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In this paper, we present a unified approach to the (related) 
problems of recovering signal parameters from noisy observa- 
tions and the identification of linear system model parameters 
f iom observed inputloutput signals, both using singular value 
decomposition (SVD) techniques. Both known and new SVD-based 
identification methods are classified in a subspace-oriented scheme. 
The singular value decomposition of a matrix constructedfr-om the 
observed signal data provides the key step to a robust discrimina- 
tion between desired signals and disturbing signals in terms of 
signal and noise subspaces. The methods that are presented are 
contrasted by the way in which the subspaces are determined and 
how the signal or system model parameters are extracted fiom 
these subspaces. Typical examples such as the direction-of-arrival 
problem and system identification from inputloutput measurements 
are elaborated upon, and some extensions to time-varying systems 
are given. 

I. INTRODUCTION 

The analysis of time series is a fundamental problem 
in almost all scientific disciplines. In engineering parlance, 
time series are called signals and their analysis generally 
serves at least one of two possible purposes. First, the 
signals themselves are of prime interest and are to be 
recognized or recovered by the analysis procedure, as 
for example in communication applications. Secondly, the 
signals bear information pertinent to the physical dynamical 
systems that produced them, or to the hypothetical dynam- 
ical systems that could have produced them. In the latter 
case, the analysis of the signal should provide the unknown 
system parameters. 

A typical example of the first class of problems is the 
following. Consider a number of signals si( t ) ,  modulated 
by a known carrier frequency, and suppose that only a 
number of unknown linear combinations ~ k ( t )  of these 
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signals have been received at sensors located at different 
points. We assume that each of the coefficients of these lin- 
ear combinations is a known function of both the (known) 
sensor positions and some (unknown) parameter 4; of each 
signal. The objective is to reconstruct the original signals 
from the received signals, which will be possible if we 
first determine the actual values of the parameters #i, and 
subsequently identify the pairs (4i, s ; ( t ) )  for each of the 
signals. We can think of the 4i as being spatial directions 
from which the signals of interest s ; ( t )  are received. 

As an example of the second class of problems, suppose 
we have recorded two signals, u(t)  and y(t), where u(t)  is 
a test signal that is applied at some point in a system, and 
y( t) is a response signal measured at some other point in the 
system. If we represent the system mathematically as the 
mapping u(t)  + y(t) = T(u( t ) ) ,  where T satisfies certain 
causality and linearity constraints, then the problem may be 
stated as one of using U ( ; )  and y(t) to either identify the 
map T, or to find a map T of low complexity that is close, 
in some sense, to T. 

It is instructive and useful to notice that the two problems 
alluded to above are sometimes quite similar. For example, 
if the mapping T of our second example is a causal, 
linear and time-invariant operator, then it is in fact a 
matrix multiplicative operator that is completely determined 
by the response h(t)  due to a unit impulse excitation 
u(t)  = 6( t ) .  This impulse response and all of its time- 
shifted versions constitute the rows of the matrix map. 
Moreover, if the system is finite, meaning that it can be 
described by a difference equation of finite order, then 
this impulse response must be a linear combination of 
a number of exponentially decaying functions of time, 
where the exponential factors are the unknown parameters 
to be determined first. The description of this signal (a 
weighted sum of elementary signals described by a single 
parameter) is very similar to the description of each of 
the received signals in the first example, and the two 
problems may even become identical in certain specific 
application scenarios. What we observe here is that the 
impulse response h(t) ,  much as was the case with the 
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recorded signals 21, ( t ) ,  explicitly reveals parameters, in 
particular the poles of the presumed system model that 
directly or indirectly define a realization for the model. The 
determination of the realization parameters of a predefined 
model is called system identijication. System identification 
techniques can also be used to determine signal models as 
well. For example, a signal composed of a sum of damped 
complex exponentials may be thought of as the output of a 
certain linear system in response to a known or presumed 
excitation. Identifying this “system” will then provide a 
model for the signal. 

Whether the objective is to recover a signal, to model 
a signal, or to identify a linear system, the choice of the 
structure of the signal (or the model of the system) plays 
a crucial role. Surely, a priori knowledge of the signal 
properties must be incorporated into the model, but we must 
also account for uncertainties in a proper way, that is to say, 
in such a way that they do not introduce modeling artifacts. 
But even when these choices have been made successfully, 
the subsequent signal analysis can be carried out along 
many different routes, and its success will depend on three 
important additional choices: 1) the kind of realization that 
we have in mind, 2) the analysis strategy, and 3) the 
tightness of the coupling between the analysis procedure 
and the system realization. What comes into play here are 
aspects of numerical stability, minimality, and tightness of 
approximation. Numerical stability guarantees robustness 
of the analysis procedure, minimality avoids artifacts due 
to opaque dependencies between excess parameters, and 
tightness of approximation has to do with convergence of 
the analysis procedure. The ideal situation occurs when 
the analysis procedure directly constructs a realization of 
the model that has been chosen to have a necessary and 
sufficient number of parameters, and to have low sensitivity 
with respect to perturbations of its parameters. 

In all practical applications, the observed signals are 
corrupted versions of the observations that we would expect 
under ideal circumstances. The unavoidable contaminations 
are commonly called noise, and they obstruct the extraction 
of the true or desired parameters from the analysis of the 
observed signals. Consequently, the goal of any given iden- 
tification method is to find the signal model parameters that 
best match the noise-corrupted observations. Commonly 
used approaches include maximum likelihood estimation 
(estimation of the parameters of the model that, in a proba- 
bilistic sense, most likely produced the observed signal) and 
least squares error minimization (yielding the parameters of 
the model that optimally approximates the observed signal 
in terms of minimal energy of the difference signal). For an 
overview of many such identification methods, see [ 11-[3]. 

In practice, therefore, the choice of the signal or system 
model has to be complemented by the choice of a noise 
model and an optimization criterion. For example, in terms 
of the two classes of applications mentioned above, and 
with the assumption that the noise is additive, the noise 
could be due to interfering signals that are received from 
directions outside the focus area, or it could be due to 
receiver equipment noise (class 1). On the other hand, it 

could be part of the impulse response corresponding to 
higher order modes that are not of interest (class 2). The 
selection of the signal or system model, the noise model, 
and the optimization criterion will in general depend on 
any a priori available knowledge, desired accuracy, etc., or 
in short on a number of design variables. Choosing values 
for these variables may be quite difficult, and an optimal 
choice may only be possible by trial and error. This makes 
identification as much an art as it is a science. 

In this paper, we will focus on signals and systems that fit 
deterministic state-space models. State-space models cover 
causal and finite systems that may be neither linear nor 
time-invariant. If they are linear and time-invariant, then 
they are closely related to constant coefficient difference 
equations relating input and output signals. In a function- 
theoretic framework, these models in tum become rational 
(expressed by a ratio of two polynomials), and are also 
called pole-zero models. However, while such models are 
global input/output characterizations of the system, state- 
space models also take the intemal system behavior into 
account by describing the current output as a function 
of a current intemal state and the current input, and by 
describing the next state as a function of the current state 
and the current input. A linear, time-invariant system is 
simply one for which these functions are themselves linear 
and time-invariant. The order of the state-space model is 
the dimension of the state vector, or more precisely, that of 
the state space, and is a measure of the system’s memory 
capacity. 

In this paper, we will only be concemed with linear 
state-space models, and we will require that all signals 
(input, output, and state signals) belong to certain normed 
spaces. The analysis of these signals and their models 
is done through extensive use of linear algebra. Signals 
are represented as (possibly infinite-length) vectors, and 
the state-space model is taken to be a matrix map from 
the input space and state space to the output and state 
spaces. The observations from which such a map is to 
be identified do not in general include the (intemal) state 
signals, so estimation of the model order becomes an 
essential part of the identification problem. The presence 
of noise tums this problem into a difficult one, since noise 
tends to reveal itself as an increased state-space dimension. 
In order to discriminate against noise, our approach will 
essentially be the following. We collect the observed signal 
or signals in a so-called observation matrix, which will 
often inherit a certain (Hankel) structure from the natural 
ordering imposed by the state-space model. Decomposing 
the column (range) space of this matrix into a dominant 
and a subordinate part reveals which of its subspaces can 
be attributed to the noise-free signal or signals and which 
can be attributed to the noise. We will assume that these 
two subspaces are orthogonal to each other, which implies 
that in terms of inner products, the noise-free signals and 
disturbances are independent of one another. The dominant 
subspace is due to the signals and is referred to as the 
signal subspace, while the other is referred to as the noise 
subspace. 
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The designated tool used to decompose the range space 
of the observation matrix into these two complementary 
subspaces is the singular value decomposition (SVD). The 
SVD is computationally very robust and allows for high- 
resolution discrimination against noise contamination. Once 
the signal subspace has been determined, the model param- 
eters are extracted from it. This approach gives rise to a 
number of subspace-based approaches, and we will be inter- 
ested in understanding the basic differences between them. 
Again, these approaches correspond to different model 
assumptions, specific design parameters, or altemative ways 
of computing what are essentially the same quantities. 
Associated with each of these approaches is a certain 
algorithm: a computational scheme. However, we will 
focus on the basic principles of subspace modeling-also 
called low-rank approximation-rather than dwelling on 
the algorithmic details. We will strive to provide a unified 
description of low-rank approximation methods, while at 
the same time pointing out the particularities of each of the 
approaches with respect to the generic solution. 

The paper can be divided into two main parts. In the 
first, the generic problem we are considering is described, 
and several relevant applications are presented. The second 
part of the paper is concerned with various classes of 
algorithms that have been developed over the years for 
these applications. Linking the two parts of the paper is 
a discussion of the SVD, which is both a theoretical and 
computational tool used in the analysis of the data models 
and the development of appropriate algorithms. 

In the first part of the paper, Section 11 presents an 
introduction to linear system realization theory, which can 
be viewed as identification in the absence of noise. The 
shift-invariance strucrure present in the data matrices is 
shown to be a crucial property. Section I11 illustrates the 
presence of such shift-invariant data structures in four 
identification scenarios: realization theory for time-varying 
systems, pole estimation from input-output measurements, 
direction-of-arrival estimation in antenna array applications, 
and harmonic retrieval of sinusoidal signals. Section IV 
then contains the intermediate discussion of the properties 
of the SVD that we will use in this paper. 

The second part of the paper consists of Sections V-IX, 
and contains details conceming the actual identification 
algorithms under consideration. An overview of these algo- 
rithms is given in Section V, which leads to a classification 
of the available methods into three classes, which are 
subsequently treated in Sections VI-VIII. The methods 
in Section VI (a.0. TAM, ESPRIT) are algebraic and are 
based on the single-shift structure observed between two 
submatrices of the data matrix. The methods in Section VI1 
(Min-Norm, AAK) are in a sense intermediate; while they 
can be described using submatrices as in Section VI, they 
are based on the analytic (i.e., polynomial) properties of one 
vector selected from the noise subspace orthogonal to the 
signal subspace. This is elaborated upon in Section VIII, 
where the analytic properties of the full noise subspace 
(or equivalently, the full signal subspace) are taken into 
account (Max Likelihood, MUSIC, Weighted Subspace 

Fitting, MODE). The general objective in these approaches 
is to find a low-rank subspace with a shift structure that has 
minimal distance to the true signal space, or equivalently, 
that is as orthogonal to the noise subspace as possible. To 
conclude the paper, Section IX gives a review of recent 
work on the statistical accuracy and computational load of 
the above algorithms. 

Several parts of the contents of this paper have appeared 
in separate tutorials and books, in particular the material 
on the SVD and elementary system theory. In the context 
of signal processing, introductory texts on SVD and linear 
prediction methods can be found in [4], [ 5 ] .  During the 
review of this paper, a related tutorial by Rao and Arun 
on subspace-based model identification was published [6]. 
Obviously, there is some overlap between their paper and 
ours. The present paper gives more details conceming 
the classification of single shift-invariant methods, and 
also features some maximum-likelihood and Hankel-norm 
approximation methods. In addition, we consider an ap- 
plication to time-varying systems, and model identification 
from input/output data. 

A. Notation 
Throughout this paper, the superscript * denotes complex 

conjugate transpose and the superscript denotes the 
ordinary matrix transpose. The superscript A is used either 
to denote a low-rank approximant of a matrix, or the 
reduction of a matrix to a smaller size by omitting some 
rows or columns. The ith column (or sometimes row) of a 
matrix X is denoted by zi. In addition, for the polynomial 
constructed from a vector U = [UI  ...IT, we will 
use the notation U(.) = u*a(z) = U1 + U p  + ..., with 
a(.) = [I z 2’ . . . I T  , for z E C. 

For a one-sided infinite matrix (operator) H ,  we denote 
byHT the operator H with its top row removed. Likewise, 
H‘ is the operator H minus its first column. For a finite 
matrix H of size (L + 1) x N, H(’) is the L x N matrix 
containing the first L rows of H ,  and H(’) is the matrix 
containing the last L rows of H. 

The matrix Id is the identity matrix of size d x d. The 
range of a matrix H of size L x N is the space { H z  : 
z E C N } ,  which is a subspace in the Euclidean space CL.  
The kemel of H is the subspace {z E C N  : Hs = O}. 
Projectors onto subspaces are denoted by n. Tr (F) denotes 
the trace of a matrix F, i.e., the sum of the diagonal entries 
of F. Eig (F) denotes the diagonal matrix containing the 
eigenvalues X i  of F. 

uz 

11. INTRODUCTION TO LINEAR SYSTEM 
REALIZATION THEORY 

The realization problem for linear systems is already a 
fairly old subject. A state-space approach to this problem 
was introduced by Nerode [7], and was subsequently for- 
malized by Ho and Kalman [8]. The realization scheme 
is based on the analysis of certain subspaces spanned by 
“inputs in the past” in combination with “outputs in the 
future.” In the mid- 1970’s, the SVD was introduced as 
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a tool to identify these subspaces in a numerically stable 
way, and for obtaining an approximate realization of lower 
order than the true system order [9]-[ 1 11. This section will 
introduce some system theoretic notions with relevance to 
subspace-based system realization theory. Section I11 will 
apply this theory to a few standard identification scenarios 
that will be used throughout this paper. More background 
material on linear systems theory can be found in the books 
by Kailath [12] and Rugh [13]. 

A .  System Operator 
Consider a causal linear time-invariant (LTI) system 

with system transfer operator T ,  mapping an input vector 
(sequence) that represents an input signal 

to a corresponding output sequence 

y =  [ . . .  51-1 Y o  Y 1  -1' 

such that y = Tu. For simplicity of notation, we consider 
systems with only one input and one output, although the 
general case follows easily along the same lines. We take 
the input and output sequences to be of finite energy, 
IIuIIi = u*u 5 M < 00, so that they are elements of 
the Hilbert space l z  (see, e.g., [14]), and we take T to be a 
bounded (stable) operator acting from to &. Associated 
with T is its impulse response 

which is the response of the system to a unit impulse applied 
at time 0. The operator T has a matrix representation 
such that y = Tu fits the usual rules for matrix-vector 
multiplications: 

The ith column contains the impulse response due to 
an impulse at time i. Note that the above relationship 
relies on the linearity of the system. The input U can 
be thought of as consisting of a sum of impulses, one 
for each time instant i, weighted by ui. The output of 
the system is then the weighted sum of the responses to 
these impulses. This description is equivalent to the familiar 
convolution sum y = h*u, defined by yi = CEO hkui -k .  
Because of time invariance, the matrix representation has a 
Toeplitz structure: it is constant along diagonals. It is lower 
triangular due to causality. 

u., -5 Y.1 

y 1  
U1 

'k+l 

(a) (b) 

Fig. 1. LTI state-space model. (a) Mapping of an input sequence 
{ U , }  to an output sequence { y t }  using an intermediate state 
sequence {xt} .  The state dimension is d = 2. Due to causality, 
the signal flow is from top to bottom. The delay operator z denotes 
a time shift here. (b) The operation at a particular time instant IC 
is a linear map from input U k  and current state x k  to output yk 
and next state x1;+1. 

B.  State-Space Representation 

LTI systems is 
The familiar state-space model used to describe causal 

xk+l = A X k  -k B U k  

yk = C X k  + D U k  

in which xk is the state vector (assumed to have d entries), 
A is a d x d matrix, B and CT are d x 1 vectors, and 
D is a scalar (see Fig. 1). The integer d is called the 
state dimension or system order. All finite-dimensional 
linear systems can be described in this way. The realizarion 
problem is to find a state-space representation that matches 
a given system operator T, i.e. 

such that the impulse response of the state-space system 

h =  [ . . .  0 D C B  CAB CA2B . . . I T  ( 2 )  

matches the impulse response of T .  In principle, there exist 
an infinite number of state-space realizations for a given 
system. For example, the state vector xk might contain 
some states that are not observed in the output or that 
are never excited by the input. Hence, we will limit our 
attention to minimal state-space models, that is, models for 
which the state dimension d is minimal. It is well known 
that for minimal systems, in order to have h E &, the 
eigenvalues of A must be smaller than 1 in absolute value, 
although eigenvalues on the unit circle are allowed in some 
applications. 

