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Abstract

This thesis presents an in-depth investigation of the consequences of adding a second facesheet on the
aerodynamic performance of acoustic liners. This is done by performing pore-resolved Direct Numerical
Simulations (DNS) of a channel flow at Reτ = 500. Simulations are conducted for various dual facesheet
configurations, exploring different facesheet layouts and relative positions of the second facesheet. Design
considerations are constrained by preserving the attenuation properties of the multiple facesheet liner,
achieved by maintaining adequate spacing between the facsheet. The study examines how the presence
and staggering of the second facesheet affect the pressure drop and the wall-normal velocity fluctuations,
both of which correlate with the added liner drag. The simulations reveal a relationship between the
staggering distance of dual facesheet liners and added drag, demonstrating that increased shifting distance
of regular facesheet configurations leads to reduced added drag compared to lesser shifting distances.
Furthermore, the staggering diminishes wall-normal velocity fluctuations between the facesheets, aligning
with observed trends in added drag. However, the study finds that while dual facesheet configurations
offer some reduction in added drag compared to conventional single facesheet designs, the extent of
drag reduction is limited. The study shows that the addition of a second facesheet to the liner causes
additional wall parallel permeabilities not present in a single facesheet liner influencing the flow below
the wall.
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Introduction

During take-off and landing, aircraft generate significant noise levels, prompting regulatory bodies such
as the International Civil Aviation Organization (ICAO) and the Federal Aviation Administration (FAA)
to establish increasingly stringent noise regulations. These regulations drive continuous innovation in
noise reduction strategies for aircraft.

A significant source of noise during aircraft operation, particularly during take-off and landing, is the
engine. Many commercial flights use high bypass ratio jet engines that emit a range of frequencies. To
mitigate noise emissions, efforts have been focused on attenuating these frequencies within the engine
itself. Acoustic liners, comprising perforated facesheets with cavities below to absorb sound energy, have
been extensively researched for this purpose (XuQiang and ZhengTao (2020)).

While significant progress has been made in reducing engine noise through various acoustic mechanisms,
the implementation of acoustic liners in engine nacelles has led to an unintended consequence: increased
aerodynamic drag compared to smooth-wall configurations (Howerton and Jones (2015)). This is due to
the flow perceiving the perforated facesheet as a rough surface, resulting in a substantial drag penalty.
Conventional acoustic liner geometries can produce up to 70% more drag per plane area than equivalent
smooth surfaces (Shahzad et al. (2023)). Since acoustic liners cover only a small area of the aircraft, the
overall increase in drag for the entire aircraft due to the acoustic liners is modest. However, the overall
impact on all aircraft combined can certainly not be neglected.

The progress on the acoustics properties of the acoustic liners is due to the acoustics being well un-
derstood. Many authors have provided empirical relations to compute the acoustic performance of a
liner geometry. The same can not be said about the aerodynamics of perforated surfaces. In this area,
only limited research has been performed and there is no (empirical) relation capable of determining the
aerodynamic performance of the liner without extensive experimental or numerical simulations. Recent
studies however have delved into the aerodynamics of perforated surfaces used in acoustic liners, like
Shahzad et al. (2023).

While the current drag penalty limits the widespread application of acoustic liners, there is potential
for future advancements to enable their use in new areas beyond engine nacelles. If the drag penalty
could be reduced or eliminated, acoustic liners could be applied to larger areas of the aircraft, such as
the fuselage (XuQiang and ZhengTao (2020)). This expanded application could facilitate the adoption
of more efficient aircraft configurations, such as open fan or distributed propulsion systems, while still
meeting noise regulations near airports (Thomas et al. (2014)).

Thesis outline

This thesis will therefore be focused on the aerodynamic properties of acoustic liners. The aim is to
test these through pore-resolved DNS simulations as has been done by Shahzad et al. (2022). However,
before the rationale behind the geometry will be explained some background knowledge is provided to
improve the readers’ understanding and context of the specific topic at hand.

Chapter 2 elaborates on the acoustics of acoustic liners, beginning with an exploration of their working
principle and a review of state-of-the-art liner design. This sets the stage for understanding the acoustic
constraints that shape liner development. From Chapter 3 onwards, the focus shifts to the aerodynamics
of liners. Chapter 3 starts with a primer on general turbulence, followed by an examination of turbulent
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channel flow over smooth walls. Building upon this foundation, Chapter 4 extends the discussion to
turbulent flow over rough walls, exploring various parameters for identifying roughness and introducing
a drag quantification tool. Chapter 5 narrows the focus to the specific roughness type relevant to
acoustic liners: porous surfaces. This chapter reviews studies on added drag reduction and identifies
key contributors to acoustic liner drag. Chapter 6 synthesizes the findings from previous chapters,
presenting the problem statement and research questions of the thesis. In Chapter 7, the numerical
method and boundary method are thoroughly explained, alongside a discussion of geometric choices and
flow conditions for the simulated cases. This chapter also outlines the reference cases and methodologies
for obtaining results. Chapter 8 is dedicated to presenting and discussing the results of the simulations
conducted throughout the thesis. Finally, Chapter 9 offers conclusions drawn from the research and
provides further recommendations for future studies.
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2
Acoustic liners

The acoustic liners which are of interest in this discussion are those found in the inlet of a jet engine,
positioned in front of the fan and inside the bypass duct. These are used to attenuate the tonal fan and
broadband turbulent noise emitted by the engine. The placement of the liner can be seen in Figure 2.1
(b). The degree of the attenuation of sound depends on the set-up and type of acoustic liner. Generally,
these acoustic liners are single or double degree of freedom (SDOF or DDOF resp.) liners (Ingard
(1953)) consisting of a porous facesheet, a honeycomb structure and a solid back plate as can be seen in
Figure 2.1 (a) Beck et al. (2015). The degree of freedom relates to the number of cavities stacked onto
each other. These liners attenuate sound through Helmholtz resonance where the ratio of volumes of the
compartments is of interest Fahy (2001).

The review on the acoustic properties of acoustic liners has two primary objectives. Firstly, it aims to
understand the working principle of these liners. Secondly, it identifies acoustic performance parameters
for the definition of constraints on the attenuation properties. An interesting aspect of the investigation
is the examination of how the geometry of the facesheet affects sound attenuation properties. The
definition of constraints for facesheet geometry is necessary to preserve the liner’s primary function. This
is crucial, as the loss of acoustic attenuation properties renders the holes redundant, adding unnecessary
complexity and becoming a source of drag in the nacelle. Ultimately, the discussion will focus on the
sound attenuation capabilities of various studied liner geometries.

Figure 2.1: (a): Schematic image of the set-up of a conventional honeycomb structured acoustic liner.
The top configuration shows the liner when stacked and the bottom three images show a sketch of the
liner components displayed independently. Image taken from Herbert and Copiello (2015) (b): Schematic
image of a jet engine taken from Kempton (2011). The pink highlighted section, at the intake and near
the bypass duct, represents the acoustic liners present in a jet engine.
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CHAPTER 2 2.1. SOUND ATTENUATION AND RESONANCE

2.1 Sound attenuation and resonance

As mentioned above, the main mechanism for the attenuation of incident sound waves in cavities is done
through Helmholtz resonance. To adequately discuss the mechanism it is appropriate to briefly define
what ’sound’ or ’noise’ is and continue the discussion from that point to the principle of the attenuation
mechanism.

From a physical perspective, sound can be defined as an acoustic wave propagating through a medium,
which, in the present case, is air. ANSI (2014) describes sound as the following: "Oscillation in pressure,
stress, particle displacement, particle velocity, etc., propagated in a medium with internal forces (e.g.,
elastic or viscous), or the superposition of such propagated oscillation." This definition is how sound will
be perceived in this review. The sound in a jet engine originates from the blade passing of the turbine
blade and the turbulent flow due to the high bypass ratio inside the jet. Both these phenomena cause
pressure undulations in the surrounding air resulting in noise. The main difference between the two
noise sources is that the blade passing of the turbine happens at a specific frequency whilst the turbulent
flow causes a more broadband noise, that is a combination of many frequencies. The use of acoustic
liners generally is aimed at the attenuation of specific frequencies and is tuned to that of the turbine.
(XuQiang and ZhengTao (2020))

To reduce emitted sound from the jet engine, there is a need to absorb and attenuate the incident sound
in the acoustic liners. This is done by tuning the resonant frequency of the acoustic attenuation cavity
in the liner to match the dominant frequency of the engine noise. Achieving resonance in the cavity
leads to numerous interactions of the sound in the cavity with the facesheet and cavity walls, resulting
in a strong response to the respective frequency. The resonance induces various viscous losses, such as
viscous scrubbing (Jones et al. (2020)). These effects contribute to the absorption and attenuation of
sound energy, ultimately reducing noise (Dai and Aurégan (2018)).

According to Yang et al. (2010), the resonance in the cavity results in a negative dynamic stiffness,
which measures a resonator’s ability to resist deformation or respond to externally applied forces (Zhao
et al. (2016)). A negative dynamic stiffness makes the resonator highly susceptible to incident sound.
This phenomenon facilitates both absorption and dissipation of sound energy, effectively attenuating the
incident sound waves.

The use of the Helmholtz resonator in acoustic liners is common practice. In a Helmholtz resonator,
the objective is to attain resonance in the cavity which ensures the attenuation of sound energy through
dissipation. The Helmholtz resonator is often explained by the analogy of blowing over the top of a
(partially) empty bottle making it hum at a specific frequency. This is a form of a Helmholtz resonator.
Fundamentally, the Helmholtz resonator consists of a neck and a cavity connected to it. The resonance
in the cavity relies on the grazing flow over the opening in the neck and the geometric ratios of the neck
and the cavity volume. An example of a Helmholtz Resonator is given in Figure 2.2, where a side view
of a Helmholtz resonator is given as found in the application of an acoustic liner.

Acoustic impedence

The sound response of the Helmholtz resonator is found through the acoustic impedance of the resonator.
The impedance is a measure of the ease with which sounds pass through a medium or are absorbed by it
(Fahy (2001)). Generally, the impedance is a function of the resistance and the reactance of the resonator
as shown in (2.1):

Z = R+ jχ (2.1)

Here R indicates the resistance of the resonator, which translates to the energy transfer of an acoustic
wave, where the pressure and motion have aligned phases, resulting in work being done on the medium.
χ represents the reactance of the resonator which is the out-of-phase portion of the pressure and motion
of the sound in the resonator. As a result, the reactance does not transfer energy. The reactance part is
imaginary and the resistance is real. A Helmholtz resonator has a specific impedance function in a tube
with grazing flow given by (2.2) (from Chen et al. (1998) and Mechel (2008)):

Z = ρ0(
ω2

πc0
(2− rn

ru
) + 0.425

Mc0
S

+ j(
ωleff
S

− c2

Vcω
)) (2.2)

4



CHAPTER 2 2.1. SOUND ATTENUATION AND RESONANCE

Figure 2.2: A schematic overview of a Helmholtz resonator cavity found in acoustic liners. The neck of
the resonator is resembled by the hole in the facesheet and the main volume is that of the cavity below.
Here leff is the effective length of the resonator neck, S represents the cross-sectional area of the neck
and the volume V is the cavity volume. These variables are found in (2.4) for the calculation of the
resonance frequency

Where rn and ru are the radius of the neck of the resonator and the tube respectively. Although this
impedance equation does not exactly match the acoustic liner configuration as the radius of the tube
does not resemble the channel width, the reactance of the impedance function does not depend on the
tube.

More importantly, the reactance part (imaginary part) of (2.2) dictates the resonance frequency of the
Helmholtz resonator. As the description of the reactance might suggest, when the Helmholtz resonator is
in resonance, the out-of-phase pressure and motion of the sound are not present, meaning the reactance
equals 0 as shown in (2.3):

χ = ρ0(
ωleff
S

− c2

Vcω
) = 0 (2.3)

This equation shows how the derivation of the resonance frequency (ωr), as found in (2.4), is achieved:

ωr = c

√
S

leffVc
(2.4)

Here c is the sound velocity, S is the area of the neck of the resonator, Vc is the cavity volume and leff
is the effective length of the neck. According to XuQiang and ZhengTao (2020), the effective length is
longer than the physical neck length due to account for the vibrating mass of fluid in the resonator neck.
For a flanged-out neck, which most closely resembles the acoustic liner configuration, leff = l + 1.7r.
This is in agreement with the definition Chen et al. (1998) gives for the effective length.
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CHAPTER 2 2.1. SOUND ATTENUATION AND RESONANCE

The resonator functions by attenuating incident acoustic waves through the dissipation of acoustic energy
when in resonance. As depicted in (2.4), the Helmholtz resonator resonates at a specific frequency
determined by the cavity’s dimensions. Specifically, the resonance frequency is influenced by the ratio
of several geometric parameters, including the neck cross-sectional area, the effective length of the neck,
and the volume of the cavity. This geometric flexibility allows for precise tuning to target frequencies
while adhering to the weight and size constraints of the engine nacelle.

This flexibility becomes particularly advantageous with the recent increase in turbine fan diameters.
Larger fan sizes result in lower frequency noise due to a decreased blade-tip passing frequency, corre-
sponding to longer wavelengths. Consequently, Helmholtz resonators can maintain their compact size
while adjusting geometric ratios to resonate at lower frequencies. This adaptability positions them as
the preferred method for acoustic attenuation in acoustic liners, as noted by XuQiang and ZhengTao
(2020).

Sound attenuation

An example of the resistance, reactance and the resulting sound attenuation can be seen in Figure 2.3.
This image depicts a liner over a cavity. As observed in the reactance figure, the resonant frequency is
identified at the frequency where the reactance intersects 0. The effect of the resonance can be seen in
the right plot, where there is a peak in attenuation at the resonant frequency. At other frequencies there
is some attenuation however much less than at the resonant frequency, especially when realised that the
Sound Pressure Level (SPL) is a logarithmic measure (2.5):

SPL = 20log10(
p

p0
)[dB] (2.5)

Figure 2.3: Example of the resistance, reactance and attenuation of an acoustic liner. The left top plot
indicates the resistance, the left bottom plot the reactance and the right plot the respective attenuation.
The different line colours indicate different geometries, not of interest for the illustration. (Figure taken
from Dodge et al. (2023))

The acoustic performance of the liner can be determined experimentally or simulated numerically by
an assessment of the impedance of the liner. As an added benefit, since the impedance is an intrinsic
property of the liner the impedance values can be merely calculated and then be used as a boundary
condition in numerical simulations of aircraft manufacturers to asses the true sound attenuation reached
by the liner. The impedance of liners can be calculated well as has been done by many different authors
(Casalino et al. (2018); Shur et al. (2020); Jones et al. (2022)).

Although the acoustic performance of conventional acoustic liners is well understood, the ongoing ex-
pansion of engine size, increases in bypass ratios, and increasingly stringent noise emission regulations
necessitate continuous advancements in acoustic liner technology. Key objectives in acoustic liner re-
search focus on maximizing noise attenuation per unit surface area, minimizing liner thickness to reduce
overall weight, broadening attenuation capabilities across a wider frequency range (Jones et al. (2022)),
and mitigating facesheet drag. Achieving these objectives involves exploring various configurations, which
will be further detailed in the following section.
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2.2 Various liner configurations

As the previous section has highlighted, impedance and attenuation are the most important metrics for
the performance of an acoustic liner. The impedance of the acoustic liners is mainly a result of the
liner geometry ratios when the conventional cavity design is maintained. The single cavity Helmholtz
resonator design in a liner is often referred to as a local reacting liner (Jones et al. (2020) and XuQiang
and ZhengTao (2020)). These liners consist of regular Helmholtz resonators in series, classically they are
all the same volume and filled with air. Although these liners fulfil the basic needs of sound attenuation
to a certain extent, there is a need to improve the attenuation mechanism of the liners.

To achieve greater efficiency in acoustic liners, one effective approach is to enhance sound attenuation at
the targeted frequency. Numerous novel liner designs have been proposed, demonstrating superior sound
attenuation properties compared to conventional single-degree-of-freedom (SDOF) Helmholtz resonator
liners. Several examples will be highlighted, beginning with the metal foam liner. In addition to cavities
filled with air, investigations have explored the use of metal foam liners Sutliff and Jones (2009), which
have shown lower frequency absorption Bozak et al. (2019) and more efficient attenuation Sutliff et al.
(2013). However, due to their high tunability, comparing performance between different metal liners can
be challenging. An extension of the metal foam liner approach is the local reacting liner, introduced by
Hillereau et al. (2005), where the cavity walls are perforated instead of impermeable. This design allows
sound to pass from chamber to chamber, enhancing sound attenuation beyond local reactions.

In contrast to many conventional designs featuring a rigid honeycomb structure between the facesheet
and the back plate, Bake and Knobloch (2019) presents a proof of concept for a liner with a flexible inner
wall. This design demonstrates increased absorption and a better broadband response. Additionally, a
proof of concept is provided for a zero mass flow liner, a form of bias flow liner, achieving similar results
to the flexible wall (FlexiS) liner.

McAuliffe (1950) firstly came up with a bias flow mechanism in the orifice, which allowed acoustic energy
to be transformed into kinetic energy near the orifices. According to Bechert et al. (1997), this causes
additional vorticity shedding close to the orifices dissipating the transformed acoustic energy into heat
through the kinetic energy of the vorticity. Many research efforts have been invested into the bias flow as
underscored by XuQiang and ZhengTao (2020), who have shown promising results for sound attenuation
efficiency. Bielak et al. (1999) takes a different approach, using active bias flow and temperature control
to ensure additional sound attenuation. This is however deemed not sufficient in the scope of goals set
for the noise reduction campaign.

For a more broadband liner response, there is a preference for liners with geometrical variations effective
at multiple frequencies. Mesh cap liners, for instance, utilize mesh caps in honeycomb liners to create
variable depth liners. Svetgoff and Manimala (2018) tunes the material of mesh cap liners for good low-
frequency absorption, providing a lighter and less complicated alternative to double-degree-of-freedom
(DDOF) liners. Variable depth acoustic liners, as discussed by Parrott and Jones (1995), feature cham-
bers with different depths along the surface, ensuring more broadband noise attenuation due to varying
impedance responses. Some liners integrate facesheets with varying depth cavities below, as illustrated
in Figure 2.4 (a).

Another approach to variable depth liners involves connecting a cavity to each orifice, mitigating the
facesheet, as explored by Howerton et al. (2012). These liners are highly tunable, allowing for changes
in cavity order and geometry to tailor the acoustic response to specific requirements.

Checker-board liners, investigated by Watson et al. (2004), demonstrate promising sound attenuation
improvements over conventional uniform liners. They are able to attenuate substantially more noise
at the targeted frequency and display better performance regarding broadband frequencies, despite not
being specifically designed for them.

While variable depth liners generally have cavities that cannot be adjusted according to flight status
needs, there are adaptive liner designs with Helmholtz resonators featuring adaptive volume cavities to
achieve resonance at various frequencies, as discussed by McDonald et al. (1997); Matsuhisa et al. (1992);
de Bedout et al. (1997); Kostek and Franchek (2000). However, these designs come with added weight
and complexity due to active elements tuning the liner to the flight status, which is less desirable.

Williams et al. (2002) takes a different approach again, using adaptive, tuned, while still passive vibration
absorbers, through shape memory alloys. This allows the tuning of the resonant frequency by 15%. Liu
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et al. (2003) also presents a tunable acoustic liner, here again, a vastly different approach is taken.
The study focused on the use of an electromechanically tunable Helmholtz resonator using a compliant
piezoelectric composite back-plate in the liner. This allows for a diaphragm-like back-plate which can be
tuned such that the single-layer liner is a two-degree-of-freedom system tunable over 8% of frequency.
Ichihashi (2013) presents a system which has an adaptive open area reacting to velocity changes in the
flow yielding a more favourable non-linearity factor.

Figure 2.4: (a) Shows the variable depth liner from Schiller et al. (2019), here the cavities are connected
to multiple orifices where the cavities have different depths. (b) Graphical representation of the liner
configuration discussed by Howerton et al. (2012). Here each orifice has its own cavity of variable depth
connected to it. (c,d) Show how the liner is constructed in the work of Cherrier et al. (2012). As can be
seen in (c), the facesheets are directly positioned on top of each other and are staggered as displayed in
(d), where the overlap of the plates can be seen. (e) Shows the triple facesheet configuration as discussed
by Dodge et al. (2023). Here there is a space between the liner sheets (contrary to (c)) and are tested
at fixed open area percentages as indicated in the image. Here the 50% case indicates that 50% of the
single orifice area is open.

As highlighted in the previous section, the resonance frequency of the Helmholtz resonator can be altered
either by changing the volume of the cavity or by adjusting the orifice area S, as discussed earlier in
Equation (2.4). Nagaya et al. (2001) demonstrates significant shifts in resonant frequencies by completely
closing the second orifice in a double-degree-of-freedom (DDOF) application, effectively creating a single-
degree-of-freedom (SDOF) cavity below the facesheet. Alternatively, Cherrier et al. (2012) employs two
facesheet plates capable of moving with respect to each other, allowing the orifice to open or close entirely
on demand, resulting in a shift in absorption to lower frequencies. An example of this geometry can be
seen in Figure 2.4 (c and d), where image (c) illustrates staggered facesheets positioned on top of each
other to reduce the effective open area of the resonator’s neck, while image (d) provides a top view of
the reduced area.

Interestingly, Dodge et al. (2023) employs a similar facesheet geometry but with three facesheets, in-
vestigating the effect of spacing between them while keeping the overlap fixed. The author finds that
sufficient spacing between the plates results in an unchanged resonant frequency compared to the 100%
open case, even when staggered (Figure 2.4 (e)). Moreover, there is no loss in sound attenuation, even
when the facesheets are staggered in a way that eliminates the effective open area (most right image of
Figure 2.4 (e)).

The results from Dodge et al. (2023) found for the impedance of multiple staggered facesheets is very
promising as the staggering of the facesheets influence facesheet aerodynamics while maintaining the
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CHAPTER 2 2.2. VARIOUS LINER CONFIGURATIONS

acoustic properties. This configuration differs from that of Cherrier et al. (2012) in that there is spacing
between the facesheets, and Dodge et al. (2023) uses three facesheets, with the top and bottom locked in
position while the middle sheet can be moved to create different percentage open area (POA) configura-
tions, as seen in Figure 2.4 (e). The configuration with the largest spacing between the plates is the most
favourable from a sound attenuation perspective, with a spacing of only 0.35 times the hole diameter d.
Conventionally, the facesheet thickness is roughly equal to the hole diameter, i.e., t = d. Therefore, a
spacing of 0.35d between facesheets is not very large. Despite the small spacing, the acoustic attenuation
properties are not hindered, and the resonant frequency does not experience a significant shift, as shown
in Figure 2.5. The attenuation plot even indicates that for some configurations with a lower POA than
100% (i.e., 25%, 50%, and 75%), the attenuation is higher than when the plates are perfectly aligned,
with only minimal losses in attenuation for the 0% overlap configuration.

Figure 2.5: Impedance of the tipple facesheet configuration of Dodge et al. (2023)
for several POA settings and the largest gap spacing between all three plates of 0.35d.

These papers illustrate the diverse methods employed by researchers to enhance acoustic liners and meet
modern standards. Each liner configuration has its own advantages and drawbacks, making one more
suitable than another depending on the application. Despite the known increase in drag levels of up to
200% caused by acoustic liners Howerton and Jones (2017), their application persists. While the acoustic
properties of liners, particularly impedance, can be predicted accurately, predicting drag, especially over
perforated liners, remains a challenge. Many studies resort to experimental measurements or complex
simulations.

Given the objective of this review to identify ways to reduce drag in acoustic liners, improving attenuation
properties emerges as a potential method. As noted by Howerton and Jones (2017), one of the main
contributors to drag in perforated facesheets of acoustic liners is the percentage open area (POA).
Unfortunately, the open area is crucial for sound absorption, necessitating the added drag from these
holes from an acoustic standpoint. However, improvements in liner efficiency enable a reduction in POA
while maintaining similar sound attenuation levels, thereby reducing drag on the liner surface.

