements
[
sx(i, j)
sy(i, j)

]
for all i, j = 1, . . . , n into one big vector s. This vector can then be used to calculate the global field
using the least squares approach:

s = Gϕ+ n,

Where G is a matrix which depends on the chosen geometry of the approximation of the spatial deriva-
tives. As can be seen, there are at every i, j fewer equations than unknowns. This means that statistical
information on the variance of the wavefront is necessary:

E[ϕϕT ] = Cϕ.

This means the problem can be written into the following form:

minimize ϕϵT ϵ

subject to s = Gϕ+ Lnϵ

The solution of this weighted least squares problem is given by

ϕ̃ = CϕG
T

(
GCϕG

T + Cn

)−1
s

Modal Methods
Instead of approximating the global wavefront by interpolating using a rectangular grid, a linear com-
bination of base functions can be used to fit the measured aberrations. Popular base functions include
the Zernike polynomials and the Karhunen-Loève functions. Zernike functions are orthogonal to one
another and always reach a maximum magnitude of 1 at the aperture boundary. The Zernike functions
can be arranged in a Zernike pyramid. The first 21 Zernike functions, ordered in the pyramid, look like
this:
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Figure 1.8: The first 6 rows of Zernike functions Zm
n (ρ, θ) defined on a unit disk for ρ ∈ [0, 1] and θ ∈ [0, 2π], sorted in a

Zernike pyramid corresponding to k = 0,. . . ,20. [1]

The measured wavefront can be approximated via

ϕ(x, y) =
K∑

k=1

zkZk(x, y), (1.8)

where K denotes the highest order of polynomial used, zk the weighting coefficient, and Zk the partic-
ular aberration, for example tip/tilt, defocus, astigmatism etc. The small index k is the Noll-index. It
counts through the pyramid from left to right and top to bottom: Z0

0 in the figure corresponds to k = 0,
Z−1

1 and Z1
1 correspond to k = 1 and k = 2 respectively and so forth. It should be noted that the

piston term (k = 0) is left out, as it is a constant offset, meaning it is invisible to gradient-based sensors.

The wavefront aberrations can now be calculated by equating the slopes to the sum of basis functions
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and a noise term:

sx(i, j) =
K∑

k=1

zk
∂Zk (xi, yi)

∂x
+ ηx(i, j)

sy(i, j) =
K∑

k=1

zk
∂Zk (xi, yi)

∂y
+ ηy(i, j),

(1.9)

where K denotes the highest order polynomial, (xi, yi) denotes the location of the lenslet in the i-th
row and j-th column. It can be written in matrix notation

s = Bζ + η, (1.10)

where s is a vector containing all slopes in x- and y-direction: s = [sT
x , s

T
y ]T , B is a matrix containing

partial derivatives of K Zernike functions, and ζ is the unknown: the coefficients zk describing the size
of each of the individual Zernike functions. η is an added noise term again. A least-squares approach
is used to arrive at an optimal solution. It is defined as

ϕ̂ = B+s, (1.11)

where B+ denotes the Moore-Penrose inverse or pseudo-inverse, which exists even for singular matrices.
Using this method it is possible to extract the piston term by looking at the average of the normalised
basis functions. The average of their sizes will reveal the amount of piston.

1.3. Overview
For some high resolution imaging systems it is necessary to incorporate a deformable mirror with
adaptive optics. This chapter showed the general principle of adaptive optics. This is the basis on
which the rest of the thesis is built. The next chapter will deal with classical wavefront reconstruction
using a gradient-based method. In the introduction the general principles of adaptive optics were shown.
In this chapter the standard method of centroiding using both a classically aligned SH sensor is shown.
Two methods for calculating the wavefront were presented: the finite difference and the modal method.
These are the conventional methods of wavefront reconstruction, and they will serve as a benchmark for
the alternative alignment and Fourier demodulation methods to be tested against. In the next chapter
the Fourier demodulation method will be shown.

1.4. Thesis motivation
This thesis will investigate the combined use of the alternative alignment of the Shack-Hartmann sensor
and the method of Fourier demodulation to process the Hartmanngrams resulting from the alternative
alignment.
The alternative alignment turns the Shack-Hartmann sensor from a gradient sensor into a curvature
sensor by establishing optical conjugacy between the CCD and the aberration. The alternative align-
ment is able to handle large amplitude aberrations as the region on the CCD does not shrink or expand.
This has its limits of course, adding or removing too many spots will eventually break down the mea-
surement, but the alternative alignment should outperform the traditional alignment.
The Fourier demodulation method is also a good method to use when dealing with large amplitude
aberrations: whereas the centroiding algorithm needs the spots to stay within their subapertures and
can only tolerate so many missing spots, the Fourier algorithm can easily deal with large spot move-
ments and the addition or removal of spots. The research question to be answered is as follows. Can the
alternative alignment combined with Fourier demodulation be used to reconstruct the wavefront? If so,
which Shack-Hartmann properties are beneficial to this combination, and which types of aberrations
are beneficial?



2
Curvature sensing with a
Shack-Hartmann sensor

The Shack-Hartmann wavefront sensor is used to measure derivatives of the wavefront. Different deriva-
tives can be measured. In the introduction it was seen that the traditional alignment of the Shack-
Hartmann sensor results in the first order derivatives or gradients of the wavefront in two perpendicular
directions: ∆xΦ and ∆yΦ. By aligned the Shack-Hartmann sensor differently it is possible to measure
the curvature of the wavefront: ρ(x, y) = ∂2Φ

∂x2 + ∂2Φ
∂y2 = ∇2Φ. This chapter is devoted to showing how

this is achieved and what its consequences are.

2.1. Curvature sensing
To measure the curvature of the wavefront Vdovin, Verhaegen, and Soloviev [7] propose using a single
Shack-Hartmann sensor with a standard microlens array, positioned in such a way that the CCD is
optically conjugated to the deformable mirror and system aperture. This is easier than earlier methods
of curvature sensing which had to measure the intensity in two planes [12], use an astigmatic MLA, or
use three SH sensors.
The alternative alignment establishes a direct geometric correspondence between the coordinates on
the deformable mirror surface and the sensor chip. The change in the local spot density corresponds
to the Laplacian curvature of the mirror. In the traditional setup, the deformable mirror and the
microlens array of the wavefront sensor are conjugated to the system pupil, see figure 2.2, which means
every subaperture corresponds to a particular pupil subaperture and to the corresponding patch of the
deformable mirror. The beam crosses the microlens array in a fixed area and the spot pattern can move
over the camera chip but contains the same number of spots under certain obvious conditions.
In the alternative alignment the focal plane of the microlens array, the surface of the CCD, is located in
the plane conjugated to the pupil as seen in figure 2.2. In this case a direct geometric correspondence
exists between the coordinates on the deformable mirror surface and the sensor chip. The microlens
array is now located in front of the aperture and the beam can cross it in different places depending
on the wavefront shape. The number of spots in the Hartmann pattern is no longer fixed. Instead, the
region they occupy becomes fixed. The change in local density of the spots is directly proportional to the
local Laplacian curvature, and shows almost no dependence on intensity variations. As a consequence
the control signal applied to an actuator is proportional to the integral of the points density over its
area. The boundary conditions along the edge of the pupil are given by the centroids displacements
along the pupil edge.
An analysis is made of the total amount of spots for three scenarios: one where there is no control input
to the deformable mirror, one where there is a positive maximum signal to all elements of the deformable
mirror, and one where there is a negative maximum signal to all the elements. This will establish the
range of spots over which the system can operate. Different actuators are matched to different portions
of the region, and the more spots are present in their region compared to the situation where there is no
control input, the higher their control input. The method then uses the four nearest connected pixels

11
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to model the spot, as it is a centroiding-based algorithm.
The density of the spots was now measured for 21 control inputs of -1,-0.9,. . . ,0.9,1. The resulting
normalised density displays good linear dependence on the control input, see figure 2.1.

Figure 2.1: Illustration of the applied control signal and the normalised density on the left, fit of error on the right. [7]

The difference between the standard and alternative alignment of the Shack-Hartmann sensor can be
seen below.

(a) Example of a standard alignment system. The SH MLA is
placed in the plane optically conjugated to the deformable

mirror.

(b) Example of an alternatively aligned system. The CCD is
placed in the plane optically conjugated to the deformable

mirror.

Figure 2.2: The standard alignment and alternative alignment shown side by side. The magnification factor for this
system is equal to M = − f1

f2
.
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As can be seen in figure 2.2 plane optically conjugated to the deformable mirror is occupied either by
the microlens array in the standard alignment or the CCD in the alternative alignment. The difference
in aberrations measured between the two methods is shown below:

(a) Standard alignment flat wavefront. (b) Standard alignment defocus aberration

(c) Alternative alignment flat wavefront. (d) Alternative alignment defocus aberration.

Figure 2.3: Four Shack-Hartmann patterns showing the difference between the alternative and standard alignments.
Notice that the total illuminated area on the CCD changes in the case of standard alignment, whereas it remains

constant in the case of alternative alignment.

The difference between the resulting Hartmanngrams becomes clear when looking at figure 2.3. The
standard alignment patterns will occupy an area on the CCD that changes with the size and shape of
the aberration, whereas in the alternatively aligned system the patterns will always occupy the same
region, regardless of size or shape of aberration.
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2.2. Schematic comparison of alternative alignment with traditional
alignment

To illustrate the main difference between standard alignment and traditional alignment, their workings
are presented here. First the propagation of the wavefront through the Shack-Hartmann sensor is shown:

Figure 2.4: Schematic view of the difference between the traditional and alternative alignments. The wavefront
propagates from top to bottom. The black bars at x’ in the traditional alignment and at x in the alternative alignment

denote the locations with optical conjugacy to the deformable mirror.