Even for minimal systems, the representation ( 1 )  is not 
at all unique. An equivalent system representation (yielding 
the same input-output relationship) is obtained by applying 
a state transformation R (an invertible d x d matrix) to 
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define a new state vector x ;  = Rxk. The equivalent system 
is 

x ; , ~  = A’x; + B’Uk 
Y k  = C‘X; + DUk 

where the new state space quantities are given by 

[C’ D ]  = [‘-l 1 ] [ C  D][ 
A’ B’ A B  R 

1 1 ’  
The eigenvalues of A remain invariant under this transfor- 
mation since R-l  A R  is a similarity transformation [ 151. 
The eigenvalues of A are directly related to the poles of 
the system, a fact that is easily verified if these poles are 
distinct. Under the assumption of distinct poles, another 
way to describe linear systems is via a partial fraction 
expansion of the z-transform of the impulse response h 

H =  

where $;’, i = 1, . . . , d, are the d poles of the system, and 
ri, i = 1, . . . , d ,  their respective residues. A corresponding 
state-space realization is 

( 5 )  

.* .  1 .  -hi  h2 h3 . . .  
h2 h3 

h3 

Another way to obtain this decomposition is to start from 
a given realization {A, B ,  C, D }  and apply an appropriate 
state similarity transformation that will diagonalize the A 
matrix: A = R@ R-l .  This is an eigenvalue decomposition 
of A, and the entries of @ are the eigenvalues of A. A 
sufficient condition for the existence of this decomposition 
(i.e., an invertible R) is that the poles of the system be 
distinct [ 121. 

X 

X 

yo = 
511 

Y 2  

C .  Hankel Operator 
We now tum to the realization problem: given a system 

transfer operator T (or equivalently an impulse response 
h), how can a state-space model that realizes this transfer 
operator be determined? The solution to the realization 
problem in a subspace context calls for the Hankel operator, 
which we define presently. 

The idea is to apply inputs only up to time t = - 1 (called 
“the past” with respect to the present time instant t = 0) 
and measure the resulting outputs from t = 0 on (the future; 
see Fig. 2). Writing y = Tu, we have 

. . .  

. . ’  

X 

X 

h3 

X 

X 

h2 
h3 

X 

hl 
h2 

h3 

X 

X 

X 

0 

X 

X 

. .  . .  

“-2 

u.1 

0 YO 

0 Y 1  

Fig. 2. Applying inputs up to t = -1 and recording outputs from 
t = 0 on yields information about the state at t = 0 .  From this, a 
state space realization can be derived. 

Clearly, H has a factorization H = OC. C is called 
the controllability operator and 0 is called the ob- 
servability operator, and for a minimal realization 
they have by definition full rank d. Since H is an 
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outer product of rank d matrices, it must be of rank 
d itself. Even for minimal realizations, there is of 
course an ambiguity in this factorization. With R an 
invertible d x d,  matrix, we can also factor H as 
H = O'C' = OR . R-'C, corresponding to a state- 
space model that has undergone a state transformation 
by R as described above. Factorizations modulo R 
lead to equivalent systems. 

2 )  H has a shifi-invariance structure. Denote by HT the 
operator H with its top row deleted. Likewise, denote 
by H' the operator H with its first column deleted. 
Shift-invariance means that the range (column space) 
of the shifted operator is contained in the range of 
the original operator. This property can be deduced 
directly from the Hankel structure in (5) 

HT = OTC = 0 A . C  
H' = OC' = O . A C .  

Thus it is seen that shifting H upwards or to the left 
is equivalent to a multiplication by A in the center 
of the factorization. 

There is a physical interpretation of this shift invariance. 
Just as the range of H contains all possible outputs of the 
system from t = 0 on, due to inputs that last until t = -1, 
the range of HT contains all possible outputs of the system 
from t = 1 on, due to inputs that stop at t = -1. Because 
of the time-invariance of the system, this is the same as 
stating that HT contains the outputs of the system from 
t = 0 on, due to all inputs that stop at t = -2. This set of 
inputs is a subspace in the set of all inputs in the past, and 
hence the resulting set of future outputs (the range of HT) 
must be a subspace contained in the original set of future 
outputs (the range of H). 

D. Realization Scheme 
Using the above two properties of the Hankel operat- 

or H-i.e., that it is of finite rank with some minimal 
factorization H = OC, and that it is shift-invariant-we 
will show how to obtain a state-space realization as in (1) 
from a given transfer operator T. 

1) Given T, construct the Hankel operator H as in 
( 5 ) .  Determine the rank d of the operator, and a 
factorization H = OC, where (3 and C are of full 
rank d. The SVD is a robust tool for doing this, as 
will be discussed later. 

2) At this point, we know that C and C? have the shift- 
invariant structure of (6). Use this property to derive 

O A = O T  + A = O + O T  

where O+ is the pseudo-inverse of O such that 
O+O = I d .  Because 0 is of full row rank d, we 
have O+ = (O*C?)-'O*. This determines A .  The 
matrices B, C and D follow simply as 

B = C ( : , l )  

c = O(1,:) 
D = ho 

where the subscript (:, 1) denotes the first column of 
the associated operator, and (1, :) the first row. 

Various issues emerge here to make this realization 
scheme feasible in practice. First, we are only willing to 
do computations on matrices of finite size. In particular, 
H should have finite size. This issue can be dealt with 
relatively easily. Suppose we have available a top-left 
( L  + 1) x N window of the infinitely dimensioned H :  

I .  ~ L + I  h ~ + 2  . ' .  ~ N + L  

hi h2 ... 
h2 h3 

HL+I ,N  = : 

r c i  
C A  . [ B  A B  A 2 B  . . .  A N - l B ]  = I  i I  

(7) 

Define U(' )  and 0(2) by 

and as before, let d be the rank of H .  If L and N are equal 
to or larger than d, then the rank of H L + ~ , N  is also equal 
to d, and in particular O(') and are of full rank d. The 
shift-invariance property in this finite-size case is now 

O(2) = O(1)A  j A = 0 ( 1 ) + 0 ( 2 )  (8) 

and A = 0(1)+0(2) is the same matrix as obtained in the 
infinite case. 

A second issue is how to handle an inaccurate T. This is 
more difficult to treat, and in fact is the subject of most of 
the remaining part of the paper. Suppose that T is corrupted 
by additive noise, or altematively, that we have measured 
an impulse response sequence h which contains additive 
noise. The matrix H will thus be constructed from noisy 
measurements, and will therefore have full rank in general. 
H will also have high rank if T represents a system of 
high order for which a "reduced order" model is desired. 
In both cases (system identification and model reduction) 
the objective is to find an approximate system with Hankel 
matrix H of low rank d that, in some suitable norm, is as 
close to the original noisy H as possible. In essence, the 
problem is to determine the optimal (or close-to-optimal) 
positions of the poles of the approximating system, or 
in other words to estimate the d x d diagonal matrix 

= eig ( A )  given a finite extent of the impulse response. 
At first, we will consider only the shift-invariant structure in 
the observability matrix 0. The key problem (and also the 
major distinction between the various algorithms) is how to 
enforce the shift-invariant structure present in the original 
or noisy O to be present in the approximation too. 

E .  Discussion 
There is a subspace theory underlying the low-rank and 

shift-invariance properties that we have used implicitly. We 
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assumed the existence of a model as in (l), and used the 
resulting properties to derive the structure of C and 0 as 
in (6). A proof of the existence of this model starts from 
some system transfer operator T and its Hankel operator 
H. We briefly touch upon this subject. Let the minimal 
system order be d ,  and let H = OC with 0 and C of full 
rank d.  The output state space NO is the subspace defined 
by 

‘Flo = {y+ : y+ = H u - ,  all U- E a , } .  
‘Ho is the subspace of all possible outputs in “the future” 
that can be reached by inputs in the past. Mathemati- 
cally, ‘Ffo is the range (“column space”) of H ,  and the d 
columns of 0 constitute a minimal basis for it. Likewise, 
define the input null space M and input state space 7-l 
as 

M = {U- : y, = Hu- = O} 

‘ H = M L .  

M is the kernel of H and consists of all inputs in the past 
that yield zero output in the future. ‘FI is the orthogonal 
complement of M and is equal to the column space of 
H*, or the conjugate transpose of the row range space of 
H. The d columns of C* constitute a minimal basis for 
IFI. 

Using the above spaces 3-1 and 80 and making use of the 
assumption that they are of finite dimension d ,  it is possible 
to formally derive that there must exist a state-space model 
in the form of (1). We omit this derivation, but remark that 
crucial in the derivation is the fact that ‘H and ‘,YO are shift- 
invariant; e.g., the space ‘$, is contained in ’&. It follows 
that their bases must also be shift-invariant, and hence that 
there must be some matrix A to express the shifted basis 
in terms of the original: 0 T  = OA. This gives rise to the 
now familiar structures of C and 0, and is the content of 
the abstract realization theory in [16], [17]. 

U -  1 

U0 

U 1  
0 
0 

111. APPLICATIONS OF SUBSPACE-BASED 
REALIZATION THEORY 

In this section, we discuss a number of related identifi- 
cation problems that rely on the same type of low-rank and 
shift-invariance properties described in the previous section. 
We first discuss the realization problem for time-varying 
systems, and show that the resulting time-varying Hankel 
operator is of low rank and has a shift-invariance property 
which can be used to determine a time-varying state-space 
realization. A second application is system identification 
using input-output data. In this problem, the impulse re- 
sponse is not specified, but instead a measured collection 
of inputs and their corresponding outputs is given. The third 
application is the direction-of-arrival estimation problem, in 
which one attempts to determine the incidental directions 
of a number of narrowband plane wave signals impinging 
on an antenna array. Finally, in the fourth application, we 
discuss the classical harmonic retrieval problem, where one 
attempts to determine the frequencies and decay factors of 
multiple cisoids. 

. 

A.  Realization of a Time-Varying System 
The purpose of this section is to give a brief introduction 

to realization theory for time-varying systems, primarily to 
demonstrate the generality of the subspace concept. The 
derivation is very similar to the time-invariant case, and a 
more detailed discussion along these lines can be found in 
[18], [19]. Consider again an input sequence U E C2, which 
is mapped by an operator T to a corresponding output 
sequence y = Tu, where 

U =  [ . . .  U - 1  U0 U 1  . . .I’ 
y =  [... Y - 1  Yo Y1 -1’. 

T is assumed to be bounded and causal, and hence has a 
matrix representation 

I... h; h2l h22 
- .  . .  

As before, the ith column of T is the response of the system 
to an impulse applied at time t = i, but because the system 
is time-varying, these impulse responses can change with 
time. We have thus lost the Toeplitz structure of T. 

A time-varying state-space realization has the form 

xk+l = Akxk + Bkuk 

Y k  = Ckxk + D k U k  

in which xk is the state vector at time k (taken to have 
d k  entries; the state dimensions need not be constant now), 
Ak is a dk+l x d k  (possibly nonsquare) matrix, Bk is a 
dk+l x 1 vector, c k  is a 1 x d k  vector, and Dk is a 
scalar. Note that, with time-varying state dimensions, the 
Ak matrices are no longer square matrices, and hence they 
do not have the eigenvalue decompositions which were 
used in the time-invariant case to compute the poles of the 
system. Nonetheless, it is possible to compute time-varying 
state realizations for a given time-varying system transfer 
operator T, as the next paragraph will show. 

Suppose a time-varying system transfer operator T is 
given, for which we want to determine a time-varying state- 
space realization. The approach is as in the time-invariant 
case. Denote a certain time instant as “current time,” apply 
all possible inputs in the “past” with respect to this instant, 
and measure the corresponding outputs in “the future,” from 
the current time instant on (see Fig. 3). As in the time- 
invariant case, we select in this way a lower-left submatrix 
of T. For example, for the current time t = 2, 

X 

X 

Y z  
Y3 
Y4 

... x x  
x x x  

... h2,--1 h2o h21 

h30 h31 

h4l 

0 

X 

x x  

x x .. 
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0 - Y2 

Fig. 3. Principle of the identification of a time-varying state-space 
model. In this picture, the “current time” is t = 2, all possible 
inputs up till time t = 1 (“the past”) are. applied, and the 
corresponding output sequences are. recorded from time t = 2 on 
(“the future”). This yields H2,  a Hankel operator at instant t = 2. 
This should be done in tum for all t .  

Denote by H2 the one-sided infinite equivalent of this 
submatrix: 

In analogy with the time-invariant case, we call H2 the 
Hankel operator at time 2, although in reality it does not 
possess an antidiagonal Hankel structure. By doing this in 
tum for all time, we obtain from T a sequence of Hankel 
operators Hk, viz., 

T =  

H1 

0 :.;.; h43 -. 

H3 

. (9) 

Although we have lost the Hankel structure, we retain the 
following two important properties: 

1)  Hk has rank d k  equal to the minimal system order at 
time instant k .  While this can be derived formally, it 
also follows from inspection of Fig. 3. For example, 
at time 2 we have that the realization satisfies 

H 2 =  c4A3A2 [B1 AlBO AlAOB-1 ‘ . - I  [ ‘“.I 
= 0 2 c z  

where for a minimal system both 0 2  and Cz are of full 
rank d z .  c k  and 0 k  can be regarded as time-varying 
controllability and observability matrices. 

2 )  H k  has shif-invariant properties. For example 

= 0 3 c 3  

The shift-invariance pro rty is now reflected by the 
fact that the range of Hk is contained in the column 
space of Hk+1. This can also be seen from (9). The 
physical interpretation is the same as in the time- 
invariant case; i.e., the range of H i  contains the 
output sequences from t = 3 on, due to inputs in the 
past up to t = 1, whereas the range of H3 contains 
the output sequences from t = 3 on, due to inputs 
that run up to t = 2. The latter set of inputs properly 
contains the former, hence the range of H3 contains 
the range of H l .  

The above properties form the ingredients for obtaining 

1) First construct Hankel operators Hk from T.  Compute 
the rank d k  of each Hankel operator; this is the system 
order at time instant k. Compute a decomposition 

The columns of 01, form a basis for the output State 
space at time k, and likewise the columns of C; form 
a basis for the input state space at time k. 

2) Having obtained c k  and 01, for all time instants k, 
apply the shift-invariance property 

T. 

a realization of a given time-varying transfer operator T: 

Hk = O k C k  into full rank d k  factors 01, and c k .  

It is instructive to perform the above recipe on a numer- 
ical example. Consider the finite lower triangular matrix 

1 

T =  [ y :  l i 3  1 1 ’  
Finite matrices form a special class of time-varying sys- 
tems. The Hankel matrices with nonvanishing dimensions 

1/24 1/12 1/4 1 
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1 

1 

A 

1 
Y4 

1 
Y3 

1 
Yz 

1 
Y1 

Fig. 4. Time-varying state realization of a finite matrix. 

are 

H2 = [ :f ] = [ 1;3] 1/2 
1/24 1/12 

~- 

H3 = [ 1/12 ID 1/24 1 / 6 1  = [ 1;4][1/3 1/61 

H4 = [1/4 1/12 1/24] 

Since raiik(Hk) = 0 for k < 2 and k > 4, no states 
are needed at these points in time. One state is needed for 
:1:2 and one for xa, because raiik(H2) = raiik(H4) = 1. 
Finally, also only one state is needed for ~ 3 ,  because 
raiik(H3) = 1. In fact, this is (for this example) the 
only nontrivial rank condition: if one of the entries in H3 
would have been different, then two states would have been 
needed. The realization algorithm leads to the sequence of 
realization matrices 

1/3 1/3 [2 E:] = [ 1 1 ] 

where the ‘‘.” indicates entries that actually have dimension 
0 because the corresponding states do not exist. The cor- 
responding realization is depicted in Fig. 4, and it is not 
difficult to see that it indeed computes the matrix-vector 
multiplication y = Tu. The above example of the deriva- 
tion of a “computational network” shows how system 
theory can be used to obtain efficient algorithms for linear 
algebra problems (in this case matrix-vector multiplications 
of lower triangular matrices, but also inversion, Cholesky 
factorization, etc., is possible) [ 191. 