For drag reduction purposes, it is crucial to ensure some level of sound absorption, making a more
efficient absorber or a change in facesheet beneficial. Studies on variable depth liners and liners with
metamaterials show promising results, as they offer enhanced absorption over multiple frequencies. While
active liners demonstrate promising results in testing conditions, they face challenges in weight reduction
and managing complexities for aircraft use. Passive liners are closer to practical application in engine
nacelles. One promising passive configuration for drag reduction, identified by Dodge et al. (2023),
involves multiple staggered facesheets that maintain acoustic properties while potentially offering more
favourable aerodynamic conditions compared to conventional perforated liner designs due to a smaller
open area.
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3
Smooth wall turbulence

In order to dive into turbulent flows over acoustic liners, first a general understanding of turbulent flows is
desired. This will be followed up by an explanation concerning relevant topics of wall-bounded turbulent
flows such that there is a general understanding of the terminology. This will be followed by a discussion
of the elaborate study of turbulent flows over rough-wall surfaces in the following chapter. This will
enable the reader to better understand relevant concepts. Finally, the focus will be on the turbulent flow
over perforated surfaces in the chapter thereafter.

3.1 Turbulent flow

Turbulent flows are characterized by chaotic fluctuations in flow velocity and pressure, resulting in the
mixing of multiple layers of fluid. In contrast to laminar flow, turbulence arises from the transfer of
energy from the mean flow to chaotic, unsteady turbulent vortices. These vortices overcome the internal
friction of the flow induced by viscosity, leading to the division of flow energy into mean and turbulent
kinetic energy.

As the energy of the flow can be split into a mean and a turbulent part, the flow velocity can be similarly
characterized by this. The splitting of the steady (mean) and the turbulent (fluctuating) part of the flow
is more commonly known as the Reynolds decomposition Pope (2000). The Reynolds decomposition
decomposes the flow into the mean flow and the fluctuating flow as indicated in Equation (3.1):

u = ⟨u⟩+ u′ (3.1)

A visual representation of this decomposition is given in Figure 3.1. The left image shows the total flow
velocity (u) and the mean flow velocity, ⟨u⟩ as a function of time and at an arbitrary position. As can
be seen, the mean flow velocity does not change over time. When the mean flow velocity is subtracted
from the total flow velocity, the velocity fluctuations, u′

i, are found. In turbulent channel flow, there is
no mean flow in the spanwise or wall-normal direction, however, due to turbulent fluctuations, u′

2 and
u′
3 are present.

As mentioned above, the kinetic energy of the turbulent fluctuations can be found in the flow. The
turbulent kinetic energy is often indicated with TKE or k (3.2):

k =
1

2
⟨(u′2

1 + u′2
2 + u′2

3 )⟩ (3.2)

which are combined as the average of the sum of the squares of the fluctuations. The TKE gives an
indication of the total turbulent fluctuations at a location in the fluid.

The production, convection, and dissipation of turbulence in the flow, along with the development of
mean flow over time, are governed by the Navier-Stokes (NS) equations. These equations constitute a
system of partial differential equations that describe the motion of a fluid, based on the conservation of
mass and momentum balance. Given the focus on acoustic liners in the current work, the compressible
Navier-Stokes equations for a perfect heat-conducting gas, as implemented by Bernardini et al. (2021)
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CHAPTER 3 3.1. TURBULENT FLOW

Figure 3.1: Visual representation of the Reynolds decomposition. The Left image shows the total and
the mean flow. The right image shows the decomposed elements. (from Reggente (2014))

in the STREAmS DNS code for channel flow, are presented. These equations include the conservation
of mass (3.3), momentum (3.4), and total energy (3.5).

∂ρ

∂t
+

∂ρui

∂xi
= 0 (3.3)

∂ρui

∂t
+

∂ρuiuj

∂xj
= − ∂p

∂xi
+

∂σij

∂xj
+ fδi1 (3.4)

∂ρE

∂t
+

∂uiH

∂xj
= − ∂qj

∂xj
+

∂σijui

∂xj
+ fu1 + fT (3.5)

Here ρ is the fluid density and the i (and j) subscript in ui can be i, j = 1, 2, 3 and denotes the fluid
direction. p, in (3.4), denotes the pressure and the total energy per unit mass in (3.5) is defined as:

E = cvT +
uiuj

2
(3.6)

In the same equation, the total enthalpy (H = E + p/ρ) is found, together with σij and qj . These
constitute the viscous stress tensor and the heat flux and are defined as (3.7) and (3.8), respectively:

σij = µ(
∂ui

∂xj
+

∂uj

∂xi
− 2

3

∂uk

∂xk
δij) (3.7)

qj = −k
∂T

∂xj
(3.8)

Finally, both (3.4) and (3.5) contain a forcing term f which only operates in the streamwise direction.
This is a uniform body force which drives the flow downstream. The forcing is being adapted at every
time step to ensure a constant mass flow through the channel. The added energy of the forcing is
accounted for in the right-hand side of (3.5). Additionally, there is a uniform, bulk cooling term added
to (3.5) in order to attain a constant bulk flow temperature. The bulk quantities are volume averages
over the entire domain. These are defined as:

ub =
1

ρbV

∫
V

ρu1dV and Tb =
1

ρbubV

∫
V

ρu1TdV (3.9)
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CHAPTER 3 3.2. TURBULENT CHANNEL FLOW

Representing the bulk velocity and temperature respectively. ρb is the bulk density, which is found by
taking a similar average over the volume of only the density (i.e. ρ = 1

V

∫
V
ρdV ). Note that V =

Lx × 2δ × Lz, which is the entire domain for a smooth wall channel. The volume of orifices or the gap
between plates is therefore omitted in the computation of volumetric averages.

This section gives a brief overview of the governing fluid flow equations used in the DNS code of Bernardini
et al. (2021). The equations can be combined with numerical schemes, like one of those as have been
described by Pirozzoli (2010), to resolve the flow in space in time, given the appropriate mesh resolution.
The method of spatial and temporal discretization along with the order of accuracy and the flow statistics
are discussed in the methodology in more detail.

3.2 Turbulent channel flow

Turbulent flows encountered in practice are often bounded by surfaces, such as vehicles moving through
fluids (e.g., cars, ships, and aircraft), as well as flows in channels and pipes commonly found in industrial
applications. This work focuses on fully developed turbulent channel flow, a concept integral to the
development of turbulent wall-bounded flow theory. In essence, fully developed turbulent channel flow
refers to the flow through a channel bounded by walls at the top and bottom of the domain (i.e., y = 0
and y = h = 2δ, where h represents the channel height as depicted in Figure 3.2). The boundaries
in the streamwise (x) and spanwise (z) directions are periodic, with the domain extending Lx by Lz

in length and width, respectively. The term ’fully developed’ implies that the mean flow is spatially
homogeneous in the streamwise direction (x), as the boundary layer height is equal to the channel half
width. Additionally, the flow is statistically homogenous in the stream and spanwise direction (z)

Figure 3.2: Schematic representation of a channel flow domain with the dimensions Lx ×Ly ×Lz where
the channel half width is indicated by δ.

The channel half-width is denoted by δ, a symbol commonly used to represent the boundary layer
thickness. This is as the channel half-width is equal to the boundary layer thickness inside a channel
due to symmetry. In channel flow, two conventions for the Reynolds number are often used. The first,
Reb = 2δub/ν, represents the bulk Reynolds number, calculated using the bulk velocity ub (which is
the mean velocity of the mass flow through the channel). The second, Re0 = δu0/ν, is based on the
centerline velocity u0 and the channel half width. The Reynolds number provides insight into the flow
state within the channel.

In channel flow, the flow is driven by an axially constant mean pressure gradient. Derivation of the mean
momentum equation yields (3.10) (Pope (2000)):
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CHAPTER 3 3.2. TURBULENT CHANNEL FLOW

dpx
dx

=
dτ

dy
(3.10)

which describes the total shear stress (3.11) as a function of y, denoted as τ(y). This total shear stress
can be decomposed into viscous and Reynolds stress terms. Close to the wall, viscous stresses dominate
due to the large velocity gradient. At the wall, where all velocities are zero due to the no-slip condition,
only the viscous term remains. Moving away from the wall, Reynolds stresses become dominant as the
velocity gradient decreases with increasing y. A visual representation of this phenomenon, adapted from
Pope (2000)), is provided in Figure 3.3.

τ = ρν
d⟨u1(y)⟩

dy
− ρ⟨u′

1u
′
2⟩ (3.11)

Figure 3.3: Image of the contributions of to the total shear stress form Pope (2000) In the left image
it can be seen how the viscous stresses contribute to the total shear stress plotted as a function of wall
distance, the same is seen in the right image for the Reynolds stresses. In the figure, the dashed line
represents a Reynolds number of Re = 5600 and the solid line represents Re = 13750.

Figure 3.3 shows which stress in the flow is dominant, depending on the wall distance. The image shows
the dependence of both the viscous and Reynolds stresses on the Reynolds number. Increasing values of
the Reynolds number ensures less viscous stress in the channel and high shear stress at the wall. The
shear stress at the wall is written as seen in (3.12):

τw = ρν(
d⟨u1(y)⟩

dy
)y=0 (3.12)

This equation gives a good overview of which parameters are of importance close to the wall and leads the
way towards the concepts of viscous scaling (also known as friction scaling). This framework identifies
the friction velocity uτ and the viscous length scale δν , as shown in (3.13).

uτ =

√
τw
ρw

and δν = ν

√
ρw
τw

=
ν

uτ
(3.13)

The Reynolds stresses in channel flow contribute to the total mean momentum balance. These stresses
are derived from the averaged velocity fluctuations in the flow:

τij = ρ⟨u′
iu

′
j⟩ (3.14)

which describes the Reynolds stress tensor for a homogeneous fluid with constant density. Figure 3.4
displays the corresponding values of the Reynolds stress relative to the wall distance. As can be seen
from the image, the Reynolds stresses are zero at the wall, due to the no-slip condition, in correspondence
with Figure 3.3. The Reynolds stresses are indicative for the main region of the production of turbulent
kinetic energy (3.15)), (which reduces to only P = ⟨u′

1u
′
2⟩

∂⟨u1(y)⟩
∂y in the boundary layer approximation).

Due to the large peak in the stream-wise velocity fluctuations it can be seen that most of the turbulence
production is situated close to the wall where velocity gradients cause shearing flow.
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P = −⟨u′
iu

′
j⟩
∂⟨ui⟩
∂xj

(3.15)
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Figure 3.4: Comparison of the normalised Reynolds stresses from DNS simulations for a Reτ = 180
channel flow (Red lines) compared to Lee and Moser (2015) DNS results (Black dashed lines). The
Reynolds stresses in descending order are ⟨u′

1u
′
1⟩,⟨u′

2u
′
2⟩, ⟨u′

3u
′
3⟩ and ⟨u′

1u
′
2⟩.

The skin friction coefficient represents the nondimensional wall-shear stress and it is a primary quantity
for engineering design. The definition of the friction coefficient is found in (3.16):

Cf =
2τw
ρu2

b

(3.16)

Where in this instance the bulk velocity (ub) is used. Some authors tend to use the centre line velocity
for the friction coefficient which bids some caution when making comparisons based on the friction
coefficient. The coefficient however is useful to assess and compare the added friction of a wall.

Law of the wall

A useful indication for flow conditions can be found by the combination of (3.12) and (3.13) such that
the friction Reynolds number can be written as (3.17).

Reτ =
uτδ

ν
=

δ

δν
(3.17)

Where the friction Reynolds number is equal to the viscous scaled boundary layer thickness. This gives
an indication of the range of scales present in the boundary layer and increases with increasing friction
velocity. The same scaling can be applied to the wall distance, y, by normalizing it with the viscous
length scale to obtain y+ = y/δν . This dimensionless quantity is a valuable tool for identifying different
regions within the flow. Specifically, it delineates the various regimes present in the flow. Close to the
wall, the viscous sub-layer is found for y+ < 5, while the buffer layer exists for 5 < y+ < 30. The buffer
layer lies between the viscous sub-layer and the log layer, which extends from 30 < y+ to y/δ < 0.3, with
the outer layer encountered beyond y+ = 0.3.

Prandtl (1925) has introduced that at high Reynolds number, close to the wall (i.e.y << δ), an inner layer
can be found where the velocity merely depends on the viscosity while the boundary layer thickness and
the centre line velocity have no influence. After some computation, this entails that there is a function
fw for which u+ = fw(y

+) Pope (2000). This means that the viscous scaled velocity, close to the wall, at
high enough Reynolds number is merely a function of the wall distance. This is commonly known as the
law of the wall. The viscous scaled regions are of importance for the law of the wall. This concept was
first proposed by von Karman (1930). It is used as a universal law to relate the viscous scaled velocity
to the viscous scaled wall distance in the boundary layer.

In the viscous sub-layer (y+ < 5), the viscous scaled velocity is equal to the viscous scaled wall distance
(i.e. u+ = y+), where u+ = u/uτ . Due to negligible terms in the Taylor series expansion for u+, the
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CHAPTER 3 3.2. TURBULENT CHANNEL FLOW

behaviour is linear for small y+ but deviates as y+ increases beyond 5, as illustrated in Figure 3.5.
Beyond the viscous sub-layer, the buffer region (5 < y+ < 30) lacks a universally accurate description of
flow solely dependent on y+.

From y+ > 30 however, the logarithmic layer is found. This layer corresponds to larger values of y+,
where the length of the log layer is determined by the Reynolds number. As can be seen in Figure 3.3,
the effect of viscosity away from the wall vanishes. In the logarithmic region, through integration of the
mean viscous scaled velocity gradient, the logarithmic law is found (3.18) by von Karman (1930):

u+(y+) =
1

κ
ln(y+) +B (3.18)

In this equation, κ resembles the von Kármán constant, where κ = 0.387 ± 5% is generally found in
literature. In the log law, B is generally found to be B = 4.8 ± 5% Pirozzoli et al. (2022). Both these
values are found through a DNS data fit of the mean axial velocity of a pipe flow. As can be seen from
Figure 3.5 from y+ < 30 the velocity profile of the DNS results starts to follow the log law very closely
until the flow enters the outer layer. In DNS studies performed at several friction Reynolds numbers,
like that of Lee and Moser (2015), it can be seen that all velocity profiles collapse onto each other for
the inner layer of the boundary layer flow, indicating the universality of the law of the wall.

Figure 3.5: The log law and u+ for the viscous sub-layer plotted along near wall results of a DNS
simulation performed by the author based on Lee and Moser (2015) for Reτ = 180. The velocity profile
is the velocity profile found in the half of the channel flow and is scaled by viscous units.
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4
Rough wall turbulence

Hydraulically rough walls commonly occur in engineering applications. The term hydraulically rough or
smooth is used to indicate that the ’smoothness’ of a surface is not directly determined by a physical
length scale. It is not possible to say whether a surface is smooth or rough, in a fluid mechanics
framework, without making an observation of the flow next to it. For a turbulent flow, the surface is
conceived as a rough surface when the roughness elements (surface fluctuations) of the wall, are large
enough to alter the smallest near-wall eddies of the flow. In this situation, the momentum transfer in
the flow is altered and the effect of the wall on the flow can be perceived. Depending on the flow and
especially the Reynolds number, the surface can be either smooth or rough. The effect of a rough wall
can be monumental when it is found on the surface of a ship or aircraft causing large losses in efficiency.
These losses are generally expressed in drag of the surface and can have large effects on fuel economy
and costs.

Unfortunately, the prediction of the drag caused by a rough surface is not as clear-cut as the drag
prediction of a smooth wall. This is due to the interaction of the roughness topography with the flow,
where flow over each roughness topography behaves differently and therefore causes different near-wall
flows and ultimately different drag levels. The study of roughness is therefore mainly focused on finding
relevant surface parameters which can be used to predict the effect of the specific roughness topography
on the flow. Generally, a roughness topography found in industry is not a monotonically rough surface
and can be unique on its own. Therefore the study of surface roughness is very complicated and elaborate
and is currently an area where a lot of research is conducted (Chung et al. (2021)).

Viscous wall unit:
a length ν/uτ above a
smooth wall that scales
the viscous sublayer
and the smallest eddies
of turbulent flow

Roughness sublayer:
in principle, the
near-wall region y < yr
that knows about the
roughness topography;
above it, the time-
averaged flow is
spatially homogeneous

dd
h
–
h
–

h'

h i = 1 i = 2

4krms

y – d

LOG LAYER

h

yryr

Time-averaged streamlines

ROUGHNESS SUBLAYER
kt1

kt2

kp1 kp2

kv2kv1kt PDF(h)

U(y), Θ(y)
δδ

y

τw

ν, α, ρ, cp

qw
k = kt

LOG LAYER

WAKE REGION

Figure 1
(Inset) The setup of the roughness problem. The desired outputs are the wall shear stress, τw, or the wall heat flux, qw, given the mean
velocity,U(y), and mean temperature, Θ (y), at distance y from the wall, along with fluid properties ν, α, ρ, and cp. The wall is
characterized by a physical roughness size, k, here chosen to be the maximum peak-to-trough roughness height, kt (Section 3.1.1),
and δ is the outer-layer thickness (e.g., boundary-layer thickness). For concreteness, the wall-normal coordinate y = 0 is aligned with
the minimum roughness elevation. (Main figure) A close-up view of the rectangular region of roughness topography in the inset. Here,
h describes the roughness topography. The average roughness elevation is located at y = h, from which the variation h′ is measured.
The peak-to-trough roughness height of subsample i is kti. The height above h of the ith-highest peak of the entire sample is kpi and
the depth below h of the ith-lowest trough of the entire sample is kvi. Above the roughness sublayer (Section 2.1.2) (y > yr), the
time-averaged flow (blue streamlines) is spatially homogeneous. The wall offset (zero-plane displacement) (Section 2.1.1) is located at
y = d such that y − d is the distance-to-the-wall scale of the turbulent eddies (solid white lines) in the log layer: yr < y ≪ δ. A notional
probability density function (PDF) of h is shown on the right, along with a measure of its width, krms, where krms is the
root-mean-square of h′ or, equivalently, the standard deviation of h.

boundary layers, using the freestream velocityUδ ≡U(y= δ) and temperature Θδ ≡ Θ (y = δ) and
boundary-layer thickness δ or fetch x (Prandtl & Schlichting 1934, Granville 1958, Yaglom 1979)
(cf. Section 2.3). Thus, in all formulations, knowledge of the mean velocity and temperature pro-
files for the wall-bounded turbulence formed over a rough surface,U +(y+; k+) andΘ+(y+; k+,Pr),
respectively, is akin to solving the problem of drag τw and heat transfer qw of rough surfaces.

2.1. Outer-Layer Similarity
All predictive models rely on an important assumption, proposed by Townsend (1956, p. 89) and
articulated byRaupach et al. (1991), that smooth- and rough-wall turbulence behave similarly away
from the wall. Specifically, this similarity hypothesis states that friction-scaled turbulent relative
motions in the outer layer (δ ≥ y ≫ ν/uτ , k), such as the mean velocity defect U+

δ −U+ and
covariances of velocity fluctuations u′

iu′
j
+, are independent of surface condition at sufficiently high

Reynolds number (i.e., when the outer-layer thickness is greater than the viscous wall unit, δ ≫
ν/uτ ) and sufficiently large scale separation (δ ≫ k). The direct effect of roughness is confined
to the roughness sublayer (y < yr), and roughness only sets the boundary condition, namely the
friction velocity uτ for the outer flow of thickness δ. This is basically a dimensional argument that
implies that only uτ and δ are relevant in the outer layer, from which we obtain, e.g., Uδ − U =
uτF(y/δ) and u′

iu′
j = u2τGi j (y/δ), where F and Gij are each unique functions of y/δ, independent of

whether the wall is smooth or rough.

442 Chung et al.
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Figure 4.1: Image taken from Chung et al. (2021) showing a typical, arbitrary, rough wall topography
with its respective flow features.

Understanding rough wall turbulence requires familiarity with relevant terminology and concepts. This
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CHAPTER 4

includes discussing flow over perforated/porous surfaces in a rough wall framework and examining current
research on the effect of perforated surfaces on added drag compared to smooth surfaces.

To introduce the concept of rough wall turbulence, The discussion starts with a graphical representation
of a rough surface topography and its interaction with the flow, borrowed from Chung et al. (2021). This
illustration, provided in Figure 4.1, depicts a typical, arbitrary rough wall topography.

In the larger image of the figure, roughness elements large enough to interact with the flow’s length
scales are presented. Some flow elements lay between these roughness elements, causing the flow above
the surface to perceive the wall as rough.

The study of roughness aims to determine the drag per plane area (τw) at the rough surface and define the
velocity profile as a function of the wall distance y and roughness element properties. These properties
are shown in Figure 4.1. The roughness height (k) measures the maximum distance from peak to trough
height, while δ represents the boundary layer thickness beyond which the mean fluid velocity remains
constant with increasing y. The origin of the wall is defined at y = 0, and the wall offset (d) indicates
the location where the fluid perceives its origin for a rough wall. The roughness sub-layer, depicted by
yr > y in the figure, is where roughness no longer directly influences the mean flow.

The smaller inset in the top left provides an overview of the total boundary layer flow, divided into the
wake region, the log layer, and the roughness sub-layer. These concepts will be further elaborated on in
subsequent discussions.

In studies of flow near walls, the roughness height (k) is scaled using the same principle as used for
the viscous scaling of the wall distance, as k+ = kuτ/ν. This parameter is often termed the roughness
Reynolds number and can be expressed as k+ = k/δν . The viscous scaled roughness height (k+) is
therefore dependent on the flow, determining its magnitude and relevance.

According to Chung et al. (2021), the roughness problem aims to determine the surface drag (τw, drag
per unit area) as a function of y+ and k+, outlined by (4.1). Obtaining the mean velocity profile of
rough-wall flow (u+(Y +, k+)) is crucial for determining surface drag.

τw
0.5ρu2

=
2

u+2
(4.1)

The following sections will explore the phenomena briefly introduced in Figure 4.1. Firstly, there will
be an explanation of the wall offset. This concept aids the discussion of how the velocity profiles can
be displaced due to the influence of the roughness elements. Following this, the region of influence
of the roughness elements, known as the roughness sublayer, will be addressed. Subsequently, a brief
explanation of sandgrain roughness will be provided. The sand grain roughness is a relevant length scale
for characterizing roughness elements. This will lead to a discussion of the region outside the roughness
sublayer, where, given sufficient separation of scales, outer-layer similarity can be observed. The concept
of outer layer similarity will be explained and there is a discussion of how it is leveraged to determine
performance parameters used to evaluate the added drag of rough surfaces. Done through the law of
the wall and the Hama roughness function. The subsequent chapter will delve into studies conducted to
address the more specific roughness problem tailored to acoustic liner aerodynamics.

Wall offset

Figure 4.1 illustrates the concept of zero plane displacement with the parameter d0. Zero plane dis-
placement, or wall offset, is crucial for addressing outer layer similarity. It represents the origin of the
boundary layer encountered by the outer flow. Although the actual wall may be at y = 0, the flow
perceives the origin of the boundary layer to be at y = d0. This adjustment accounts for the presence of
roughness elements, which can render the fluid between them relatively stationary.

Determining the value of d0 is challenging as it depends on the specific flow conditions. Therefore d0 is a
consequence of the flow rather than a quantity which can be predicted. Studies by Jackson (1981), Cheng
and Castro (2002), Castro (2007), Coceal et al. (2007), and Chan-Braun et al. (2011) have explored this
parameter’s variability.