In figure 2.4 the difference between the traditional alignment and alternative alignment can be seen.
An incoming wavefront arrives at the microlens array located at the x′-plane, and is focused on the
CCD located in the x-plane. In the traditional alignment the microlens array is optically conjugated to
the deformable mirror which is denoted by the black bar. The same black bar is used to denote optical
conjugacy between the CCD and the deformable mirror in the alternative alignment.
To calculate the relation between x and x’ in the traditional alignment, the light is propagated forward
from x. In the alternative alignment the light is propagated backwards from x′ to x. The traditional
alignment requires the spot shifts to be known at the microlens array, which means the measurement
is an approximation. The alternative alignment however requires the aberration to be known at the
CCD, which is actually what happens when a Shack-Hartmann wavefront sensor is used. This means
that the alternative alignment is not an approximation and should therefore be more accurate. Below
is a schematic of the spot patterns for the two alignments.

(a) Schematic view of the spot pattern for the alternative
alignment. On the left the reference pattern is shown. In the

middle the spot shifts can be seen, and on the right the
measured pattern is visible. x’ is the location of the lenslet

array, and x is the location of the CCD.

(b) Schematic view of the spot pattern for the traditional
alignment. On the left the reference pattern is shown. In the

middle the spot shifts can be seen, and on the right the
measured pattern is visible. x’ is the location of the lenslet

array, and x is the location of the CCD.

Figure 2.5: Schematic view that shows the comparison of spot patterns for the alternative alignment with the traditional
alignment. Notice how the resulting spot pattern for the traditional alignment changes shape depending on the size of
the aberration, while retaining the same amount of spots, whereas the alternative alignment does not stray outside the

original aperture, but the amount of spots can change.
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For the standard alignment the resulting aberrated wavefront can be written as x = x′ − ∇w(x′) · f ,
whereas for the alternative alignment it holds that x′ = x + ∇w(x) · f , where x is the image plane
of the Shack-Hartmann sensor, x′ is the location of the lenslets, w(x) and w(x′) are the wavefronts
at those locations, and f is the focal length of the Shack-Hartmann sensor. There are two important
points to be made here. The first is that the region occupied by the spot pattern on the CCD changes
its shape depending on the aberration. As the CCD is optically conjugated to the plane of the optical
aberration, the region occupied by the spot pattern on the CCD remains constant no matter the
aberration. The second has to do with the difference between ∇w(x′) and ∇w(x). The traditional
alignment approximates the actual wavefront:

IT (x−∇w(x′)) = I0(x′)
IT (x)≈I0(x′ +∇w(x′)),

(2.1)

whereas the alternative alignment provides an equality instead of an approximation:

IA(x−∇w(x)) = I0(x′)
IA(x)=I0(x′ +∇w(x)).

(2.2)

In the case of the standard alignment the lenslet array of the Shack-Hartmann pattern is optically
conjugated to the aberration.

2.3. Summary
By placing the MLA in the plane optically conjugated to the aberration alternatively aligned SH sensor
is able to measure the curvature of the wavefront without modifying the SH sensor itself. Due to this
setup, the region occupied by the spots on the chip no longer changes, but the density of the spots
does, whereas in the traditional alignment the region does change. This also means that the alternative
alignment is a more accurate way of measuring the wavefront, as it requires the movement of the spots
on the CCD, which is provided by the Shack-Hartmann sensor, whereas the in the traditional alignment,
the movement of spots should actually be measured at the microlens array, which of course does not
happen in a Shack-Hartmann sensor. Finally the (scaled) signal from a curvature sensor can also be used
directly to actuate bimorph and membrane deformable mirrors as they satisfy the Poisson boundary
conditions. This means very little actual control is required to actuate the deformable mirror in a closed
loop setting.
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Using Fourier demodulation to extract

the gradients from a Hartmanngram

In the paper titled ”Phase retrieval by demodulation of a Hartmann-Shack sensor” [11] Yuval Carmon
and Erez Ribak propose to use Fourier demodulation as an alternative to the centroiding method. In
their case the displacement of the spots can be seen as a modulation of the pattern as a whole, which
is proportional to the phase gradient.
An advantage of using Fourier demodulation compared to using centroiding is that the spots no longer
need to stay within their predefined subaperture. As the magnitude of the aberration increases the
slopes can become too large and the spots can stray outside of their subapertures. This results in a loss
of quality of reconstruction for the centroiding method, whereas this is less of a problem for the Fourier
method.

3.1. The method
The method models the intensity function of the spot pattern as follows:

I(r) = V (r){2− cos[kxx− Fϕx]− cos[kyy − Fϕy]}, (3.1)

where V (r) is equal to the pattern amplitude at location r = (x, y), kx and ky are the scaled inverse
lenslet pitches: kx = 2π/Px and ky = 2π/Py. F is equal to the focal length of the lenslet array, and
ϕx and ϕy are equal to the phase gradients in x- and y-direction respectively. This is a simplification
from modeling the spots as airy patterns, where instead they are modeled as repeated sinusoids. Using
Euler’s identity the cosines can be written as complex exponentials, resulting in the following equation:

I(r) = 1/2{2V (r)− Cx(r)eikxx − C∗
x(r)e−ikxx − Cy(r)eikyy − C∗

y (r)e−ikyy},
Cx(r) = V (r)e−iF ϕx

Cy(r) = V (r)e−iF ϕy ,

(3.2)

where F is the focal length of the lenslets in the Shack-Hartmann sensor and the superscript ∗ denotes
the complex conjugate. Taking the Fourier transform of this expression results in the following:

Î = 1/2{4V̂ − Ĉx ∗ δ(qx − kx)− Ĉ∗
x ∗ δ(qx + kx)

−Ĉy ∗ δ(qy − ky)− Ĉ∗
y ∗ δ(qy + ky)}

= 1/2{4V̂ − Ĉx(qx + kx, qy)− Ĉ∗
x(qx − kx, qy)

−Ĉy(qx, qy + ky)− Ĉ∗
y (qx, qy − ky)},

(3.3)

where the ∧ superscript denotes the Fourier transform, and the normal script Asterix denotes a con-
volution. From equation (3.3) it can be seen that Î is composed of five parts: V̂ , Ĉx and its complex
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conjugate Ĉ∗
x, and Ĉy and its complex conjugate Ĉ∗

y . As can be seen from equation (3.2), only Cx(r) and
Cy(r) and their complex conjugates contain information of the gradients of the wavefront ϕx and ϕy. As
the complex conjugate C∗(r) in general does not contain any information not already contained in C(r)
only two terms are required to calculate the wavefront gradient in x- and y-direction: Ĉx(qx + kx, qy)
and Ĉy(qx, qy + ky).
To find the wavefront gradient information encapsulated in Ĉx(qx + kx, qy) the lobe is shifted to the
Fourier origin by performing a translation of −qxx̂. A low-pass filter is then applied which preserves
Ĉx(qx + kx, qy) and removes all other lobes. Looking at equation (3.3) it can be seen that from this
remaining lobe at the center of the Fourier origin the phase information can be extracted by isolating
the argument, which results in Fϕx. The same can be done with the y-lobe: shifting Ĉy(qx, qy + ky) by
−qyŷ, applying again the low-pass filter that removes all other lobes, and extracting the phase results
in Fϕy.
As the method involves Fourier transforming the lobes padding is used to increase the amount of fre-
quency bins, resulting in a better frequency resolution, which in turn leads to a better reconstruction
of the wavefront. To extract the gradients from the Hartmanngram using the method of Ribak and
Carmon, one performs the following steps: (1) zero-pad the Hartmanngram to at least twice its size; (2)
calculate its Fourier transform; (3a) shift the x-lobe to the origin and (3b) shift the y-lobe to the origin;
(4a) apply a low-pass filter that removes all lobes except the central x-lobe and (4b) central y-lobe;
(5a) extract the phase of the x-lobe and (5b) y-lobe; (6a) set the padded parts of the resulting x-phase
and (6b) y-phase to zero; (7) apply a correction such that the two gradients fields are consistent with
one another; (8) extend the corrected gradient fields beyond their aperture; (9) Fourier transform the
extended and corrected gradient fields; (10) perform Fourier integration; (11) extract the real part of
its inverse Fourier transform and (12) perform phase unwrapping when necessary.

3.2. Summary
To summarise, the method of Ribak and Carmon relies on calculating the Fourier transform of the
Hartmanngram and isolating the resulting sidelobes to calculate the gradients. This method is more
robust for larger amplitude aberrations than the standard method of centroiding as spots that leave
their subaperture no longer automatically pose a problem.



4
Calculating the gradients of a known

field using the finite difference

As the Shack-Hartmann sensor gives information on the gradients of the wavefront, this section provides
an investigation in the different ways in which a scalar field F can be differentiated. Later it is also
shown that the way the derivative is calculated directly influences the method of integration required
to go from gradients back to the original scalar field. Given a certain scalar field F different methods
of differentiation can be used to arrive at its gradients or slopes. It is shown how the finite difference is
calculated in the case of a fully known scalar field F and also a scalar field F that is seen through an
aperture.