Although the development of a time-varying state-space 
theory started in the 1950’s (or even earlier), the realization 
approach presented here is fairly recent, and based on 
[ 181. Some other important approaches that parallel the 
given presentation can be found in the monograph by 
Feintuch and Saeks [20], in which a Hilbert resolution 
space approach is taken, and in recent work by Kamen 
et al. [21], [22], where time-varying systems are put into 

an algebraic framework of polynomial rings. However, 
many results, in particular on controllability, detectability, 
stabilizability, etc., have been discussed by a number of 
authors without using these specialized mathematical means 
(see, e.g., Anderson and Moore [23] and references therein, 
and Gohberg et al. [24]) by time-indexing the state-space 
matrices {A, B,  C, D} as above. 

B.  Realization from Inputloutput Measurements 
In Section 11, we assumed that impulse response mea- 

surements h, of the system to be identified were somehow 
available. In many practical situations, however, instead 
of the impulse response one is given only a segment of 
the response of the system to some known nonimpulsive 
input sequence. A deconvolution operation could be used 
to determine the impulse response, from which the system 
can subsequently be identified, but this does not yield a very 
convincing algorithm because the deconvolution operation 
itself needs some estimate of the system parameters. We 
would like to use the Hankel approach of the previous 
section, where we obtained a realization by applying all 
possible inputs in the past (inputs that are zero from t = 0 
on), and determined the range of the corresponding output 
sequences from t = 0 on. 

We first look at a slightly different scenario. Suppose we 
have applied a collection of N independent input sequences 
{U,}, 1 = 0 , .  . . , N - 1, but have measured only a finite 
segment of the corresponding output sequences 2,. say 
from time t = 0 to t = L, with d 5 L << N .  We 
denote the known part of each y, by y,, which thus is an 
(L + 1)-dimensional vector. Likewise, U, is defined to be 
the segment of U ,  from time t = 0 to t = L, which will be 
the only part of each input sequence that will be used in the 
algorithm. Because the input sequences are not zero from 
t = 0 on, we cannot apply the Hankel approach directly. 
However, the system is linear, and hence we can construct 
new input sequences by taking linear combinations of the 
given sequences, and compute the corresponding output 
sequences by applying the same linear combinations to the 
original output sequences. In particular, if we choose the 
linear combinations such that all known future segments of 
the input sequence U, become zero vectors, then we have 
in fact constructed an input that lives entirely in the past 
(is zero from t = 0), with corresponding output sequences 
known only from t = 0 up to t = L. This leads to a 
transformation 

O . . .  , O  ] (10) = [; ... y; y’L+l ... 
... 

YR.-1 

in which Q is an N x N matrix representing the appropriate 
linear combinations. Note that for independent {U,}, we 
cannot expect to make all U: zero; L + 1 independent 
nonzero U: will remain. From the analysis in Section 11, it is 
clear that the output vectors y’,,, . . . . . yi.-l are contained 
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in the output state space restricted to t E [O, L];  i.e., 

r c i  

(1 1) 
where Xo is an unknown d x (N - L - 1 )  matrix that 
can be regarded as containing the initial states (at time 
t = 0) due to the portion of each of the new set of 
inputs in the (unknown) past. Only if X O  is of full rank 
d will the above decomposition determine O L + ~  up to a 
state transformation, and in this case we arrive at a model 
identification problem that is slightly less restricted than 
that associated with (7), since in (1 1) only O L + ~  has a 
shift-invariance property. From this shift invariance, we can 
obtain A and C as before. The determination of B and D 
is more involved now, and requires a least squares fit of 
the given input-output relations (we omit the details) [25]. 

A few remarks are in place. First, the appropriate trans- 
formation Q in (10) can be conveniently computed via a 
QR (or rather LQ) factorization: 

where the matrices R11 and R22 are lower triangular 
matrices of dimension ( L  + 1 )  x ( L  + l ) ,  and [Ql Qz] 
are the first 2(L  + 1) columns of the unitary matrix Q 
having dimension N x N .  Consequently 

and it is seen from (1 1) that R22 must have rank d and a 
range space that spans that of O L + ~ .  Hence it is shift- 
invariant, and A can be determined from R22 as A = 

Secondly, when only one input-utput sequence is given, 
of length N + L say, then we can use the time invariance 
of the system to construct a set of N “independent” 
input-output sequences of length L,  as 

Rig)+ (2 )  R22 . 

Finally, it is essential that XO in ( 1  1 )  has full rank d. In 
order to realize this, the set of inputs should be sufficiently 
“rich.” More precisely, we must have 

1) the part of the inputs for t < 0 should span at least 
the input state space ‘H (which is unknown); and 

2) L 2 d, N 2 L + 1 + d. 

A set of N inputs {t i i}  that satisfies condition 1) for all 
possible input state spaces ‘H of a certain rank is called 
persistently exciting. We will not discuss precise conditions 
for a set of inputs (or a single input, from which a set of 
N inputs is constructed by considering shifts as in (13)) to 
be persistently exciting. In practice, however, if one takes 
N >> d and ensures that the span of the past inputs has 
dimension N ,  one can be “almost sure” that the rank of 
X O  is equal to d. Typically, this will be the case when 
a stochastic input (zero mean white noise) is applied to 
the system. Alternatively, one can construct a deterministic 
input sequence which also has this property. 

As a simple example illustrating the above, consider the 
system described by the first-order difference equation 

yk = a k  - Y k - 1  

which has a (trivial) state model in which xk = Y k - 1  is 
the state, and where A = a is the pole to be identified. 
Suppose that we have applied the input sequence U = 
[ .  . . , 1: 2 ,  1 ,  1 ,  . . . I ,  which resulted in the output 
sequence y = [. . . ,  1 ,  2 + a ,  1 + 2n + cy2, 1 + (Y + 
2a2 + a3, . . . I .  With L = 1 and N = 3, the Hankel 
matrices constructed on the data according to (13) are 

r 1  2 1 1 

I [ ; I =  I f 1+2a 1 + 2 0  + cy2 

1 1 

1+2a 1 + 2 a + a 2  1 + a + 2 c y 2 + c y 3  

Taking linear combinations of the columns to zero the third 
column of U leads to 

r 1  2 0 1  
1 [ ; : I  = I 1 1 + 2 c y  

1 + 2 a  1 + 2cy + cy2 5 2  + 3a3 

so that [ Y : + ~ ]  can be written as 

(cf. (11)). The above technique thus yields C = 1 and 
A = cy. 

The material in this section is primarily based on re- 
cent work of Verhaegen [26]-[28], whose subspace model 
identification scheme was in tum inspired by De Moor 
et al. [25], [29], and Moonen [30], [31]. It is also possible 
to derive a combined stochastic/deterministic identification 
scheme [32], [33]. 

C.  Direction of Arrival Estimation 
The third application arises in antenna array signal pro- 

cessing, and concems the estimation of the angles of 
amval of d narrow-band plane waves impinging upon 
an antenna array. This is the so-called direction-of-arrival 
(DOA) estimation problem (see Fig. 5). For simplicity, 
the narrow-band signals S k ( t )  associated with each plane 
wave are modeled as complex-valued sinusoids s k ( t )  = 
. i i k ( t )  e x p  (j27rf t ) ,  where j = &i, i k ( t )  is the amplitude 
of the signal (assumed to be slowly time-varying), and f its 
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Fig. 5. Direction of arrival estimation. Shown is a uniform linear 
array consisting of four sensors, and two impinging signals. The 
angle-of-arrival 0, of signal s, is computed from an estimate of 
the phase shift corresponding to the distance A sin (0 , ) .  

center frequency. The assumption of complex (or analytic) 
signals is supported by the fact that most antenna receivers 
decompose the received signals into both in-phase and 
quadrature components. 

An analytic signal model is convenient here since, for 
narrow-band signals, it allows a time delay to be repre- 
sented as multiplication by a complex exponential. Conse- 
quently, corresponding to each angle of incidence 6 k  is a 
complex constant $k of unit modulus that represents the 
phase shift due to the propagation delay Tk of a plane 
wave signal between two neighboring sensors of the array 

with $ k  = exp(j2rfA sin(6k)). We will parameterize 
the DOA problem in $k rather than 6k. 

Assuming that the sensors and associated receiver hard- 
ware are approximately linear, the array output signal at 
the ith sensor, xi(t), is given as a weighted sum of the d 
input signals: 

separated by a distance A. ThUS S k ( t  - ?-k) = S k ( t ) $ ? ) k ,  

d 

z ; ( t )  = C a i ( $ k ) s k ( t ) ,  i = I , . . .  , L +  1 (14) 

where U ; ( & )  represents the response of the ith sensor to 
a signal arriving from the direction associated with &, 
and we have assumed that there are a total of L + 1 
sensors. Suppose that N samples are taken at time instants 
t l ,  . . . , t ~ ,  and collect the data z;( t j )  into a ( L  + 1) x N 
matrix X with entries Xi,j = x;(tj). Because of (14), X 
may be decomposed into the product of a ( L  + 1) x d matrix 
A(@) and a d x N matrix S 

k = l  

X = A( @)S (15) 

where the lcth row of S contains the samples S k ( t j ) ,  

@ = diag($q,...,$d) is a diagonal matrix containing 
the parameters $k that are to be identified, A(@) = 
[a(41) . . .  a(&)] is a matrix with columns of the form 
a(&) = [ul($k) ... U L + 1 ( & ) I T ,  which is the array re- 
sponse vector due to a signal impinging from direction $k. 
This vector depends only on the geometrical construction 
of the array and the directional response of the sensors. 
For a uniform linear array (ULA) of identical equispaced 
sensors, a($) is given by a(4) = [ 1 $ $2 ... dLIT , 

and A(@) by 

r l  1 . 1 

A has a structure that is known as Vandermonde structure, 
and its column space is clearly shift-invariant. Letting A(1) 
represent the first L rows of A, and A(2) the last L rows 
(and likewise for X ( l )  and X( ' ) ) ,  we have 

A(2) = d(1)@ 

and 
X ( 1 )  = A(1)S 
X ( 2 )  = A(2)S = A(l)@S. (17) 

As before, the equation = A(')@ illustrates the shift- 
invariant structure present in the array due to the uniform 
distribution of its (identical) sensors. If no two of the d 
signals s k @ )  are fully correlated, then S is of full rank d.' 

As before, a decomposition of X into minimal rank-d 
factors is not unique, and will not reveal the Vandermonde 
structure. We may obtain the decomposition as 
X U )  = @1)c - - A(I)R-I.RS 
X ( 2 )  o(2)C = O ( 1 ) A C  = A(l)R-l.R@R-l.RS 

where R is some unknown invertible d x d matrix, playing 
the role of a similarity transformation. However, 0 is 
shift-invariant, and A can be determined as in (8): A = 
d1)+d2) = R@R-l, so that the eigenvalues of A are 
equal to the 4 k .  

A related shift structure arises if, instead of a ULA, 
the array is known to be composed of two identical but 
otherwise arbitrary subarrays. In this case, A(@) will satisfy 

A(@) = [ 2@] 
for some full rank do. This kind of block-shift structure is 
the parameterization assumed by the so-called ESPRIT al- 
gorithm [34]-[36]. Techniques for exploiting this structure 
are described in Section VI. 

The matrix X above will drop rank if either the array 
response matrix A(@) or the signal matrix S has rank 
less than d. When A(@) has rank less than d, the array is 
referred to as being ambiguous, and the signal parameters 
$k are not identifiable. This corresponds in some sense to 
an unobservable linear system. This type of rank deficiency 
can be avoided by proper array design, or in cases where 
the signal location parameters are restricted to some subset 
of possible phase delays. For example, the ULA described 
above is guaranteed to be unambiguous if and only if 
A < X/2, where X is the wavelength of the narrow-band 
signals. When S is rank-deficient, it usually indicates that 

I Note that perfect sinusoidal signals of the same frequency are the same, 
up to a difference in phase and amplitude, and consequently S will have 
rank 1. The rank condition is satisfied if ( t )  is not constant but slowly 
time-varying, and the sampling time is long enough. 
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some subset of the signals are perfectly coherent; that is, 
(at least) one of the signals is just a scaled and delayed 
version of another signal. This type of situation arises when 
the multipath phenomenon is present, such as occurs when 
both a direct-path signal and one (or more) reflections are 
received by the array. Unlike the case of an ambiguous 
array, the location parameters 4 k  are often still identifiable 
when S is rank deficient [37], [38]. 

= 

D. Harmonic Retrieval 
The relationship between the Hankel decomposition H = 

OC in (6) and the decomposition X = A(@)S in (15) is 
not coincidental. The Hankel matrix decomposition can also 
be written in terms of Vandermonde matrices if the poles 
of the system are distinct. Under this condition, recall the 
partial fraction expansion of the z-transform of the impulse 
response in (3) 

h(z )  = C h n z n  = ro + 
03 d 

0 k = l  - 4 k z  

r k z  
~ 

d 

= TO + r k z ( 1  + 4 k z  + 48z2 + ’ ’ ‘) 
k = l  

(19) 

1 -  - 1 . . .  

$ [ r1 ..* ] 41 
4: 

r d  

-4: . . ’  42- 

where we allow the 4 k  and r k  to possibly be complex. If we 
let 4 k  = e a k + j w k ,  the time-domain version of the impulse 
response of (19) can be written as 

d 

h n -  - r k e ( a k f j u k ) n  (21) 
k = l  

which is just a sum of d damped exponential signals. Thus 
the problem of determining the poles of a linear system 
from observations of its impulse response can be recast as 
one of estimating the frequencies and decay factors of mul- 
tiple exponential signals. This latter problem is referred to 
as harmonic retrieval, and has been studied by researchers 
for many years in fields as diverse as economics, zoology, 
and physics, not to mention engineering. One of the earliest 
written accounts of such work was given by the Baron de 
Prony in the late eighteenth century [39]. Comparing (20) 
with (15), we see that the matrix A(@) defined here is 
analogous to the array manifold in the DOA estimation 
problem, and will be “unambiguous,” (i.e., full rank d) if 
L + 1 > d and W k  < T .  When N - 1 > d, the Nyquist 
assumption W k  < T also can be shown to guarantee that 
S is full rank d. 

IV. SINGULAR VALUE DECOMPOSITION 
In the previous section, the notions of subspace, column 

space, rank, and factorization of matrices have been in- 
troduced conceptually, and it was noted that the singular 
value decomposition (SVD) of matrices is a robust tool for 
computing them. In sections to follow we will make exten- 
sive use of this tool, and therefore we shall take a closer 
look at it in this section. For a more detailed account (and 
an overview of algorithms for its computation) we refer to 
[15]. Tutorial information as well as related technical papers 
on the subject of SVD and signal processing are provided 
by [4] and the series [401, [41]. 

A .  Subspaces 
Starting with a given matrix X of size L x N and with 

entries in 43, one may want to know how many columns 
(rows) of this matrix are nonparallel or independent of each 
other. We will assume throughout that the dimensions L 
and N are finite (however, most of the results will still 
hold when the dimensions are not finite, provided X is 
a so-called compact operator, i.e., when the sum of its 
squared entries is bounded). If there are d 5 L 5 N 
independent columns in X, then this matrix is said to have a 
d-dimensional range or column space, which is a subspace 
of the L-dimensional Euclidian space CL.  The rank of the 
matrix is the dimension of this subspace. If d = L, then the 
matrix is of full rank, and for d < L it is rank-deficient. 
Now C L  is spanned by the columns of any unitary matrix in 
C L  L, the Euclidean space of square, complex-valued L- 
dimensional matrices. The same holds for C N  of which the 
row space of X is a d-dimensional subspace: the columns of 
any N x N unitary matrix in C N x N  span the vector space 
C N .  Assuming d 5 L 5 N ,  we can choose a unitary U 
such that the d-dimensional column space of X is spanned 
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by a subset of d columns of q, say the first d columns, 
which together form a matrix U: 

d L - d  
t ) c )  

U = L l  ( U  U ' ) .  
Since U is a unitary matrix, we shall have 

1)  From U*U = IL :  

( a )  U*U = I d  

( b )  U*UL = 0 

( c )  (U')*ii' = 1 L - d .  

2) From UU* = I L :  

( d )  UU* + U'(OL)* = IL 

where I d  is the identity matrix of order d, and similarly 
for IL and 1 L - d .  Relations (a) - (d)  tell us that any vector 
z E C L  can be decomposed into two mutually orthogonz$ 
vecto!s 3 and ZL in the spaces spanned by the columns of U 
and UL, respectively. These two spaces are d-dimensional 
and (L - d)-dimensional orthogonal subspaces in C L ,  and 
their direct sum is equal to CL.  Therefore, the orthogonal 
complement in C L  of the column space of X ',s spanned 
by the columns of the matrix UL. The matrices UU* = IIc 
and U*(UL)* = II: in the above relation ( d )  are the 
orthogonal projectors onto the column space of X and 
its orthogonal complement in C L ,  respectively. That is; 
3 = II,z and kL = IItz. 