The wall offset facilitates the collapse of velocity profiles from different topographies onto each other.
Although the flow perceives the wall offset as the origin of the flow, this does not necessarily mean that
u(y = d0) = 0. This is especially the case for small roughness elements (small k+), where d indicates the
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location where mostly intact, smooth wall-like turbulence is encountered. Here the wall offset effectively
creates a slip wall, reducing drag. This is generally seen with grooved surfaces or surfaces containing
riblets as found by Bechert et al. (1997), Luchini et al. (1991) and García Mayoral et al. (2018).

With increasing k+, roughness elements begin to affect near-wall turbulent structures. Generally, d0 falls
between the highest and lowest points of the roughness elements. For densely distributed roughness, d0
is closer to the highest point, while for sparsely distributed roughness, it is closer to the lowest point of
the roughness elements. When roughness spacing approaches the viscous length scale, d0 approaches the
peak of the roughness elements MacDonald et al. (2016). Similar behaviour is observed in canopy-like
roughness by Sharma and García-Mayoral (2020).

In canopies, as roughness spacing decreases, d0 decreases too, influenced by Kelvin–Helmholtz-like insta-
bilities perturbing between roughness elements. These instabilities enhance Reynolds shear stress and
skin friction. The depth of the canopy influences these instabilities, with shallow roughness hindering
their development. When canopy depth is significantly greater than lateral spacing, instabilities do not
reach the bottom of the trough, akin to the near-wall flow over a highly porous surface Breugem et al.
(2006).

Roughness sub-layer

The extent to which the near-wall flow is affected by the roughness is highly dependent on the roughness
topography. The region which is affected by the roughness is called the roughness sub-layer denoted by
yr and indicated in Figure 4.1. The height of the roughness sub-layer is dependent on the roughness on
the surface. Where the region within yr is influenced by the surface topography while the region outside
does not encounter direct effects of the roughness.

The roughness sub-layer can be defined as the, wall-normal, wall spacing where the (time-averaged)
flow becomes spatially homogeneous. This homogeneity pertains to the mean flow, requiring less scale
separation than turbulent fluctuations (outer layer similarity) Flack and Schultz (2014), Chan et al.
(2018). The height of yr is determined by identifying the point normal from the wall where the mean
flow becomes homogeneous Raupach et al. (1980). However, yr cannot be determined a priori as it is
contingent on flow conditions, similar to wall offset determination.

Jiménez (2004) and Raupach et al. (1991) proposed a roughness sub-layer thickness of yr ∈ [2k − 5k],
but the specific roughness height is not specified. Flack et al. (2007), however, suggested expressing yr
in terms of sand grain roughness height (ks). Their findings indicate the roughness sub-layer exists for
yr < 3ks but not beyond yr = 3ks or yr = 5k. Using sand grain roughness provides a topography-
independent definition of the roughness sub-layer. Yet, it remains a flow-dependent parameter, as the
equivalent sand grain roughness is determined by the flow conditions.

Sand grain roughness

Sandgrain roughness is often used as a reference roughness type with uniform elements. The roughness
consists of uniformly spaced and sized roughness elements. An illustration of a sand grain roughness
topography is depicted in Figure 4.2. This representation closely resembles densely packed sand grains
akin to sandpaper-like roughness on a hypothetical surface. The sand grain roughness is employed in
roughness studies to attain a uniform roughness type to which arbitrary rough wall topographies can be
related. This is done by defining the respective equivalent sand grain roughness height ks.

The equivalent sand grain roughness height serves as a valuable parameter for characterizing rough wall
surfaces. The concept of equivalent sand-grain roughness has first been applied to match the data of
Nikuradse (1933) by Schlichting (1937), describing roughness as uniformly distributed elements of various
shapes, uniformly spaced and sized. At sufficiently high Reynolds numbers, the equivalent sand grain
roughness height is selected such that the surface induces the same drag as the original topography
under identical flow conditions. The sand grain roughness is not a physical quantity but rather a flow
consequence resulting from a specific roughness topology. Its key advantage lies in providing a uniform
method to address the effect of a roughness topography on the flow.

As mentioned, sand grain roughness aids in determining the roughness sub-layer thickness, denoted by
the "s" subscript in (Figure 4.2). Analogous to the regular roughness Reynolds number for k+, the sand
grain roughness Reynolds number is defined as k+s = ksuτ/ν, scaling the sand grain roughness height
with the viscous length scale δν .
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Figure 4.2: Schematic figure of the equivalent sand grain roughness. (from Hetsroni et al. (2011))

Outer layer similarity

Outer layer similarity is a concept first proposed by Townsend (1956) and worked out by Raupach et
al. (1991). The latter provided strong support for the outer layer similarity. The outer layer similarity
dictates that for sufficiently high Reynolds number, both smooth and rough wall flows, outside the viscous
or roughness sub-layer respectively, show the same turbulent structure. This implies that statistical
quantities are independent of the surface conditions, a premise that, when valid, greatly facilitates
simulations by allowing the outer flow to be modelled rather than explicitly simulated Flack and Schultz
(2014).

However, achieving outer layer similarity requires a sufficient separation of scales. This occurs when
δ ≫ δν (i.e., sufficiently high Reτ ) and δ ≫ k. Under these conditions, the outer layer is not directly
influenced by surface roughness effects, but rather experiences the effects of roughness on the sub-layer,
thereby establishing boundary conditions for the outer layer flow. It has been proposed by Jiménez
(2004) that a blockage ratio of at least δ/k = 40 is necessary, although some experiments suggest that
this value may need to be doubled before observing similarity in the outer layer flow. Numerous studies,
including those by Flack et al. (2005), Castro (2007), Amir and Castro (2011), and Krogstad and Efros
(2012), have established the existence of outer layer similarity.

Despite efforts to establish definitive criteria for sufficient scale separation, prescribing guarantees remains
challenging. To ensure sufficient scale separation, tests can be conducted at larger scale separations (with
fixed k+) and the outer layer flow can be assessed. If unchanged, the original scale separation can be
deemed sufficient. Flack and Schultz (2014) provides a comprehensive review of the literature on outer
layer similarity, consolidating findings from numerous studies.

4.1 Law of the wall and added drag

In line with the discussion on smooth-wall turbulence, the law of the wall represents a fundamental
principle that relates the mean viscous-scaled velocity in the boundary layer to the viscous-scaled wall
distance, initially proposed by von Karman (1930). In the context of roughness, the wall is considered
smooth when the roughness is significantly smaller than the thickness of the viscous sub-layer.

When rough walls are of interest, the log law is also used for the relation of the velocity with the wall
distance. In this section however, there is a distinction between the smooth and the rough wal log law
which will be denoted with the "S" subscript for the smooth wal in (4.2) and "R" for the rough wall in
(4.3).

U+
S =

1

κ
ln(y+) +A (4.2)

In the logarithmic function for smooth walls, a subscript "S" is used to denote the log law for a smooth
wall. The constants associated with smooth walls have been extensively studied in the literature, with a
consensus on the range of their values. The von Karman constant proposed by Pirozzoli et al. (2022) of
κ = 0.387± 1% represents the slope of velocity profile in the log layer, and the wall intercept of the log
law is around A = 4.8± 1% (derived from U+

S (y+ = 1) = A).
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The log law represents one of the most crucial concepts utilized in wall-bounded turbulence studies,
particularly for assessing the added drag resulting from roughness effects. The log law applies to both
rough and smooth walls owing to the concept of outer layer similarity. In cases where k+ is not sub-
stantially smaller than the viscous length scale, the wall is no longer considered smooth. The roughness
height surpasses the viscous sub-layer, and the flow perceives the wall as rough. In such instances, y
must lie outside the roughness sub-layer (y >> yr) for the log law to be applicable. Subsequently, the
viscous-scaled velocity for the rough wall is determined by (4.3), denoted by the subscript "R":

U+
R =

1

κ
ln(

y

k
) +B(k+) (4.3)

Here, y is scaled by k due to integration, and the wall intercept B becomes a function of both the
roughness Reynolds number k+ and the specific roughness topography. It is important to note that the
argument of the logarithm is not in plus units due to cancellation of the viscous length scale. For very
high roughness Reynolds numbers (B(∞)), B may approach a constant value dependent solely on the
surface topology, only in cases where the fully rough regime is attained.

To obtain the log law in boundary layer flow, outer layer similarity is necessary however it is not sufficient
for the observance of the logarithmic behaviour. The boundary layer thickness must be large enough
such that the logarithmic region is well within the boundary layer( i.e. y ≪ δ). Therefore the log law is
observed in the region outside the roughness sub-layer but within the boundary layer. Oftentimes, the
observation of the log law is used as the establishment of outer layer similarity however the observation of
outer layer similarity is not necessarily evidence that there will be a logarithmic region in the boundary
layer since outer layer similarity can be observed for δ and y much closer to k (Castro (2007), Amir and
Castro (2011), Chan et al. (2015)).

Hama roughness Function

A way to provide an appropriate value for B(k+) is to use the roughness function which has been defined
by both Hama (1954) and Clauser (1954). The roughness function is commonly referred to as the Hama
roughness function so this termination will be used interchangeably in this review.

The Hama roughness function evaluates the deviation between the smooth and rough wall log laws,
as expressed in (4.2) and (4.3), respectively. This function assesses the shift of the logarithmic region
at a specific y+ value by comparing the viscous-scaled velocity deficit between smooth and rough wall
configurations. Figure 4.3 presents an illustration of the comparison of velocity profiles for various
roughness types, comparing the velocity profiles of a smooth wall with those of roughness topographies.

The Hama roughness function, presented in (4.4) is found through the difference of (4.2) and (4.3) to
obtain:

∆U+(k+) = U+
S − U+

R =
1

κ
ln(k+) +A−B(k+) (4.4)

This equation quantifies the velocity deficit of the rough wall relative to the smooth wall, thus providing
insight into the drag penalty associated with surface roughness. A positive value of ∆U+ indicates an
increase in drag due to roughness, while a negative value suggests a drag reduction.

Moreover, the Hama roughness function articulates the difference in smooth and rough-wall skin-friction
coefficients at matching δ+, denoted by (4.5):

√
2

Cfs
= U+

sδ and

√
2

Cfr
= U+

rδ (4.5)

Utilizing this function is particularly relevant for scaling experimental or numerical data to real-world
applications at lower Reynolds numbers, as noted by Chung et al. (2021). The velocity deficit between
rough and smooth wall surfaces remains independent of the length of the log layer, as the slope of both log
laws remains equivalent, with only the wall intercept changing. However, according to Chan et al. (2015),
Thakkar et al. (2018), and Jiménez (2004), a minor caveat exists when the log layer is relatively small
(low Reτ ). In such cases, the roughness function may still exhibit slight dependence on the boundary
layer thickness, resulting in a maximum overestimation of ∆U+ by 1.
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As can be seen from (4.4), which has not been discussed in detail, is that the equation is a function of
the roughness Reynolds number k+. The relation of the roughness function with the roughness height
is fairly intuitive when taking the previous discussion concerning the roughness sub-layer into account.
When k+ is small, the flow perceives a (hydraulically) smooth wall and there is no added drag (i.e.
∆U+ = 0). This is due to the roughness elements being too low to perturb out of the viscous sub-layer
and the viscous damping ensures a hydraulically smooth wall. From a certain value of k+, dependent
on the roughness topography (k+s > 5 more specifically), the roughness effect on ∆U+ occurs. From
this k+, the roughness ensures a transitionally rough flow which is both influenced by the pressure and
viscous drag contributions. When k+ is increased more, the flow enters the fully rough regime where the
pressure drag prevails over the viscous drag Schlichting (1968).

Figure 4.3: The roughness function plotted for a smooth wall and various types of roughness. (from
Flack et al. (2007))

The fully rough regime holds particular significance, as beyond this point, ∆U+ and thus skin friction
become independent of the Reynolds number (Re0), provided that k/δ remains constant. This phe-
nomenon, established by Nikuradse (1933) and Colebrook (1939), formed the basis for the renowned
Moody diagram, showcasing the asymptotic behaviour of skin friction with increasing Reynolds number
across different (pipe) roughness types.

The discussion on the Hama roughness function gives many insights into why the prediction of drag
acting on rough surfaces is so difficult. As the rough wall logarithmic function does not find a universal
wall intercept B(∞) in the fully rough regime. Even worse, each roughness topology produces a different
wall intercept and behaves differently in the transitionally rough regime as can be seen from Figure 4.3.
So it is not possible to make predictions for the drag based on k+. In order to attain universality in a
roughness height, ks is used.

Firstly, (4.3) can be formulated with the use of the sand grain roughness Reynolds number k+s . This
takes the form of (4.6):

∆U+(k+s ) =
1

κ
ln(k+s ) +A−Bs(k

+
s ) (4.6)

where instead of B(k+) we now have BS(k
+
s ) as the wall intercept. The crucial difference between the

two, however, is that since the sand grain roughness is only one specific type of roughness topology, the
wall intercept in the fully rough regime is found at a set value, that is Bs(∞) = 8.5. Since the roughness
function can be described through both kinds of roughness, the roughness k can be related to the sand
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grain roughness ks. This uses the wall intercept for both equations and when evaluated in the fully rough
regime, the ratio of roughness types is found to be as (4.7) (Chung et al. (2021)):

ks
k

= exp(κ(Bs(∞)−B(∞))) (4.7)

Therefore the function is independent of the roughness Reynolds numbers. When the ratio is used as a
pre-factor in the argument of the logarithm the roughness function for k+ can be made to coincide with
the roughness function of the sand grain roughness.
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5
Aerodynamic performance of
acoustic liners

Through the previous discussion, it has been established that the equivalent sand grain roughness height
is an appropriate length scale for drag prediction over rough surfaces. As mentioned, however, the
equivalent sand grain roughness height is a result of the flow and therefore is not a physical property
of the roughness topography Nikuradse (1933). This makes it difficult to predict the drag before con-
ducting measurements or simulations. Chung et al. (2021), Flack and Schultz (2010) have performed a
comprehensive summary of all attempts to correlate the topography to sand grain roughness.

Given the focus of this thesis on the aerodynamic properties of acoustic liners, it is imperative to extract
three key components from the literature to assess the current research status. Firstly, previous studies
on acoustic liner drag provide essential insights. Secondly, understanding the relationship between (sand-
grain) roughness height and topographical features of porous surfaces is crucial for correlating them with
∆U+ and subsequent drag reduction. Additionally, identifying flow phenomena responsible for acoustic
liner drag enables the devising of effective drag reduction mechanisms. This will culminate in a discussion
on known (added) drag reduction mechanisms and how these can be leveraged to attain a more favourable
liner.

Liner drag studies

Recent research papers have extensively explored the flow over porous plates, focusing on identifying pa-
rameters governing added drag while maintaining desired sound attenuation levels. For instance, Zhang
and Bodony (2016) conducted Direct Numerical Simulations (DNS) to examine how the presence of
porous surfaces affects grazing flow. Their findings indicate a drag increase over smooth-wall configu-
rations with increasing Sound Pressure Level (SPL). However, it is worth noting that their simulations,
limited to a single cavity to reduce computational costs, may overestimate the effect of sound levels on
drag.

Howerton and Jones (2015), Howerton and Jones (2016) and Howerton and Jones (2017) have performed
a series of wind tunnel experiments measuring the static pressure drop over the test section. Focusing
on the reduction of added acoustic liner drag and evaluation of acoustic performance. The first study is
more a proof of concept of the test methods, while the second and third studies test the effect of certain
parameters and typologies, respectively. The conclusion is in line with the findings from Zhang and
Bodony (2016) in the sense that all liner geometries add drag compared to smooth wall configuration.

However, the experiments do not perceive large differences between situations with and without sound
indicating that due to the single cavity, the effect of the sound could indeed be overestimated. The
papers from Howerton and Jones do find that the increase of the Percentage Open Area (POA) of the
plate increases drag and acoustic attenuation. The percentage open area is the ratio of the area of the
orifices to the total area of the liner facesheet, this is often referred to as the porosity of the liner.

In line with the effect of the reduction of POA on added liner drag, the reduction of hole diameter reduces
drag with respect to the original liner design. The best-performing results in this study campaign, have
been found for rectangular slots, which minimally increase drag while maintaining nearly the same
acoustic attenuation capabilities.
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Other solutions to minimise the drag impact are found through active liner solutions like Gustavsson et
al. (2019). This solution is based on the opening and closing of the orifices when the sound attenuation
is needed or not (take-off and landing versus cruise conditions). The closing of the orifices results in a
4% lower pressure drop over the closed orifice plate w.r.t the open plate thus reducing drag.

In line with previous studies, Gowree et al. (2019) discovered that reducing the diameter of three-
dimensional staggered circular cavities causes a favourable, monotonic response on the added drag.
Moreover, the author reports that a diameter-to-cavity depth ratio smaller than 1 (i.e., d

h ≤ 1), could,
in some cases, even reduce drag. While the reduction in hole diameter leading to lower added drag
aligns with prior findings, the reduction of drag compared to the smooth-wall configuration had not been
reported previously. This research is corroborated by Scarano et al. (2022, 2023), who arrived at similar
results. They observed that the thickening of the viscous sub-layer resulted in a decrease in friction
velocity.

Despite the promising drag reduction observed in these studies, there is limited focus on the acoustic
attenuation aspect of the liners. The perforated plates used in these experiments are sealed at the bottom
of the orifices, preventing any fluid from passing through the plate. This difference in the behaviour of
skin friction with respect to the orifices will be elaborated on in the following sections. attenuation
properties.

Schiller et al. (2019) arrives at a similar conclusion using a slightly different approach. Their objective
is to achieve the same sound impedance levels while reducing the open area (porosity). This results in a
reduction in added drag and is therefore in line with conclusions from Howerton and Jones (2017) as the
reduction of porosity reduces added drag. The reduction of 50% open area resulted in a 75% decrease
in added drag compared to the conventional configuration. While the impedance levels are equal, there
are some caveats since the impedance is over a broadband of sound frequencies and therefore not very
efficient in the attenuation of one specific frequency.

An overview of previous studies concerning the acoustic liner drag is presented in Table 5.1. This gives
an indication of the various studies quantifying the added drag results of conventional acoustic liners
with their respective geometric properties.

Author d/δ h/δ t/d σ Ma Reτ ∆D(%)

Shahzad et al. (2023 ) 0.08 0.5 0.5-1 0.036-0.32 0.3 500-2000 70%
Howerton and Jones (2015) 0.025-0.05 1.8 1 0.08 0.3-0.5 7800 10-15%
Howerton and Jones (2016) 0.036 1.8 1 0.08 0.3-0.5 7800 80-130%
Howerton and Jones (2017) 0.036-0.084 1.8 1 0.1-0.3 0.3-0.5 7800 200-350%
Zheng et al. (2022a) 0.0188-0.0353 0.0188-0.0282 1-2 0.075-0.2 0.1-0.6 ∼3000-12000 ≤ 137%
Zhang and Bodony (2016) 0.05 - - 0.0099 0.05-0.5 6900 4-100%
Wilkinson (1983) 0.075-0.08 0.55-0.7 0.75-1 0.06-0.12 0 500-2000 2-20%

0.018 0.3-1.85 0.66 0.047-0.139 0 500-200 30-60%
Gustavsson et al. (2019) 0.15-0.17 5.85-6.05 1 0.0853 0.3-0.6 2000-3000 30-50%

Table 5.1: Results of previous studies on the drag of acoustic liners. All of the results resemble grazing
flow over different acoustic liners. The relative size of the orifice diameter d, the cavity depth h and the
facesheet thickness t w.r.t. the boundary layer thickness have been indicated. σ resembles the porosity
factor, Ma is the Mach number and Reτ is the friction Reynolds number. Eventually, in the last column,
the drag increase (with respect to a smooth wall) in percentages are given which are found in all studies.
Many of the values presented are not directly indicated in the studies. Some results have readily been
extracted by Shahzad et al. (2023) while others have been deducted from figures or calculated from other
known quantities of the respective studies.

5.1 Parameter identification

Firstly, the focus is on the identification of relevant parameters present in porous surface studies which
influence the drag of the surface. The previous section has indicated some of the more obvious and
intuitive parameters which influence the drag. This section will elaborate on those and introduce relevant
new parameters.

In previously discussed research, a recurring pattern emerges where a certain level of attenuation is
desired, serving as the constraint under which a reduction in liner drag is sought. This requirement
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remains a key consideration in this thesis, serving as a stringent criterion for evaluating the suitability
of each parameter for reducing added drag. While some studies suggest a trade-off between reducing
added drag and maintaining acoustic attenuation in liners (Palani et al. (2021)), the primary trade-off
observed typically pertains to the frequency range rather than the total impedance. The suitability of
this solution would depend on the intended application for the liner.

In line with studies on rough walls, predicting added liner drag based solely on liner geometry often yields
unsatisfactory results. Therefore there is a demand for the identification of relevant scaling parameters
which can be used to accurately predict the liner drag. Some promising results in this field are found
by Howerton and Jones (2016) and Zheng et al. (2022b) where it is shown that the reduction of the
pore diameter alone and its ratio to liner thickness reduces added drag in general. Next to this, the
reduction of porosity is found to reduce the added drag in a similar manner where the proportionality
is found for a range of Mach numbers (Ma = (0.1 - 0.6)). The geometrical measures sound intuitive as
the geometries approach the smooth-wall configuration. A potential drawback is the loss of the sound
attenuation properties. Both Howerton and Jones (2017) and Zheng et al. (2022b) have found that
a mesh underlayment (fabric-like layer) below the perforated panel can reduce added drag. Although
promising, these features however are difficult to quantify as a scaling parameter

In the quest to identify relevant parameters for drag prediction, an intriguing proposition has been
put forth by Shahzad et al. (2022) and Shahzad et al. (2023). They argue that acoustic liners can be
considered as porous surfaces. Unlike conventional extrusive roughness described by Chung et al. (2021),
flow over porous surfaces exhibits characteristics more akin to canopy-like roughness, as elaborated on
by Sharma and García-Mayoral (2020).

Porous surface

Therefore the length scales concerning the roughness (i.e. the pores) need to be classified differently. For
this Shahzad et al. (2023) used the viscous scaled facesheet thickness t+ = t/δν and the viscous scaled
pore diameter d+ = d/δν . These quantities could be considered as the thickness and the pore diameter
Reynolds number, just as k+. For true porous media, the surfaces are characterised by both the Darcy
(Kij) and the Forchheimer (αij) permeability tensors representing the flow passing through the porous
surface as have been summarised by Whitaker (1969).

This results in a roughness type which generates pressure drag due to the pores which is intrinsically
coupled with the permeability. On this topic, research has been performed by Manes et al. (2009)
reporting on pressure fluctuations being the main driver of the turbulent kinetic energy transport into
a porous surface. Esteban et al. (2022) finds that through the measurement of substrates with different
thicknesses, the effects of the porous wall can be classified as the combination of a rough and a permeable
wall. According to Breugem et al. (2006), when there is sufficient separation between the viscous scaled
pore diameter (d+) and the viscous scaled square root of the Darcy permeability tensor (

√
Kij

+
), the

roughness and the porous effect are separated. These are considered by some authors (G. de Segura and
García-Mayoral (2019), Rosti et al. (2018)) as the relevant roughness length scales for porous surfaces.

For the classical porous surface, this is the case in substrates like limestone or a fine sponge. Where
the hole diameter is fairly small whilst the porosity is very high. In the case of acoustic liners however,
this is generally the other way around, here the ’pores’ are large and the porosity is generally below 0.3
(Howerton and Jones (2017) and Schiller et al. (2019)). Moreover, conventional acoustic liner facesheets
only show permeability in the wall-normal direction resulting in producing only non-zero K22 = Ky and
α22 = αy. Therefore another relevant scaling parameter to identify aerodynamic performances needs to
be considered.