4.1. Calculating the finite difference from F directly
If the scalar field F is known then the gradients can simply be calculated by finite difference the field.
There are two situations: in the first situation there is no aperture and there are no unknown phase
jumps. In the second situation the field is seen through an aperture and unknown phase jumps appear
at the border. Both of these situations are examined.

4.1.1. Case without aperture
In the case without an aperture the task as hand is fairly simple. An example scalar field F looks like
this:

Figure 4.1: Example scalar field F . It is based on astigmatism.

18



4.1. Calculating the finite difference from F directly 19

Its gradients can be calculated by taking the finite difference. To take the derivatives the ’difc’ function
is used, which calculates the finite difference in the following way:

difc(F ) = [F (2)− F (1) F (3)− F (2) ... F (n)− F (n− 1) F (1)− F (n)] (4.1)

Note that the result of difc(F ) has the same dimensions as the original scalar field F as it also calculates
the difference between the first and final pixel in each row or column. The resulting derivatives look
like this:

(a) x-gradient of the astigmatism aberration retrieved using the
’difc’ command.

(b) y-gradient of the astigmatism aberration retrieved using
the ’difc’ command.

Figure 4.2: The x- and y-gradient of the astimatism aberration. Notice the dimensions of the grids are still 100x100 due
to the ’difc’ command.

Integration can now proceed by either summing the rows of one gradient and the column of the other,
or by performing Fourier integration. This is covered in the section on integration.

4.1.2. Case with aperture
To illustrate how finite difference would work in the case of an aperture the following scalar field F is
given. It is a defocus aberration seen through a circular aperture. In this case there is no information in
the white area: it’s value is not simply equal to 0, but it is set to NaN as there can be no measurements
outside of the aperture.
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Figure 4.3: Defocus aberration on a 100x100 grid. Its amplitude is equal to +0.5 at the maximum and -0.5 at the
minimum. The radius of the aperture is 35 pixels. The values outside the aperture have been set to NaN as there is no

information at these points.
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The resulting fields in x- and y-direction look like this:

(a) x-gradient of the defocus aberration retrieved using the difc
command.

(b) y-gradient of the defocus aberration retrieved using the difc
command.

Figure 4.4: The x- and y-gradient of the defocus aberration. Notice the dimensions of the grids are still 100x100 due to
the ’difc’ command, but the shape of the circles has been changed slightly due to the NaN values.

These gradients first need to be extended before they can be integrated. This procedure is explained in
the section on gradient extension. The subsequent integration is covered in the section on integration.

4.2. Summary
If the scalar field F is known its derivatives can be calculated by using the finite difference method.
By using the ’difc’ command the dimensions stay the same. In the case where there is no aperture the
gradients themselves are enough to reconstruct the field. In the case of an aperture the two resulting
gradients themselves are not enough, due to the unknown jumps at the boundary the field can not be
integrated. This is why the gradients need to be extended beyond their original aperture. Chapter 6
shows the process of gradient extension.



5
Calculating and correcting for

inconsistencies of a gradient field

In section 3 it was seen that measuring the wavefront using a Shack-Hartmann sensor will result in
two components of the gradient field of the phase in perpendicular direction. Because of noise or
measurement errors these two components can be inconsistent with one another. In their paper called
”Wavefront reconstruction from its gradients” [10], Amos Talmi and Erez Ribak show how to identify
and remove the inconsistencies by calculating two correction terms Cx and Cy using an aperiodic Fourier
sine series with Dirichlet boundary conditions.
It is important to note that this method supposes the use of finite differencing to calculate the slopes
whereas the gradients retrieved using Fourier demodulation do not use finite differencing. Regardless of
the method used to calculate the gradient fields, consistency should be enforced anyhow. The different
methods of differentiation require different methods of integration, this will be shown in section 7.

5.1. The gradient fields
From the Shack-Hartmann sensor Sx and Sy are measured, which are the gradient fields of the phase
Φ. They are defined as follows:

Φ(n+ 1,m)− Φ(n,m) ≡ ∆xΦ(n+ 1
2
,m) ≈ Sx(n+ 1

2
,m) ≡ Sx(n̂,m) (5.1)

Φ(n,m+ 1)− Φ(n,m) ≡ ∆yΦ(n,m+ 1
2

) ≈ Sy(n,m+ 1
2

) ≡ Sy(n, m̂). (5.2)

In these equations ∆ is the symmetric difference operator: ∆xA(n+ 1
2 ,m) ≡ A(n+1,m)−A(n,m). The

shorthand notation n̂ = n + 1
2 is used to improve legibility. From the slopes Sx and Sy the wavefront

Φ is to be estimated. First
ρ(n̂, m̂) = ∆ySx(n̂, m̂)−∆xSy(n̂, m̂) (5.3)

is calculated, which is the mixed derivative. If this is equal to zero then the two gradient fields are
consistent with one another, which is equivalent with saying the gradients of the phase are conservative,
and ∇⃗×∇⃗Φ⃗ = 0⃗. If this is the case then the gradient fields don’t require correction and can be used for
integration. If this is not the case, the two fields are inconsistent with one another and require correc-
tion. A correction is sought which minimises the variance between the actual shears and the measured
shears, in other words the minimum of ϵ2 =

∑
n,m∈R[∆xΦ(n̂,m)−Sx(n̂,m)]2 +[∆yΦ(n, m̂)−Sy(n, m̂)]2

should be found.
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5.2. Calculation of the correction terms
The correction terms are equal to Cx(n̂,m) and Cy(n, m̂) in x- and y-direction respectively. The
corrected slopes are equal to

∆xΦ(n̂,m) = Sx(n̂,m) + Cx(n̂,m) (5.4)
∆yΦ(n, m̂) = Sy(n, m̂) + Cy(n, m̂), (5.5)

meaning that ρ is equal to:

ρ(n̂, m̂) = ∆ySx(n̂, m̂)−∆xSy(n̂, m̂) = ∆xCy(n̂, m̂)−∆yCx(n̂, m̂), (5.6)

as the correction terms are used to counteract the inconsistencies in the gradient fields. The correction
terms are sought in such a way that they are derivatives of a certain potential function V :

Cx(n̂,m) = −∆y · V (n̂,m)
Cy(n, m̂) = ∆x · V (n, m̂).

(5.7)

This is done to ensure that the correction terms will be purely solenoidal: V is a pure gradient field
and by taking the derivatives this way the resulting correction terms will be pure solenoidal fields. V
is now related to ρ in the following manner:

(∆2
x + ∆2

y) · V (n̂, m̂) = ∆xCy(n̂, m̂)−∆yCx(n̂, m̂) = ρ(n̂, m̂)
= ∆ySx(n̂, m̂)−∆xSy(n̂, m̂)

(5.8)

To find V and the corresponding correction terms the geometry of the aperture must be taken into
account. Dirichlet conditions are used which means that the potential function should be equal to 0
on the boundaries. For rectangular apertures this means that Fourier sine functions can be used as a
potential function. For an N ×M rectangular region the following set of base functions automatically
fulfil the boundary conditions:

ψk,l(x, y) = sin[kπ(x− 1
2

)/N ] · sin[lπ(y − 1
2

)/M ], (5.9)

as it is zero on the boundaries, and a complete orthogonal set over the integer grid (x, y) = (n,m) and
the half-integer grid (x, y) = (n̂, m̂) excluding the boundary points where the functions are zero.
Expanding the potential function V and the error function ρ in Fourier sine functions yields the following:

V (n̂, m̂) =
N∑

qx=1

M∑
qy=1

Ṽ (qx, qy)sin
(nqxπ

N

) (mqyπ

M

)

ρ(n̂, m̂) =
N∑

qx=1

M∑
qy=1

ρ̃(qx, qy)sin
(nqxπ

N

) (mqyπ

M

)
.

(5.10)

To transform them back into the standard domain the following equations are used:

Ṽ (qx, qy) = 4
NM

N∑
n=1

M∑
m=1

V (n̂, m̂)sin
(nqxπ

N

) (mqyπ

M

)
ρ̃(qx, qy) = 4

NM

N∑
n=1

M∑
m=1

ρ(n̂, m̂)sin
(nqxπ

N

) (mqyπ

M

)
.

(5.11)

In Fourier domain they are linked in the following way:

(∆2
x + ∆2

y)Ṽ (qx, qy) = −4
(
sin2(πqx

2N
) + sin2(πqy

2M
)
)
Ṽ (qx, qy)

= −ρ̃(qx, qy),
(5.12)

meaning that Ṽ can be calculated as follows:

Ṽ (qx, qy) = ρ̃(qx, qy)
4sin2

(
πqx

2N

)
+ 4sin2

( πqy

2M

) , qx, qy > 0. (5.13)

V can now be calculated using equation (5.11), and from equation (5.7) Cx and Cy can be calculated.
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5.3. Summary
To summarise, the gradients fields retrieved from measurements using a Shack-Hartmann sensor can be
corrupted among other things by measurement errors and noise. This can cause the gradient fields to
be inconsistent with one another. These inconsistencies will lead to errors when integrating, therefore
a correction is applied to the gradient fields to enforce consistency. The correction terms are purely
solenoidal fields aimed at removing all rotation in the gradients. The correction fields are calculated
using Fourier sine series using Dirichlet boundary conditions.



6
Extending the gradients beyond their

aperture

In the section on the calculation of gradients using the finite difference it was seen that fields seen
through an aperture need to be extended beyond that aperture before the gradients can be used for
integration. The gradient extension method as shown in ”Fast wave-front reconstruction in large adap-
tive optics systems with use of the Fourier transform” (2002) by Poyneer, Gavel & Brase is used [6].