The unitary matrix V can be similarly decomposed: 

d N - d  
t ) t )  

V = , T ( V  V L ) .  

Here, the matrices V V *  = II, and V*(VL)*  = II: are 
orthogonal projectors onto the original subspaces in C N  
spanned by the columns of V and V I ,  respectively. The 
columns of V* span the kernel of X, i.e., the space of 
input vectors z for which Xz = 0. 

B .  SVD 
In terms of the above discussion of subspaces, the sin- 

gular value decomposition of the L x N matrix X, which 
we assume to have rank d, is obtained by making a certain 
well-defined choice for U and V, which then gives rise to 
the following decomposition [ 151: 

x = [U 09c [(&*I 
where C is an L x N diagonal matrix containing the singular 
values ( ~ i  of X. These are positive numbers ordered such 
that 

(TI 2 (T2 2 ' ' .  2 (Td > (Td+l = ' . .  = (Tt = 0 .  

Note that only d singular values are nonzero. The d columns 
of U corresponding to these nonzero singular values span 

the column space of X and are called the left singular 
vectors. Similarly, the d columns of V are called the right 
singular vectors and span the row space of X (or the column 
space of X*) . In terms of these (sometimes much) smaller 
matrices, the SVD of X can also be written in "economy" 
size 

x = &$* (22) 

where 9 is a d x d diagonal matrix containing 01, . . . (Td .  

This form of the SVD better reveals that X is actually of 
rank d: it is constructed from a product of rank-d matrices. 

The SVD of X makes the various spaces (range and ker- 
nel) associated with X explicit. So doeSAany decomposition 
of X as X = UE,V*, where U and V are any matrices 
whose columns span the column and row spaces of X, 
respectively, and where E, is an invertible d x d matrix. 
The property that makes the SVD special is the fact that 
E, is a diagonal matrix, so that a decoupling is obtained: 
with U; the ith column of U, and vi likewise for V, X 
can be written as a sum of rank-1 isometric matrices uiv:, 
scaled by (T;: 

d 

x = .;(U;.;) 
i=l 

and we also have 

oiu; = xva , 0;v; = x*u;. 

This makes it possible to rank the vectors in the column 
space and row space of X: the most important direction in 
the column space is u1, with scale 01, and is reached by 
applying X to the vector V I .  The second most important 
direction is u2, etc. This ranking will in turn lead to optimal 
low-rank approximants of X (see below). In the mapping 
a E C N  + b E C L  : b = Xu, b will automatically be a 
vector in the column range of X, and will be nonzero if 
and only if a has a component in the row space of X; i.e., 
if and only if II,a is nonzero. On the other hand, b will be 
identically zero if and only if a is orthogonal to the row 
space of X. Therefore, the space spanned by the vectors 
v d + l , " '  1~~ in v* is called the null space (or kernel) of 
X. Vectors a in this space are mapped to zero by one of 
the zero singular values of X. The SVD of X reveals the 
behavior of the map b = Xu: a is rotated in N-space (by 
V*) ,  then scaled (by the entries of C: L - d components 
are projected to zero), and finally rotated in L-space (by 
U) to give b. 

C .  The Effect of Noise 
Suppose that X is an L x N matrix with rank d 5 L. As 

before, denote the SVD of X as X = UCV* = UCV*. In 
this subsection, we will briefly study the effect of adding 
noise to X on its SVD. The perturbation theory of the SVD 
is partially based on the link of the SVD with eigenvalue 
decompositions: 

x=ucv* * xx* = U C 2 U *  
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so that the singular values of X are the positive square roots 
of the eigenvalues of X X * ,  while its left singular values 
are the eigenvectors of X X * .  Suppose that X is perturbed 
by some noise matrix V: X’ = X + V . We first consider the 
case where the entries of V are generated by uncorrelated, 
zero mean, white-noise processes with variance a’, so that 
the variance E(VV*) is asymptotically (for N -+ 00) given 
by E(VV*/N)  = a 2 1 ~ .  Under the same conditions 

E(X’X’*/N) = E ( X X * / N )  + 2 1 L  
so that, for large N ,  the SVD of X’ is given by 

X’ x U(C2 + Na21)1’2V’* 

for some unitary matrix V’. This expression shows that, 
for large N and small a, the singular values of X’ increase 
by an amount approximately equal to a n ,  while the left 
singular vectors of X remain the same. X’ is now of full 
rank, and its L - d smallest singular values are no longer 
zero, but equal to a n .  In theory, we can recover X X *  by 
subtracting Na21 from (E’)’. This should set the (L - d )  
smallest singular values back to zero. F e  range space of 
X ,  as estimated from X’, is spanned by U, the left singular 
vectors corresponding to the dlargest singular values of X’. 
It is not possible to recover V (or X ) ,  because the length 
of the columns of V is equal to N ,  and hence these vectors 
do not participate in the averaging effect of increasing N .  

For more general V, and in case N is not extremely large, 
one can show that the singular values of X are raised by 
an amount on the order of 1 1  V 11,  the largest singular value 
of V.  However, in this case the singular vectors are also 
perturbed. The amount of the perturbation in the subspace 
which they span can be estimated (see, e.g., [42], [43]), and 
is again in the order of 11 V 1 1 .  The effect on the singular 
vectors themselves can be much larger if the corresponding 
singular values are close [42]. Summarizing, the singular 
values and the subspace spanned by the left singular vectors 
are (for reasonably large N) relatively insensitive to added 
perturbations on the entries of the matrix, and hence the 
SVD is numerically reliable and robust. The SVD thus 
provides a good estimate of the numerical rank of a matrix, 
and is useful for quantifying how “close” a matrix is to 
being low-rank. 

The “noise threshold” depends on the smallest singular 
value of the original matrix. This singular value is related 
to the smallest vector that can be constructed with linear 
combinations of the columns of the matrix, or the smallest 
distance of one column of the matrix to the column range of 
the remaining columns. Obviously, it will be small when the 
columns are more or less “aligned,” as displayed in Fig. 6. 
This figure shows the construction of the left singular 
vectors of a matrix X = [q 221, whose columns 2 1  and 
2 2  are of equal length. The largest singular vector u1 is in 
the direction of the sum of 2 1  and 2 2 ,  i.e., the “common” 
direction of the two vectors, and the corresponding singular 
value 01 is equal to 01 = 1 1  21 + 2 2  II/&. On the other 
hand, the smallest singular vector uz is dependent on 

Fig. 6. Construction of the left singular vectors and values of the 
matrix S = [zl 221, where 11 and 2 2  have equal lengths. 

the difference 2 2  - 2 1 ,  as is its corresponding singular 
value: 02 = 1122 - 2 1  I//&. If 2 1  and 2 2  become more 
aligned, then a 2  will be smaller and X will be closer to a 
singular matrix. Clearly, u2 is the most sensitive direction 
for perturbations on 2 1  and 2 2 .  

The relevance of this observation is that the resolution 
of subspace-based parameter estimation algorithms depends 
on the smallest singular value of the matrix of observations, 
in relation to the noise level. For example, in the previous 
section, the observation matrix consisted of linear combina- 
tions of vectors of the form U(+) = [l I$ I$2 ... 4L-1]T. 
If two directions, or two poles, are close together, then 
$1 x 4 2  and ~ ( 4 1 )  points in about the same direction 
as u($2), which will be the direction of u1. The smallest 
singular value, 0 2 ,  is dependent on the difference of the 
directions of ~ ( 4 1 )  and ~ ( $ 2 ) .  

With a noise matrix V added, detecting the presence 
of two signals will in general become difficult if 02 is 
approximately the same or smaller than 1 1  V 11,  the noise 
level. This is because the structure of V determines how 
much a2 is increased: a; 5 (ai)2 5 0; + IIV112, and 
because the second direction is only visible if ai > 
1) V 1). Note that in the commonly assumed case where V 
is generated by independent identically distributed noise 
processes such that E(VV*/N)  = a21, then, for large 
enough N, all of the singular values squared increase 
by the same amount IIV1I2. In such cases, 0; > IIVII 
automatically, and detection of the second signal is always 
possible. It is also important to note that the smallest 
singular value is strongly dependent on the value of L, 
the length of the observation vectors. If L is increased, 
then the difference between ~ ( 4 1 )  and a(42) becomes 
more pronounced, so that 02 becomes larger and the 
resolution increases. This effect is stronger than the effect 
of increasing N ,  the number of observation vectors. In the 
latter case, the purpose is to average out the noise. 

For illustration, consider the following small numerical 
experiment. Let 41 = 1, $2 = exp (j. . O . l ) ,  and construct 
matrices X L , N  from unitary linear combinations of the 
columns of [u($l) a(+a)]. For L , N  2 2, these matrices 
have rank 2. The two nonzero singular values of X L , N  
for some values of L, N are given in Table 1. It is seen 
that doubling L almost triples the smallest singular value, 
whereas doubling N only increases the singular values by 
a factor a, which is because the matrices have larger size. 
In the latter case, the ratio between 02 and the noise level 
is not increased because the perturbation matrix would also 
have twice its original size, which leads to an increase in 
the noise level of the same factor a. 
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L = 3  U1 = 3.44 

N = 3  u p  = 0.44 

L = 6  U1 = 4.73 

N = 3  ~2 = 1.29 

L = 3 

N = 6 

‘TI = 4.86 

~2 = 0.63 

D. Pseudo-Inverse 
Consider a rank-d L x N matrix X .  In general, since 

X may be rank-deficient or nonsquare, the inverse of X 
does not exist; i.e., for a given vector b, we cannot always 
find a vector a such that b = X a .  A related notion is the 
(Moore-Penrose) pseudo-inverse of X ,  denoted by X + ,  
which can be defined in terms of the “economy size” SVD 
of X (see (22)) as 

x+ = pg-10 

This pseudo-inverse satisfies the properties 

1. x x + x = x  
2. X + X X +  = x+ 

3. xx+ = n, 
4 .  x+x = nr 

which constitute the Moore-Penrose inverse in the tradi- 
tional way. These equations show that, in order to make 
the problem b = X a  solvable, a solution can be forced to 
an approximate problem by projecting b onto the column 
space of X :  b’ = II&, after which b’ = X u  has solution 
a = X+b’. The projection can also be done implicitly by 
just taking a = X+b: from properties 1 and 3 of the list 
above, we have that a = X+b’ = X + X X + b  = X+b.  It 
can be shown that this solution a is the solution of the (least 
squares) minimization problem 

where a is chosen to have minimal norm if there is more 
than one solution (the latter requirement translates to a = 
&a). 

E. LS and TLS Approximations 

are nonzero, and the SVD of X can be written as 
Suppose that X has full rank L. In this case, od+l, . . . , UL 

x = ucv* = U5i.* + U l g l p l  

where U contains the first d left singular vectors of X, 
corresponding to, the d largest singular values which are 
collected in E. CL contains the LA- d remaining singular 
values, which are now nonzero. U contains the d “most 
important” vectors (directions) in the column space of X .  
Hence, a rank-d approximation X of X is obtained by 
putting 

(23) 

where II, = UU* and II” = VV* are the projectors 
onto the approximated column space and row space of 
X ,  respectively. If X’ is any rank-d L x N matrix, then 

^ A n  x = ucv* = n - x n ”  u v  
A ^  

it can be shown that X is the rank-d approximation of 
X that minimizes ( 1  X - X’ (IF, the Frobenius norm of 
the difference E = X - X’. The Frobenius norm of a 
matrix is the sum of the squares of its entries, and can be 
shown to be equal to the sum of the squares of its singular 
values (because this norm is “rotationally invariant”). X is 
called the rank-d Least Squares (LS) approximation to X :  
it retains the d most important singular values and vectors 
of X ,  and sets the remaining L - d singular values to zero. 
Hence 11 E (1; = oi+l + ... + U:. 

A typical LS application is the following. Suppose that 
a vector b is given, and we want to find a vector a such 
that b = X a .  We saw above that a (least squares min- 
norm) solution is obtained by setting a = X+b.  However, 
since X +  = VC+U*, small singular values of X play an 
important role in X + :  the pseudo-inverse of the full-rank 
matrix can lead to numerical instabilities. A more reliable 
solution is obtained by setting the small singular values o,f 
X equal to zero, thus obtaining an LS approximation X 
of X .  The vector a is then obtained by computing a as 
the least squares min-norm solution of b = X a  (that is, 
a = X + b ) .  

Now, suppose that instead of a single vector b we are 
given an(L x N)-dimensional matrix Y, the columns of 
which are not all in the column space of the matrix X .  We 
want to force solution: to X A  = Y. Clearly, we can use 
a LS approximation Y = IIgY to force the columns of 
Y to be in the d-dimensional column space of X .  This is 
reminiscent to the, LS application above, but just one way to 
arrive at X and Y having a common column space. There 
is an other way, called Total Least Squares (TLS) which 
is effectively described as projecting both X and Y onto 
some d-dimensional subspace that lies between them, and 
that is “closest” to the column spaces of the two matrices. 
To implement this method, we compute the SVD 

[X Y ]  = [U oqc (v*)* [ v* 1 
= fi2 [q V;] + U 9 1 ( V 1 ) *  

F d  take the TGS, !column :pace) approximati9ns to be 
X = n,X = UCV; and Y = II,Y = UCV,*, where 
VI and fi are the-partitions of V corresponding to X and 
Y, respectively. X and Y are in fact solutions to 

and A satisfying X A  = Y is obtained as A = X+Y.  This 
A is the TLS solution of X A  x Y. 

F.  The Matrix Pencil Problem 
To close this section we consider the following eigen- 

value problem. Let X and Y be two (full-rank) matrices 
of dimension L x N (L 5 N), and let X be a complex 
scalar. The matrix pencil problem is to determine values 
of X for which the rank of the matrix Y - AX is L - 1 
instead of L. Y - AX is called a matrix pencil, and those 
special values of X are called the rank-reducing numbers of 
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the pencil. When X and Y are not of full rank, the matrix 
pencil problem is to find the values of X for which the rank 
of the pencil drops one in comparison to the usual rank of 
the pencil. 

In cases where X and Y are full-rank square L x L 
matrices, the matrix pencil problem reduces to an ordinary 
eigenvalue problem. There are L rank-reducing numbers 
XI,. . . , XL, and they are known as the generalized eigen- 
values (GE's) of the matrix pair (Y, X ) .  The GE's of (Y, X )  
are those values of X for which there exists a nontrivial 
vector z such that Y z  = X X z .  Since, under the present 
assumptions, X is invertible, these are just the solutions to 
the ordinary eigenvalue problem ( X - ' Y ) z  = Xz. 

We now turn to the more general problem that will be 
encountered in the next section, where X and Y are rank-d 
L x N matrices. For convenience, we require X and Y to 
have the same column space and row space. These amount 
to conditions for the existence of nontrivial A. If X and 
Y were to have disjoint column spaces, then the rank of 
Y - AX can only decrease if the rank of AX decreases, 
i.e., if X = 0. A similar result holds for the row spaces. We 
will show that the solution of the matrix pencil problem 
can be given in terms of the pseudo-inverse! of X and 
Y as introduced before. Call UxCxV: and UyCyV,* the 
"economy-size'' SVD's of X and Y, respectively. Since 
by assumption X and Y span the same column y d  row 
spaces, we ,can express Y-in terms of U, and V,: say 
Y = U,E,V;, with Ey = U,*YV, a d x d matrix. Hence 

Y - AX = ~ , ( E Y  - Xk,)V, 

and thus the problem is reduced to the square pencil 
problem: the rank-reducing numbefls of the pencil X - AY 
are given by the d eigenvalues of C;'E,. It can be shown 
that these solutions are precisely the nonzero entries in 
eig ( X + Y )  or eig ( Y X + ) .  Indeed 

X'Y = Vxgglc:.  UxEyV: 
, . A  

= V, . C i ' E ,  . V, . 