Shahzad et al. (2022) finds that the flow inside the relatively large orifices is dominated by inertial rather
than viscous effects. This results in the conclusion that at a high enough pore Reynolds number, the
relevant length scale is not the Darcy permeability but the Forchheimer permeability. This is concluded
through the consideration of the work of Lee and Yeo (1997); Lee and Ih (2003) and Bae and Kim (2016)
who have performed studies to develop the Darcy Forchheimer law. Relating both permeability factors
in the wall-normal direction to the pressure drop over the substrate. The equation can be found in (5.1):

∆P

t

d2

ρνUt
=

d2

Ky
+ σdαyRep (5.1)

25



CHAPTER 5 5.2. INSTANTANEAOUS FLOW

here the pressure drop is indicated by ∆P . The thickness and pore diameter are as indicated above. Ut is
the superficial velocity (Tanner et al. (2019)) indicating the pore perceived velocity. Finally, σ indicates
the porosity as a ratio of the open area with respect to the substrate area.

As can be seen from the equation and Figure 5.1 (a), when the pore Reynolds number is sufficiently
high, the Darcy coefficient hardly contributes as it is constant for a specific substrate. The Forchheimer
coefficient on the other hand scales with the Reynolds number and therefore at higher Rep the Darcy
coefficient becomes negligible as can be seen from the red shaded area in Figure 5.1 (a). As a result
Shahzad et al. (2022, 2023) argues that the (inverse) of the Forchheimer length scale is the relevant
scaling parameter. Where 1/α+

y = 1/αyδν is used as the dimension of the Forchheimer coefficient is
[L−1].

This conclusion is based on the study of Shahzad et al. (2023) where a relation between the added drag
of the perforated surface and the Forchheimer coefficient is found. It is shown that the inverse of the
Forchheimer coefficient is roughly equivalent to the equivalent sand-grain roughness as is illustrated in
Figure 5.1 (b). They observe that the roughness function nearly collapses onto the fully rough regime
exhibiting Nikuradse-type behaviour for sufficiently high roughness Reynolds number. It is stated that
the sand grain roughness can be considered proportional to the inverse of the viscous scaled Forchheimer
coefficient as can be seen in (5.2):

k+s ∝ 1

α+
y

(5.2)

Figure 5.1: (a) Figure representing the Reynolds dependence of the Darcy Forchheimer law for increasing
Reynolds number (figure taken from Shahzad et al. (2022)). (b) ∆U+ with respect to the inverse of the
Forchheimer coefficient. (figure taken from Shahzad et al. (2023))

This discussion has resulted in (5.1) being a suitable function to determine the Forchheimer coefficient
for the known surface parameters. This in combination with (5.2) and (4.6), is a promising way to predict
the velocity deficit of a porous surface, in the fully rough regime. These quantities can be leveraged in
the added drag reduction campaign of the thesis.

5.2 Instantaneaous flow

Now that relevant parameters influencing the added drag of the facesheet are identified. There is a desire
to couple these to flow phenomena to capture their intrinsic effect on the parameter values and thus the
added drag. On the topic of the flow phenomena, governing the added drag over perforated plates, fairly
limited research has been done. One of the reasons for this could be that for the qualitative flow either
a very precise experiment or a pore-resolved DNS at high pore Reynolds number has to be performed
to gain some valuable insights. Due to the limiting factor of computational power, this has not been
feasible so far. Wilkinson (1983) established, through experiments of flow over perforated plates, that
flow over porous surfaces increases drag. One of the first computational studies performed, regarding the
relation of surface roughness and drag, was done by Orlandi et al. (2006). This study concerned velocity
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fluctuations caused by cross-flow placed roughness elements. They established that when the root mean
square of the wall-normal velocity fluctuations was considered, a satisfactory collapse of data was found
for the added drag of the surface.

Jasinski and Corke (2020) have performed an experimental study on the flow over acoustic liners and has
found that net zero mass "jet-like" bursts occur from the offices. These jet-like bursts can be quantified
as wall-normal velocity, of which was observed that with an increase of the jet-like events, an increase
of drag was experienced. Shahzad et al. (2022) has performed pore-resolved DNS simulations on the
acoustic liner plates. They have observed that inside the orifice the inertial effects are dominant. This
establishes the findings of Jasinski and Corke (2020) as the jet-like flow has been found in the highly
inertial orifice regions. Here the conclusion came that ∆U+ is intrinsically related to the wall-normal
velocity fluctuations found in the orifice.

Shahzad et al. (2023) indicates that the virtual origin of the flow is inside the orifice opening, this is
approximately 5 viscous scaled wall units into the orifice. Although small it does reveal part of the effect
of the liner on drag. This makes it more apparent that the flow impinges on the rear edge of the orifice
forcing jet-like structures into the orifice and inducing more pressure drag. The wall-normal velocity
fluctuations are reported to increase with the pore Reynolds number.

An illustration of the fluctuations within the cavities beneath the liner can be observed in Figure 5.2.
These velocity fluctuations enhance the momentum transfer between the region above and below the
liner, thereby contributing to added drag (Orlandi and Leonardi (2006)). As highlighted by Jasinski
and Corke (2020), the jet-like flow exhibits net zero mass, indicating that the jet entering the orifice
is balanced by an equal outflow from the orifice. This phenomenon supports the momentum transfer
between the regions below and above the liner, as discussed by Shahzad et al. (2023).

Figure 5.2: Snapshot of the wall-normal velocity fluctuations over a porous surface of POA=32% at
Reτ = 2000. Where the grey lines indicate the facesheet and cavity walls. (from Shahzad et al. (2023))

This evaluation thus leads to the conclusion that the wall-normal velocity fluctuations in the orifice are
a large driver for the added drag of the perforated plate geometry, found in acoustic liners. Especially
the momentum transfer associated with the wall-normal velocity fluctuations, between the region above
and below the facesheet of the liner, is responsible for large velocity deficits.

Since the wall-normal component of the Forchheimer permeability tensor is the only non-zero element,
(5.1) focuses on the wall-normal pressure distribution and the pore Reynolds number for the deter-
mination of the Forchheimer coefficient. When the pore Reynolds number thus is large enough (i.e.
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Rep ≥ 500) such that for this higher Reynolds number regime we can write (5.1) as (5.3). This tells us
that for constant plate thickness, hole diameter and porosity, the Forchheimer coefficient is governed by
the pressure drop over the hole.

∆P

t

d2

ρνUt
= σdαyRep (5.3)

Therefore, the link between the wall-normal velocity fluctuations and the relation of the Forchheimer
coefficient with ∆U+, is that if a larger pressure drop (∆P ) over the hole is experienced, the flow into (or
out of) the pore is more restricted. This raises the Forchheimer coefficient, thus decreasing the velocity
deficit. A larger difficulty for flow being able to flow into or out of the orifice could additionally result
in lower wall-normal velocity fluctuations. Potentially resulting in an added drag reduction, suggesting
a link between the wall-normal velocity fluctuations and the Forchheimer coefficient. What application
this notion can find in its implementation of the acoustic liner will be discussed in the subsequent section.

Mechanisms to reduce Added drag

Having identified the main drivers for the added drag of a perforated surface, the discussion can turn to
some mechanisms which are known to reduce the aforementioned mechanisms providing possible solutions
to discover in the thesis. One solution provided for the reduction of drag over the flat plate configuration
is seen for (micro) orifice blowing O’Connor et al. (2023), Kornilov and Boiko (2012), who find a 70%
drag reduction over the smooth wall configuration. Although these results are promising, they do require
blowing into the orifices which could potentially hamper the sound attenuation properties. Moreover,
this is an active process requiring energy to work. This ensures a more complicated system than a passive
system for which no energy needs to be spent for it to function.

Figure 5.3: (a-c): Velocity field of misaligned perforated plates at various distanced L/D of 1/8, 1/2
and 2 respectively. (d) Pressure loss coefficient EU as a function of L/D for misaligned perforated plates
(yellow). (e) Geometry of the separate perforated plates and the combination of the two plates in the
misalligned configuration. The white space shows the opening in the plate. (All images taken from
La Rosa et al. (2021).)

Different geometries, like surfaces with riblets are known to reduce surface drag (Modesti et al. (2021))
as the span-wise flow variations are inhibited. These can be employed to reduce the overall plate drag.
The application of orifices to such geometries is however likely to influence the aerodynamic properties,
as Manes et al. (2009) found by comparing the flow over permeable and impermeable rough wal surfaces.
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Although these mechanisms are known to reduce the drag of a smooth plate, there is no guarantee that
these will perform the same when the sound absorption constraint has to be adhered to. When (5.3) is
considered, one of the solutions for the reduction of drag could be to increase the pressure drop over the
perforated plate rather than reduce the friction of the flow along the plate.

Conveniently, La Rosa et al. (2021) conducted a study on the pressure drop across multiple perforated
plates, examining the influence of hole alignment on this pressure drop. The research investigated a
misaligned configuration (Figure 5.3 (e)) where closely spaced perforated plates resulted in a greater
pressure drop compared to the sum of the pressure drops across two separate plates, as illustrated in
Figure 5.3. The spacing parameter, denoted by the length L normalized by the pipe diameter D, is equal
to 9.27 times the hole diameter d. Figures (a) to (c) in Figure 5.3 depict how the flow is constrained
when the plates are in close proximity. Figure (d) illustrates the pressure loss coefficient for the aligned,
misaligned, and separate plate configurations. It is evident from (d) that the flow experiences significant
constraints when the plates are closely spaced. Notably, for L/D values very close to 0, the pressure loss
coefficient decreases. This occurs because the middle hole of the plates is always aligned, and there is
some degree of overlap among the remaining holes, effectively reducing the porosity of the configuration
at L/D = 0.
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6
Problem statement

The thesis aims to seek solutions to reduce added liner drag while maintaining the acoustic properties
of a liner. As has been indicated in Chapter 2, many novel liner designs are being proposed. One
of these designs consists of the application of three facesheets in a staggered configuration proposed
by Dodge et al. (2023). Here the authors provide evidence indicating limited to no loss in acoustic
performance when employing multiple staggered facesheets with sufficient spacing between them. From
an acoustics perspective, this is a promising result however this has many applications in the quest for a
more favourable facesheet configuration from an aerodynamic perspective. The aerodynamic properties
of this configuration however are not explored by the author. Therefore this thesis will aim to attain more
insights into the aerodynamic performance of the multiple facesheet configuration like that of Dodge et
al. (2023).

Moreover, the interest in the aerodynamic properties stems from the concept of the Forchheimer co-
efficient being an appropriate scaling parameter for the velocity deficit of perforated plates, proposed
by Shahzad et al. (2022) and the larger pressure differential over staggered plates found by La Rosa et
al. (2021). The equations containing the Forchheimer coefficient (5.3) show that the pressure differen-
tial (∆P ) over the facesheet can be increased to reduce ∆U+. The connection, therefore, between the
multiple facesheets and the potential reduction of drag finds its origin in the work done by La Rosa et
al. (2021). Specifically, the staggering of plates ensures a greater pressure drop over the two plates for
normal flow through them. At the optimal spacing of staggered plates, the maximum pressure drop is
15% larger than that of two separate plates combined (Figure 5.3 (d)).

Based on the studies mentioned above, it is pertinent to explore the potential impact of multiple facesheets
on the aerodynamic properties of acoustic liners. Considering the findings, configurations with multiple
facesheets, particularly when placed in a staggered arrangement, are expected to amplify the pressure
drop across the entire facesheet. Additionally, this configuration may effectively suppress wall-normal
velocity fluctuations, which are known to contribute to drag over rough surfaces. To assess the combined
effect of these factors, the following research questions are defined for this thesis:

Research Question

Research Question: What is the effect of an additional facesheet on the aerodynamic perfor-
mance of acoustic liners?
Sub-questions:

1. What is the effect of an additional facesheet on the added liner drag?
2. How does a double facesheet affect the wall-normal velocity fluctuations and interaction

between the flow below and above the facesheet?
3. What are the relevant scaling parameters for the performance indication of the dual facesheet

liners?
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7
Methodology

In the drag identification studies of acoustic liners, the methodology is either experimental or numerical.
Where the experimental studies, mainly use a grazing flow tunnel with different drag identification
techniques. An example of this is a direct drag balance (Zheng et al. (2022a, 2022b)), which is based
on measuring the effect of the drag of the facesheet directly with the force balance. Alternatively
Scarano et al. (2022); Gowree et al. (2019) use a detailed hot-wire probe to compare velocity profiles of
smooth and perforated configurations. This gives the added drag results through the roughness function.
Gustavsson et al. (2019); Howerton and Jones (2015) on the other hand measure the pressure drop over
the substrate in order to derive a friction coefficient which can be compared to smooth wall configurations
to obtain added drag results.

Although experimental studies give accurate and reproducible results, due to the measurement technique
there is mainly one, or a limited series of quantities which can be extracted. For more insights into
multiple variables and a more qualitative flow field, there is a need for more information. This can be
provided by the use of Direct Numerical Simulations (DNS). This is the method of choice for Shahzad et
al. (2022); Zhang and Bodony (2016) who argue that pore-resolved, compressible, DNS simulations are
required for accurate drag determination of the novel porous surfaces. As Shahzad et al. (2022) reported,
both the flow origin and many wall-normal velocity fluctuations have been found inside the orifice. The
high resolution in the pores of the facesheet is therefore necessary for the desired results. This resolution
will allow the interaction of the flow inside the orifice with that above and below to be examined closely.
When the flow phenomena in the orifice are of interest, however, a porous boundary condition model
can not be used.

This chapter will therefore first focus on the DNS solver used throughout the thesis. Both the governing
equations as well as the validation of the solver will be discussed. Secondly, the qualitative flow phenom-
ena in the orifices are of interest. Therefore, a porous boundary model, emulating the effect of a porous
boundary on the flow without explicitly modelling the geometry, is not sufficient. The porous geometry
needs to be explicitly included in the computational domain. This is done through the use of the im-
mersed boundary method, which will be explained and validated in the following section. When both
the solver and the boundary method are established and verified, the chapter will focus on the actual
simulations performed on various, double facesheet, geometries. Finally, the methodology to attain the
Forchheimer coefficients for the proposed cases’ geometries will be discussed such that these geometries
can be placed in the context of Shahzad et al. (2023).

7.1 STREAmS

The investigation into the novel facesheet configuration liners has been done by the use of the compress-
ible DNS solver, STREAmS. An in-house designed solver by Bernardini et al. (2021), leveraging Message
Passing Interface (MPI) parallelization on High-Performance Computing (HPC) clusters and recent de-
velopments of computations on GPU to attain a very efficient DNS solver. The numerical simulations
solve the system of equations shown in (3.3), (3.4) and (3.5). The accompanying section (section 3.1)
elaborates on the equations and definitions given in the Navier-Stokes equations.

The flow statistics are gathered through averages of the flow. For the viscous scaled velocity, a Favre
averaging (Favre (1969)) is used, which is common for compressible flow. The Favre ensemble average
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is a density-weighted average which takes the Reynolds averaged flow and accounts for the fluctuations
in the density of the flow. Any arbitrary, time-dependent variable Φ, can be decomposed into the Favre
averaged mean (Φ̃) and the fluctuating part (Φ′′) as can be seen in (7.1). Where (Φ̃) is found in (7.2),
where T is the total time of the statistical sample and ⟨·⟩ is used to indicate the Reynolds ensemble
average. In channel flow, the Reynolds average of the flow is taken of the time-averaged flow in the x
and z direction, providing ⟨u⟩(y).

Φ = Φ̃ + Φ′′ (7.1)

Φ̃ =

∫
T
ρ(t)Φ(t)dt∫
T
ρ(t)dt

=
⟨ρΦ⟩
⟨ρ⟩

(7.2)

The Navier-Stokes equations are solved through the use of an energy-preserving scheme in locally con-
servative form, devised by Pirozzoli (2010). This scheme is used for the discretisation of the convective
terms of the Navier-Stokes equations. Which has a user-defined order of accuracy ranging from 2 to 8,
in the current work the order of accuracy is set to 6.

From the spatial discretization, as has been described above, (7.3) remains. Which contains the temporal
derivative of the conservative variables vector, w = [ρ, ρu, ρv, ρw, ρE] and the vector of the residual R.
This system of equations progresses in time through a three-stage, third-order Runge-Kutta scheme as
has been described by Spalart et al. (1991).

dw
dt

= R(w) (7.3)

7.1.1 STREAmS validation
In order to justify the conclusions from the results gathered from the STREAmS DNS, a validation of the
smooth, sub-sonic (with bulk Mach number defined as Mab = ub/cb = 0.2), channel flow is performed.
This is done by comparing DNS results of the channel flow simulations performed by Lee and Moser
(2015) to the results produced by STREAmS for the same domain, friction Reynolds number and mesh
spacing. The validation test is performed on two flow cases, Reτ = 180 and Reτ = 550.

For this study, the smooth-wall, channel domain size and flow conditions as used by Lee and Moser (2015)
have been reproduced. The dimensions of the domain, mesh element size and flow conditions can be
found in Table 7.1. As can be seen, all parameters correspond fairly well. The largest difference is in the
mesh element size ∆y+w , as the wall spacing in the validation study is coarser to reduce computational
costs. Next to the wall spacing, there is a slight difference in the friction Reynolds number for the
Reτ=550, this is a consequence of the mass flow forcing in the solver which can potentially result in
small Reτ discrepancies in friction Reynolds number. As this is a consequence of the flow and not an
apriori set parameter in the solver.

Runs Reτ Reb
Lx

δ
Lz

δ ∆x+ ∆z+ ∆y+w ∆y+c Ny Tuτ/δ

LM180 182 2857 8π 3π 4.5 3.1 0.0074 3.4 192 31.9
LM550 544 10000 8π 3π 8.9 5.0 0.0019 4.5 384 13.6

VS180 182 2858 8π 3π 5.9 4.4 1.06 6.3 96 43.8
VS550 563 10449 8π 3π 9.8 5.1 0.84 6.1 384 12.1

Table 7.1: Comparison of the reference case runs and the validation. LM indicates the reference case
(Lee and Moser (2015)) and VS indicates the Validation run of STREAmS. The number behind this
distinction is the indication of the friction Reynolds number Reτ . Reb is the bulk Reynolds number,
Lx and Lz the domain size normalised by the half channel width δ. ∆x+ and ∆z+ is the size of the
mesh elements in x and z direction respectively. ∆y+w is the mesh spacing at the wall and ∆y+c at the
channel centre-line. Ny is the number of mesh elements in the y-direction and Tuτ/δ is the simulation
time taken to gather statistics (Eddy Turnover Time).
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The comparison of the mean velocity profiles for both flow cases can be seen in Figure 7.1 (a,b). The left
figure, (a), shows the results for the mean wall scaled velocity ⟨u+⟩ for the Reτ = 180 case. The right
image, (b), shows the mean wall scaled velocity ⟨u+⟩ for the Reτ = 550 case. Additionally, Figure 7.1
(c,d) show the Reynolds stresses of the respective simulations (Reτ = 180 and Reτ = 550). The Reynolds
stresses shown are; ⟨u′

1u
′
1⟩+ ⟨u′

2u
′
2⟩+, ⟨u′

3u
′
3⟩+ and ⟨u′

1u
′
2⟩+ in descending order. The remaining elements

(⟨u′
1u

′
3⟩+ and ⟨u′

2u
′
3⟩+) are omitted as these are statistically zero in a channel flow.

Overall, good correspondence between the VS and LM runs are found. Some small differences, like in
the ⟨u′u′⟩ of LM550 and VS550 can be attributed to the small difference in friction Reynolds number
(Reτ in Table 7.1). The results of the comparison establish that the STREAmS solver provides accurate
and reproducible results.
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Figure 7.1: (a,b) Comparison of mean velocity profile ⟨u+⟩ (w.r.t wall distance) from STREAmS (red
line) and Lee and Moser (2015) (black squares) results. (c,d) Comparison of the Reynolds stresses ⟨u′

iu
′
j⟩+

from STREAmS (red line) and Lee and Moser (2015) (black squares)results.

Drag metrics

Acoustic liner drag identification studies do not only contain the simulation of the flow field subject to
a certain channel wall geometry. They also entail the post-processing of the results from the flow field
data to useful quantities used by other authors such that results can be compared.

One of the most general indications of the added drag is ∆U+ as has been readily discussed in previous
chapters. The quantity gives a relative velocity deficit with respect to a smooth wall. ∆U+ is found
through the mean velocity profile of the half-channel flow. This value is therefore derived from a large
amount of data, as the channel flow is fully turbulent, and many fluctuations are found in the flow.
The averaging of the statistics in this work is at least 10 eddy turnovers (Tuτ/δ) as has been deemed
sufficient by Shahzad et al. (2022). This is to ensure that the averages do not change any more over time
and represent true averages of the flow. From this, a part of ∆U+ can be found, as it would be either
the smooth or the rough wall geometries’ velocity profile.

The quantity needs a reference smooth-wall case in order to be obtained. So the results of a smooth-wall
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and a subject geometry are needed to find these results. According to Modesti et al. (2021), ∆U+ can
be used to find the drag variation as can be seen in (7.4):

(%) = 1− Cf

Cfsw
= 1− 1

(1− ∆U+

U+
δsm

)2
(7.4)

Where Cfsw is the skin friction of a smooth wall and U+
δsm is the centre line velocity of a smooth-wall

channel. This function can give a percentage value for the drag reduction as a final product.

Alternatively, the skin friction coefficient can be used (3.16) to describe the drag influence. This is
non-dimensionalised and therefore can be compared well to other studies. In order to attain the skin
friction coefficient, τw must be obtained which is related to the pressure gradient. These equal each other
(3.10), and the mean pressure gradient is used to drive the flow in the periodic channel. This is to ensure
that the flow through the domain maintains a constant mass flow rate. As τw is larger, there is a larger
pressure gradient needed to maintain the same mass flow rate.

The results of the pore-resolved DNS simulations will be averaged to find the ∆U+ of the geometry with
respect to a reference value. This result combined with the friction coefficient and the drag variation
will lead to appropriate measures to evaluate the drag performance of novel liner designs. Additionally,
the wall-normal velocity fluctuations will be expressed by both the instantaneous flow fields as well as
the corresponding Reynolds stresses as found in (3.14).

7.2 Immersed Booundary Method

The boundary of the smooth-wall channel flow has a no-slip boundary condition imposed. This is done
for a flat, smooth, isothermal, wall where a non-permeability condition is applied, such that no wall
normal flow is allowed through the boundary. The boundary for the porous geometries will be modelled
by the Immersed Boundary Method (IBM).

The Immersed Boundary Method eliminates the requirement to explicitly mesh each roughness element.
As explained by Mittal and Iaccarino (2005), it imposes a geometry on the flow with opposite value
source terms inside the geometry. This is often referred to as the discrete forcing approach deemed most
suitable for stationary and rigid boundaries. The source term forcing is applied after the discretisation
of the flow equations in the solver. An example of the IBM can be seen in Figure 7.2 where the Cartesian
mesh is overlaid over the geometry and the forcing at the ghost nodes inside the body and the fluid

Figure 7.2: Example of the Immersed Boundary Method (IBM). Here the white cells, with the open
node points, represent the fluid nodes, the blue cells with black nodes the forcing points and the yellow
with grey nodes are the solid cells and nodes respectively. The red line represents an arbitrary geometry
onto which the IBM adapts itself. (from Liu and Hu (2019))
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points outside the body ensure the boundary is adhered to. For a solid boundary, the IBM ensures zero
velocity at the boundary. Do note that the image is in 2D while the IBM in most geometries works in
3D extending into an additional dimension. For detailed explanations of the forcing terms Mittal and
Iaccarino (2005) is recommended.

Due to the development of IBM, very cumbersome, explicit meshing of conformal grids around irregular
roughness topographies is not necessary. This makes numerical simulations a more feasible approach for
the added drag studies of the rough-wall topographies. Especially when different topographies are under
scrutiny, as is the case in this work, the IMB is the preferred boundary method. In order to ensure the
accuracy of the results provided by the IBM boundary, the following section, focussing on the validation
of the IBM used in STREAmS, is employed.