6.1. The method of gradient extension
To extend the gradients and resolve the issue of unknown phase jumps there are two conditions that
need to be fulfilled: the use of the DFT requires that the resulting wavefront Φ is spatially periodic,
which means that the sum of every row in the x-gradient should be equal to zero, and that the sum of
every column in the y-gradient should also be zero.
The second condition is that any closed path of the gradient must sum to zero, that is, the gradients
need to be conservative. At this point in the process the gradients are already consistent by having
added the correction terms Cx and Cy.
All that remains is to extend the gradients by taking the first and final values in a column and extending
them all the way up and down respectively for the x-slope, and perform the same operation on the rows
and extend to the left and right respectively for the y-slope.
This way of extending automatically guarantees that the sum of any closed path is equal to zero. The
only thing that is left is to ensure that all rows in the x-gradient and all columns in the y-gradient sum
to zero. This is done by summing all but the last elements of every row in the x-gradient and of every
column in the y-gradient, and setting the negative of this result as the value of the last element of every
row in the x-gradient and every column in the y-gradient.
Performing gradient extension on an example field looks like this. The conservative gradients of a
defocus aberration are shown:
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(a) Linear x-gradient. (b) Linear y-gradient.

Figure 6.1: Gradients retrieved from a defocus aberration. The white regions are set to NaN values as there is no
information from the Shack-Hartmann sensor.

First the gradients are extended and zeroes are put in place of all the remaining NaN values:

(a) Extended linear x-gradient. (b) Extended linear y-gradient.

Figure 6.2: Extended gradients retrieved from a defocus aberration. The remaining NaN values after the extension
operation have been replaced with zeroes.
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After the gradients are extended and the NaN values are replaced with zeroes, the sum of each of the
columns and rows can be calculated and the final values can be added:

(a) Extended and seamed linear x-gradient. (b) Extended and seamed linear y-gradient.

Figure 6.3: Extended and seamed gradients retrieved from a defocus aberration. The rows in x-direction and the
columns in y-direction all sum up to zero.

The gradients have now been extended, and the two conditions – 1) that the sum of every row in the
x-gradient and every column in the y-gradient should be equal to 0 and 2) that any closed path of the
gradient sums to zero – have been fulfilled. The slopes are now ready to be integrated to arrive at the
wavefront Φ.

6.2. Summary
It was seen that fields seen through an aperture require extension beyond that aperture in order to be
integrated. As a Fourier integration will be used later, the gradient fields need to adhere to two rules:
1) that the sum of every row in the x-gradient and every column in the y-gradient should be equal to
0 and 2) that any closed path of the gradient sums to zero. A simple extension was used: the first and
last nonzero value of the rows was copied for the beginning and the end of the row respectively for the
x-gradient, and the same is done for the columns in the y-gradient. To ensure the the sum of every row
in the x-gradient and every column in the y-gradient equals 0 a seam is added at the right end and
bottom end of the x- and y-gradient respectively. This final pixel is equal to the negative of the sum
of all the pixels in that row or column which precede it. The gradients are now extended and can be
integrated.



7
Integration of the gradients

In chapter 4 it was seen how the derivative of a certain scalar field F can be calculated in different
ways. This chapter shows the different integration methods used to arrive at the scalar field F from its
slopes. The way the slopes are to be integrated depends on the method that was used to extract the
gradients. With the slopes having been corrected and extended it is now possible to integrate and arrive
at the wavefront Φ. In this chapter three methods of integration are analysed: numerical integration,
integrating using a kernel in the Fourier domain aimed at integrating fields from discrete derivatives, and
integrating using a kernel in the Fourier domain aimed at integrating fields from continuous derivatives.
It is shown that for an accurate result derivatives calculated using Fourier demodulation require the
use of the continuous Fourier kernel.

7.1. The finite difference
An easy way to calculate the wavefront Φ from the consistent and extended gradients Sx and Sy is to
simply sum along the x- and y-gradient fields:

Φ(n,m) = Φ(1, 1) +
n+1/2∑
x=3/2

Sx(x, 1) +
m+1/2∑
y=3/2

Sy(n, y)

= Φ(1, 1) +
m+1/2∑
y=3/2

Sy(1, y) +
n+1/2∑
x=3/2

Sx(x,m),

(7.1)

where the initial value Φ(1, 1) can be any number of choice that results in a piston term. Two methods
can be used interchangeably: either the first row is calculated from the x-gradient after which all
columns are calculated using the y-gradient, or the first column is calculated using the y-gradient after
which all rows are calculated using the x-gradient. As the gradient fields Sx and Sy are consistent the
resulting Φ(n,m) is the same either way.

7.1.1. Case without aperture
For the case without an aperture the gradient does not need extension. Line integration can be applied
directly. Recalling the gradients from the section on the calculation of the slopes:
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(a) x-gradient of the astigmatism aberration retrieved using the
’difc’ command.

(b) y-gradient of the astigmatism aberration retrieved using
the ’difc’ command.

Figure 7.1: The x- and y-gradient of the astimatism aberration. Notice the dimensions of the grids are still 100x100 due
to the ’difc’ command.

Integrating line by line yields the following result:

(a) The reconstructed field from integrating line by line. (b) The difference between the ground truth and the
reconstruction.

Figure 7.2: The reconstruction of the field and its reconstruction error. Notice how in the case of a full aperture the
reconstruction is near perfect.

As can be seen this method is suitable to integrate fields. In real life the gradients are always measured
using an aperture. This simulation of this situation is now considered.

7.1.2. Case with aperture
An example of integrating gradient fields that have been obtained using the finite difference can be seen
below:
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Figure 7.3: Ground truth field for integration.

This field is taken as a basis for the examples. It is a defocus aberration seen through an aperture with
a radius of 33 pixels on a 100x100 grid. Taking the derivatives in x- and y-direction yields the following
gradient fields Sx and Sy:

(a) Resulting x-gradient from taking the finite difference. (b) Resulting y-gradient from taking the finite difference.

Figure 7.4: Gradients from the finite difference.

As these gradients have unknown phase jumps at the border of the aperture gradient extension is
required. The resulting extended gradients look like this:
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(a) Extended x-gradient. (b) Extended y-gradient.

Figure 7.5: The extended x- and y-gradients.

Having extended the gradient, the integration is now possible. For numerical differencing in the case of
an aperture the reconstruction and its error look like this:

(a) Resulting reconstruction from integrating and overlaying
the aperture.

(b) Numerical error of reconstruction.

Figure 7.6: The reconstruction and its error using line integration in the case of an aperture.

It can be seen that gradients retrieved from the finite difference can also be integrated using line
integration in the case of an aperture.

7.2. Fourier integration
Just as the wavefront Φ can be calculated from its slopes Sx and Sy, the Fourier transform of the
wavefront F(Φ) can be calculated using the Fourier transforms of the slopes F(Sx) and F(Sy). To do
this a kernel is to be constructed which relates the three to one another. This kernel depends on the
way the derivative is taken: either through the finite difference or through Fourier demodulation. Two
kernels are constructed and compared to one another.

7.2.1. Discrete Fourier integration
In the case of the finite difference a discrete Fourier kernel can be constructed to retrieve the Fourier
transform of the wavefront from the Fourier transforms of the slopes. To construct the kernel the
definition of the finite difference is analysed. The differentiation operation can be seen as follows:
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Figure 7.7: A visual representation of the way the derivative Sx(n + 1
2 , m) ≡ Φ(n + 1, m) − Φ(n, m) is taken in one

dimension. ∆ represents the step size, for real systems ∆ represents the distance between the centers of two pixels on
the CCD.

The derivative Sx(n+ 1
2 ,m) ≡ Φ(n+ 1,m)− Φ(n,m) is equal to

Sx =
(
δ(t− ∆

2
)− δ(t+ ∆

2
)
)
∗ Φ(n,m), (7.2)

the convolution of two delta peaks along the phase in x-direction. In the Fourier domain it looks like
this:

F(Sx) =
(
e− iu∆·2π

2 − e iu∆·2π
2

)
· F(Φ). (7.3)

Using Euler’s identity it can be shown that the two complex exponentials are equal to a sine:

F(Sx) = −2i · sin (u∆π) · F(Φ). (7.4)

Similarly it can be shown that the gradient field in y-direction is equal to:

F(Sy) = −2i · sin (v∆π) · F(Φ). (7.5)

This means that the following relation holds:

F [Φ] = i
sin (u∆π)F(Sx) + sin (v∆π)F(Sy)

2
(
sin2 (u∆π) + sin2 (v∆π)

) . (7.6)

The extended gradients seen in fig. 7.5 can be used directly as the rows in the x-gradient and the
columns in the y-gradient sum to 0. Their Fourier transforms look like this:

(a) The Fourier transform of the x-gradient. (b) The Fourier transform of the y-gradient.

Figure 7.8: Fourier transforms of gradients obtained by the finite difference.
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Using equation 7.6 the Fourier transform of the wavefront can be calculated and compared to the Fourier
transform of the wavefront:

(a) Fourier transform of the ground truth. (b) Fourier transform calculated using eq.
7.6.

(c) The difference between the wavefront
and its reconstruction in Fourier domain.

Figure 7.9: The Fourier transform of the ground truth, the reconstruction, and the difference between the two.

By taking the inverse Fourier transform the resulting wavefront can be compared to the ground truth:

(a) The ground truth. (b) Reconstructed field using the discrete
Fourier kernel.