From the property that the nonzero eigenvalues of the 
product ( A B )  of two matrices A and B are equal to the 
nonzero eigenvalues of (BA) ,  the result follows. 

v. OVERVIEW OF IDENTIFICATION SCHEMES 

A. The Model 
In the realization theory of Sections I1 and 111, we have 

seen that there are two Hankel matrix decompositions that 
are in fact equivalent if the system poles are distinct: 

( l ) H  = oc, 
( 2 ) H  = A(@)S 

in which A has a Vandermonde structure parametrized 
by the diagonal matrix @ with entries di, and in which 
0, C, A, S are shift-invariant. In fact, the second description 
is a special case of the first. The purpose of identification 

is 1) to find the pole locations (or equivalently a), and 
2) to determine a matching state-space model (i.e., to find 
the corresponding zeros of the system). In the input-output 
identification application, H is not a Hankel matrix but its 
column space is still shift-invariant. In the DOA application, 
the second description given above is more natural since 
A corresponds to the array response matrix and S to 
the incoming signals. S has a shift-invariant structure 
only if the sampling period is constant. The purpose in 
DOA estimation is 1) to find the directions of arrival (or 
equivalently a), and 2) to reconstruct the signal matrix S 
(signal copy). For the sake of discussing these applications 
within a unified framework, and to present algorithms 
that are valid for both system identification and DOA 
estimation, we will use the description [H = A(@)S] in 
most of the remainder of the paper, and focus on finding a. 
Once a, and hence A(@), is known, it is a straightforward 
matter to determine a corresponding S from H, e.g., by 
setting S = A+H. 

The algorithms in Section I1 were based on noise-free 
conditions. In general, however, H is corrupted by noise, 
which is assumed to be additive: 

H = A(@)S + V .  

The noise incorporates all undesired components of the 
data. Depending on the problem at hand and on the chosen 
solution strategy, the noise is assumed to be either station- 
ary zero-mean white (as in the system identification and 
DOA problem), or to encompass unwanted higher order 
components of an actual system response (modes to be 
neglected in model reduction problems). 

The problem we will consider in the remaining part 
of this paper thus reads as follows: Given a matrix H 
which contains noise-corrupted observations of a system, 
determine a d x d diagonal matrix using the model 

H = A ( @ ) S  + V ,  
A(@) = [a(4i) . . . 4 4 4  I 
a($) = [I 4 d2 . . .  $"I' (24) 

i n w h i c h H i s o f s i z e ( L + l ) x N w i t h N >  L > d , A a n d  
S are of full rank d, and the matrix V represents additive 
noise. In this problem statement, H need not be Hankel, 
and hence no shift-invariant structure in S is presumed. The 
column space of AS is referred to as the signal subspace 
(which is the output state space in system theory), and its 
orthogonal complement is referred to as the noise subspace. 
The presence of the noise term means that H will actually 
be of full rank. 

An important issue that we have not dealt with thus far is 
that of model order determination. With white noise present 
and N approaching infinity, the extra singular values due 
to the noise are all the same and presumably small, and 
d can be found by simply counting the multiplicity of the 
smallest singular value of H and subtracting from L + 1. 
However, with probability one, for finite N none of the 
singular values of H will be repeated, and hence some 
other method is required to estimate d. Put simply, the 
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strategy is to look for a break in the pattern of singular 
values of H ,  attributing the larger ones to the signal and the 
small ones to the noise. The detection of such a break has 
been well studied and a number of techniques have been 
developed, most of them being based on the asymptotic 
distribution of the covariance matrix related to H under 
the assumption of white Gaussian noise. These include 
the classical sequential hypothesis test [U]-[46], Akaike’s 
Information Criterion (AIC) [47], Rissanen’s Minimum 
Description Length (MDL) principle [48], [49], and the 
refinements of Zhao et al. [50]. Specific applications to 
DOA estimation have been studied in [51]-[55]. It is 
beyond the scope of this paper to study the model order 
determination problem in any detail, so we will just assume 
in what follows that d has been correctly determined by 
some method. 

B.  Solution Outline 
A number of strategies for solving the identification 

problem in (24) have been proposed. They differ primarily 
in the degree of structure that is imposed on the solution. 

1)  Subspace Fitting: These methods seek to match the 
data with the “true” model; i.e., they minimize 11 H - 
A(@)S11; in the Frobenius norm over all possi- 
ble S and Vandermonde matrices d(@)  of rank d. 
Equivalently, they may be thought of as finding a 
model (with shift-invariance properties) whose col- 
umn vectors are most orthogonal to the estimated 
noise subspace of the data. Weighted versions of this 
minimization have recently been proposed (Weighted 
Subspace Fitting, MODE) which provide minimum 
variance parameter estimates. 

2) Single Shift-Invariant Methods: In contrast to the 
Subspace Fitting techniques, these methods impose 
only a single shift-invariance property on the data, in 
the sense that the observation matrix H is partitioned 
into two matrices X = H ( l )  and Y = H ( 2 ) ,  with X 
containing the first L rows of H, and Y the last L 
rows. The problem is then recast as one of finding 
@ from 

X = d L S N  + Vi 
Y = d L @ S N  + V 2 .  (25) 

We will describe a number of methods (e.g., TAM, 
ESPRIT) that determine @ from ( X , Y )  using only 
the above decomposition (25), hence ignoring any 
further (shift-invariant) structure that A or S might 
possess. These methods are thus valid for any ap- 
plication in which an X and Y which obey (25)  
are somehow obtained, but for which no further 
information on the underlying structure is known. 
In particular, in the ESPRIT algorithm for DOA 
estimation, X and Y typically contain data from two 
identical sensor subarrays. H is then obtained by 
stacking X and Y ,  thus having size 2L x N .  

3 )  Orthogonal Vector Methods: This class of techniques 
is related to the above two strategies, and can be 

thought of as intermediary between them. These 
methods are also based on the shift-invariant structure 
of (25), but they can equivalently be described as 
methods that find vectors orthogonal to a particular 
vector selected from the noise subspace (see the 
discussion below). 

Subspace fitting techniques are described insection VIII. 
In these techniques, the problem is to determine a d- 
dimensional column space (range) of d that has the re- 
quired Vandermonde-like structure and is closest to the 
column space of H. By ignoring any (shift-invariant) 
structure that S might possess, the minimization is linear 
in the parameters of S.  Consequently, the problem can 
be made more compact by deriving from H a rank- 
d signal subspace, and then finding a rank-d matrix A 
with Vandermonde structure whose column space is as 
close as possible to the signal subspace (or equivalently, 
which is as orthogonal as possible to the noise subspace). 
Though Subspace Fitting techniques can provide estimates 
of minimum variance, such techniques are more difficult to 
implement since in general they require a multidimensional 
(gradient) search over the parameter space. This drawback 
is mitigated by the fact that the computationally efficient 
Single Shift-Invariant methods can be used to obtain an 
accurate starting point for the search. 

Approaches to the Single Shift-Invariance problem (25) 
are motivated by the exact relationships present in the noise- 
free case. They give rise to the matrix pencil techniques that 
we already have encountered in Section IV, in which the 
pencil Y - AX is studied for varying values of A. Without 
noise, it readily follows from the structure of (25) that the 
diagonal entries of @ are the rank-reducing numbers of the 
pencil Y - AX, i.e., those values of A for which the pencil 
drops rank. This is because Y - AX = d(@ - AI)S. A 
slightly more general way to describe these methods is by 
defining an L x L matrix F that satisfies F X  = Y. Since 
in the noise-free case X and Y are of rank d, F is not 
unique; it can have rank anywhere from d to L. For any 
of the possible choices of F ,  it can be shown that d of the 
eigenvalues of F are equal to the entries of the diagonal 
matrix @. Indeed, since A and S are rectangular mamces 
of full rank d, they have pseudo-inverses d+,  S+ such 
that 

(dropping subscripts for ease of notation) and hence the 
equation F X  = Y results in 

F d S = d @ S  + @ = d + F d .  

It readily follows that a subset of the eigenvalues of F form 
the entries of @. If F is taken to be rank d (e.g., the LS 
solution F = Y X + ) ,  then F has L - d zero eigenvalues 
and @ is equal to the d nonzero eigenvalues of F .  

If there is noise, X and Y will have full rank L. We will 
consider two classes of solutions to solve the problem in this 
case. In Section IV, the algebraic structure present in (25) is 
exploited; i.e., these methods rely on the fact that X and Y 
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should ideally have the same (d-dimensional) column space 
and row space. By SVD *analysis on X and Y ,  rank-d LS 
or TLS approximations X and Y are obtained that satisfy 
this property, without retaining any (Hankel) ,structure that 
might be present in X and Y .  Setting F X  = Y ,  and 
solving for F in a Least Squares sense, the entries of iP 
are obtained as the d nonzero eigenvalues of F .  These 
methods are also known as Principal Component methods 
because the column/row spaces of X , Y  contain the d 
strongest components in the column/row spaces of X , Y ,  
and are obtained by projecting X ,  Y onto these “principal” 
subspaces. In many identification contexts (except DOA 
estimation with sensor doublets), the fact that Y has many 
entries in common with X is in principle not used in finding 
or projecting onto these subspaces. However, this fact can 
be exploited in the derivation of algorithms that are more 
computationally efficient. 

Section VI1 describes the Orthogonal Vector methods 
as an intermediary between Single Shift-Invariance and 
Subspace Fitting techniques. They can be written in the 
same style as the Single Shift-Invariance methods, oper- 
ating on X and Y in (25) above, and using the single 
shift-invariance between them to obtain a different F, now 
having full rank L and a special structure. @ is obtained 
by selecting an appropriate set of d eigenvalues from the 
L eigenvalues of F .  On the other hand, it can be shown 
that these methods compute a rank-L Vandermonde matrix 
A that is precisely orthogonal to one selected vector U in 
the noise subspace of H. Due to the structure of A, this 
reduces the problem to finding the roots of the polynomial 
U(.) associated with this vector. Taking A of rank d and 
maximally orthogonal (in some Least Squares sense) to 
all vectors in the noise subspace instead of just one, a 
connection with the Subspace Fitting class of techniques 
is obtained. 

VI. LEAST SQUARES SINGLE SHIFT-INVARIANT METHODS 
In the Single Shift-Invariant (or Principal Component) 

methods described in this section, the (L + 1) rows of the 
data matrix H are arranged into two matrices X and Y ,  
with X = H ( l )  consisting of the first L rows of H ,  and 
Y = H ( 2 )  consisting of its last L rows. As was already 
stated in the previous section, the first step in this class 
of solutions is to find rank d approximants X and Y to 
X and Y ,  and then invoke the (dS,A@S) structure of 
(25) to estimate iP. Any additional shift-invariance structure 
that might be present in X and Y is not used, and also 
not retained by this rank reduction. The approximation 
is performed by projections onto subspaces spanned by 
the d most important singular vectors derived from SVD 
analysis of X and/or Y ,  and the approximation norm is the 
Frobenius norm. In LS solutions, the projection operators 
are constructed from either the X data or the Y data, in 
a way that closely follows the definitions of II, and II, 
in Section IV. In Total Least Squares (TLS) solutions, the 
subspaces, and hence the projection operators, are obtained 
from both the X and Y data [56], [15]. An outline of the 

procedure described in the previous section which covers 
almost all algorithms in this and the next section is given 
in the following list. 

1) Using the LS or TLS approximation algorithms of 
Section IV, estimate from the row space of X and/or 
Y a “common” d-dimensional row space, i.e., the row 
space of S. Let II, represent the orthogonal projector 
onto this space. 

2) Estimate from the column (range) space of X and/or 
Y a d-dimensional “common” column space, i.e., the 
column space of A. Let IIc represent the orthogonal 
projector onto this space. 

3) Apply these projectors to X and Y to obtain the 
rank-d approximants 

x = IIc x n, 
Y =ITc Y n,. 

Next, find any matrix F such that F X  = Y ,  and 
set the entries of the diagonal matrix @ equal to the 
nonzero eigenvalues of F. These eigenyalues ‘e the 
rank-reducing numbers of the pencil (Y - AX) .  

The solution is by no, mean: unique. Each of the pro- 
jections used to obtain X and Y can be done in either LS 
or TLS sense, giving rise to at least four different, though 
clo2ely rejated solutions. In addition, a matrix F such that 
F X  = Y cannot only be found in LS sense, in which 
case it will have rank d, but also in a “predictor:’ form of 
full rank L, in which the first L - 1 rpws of X are just 
copied by F to Y ,  and the last row of Y is constructed by 
F as a linear combination of the rows of X .  Although in 
the latter case F is of full rank L, only d eigenvalues are 
relevant to the solution and somehow these d eigenvalues 
must be separated from the rest. This fact can give rise to 
problems. Three of the four LS/TLS methods which lead 
to rank-d estimates of F have appeared in the literature, 
and are discussed below. Predictor methods are discussed 
in Section VII. 

Principal Component methods were introduced by Moore 
in 1978 (see [lo], [57]), who analyzed such methods on 
the Grammians of intemally balanced systems. This work 
is related to the Principal Hankel Component analysis 
discussed here. Related papers are by Zeiger and McEwen 
[9] and by Pemebo and Silverman [58]. In the past decade, 
several major contributions in this field have appeared in 
the publications of Kung er al. [ll],  [59]-[61], in which 
infinite-data Principal Component algorithms and related 
covariance methods are discussed, with applications to 
state-space and harmonic retrieval problems. This research 
has led to a covariance-based method referred to as TAM, 
the direct-data variant of which is related to the LS-LS and 
TLS-LS cases discussed below. In another series of publi- 
cations, Roy, Paulraj, and Kailath [34]-[36] have devised 
a comparable harmonic retrieval algorithm called ESPRIT, 
corresponding to the TLS-TLS case discussed below. Since 
then, a number of authors [62]-[65] have investigated the 
relationship between TAM and ESPRIT, and concluded 
that their statistical performance is asymptotically (i.e., for 
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N -+ 00) equivalent. Other authors have popularized the 
use of a pencil description for the same type of problem 
[66]-[68]. The classification below is both a summary 
and unification of the underlying concepts in the above 
publications, and does not precisely follow any of them 
in particular. 

A.  LS-LS Algorithm 
In the LS-LS type algorithms, both II,, the projector 

onto the common row space, and II,, the projector onto the 
common column space, are determined from an SVD of X 
only (hence Least Squares). Following the outline above, 
the algorithm is in principle as follows: 

Determine the SVD of X: 

X = ucv* . 
The rank-d LS approximant X of x is X = UW*, 
where U and V contain the d singular veFtors corre- 
sponding to the d largest singular values C in E. The 
LS projectors onto these subspaces are 

n, = UU* 
rI, = VV* 

and the LS-LS approximations of X and Y are 

X = (qU* X pp*  = UkQ* 
y = uu* y Q Q * .  

Put FX = Y ,  and solve for F in the LS sense: 

F = = uU* y V 9 - 1 0 * .  

Compute @ = eig(F), discarding zero eigenval- 
ues. Using the fact that the nonzero eigenvalues of 
a matrix product (AB) are equal to the nonzero 
eigenvalues of the product (BA), we can obtain @ 
as 

It is thus seen that the actual computations needed in the 
LS-LS case amount to 1) computing the SVD of X, and 
2) computing @ = eig (U*YVC-’). This shows that the 
projection of ,Y onto the column space of 2 is in fact 
not needed (Y need not be computed) because this is a 
side effect of computing ( Y X + ) .  The projection of Y 
onto the row space of X can also be omitted because the 
computation of eig(YX+) will impljcitly project Y onto 
the row space and column space of X (see Section IV). 

The LS-LS algorithm is akin to the “direct matrix pencil 
algorithm” described by Hua and Sarkar [67], [68], although 
in their approach Y is constructed from an SVD on Y, 
rather than by projections based on X. This has the con- 
ceptual advantage that X and, Y are treated equally. @ is 
then determined as @ = eig(YX+) as before. 

B.  TLS-LS Algorithm 
In the TLS-LS ^algorithm, a d-dimensional common row 

space for X and Y is obtained by SVD analysis of the full 
data matrix H of which X = H ( l )  and Y = H(2)  are 
submatrices. This determines the projector IT, onto the row 
space. The projector TI, is the projector onto the column 
space of Xn, ,  but is never explicitly formed because the 
projection is done implicitly in the computation of eig (F), 
as in the LS-LS case. The outline of the algorithm is as 
follows: 

1) With X = H ( l )  and Y = H ( 2 ) ,  compute the SVD of 
the full data matrix H: 

H=UCV* 4 f i = U g V *  
where V* represents the common d-dimensiona! rpw 
space of X and Y in the TLS sense, i.e., II, = VV*. 
Project X and Y onto this row space (hence TLS): 

r;r = X VV* = U’gQ* 
Y = y p v *  = u2w*, 

where U 1  consists of the first L rows of U ,  
and U2*= U ( 2 )  consists of the last L rows of U .  
Hence U1 and U 2  are matrices of size L x d, and in 
fact X and Y are just subm$riFes of H .  

2) Set F = Y X + .  Then F = U2UT, and 

= eig(F) = eig( UT02) 

(discarding zero eigenvalues). 
By construction, X and Y share the same row space. Again, 
the computation of eig (F) implicitly projects the columns 
of Y onto the column space of X in the LS sense. 