7.2.1 IBM validation
In order to justify the results gathered with the help of the IBM, the boundary method will first be vali-
dated. This is done through the use of DNS results found by MacDonald et al. (2018) for 2 dimensional,
rectangular spanwise bars in the domain. The computational domain consists of a ’minimal-span rough
wall channel’ which is the half channel with a slip, symmetry condition placed on the centreline which
cuts the domain in half. The boundary of the explicitly meshed roughness elements is the conventional
no-slip boundary and all remaining sides of the domain have periodic boundary conditions. Chung et al.
(2015) have established this to be a computationally cost-efficient way to characterise hydraulic rough-
ness elements in a channel flow. Especially as the span of the domain can be limited since the near wall
(below yc ≈ 0.4Lz) turbulence is not altered. Therefore the results from MacDonald et al. (2018) have
been selected as a validation source as they provide a cost-efficient way to validate the workings of the
IBM in STREAmS.

The rectangular spanwise bars span over the entire width of the domain with various spacings and depths
of the throughs. For the validation, the configuration with depth and width of the elements of k+ = 50
and W+ = 100 has been selected. A schematic overview of this geometry is provided in Figure 7.3. The
origin of the smooth wall is found on top of the roughness crests and the throughs protrude downwards.
This emulates, to a certain extent, a perforated surface, making it an even more relevant validation study.

Figure 7.3: Sketch of the geometry from MacDonald et al. (2018) used for the validation of the IBM.
The image has the flow direction indicated, the width W and the height k of the roughness elements are
shown. The height of the half channel is indicated with h where the dashed line indicates the position
of the symmetry boundary.

The k+ = 50 and W+ = 100 geometry is reproduced with 5 crest and roughness pairs placed in alternating
order in the streamwise direction. The grid used is equally spaced in the x and z direction while the
spacing in the y direction has a tanh regression with Nx ×Ny ×Nz = 800× 250× 68 (where the present
notation conforms to that of this thesis, s.t. y is the wall-normal coordinate, not z as in MacDonald et
al. (2018)). All simulations are performed at the same friction Reynolds number of Reτ = 395.

The results of the DNS run using IBM for the roughness geometry and those of the body-fitted mesh
with conventional no-slip boundary condition are displayed in Figure 7.4. As can be seen from 7.4 (a),
the mean velocity profile corresponds very well, both close to the wall and further towards the centreline,
to the reference case. Especially the velocity profile close to the wall (i.e. y+ < 50) is of interest as this is
impacted the most by the boundary condition. The same effect is seen from the Reynolds stresses in 7.4
(b), where all the non-zero components of the Reynolds stresses are shown. Here again, both the results
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Figure 7.4: (a): Comparison of the mean velocity profiles found by the IBM tested in STREAmS (red
line) and the limited span half channel runs performed by MacDonald et al. (2018) (black squares)
. (b): Comparison of the Reynolds stresses found by the IBM tested in STREAmS (red line) and the
results from MacDonald et al. (2018). Here the highest values are attained by ⟨u′

1u
′
1⟩, then the second

largest by ⟨u′
2u

′
2⟩, the third by ⟨u′

3u
′
3⟩ and the lowest and partially negative Reynolds stresses by ⟨u′

1u
′
2⟩

close to the bottom boundary and towards the centreline correspond well to the reference case. The
validation can therefore conclude that the IBM can very well be used to mesh the roughness geometries.
This validation has shown that the IBM handles the porous wall-like geometries as well as a body-fitted
mesh configuration.

7.3 Double facesheet

In order to produce a sensible double liner design, next to the facesheet geometry, which will emulate
that of Shahzad et al. (2023), the size of the gap between the two plates needs to be determined. Where
the pressure drop over the two facesheets increases with smaller spacing between them. In the case of
La Rosa et al. (2021), the staggered configuration does have a central hole which is fully aligned as shown
in Figure 5.3 (e). This limits the pressure drop over the plates when the spacing approaches 0, as the two
plates effectively become one thicker plate with a limited porosity. Where, according to Gan and Riffat
(1997), a thicker plate with sharp-edged orifices shows a lower pressure drop for a t=d facesheet than
one where t=0.5d and increases further for thinner plates. This effect can cause less desirable results
when the spacing is too small and some alignment of the holes is experienced.

Therefore, these studies show that when the spacing between plates reduces, the pressure drop increases.
Looking at (5.3), the increase in ∆P results in the rise of αy and therefore reduces ∆U+. However, there
is also a need to maintain a certain distance between the plates to preserve the noise-reduction properties
of the liner. When the holes are fully miss-aligned and the spacing gap is 0, the pressure drop increases
exponentially but there is no attenuation of any incident sound (Cherrier et al. (2012)). To provide some
context in facesheet spacing, the geometries and gaps used in previous studies have been summarized in
Table 7.2. Based on this information a gap spacing will be selected that is used for the geometries that
will be tested.

When we compare the spacing between the facesheet plates, based on the hole diameter, as shown in the
table, the largest spacing (G3) used by Dodge et al. (2023) is 0.342d. This is a relatively small spacing
between plates which already allows for good sound attenuation levels. La Rosa et al. (2021) shows that
for staggered geometries, the pressure drop over the plates with a spacing of L

D < 1, where D is the
pipe diameter ( D = 9.27d), is lowered. The combination of these feats shows that the spacing (between
plates) used in the La Rosa paper is much larger than that in the Doge paper. This establishes that all
the cases in the La Rosa paper would have sufficient sound attenuation properties, as these grow with
the increase of the spacing.

Therefore, the spacing used for the G3 configuration of Dodge et al. (2023) can be treated as a constraint
for the minimum spacing between the facesheets to maintain the desired sound attenuation properties.
Depending on the amount of staggering of the facesheets, the appropriate spacing could lead to a larger
and more desirable pressure drop over the facesheet. To assess these effects, the limited size channel flow
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Case d g
d

t
d σ σeff

Shahzad et al. (2023) L− L14 0.08δ - 1 0.142 0.142
Lt − L14 0.08δ - 0.5 0.142 0.142

Dodge et al. (2023) G3 (100%) 0.046” 0.342 0.435 0.1087 0.1087
G3 (25%) 0.046” 0.342 0.435 0.1087 0.0272

La Rosa et al. (2021) Non-staggered 8.4 mm 9.27 1 0.15 0.15
Staggered 8.4 mm 3.48 1 0.15 0.0116

Table 7.2: Geometry overview and comparison of the different cases of interest. The DNS geometry from
Shahzad et al. (2023) for the perforated single facesheet where the first L refers to Liner configuration,
the second to Reτ = 500, 14 the POA and the ’t’ subscript indicates the thin facesheet. The orifice
diameter d is expressed as a function of half channel width δ = 1 (in the first case). The facesheet
porosity σ and the effective porosity σeff are shown for all cases. The effective porosity is the area of the
holes which can be looked through when the facesheets are staggered. Additionally, the largest facesheet
gap configuration ’G3’, of the experimental set-up, of Dodge et al. (2023) is shown, for different opening
percentages (i.e. 100% and 25%). The orifice diameter d is expressed in inches and the facesheet spacing
gap g is expressed in the orifice diameter. The same is done for the CFD set-up from La Rosa et al.
(2021) for both the staggered and non-staggered cases. The spacing g however for this case indicates the
spacing at which the pressure drop over the two plates is maximum and the orifice diameter is expressed
in millimetres.

geometry, used by Shahzad et al. (2023), is replicated for this study and the results for the 14.2% POA
run will be used as reference. These reference cases are included in Table 7.2 to show the relative sizes
of the orifices, plate porosity and thickness.

In order to be able to connect the results to the acoustic properties of Dodge et al. (2023), the same
relative thickness of the facesheet and the largest gap configuration are used (based on orifice diameter).
The diameter of the orifice used, however, is taken from Shahzad et al. (2023) just as the domain size
for the channel. This way the geometry has the same dimensions and ensures that the flow results
for the smooth wall configuration and the results for the liner can be used as reference cases to such
that the effect of an additional facesheet can be observed. The additional benefit of this is that when
the geometrical ratios are maintained between the orifice and the cavity volume the sound attenuation
properties are the same as those of Shahzad et al. (2023).

The triple facesheet geometry of Dodge et al. (2023) is used as a reference for the percentage open
configurations. The present work, however, will use 2 facesheets as opposed to 3 to reduce computa-
tional costs and geometric complexities. This simplification is mainly based on the mesh spacing of the
computational domain, spanning the facesheet gap. This needs to be ∆y+ < 1 in order to capture all
small-scale fluctuations in these areas. According to La Rosa et al. (2021) however, the use of only two
staggered plates is sufficient to attain the desired pressure differential and therefore is deemed sufficient
to evaluate the effect of multiple facesheets.

7.3.1 Geometry
The geometry of the double facesheet liner is constructed by combining the first and second facesheets
(fs1 and fs2) as illustrated in Figure 7.5 (a). Both fs1 and fs2 possess a single plate porosity of
σ = 0.142, and the effective porosity resulting from their combination (at 50% open) is σeff = 0.071, i.e.
50% of σ. The overlapping area of the orifices, seen through the top and bottom facesheet is the effective
porosity σeff (based on the total cavity area). This is visualised by the light which passes through both
perforated facesheets (white space in combined image). The double facesheet is presented through an x-
plane slice at the midpoint of the orifice in both (b) and (c). The orientation of the rectangular cavities,
each with a size of 0.335δ per side (excluding the 0.04δ thick walls), is displayed. The channel liner
comprises a total of 64 cavities, resulting in 64 configurations similar to the right image in Figure 7.5
(a). The facesheets are spaced as depicted in (c), the current image shows the orifice orientation of
the 50% open area orientation which is shifted upstream with a specific staggering distance dstag. This
distance is increased or decreased depending on the lower or higher (resp.) percentage open area of the
configuration. To isolate the effect of the double facesheet, only the second facesheet (i.e. fs2) is shifted
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along the streamwise direction.

Figure 7.5: (a): Orientation of the holes through both facesheets covering one cavity for the 50% open
(D50 − L14) configuration. The light grey facesheet represents facesheet 1 (fs1) and the darker grey
facesheet represents facesheet 2 (fs2). Combined they show the top view for the configuration where
the white space indicates the passage through both plates. (b): Schematic cut-through of the domain
in the x-plane showing both facesheets and the cavity below. The slice is through the middle of the
orifices of the 50% open configuration. In the image, both fs1 and fs2 are indicated and the size of
the cavity is indicated. (c): Zoomed in schematic image of (b) where the gap, the diameter and the
staggering distance are pointed out having size g = 0.342d, d = 0.08δ and dstag = 0.0323δ respectively.
The staggering distance changes depending on the percentage open area of the configuration.

As mentioned above, the channel flow geometry of this study has the same dimensions as Shahzad et
al. (2023) has used. This ensures the ability to use the results for the smooth wall channel flow and
the results of the Liner geometry σ = 0.142 (first three cases of Table 7.3) as reference cases. This, in
turn, allows for the computation of ∆U+ and asses relative performance, without the need to run these
configurations again. The limited size channel dimensions are Lx×Ly ×Lz = 3δ× 2(δ+h)× 1.5δ where
δ is the channel half width and h is the depth of the cavity plus the total facesheet thickness (including
gap spacing). The set-up of the total geometry can be seen in Figure 7.6 (a). Here the cavities below
the facesheet and the double facesheet in the channel flow are displayed. The orifices of the facesheet are
placed in the same locations and have the same dimensions as those of Shahzad et al. (2023) creating
an identical geometry at the channel walls. For a reference friction Reynolds number of 500, the viscous
scaled diameter of the orifices is d+ = 40. Figure 7.6 (b-g) show the different orifice orientations tested
for the runs as indicated in Table 7.3.

The computational domain spacing, in the x and z direction, is based on the minimum number of mesh
elements per cavity (found through the mesh sensitivity study performed by Shahzad et al. (2023)).
These have at least 25 elements spanning across the diameter of the orifice. This results in an equally
spaced mesh in both the x and z direction of equivalent size. The domain length is Lx = 3δ and Lz = 1.5δ
and therefore the mesh contains 1000 and 500 mesh elements respectively to adhere to 25 elements over
the 0.08δ diameter of the orifices. The spacing of the mesh in the wall-normal direction (y) is based on
attaining a sufficiently small spacing at the wall and in the facesheet gap of ∆y+ ≈ 0.8. To attain this,
the mesh from the centre of the channel to the wall decreases in spacing following tanh from ∆y+c ≈ 5.8
to y+w ≈ 0.8, depending on the friction Reynolds number of the specific simulation. The wall-normal
spacing in the gap between the facesheets and through the orifices of both facesheets is maintained at y+w
before coarsening in the cavity again. This is done such that all the velocity fluctuations in, and close to,
the orifices are captured. As these have been identified as the main contributors to the facesheet drag of
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the channel.

Figure 7.6: (a): Schematic image of the double facesheet liner, channel geometry in the D100 − L14
configuration. The geometry shows the square cavities with their corresponding 4 orifices per cavity.
The domain has Lx × Ly × Lz = 3δ × 2δ × 1.5δ as its dimensions, with the thickness of both facesheets
is tfs1 = tfs2 = 0.435d and the spacing gap between the plates is g = 0.342d as indicated in Table 7.2.
(b): 100% open facesheet orientation (D100 − L14) of the top with respect to the bottom facesheet (i.e.
fs1 and fs2 resp.) and the inner cavity walls (Black square). NOTE: both the liner reference cases
(i.e. L − L14 and Lt − L14) have the same orifice and cavity orientation but with a single facesheet
of t = d and t = 1/2d respectively. (c): 75% open facesheet orientation (D75 − L14) where the red
holes indicate the orientation of the top facesheet (the sheet in direct contact with the flow) and the
blue holes that of the bottom facesheet (the sheet which is connected to the cavities). (d): 50% open
facesheet orientation (D50 − L14) with the bottom plate shifted upstream. (e): 50% open facesheet
orientation (D50 − L14inv) with the bottom plate shifted downstream. (f): Hole orientation of the
staggered configuration L−L14stag with a single facesheet where t = d. (g): Double staggered facesheet
hole orientation (D1.6 − L14stag), with the same fs1 configuration as L − L14stag while the bottom
facesheet is staggered in the mirrored direction w.r.t the red holes from (f) and are shifted upstream like
fs2 of (d) resulting in a 1.16% open configuration.

Simulations are carried out for several geometry variations, changing the percentage open area of the two
facesheets. An overview of the DNS runs performed as well as those taken from Shahzad et al. (2023) as a
reference case are presented in Table 7.3. As is indicated in the table, all simulations are performed under
the same flow conditions with Reτ ≈ 500 and all top facesheets of the liner configurations have the same
single plate porosity of σ = 0.142. The gap spacing and both facesheet thicknesses and orifice diameter
are kept constant throughout the simulations. The bulk Reynolds number remains at Reb ≈ 8800 for all
liner cases.

The variations of the percentage open area result in changes in effective porosity from σeff = 0.142
to σeff = 0.0023. Percentage open areas of 100%, 75% and 50% are tested, where the orifices in the
second factsheet are shifted upstream. These percentage open areas are tested to evaluate the effect of
the shifting of the plates on the liner drag. These runs are referred to as D(%) − L(σ(%))geo where the
D indicates the double facesheet liner with a percentage open indication in the subscript. The ’L’ refers
to the low friction Reynolds number (from Shahzad et al. (2023)), σ(%) to the single facesheet porosity
(expressed as a percentage). The ’geo’ subscript refers to any geometry changes over the conventional
orientation mentioned above. Next to the 3 different percentage open orientations, the effect of the
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shifting direction of the orifices in fs2 is evaluated where the geometry is changed from Figure 7.6 (d)
to (e). This inversed shifted run is indicated by the ’inv’ subscript.

In addition to the moderate opening percentages tested, a geometry is tested where the open percentage
is reduced to 1.6% (7.6 (g)). In order to ensure the orifices in fs2 did open into a cavity and a periodic
spacing between these was maintained, the top facesheet has been staggered such that these variations
led to a nearly fully closed configuration. As can be seen from Figure 7.6 (f) and (g), fs1 has a staggered
orientation and fs2 (in the case of (g)) has been mirrored and is shifted upstream as far as the cavity
walls would allow. The staggered configuration, with a single facesheet and t = d, has also been simulated
to isolate the effects of the minimal percentage open orientation and, the potential, effect of staggering
the holes. The Lstag −L14 run is performed as a reference run with the same dimensions as the L−L14
run with the only difference being the location of the orifices.

Case Reτ Reb d+ g+ t+fs1 t+fs2 σ σeff ∆U+ Cf × 103 ∆x+ ∆z+ ∆y+w Ny Tuτ/δ

S − L 506.1 9268 0.0 - - - 0 0 0 4.578 5.1 5.1 0.80 150 37.8
L− L14 496.4 8794 39.7 - 39.7 - 0.142 0.142 0.54 4.855 1.0 1.0 0.80 500 32.8
Lt − L14 515.5 8794 41.2 - 41.2 - 0.142 0.142 0.67 4.856 1.5 1.5 0.82 500 26.1
L− L14stag 508.7 8835 40.7 - 40.7 - 0.142 0.142 0.39 4.774 1.5 1.5 0.81 500 10.1
D50 − L14 509.4 8835 40.8 14.2 17.7 17.7 0.142 0.071 0.52 4.864 1.5 1.5 0.82 560 11.2
D75 − L14 511.0 8835 40.9 14.2 17.8 17.8 0.142 0.107 0.55 4.946 1.5 1.5 0.82 560 11.0
D100 − L14 506.1 8835 40.5 14.1 17.6 17.6 0.142 0.142 0.56 4.814 1.5 1.5 0.81 560 11.0
D50 − L14inv 507.7 8835 40.6 14.1 17.7 17.7 0.142 0.071 0.56 4.901 1.5 1.5 0.81 560 10.9
D1.6 − L14stag 507.0 8835 40.6 14.1 17.6 17.6 0.142 0.002 0.60 4.778 1.5 1.5 0.81 560 10.6

Table 7.3: DNS dataset of all runs of which results are used in the results section. The first 3 runs (SL,
L− L14 and Lt − L14) are performed by Shahzad et al. (2023)

7.3.2 Forchheimer coefficient
To contextualize the geometries listed in Table 7.3 with the Forchheimer coefficient and evaluate its
suitability as a scaling parameter for double facesheet liners, it is essential to determine the Forchheimer
coefficient for each geometry. This entails conducting simulations of laminar flow through the perforated
plate configurations depicted in Figure 7.6 (b-g). Utilizing (5.1), the Darcy and Forchheimer permeability
coefficients of these geometries are computed by analyzing the pressure differential between the inlet and
outlet at various pore Reynolds numbers during simulations of normal flow through a perforated surface.

The simulations are performed in the same fashion as done by Shahzad et al. (2022). The geometry for
a single cavity (as in Figure 7.6 (b-g)) is augmented to a unit square with a no-slip boundary condition
applied to it. A schematic representation of the computational domain is illustrated in Figure 7.7 (a). At
the inlet, situated on top of the domain, a constant superficial velocity Ut is prescribed, while a constant
pressure is maintained at the outlet, at the bottom of the domain. Neumann boundary conditions are
applied for both inflow pressure and outlet velocity. Symmetry boundary conditions are enforced along
all sides of the domain.

The direct numerical simulation of laminar flow through the perforated plate involves solving the in-
compressible Navier-Stokes equations utilizing the pimpleFoam solver, which is part of the OpenFOAM
library Weller et al. (1998). The temporal progression of simulations is done by a forward Euler time step
scheme, adhering to a Courant-Friedrichs-Lewy (CFL) number of less than 0.7, until reaching a steady-
state solution with residuals below 1×10−9. Spatial solution computation employs a second-order central
discretization scheme. The lengths of the inlet and outlet have been investigated by Shahzad et al. (2022),
confirming a minimum requirement of 40d.

The simulations encompass four distinct geometries: D50−L14, D75−L14, D100−L14, and D1.6−L14stag.
Notably, the orientation of the holes does not affect the pressure drop over the plates Tanner et al. (2019);
Bae and Kim (2016). Therefore, D50 − L14inv shares its permeability coefficients with D50 − L14, and
L − L14stag with L − L14, which is provided by Shahzad et al. (2023). Each geometry undergoes
simulations at three distinct pore Reynolds numbers.

The pore Reynolds number (Rep) is defined as Rep = Upd/ν, where Up denotes the pore-perceived
velocity, defined as UpAo = UtAp through mass conservation. Here, Ao represents the orifice area and

40



CHAPTER 7 7.3. DOUBLE FACESHEET

Ut

td

P1

P2

(b)(a)

Figure 7.7: (a): Shows a sketch of the computational domain of the pressure drop simulations here
the inlet velocity is indicated by Ut, the size of the orifice and the thickness of the plate by d and t
respectively and the pressure at the inlet and outlet is indicated by P1 and P2. For the purpose of the
illustration the side walls have been removed such the individual facesheet are visible In the simulation
these are closed. (b): shows the results of the simulations, performed for D50 − L14 indicated by (△),
D75 − L14 indicated by (□) and D100 − L14 indicated by (×) and D1.6 − L14stag indicated by (∗)

Ap indicates the plate area. Thus, the superficial velocity can be expressed as Up = UtAP /Ao = Ut/σ,
leading to Rep = Utd/σν. In the simulations, pore Reynolds number adjustment is accomplished by
varying the viscosity of the flow through the domain.

Rep =
Upd

ν
(7.5)

The Darcy and Forchheimer coefficients are determined through a least squares linear fit of the normalized
pressure drop. In Figure 7.7 (b), the normalized pressure drop (left-hand side of (5.1)) is plotted against
the pore Reynolds number. The slope of the fit provides αyσd, while the y-axis intercept (at Rep = 0)
gives d2/Ky.

Observing the figure, it is evident that the geometry with the smallest percentage open setting, D1.6 −
L14stag, exhibits the highest pressure drop over the facesheet across all Rep. As the holes of the top
and bottom facesheets become more aligned, the pressure drop over the facesheet diminishes. This trend
aligns with the findings of La Rosa et al. (2021) for misaligned holes in subsequent plates. Moreover,
the pressure drop varies more significantly, between cases, for higher Rep. The computed values for the
slope, the wall intercept of the normalized pressure drop, along with the Forchheimer coefficient and the
Darcy permeability derived from them, are tabulated in Table 7.4.

In computing these values, the geometric variables considered include the orifice diameter, plate porosity,
and plate thickness. When analyzing a single facesheet, there is no ambiguity in determining these
variables. However, for a double facesheet configuration, decisions arise regarding which values to employ.
Therefore it is necessary to highlight the variables used. The orifice diameter from Table 7.3 is utilized.
Although Table 7.3 provides the effective porosity, the regular single-plate porosity is deemed more
relevant due to its relevance for the computation of the pore perceived velocity through the conservation
of mass. Additionally, the combined thickness of the two plates, rather than the total facesheet thickness
(including the gap), is utilized for the plate thickness to ensure material permeability is adressed.