(c) The difference between the wavefront
and its reconstruction in Fourier domain.

Figure 7.10: The ground truth, the reconstruction, and their differences using the discrete Fourier kernel.

As can be seen the discrete Fourier kernel can be used to integrate fields seen through an aperture
whose gradient is calculated using finite difference.

7.2.2. Continuous Fourier integration
In the case of a continuous derivative, which is used in the Fourier demodulation method, a different
kernel is constructed to retrieve the Fourier transform of the wavefront from the Fourier transforms of
the slopes. In the continuous case the derivative is defined as:

dnf(t)
dtn

= (iω)nF (ω) (7.7)

The first order derivative is calculated in the standard domain which is equal to multiplying with iω in
the Fourier domain:

F(Sx) = i · u · F(Φ)
F(Sy) = i · v · F(Φ),

(7.8)

where i is the imaginary number and u and v are the x- and y- direction equivalents in Fourier. From
this it can be shown that the inverse kernel for the continuous case is equal to:

F{Φ} = −i · u · F{Sx} − i · v · F{Sy}
u2 + v2 . (7.9)

It was seen earlier how the method of Fourier demodulation arrives at gradients from the image of a
Shack-Hartmann wavefront sensor. To show how the procedure for the continuous Fourier kernel the
starting point are seamed and extended gradients from a defocus aberration:
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(a) Seamed and extended linear x-gradient. (b) Seamed and extended linear y-gradient.

Figure 7.11: Seamed and extended Linear x- and y-gradients retrieved from a Shack-Hartmann wavefront sensor.

Their Fourier transforms look like this:

(a) Fourier transform of the seamed and extended linear
x-gradient.

(b) Fourier transform of the seamed and extended linear
y-gradient.

Figure 7.12: Fourier transforms of the seamed and extended Linear x- and y-gradients retrieved from a Shack-Hartmann
wavefront sensor.
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Using equation 7.9 the Fourier transform of the wavefront can be calculated:

Figure 7.13: Fourier transform of the wavefront calculated using the continuous Fourier kernel.

From this the wavefront itself can be calculated. It is compared to the ground truth:

(a) The ground truth. (b) Reconstructed field using the
continuous Fourier kernel.

(c) The difference between the wavefront
and its reconstruction using the

continuous Fourier kernel.

Figure 7.14: The ground truth, the reconstruction, and their differences using the continuous Fourier kernel.

As can be seen the wavefront is reconstructed quite nicely. Only a low RMSE of 0.21 is present.

7.3. Summary
Three methods of integration were shown: line integration and integration using a discrete Fourier kernel
in the case of gradients retrieved from finite difference, and integration using a continuous Fourier kernel
in the case of gradients retrieved from Fourier demodulation of a Shack-Hartmann pattern. It is shown
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that the use of the finite difference in taking the derivatives requires the use of either the line integration
or the discrete Fourier kernel, whereas the use of Fourier demodulation in calculating the derivatives
requires the use of the continuous Fourier kernel.



8
Using phase unwrapping to remove

phase jumps

Since the combination of the Fourier algorithm and the alternative alignment are able to handle large
aberrations it is important that the algorithm is able to deal with wrapped phase. In order to unwrap the
phase a slightly modified version of Goldstein, Zebker and Werner’s two-dimensional phase unwrapping
[9] is used. This algorithm assumes that no phase jump can be equal to or larger than half of a full cycle
due to the sampling frequency being at least the Nyquist minimum. The algorithm tries to unwrap the
phase field by integrating the phase differences from point to point, always adding an integer number
of cycles that minimizes the phase differences.
In the presence of measurement errors and sensor noise an inconsistency can arise where neighbouring
points differ by half a cycle or more but adding an integer number of cycles is unable to resolve the
situation. If no corrections are made the resulting error propagates globally. This section shows the
identification of inconsistencies in the resulting reconstruction, and also what can be done about them.

8.1. The method of phase unwrapping
The situation wherein an inconsistency can not be removed by adding an integer number of cycles shows
itself through a circular summation of phase differences. If the sum of the difference over a cluster of
four circularly adjacent points is equal to zero the data is consistent. If, however, the data is inconsistent
the sum is equal to ±1. If it is equal to +1 it is called a positive or plus residue, if it is equal to −1 it
is called a negative or minus residue. If nothing is done about the residues the resulting reconstruction
will suffer from global errors in the form of long streaks in the reconstruction. An example of what
happens when a residue is present is given below:

0.0 0.1 0.2 0.3
0.0 0.0 0.3 0.4
0.9 0.8 0.6 0.5
0.8 0.8 0.7 0.6

Table 8.1: An inconsistent phase field. All numbers are fractions of a full cycle.

In this field an inconsistency is present in the central four points. This becomes apparent when they
are examined more closely:
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0.0 → 0.3
↑ ↓
0.8 ← 0.6

Table 8.2: The inconsistency in the field.As no jumps of more than half a cycle should be possible, the jump from 0.8 to
0.0 should be seen as a +0.2 jump from 0.8 to 1.0 instead of a -0.8 jump from 0.8 to 0.0. Summing clockwise results in a

residue of +1.

Upon analysing all clusters it becomes apparent that there is only one residue present in the matrix:

0.0 0.1 0.2 0.3
0 0 0

0.0 0.0 0.3 0.4
0 +1 0

0.9 0.8 0.6 0.5
0 0 0

0.8 0.8 0.7 0.6

Table 8.3: The result of summing all clusters of four points reveals there is only one residue: a positive one in the center.
This means there is a net nonzero residue present in the system.

This means that the grid can never be made free of points that are adjacent and differ more than half
a cycle. Below is the grid that was seen earlier with the adjacent inconsistencies highlighted:

0.0 0.1 0.2 0.3
0.0 0.0 0.3 0.4
0.9 0.8 0.6 0.5
0.8 0.8 0.7 0.6

Table 8.4: An illustration of adjacent points differing more than half a cycle in inconsistent phase field. The two points
in red differ more than half a phase, just like the points in orange.

An example of an attempt of removing the inconsistency by adding an integer amount of cycles to the
problematic points can be seen below, depending on whether a correction is made from top to bottom
or from left to right it results in the following grids:

0.0 0.1 0.2 0.3
0.0 0.0 0.3 0.4
-0.1 -0.2 -0.4 -0.5
-0.2 -0.2 -0.3 -0.4

(a) Result of trying to correct the phases by working from top to
bottom.

0.0 0.1 0.2 0.3
0.0 0.0 0.3 0.4
-0.1 -0.2 0.6 0.5
-0.2 -0.2 0.7 0.6

(b) Result of trying to correct the phases by working from left to
right.

Table 8.5: An illustration of the futility of trying to get rid of inconsistencies in a field by adding or removing one phase.
The location of the inconsistency changes (depending even on the direction of correction applied) but the inconsistencies

themselves remain.

If an attempt is made to integrate a field where residues are present the local errors will propagate
globally, as can be seen below in another more colorful example:
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Figure 8.1: An illustration of what happens when the residues are not corrected for. Long lines propagate throughout
the solution.

To prevent the residues from propagating globally residues are clustered in such a way that the algorithm
does not encircle an area with a net nonzero residue. This is done by mapping the residues and creating
branch cuts, which are lines where the algorithm is not allowed to cross. These cuts ensure that no
net residues remain by either clustering an equal amount of positive and negative residues together –
resulting in a net zero residue – or by isolating the residue through the use of branch cuts, both of
which prevent the residues from propagating globally. The downside is that across the lines of the cuts
phase discontinuities will arise and local errors will be present. An example of integrating using branch
cuts can be seen below:
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Figure 8.2: An illustration of what happens when branch cuts are put in place to correct for the residues. The residues
will not propagate throughout the solution. Compare with figure 8.1 to see the improvement.

The algorithm is a flood fill algorithm. This means that a starting point is defined from which the
algorithm sets out. From there it spreads and calculates the phase for all valid adjacent pixels, with
the rule that it is not allowed to cross over the branch cuts. If the amount of residues in a certain area
is extensive the algorithm might not reach that area as too many cuts have been made. In such cases
the algorithm declares the data in that area to be too ’corrupted’ to reliably unwrap the phase. This
is why the starting location for the algorithm should be located in a large region of the object that can
be unwrapped, as starting the algorithm in a noise-rich area might result in it getting trapped. An
example of what happens when the phase is too distorted to be unwrapped can be seen below:
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Figure 8.3: An illustration of what happens when the data is noisy to the extent that a large number of branch cuts have
to be made: the resulting reconstruction is also mostly corrupted.

8.2. Summary
It is shown that inconsistent fields can be identified by looking for closed loops that sum to either +1
or -1. All the inconsistencies are identified and given the marker of either positive or negative sink.
The algorithm then tries to group equal amounts of positive and negative sinks together by building
an impenetrable wall around such areas. If the data is corrupted only slightly it is often possible to
group the sinks together without the use of lots of these walls. The resulting phase can be unwrapped
easily and with high accuracy. In the case of large corruption however it might be that a lot of walls
have to be erected to group the sinks or even to block off entire areas. This results in large parts of the
resulting phase reconstruction to be illegible.



9
Setup for the traditional and

alternative alignments

To verify the method works in real life a test setup was created in which known defocus aberrations
were created. This section shows a simple setup that was built as a part of the thesis to generate
Hartmanngrams.

9.1. Traditional and alternative alignment setups in the lab
The physical experiments consist of introducing some simple known defocus aberrations of different sizes
to verify whether the system is aligned correctly and that the algorithm works properly. The setup is
depicted below:
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(a) Schematic overview of the setup in the standard alignment.
The microlens array is placed in the image plane of the system.