The above method is known in the DOA context as the 
LS-ESPRIT algorithm. As before, X and Y typically con- 
tain data from two identical sensor subarrays, H is obtained 
by stacking X and Y ,  thus having size 2L x N .  The 
method also encompasses the “diret-data” TAM method 
for harmonic retrieval in [59], although the description of 
the compu!ation is slightly different here. It is observed in 
[59] that U;’ can be computed without inverting matrices 
because U 1  is almos: an isometry. To, se: this, denote by 
U L  the last row of U, and note that U;U1 + u i u ~  = Id. 
Elaborating on this formula, it follows from UTU1 = I d  
that 

U;’ = ( I d  - U;uL)-lu; 

The TLS-LS algorithm (as well as the LS-LS algorithm) 
is suitable for efficient SVD updating techniques [69], [70], 
which can be adapted to yield on-line estimates of @ for 
an increasing number of samples N .  

C .  TLS-TLS Algorithm 
In the above two algorithms, the actual choiceAof F 

results in an implicit L S  projection of the columns of Y onto 
the column space of X when the eigenvalues are computed. 
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In the TLS-TLS method, an explicit projection isdone in 
the TLS sense by projecting the columns of X and Y onto a 
subspace that lies “between” the column space of X and the 
column space of Y. This subspace is obtained by computing 
the SVD of a matrix H1 = [X Y ]  and retaining the d left 
singular vectors that correspond to the d largest singular 
values. Although this extra projection gives rise to results 
which are slightly different from TLS-LS, and presumably 
more accurate, the difference with the TLS-LS case for 
system identification is only marginal if N is large. The 
algorithm is given below. 

1) With X = H(l) and Y = H(’), denote H1 = [X Y ] ,  
H2 = H .  Compute the SVD’s of H; and H2, and 
denote their rank-d approximants by HI and H2: 

H1 = UlClV;” -+ H1 = U1k1V; 

H2 = UzCzV,* + H 2  = U2k2V; . 
In this step, the common column and r!w spaces of X 
and Y are determined explicitly to be U1 and V;: v d  
the projectors onto these subspaces are IIc = U1U; 
and II, = V2V;. 

2)  Define 

X = U1U: .X.V2V; =: UlE,V; 

Y = U1U: . Y . V2V; =: UIEyP; 

where E, and E, are d x d the following full rank 
matrices: 

E, = U: X V 2  

E, = U: Y V 2 .  (26) 

With these definitions, X and Y are rank d and share 
common column and row spaces obtained by (TLS) 
projections onto both the column space spanned by 
U1 and the row space spanned by V,*. They reflect 
the structure of the assumed model (25) in the sense 
that they are weighted “outer products” of rank-d 
rectangular matrices, the weights being the d x d 
matrices E, and E,. 

3) Set F = Y X + ,  then 
rr;. r;.-i i 

and 

@ = eig(E,E;l) . 

The computation of E, and E, in (26) can be done 
efficiently by defining the matrices U11 and U21 to be the 
first and last L rows of U2, respectively, so that 

x = u11c2v; 
Y = u21c2v; . 

Substituting this in the definitions of E, and E, in (26) 
and using the fact that C2 V;V2= [& OIT, we obtain 

E, = U:U1122 

E, = UTU2122. 

Multiplication by 2 2  can even be omitted, since this will 
not affect a. 

The above algorithm only requires computation of the 
SVD’s of Hland H2, follFwed by the computation of the 
eigenvalues of the pair (UTU11, U,*U21). If X and Y are 
Hunkel matrices (as in system identification), then X and Y 
have all but two columns in common. It seems in this case 
better to omit the duplicate columns in HI,  but in doing 
so HI and H2 differ in only one row and one column, 
and for large N the difference between the TLS-TLS and 
TLS-LS algorithms is negligible. If the Hankel assumption 
is not used, then the above algorithm is a modification of 
the more sequential TLS-ESPRIT algorithm of [35],  [36] 
in which the projection onto the common column space is 
done first, and the common row space is then determined 
from the resulting smaller matrices. In the ESPRIT context, 
H is obtained by stacking X and Y .  Because the noise on X 
is now unrelated to the noise on Y ,  the difference between 
the LS and the TLS variant can be significant. 

D. Pro-ESPRIT 
For completeness, and to indicate that there exists a 

litany of algorithms that are all based on (repeated) rank- 
d truncations of matrices constructed from X and Y ,  we 
mention an algorithm based on Procrustes rotations [71], 
called Pro-ESPRIT. The algorithm can basically be formu- 
lated as follows [72].  Starting from data matrices X and 
Y as- before, compute (independent) rank-d approximations 
X, Y using SVD’s: 

Then the rank reducing numbers of Y - X X  are equal to 
those of the rank-d pencil 

QUgzQ: - , 

with Qu = U T U 2  and Qw = V ; V 2 .  Under noise-free 
conditions, Qu and Qv are unitary matrices. With noise they 
are not, but can beAreplacedA(approximated) by their closest 
unitary matrices Q, and Q.. This is called a Procrustes 
approximation, and Qu and Qv can be computed via SVD’s 
of Qu and Qw by setting all singular values equal to 
one. Hence @ is determined from th,e $ r,ank reducing 
numbers of the approximated pencil QuC2Q: - XC1. In 
[72] it is shown that, under certain conditions, this algorithm 
yields resu!ts identiFa1 to those that would be obtained by 
replacing U1 and U2 in (27) with approximating unitary 
matrices sharing a common d-dimensional space. Thjs 
apprqximation is obtained via an SVD of [U1 U Z ] ,  and VI 
and V2 are approximated in the same fashion. The resulting 
algorithm can be viewed as yet another (two-step) variant 
of the algorithms mentioned above, where a common d- 
dimensional subspace of the column spaces of X and Y is 
determined in two successive steps. 
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E. Discussion 
It is a difficult matter to decide which of the above 

algorithms is to be preferred. They are all closely related, 
and their differences tend to disappear when N is large 
since they are all asymptotically (for large N) equivalent 
to a first-order approximation [72]. The variance of the 
estimated parameters is, however, smaller for the various 
TLS implementations. If a parallel array of processors 
is used, then there is not a dramatic difference in the 
number of operations between the LS-LS and TLS-TLS 
algorithm (less than a factor 2), because on a parallel 
array it takes about the same number of operations to 
compute the SVD of a matrix as it takes to apply the 
resulting U and V matrices to a second matrix. Pro-ESPRIT 
requires roughly twice the amount of computation, and is 
not necessarily more accurate. SVD updating techniques are 
very promising for an on-line (or real-time) implementation 
of the TLS-LS algorithm. In these techniques, estimates of 
@ are calculated for increasing values of N by updating 
the SVD's of X and Y obtained from some previous value 
of N [70]. 

F =  

VII. ORTHOGONAL VECTOR METHODS 

-0 1 
0 1  

. .  . .  . .  
0 1  

9 

A. Introduction 
As before, we assume that an (L + 1) x N data matrix H 

is given, and let X = H ( ' )  represent the matrix constructed 
from the first L rows of H ,  and Y = represent the 
matrix containing the last L rows. The last (unique) row of 
Y is denoted yL. In contrast to the Least Squares Single 
Shift-Invariant methods of the previous section, Orthogonal 
Vector methods exploit the fact that Y is a shifted version 
of X, so that, in the relation F X  = Y, F can be chosen 
to be an L x L matrix with the following structure: 

This reflects the fact that all but the last rows of Y are just 
copies of rows of X .  The last row yL of Y is obtained as 
a linear combination of rows of X, gX = yL, and hence 
[g - 1]H = 0. Consequently, [9 - 1]* could be any vector 
in the left null space of H. As mentioned in the problem 
outline in Section V, @ = eig (F) has L eigenvalues, only 
d of which are relevant. In the noise-free case, the valid 
eigenvalues are independent of L. The remaining ( L  - d )  
eigenvalues depend on the particular choice of g. 

An alternative approach leading to the same result takes 
the analytic structure of H into account. With the definition 
a(.) = [l z z2 . . .IT, we can associate with the vector 
U = [u1 2 ~ 2  ...IT a polynomial u ( z )  = u*a(z) = 
'111 + U 2 z  + . . .. The basic property used by all Orthogonal 
Vector Methods is the trivial (noise-free) relationship that 
H = A(@)S satisfies when A(@) is a Vandennonde-type 

matrix (see (16)) 

u * H = O  ++ u*d(@) = 0  

w ~(4i) = 0 (i = l , . . . , d )  (29) 

which states that if U is in the left null space of H ,  then 
the d elements q5i on the diagonal of @ must be solutions 
of the equation u(z )  = 0. Hence, the polynomials U(.) 

derived from all possible vectors U in the left null space of 
H have d roots in common, and in the noise-free case the 
choice of U in this null space is of no particular importance. 
In comparison with the previous paragraph, we see that U 
must be proportional to [g - 1]*. The equality between 
the eigenvalues of a matrix in bottom companion form (F 
in (28)) and the roots of the polynomial constructed from 
the last row of this matrix is a well-known result in linear 
systems theory [12]. 

Orthogonal Vector methods are sometimes called predic- 
tion methods. This is because when H is a Hankel matrix 
built from a time series h k ,  the entries g; of g can be thought 
of as the coefficients of a linear prediction filter (moving 
average filter) 

that predicts a new data sample h k + l  from knowledge of 
the preceding L samples { h k , .  . . , h k - ~ + 1 } ,  for k = L to 
k = N + L - 1. In writing out the equations, it is seen that 
g predicts yL from a linear combination of the rows of X 
by minimizing the error (yL - gX). For such a matched 
filter, the zeros di of the prediction-error filter -1 + G(z )  
are the zeros of U(.) in (29), and hence equal to the poles 
of the system that generated the data because the inverse 
prediction-error filter will have the original data sequence as 
its impulse response. There are many variants of such linear 
prediction methods. For example, when the data are known 
to be sinusoidal, as in the harmonic retrieval problem, 
then doing both a forward (as above) and a backward 
prediction (predicting h k  from { h k + l ,  . . . , h k + ~ } )  yields 
improved accuracy. When covariance data are used instead 
of direct data, then the resulting relationships are known as 
the Yule-Walker equations; they are solved in precisely the 
same way as in the sequel to this section [73], [741. 

a noisy data matrix, then an approximation 
fi = UCV* may be formed from the SVD representation 
H = U W * .  In this way, !he column space of H- is  
split into a signal subspace U a?d a noise subspace U' 
which is the left null space of H. There exist a number 
of Orthogonal Vector methods, each of which differs from 
the others in the actual choice sf the vector U in the noise 
subspace. Because, with noise, H no longer has a left factor 
A with Vandermonde structure, property (29) above is no 
longer valid and different selections of vectors U in the 
noise subspace lead to different solutions. A few of the 
possibilities are discussed in the subsections which follow. 

One of the problems associated with these methods is 
that only d of the L roots of the polynomial U(.) are 
of interest; namely, those that correspond to the system 

If H 
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poles. Apart from the computational overhead incurred 
in obtaining L roots (in comparison with the order-d 
eigenvalue calculations of the previous section), one is also 
faced with the problem of how to select these d roots. 
Each of the methods below has its own rationale behind its 
selection criteria. A few observations are indicative in this 
respect. One is that if H were noise-free, then the residues 
ri of the underlying model h(z )  (in (3)) that correspond to 
the L - d extra roots would be zero, and hence these extra 
poles would be unobserved in the model. If H does contain 
noise, one might assume that these spurious residues are 
still small. Another observation is that for rank-d Hankel 
matrices H that are corrupted by additive white noise, the 
L - d + 1 smallest singular values of H would be equal. 
The theory of Adamjan, Arov, and Krein (AAK) in [75] 
states that if the (d + 1)st through (L + 1)st singular values 
of H are equal, then the polynomials constructed from 
any of the corresponding singular vectors have d roots in 
common. Hence, for both the white noise and noise-free 
cases, all polynomials constructed from vectors that are in 
the noise subspace of H have d roots in common, and 
the results of each of the methods discussed below should 
“asymptotically” be the same. 

Below, a brief overview is given of four Orthogonal 
Vector methods: Pad6 approximation (as in [59]), Kumare- 
San-Tufts (KT) Min-norm method with and without rank 
reduction, and AAK Hankel-norm model reduction. The 
first two methods are included for historical reasons. The 
different methods are characterized by the choice of the 
representative vector from the noise subspace (as in [76]) 
since the roots of the polynomial constructed from this 
vector are directly related to the poles of the approximating 
system. 

B .  Padk Approximation 
In this class of methods, the data matrix X is square and 

of full rank, so N = L and d = L. Hence the order of the 
system determines the size of the data matrices to be used, 
and vice versa. The vector g is defined by 

g x =  y L  =+ g = y p .  

With F constructed from g as before (see (28)), we have 
F X  = Y and @ = eig ( F ) .  The “approximating” system 
which results is of degree d = L. Since this method uses all 
data without rank reduction, it is very sensitive to perturba- 
tions in X and yL [59], and the number of measurements 
directly determines the degree of the approximating system. 
The noise subspace is defined in this case by the null space 
of H* = [ X *  YE], which has dimension one, and is 
spanned by the vector [g - 1]*. A related method is the 
classical method of Prony [39] for sinusoidal data. 

C .  Kumaresan-Tufts Method Without Rank Reduction 
In the Kumaresan-Tufts method without rank reduction, 

it is assumed that the L x N matrices X and Y satisfy 
N > L. Since no rank reduction is done, we still have 
d = L. In comparison with the Prony method, it is seen 

that the restriction N = L is removed. The vector g is 
computed by trying to solve the overdetermined system of 
equations gX = yL for 9. With noise present, the null 
space of H* = [ X *  YE] will contain no vectors at all; the 
row yL is not contained in the row space of X .  However, 
after projecting yL onto the row space of X ,  resulting in 
y L  = y L X f X ,  the null space of I?* = [X’ spans 
precisely one vector: [g - 1]*. This g is also the solution 
to the minimization problem 

and is determined explicitly as g = GLX+.  Note that the L s  
methods of Section VI with d = L yield precisely the same 
result since no actual rank reduction is done; i.e.,F = YX+ 
is the same as that obtained here. Pisarenko’s method [77] 
for harmonic retrieval operates on a covariance matrix 
constructed on the given data but is essentially the same 
method (see 1601). These methods are still very sensitive to 
perturbations in X due to noise. 

D. Kumaresan-Tufts Minimum-Norm Method 
The Min-norm method proposed by Kumaresan-Tufts 

[78]-[83] is a modification of the above method to make it 
more robust for the separation of closely spaced sinusoids 
in the presence of noise. It amounts to the following three 
steps: 

1) A solution to g X  = yL is forced by reducing 
H = [X’ YE]’ to rank d. This can be done in two 
ways. The classical LS way would compute a rank-d 
approximation X from a? SVD of X ,  and project yL 
onto the row space of X to obtain an yL such that 
g X  = yL has solutions 9: 

x = UCV’ +X = u g v *  
* a  

yL = yL v*v 
This is the counterpart of the LS-LS method of the 
previous section. A TLS method (cf. the TLS-LS 
method of Section VI), would compute the SVD of 
H and derive X ,  y L  from the rank-d approximation 
I? as follows: 

which yields 
2 = x v*v = olcl,cv* 
yL = y v*v = (U)LCV*  

L A  

where (0)~ is the last row of U. 
2) The system g X  = yL is now underdetermined, and 

the noise subspace of I? has dimension L - d + 1. 
Of the many possible vectors [9 - 1]* in this 
subspace, choose the one with minimum norm 1 1  g 112, 

i.e., choose g = yLX+ = y L X +  as in the previous 
case. If the TLS approach is used in the above step, 
then we can show that in fact 

[g - 11 - (UJI)@* 
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in whifh U L  spansnthe noise subspace defi?ed via 
U = [U U l l ,  and ( U L ) ~  is the last row of UL (see 
also [84]). This determines precisely which vector of 
the noise subspace is chosen. 

3) The estimated d poles are a subset of the eigenvalues 
of F, with F as in (28). We could also compute the 
roots of the polynomial associated with [9 - 1]*, 
leading to the same result. 

In comparison with the previous method, the rank reduction 
to order d in combination with a null space vector of 
dimension larger than d greatly improves the previous two 
methods [82]. The choice o,f g to have minimal norm among 
all vectors g that satisfy gX = GL forces the extra L - d+ 1 
eigenvalues of F to lie regularly spaced on a circle of 
minimal radius within the unit disc [78]-[80], [85] .  This 
property can be used to select the d desired eigenvalues. 