The table reaffirms the trends observed in Figure 7.7 (b). Specifically, it indicates that greater misalign-
ment of the orifices in the plates corresponds to larger pressure drops and consequently smaller values
for the inverse of the Forchheimer coefficient. A comparison with the values reported by Shahzad et al.
(2023) reveals that the inversed Forchheimer coefficient values are indeed lower for the double facesheet
configuration. However, there is a notable difference in the Darcy permeability coefficient, which is sub-
stantially higher for the dual facesheet liner cases compared to the values reported by Shahzad et al.
(2023), while the geometries are similar.
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Case αyσd d2/Ky 1/α+
y

√
Ky

+

L− L14 6.61 371.63 0.859 2.06
Lt − L14 10.68 461.35 0.552 1.92
L− L14stag 6.61 371.63 0.880 2.11
D50 − L14 13.02 133.96 0.439 3.52
D75 − L14 10.30 114.18 0.555 3.83
D100 − L14 9.22 108.88 0.620 3.88
D50 − L14inv 13.02 133.96 0.439 3.51
D1.6 − L14stag 21.20 242.87 0.270 2.60

Table 7.4: Values found for the slope and the wall intercept of the normalised pressure drop and converted
to the viscous scaled Forchheimer and Darcy coefficient. The values of the first 3 cases are from Shahzad
et al. (2023) and the remaining 5 originate from current simulations. Both the Forchheimer coefficient
and the Darcy permeability are converted such that their unit is a length scale [L]. (The unit of αy is
[L−1] and of Ky is [L2])

Although, the relative values align with expectations, scaling inversely with the shifting distance. From
the perspective of normal impinging flow on the surface, the values for the Darcy permeability seem
unexpected, as it indicates the ease with which a fluid can pass through a medium. Where, due to the
misalignment of the first and second facesheet orifices, one would expect that the flow encounters greater
resistance. When considering the gap between the facesheets as additional permeability, however, the
higher Darcy permeability for the dual facesheet liner cases becomes logical, as the flow benefits from
additional release area between the plates compared to the single facesheet liner orifices, which primarily
exhibit permeability in one direction.

Although hole orientation is insignificant to the pressure drop over the plates, the table does show slightly
different values for 1/α+

y for the L − L14 and L − L14stag cases. This is however due to the difference
in friction Reynolds number of the simulation. The same can be seen for D50 − L14 and D50 − L14inv,
which are effectively the same geometry but will have a different orientation with respect to the flow
direction in the channel flow DNS runs. The effect of shifting direction together with the presence of the
second facesheet in general will be discussed in the results section.
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8
Results and discussion

The discussion of the results will begin with an evaluation and comparison of the instantaneous flow field
of the various geometries. The primary aim of the results section is to address the main research questions
posed in the problem statement, particularly concerning the impact of the dual facesheet configuration
on the aerodynamics of an acoustic liner. Special attention will be given to assessing the additional drag
induced by the dual facesheet configuration, examining the Reynolds stresses both above and below the
facesheet, and exploring relevant scaling parameters or length scales that characterize the aerodynamic
performance of the dual facesheet configurations.

8.1 Instantaneuous flow in channel

As extensively discussed in the previous chapter, the performance of the dual facesheet configurations
with different percentage open configurations and two different top facesheet configurations (regular and
staggered) are tested and compared to the reference cases provided by the study of Shahzad et al. (2023).
The reference cases feature a single facesheet, allowing for a direct assessment of the impact of applying
a second facesheet to the configuration.

To evaluate the impact of an additional facesheet on channel flow, we focus on streamwise velocity
fluctuations, as illustrated in Figure 8.1. This figure provides a comparative analysis between a high-
friction Reynolds number (Reτ = 2000) simulation by Shahzad et al. (2023) and the current work
conducted at Reτ = 500. The x-z slice is taken at y+ = 5 from the wall, offering insights into the flow
behaviour. Figures (a) and (b) serve as reference cases, depicting streamwise velocity distributions for
a smooth wall and a surface with σ = 0.32, respectively. Furthermore, figures (c) and (d) showcase
scenarios with regular facesheet configurations, where (c) corresponds to a single facesheet, while (d)
represents a double facesheet setup. Moreover, figures (e) and (f) maintain the same configuration but
introduce a staggered arrangement for the top facesheet. This comparison provides valuable insights into
how the additional facesheet alters streamwise velocity fluctuations, shedding light on the influence of
different configurations on channel flow dynamics

Comparing the results of the cases of the current work (Figure 8.1 (c-f)), it is difficult to observe a
notable difference between single and dual liner cases. This is especially evident when Figure 8.1 (a) and
(b) are compared. The relative differences in the instantaneous flow velocity of the respective cases are
much larger than seen for the cases of the current work. The lower friction Reynolds number, used in this
study, results in a larger viscous length scale and thus relatively large small-scale structures compared to
higher friction Reynolds number cases. Although the lower friction Reynolds number is beneficial from
a computational standpoint the differences between the single and double facesheet configurations are
not immediately evident from this instantaneous flow field.

The findings concerning the streamwise fluctuations may not be surprising, given that the primary func-
tion of the double facesheet is to attenuate wall-normal fluctuations originating from beneath the liner’s
surface. Consequently, it is not expected that the dual facesheet liner configuration would significantly
affect the wall-parallel fluctuations above the liner surface. From the perspective of the channel, the
geometry of the wall remains unaltered; the only modification introduced by the double-facesheet is an
additional surface beneath the first facesheet and a thinner top-facesheet.
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Figure 8.1: Comparision of the instantaneous streamwise velocity fluctuations u′
1 of a reference case for

(a): the S −H run and (b) : the L−H32 run for the Reτ = 2000 cases of Shahzad et al. (2023) take at
y+ + l+T = 12. Additionally, from the current work (c): L− L14, (d): D100 − L14, (e): L− L14stag and
(f): D1.6 −L14stag. All flowfields of the current work are x-z planes of the full domain taken at y+ = 5.
The location of the orifices is indicated for the first 3 rows at the left side of each case.

Whether similar results will be observed for cases with larger friction Reynolds numbers remains to be
determined. This is particularly pertinent because the reduction of wall-normal velocity fluctuations
could potentially elongate the streamwise streaks, as suggested by studies such as those conducted by
Orlandi and Leonardi (2006) and Kuwata and Suga (2019).

In addition to investigating the streamwise velocity fluctuations, Figure 8.2 offers an overview of the
same plane and flow cases as presented in Figure 8.1 (c-f) but for the wall-normal velocity fluctuations,
u′
2. This variable is more affected by the design of the double facesheet liner. The theory posits that

the wall-normal fluctuations originating from the orifices (Orlandi and Leonardi (2006), Shahzad et al.
(2022), La Rosa et al. (2021)) are restricted due to the obstructed passage from the main channel to the
cavities below. To assess this, Figure 8.2 compares the single facesheet liner (a) and the 100% open dual
facesheet liner (b). Here, the effect of the second facesheet on the flow in the main channel, albeit close to
the wall, would be visible, as these cases have the same effective porosity and only differ in the presence
of a single or dual facesheet. Upon comparison, the differences appear to be fairly minimal, especially
when examining the instantaneous velocity fluctuations where absolute differences are challenging to
discern. However, it is noticeable that areas with high streamwise velocity fluctuations in Figure 8.1
(c) and (d) correspond to regions with high wall-normal velocity fluctuations in Figure 8.2 (a) and (b).
This observation seems to corroborate the findings of Kuwata and Suga (2019) regarding the relationship
between streak length and wall-normal velocity fluctuations.

One notable observation from Figure 8.2 is that the velocity fluctuations in the wall-normal direction
are primarily influenced by interactions with the orifices. This observation aligns with the findings of
Shahzad et al. (2023), as seen in Figure 8.2 (a). The additional wall-normal fluctuations are initiated
by the presence of the orifices in the facesheet. However, the effect of inhibiting wall-normal velocity
fluctuations due to the reduction of effective porosity (from Figure 8.2 (b) to (d)) is not observed in the
channel. If any comparison can be made, it appears that there are more fluctuations emanating from
the orifices of the D1.6 − L14stag configuration compared to the D100 − L14 case. This would oppose
expectations however the instantaneous flow fields are not the most appropriate quantities to assess the
degree of fluctuation in the channel. This assessment is continiued in the section concerning the Reynolds
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Figure 8.2: Comparision of the instantaneous wall-normal velocity fluctuations u′
2 of (a): L− L14, (b):

D100 − L14, (c): L − L14stag and (d): D1.6 − L14stag. All flowfields are x-z planes of the full domain
taken at y+ = 5. The location of the orifices is indicated for the first 3 rows at the left side of each case.

stresses.

8.2 Mean Velocity profile

The theory section of this thesis has described that the origin of a smooth-wall boundary layer is found
at the wall (i.e. y = δ or y = −δ for a channel flow). For rough-wall topographies, however, the origin of
the boundary layer does not necessarily correspond to one of these locations. Often an offset is perceived
between the physical location of the wall and where the flow perceives its origin. This effect, for instance,
is observed in studies regarding passive drag reduction techniques such as riblets (Garcia-Mayoral and
Jimenez (2011) Modesti et al. (2021)) or superhydrophobic surfaces (Rothstein (2010)). Wall offset in
the positive wall-normal direction is often perceived in such studies, effectively imposing a slip condition
on the wall and thus decreasing the drag of a surface.

Virtual origin

Unfortunately, liner-like surfaces do the opposite and shift the boundary layer and turbulence origin
downwards. The origin of the boundary has rather been shown to reside below the original wall, as has
effectively been illustrated through Figure 8.3 by Shahzad et al. (2023). When the direction of the shift
is opposite, the effect it has, generally is opposite as well. As part of the turbulence of a perforated sheet

Figure 8.3: Schematic drawing of the near-wall turbulence over a porous and smooth surface, respectively.
The virtual origin shift is indicated by lT .
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resides below the facesheet, a drag increase over a smooth wall is seen (Shahzad et al. (2023)).

When comparing mean profiles of rough and smooth surfaces, it is necessary to shift the wall-normal
profiles in such a manner that the origin of the boundary layers coincide. This is often referred to as
performing a virtual origin shift indicated by l+T . This is a relatively small shift (in this thesis it does not
exceed l+T ≤ 1.1) and indicates the position of the wall as perceived by the near wall turbulent structures.
Although small, the gradients close to the wall are substantial and thus the shift is necessary to perform.

The magnitude of the shift can be estimated by several methods, like those proposed by G. G. de Segura
and García-Mayoral (2020) or Modesti et al. (2021) however in this instance the method proposed by
Ibrahim et al. (2021) is used. Here, the Reynolds shear stress profile (τ12) of the liner cases is shifted
to coincide with that of the smooth wall. The virtual origin shift lT ensures the profile collapses close
to the wall. Shear stress profiles before (a) and after (b) the shift are illustrated in Figure 8.4. The
comparison of these images demonstrates the effective collapse of all profiles near the wall. Due to small
differences in geometry and moderate friction Reynolds numbers, the relative differences between the
cases are limited.
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Figure 8.4: Averaged Reynolds shear stress ⟨τ12⟩ profiles vs. the viscous scaled wall distance y+ without
(a) and with (b) the virtual origin correction applied (lT ). The black dashed line indicates the ⟨τ12⟩ profile
of the smooth-wall case (S − L : performed by Shahzad et al. (2023)). The liner cases are indicated by
lines and corresponding coloured symbols as: L − L14 (■), Lt − L14 (•), L − L14stag (♢), D50 − L14
(△), D75 − L14 (□), D100 − L14 (×), D50 − L14inv (▽), D1.6 − L14stag (∗).

Velocity profiles

The virtual origin shifts, as defined above, are individually applied to each liner case to ensure an accurate
comparison of the mean flow profiles. One of the primary insights gained from these profiles is the mean
velocity profile, which offers valuable indications of the aerodynamic performance of the liners.

In Figure 8.5, a comparison of the mean velocity profiles of the liner cases outlined in Table 7.3 is
presented. In Figure 8.5 (a), it is evident that all liner cases exhibit some degree of drag increase
compared to the smooth-wall configuration. A closer zoomed version of the mean velocity profiles of (a)
can be found in Figure 8.5 (c). This reveals that the mean velocity profiles of all regular, dual, facesheet
liner cases collapse onto the L−L14 liner case at y+ = 100. Notably, the Lt−L14 liner geometry shows
a larger difference in mean velocity with the smooth-wall reference. Despite both L−L14 and Lt −L14
sharing the same geometry when viewed from a y-normal plane, they display a difference in drag. The
thickness of the Lt − L14 case’s facesheet is half that of L − L14 and exhibits a larger mean velocity
deviation, consistent with other thinner facesheet configurations (Shahzad et al. (2023)). However, the
dual facesheet liner cases depicted in Figure 8.5 have even thinner top facesheets than Lt−L14, yet they
do not exhibit higher drag than the Lt −L14 case. This suggests that the second facesheet does impact
drag, providing a reduction compared to a single thin facesheet. The percentage open variation does not
have a notable effect when considering these specific plots.

Figure 8.5 (b) illustrates the comparison of the mean velocity profile with more diverse cases. Upon com-
paring 8.5 (a) to (b), minimal visible differences are noticeable, directing attention to 8.5 (d). Noticeably,
larger differences in geometries are evident. Firstly, the staggered single-facesheet (L − L14stag) case
exhibits a reduction in drag compared to the L − L14 case. This suggests that introducing a spanwise
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variation in the facesheet orifice pattern diminishes drag relative to the baseline liner case L−L14 at low
friction Reynolds numbers. However, this outcome does not extend to the double facesheet and double
staggered case (D1.6 − L14stag), as one might expect based on the Forchheimer coefficient provided in
Table 7.4. The D1.6 − L14stag case presents slightly lower drag figures than Lt − L14, yet it performs
inferiorly to L − L14 and all streamwise shifted cases from both 8.5 (a) and (b). The inversely shifted
dual facesheet liner configuration yields very similar results to all red cases in 8.5 (a), maintaining the
absence of a visible correlation between added drag and percentage open variation from the mean velocity
profiles.
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Figure 8.5: Comparison of the mean velocity profile ⟨ũ1
+⟩ versus the viscous scaled wall normal distance

y+. All figures show the three reference cases in black: the smooth wall S − L reference case by the
black dashed line (- -), L− L14 by (■) and Lt − L14 by (•). (a), compares these reference cases to the
streamwise shifted dual facesheet liner cases D50 − L14 (△), D75 − L14 (□) and D100 − L14 (×). (b)
Shows the runs with a different fs1 configuration like, L−L14stag (♢) and D1.6 −L14stag (∗) as well as
the inverse shifted dual facesheet liner case D50 − L14inv (▽). (c) and (d) are the zoomed-in images of
(a) and (b) respectively.

Added drag

The apparent absence of a visible effect from shifting fs2 leads to a further investigation into the impact
of shifting the dual facesheet on added drag. This investigation employs the Hama roughness function,
as defined in Equation 4.4, to provide ∆U+ values for each run at y+ = 100. Firstly, assessing the
relative effect of shifting the second facesheet further out of alignment with the top facesheet. Figure 8.6
is devised for this purpose, illustrating the effect of percentage open settings on ∆U+ in (a). In (b), ∆U+

is depicted as a function of d+stag for all cases considered in this work. In this figure, the influence of the
shifting distance becomes more apparent. Here lower, positive, percentage open areas (indicating smaller
effective openings) correlate with lower ∆U+ values. Notably, a discernible difference in velocity deficit
is observed, wherein positive staggering percentages in Figure 8.6 (a) and positive staggering distances
in (b) lead to a reduction in added drag.

However, staggering in the opposite direction, (shifting fs2 downstream) does not result in a similar
velocity deficit compared to runs shifted upstream. This observation suggests that shifting the bottom
face upstream has a more favourable effect on drag. This aligns with the hypothesis that flow is more
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restricted by the second facesheet in this configuration. However, the definitive impact of this effect
needs to be established through analysis of the instantaneous flow fields, which will be addressed later
in this chapter.

Furthermore, the staggered facesheet configuration of D1.6 −L14stag (∗) does not adhere to the initially
observed trend. Consequently, it remains inconclusive whether this configuration exhibits less added drag
compared to a case with a larger percentage open area and the same facesheet. These results deviate
from expectations, particularly when considering the difference between single facesheet and double
facesheet configurations, as depicted in Figure 8.5. The non-staggered ’regular’ fs1 (red) cases show
minimal disparity in velocity deficit compared to the non-staggered single facesheet liner reference case
L−L14. However, the staggered facesheet (blue) cases exhibit significant differences between single and
double facesheet configurations. It will be intriguing to explore whether there are notable distinctions in
qualitative flow behaviour between these cases, as the currently presented results are inconclusive.
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Figure 8.6: Comparison of the viscous scaled velocity deficit (∆U+) of the dual facesheet cases versus
the percentage open (%open) in (a) and the staggering distance d+stag in (b). The black lines are merely
a visual aid to see a relationship between the velocity deficit of the respective runs. The only double
facesheet configuration with a staggered top facesheet (D1.6 − L14stag) is connected by a dashed line
as the stagger magnitude change is not the only difference compared to the regular dual facesheet liner
cases. The symbols represent the cases as: D50−L14 (△), D75−L14 (□), D100−L14 (×), D50−L14inv
(▽) and D1.6 − L14stag (∗).

Friction coefficient

When considering the friction coefficient of the respective cases, however, there is some discrepancy found
between the indications provided by the velocity deficit and the friction coefficient. The friction coeffi-
cients for the runs are provided in Table 7.3. From these coefficients, the drag variation in percentages

(a) (b)

Figure 8.7: Drag variation (in %) for the different double liner cases displayed versus (d+stag) in (a) and
versus the effective porosity (σeff ) in (b). The liner cases are indicated by the following symbols: L−L14
(■), Lt −L14 (•), L−L14stag (♢), D50 −L14 (△), D75 −L14 (□), D100 −L14 (×), D50 −L14inv (▽),
D1.6 − L14stag (∗).
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can be extracted using (7.4), as illustrated in Figure 8.7. In (a), the figure depicts the drag variation
in percentages versus the staggering distance of all the dual facesheet liner cases, while (b) shows the
relation of the drag variation to the effective porosity of both the dual and single facesheet liner cases.
The figure reveals a different relationship between the drag variation and the staggering distance than
what is found for the velocity deficit. Specifically, the results for the double staggered configuration
(D1.6 −L14stag) more closely align with expectations and correlate with the single, staggered, facesheet
reference case (L − L14stag). However, the regular facesheet liner cases show no apparent relation to
the staggering distance or the effective porosity, unlike what is observed for the velocity deficit. This
discrepancy between the relationship of the parameters to the velocity deficit and the friction coefficient
could be attributed to the limited runtime provided for the thesis, which might benefit from additional
runtime. Since the velocity deficit is a more universal quantity that compares to other results regardless
of the friction Reynolds number (a direct result of the outer layer similarity Townsend (1956)), it will be
used throughout the remainder of the results.

This result additionally shows that the relative differences are fairly small. According to Shahzad et al.
(2023) the highest drag increase for a liner cases compared to a smooth wall was found to be 70%. This
however is an extrapolation of the drag variation to a Reynolds number of a full-scale aircraft possible
due to the approach of the fully rough regime in the results found. In this thesis, the highest percentage
increase is 8% and the differences among the cases are within a 4% spread. This indicates the relative
differences which can be attained with fairly low Reynolds number simulations. In order to enlarge
relative differences, higher porosity and friction Reynolds number runs are advised.

8.2.1 Relevant parameters for ∆U+

One of the main difficulties with the determination of drag for rough surfaces is the lack of an appropriate
function which can determine the added drag of a surface. Shahzad et al. (2023) has, however, found that
the inverse of the Forchheimer coefficient, for single facesheet liners, shows a monotonically increasing
relationship with the velocity deficit. This means that for an increase in 1/α+

y an increase of ∆U+ was
experienced.

The Forchheimer coefficients for all the double facesheet configurations considered in this work are
provided in Table 7.4. Figure 8.8 illustrates the corresponding velocity deficit values plotted against
these Forchheimer coefficient values in (a). Additionally, as a reference, all of the thick and thin single
facesheet liner cases from Shahzad et al. (2023) are included in the figure. These reference cases exhibit
larger changes in the Forchheimer coefficient due to varying plate porosities and a larger viscous scaled
orifice diameter (due to an increase in Reτ ).
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Figure 8.8: ∆U+ as a function of the Forchheimer coefficient 1/α+
y (a) and the Darcy permeability√

Ky
+

(b). The reference cases from Shahzad et al. (2023) for the thick (plate thickness t = d) and thin
(plate thickness t = d/2) facesheet are indicated by ( – – ■) and (– - •) respectively. The liner cases
of this work are indicated by the following symbols: L − L14stag (♢), D50 − L14 (△), D75 − L14 (□),
D100 − L14 (×), D50 − L14inv (▽), D1.6 − L14stag (∗).

As evident from Figure 8.8 (a), the range of Forchheimer coefficients in the current work is consider-
ably smaller than that of the reference cases. Moreover, the observed trend for increasing Forchheimer
coefficient, in the double liner cases, corresponds to a decreasing velocity deficit, contrary to the trend
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observed in the reference case. This suggests that for a double facesheet, either the Forchheimer coeffi-
cient is not a relevant scaling parameter, or the change in the Forchheimer coefficient of a dual facesheet
liner, is due to factors not captured in (5.1).

For the regular double facesheet cases, with a small shift in fs2, the velocity deficit for the respective
Forchheimer coefficients does correspond fairly well to the reference cases. Here the larger the staggering
distance, the larger the discrepancy between the trend observed in the reference case and the trend in
the current work. The largest staggering distance (found for D1.6 −L14stag) shows the largest deviation
from the trend line of the reference cases. This implies the relation between the staggering distance and
the deviation of the proposed theory of Shahzad et al. (2023).

The reference cases in the figure readily show that a difference in facesheet thickness results in a separate
line for those cases. The same effect could be at hand for the dual facesheet liner cases, where the
thickness of each facesheet or a combination of a staggering distance and gap spacing determines its own
relation. Consequently, the Forchheimer coefficient for a specific case may only be altered by changes
in diameter or plate porosity, rendering it more useful as a combined factor of diameter and porosity
rather than a distinct scaling parameter. The plate porosity and orifice diameter have often been cited
as factors affecting the added drag of a porous surface (Howerton and Jones (2015)).

Figure 8.8 (b) shows the same velocity deficit as (a) however now as a function of the Darcy permeability.
The figure identically contains the reference cases for the thin and thick facesheet from Shahzad et al.
(2023). As Table 7.4 shows, the Darcy permeability coefficient is much higher for the dual facesheet
liners when compared to the reference cases. As a result, there is a less pronounced relation between the
Darcy permeability and the added drag. The results from the present work show little to no change in
velocity deficit for increasing

√
Ky

+
.

To be able to place the velocity deficit of a double facesheet liner into the results from Shahzad et
al. (2023), the geometries need to be tested at different friction Reynolds numbers and porosity. The
current data set is not sufficient to draw conclusions on the monotonic relations of velocity deficit to the
Forchheimer or Darcy coefficient. The regular double facesheet liners with small staggering distances do
find similar velocity deficit values to the single facesheet liner cases for similar Forchheimer coefficients.
So although there is no observation of a similar monotonically increasing relation, there is some predictive
function of the value of the inversed Forchheimer coefficient and the added drag of the liner.

As the geometries in the current work do have a difference in staggering distance, there can be an
investigation if an effective hole size or porosity can be a scaling parameter as these do differ from case
to case. To assess whether the size of the effective hole, left after staggering, is a relevant parameter,
the effective radius and the effective porosity are employed. Here the effective porosity is defined as has
been described in the methodology and the effective radius (r+eff ) is defined as:

r+eff =
√
ϵor

+ (8.1)

here the effective radius is determined by multiplying the square root of the opening ratio of the config-
uration (ϵo) with the radius of a single orifice, denoted as r (i.e., r = d/2). The opening ratio is the ratio
of the effective open area of the orifice and the total single orifice area (i.e. ϵo = Aeff/A ). Figure 8.9
visualises how the computation of the effective radius can be performed with basic geometric relations
and the fact that Aeff = ϵoA. In Figure 8.9, A represents the area of a single orifice and ϵo is the opening
ratio of the specific case. The effective radius reff corresponds to the radius that a circular orifice would
have if it were to possess the same area as Aeff .

Figure 8.10 shows the velocity deficit plotted as a function of the effective radius of the orifice (a) and the
effective porosity of the plate (b). In 8.10 (a), relatively small differences without a monotonic relation
can be observed between the velocity deficit and the respective effective radius. Additionally, the effects
of the staggering direction are not captured as there is no distinction between the effective radius for the
shifting direction. The figure therefore shows that this metric is not the most appropriate length scale.