(b) Schematic overview of of the setup in the alternative
alignment. The charge-coupled device is placed in the image

plane of the system.

Figure 9.1: Setup of the system. A point source laser with a wavelength of 635 nm emits light that is collimated by a lens. A pinhole regulates the beam diameter of the system. Two
mirrors are used to ensure the beam is shot straight at the Shack-Hartmann sensor. Depending on the position of the Shack-Hartmann sensor, the aberration lens is placed either in
the plane optically conjugate to the microlens array or the charge coupled device. The Shack-Hartmann sensor is placed on a moving stage in order to switch between the standard

and alternative alignment modes.
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The Shack-Hartmann sensor is placed on a moving stage which enables an easy switch between the
traditional and alternative alignments.

9.2. Hartmanngram generation from the setup
The experiments are conducted as follows: The standard alignment setup is built with the microlens
array in the focal plane of the system. A reference image is taken. This provides the flat reference
wavefront. After that four lenses, each with a different focal length, are screwed in the aberration lens
holder one after the other. These provide four defocus aberrations of different sizes. The lenses have
a focal length of 200, 150, 75, and 50 mm. After having captured the four defocus images and the
reference, the Shack-Hartmann sensor is moved forward such that the CCD is located at the focal plane
of the system, meaning we have shifted the setup into the alternative alignment. The process then
repeats: four defocus aberration images and one flat reference image are captured for the alternative
alignment as well. These images are then pre-processed, processed, and their results verified.

9.3. Shack-Hartmann wavefront sensor used in the experiments
The Shack-Hartmann wavefront sensor used for the experiments is the model FS3370-O-P300-F18. Its
specifications are as follows:

Parameter Value
Camera model uEye UI-3370CP-M-GL
Camera type digital CMOS
Array geometry orthogonal
Array pitch 300 µm
Array focal length 18.6 mm
Clear aperture ≤ 3.5 mm
Subapertures ≤ 700
Recommended Zernike terms ≤ 300
Wavelength 400 ... 900 nm

9.4. Obtained pictures
The images obtained from the setup can be seen below. Unfortunately they can not be reconstructed
as there are three imperfections present in the Hartmanngrams. The first is that the patterns are
slightly rotated, which means that the lobes in Fourier space will also be slightly rotated, which makes
it impossible to make a nice cutout of the lobe. Second, the illumination is not constant: the intensity
changes from spot to spot. The pixel with the highest intensity registers a value close to 256, whereas
the center of some other spots barely reaches 60. This intensity change is picked up by the Fourier
transform and seeps into the lobe. Third and finally, some residual tip/tilt was still present in the
system, which again deteriorates the reconstruction.
In spite of these problems the images are shown nonetheless. The behaviour of the alignments can be
seen clearly: in the traditional alignment the spots pattern changes shape but retains the amount of
spots, whereas in the alternative alignment the region occupied on the CCD remains roughly the same,
whereas the amount of spots decreases with increasing aberration amplitude.
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Below are the pictures:

Figure 9.2: Images obtained from the setup in alternative alignment. From top left clockwise the flat reference image,
the 50 mm lens, the 75 mm lens, the 150 mm lens and the 200 mm lens.

Above are the pictures obtained by putting traditionally aligning the Shack-Hartmann sensor. Notice
how the shape of the pattern changes with the introduction of increasing amplitude aberrations. The
amount of spots remains constant throughout all five images.

Figure 9.3: Images obtained from the setup in standard alignment. From top left clockwise the flat reference image, the
50 mm lens, the 75 mm lens, the 150 mm lens and the 200 mm lens.

Above are the pictures retrieved from the alternative alignment of the Shack-Hartmann sensor. It can
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be seen that the region occupied by the Hartmanngram on the chip remains the same, but now the
amount of spots changes with the amplitude of the introduced aberration.

9.5. Summary
A laboratory setup can be achieved with a laser, two mirrors to guide its beam, two lenses to magnify
the guided beam, and a Shack-Hartmann sensor to generate the Hartmanngrams. An aberration lens
can be placed to introduce various aberrations to the system. The behaviour of the two alignments
was demonstrated in reality: The traditional alignment preserves the amount of spots, but the region
changes with the aberration, whereas the alternative alignment preserves the region but sees a change
in spot count.



10
Results

This chapter shows the results of the combined use of Fourier demodulation with alternative alignment.
These results are compared to the centroiding method for both traditional and alternative alignment.
The different parameters used for the virtual Shack-Hartmann sensor are discussed. Results are shown
for both circular and square apertures, and shot noise (Poisson noise) is also shown. Three types of
aberrations are used throughout: positive and negative defocus of the same but opposite amplitude,
and Zernike (14,6) to test the algorithms performance on higher order aberrations.

10.1. Simulated Shack-Hartmann parameters
For the simulations Gleb Vdovin’s and Fred van Goor’s LightPipes for Matlab package was used to
generate Shack-Hartmann patterns. As the results are simulated the ground truth is known. The
pitch and focal length are varied to see what is the optimal spot pattern for the combined use of the
alternative alignment and the Fourier demodulation. In one setup the light is approximated in a more
geometrical way. The focal length is short – only 0.5 mm – and the lenslets are close to one another;
the pitch is equal to 64 µm. This produces a Hartmanngram that consists of lots of tiny spots. In the
other setup the focal length is long, equal to 30 mm, and the lenslet have more space in between: the
pitch is equal to 300 µm, This produces a Hartmanngram containing far fewer but significantly larger
spots. These spots also interact with one another: the effects of diffraction can be observed, whereas
it can not be in the case of the short focal length and small distance between the lenslets. The two
situations are shown in table 10.1.

Situation Focal length (mm) Microlens array pitch (µ)m
Physical optics 30 300

Geometrical optics 0.5 64

Table 10.1: Table showing the focal length and pitch used in the two different scenarios.

10.2. Results using a circular aperture
The results for the circular aperture are shown for four scenarios, each with three aberrations. The four
scenarios are as follows:

1. Geometrical optics, alternative alignment
2. Geometrical optics, traditional alignment
3. Physical optics, alternative alignment
4. Physical optics, traditional alignment

The answer to the following two questions is sought: whether the alternative alignment can outperform
the traditional alignment, and whether the geometrical optics setup outperforms the physical optics
setup or vice verse. The three aberrations are as follows:
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1. 3π
2 amplitude defocus

2. - 3π
2 amplitude defocus

3. 3π
2 amplitude Zernike polynomial (14,6)

It is important to check whether the alternative alignment significantly outperforms the traditional
alignment in one of these scenarios, or whether the measured difference remains constant throughout.

10.2.1. Geometrical optics, alternative alignment
In this subsection the results for the alternative alignment using the geometrical Shack-Hartmann
parameters are shown. The use of the geometrical parameters in the Shack-Hartmann sensor leads to
a grid containing a high density of small spots without the effects of diffraction. These results can
be compared against the ones in section 10.2.2 to see the difference between the alternative and the
traditional alignment, and can also be compared against the results shown in section 10.2.4 to see the
difference between the geometrical and physical Shack-Hartmann sensor.

(a) Hartmanngram. (b) Ground truth.

(c) Reconstruction using Fourier
integration.

(d) Comparison between ground truth
and reconstruction.

Figure 10.1: The Hartmanngram, reconstruction, ground truth and their differences for alternative alignment using a
circular aperture and a geometrical lenslet array. A defocus aberration of amplitude 3π

2 is analysed.
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(a) Hartmanngram. (b) Ground truth.

(c) Reconstruction using Fourier
integration.

(d) Comparison between ground truth
and reconstruction.

Figure 10.2: The Hartmanngram, reconstruction, ground truth and their differences for alternative alignment using a
circular aperture and a geometrical lenslet array. A defocus aberration of amplitude −3π

2 is analysed.

(a) Hartmanngram. (b) Ground truth.

(c) Reconstruction using Fourier
integration.

(d) Comparison between ground truth
and reconstruction.

Figure 10.3: The Hartmanngram, reconstruction, ground truth and their differences for alternative alignment using a
circular aperture and a geometrical lenslet array. Zernike (14,6) was used as an aberration with amplitude 3π

2 is
analysed.
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10.2.2. Geometrical optics, traditional alignment
In this subsection the results for the traditional alignment using the geometrical Shack-Hartmann
parameters are shown. The use of the geometrical parameters in the Shack-Hartmann sensor leads to
a grid containing a high density of small spots without the effects of diffraction. These results can
be compared against the ones in section 10.2.1 to see the difference between the alternative and the
traditional alignment, and can also be compared against the results shown in section 10.2.3 to see the
difference between the geometrical and physical Shack-Hartmann sensor.

(a) Hartmanngram. (b) Ground truth.

(c) Reconstruction using Fourier
integration.

(d) Comparison between ground truth
and reconstruction.

Figure 10.4: The Hartmanngram, reconstruction, ground truth and their differences for traditional alignment using a
circular aperture and a geometrical lenslet array. A defocus aberration of amplitude 3π

2 is analysed.



10.2. Results using a circular aperture 52

(a) Hartmanngram. (b) Ground truth.

(c) Reconstruction using Fourier
integration.

(d) Comparison between ground truth
and reconstruction.

Figure 10.5: The Hartmanngram, reconstruction, ground truth and their differences for traditional alignment using a
circular aperture and a geometrical lenslet array. A defocus aberration of amplitude −3π

2 is analysed.