E,  AAK Hankel-Norm Approximations 
The ultimate goal of the methods considered in this paper 

is, given a (full-rank) matrix H, to-find a rank d approx- 
imating structured matrix fi = A(@)S that minimizes in 
an appropriate norm the difference H - fi. In Section VI, 
the minimizing norm was taken at first to be the Frobenius 
norm: 

min  fill$. (30) 
fi rank d 

However, the minimizing fi does not have the required 
shift-invariance structure. By ignoring this fact, and using 
properties that H would have in the noise-free case, we 
were able to derive a reduced-order model that does possess 
shift-invariance structure and is presumably not too far 
away from H .  Unfortunately, to date no bound has been 
found to quantify this error. In Section VIII, techniques 
will be discussed that do solve the above minimization 
problem in the Frobenius norm, taking the structure of 
the approximant into account. This is a highly nonlinear 
operation, leading to complicated search techniques. Un- 
der certain conditions, however, it can be shown that a 
structured solution can be found when a different norm is 
applied. Such a norm is the Hankel norm. 

In a celebrated paper, Adamjan, Arov, and Krein [75] 
have demonstrated that, when H is a Hankel matrix of 
infinite dimensions, but of finite rank and bounded Lz norm, 
there exists a unique Hankel matrix H that is the solution 
to a related minimization problem: 

min 1111 -fill (31) 
H rank d 

in which the matrix L2 (operator) norm is minimized 

I IH-HI(  = sup ( ( H z - i i z ( 1 2 .  
I1 2 112=1 

Recall that the LZ norm of a matrix is in fact equal to its 
largest singular value. The use of this norm leads to a so- 
called Hankel-norm approximation of the impulse response 
vector h on which H was built, or its polynomial h(z);  

i.e., it is the approximation in Lz norm of the Hankel 
matrix associated with h(z). Unlike the Frobenius norm, the 
Hankel-norm approximation allows the d vectors spanning 
the range of H to have components outside the range 
spanned by the first d singular vectors of H without penalty 
on the n o m  of the error, because the norm only measures 
the largest singular value. This enables H to take on 
a Hankel structure, something that the SVD methods of 
Sections VI and VI1 were not able to achieve. We can 
summarize the main results [59], [75], [86]-[91] as follows, 
favoring vector notations over polynomial descriptions, 
when possible, for better comparison with the previous 
methods. 

Given a matrix H of infinite size, representing a stable 
high-order system, let H = UCV* and denote the (d+ 1)st 
column of U by Ud+l. Wit: U = [U 611 as before, 
Ud+l is the first column of U’-, the noise subspace. The 
corresponding singular value and right singular vector of 

are denoted gd+l and ud+1. 
The polynomial ‘1ld+l(z) constructed from U d + l  has 
pretisely d “stable” roots & inside the unit circle. 
If H is a rank-d Hankel matrix approximating H 
according to (31), then the minimum error ( 1  H - 
1211 = s u p U l l u * ~  - U*HI I  equals Od+l and is 
attained by the corresponding left singular vector 
u d + l  Of H :  

U:+1(H - H )  = gd+lV:+] 

where ud+1 is the (d+l)st right singular vecto? Since 
u : + ~ H  = Cd+lU:+l, we must have U : + ~ H  = 0. 
Hence the columns of 12 are all orthogonal to ?&+I, 
or, in the context of the previous section, U d + l  is in 
the noise subspace associated with H .  
Combining the above two properties, it is concluded 
that the d stable roots of Ud+l(z) define the best 
rank-d Hankel approximant in the Lz norm. 
above properties are derived only for infinite- 

dimensional Hankel matrices. If a high-order (stable) model 
of h(z)  = b ( z ) / a ( z )  is known, for example in the form 
of a high-order state-space model, then the theory can be 
extended to operate on Hankel matrices of finite size that are 
larger than or equal to the model order, thereby obtaining 
the same results [591, [86], 1881, [89], [92]. The singular 
values and vectors of the infinite-dimensional Hankel 
matrix can then also be easily computed [93]. If operating 
on Hankel matrices that are windowed (finite) versions of 
infinite Hankel matrices (as is the case throughout this 
paper), then the above theory is no longer applicable, 
although the solution is continuous when the rank of the 
matrix is finite and the dimension is larger than the rank. 
However, in general it can easily happen that Ud+l(Z) has 
more or fewer roots than d in the open unit disc, especially 
if the data are corrupted by noise, and hence the rank of the 
underlying infinite matrix is not finite. One way to avoid 
these problems is first to derive a high-order stable model 
using other techniques, and then use an extension of the 
AAK theory that works on finite-size state-space models to 

VAN DER VEEN CI ol.: SUBSPACE-BASED SIGNAL ANALYSIS 1299 



obtain a rank-d reduced-order model fi. Fecise formulas 
appear in [94], [95, p. 4521. Since this H is obtained by 
a two-step process, it will be a suboptimal solution to 
(31). However, it will approach the optimal solution as 
N ,  L + 00. AAK Hankel-norm model reduction methods 
can also be extended to the time-varying context [96]. 

F.  Root MUSIC: A Link to Subspace Fitting Techniques 
To link the methods of this section with the Subspace 

Fitting techniques of the next section, we briefly discuss 
here a derivation of (root)-MUSIC. In the introduction 
to this section, we noticed that the basic form of the 
Orthogonal Vector methods is simply 

u * H = 0  w U ( & )  = 0  (32) 

which means that for a selected U in the left null space of 
fi, the roots of U(.) are viable estimates of di. However, 
as fi does not have the Vandermonde structure, different 
choices of U in this null space will lead to, different estimates 
{di}. Because the left null space of H is, by definition, 
spanned by f i l ,  we can write U* = wUl* for some row 
vector w of dimension L - d + 1. For example, in the AAK 
approach w = [l 0 .  . . 01 selects the first vector in the noise 
subspace, while for for the Kumaresan-Tufts TLS method, 
w = (U')L is the last row in UL. Now, using the notation 
a($) := [l 4 4' ... (32) is equivalent to the 
polynomial equation in q5 

w P * a ( 4 )  = 0 .  

Orthogonal Vector methods select one specific vector w, 
and search for the roots of the above expression. In this 
context, the idea behind the well-known DOA estimation 
algorithm MUSIC is not to select a single^w, but instead to 
work with the full polynomial null space UL*a. In particu- 
lar, root-MUSIC exploits the fact that in the noise-free case, 
as well as in the infinite-data white-noise case, all entries 
of the column vector of polynomials U l * a ( z )  UL(z) 
have d roots in common. The root-MUSIC algorithm, as 
a spectral estimation method, then makes the assumption 
that these roots lie on the unit circle, and e2timates them by 
rooting the sum of squared polynomials U'*(z-')U*(z), 
retaining only the d roots in the unit disc with modulus 
nearest unity (only roots inside the unit circle need be 
considered since the squaring operation forces conjugate 
reciprocal roots). 

To connect this Orthogonal Vector method with the 
Subspace Fitting methods of the next section, note that the 
root-MUSIC technique was derived from the MUSIC al- 
gorithm, which obtains parameter estimates by minimizing 
the so-called MUSIC null-spectrum: 

i =  1, ..., d (33) 

for q& on the unit disc. It can be seen that MUSIC attempts 
to find, one at a time, d vectors a(4i) from the array 
manifold which most closely fit the signal subspace, or 

which are most orthogonal to the noise subspace. Note that 
MUSIC cannot force the null spectrum to be zero since 
it only uses vectors o(4) from the array manifold in its 
search; i.e., instead of rooting a polynomial as above, it 
finds points on the unit circle where the sum of squared 
polynomials is minimized. On the other hand, root-MUSIC 
finds the exact roots of this polynomial, and then estimates 
4i, i = 1, . . . , d by projecting these roots onto the unit 
circle. 

VIII. SUBSPACE FI"G TECHNIQUES 
In this section, the class of Subspace Fitting techniques 

for solving the direction-of-arrival estimation problem is 
considered. The discussion follows the framework of Viberg 
and Ottersten [97] .and Stoica et al. [98], [99], whose 
recent work provides an enlightening overview of the DOA 
estimation problem and new results on the asymptotic 
behavior of the estimate errors. The generic subspace fitting 
problem considered in [97] is the ^followi?g: given some 
representation of the data M ,  find @ and T such that 

,... 
@,T = argminip,T 1 1  A4 - A(cP)T 11; (34) 

for T of suitable size, and with A(@) and T of rank d. In 
the sequel, we will often write just A instead of A(@). Due 
to the special structure of A, this is a nonlinear optimization 
problem, separable however into a linear part in T and a 
nonlinear part in A. Substituting the solution of the linear 
part, T = A+M,  back into (34) gives 

i = argminip 1 1  (I - n A ) M  11; 
= argmaxip Tr( II,((a) MM* ) (35) 

in which HA(@) = dd+ is the LS projector onto the 
column space of A(@), and Tr denotes the trace operator.2 

Several popular DOA estimation algorithms may be 
cast in the form of (35). These include the deterministic 
maximum-likelihood method [79], [98], [ 1001-[ 1041, mul- 
tidimensional MUSIC [35], [105], as well as Weighted 
Subspace Fitting (WSF) [97]. The MODE algorithm of 
Stoica et al. also has a related interpretation [98], [99]. 

In our discussion of identification methods so far, we 
have been able to avoid the notion of covariance matrices. 
However, the Subspace Fitting techniques have been intro- 
duced in the literature in a statistical framework, and hence 
the analysis is traditionally not done directly on the data, but 
rather on the covariance matrix of the data. There are Strong 
links between the two, and it is possible to avoid the notion 
of covariance altogether (as we have done in the preceding 
sections), but in the discussion of the present section the 
use of covariance matrices avoids certain complications. 
Denoting the (( L + 1) x N)-dimensional output data matrix 
H of (24) by H = H N  = A(@)SN + V N ,  the relevant 

2Recall that the trace of a matrix is defined as the sum of its diagonal 
entries. We will use some of its properties: 1) the trace of a projection 
operator is equal to the dimension of the subspace on which it projects, 
2) Tr(-4B) = Tr(B.4). for matrices -4 and D of compatible size, 3) 
(1  A 11; = Tr (..l*A). 
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covariance matrices are defined as 

1 
N-+w N Signal covariance: P = lim - SN Sg 

1 
N+w N Output covariance: R = lim - HN H; . (36) 

With the assumption that the additive noise matrix is 
a realization of a stationary, zero-mean white Gaussian 
process with spatial covariance a21, we have 

R = A(@) P A*(@) + a21 

if the noise and signals are uncorrelated. If A(@)P is 
full rank d, it is easily seen that the L + 1 - d smallest 
eigenvalues of R are all equal to a2. This fact is reflected 
in our notation for the eigenvalue decomposition of R 

R = E,A,E.: + E,A,E; = E J E Q  + a 2 ~  

where E = [E, E,,] is unitary 

AIL = a21 
A = A, - a21 

and E, and E,, are isometries of rank d and ( L  + 1 - d) ,  
respectively. Since the column space of E, is equal to that 
of d(@)P, it is referred to (as above) as the signal subspace. 
The column space of E,, is correspondingly referred to as 
the noise subspace. 

Since in practical applications we cannot allow N --f 00, 

the above quantities must be estimated using finite sample 
averages. Thus the sample covariance RN of the data 
is computed as in (36) by removing the limit statement. 
Estimates of the signal and noise subspaces are then simply 
obtained by performing an eigenvalue decomposition o n  
R N ,  and these estimates will be denoted as E, and E,. 
Comparing RN with H N  = U C V *  and its rank-d approx- 
imation H N  = U C V * ,  where U = [U UL] as usual, 
we can identify U = Es, U 1  = E,,, and g 2 / N  = Ag. 
This provides the link between the SVD of a data matrix 
and the eigenvalue decomposition of the estimate of its 
covariance matrix. An estimate of c2 can be obtained by 
simply averaging the L + 1 - d smallest eigenvalues OfRN. 

The remainder of this section is devoted to a brief 
overview of the various Subspace Fitting methods, based 
on specific choices of M in (34) and (35). 

A .  Deterministic Maximum Likelihood 

If we assume that the columns of V N  are stationary, in- 
dependent, zero-mean, circular, complex Gaussian random 
vectors, and that the signals corresponding to the matrix SN 
are deterministic (as in the pole estimation problem), then 
maximizing the log likelihood of the data H N  with respect 
to @ andSN can be shown [102], [lo31 to be equivalent to 
the following minimization problem: 

6, sk- = arg niin+,sN )I H N  - d(@)sN 11; . (37). 

The solution of the linear part gives SN = d+HN, and 

substitution into (37) reduces the minimization problem to 

6 = arg m a +  Tr ( nd(@) RN ) . (38) 

The algorithm resulting from implementation of either of 
the two above extremization problems is referred to as 
deterministic, or conditional, Maximum Likelihood (ML) 
[79], [98], [loo]-[104]. Since A(@) is nonlinear in the 
entries of @, its computation requires in general a com- 
plicated multidimensional search over the parameter space. 
Asymptotic properties of the deterministic ML method are 
given in [97]-[99]. 

Note that deterministic ML can be cast in the Subspace 
Fitting framework of (34) if the matrices M and T are 
chosen to be H N  and S N ,  respectively. Using asymptotic 
arguments, another connection with Subspace Fitting can 
be made .. [97]. - ^  For large N ,  we have A, -+ a21 and 
RN + E J E ,  + a21. As the trace of a2nd is a constant, 
it can be omitted from the optimization and, from (38), it 
then follows that the ML solution is asymptotically (for 
large N )  equivalent to the solution obtained from 

6 = arg min+,T 1 1  E,A1/2 - A(@)T 11; 
= arg maX+Tr(fld(@)k,Ak’,*) . (39) 

This is again an instance of the generic-S_ubspace Fitting 
problem in (34) and (35) for M = E,A1/2 and T of 
dimension d x d. Using the weighting A, (39) minimizes the 
distance of the d-dimensional shift-invariant subspace of A 
to the signal subspace E,. In going from the formulation 
of (37) to that of (39), we see that the minimization has 
been made more compact; i.e., it involves d columns of 
data instead of N .  

B .  ESPRIT and MI-ESPRIT 

In Section VI, it was mentioned that the (TLS) ESPRIT 
algorithm [35] was a special case of the TLS-TLS principal 
component approach. It has recently been noted [97], [ 1061 
that ESPRIT also has a Subspace Fitting interpretation. 
In particular, it can be shown that the ESPRIT algorithm 
is equivalent to the following least squares minimization 
problem: 

where E l  and E 2  contain the rows of Es corresponding to 
the two identical subarrays; e.g., for the uniform linear array 
described in (16), two maximally over lapped  subarrays will 
yield El = E ( 1 )  equal to the first L roAws of E ,  and 
E 2  = containing the last L rows of E. The obvious 
connection with (34) is made by describing A(@) as in 
(18) and letting 

M =  [$I. 
If instead of just two subarrays, the array is composed 

of multiple identical subarrays, a similar Subspace Fitting 
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approach may be formulated. Letting Ei represent the rows 
ofE, corresponding to the ith subarray, and @i the diagonal 
matrix of phase delay factors due to propagation of the 
(plane) wave from the reference to the ith subarray, the 
most natural extension of ESPRIT is given by the following 
minimization problem: 

@ = arg 
a1 1 

where we have assumed a total of p + 1 identical subarrays. 
Algorithms based on this approach have been developed in 
[107], [lo61 for the case where @i = ai, and in [lo81 for 
the two-dimensional (azimutWelevation) case. 

When = ai above, a generalized Vandermonde 
structure results as evidenced by the multiple-shift structure 
in the signal subspace. The algorithm for this case is 
referred to as Multiple Invariance (MI) ESPRIT. One 
drawback relative to (41) that should be mentioned is 
that the elegant "closed-form" SVD solution of ESPRIT 
is not applicable; minimizing (41) requires a nonlinear 
multidimensional search when p > 1. 

c. MUSIC 
Although the Subspace Fitting paradigms of (34) and (35) 

are inherently multidimensional, similar one-dimensional 
formulations are also possible. For example, if the MUSIC 
[51], [lo91 cost function introduced in (33) is normalized 
by dividing by a*($i)a($i), it may be re-written as 

$i = arg max+ Tr ( &($) E,E,* ) , (42) 

where IIa($) is the projection onto the vector a($). The 
only difference between (42) and (35) above with M = 
Es is that while (35) implements a search for all of 
the parameters simultaneously, MUSIC searches for them 
one at a time. Thus MUSIC can be classified as a one- 
dimensional Subspace Fitting technique. 

The asymptotic properties of MUSIC have been studied, 
a.o., in [98], [110]-1121. One of the interesting results 
of these studies is that deterministic ML and MUSIC 
have equivalent asymptotic performance if the sources are 
uncorrelated and of equal power. 