In order to assess the velocity deficit with respect to the reference cases, the staggering distance cannot
be used as it is not a parameter present in single facesheet liners. However, the effective porosity can
be related to all liners, and therefore, the reference cases can be included in Figure 8.10 (b). The figure
shows the velocity deficit of all cases discussed in Table 7.3 as a function of the effective porosity. Here it
can be observed that at σeff = 0.142 there are several cases where a different velocity deficit is found for
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Figure 8.9: Schematic drawing of how reff is computed. This example shows the case for D50 − L14.
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Figure 8.10: Viscous scale velocity deficit (∆U+) compared to the effective orifice radius in viscous units
(r+eff ) displayed in (a) and the effective porosity of the orifice σ)eff in (b). Coloured symbols indicate
the different liner cases as: L−L14 (■), Lt −L14 (•), L−L14stag (♢), D50 −L14 (△), D75 −L14 (□),
D100 − L14 (×), D50 − L14inv (▽), D1.6 − L14stag (∗).

the same effective porosity. This indicates that the effective porosity does not provide all the necessary
information and that the effective porosity cannot be treated similarly to the single plate porosity, as the
added drag scales with the plate porosity (Howerton and Jones (2017)), and liner cases with the same
effective porosity show different velocity deficit values.

From this discussion, it is evident that shifting fs2 from D100 − L14 to D50 − L14 reduces the added
drag of the liner from slightly more than the reference case to slightly less. This suggests that, although
minimal, some added drag reduction can be achieved by a double facesheet configuration when shifted
far enough. However, the staggering of the single facesheet liner results in a much greater reduction of
the added drag, consistent with the findings of Zheng et al. (2022b), who suggest that larger spacing
between the holes in the streamwise direction leads to less added drag.

Furthermore, when the velocity deficit of the dual facesheet liner is placed in the context of the Forch-
heimer coefficient, along with the reference cases, it becomes evident that the range of Forchheimer
coefficient values in the current work is not sufficient to assess a relationship between the added drag and
the inverse of the Forchheimer coefficient. The variation of the added drag between the dual facesheet
liner configurations is very small, making it difficult to determine a relevant length scale in the geometry
with which the velocity deficit scales.

8.3 Reynolds stresses

The mean velocity profiles and velocity deficit exhibit minimal changes across the flow cases. Given the
evident distinctions in geometries, the discussion now shifts towards investigating the Reynolds stresses
in the channel. Figure 8.11 presents a comparison of all non-zero Reynolds stresses in the channel. An
observable trend emerges from the results of the Reynolds stresses between the smooth wall and the liner
cases. Due to the wall roughness of the porous liners, Figure 8.11 (a) indicates a slight decrease in the
peak value of ⟨τ11⟩ for the liner cases compared to the smooth wall. Consistently, 8.11 (b,c) depict an
increase in peak value, aligning with findings from previous studies on porous liners (Kuwata and Suga
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(2016), Shahzad et al. (2023)). Notably, the stresses near the channel centerline in all figures closely
resemble those of the smooth-wall case, suggesting outer layer similarity.
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Figure 8.11: Comparison of the intrinsic averaged Reynolds stress profiles. The primary, non-zero
directions of the Reynolds stresses are given, i.e. (a): ⟨τ11⟩/τw, (b): ⟨τ22⟩/τw,(c): ⟨τ33⟩/τw and (d):
⟨τ12⟩/τw for the cases: S-L (- -), L − L14 (■), Lt − L14 (•), D100 − L14 (×), D50 − L14inv (▽),
D1.6 − L14stag (∗). Some of the liner cases’ results have been omitted for the clarity of the illustration.
The double-liner cases (red) shown are selected as these represent the largest difference between the four
cases. D75 − L14 and D100 − L14 values lay in between the two shown results.

The results provided in Figure 8.11 are those above the facesheet of the liner. As the geometry of fs1
has been kept the same as that of the single facesheet liner, the small differences in Reynolds stresses
can be attributed to the lack of change. The question arises, where the differences are visible, as they
are minimal above the wall. Since the largest geometrical changes are present beyond the facesheet, the
interest turns to the flow below the wall locations (i.e. y/δ ≤ −1 and y/δ ≥ 1).

Wall normal velocity fluctuaions

One of the main hypotheses of this thesis has been founded on the work on the Forchheimer coefficient
of Shahzad et al. (2023). Where the limiting of the pressure drop over the porous facesheet would reduce
the added drag of the liner. This has resulted in the attempt to reduce the pressure drop over the liner
by the staggering of the two facesheets as done in La Rosa et al. (2021). The increase in the pressure
drop over the plates in that work, however, is seen for normal flow impinging on two plates filled with
staggered orifices at different distances. This leads to the question if the same effect is seen for staggered
orifice plates with grazing flow instead of normal flow impinging on the surface.

The notion of limiting the pressure drop over the facesheet for drag reduction aligns with the findings of
Orlandi and Leonardi (2006) and Gustavsson et al. (2019), where it was discovered that the Root Mean
Square (RMS) of the wall-normal fluctuations served as an appropriate scaling parameter for the velocity
deficit. These fluctuations are indicative of the momentum transfer between the flow above and below
roughness elements. The RMS of the velocity fluctuations is found in the Reynolds stresses along their
principal directions (i.e., τii = ⟨u′

iu
′
i⟩), making the Reynolds stresses a crucial quantity for evaluating

the behaviour of the flow under the influence of an additional facesheet.
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In order to see if the double facesheet can attain a reduction in the momentum transfer between the
channel and the orifices and to see the effect of the staggering distance on the flow, Figure 8.12 is
employed. The figure shows the normalised wall-normal velocity fluctuations u′

2/uτ through the facesheet
in a single cavity zoom. All orifices in the top facesheet show vortices inside them, where the flow impinges
on the rearward surface and funnels downward creating a vortex in the orifice.

As can be seen from 8.12 (a) compared to all other images of 8.12, the reference case’s liner thickness is
much thicker than that of the dual facesheet liner cases. This is the only instance where the upstream
wall of the orifice interacts with the into-the-cavity fluctuation. In all other instances, due to the thinner
facesheet, the downward momentum finds a release in the downstream direction as it is less restricted.

Figure 8.12: Normalised instantaneous wall-normal velocity fluctuations u′
2/uτ zoomed in at a cavity.

The cases displayed are (a): the thick-wall reference case L − L14, (b): the thin-wall reference case
Lt − L14, (c): the 50% open dual face-sheet liner case D50 − L14, (d): the 75% open dual face-sheet
liner case D75 − L14, (e): the 100% open dual face-sheet liner case D100 − L14, (f): the 50% open,
inversed, dual face-sheet liner case D50 − L14inv, (g and h): the double staggered liner with 1.6% open
configuration D1.6 − L14stag. Here (g) shows the plane through the orifices which are closest to each
other and (h) the orifices with the largest distance between them.

This however is primarily focused on the region just below the top facesheet. Of greater interest is the
interaction of the flow through the orifices with the cavity below. Figure 8.12 (c), (d) and (e) show how
the wall-normal fluctuations are restricted due to the second facesheet. Here the effect of the staggering
distance is evident, as a larger shift limits the wall-normal velocity fluctuations into the cavity. This effect
aligns with observations from the velocity deficit, where a greater upstream staggering of the bottom
facesheet results in a lower added drag. These figures show how the flow is being restricted by the second
facesheet when in place. This reiterates that the reduction of the momentum transfer between above and
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below the facesheet can be attained by the correct staggering of the facesheet. This shows the influence
of the wall-normal velocity fluctuations on the added drag of the liner.

Interestingly, these results also show the effect of the staggering direction of the second facesheet on the
flow. A comparison between Figure 8.12 (c) and (f), illustrating the wall-normal velocity fluctuations
of D50 − L14 and D50 − L14inv respectively, reveals the impact of the shifting direction direction of
fs2. In Figure 8.12 (c), there is a noticeable restriction of the negative fluctuation by the second
facesheet. Conversely, in Figure 8.12 (f), the second facesheet orifice appears to accommodate the
negative fluctuation. Moreover, the positive fluctuation in the cavity appears more contained due to
the facesheet in (f). As the channel is the main momentum source, however, restricting the negative
fluctuation does seem to have more of an effect on the reduction of the added drag than its opposite.

Figure 8.12 (g) and (h), display u′
2/uτ of the two aligned hole situations in the x-y plane. These

images are obtained by slicing the z-normal plane through the middle of one orifice in the top facesheet
and intersecting it with the middle of one orifice in the bottom facesheet. As depicted, this results
in a considerable staggering distance in the streamwise direction. However, these images may appear
somewhat distorted due to the nearest orifice being further back into the spanwise direction, causing a
slight overlap, as illustrated in Figure 7.6 (g).

In Figure 8.12 (g) and (h), we observe how the vortex inside the facesheet orifice is contained by the
second facesheet. This observation supports the concept that the second facesheet can restrict the
momentum transfer between the channel and the cavities. This effect becomes particularly evident when
compared to other cases, where there is a noticeable jet-like fluctuation into the cavities. While this
effect is observed, for the staggered cases, the instantaneous figures, of the wall-normal flow, do not tell
the full story, especially when considering the large increase of added drag boasted by the D1.6−L14stag
case.

Spanwise velocity fluctuations

The previous discussion highlighted the impact of the second facesheet on wall-normal velocity fluctu-
ations, shedding light on the vertical interactions of the flow with the dual facesheet liners. However,
wall-normal fluctuations only reveal one aspect of the flow dynamics. Figure 8.13 provides a view similar
to Figure 8.12, but now presents the instantaneous normalized spanwise velocity fluctuations u′

3/uτ .
Here, the effect of the second facesheet on wall-parallel flow in the spanwise direction becomes appar-
ent. Upon examining the figure, it becomes evident that the influence of the impinging flow onto the
facesheet, as observed in Figure 8.12, extends beyond vertical flow restrictions, with the instantaneous
flow indicating the presence of non-zero velocity between the facesheets.

In the orifices of all figures in Figure 8.13, spanwise fluctuations can be observed, indicating the presence
of three-dimensional fluctuations. However, judging the strength of each direction from 2D instantaneous
velocity fields is challenging. Unlike wall-normal velocity fluctuations, which are caused by the impinging
flow on the downstream edge of the orifice, the spanwise fluctuations do not have a clear driver and are
more likely a consequence of the turbulent fluctuations in the main channel. Comparing the single liner
facesheet in both Figure 8.13 (a) and (b) to all dual liner cases (c-h), the positive and negative regions
of the fluctuations are not uniform for each case, unlike the situation in Figure 8.12.

By the comparison of Figure 8.13 (a) and (b), the difference in how the thin facesheet liner contains the
velocity fluctuations in the orifice is clear. In Figure 8.13 (a), spanwise fluctuations in the cavity are not
evident, whereas Figure 8.13 (b) shows spanwise fluctuations penetrating into the cavity. This indicates
that a facesheet with the thickness of Lt − L14 is not thick enough to prevent the spanwise fluctuations
from appearing below the facesheet. The same phenomenon is observed for the spanwise fluctuations
below fs1 in all double facesheet liner cases, where the flow penetrates into the facesheet gap and is
perceived to flow between orifices.

When Figure 8.13 (c) showing D50 − L14 and (f) showing D50 − L14inv are compared, the effect of the
staggering distance is seen from the penetration of the spanwise fluctuations into the orifices in fs2.
Although the downstream edge of the orifice is a less clear cause of the spanwise velocity fluctuations,
the difference in the staggering directions can be profoundly distinguished. The upstream-shifted case
exhibits some spanwise fluctuations in the gap with minimal interaction with the orifice in fs2. In
contrast, the inversely staggered configuration clearly shows spanwise fluctuations penetrating into the
cavity. These observations regarding the interaction of flow with the orifices in fs2 align with the
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Figure 8.13: Normalised instantaneous spanwise velocity fluctuations u′
3/uτ zoomed in at a cavity. The

cases displayed are (a): the thick-wall reference case L−L14, (b): the thin-wall reference case Lt −L14,
(c): the 50% open dual face-sheet liner case D50 − L14, (d): the 75% open dual face-sheet liner case
D75 − L14, (e): the 100% open dual face-sheet liner case D100 − L14, (f): the 50% open, inversed, dual
face-sheet liner case D50 − L14inv, (g and h): the double staggered liner with 1.6% open configuration
D1.6−L14stag. Here (g) shows the plane through the orifices which are closest to each other and (h) the
orifices with the largest distance between them.

penetration of wall-normal fluctuations depicted in Figure 8.12, suggesting that 3D flow phenomena
involve both wall-normal and wall-parallel fluctuation directions (i.e., turbulent fluctuations).

Figure 8.13 (g) and (h) depict the same case, D1.6 − L14stag, with the x-y plane taken from different
perspectives, both through the middle of one of the orifices of the staggered configurations. These figures
illustrate spanwise flow between the plates, which is primarily induced by the orifice positioned behind
or in front of it along the z-direction. The flow appears to impinge on fs2 and then flows towards the
nearest orifice in the spanwise direction, as it represents the nearest path of relief. Further discussion on
the behavior of flow between the facesheets will be continued in the dedicated section later in the results.

Below the regular facesheet

In order to assess the flow between the facesheets, the following section focuses on the Reynolds stresses
below the wall. Figure 8.14 (a) and (c) show ⟨τ22⟩ for the straight shifted cases. The wall-normal
Reynolds stresses are plotted against the location below the facesheet. Here (a) shows the top of the
facesheet at y+ = 0 until y+ = −40 and (c) shows a zoom at the facesheet gap from y+ = −17 to
y+ = −31. As can be observed in (a), all cases exhibit very similar Reynolds stresses from the beginning
of the facesheet at y+ = 0 to the end of fs1 (at y+ = −17). This is because all cases of 8.14 share the
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same facesheet geometry. Below fs1 a clear difference in Reynolds stresses can be observed.

This is highlighted in 8.14 (c), where the effect of the gap between the facesheets and the staggering of
the facesheet on the wall-normal velocity fluctuations is evident. The observation of limited wall-normal
velocity fluctuations in the x-y planes depicted in Figure 8.12 extends to the Reynolds stresses observed
below the wall of the facesheet in 8.14. Particularly, focusing on the wall-normal component of the
Reynolds stresses (⟨τ22⟩), which provides an indication of the mean fluctuations inside the cavities and
between the first and second facesheet.
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Figure 8.14: Wall normal component of the Reynolds stress, ⟨τ22⟩, Comparison for all runs. (a) and its
zoomed-in version,(c), show the thick plate reference case: L − L14 (■) and the four straight shifted
cases: D50−L14 (△), D75−L14 (□), D100−L14 (×), D50−L14inv (▽). (b) and its zoomed-in version,
(d), show both the thick and the thin plate reference cases: L−L14 (■) and Lt−L14 (•) as well as both
the staggered top facesheet cases: L−L14stag (♢) and D1.6 −L14stag (∗). The dashed, horizontal, lines
at y+=0, -17 and -31 indicate the beginning of fs1, the end of fs1 and the beginning of fs2 respectively.

Figure 8.15 (a) and (c) show the wall parallel Reynolds stresses (⟨τ11⟩ and ⟨τ33⟩) in the facesheet gap,
for the same cases as in Figure 8.14 (c). In both Figure 8.15 (a) and (c) a peak in wall parallel Reynolds
stresses can be observed in the facesheet gap. The figures contain all principal directions of the Reynolds
stresses in the facesheet gap and show that the velocity fluctuations are initially confined mainly in the
wall-normal direction due to the presence of the orifice, when the facesheet gap is reached, the fluctuations
lose this constraint and begin to spread into multiple directions. This shows how all dual facesheet liner
cases utilize the gap between the plates to alleviate the restriction on the fluctuating flow direction.

In both Figure 8.15 (a) and (c), it is visible that the decrease in fluctuations in the wall-normal directions
results in the increase of fluctuations in the wall-parallel directions. This alleviation is not granted to the
thicker facesheet runs and they show clear evidence that the mean fluctuations are in the wall-normal
directions throughout the entire facesheet.

Below the first facesheet, there is a noticeable increase in ⟨τ11⟩ and ⟨τ33⟩. Comparing these values for the
straight shifted cases in Figure 8.15 (a) and (c) with the wall-normal Reynolds stresses in Figure 8.14 (a)
and (c), a relationship between the staggering distance and its effect on the Reynolds stresses becomes
apparent. The decrease in ⟨τ22⟩ across the gap is proportional to the shifting distance d+stag of the plates.
Specifically, ⟨τ22⟩ decreases to the lowest value for the 50% open case and the highest for the 100% open
case when the second facesheet is reached. Interestingly, the highest maximum value of ⟨τ11⟩ and ⟨τ33⟩
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is observed for the 50% open case, while the lowest is seen for the 100% open case. This suggests that
greater staggering redirects the flow more into the wall-parallel directions.

The extent to which fluctuations penetrate into the orifices of the second facesheet is also apparent from
Figure 8.14 (c). The mean Reynolds stresses beyond the surface of the second facesheet illustrate the
extent of this restriction. This observation aligns with the qualitative flow field depicted in Figure 8.12,
highlighting the restriction of the flow off the main channel entering the cavity.
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Figure 8.15: Reynolds stress components on the y- normal plane (⟨τ11⟩ and ⟨τ33⟩) comparison for all
runs. (a) and (c) show ⟨τ11⟩ and ⟨τ33⟩ respectively for: L− L14 (■) and the four straight shifted cases:
D50 − L14 (△), D75 − L14 (□), D100 − L14 (×), D50 − L14inv (▽). (b) and its zoomed-in version, (d),
show b⟨τ11⟩ and ⟨τ33⟩ respectively for: L− L14 (■) and Lt − L14 (•) as well as both the staggered top
facesheet cases: L− L14stag (♢) and D1.6 − L14stag (∗). The dashed, horizontal, lines at y+= -17 and
-31 indicate the end of fs1 and the beginning of fs2 respectively displaying the facesheet gap.

Thin vs thick facesheet

Figure 8.14 (b) shows the wall-normal Reynolds stresses of the Lt −L14 reference case compared to the
tick walled reference case and the staggered facesheet cases. The thin facesheet reference case shows
lower wall normal Reynolds stresses inside the facesheet when compared to the thick facesheet reference.
The orifice orientation of the thin-wall liner, Lt − L14, is identical to that of the thick-wall and all
regular facesheet dual facesheet liner cases tested. The only difference lies in the thickness of the plate
and the presence of an additional facesheet. Therefore, the thin-wall liner has a configuration very
comparable to all the dual facesheet liner cases, as they share the same hole orientation and nearly the
same sheet thickness. However, the resulting Reynolds stresses are not very similar. Figure 8.14 (a) and
(b) demonstrate that all regular, dual, facesheet liners exhibit ⟨τ22⟩ profiles, inside the first facesheet,
much more akin to the thick facesheet reference case than the thin one.

Remarkably, the dual facesheet liner cases display nearly identical behaviour to L−L14 for the entirety of
fs1, whereas the thin facesheet has a lower ⟨τ22⟩ peak inside the facesheet. This reveals an intriguing out-
come, suggesting that the dual facesheet liner, despite having thinner separate facesheets, demonstrates
behaviour more aligned with its total thickness rather than the individual facesheets. Furthermore, the
effect of the second liner is observed before it is encountered by the flow. While this could indicate an
additional pressure differential over the facesheet, it is challenging to ascertain the exact cause.
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Below the staggered facesheet

In the previous section, the focus was on the regular facesheet configuration. From this, some clear
conclusions about the effect of the addition of a second facesheet can be drawn. Due to geometric
constraints, however, the maximum shifting distance for the regular factsheet results in the 50% open
configuration. The staggering of the facesheet allows for a much larger orifice shift in fs2 such that a
1.6% open configuration can be attained. This, however, does mean that there is a need for an additional
reference case, the staggered single facesheet configuration (L− L14stag). This section will focus on the
Reynolds stresses below the staggered facesheet.

Figure 8.14 (b) shows that the single-facesheet reference case with the staggered facesheet. The geometry
exhibits lower wall-normal Reynolds stresses than the thick-wall reference case. In this instance, the lower
wall-normal Reynolds stresses also correspond to a lower velocity deficit than the thick-wall reference case
(Figure 8.10 (b)). Conversely, the double facesheet configuration (D1.6−L14stag) displays a much higher
peak ⟨τ22⟩ and a notably higher velocity deficit. However, the thin-wall reference case does not adhere to
this trend, as it demonstrates higher velocity deficits than thicker configurations. Despite encountering
higher velocity deficits, the peak value of ⟨τ22⟩ below the thin wall is lower than both the staggered cases
and the liner reference case. This contradicts what Orlandi and Leonardi (2006) found regarding the
relationship of ⟨τ22⟩ with added drag. Apart from the thin-wall reference case, this relationship appears
to hold true for all other results.

The influence of the double staggered (D1.6 − L14stag) configuration on the instantaneous wall-normal
velocity is prominently visible in Figure 8.12 (g) and (h). The second facesheet effectively contains the
vortex due to the very small effective porosity of this configuration. Figure 8.14 (b) shows the wall-normal
Reynolds stresses below the facesheet for both the single and double facesheet configurations, along
with the reference cases. The image shows that the D1.6 − L14stag configuration leads to significantly
higher wall-normal Reynolds stresses within the facesheet itself, indicating that the fluctuations are
predominantly contained within the orifice. Consequently, Figure 8.14 (d) shows the zoomed-in version
of (b) at the facesheet gap. The figure shows that the mean of the wall-normal Reynolds stresses are
reduced to nearly zero at the second facesheet.
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Figure 8.16: Comparison of the maximum value of the wall parallel Reynolds stresses ((a):
max(⟨τ11⟩−31<y+−17) and (b): max(⟨τ33⟩−31<y+−17)) between the facesheets plotted versus the viscous
scaled shifting distance d+stag. The symbols represent the following cases: D50−L14 (△), D75−L14 (□),
D100 − L14 (×), D50 − L14inv (▽) and D1.6 − L14stag (∗).

In Figure 8.15 (b) and (d), ⟨τ11⟩ and ⟨τ33⟩ are shown, respectively, in the facesheet gap for the same cases
depicted in Figure 8.14 (d). Both figures (b) and (d) exhibit prominent peaks of wall-parallel Reynolds
stresses between the facesheets. Interestingly, the peak of both wall parallel Reynolds stresses is found
close to the middle of the gap (at y+ = −24). The staggering of both the top and bottom facesheets
has a similar, albeit more pronounced effect on ⟨τii⟩ below the facesheet compared to the straight shifted
cases. By comparing the peak value in the gap to the single facesheet reference cases the effect of the
double facesheet configuration is evident. The results show that the second facesheet is the cause of the
wall parallel fluctuations.

Figure 8.16 (a) and (b) illustrate the maximum value of ⟨τ11⟩ and ⟨τ33⟩, respectively, in the facesheet
gap. The figures compare the maximum value in the gap for all dual-liner cases. In Figure 8.16 (a), a
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monotonic relationship between the staggering distance and the maximum streamwise Reynolds stress in
the gap is observed. Although, in Figure 8.16 (b), a less clear relationship with the staggering distance
is observed, the peak values of the spanwise Reynolds stresses do show a discernible response. In both
directions, generally, the larger the staggering distance, the more the wall-normal fluctuations seem to be
converted into wall-parallel fluctuations. From a qualitative perspective, these observations suggest that
the mean flow impinges on the second facesheet and is then redirected in the wall-parallel directions,
as this is the only relief direction until an orifice in fs2 is found. Additionally, this suggests that the
turbulent kinetic energy in these regions is not necessarily dissipated, but the fluctuations rather adopt
a different direction.