(a) Hartmanngram. (b) Ground truth.

(c) Reconstruction using Fourier
integration.

(d) Comparison between ground truth
and reconstruction.

Figure 10.6: The Hartmanngram, reconstruction, ground truth and their differences for traditional alignment using a
circular aperture and a geometrical lenslet array. Zernike (14,6) was used as an aberration with amplitude 3π

2 is
analysed.
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10.2.3. Physical optics, traditional alignment
In this subsection the results for the traditional alignment using the physical Shack-Hartmann param-
eters are shown. The use of the physical parameters in the Shack-Hartmann sensor leads to a grid
containing a low density of large spots with the effects of diffraction. These results can be compared
against the ones in section 10.2.4 to see the difference between the alternative and the traditional align-
ment, and can also be compared against the results shown in section 10.2.2 to see the difference between
the geometrical and physical Shack-Hartmann sensor.

(a) Hartmanngram. (b) Ground truth.

(c) Reconstruction using Fourier
integration.

(d) Comparison between ground truth
and reconstruction.

Figure 10.7: The Hartmanngram, reconstruction, ground truth and their differences for traditional alignment using a
circular aperture and a physical lenslet array. A defocus aberration of amplitude 3π

2 is analysed.
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(a) Hartmanngram. (b) Ground truth.

(c) Reconstruction using Fourier
integration.

(d) Comparison between ground truth
and reconstruction.

Figure 10.8: The Hartmanngram, reconstruction, ground truth and their differences for traditional alignment using a
circular aperture and a physical lenslet array. A defocus aberration of amplitude −3π

2 is analysed.

(a) Hartmanngram. (b) Ground truth.

(c) Reconstruction using Fourier
integration.

(d) Comparison between ground truth
and reconstruction.

Figure 10.9: The Hartmanngram, reconstruction, ground truth and their differences for traditional alignment using a
circular aperture and a physical lenslet array. Zernike (14,6) was used as an aberration with amplitude 3π

2 is analysed.
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10.2.4. Physical optics, alternative alignment
In this subsection the results for the alternative alignment using the physical Shack-Hartmann param-
eters are shown. The use of the physical parameters in the Shack-Hartmann sensor leads to a grid
containing a low density of large spots with the effects of diffraction. These results can be compared
against the ones in section ?? to see the difference between the alternative and the traditional alignment,
and can also be compared against the results shown in section 10.2.1 to see the difference between the
geometrical and physical Shack-Hartmann sensor.

(a) Hartmanngram. (b) Ground truth.

(c) Reconstruction using Fourier
integration.

(d) Comparison between ground truth
and reconstruction.

Figure 10.10: The Hartmanngram, reconstruction, ground truth and their differences for alternative alignment using a
circular aperture and a physical lenslet array. A defocus aberration of amplitude 3π

2 is analysed.
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(a) Hartmanngram. (b) Ground truth.

(c) Reconstruction using Fourier
integration.

(d) Comparison between ground truth
and reconstruction.

Figure 10.11: The Hartmanngram, reconstruction, ground truth and their differences for alternative alignment using a
circular aperture and a physical lenslet array. A defocus aberration of amplitude −3π

2 is analysed.

(a) Hartmanngram. (b) Ground truth.

(c) Reconstruction using Fourier
integration.

(d) Comparison between ground truth
and reconstruction.

Figure 10.12: The Hartmanngram, reconstruction, ground truth and their differences for alternative alignment using a
circular aperture and a physical lenslet array. Zernike (14,6) was used as an aberration with amplitude 3π

2 is analysed.

The results can be summarised by a table showing their RMSE values:
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RMSE value
Geometrical optics, alternative alignment

positive defocus 0.20877

Negative defocus 0.11166
Zernike (14,6) 0.14353

Geometrical optics, traditional alignment
positive defocus 0.21438

Negative defocus 0.11329
Zernike (14,6) 0.14784

Physical optics, traditional alignment
positive defocus 0.8358

Negative defocus 0.51652
Zernike (14,6) 0.66417

Physical optics, alternative alignment
positive defocus 0.68932

Negative defocus 0.33357
Zernike (14,6) 0.61347

Table 10.2: RMSE values compared for all twelve scenarios in the circular aperture. Two things are seen: the geometrical
optics Shack-Hartmann sensor outperforms the physical optics setup, and second, the alternative alignment outperforms

the traditional alignment.

10.3. Comparison with centroiding
The scenarios that could be compared to FrontSurfer, a commercially available centroiding algorithm,
are shown in the table below. The residue is the sum of the absolute values of all coefficients that are
not the ground truth coefficient.

Ground
truth

coefficient

Ground
truth

residue

Fourier
reconstruction

coefficient

Fourier
reconstruction

residue

FrontSurfer
coefficient

FrontSurfer
residue

Circular 3π defocus
geometrical traditional 2.3364 0.0225 2.3521 0.3604 2.5467 0.7607

Circular -3π defocus
geometrical traditional -2.3364 0.0225 -2.3849 0.3978 -2.5269 0.8644

Table 10.3: Table showcasing the difference in reconstruction coefficients for the Fourier demodulation method versus the
centroiding method. Notice how the Fourier reconstruction coefficient is closer to the ground truth coefficient than the

FrontSurfer coefficient, and how the residue is small for both circumstances.

10.4. Shot noise
The Shack-Hartmann sensor can suffer from shot noise. This can slightly alter the Hartmanngram and
cause the resulting gradients to be noisy as well. It was already seen that two inconsistent gradient
fields can be made consistent, this would remove most of the noise. Below is an example where the
inconsistencies are not corrected for. This is done to show the robustness of the Fourier demodulation.

Traditional alignment
The example here is the Shack-Hartmann sensor in the traditional alignment with a defocus aberration
of 3π. To achieve the noise, the ’imnoise’ command is used in Matlab with the ’Poisson’ option.
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Figure 10.13: Defocus aberration Hartmanngram with shot noise.

Running the Fourier demodulation algorithm on it results in the following gradients:

(a) The resulting x-gradient in the case of shot
noise.

(b) The resulting y-gradient in the case of shot
noise.

Figure 10.14: The resulting gradients in the case of shot noise on the Hartmanngram. Notice the noise is quite severe,
these are gradients of a defocus aberration, but they are no longer nicely linear.

To show the robustness of the algorithm to noise, no correction is made for inconsistent gradient fields.
This greatly increases the speed of the algorithm as it is no longer required to calculate the Fourier sine
transforms. The resulting wavefront, the ground truth and their difference can be seen below:
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(a) The ground truth aberration. (b) The absolute value of the difference
between the ground truth and the

reconstruction.

(c) The resulting reconstruction in the
case of shot noise.

Figure 10.15: The ground truth, the reconstruction, and their absolute difference for the case of added shot noise on the
Hartmanngram. Notice that despite the gradients being rather noisy, the algorithm can still reconstruct a wavefront

that somewhat accurately describes the original.

As can be seen, the reconstructed wavefront still resembles the ground truth. This shows that the
algorithm is rather robust when it comes to noise, as the gradients are clearly inconsistent with one
another.

Alternative alignment
To show that the alternatively aligned Shack-Hartmann setup is also able to handle possible Poisson
noise, the simulation is repeated for the alternative alignment. The alternative aligned Shack-Hartmann
sensor produces the following Hartmanngram:

Figure 10.16: Alternative aligned Shack-Hartmanngram showing a defocus aberration with shot noise.
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Calculating the gradients using the Fourier demodulation algorithm results in the following:

(a) The resulting x-gradient in the case of shot
noise.

(b) The resulting y-gradient in the case of shot
noise.

Figure 10.17: The resulting gradients in the case of shot noise on the Hartmanngram in the alternative alignment. Notice
the noise is quite severe, these are gradients of a defocus aberration, but they are no longer nicely linear.

Again, the gradients are no longer linear and have been altered quite a bit. The resulting reconstruction,
the ground truth and the difference between the two looks like this:

(a) The ground truth aberration. (b) The absolute value of the difference
between the ground truth and the

reconstruction.

(c) The resulting reconstruction in the
case of shot noise.

Figure 10.18: The ground truth, the reconstruction, and their absolute difference for the case of added shot noise on the
Hartmanngram. Notice that despite the gradients being rather noisy, the algorithm can still reconstruct a wavefront

that somewhat accurately describes the original.

10.5. Results using a square aperture
Hartmanngrams with square apertures are also analysed. As the circular aperture case already shows
that the geometrical optics case performs a lot better than the physical optics, the physical optics
Hartmanngrams are omitted.

10.5.1. Geometrical optics, traditional alignment
In this subsection the results for the traditional alignment using the geometrical Shack-Hartmann
parameters are shown in a square aperture setting. The use of the geometrical parameters in the
Shack-Hartmann sensor leads to a grid containing a high density of small spots without the effects
of diffraction. These results can be compared against the ones in section 10.5.2 to see the difference
between the alternative and the traditional alignment, and can also be compared against the results
shown in section 10.2.2 to see the difference between the circular and square aperture.
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(a) Hartmanngram. (b) Ground truth.

(c) Reconstruction using Fourier
integration.

(d) Comparison between ground truth
and reconstruction.

Figure 10.19: The Hartmanngram, reconstruction, ground truth and their differences for traditional alignment using a
square aperture and a geometrical lenslet array. A defocus aberration of amplitude 3π

2 is analysed.

(a) Hartmanngram. (b) Ground truth.

(c) Reconstruction using Fourier
integration.

(d) Comparison between ground truth
and reconstruction.

Figure 10.20: The Hartmanngram, reconstruction, ground truth and their differences for traditional alignment using a
square aperture and a geometrical lenslet array. A defocus aberration of amplitude −3π

2 is analysed.
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(a) Hartmanngram. (b) Ground truth.

(c) Reconstruction using Fourier
integration.

(d) Comparison between ground truth
and reconstruction.

Figure 10.21: The Hartmanngram, reconstruction, ground truth and their differences for traditional alignment using a
square aperture and a geometrical lenslet array. Zernike (14,6) was used as an aberration with amplitude 3π

2 is analysed.

10.5.2. Geometrical optics, alternative alignment
In this subsection the results for the alternative alignment using the geometrical Shack-Hartmann
parameters are shown in a square aperture setting. The use of the geometrical parameters in the
Shack-Hartmann sensor leads to a grid containing a high density of small spots without the effects
of diffraction. These results can be compared against the ones in section 10.5.1 to see the difference
between the alternative and the traditional alignment, and can also be compared against the results
shown in section 10.2.1 to see the difference between the circular and square aperture.
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(a) Hartmanngram. (b) Ground truth.

(c) Reconstruction using Fourier
integration.

(d) Comparison between ground truth
and reconstruction.

Figure 10.22: The Hartmanngram, reconstruction, ground truth and their differences for alternative alignment using a
square aperture and a geometrical lenslet array. A defocus aberration of amplitude 3π

2 is analysed.

(a) Hartmanngram. (b) Ground truth.

(c) Reconstruction using Fourier
integration.

(d) Comparison between ground truth
and reconstruction.

Figure 10.23: The Hartmanngram, reconstruction, ground truth and their differences for alternative alignment using a
square aperture and a geometrical lenslet array. A defocus aberration of amplitude −3π

2 is analysed.
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(a) Hartmanngram. (b) Ground truth.

(c) Reconstruction using Fourier
integration.

(d) Comparison between ground truth
and reconstruction.

Figure 10.24: The Hartmanngram, reconstruction, ground truth and their differences for alternative alignment using a
square aperture and a geometrical lenslet array. Zernike (14,6) was used as an aberration with amplitude 3π

2 is analysed.

The resulting RMSE values are compared again:

RMSE
Geometrical optics, traditional alignment

Positive defocus 0.10586
Negative defocus 0.08114

High order Zernike (14,60) 0.11244
Geometrical optics, alternative alignment

Positive defocus 0.1115
Negative defocus 0.079114

High order Zernike (14,60) 0.11096

Table 10.4: The different values of the RMSE shown in a table. Not that for positive defocus in a square aperture the
traditional alignment actually outperforms the alternative alignment.

10.6. Discussion
Some things can be improved upon. First, the frontsurfer software is only able to fit the first 18
Zernike polynomials to the wavefront. This means that there can be no comparison between the Fourier
demodulation and centroiding in the case of turbulence. It’s RMSE value calculation is also flawed, and
for some cases the Zernike coefficient differed so much from the ground truth that it was unclear what
to make of it.
Second, for square apertures the Legendre polynomials can be used as an orthogonal basis function,
just like the Zernike polynomials are used for circular apertures. Unfortunately Matlab does not have
a Legendre function, whereas Zernike is provided. This would enable the comparison between square
aperture wavefronts between the centroiding and the Fourier demodulation.
Real life data should of course be used to see if the method actually holds water in reality.
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10.7. Summary
The combined use of the alternative alignment to use the Shack-Hartmann wavefront sensor as a curva-
ture sensor and Fourier demodulation of to calculate the gradients of the wavefront is a viable way to
measure the wavefront. It is shown that it works for both square and circular apertures, and also in the
case of noise. It is shown that the alternative alignment slightly outperforms the traditional alignment
in all but one scenario. It is also shown that the geometrical properties perform substantially better
than the physical ones.



11
Conclusion of the thesis

11.0.1. Recalling the research question
The goal of this thesis is to answer the question: can alternative alignment and Fourier demodulation
be used in combination with one another to reconstruct the wavefront. If this is the case, which Shack-
Hartmann sensor properties are beneficial, and if there is an underlying difference, which aberrations
are most suited to be analysed with this method. The answer will be twofold: theoretical work was
done to gain insight in the way the two methods work on their own and also how they work together.
Simulations were also run to quantify the performance.

11.1. Theoretical result
It was seen that the method of Fourier demodulation and the use of alternative alignment are both able
to handle large amplitude aberrations.
Fourier demodulation does not require the spots to remain within a rigidly defined subaperture and is
also able to handle the appearance and disappearance of spots in the aberration image compared to the
reference image.
It was also seen that in a setup using traditional alignment the spots occupy a changing region when an
aberration is introduced, and the amount of spots remains the same. In larger amplitude aberrations
this means that the spots can occupy a region that becomes too large or too small. A setup using
alternative alignment does not suffer from this problem: the region occupied by the spots on the CCD
does not change, only the amount of spots changes. This means that larger amplitude aberrations
should still be reconstructable using the alternative alignment.
Another advantage of the alternative alignment over the traditional alignment is that it is not necessary
to know the spot shifts at the microlens array, instead they should be known at the CCD, which is how
a Shack-Hartmann sensor operates. This means that the traditional alignment actually approximates
the whole situation, whereas the alternative alignment precisely measures what is really happening.

11.2. Results from the simulations
It was seen that the alternative alignment paired with Fourier demodulation is a viable way of recon-
structing the wavefront. The RMSE values are repeated here:

11.2.1. RMSE values for the square aperture
The table below shows the RMSE values retrieved from the reconstruction of various square fields:
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RMSE value
Geometrical optics, alternative alignment

positive defocus 0.20877

Negative defocus 0.11166
Zernike (14,6) 0.14353

Geometrical optics, traditional alignment
positive defocus 0.21438

Negative defocus 0.11329
Zernike (14,6) 0.14784

Physical optics, traditional alignment
positive defocus 0.8358

Negative defocus 0.51652
Zernike (14,6) 0.66417

Physical optics, alternative alignment
positive defocus 0.68932

Negative defocus 0.43357
Zernike (14,6) 0.61347

Table 11.1: RMSE values compared for all twelve scenarios in the circular aperture. Two things are seen: the geometrical
optics Shack-Hartmann sensor outperforms the physical optics setup, and second, the alternative alignment outperforms

the traditional alignment.

11.2.2. RMSE values for the circular aperture
The table below shows the RMSE values retrieved from the reconstruction of various circular fields:

RMSE value
Geometrical optics, alternative alignment

positive defocus 0.20877

Negative defocus 0.11166
Zernike (14,6) 0.14353

Geometrical optics, traditional alignment
positive defocus 0.21438

Negative defocus 0.11329
Zernike (14,6) 0.14784

Physical optics, traditional alignment
positive defocus 0.8358

Negative defocus 0.51652
Zernike (14,6) 0.66417

Physical optics, alternative alignment
positive defocus 0.68932

Negative defocus 0.43357
Zernike (14,6) 0.61347

Table 11.2: RMSE values compared for all twelve scenarios in the circular aperture. Two things are seen: the geometrical
optics Shack-Hartmann sensor outperforms the physical optics setup, and second, the alternative alignment outperforms

the traditional alignment.

11.2.3. Comparison with centroiding
Where it was possible, the performance of Fourier demodulation was compared to that of centroiding.
The results can be seen in the table below.
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Ground
truth

coefficient

Ground
truth

residue

Fourier
reconstruction

coefficient

Fourier
reconstruction

residue

FrontSurfer
coefficient

FrontSurfer
residue

Circular 3π defocus
geometrical traditional 2.3364 0.0225 2.3521 0.4604 2.5467 0.7607

Circular -3π defocus
geometrical traditional -2.3364 0.0225 -2.3849 0.4978 -2.5269 0.8644

Table 11.3: Table showcasing the difference in reconstruction coefficients for the Fourier demodulation method versus the
centroiding method. Notice how the Fourier reconstruction coefficient is closer to the ground truth coefficient than the

FrontSurfer coefficient, and how the residue is small for both circumstances.

11.3. Answer to the research question
To answer the research question: yes, the combined use of alternative alignment with Fourier demodu-
lation is recommended. It was shown that the reconstructions are more accurate than using traditional
alignment with centroiding, alternative alignment with centroiding, and traditional alignment with
Fourier demodulation. A Shack-Hartmann sensor with a low pitch and low focal length should be used,
as Fourier demodulation gains no information from the diffraction patterns of the light, instead a grid of
as many small spots should be used. As for the aberrations, there seemed to be no aberration in which
the combined use of the alternative alignment with Fourier demodulation markedly outperformed the
other methods. It seems the method is suited for both low and high order aberrations.

11.4. Advice for further research
For further research two main things should be done. First, the alternative alignment and Fourier
demodulation should be combined in a real-life setup, such that real-life data is acquired on their
combined use. Second, after having verified the system works in, the setup should be expanded to
include a deformable mirror with which aberrations can be corrected for in real-time. This would show
the performance in a closed loop setting. As a means to this the code used for Fourier demodulation
should be optimised, as a lot can still be won in the speed of reconstructions.
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A
Appendix

All the calculations in this thesis were performed by the author using a specially developed MATLAB
package. The code contains general functions and algorithms. The code can be found in the ”Control
for scientific imaging systems - Delft center for systems and control” group on bitbucket. The link is
https://bitbucket.org/csi-dcsc/mscproject-seppe/src/master/.
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