Flow in facesheet gap

In order to investigate the findings of the mean velocity fluctuations in the facesheet gap, the following
section will address the instantaneous flow in between the facesheets. Figure 8.17 (a) displays the
instantaneous streamwise velocity, u1, while (b) shows the instantaneous spanwise velocity, u3, in the
middle of the facesheet gap at y+ = −24. Both figures visualise the flow magnitude and direction with
vectors of the D1.6 − L14stag case. The y-position for the plane is chosen as the maximum value for
the wall parallel is observed around this height (i.e. the middle of the gap). From (a) and (b) two
main occurrences are evident: firstly, flow reversal due to the main channel fluid interaction with the
downstream edge of the orifice can be observed. This is similar to what Shahzad et al. (2023) found.

(b)

(a)

Figure 8.17: (a): Normalized instantaneous streamwise velocity (u1/uτ ) and (b): Normalized spanwise
velocity (u3/uτ ) shown on an x-z plane in the middle of the facesheet gap, y+ = −24, of D1.6 −L14stag.
Both figures depict the vector field indicating the wall-parallel velocity of magnitude ∥(u1, u3)∥2 and
direction ⟨u1, u3⟩. The figure overlays the geometry, where the red geometry represents the orifices
in fs1, the blue geometry represents the orifices in fs2, and the black geometry indicates the cavity
walls. These elements illustrate the location of the respective features, although they are not present at
y+ = −24.
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Secondly, the redirection of the flow to wall-parallel directions due to the impinging orifice vortex flow
on fs2 similar to van Hout et al. (2018) is observed. Both these observations confirm the quantitative
observations made from the Reynolds stresses between the two facesheets.

The reversal of the flow due to the main channel flow impinging on the rear edge of the orifice in fs1 is
most clearly visible in Figure 8.17 (a). With the larger staggering distance of the double-staggered case,
the resulting vortex is concentrated in the orifice and gap. The figure illustrates predominantly negative
u1 velocities at the orifice locations, indicating the flow reversal. Consequently, substantial negative
velocities between the facesheets are observed, although instances of positive velocities are also observed,
resulting in a flow directed towards an orifice in fs2.

The observations of van Hout et al. (2018) for impinging flow on a flat surface are consistent with both
flow directions. As the principal rotation axis of the orifice vortex is in the z-normal direction (due to
the mean flow in the x-direction) the resulting velocity of the impinging flow is primarily negative for
u1. However, for u3, the flow splits more evenly into both positive and negative velocities, as there
is no principal velocity in the z-direction to maintain. The fluid direction is a consequence of the
interaction with fs2 and the wall-normal flow, not of spanwise turbulent fluctuations from the main
channel. Consequently, the wall-normal flow impinges on fs2 and splits into both positive and negative
velocities of u3. The vectors at these locations effectively depict the flow emanating from the impinging
location.

Both figures show that there is fluid flow in between the facesheet for the D1.6−L14stag case. While each

(a)

(b)

Figure 8.18: (a): Normalized instantaneous streamwise velocity (u1/uτ ) and (b): Normalized spanwise
velocity (u3/uτ ) shown on an x-z plane in the middle of the facesheet gap, y+ = −24, of D100 − L14.
Both figures depict the vector field indicating the wall-parallel velocity of magnitude ∥(u1, u3)∥2 and
direction ⟨u1, u3⟩. The figure overlays the geometry on the flow fields. The orifices in fs1 and fs2 are
shown by the blue orifices (as they overlap) and the black geometry indicates the cavity walls. These
elements illustrate the location of the respective features, although they are not present at y+ = −24.
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orifice in fs1 has a corresponding orifice in fs2 fluid flow does not seem to maintain the adjacent orifice
as a destination. The flow rather heads to orifices in different cavities in both streamwise and spanwise
directions. As Figure 8.16 indicates, the staggering distance has an enlarging effect on the fluctuations
between the facesheets.

In Figure 8.18, the streamwise velocity (a) and the spanwise velocity (b) of the D100 − L14 case in the
middle of the facesheet gap are depicted. Similar to Figure 8.17, the vectors indicate the wall parallel
direction of the flow. A comparison between Figure 8.17 and Figure 8.18 reveals several regions with
differences in velocity magnitude. Particularly near the orifice, the streamwise velocity is generally
lower for D100 − L14 compared to D1.6 − L14stag. Similarly, Figure 8.18 (b) illustrates that there
is less flow interaction with the second facesheet, as the orifice in fs2 is directly below that in fs1.
Consequently, there is minimal flow impinging on the bottom facesheet, leading to reduced wall parallel
velocity fluctuations between the plates.

(a)

(b)

Figure 8.19: Normalized instantaneous streamwise velocity (u1/uτ ) and (b): spanwise velocity (u3/uτ )
shown on an x-z plane at y+ = −24 for the single facesheet L − L14 case. Both figures depict the
vector field indicating the wall-parallel velocity of magnitude ∥(u1, u3)∥2 and direction ⟨u1, u3⟩. The
black circles indicate the orifices in the thick facesheet and the black squares show the location of the
cavity walls below the facesheet (i.e. y+ < −40).

While the difference in staggering distances between the cases noticeably affects the vortex in the orifice
and the flow impingement on fs2, both dual facesheet liner geometries exhibit flow between the facesheets.
As a reference, Figure 8.19 displays the instantaneous streamwise velocity (a) and spanwise velocity (b)
for L− L14, on the same height x-z plane as Figure 8.17 and Figure 8.18. This figure displays the flow
velocity within the facesheet of L− L14, which has a single, thick facesheet. In L− L14, the only fluid
volume present from 0 ≥ y+ ≥ −40 is found in the orifices, emphasizing that the wall parallel velocity
within the facesheet is concentrated in fluctuating flow within the orifices.

Figure 8.20 illustrates the instantaneous normalised streamwise velocity on an x-y plane within the
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(b)

(a)

(c)

(d)

(e)

(f)

(g)

Figure 8.20: Normalised streamwise velocity in an x-y plane through the orifice and cavity. The figures
show vectors of magnitude ∥(u1, u2)∥2 and direction ⟨u1, u2⟩. The display is of the bottom wall of the
domain, where the wall is at y/δ = −1. The cases presented are (a): L − L14, (b): Lt − L14, (c):
D100 − L14, (d): D75 − L14, (e): D50 − L14, (f): D50 − L14inv and (g): D1.6 − L14stag. The liner walls
are indicated in grey.
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orifices and facesheet gap. The figure includes vectors of ⟨u1, u2⟩ to indicate the flow direction on the
x-y plane. It encompasses all cases considered in the present work alongside the thick and thin facesheet
reference cases. The vectors within the orifices depict how the flow within them forms a vortex-like
structure on the x-y plane.

A comparison between 8.20 (a) and (b) reveals the behaviour of the orifice vortex in the thick facesheet
configuration. It impinges on the upstream wall of the orifice, causing part of the flow to split towards
the cavity, while the remainder continues upwards within the orifice. In contrast, due to the thinner
facesheet in (b), this effect is less pronounced, resulting in more fluid flowing directly into the cavity
below the facesheet.

Figure 8.20 (c) presents the streamwise velocity in the double facesheet liner of D100 − L14. Notably,
the double facesheet liners share a similar single facesheet thickness as Lt − L14. Consequently, similar
effects can be observed for the double facesheet geometries. However, in the case of the double facesheet
liners, the flow below fs1 does not directly penetrate into the cavity. Instead, the flow travels between
the facesheets, influencing the fluid flow in the adjacent orifice and eventually either flowing into the
cavity or towards the channel.

Figure 8.20 (d) and (e) depict the x-y plane of the streamwise velocity and the interaction of the flow
with the facesheet for D75 − L14 and D50 − L14 respectively. These figures illustrate the wall-parallel
velocity between the plates, primarily negative due to the direction of the vortex in the orifice. However,
some positive velocity is observed between the plates. When encountering positive velocity, it strongly
interacts with the flow in the fs1 orifice, leading to the breakup of the vortex and a net mass outflow
through the orifice facilitated by fluid originating from the cavity. Nonetheless, this does not result in a
net mass outflow out of the entire cavity, as such a phenomenon is known to substantially reduce drag
(O’Connor et al. (2023)), which is not observed in this work.

Figure 8.20 (f) depicts the D50 − L14inv case, showcasing the streamwise shifted fs2. This figure
illustrates how the shift of the fs2 orifice towards the downstream edge of the fs1 orifice accommodates
the wall-normal fluctuations by the orifice in fs2. The fluid originating from the downstream edge of
fs1 flows towards the cavities unimpeded by the facesheet. Moreover, the upstream edge of the orifice
in fs2, to a lesser extent, exhibits the same flow-splitting effect of the impinging vortex on the upstream
wall, as seen for L − L14. This appears to funnel fluid into the cavity, somewhat preventing it from
flowing in between the facesheet. This effect is especially noticeable when compared to Figure 8.20 (e).

The streamwise velocity for the double staggered configuration (D1.6−L14stag) is presented in Figure 8.20
(g). This figure differs from the previous geometries as the x-y plane only shows one orifice, owing to the
staggering of the orifices in both facesheets. Due to the different geometry, the vortex in the orifice finds
a facesheet below nearly the entire orifice, a characteristic not experienced by any other geometry in this
manner. Consequently, the vortex appears nearly fully contained in the orifice, and the streamwise flow
towards the downstream orifice in fs2 is limited. However, Figure 8.17 demonstrates that the spanwise
flow due to the impinging flow on fs2 plays a larger role in determining the fluid release direction. In this
case, the spanwise fluctuations are more prevalent due to the geometry’s increased spanwise variations
compared to all other cases considered.

After comparing wall parallel flow below y+ = 0 between single and dual facesheet liner geometries, along
with observations from the Reynolds stresses in the facesheet gap, it becomes evident that wall-normal
permeability alone may not fully characterize the permeability of dual facesheet liners. While for a single
facesheet, the wall-normal permeability has been shown to be an effective scaling parameter by Shahzad
et al. (2023), the present work has shown that this does not extend to double facesheet liners. Although
lower values for the Forchheimer coefficients have been attained by increasing the normal pressure drop
over the facesheet, they did not reveal the added drag reduction expected based on the values of the
Forchheimer coefficients. Moreover, the deviation of the velocity deficit from the reference case increases
with increasing staggering distance. Especially for D1.6−L14stag, the 1/α+

y is very low, and ∆U+ is the
highest of all dual facesheet cases.

Due to the shifting of the facesheet, the wall-normal velocity in the facesheet behaves differently from
that of the reference cases used in this work. Although the wall-normal fluctuations in fs1 are very
similar to those found in the thick facesheet reference case. The shifting of the facesheet causes a very
large reduction of the wall-normal fluctuations through the second facesheet orifices. This reduces the
inertial effects in the orifices to nearly zero as these scale with the pore Reynolds number. Although for
a high enough pore Reynolds number, the Darcy permeability is not significant (Figure 5.1), for lower
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values, only the Darcy permeability is of interest. The Darcy permeability scaling however does not show
a monotonic relation with added drag in the work of Shahzad et al. (2023), therefore additional research
is needed to investigate the effect of the wall parallel permeabilities and the reduction of inertial effects
inside the facesheet on liner drag.

Moreover, the shifting of the second facesheet reveals an opposite response to what was expected for
∆U+ vs 1/α+

y . The further the shift of the facesheet, the lower the values for the wall-normal element
of the inversed Forchheimer coefficient, indicating a lower permeability. The space between the liners,
however, effectively increases the permeability of the facesheet where a further shift means more wall
parallel flow between fs1 and fs2. Additionally, an indication of this has been given by the higher values
of the Darcy permeability for the dual facesheet cases in this work.

The computation of the Darcy and Forchheimer coefficients might be a cause of this effect. The method
used by Shahzad et al. (2023) is tailored to wall normal permeability only, not taking wall parallel
permeability into account. In this work however, the effective geometry change from a normal flow to a
grazing flow is more profound as there is permeability in the stream and spanwise direction rather than
only in the wall-normal direction, as is the case for a single facesheet liner configuration. Therefore, the
wall parallel permeability needs to be accounted for in future works, rather than only the wall-normal
direction.

8.3.1 Relevant parameters for Reynolds stresses

The previous discussion has indicated that there is a monotonic relation between d+stag and both the
velocity deficit and the Reynolds stresses. This however is limited to regular facesheet liner geometries.
Both the velocity deficit and the wall-normal velocity fluctuations responded similarly to the increase of
d+stag, where the larger d+stag, the smaller the velocity deficit and the larger the decrease of wall-normal
velocity fluctuations in the facesheet.

In order to have a better impression of the reduction of the wall-normal fluctuations, Figure 8.21 is
employed. In 8.21 (a), the percentage reduction of ⟨τ22⟩ over the facesheet gap is shown. Here it is visible
that the misalignment of the facesheet orifices reduces the wall-normal fluctuations entering the facesheet
gap. The farthest staggering (D1.6 − L14stag) reduces 96% of all wall-normal velocity fluctuations. The
percentage decrease of ⟨τ22⟩ over the gap is nearly identical in distribution as Figure 8.16 reiterating the
redirection of fluctuations in the wall parallel directions when the second facesheet is reached.

Figure 8.21 (b) shows the value of ⟨τ22⟩ at y+ = −40, i.e the end of the facesheet of L− L14. All cases
are considered in the figure and therefore an effective comparison can be made. All double facesheet liner
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Figure 8.21: Percenntual decrease of the Wall normal Reynolds stresses over the facesheet gap
(%∆⟨τ22⟩gap/τw) compared to the staggering distance (d+stag) displayed in (a) and the value of ⟨τ22⟩
found at y+=-40, i.e. the bottom of the L-L14 facesheet, in (b). The different liner cases are indicated
by coloured symbols as: L − L14 (■), Lt − L14 (•), L − L14stag (♢), D50 − L14 (△), D75 − L14 (□),
D100 −L14 (×), D50 −L14inv (▽), D1.6 −L14stag (∗). Note that for (b) the single facesheet liner cases
are included as lines to provide a comparison, they do not have a staggering distance as they only have
a single facesheet in the geometry.
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cases are seen to reduce ⟨τ22⟩ compared to all the single facesheet liners. Indicating that the application
of a second facesheet is an effective manner to reduce the momentum transfer between the channel and
the cavities as the wall-normal fluctuations are inhibited in the facesheet.

As the previously described figures have shown, the staggering distance is a relevant length scale, for
double facesheet liners, which can be increased to reduce wall normal fluctuations in the facesheet. The
question remains, however, what effect this proves to have on the liner drag. In order to investigate this,
Figure 8.22 (a) is employed. Here the percentage decrease of ⟨τ22⟩ over the facesheet gap is compared
to the corresponding velocity deficit. The regular facesheet cases show that the larger the reduction of
the wall-normal velocity fluctuations through the facesheet, the smaller the velocity deficit. This result
remains in line with Orlandi and Leonardi (2006) where the observation of reduced wall-normal velocity
fluctuations do result in a lower velocity deficit. Again, the velocity deficit for the double staggered
case does not follow this pattern. It would be interesting to see where different other percentage open
configurations with the staggered facesheet would be positioned in this figure. This way a conclusion
could be drawn on whether there is an optimal value for the staggering, (i.e. around 50 %) or that the
double staggered configuration does not present as favourable results as was anticipated, based on the
minimal percentage open area and its facesheet.
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Figure 8.22: (a): ∆U+ vs Percenntual decrease of the Wall normal Reynolds stresses over the facesheet
gap (%∆⟨τ22⟩gap/τw) (b): ∆U+ vs max(⟨τ22⟩) for y+ < 0. The different liner cases are indicated by
coloured symbols as: L − L14 (■), Lt − L14 (•), L − L14stag (♢), D50 − L14 (△), D75 − L14 (□),
D100 − L14 (×), D50 − L14inv (▽), D1.6 − L14stag (∗).

Figure 8.22 (b) shows the relation of the maximum value of the wall-normal RMS of the velocity with the
velocity deficit. Figure 8.22 (b) shows, no apparent correlation between the quantities and therefore the
relation of the maximum wall normal fluctuations below the wall and the velocity deficit is not existent.
Therefore the maximum value of ⟨τ22⟩ is not the ideal performance metric of the liner to pursue reduction
in.
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9
Conclusion and Recommendations

Throughout this thesis, the impact of adding an extra facesheet on the aerodynamics of an acoustic
liner has been thoroughly examined. This investigation was carried out by conducting pore-resolved
DNS simulations over perforated plates. The simulations have added to the only limited knowledge
base of turbulent flows over porous surfaces especially when resembling acoustic liner applications in jet
engines. Additionally, some concepts in literature have been leveraged and tested in an attempt to attain
favourable aerodynamic characteristics in the liner.

When the results are coupled back to the rationale behind the design, an evaluation of how well the
expectations have been fulfilled and to what extent uncertainties still exist can be performed. This will
initially be done by the evaluation of the posed research questions:

Research Question: What is the effect of an additional facesheet on acoustic liner aerodynamics?

Sub-questions:

1. What is the effect of an additional facesheet on the added liner drag?

2. How does a double facesheet affect the wall-normal velocity fluctuations and interaction between
the flow below and above the facesheet?

3. What are the relevant scaling parameters for the performance indication of the dual facesheet
liners?

The examination of the additional facesheet’s impact on liner drag reveals several key findings. As
anticipated, all tested liner configurations exhibit an increase in drag compared to the smooth wall
configuration. However, a correlation emerges between the velocity deficit and the shifting distance of
the second facesheet. Specifically, an increase in shifting distance leads to a reduction in added drag for
the regular, dual, facesheet liner configurations. Notably, all cases in this study demonstrate a smaller
velocity deficit than the thin plate reference case. This suggests that the second facesheet does impact
drag, providing a reduction compared to a single thin facesheet. The thick-wall reference case exhibits
less added drag than a dual-facesheet liner with minimal staggering, applying a sufficient staggering
distance to the second facesheet results in an observed reduction in added drag.

The relative differences observed between the runs are minor. Above the facesheet, little to no discernible
variation can be identified between the single and dual facesheet liner cases. The differences in drag
variation between the most and least favourable cases are less than 4%, suggesting that for an effective
investigation of the effects of a dual facesheet liner configuration on the flow above the facesheet, higher
friction Reynolds number DNS runs are required.

However, the effect of a second facesheet on the Reynolds stresses is more pronounced. Instantaneous
velocity fluctuations provide a clear illustration of the staggering distance’s impact on inhibiting wall-
normal fluctuations attempting to penetrate into the cavities below the facesheet. The effect of the
direction of staggering has become evident, with downstream staggering accommodating wall-normal
fluctuations into the second facesheet orifice, while upstream staggering inhibits this phenomenon. This
effectively restricts the flow into the cavities while maintaining the desired sound attenuation properties.

A similar effect is observed in the wall-normal Reynolds stresses below the wall. Negative streamwise
shifting of the plates impedes the entry of wall-normal fluctuations into the cavity. The second facesheet
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constrains this phenomenon, diverting turbulent fluctuations predominantly into wall-parallel directions.
Moreover, greater misalignment between the orifices of the top and bottom facesheets leads to a more
significant reduction of wall-normal Reynolds stresses, approaching their minimum value, across the
facesheet gap.

After conducting a comprehensive comparison of wall parallel flow below y+ = 0 in both single and dual
facesheet liner configurations, combined with the wall parallel Reynolds stresses in the facesheet gap, it
is apparent that wall-normal permeability alone may not provide a complete characterization of a dual
facesheet liners’ permeability. While previous studies have demonstrated the effectiveness of wall-normal
permeability as a scaling parameter for single facesheet configurations, the findings in this work suggest
that this may not extend to dual facesheet liners.

Although for similar 1/α+
y values to the reference case, similar values of ∆U+ were found in the present

work. The opposite of a monotonically increasing trend vs 1/α+
y was found. Despite achieving lower

values for the Forchheimer coefficients through increased normal pressure drop over the facesheet, the
anticipated reduction in added drag was not observed in line with the expected response to 1/α+

y . For
increasing staggering distance, a lower value for 1/α+

y was found while this showed higher values for the
cases’ velocity deficit. These discrepancies indicate the presence of additional factors influencing added
drag beyond what can be solely accounted for by variations in wall-normal permeability. The larger
discrepancy for larger staggering distances suggests the influence of wall parallel permeabilities should
be accounted for.

When considering relevant scaling parameters for the double facesheet liner, two main factors emerge as
significant. Firstly, the staggering distance of the plates exhibits a clear correlation with the added drag
of the plates. While this parameter may not fully capture the behaviour of single facesheet geometries,
it proves informative for dual facesheet designs. Similar to the orifice radius or the single plate porosity,
the staggering distance of the second facesheet emerges as a relevant parameter for scaling with the
added drag of the liner. Secondly, the percentage reduction of the wall-normal Reynolds stresses across
the facesheet gap also stands out. Although this reduction is a consequence of the staggering distance of
the plates, this variable, akin to the jet-like flow into the cavities, serves as an indicator of added drag
on the plates. Greater reductions in wall-normal Reynolds stresses over the facesheet gap correspond to
smaller velocity deficits in the configuration.

The relation of the velocity deficit for D1.6−L14stag with both the staggering distance and the wall-normal
Reynolds stress reduction over the facesheet gap does not align with the regular facesheet configurations.
This raises questions regarding the correspondence between wall-normal fluctuations, pressure over the
facesheet and drag, suggesting that additional factors may influence the overall drag behaviour of the
acoustic liner configurations studied. Furthermore, it is noteworthy to consider whether grazing flow
results in similar pressure drop behaviour over two plates as normal impinging flow does. This is as
differences between configurations such as D50 − L14 and D50 − L14inv indicate that the pressure drop
for normal flow impinging on a surface cannot be directly extrapolated to grazing flow situations.

Recommendations

This thesis represents a preliminary exploration into the aerodynamics of double facesheet liner config-
urations. While hypotheses have been formulated based on prior works on similar geometries or topics,
the selection of hypotheses was not specifically tailored to this unique geometry. Nonetheless, this ini-
tial investigation provides an understanding, albeit limited, of the aerodynamic effects of adding an
extra liner. Despite the limited impact observed, further investigation into this area is warranted, as
the concept holds promise for potential added drag reduction under certain conditions. Moreover, this
study has raised some new questions regarding the behaviour of the double staggered configuration, as
well as the behaviour of pressure drop over staggered plates under grazing flow conditions compared to
normal flow and the influence of streamwise permeability on drag. For future research, the following
recommendations are proposed:

The first recommendation is to include additional double staggered liner cases with more moderate
staggering distances. This would help clarify the effect of double staggering and address any doubts
arising from the current results. By fulfilling this recommendation, the added drag increase of the
double staggered configuration could be contextualized better, potentially revealing whether different
behaviour exists among double facesheet staggered configurations or if there exists an optimal staggering
distance for the second facesheet.
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Secondly, it is recommended to conduct additional tests under higher friction Reynolds numbers or for
higher facesheet porosities. While the latter may present geometric challenges regarding plate staggering,
it could lead to more pronounced relative differences. This would offer clearer insights into the effects
of the plates and establish a more evident relationship between staggering distance, inhibition of wall-
normal velocity fluctuations, and added drag.

Moreover, to verify the relevance of pressure drop over the plates as a scaling parameter for the velocity
deficit, the direction of flow should be considered when defining the pressure drop over the facesheet.
This ensures the pressure drop’s relevance and could serve as an appropriate measure for defining a low
added drag configuration, particularly for grazing flow conditions. Such a study would allow for the
evaluation and comparison of the effect of the additional facesheet on skin friction.

Additionally, due to the observation of wall parallel flow between the plates, the limitation of the per-
meability coefficients to the wall-normal direction is not suitable. Further research into the effect of
wall parallel permeabilities in liners can provide additional insights into these phenomena. Having a
permeability coefficient which captures the permeability of the entire facesheet in multiple directions
might provide better scaling parameters for the relation of added drag to a liner length scale.

Lastly, expanding the parameter space is recommended. This could involve reducing the gap width
while ensuring it remains sufficient for the desired sound attenuation levels. Additionally, introducing
geometric variations such as a third facesheet or shifting the holes in the spanwise directions could offer
further insights into the aerodynamic behaviour of double facesheet liner configurations.
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