D. Multidimensional MUSIC 
Although relatively simple to compute, MUSIC does not 

give accurate results if the signals are highly correlated. 
This is primarily because the parameter search is done 
one dimension at a time. Schmidt [51] hinted at a multi- 
dimensional (MD) counterpart to MUSIC that would over- 
come this difficulty, and Cadzow independently developed 
such an algorithm [ 1051. The resulting algorithm, which has 
been referred to by several authors as MD-MUSIC, can be 

described by replacing M with E, in (34): 

6 = arg min, 1 1  E, - d(@)T 11; 
= arg max, Tr( HA(@) fisk: ) . (43) 

The motivation for the terminology "one-dimensional" and 
"multi-dimensional" MUSIC becomes clear when compar- 
ing (43) and (42). 

E.  Weighted Subspace Fitting (WSF) 
In the Weighted Subspace Fitting method of Viberg and 

Ottersten [97], the optimality criterion is defined as (cf. 

6 = arg mina 11 kSW1/' - d(@)T 11% 
= arg mma Tr ( U,(@) E,wE,* 1. (44) 

In this method, a positive definite weighting matrix W is 
introduced. We showed earlier that the deterministic ML 
method corresponds to the case where W = A1/'. Viberg 
and Ottersten have shown [97] that W can be chosen to 
asymptotically (for large N) minimize the estimation error 
variance of the parameters &, and that the optimal choice 
for W is WO,, = or a consistent estimate thereof. 
This choice for W has also been shown to make WSF 
statistically eficient; i.e., the WSF estimates asymptotically 
achieve the Cramtr-Rao lower bound on the variance of 
the estimation error under the assumption that the signal 
waveforms are Gaussian random processes [ 1131. 

(34) and (39)) 

F. Method of Direction of Arrival Estimation (MODE) 
Using the orthogonality of the, estimated signal and noise 

subspaces defined by E, and E,, an algorithm that is in 
some sense a dual of the Subspace Fitting approach in 
(43) can be developed. In this approach, one estimates the 
parameters @ as those for which d(@) provides the worst fit 
(i.e., most orthogonal) to the estimated noise subspace. Such 
an approach has been formulated in [99] by considering a 
criterion function of the form 

6 = arg min, 11 l?cd(@)W,"2 11% 
= arg min, Tr ( XE, Ecd W1 ) . (45) 

The estimation error covariance is shown in [99], [114] 
to be minimized by the weighting W1,opt = (A*Ud)-l, 
where U = E, A2AT1 E,*, and the resulting algorithm 
using this weighting is referred to as MODE. It can easily 
be shown that both WSF and MODE yield results with 
identical asymptotic second-order error statistics [ 1 151. 
Note also that the MUSIC algorithm is equivalent to (45) 
when W1 = I, and that deterministic ML is asymptotically 
equivalent to (45) when W:" = S or W1 = P [ 1141. 

G .  Identification via Subspace Fitting 
While the description of the above algorithms has been 

couched in the problem of DOA estimation, the subspace 
fitting concept may also be directly applied to the pole 
estimation (i.e., system identification) problem. To see this, 
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recall (12), where it is shown that the column space of 
the matrix R22QZ is equivalent to that of the observability 
matrix 0. Without measurement noise, there will exist a 
full rank d x d matrix T satisfying 

E = 0 T  

where E represents the d principal components of R22Qz .  

With noise, R22Q; is full-rank, and we are led by the 
subspace fitting results above to consider the minimization 
problem [ 1 161 

* . .  

A ,  c = arg minA,cll - OT 11; 
= arg maxA.C Tr &(A, C) kWk*) (46) 

where A and C are the matrices of the state-space model 
upon which 0 depends. Because of the special shift struc- 
ture inherent in 0, we see that the minimization problem 
of (46) is isomorphic to that of the MI-ESPRIT algorithm 
described by (41). 

As with MI-ESPRIT, implementation of (46) is some- 
what more difficult than for the single-shift invariance 
methods of Section VI. Whereas in the latter case the 
estimates are obtained directly via one or two SVD’s, solv- 
ing (46) requires some type of search technique. However, 
since single-shift methods can be used to efficiently obtain 
an accurate initial estimate, a Newton-like gradient search 
will rapidly converge to the desired solution. Details of a 
Gauss-Newton implementation can be found in [ 1061. 

One might immediately assume that the weighting matrix 
W could be chosen to minimize the variance of the parame- 
ter estimates, as does the WSF algorithm. Strictly speaking, 
however, the optimality of WO,, has only been derived 
for the case where the observations (columns) in H are 
independent (as is the case in the DOA estimation problem). 
In the pole estimation problem, the Hankel structure of H 
violates this assumption. However, simulations indicate that 
the weighting nonetheless has the desired effect of reducing 
the variance of the pole estimates. 

Ix. PROPERTIES OF THE IDENTIFICATION METHODS 
The previous three sections have introduced perhaps 

an overwhelming number of algorithms and methods, all 
computing approximately the same quantity. How does one 
go about selecting an appropriate algorithm for a given 
application? Usually, the tradeoff that must be addressed 
in answering this question comes down to estimation ac- 
curacy versus ease of implementation and computational 
complexity. As a general rule, recent literature conveys that 
among the identification methods mentioned in the previous 
sections the best estimation performance is obtained by 
the optimal Subspace Fitting methods (e.g., WSF, MODE), 
whereas the most computationally efficient solutions are ob- 
tained by the Single Shift-Invariant methods of Section VI. 

However, since there are often other variables and trade- 
offs to consider, the question above is often not so easily 
answered. For example, in the array processing context, 
if the source signals are highly correlated (e.g., due to 

specular multipath: the same source is observed directly as 
well as via reflections), then one of the multidimensional 
Subspace Fitting methods must be selected. On the other 
hand, these methods require full knowledge of the sensor 
array geometry and sensor properties (i.e., the array must 
be calibrated), while ESPRIT exploits the special doublet 
structure of the array and does not require precise locations 
and response properties of the sensors. 

To conclude the paper, we will briefly describe these 
tradeoffs in more detail. Our focus will be on the DOA 
estimation problem, since this is where most of the research 
in this area has been conducted. Because of the large 
number of techniques discussed, it is impractical to conduct 
and present the results of extensive simulation studies in 
this paper. Instead, we choose to qualitatively describe the 
results that others have obtained in various performance 
analyses. We refer the interested reader to the papers cited 
in this section for the actual numerical results of such 
simulation studies. 

A. Performance Analyses 
In the past several years, there has been considerable 

interest in investigating the statistical properties of the 
various methods mentioned in the previous three sections. 
In particular, the goal of this work has most often been to 
derive theoretical expressions for the variance of the pole 
or DOA estimates obtained by these algorithms. Since this 
is very difficult to do in general, the theoretical studies 
are usually limited to the large sample case (i.e., large N), 
and hence can be considered to hold only asymptotically. 
The picture can be completed by numerical examples 
for finite N .  It should be noted that since these studies 
have concentrated on the DOA estimation problem and 
its corresponding assumption of independent noise sam- 
ples, their results are not directly applicable to the system 
identification problem since the additive noise has (by 
construction) a Hankel structure that cannot be regarded 
as a set of L x N truly independent random variables. 

For the DOA application, most of the algorithms men- 
tioned in this paper have been investigated, and more or less 
final results have been published [97], [98], [117], [118], 
which we summarize below. The results have been obtained 
for signals modeled as stationary stochastic processes, 
with temporally uncorrelated zero-mean jointly Gaussian 
distributions. The noise is assumed to be a zero-mean 
temporally uncorrelated white Gaussian process that is also 
uncorrelated with the signals (there are a few other more 
minor conditions). It has been shown that ESPRIT, Deter- 
ministic Maximum Likelihood, MUSIC, WSF, etc., are all 
asymptotically unbiased; that is, the estimated parameters 
converge to the true parameters as N + CO with probability 
one. However, the second-order performance (estimation 
error variance) of these algorithms can be very different, 
and it is usually this second-order performance that is used 
to evaluate them. This evaluation is often conducted with 
respect to the so-called Cram&-Rao Bound (CRB), which 
provides a lower bound on the estimation error variance of 
any unbiased estimator. 
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For historical reasons, the MUSIC algorithm was the 
first to have its performance extensively analyzed [98], 
[ 1 lo]-[ 1 121. Among other results obtained in these papers, 
it has been shown that MUSIC is a large sample realization 
of the deterministic Maximum Llkelihood (ML) method 
if the signals are uncorrelated ( P  diagonal) [98]. Under 
this condition, both algorithms asymptotically achieve the 
deterministic signal CRB, where by asymptotic we mean 
for both large N and L. For finite L,  however, neither 
method is statistically efficient. 

For correlated signals, deterministic ML will generally 
outperform MUSIC. In cases where the signals are highly 
correlated, MUSIC will often fail to resolve all d of 
the signals; that is, there will be fewer than d local 
maxima in the MUSIC spectrum of (42). This loss of 
resolution can also occur when the signal-to-noise ratio is 
very low, or if the signals arrive from nearly coincident 
directions. One of the advantages of the Orthogonal Vector 
formulation of MUSIC, i.e., root-MUSIC, is that it does not 
exhibit this loss-of-resolution threshold effect3. Above the 
threshold, however, both MUSIC and root-MUSIC yield 
estimates with identical asymptotic variance [ 1121. When 
compared with the other Orthogonal Vector methods, root- 
MUSIC has the lowest estimation error variance that can 
be achieved by selecting only one orthogonal vector [ 1171 
from the noise subspace; in particular, it has a lower 
variance than Pisarenko, Min-Norm, and AAK. The same 
has been observed in [ 1191 via other methods. 

As with Orthogonal Vector methods, the Single Shift- 
Invariant techniques of Section VI are guaranteed by con- 
struction to always produce the correct number of parameter 
estimates. However, these algorithms will also fail when the 
signals are perfectly coherent, or nearly so. In this case, a 
failure is manifest by one of the estimates taking on what is 
essentially a random value. Among other results obtained 
for the Single Shift-Invariant methods of Section VI, it 
has been shown that TLS-ESPRIT and LS-ESPRIT are 
asymptotically equivalent 1641, [ 1 181, although for small 
N TLS-ESPRIT has slightly better empirical performance. 
It has also been shown that TLS-ESPRIT is in general 
asymptotically less accurate that MUSIC [ 1201, although 
comparing the two algorithms is somewhat unfair since 
they rely on a different set of assumptions about the sensor 
array. In particular, MUSIC requires much more informa- 
tion about the array, and hence its superior performance 
is to be expected. A recent nonasymptotic comparison 
between Orthogonal Vector methods (MUSIC, Min-Norm) 
and Single Shift-Invariant techniques (TAM, ESPRIT) has 
appeared in [43], [121], and supports the above asymptotic 
results. In these papers, closed-form expressions for first- 
order approximations of the perturbation of the signal and 
noise subspaces are derived. 

One of the greatest advantages of the multidimensional 
Subspace Fitting methods of Section VI11 is their ability 
to provide accurate parameter estimates in the presence 

Strictly speaking, root-MUSIC does have a performance threshold that 
results when the algorithm chooses a spurious root from its polynomial. 
However, this effect is manifest well beyond the MUSIC threshold. 

of perfectly coherent signals. Of these methods, WSF and 
MODE possess the smallest estimation error, and in fact 
both methods asymptotically achieve the CRB under the 
Gaussian signal and noise model [97]. Thus both WSF and 
MODE can be thought of as large sample realizations of the 
Maximum Likelihood method for stochastic signals [ 1021, 
[122]. An important result derived in [113], [I141 states 
that asymptotically, deterministic ML is statistically less 
efficient than WSF, MODE, and stochastic ML, indepen- 
dent of whether one assumes the signals are random or 
not. The performance difference between these algorithms 
and deterministic ML can be quite large in difficult cases 
involving highly correlated, closely spaced signals at low 
signal-to-noise ratios. 

Our discussion thus far in this section has implicitly 
focused on algorithm performance degradations due to 
additive noise. Another important practical consideration 
is the sensitivity of the algorithms to various modeling 
assumptions, the most important of which is the assumption 
of a perfectly uniform linear array of identical sensors 
(or, in the general case, a perfectly calibrated array re- 
sponse). Such analyses have been carried out for many 
of the algorithms discussed thus far, including MUSIC 
[123]-[125], ESPRIT [126], [127], deterministic ML [128], 
and Subspace Fitting algorithms in general [129]-[ 1321. 
One of the surprising results to come out of these studies 
is the fact that, under the assumption of simple Gaussian 
perturbations to the array response and infinite data ( N  +. 
CO), MUSIC yields lower variance estimates than MODE, 
WSF, MD-MUSIC, and deterministic ML [125], [132]. A 
Subspace Fitting minimization of the form (44) can yield 
performance equivalent to MUSIC in such cases, but it 
requires a weighting matrix W quite different from that 
of WSF. 

In the context of system identification, theoretical studies 
comparing several Matrix Pencil and Orthogonal Vector 
methods have been carried out in [68], [72], [Sl], [120], 
[ 1331, for the harmonic retrieval problem. As already noted 
above, in this problem the noise matrix has a Hankel 
structure, and its columns cannot be regarded as being 
independent. This fact makes the analysis somewhat more 
difficult, although some results have been obtained. For 
example, the conclusion of the study in [120] is that 
MUSIC and ESPRIT perform almost equally, although 
usually ESPRIT is slightly better (this contrasts with the 
DOA problem). For signals with unknown damping factors, 
the Single Shift-Invariant methods of Section VI are less 
sensitive to noise than the Orthogonal Vector methods [68], 
[72]. A significant increase in accuracy for these methods 
is obtained by increasing L, because the error variance is 
proportional to l / ( L 3 N )  [120]. This is interesting because 
for a given set of data, one is free to choose the “blocking 
factor” NIL of the Hankel matrix constructed on the data, 
as long as d 5 N ,  L.  Note, however, that the computational 
complexity is also proportional to L3,  and that we still 
require N >> L. For the special case of only one signal, 
it has been derived [68] that the best choice for the pencil 
method is ( N  - L ) / 3  5 L 5 2 ( N  - L ) / 3 .  For model 
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reduction, the “noise” due to unwanted high-order modes 
is actually deterministic, and cannot be modeled as white 
noise; hence, the statistical results obtained in the DOA 
context are not necessarily valid. In fact, one wants to have 
a bound on the modeling error 11 h ( z )  - h(z )  1 1  in some 
suitable norm. At present, only the AAK method provides 
such a bound (in terms of the Hankel norm). 

B .  Computational Aspects 
Although WSF, MODE, and stochastic ML are optimal in 

the sense of minimum asymptotic estimation error variance, 
the minimization of their various error criteria can only be 
achieved by iterative, nonlinear optimization procedures. 
These procedures are necessarily complex, and must be 
given initial estimates of reasonable quality to guarantee 
convergence. In [53], a Gauss-Newton descent method 
is proposed that can be used for both WSF and other 
ML techniques, and that requires O(Ld2)  operations per 
iteration. Compared with the fact that the computation of 
the SVD for an (L x N) matrix requires O(L2(N + 20L)) 
operations, the cost of each Gauss-Newton iteration is 
relatively small. The number of iterations required for 
convergence depends of course on the quality of the initial 
estimates. When ESPRIT is used to obtain the starting 
point, adequate convergence can be expected in two to three 
iterations. A number of empirical studies [53], [ 1151 have 
indicated that WSF has better convergence properties than 
both deterministic and stochastic ML. 

In comparison with Subspace Fitting and Orthogonal 
Vector methods (OVM), Single Shift-Invariant methods 
(such as ESPRIT) are computationally more attractive. The 
number of operations required for the SVD part of these 
algorithms is the same as for Subspace Fitting and OVM, 
but the eigenvalue computations can be done on d x d 
matrices in the SSI class, while the OVM requires the 
solution of a larger L x L eigenvalue problem, after which 
the d “valid” eigenvalues must be selected. Because of 
the regularity of the operations, the Single Shift-Invariant 
methods are amenable to implementation on parallel arrays 
of processors, of which the basic operation is a Jacobi 
(plain) rotation [ 1341. 

In many signal processing applications, the identification 
problem is solved several times, using new data as it 
becomes available, and discarding the older data. There is 
recent interest in developing efficient updating techniques, 
which will result in an “on-line” processor array that 
can update the pole or angle estimates each time a new 
sample vector is received (“updating”) and an old vector 
is discarded (“downdating”). One such updating scheme, 
based on an approximate SVD that will converge for 
stationary signals, is reported in [70]. 

To alleviate the cost of computing the SVD, alternative 
but computationally less demanding decompositions of the 
form X = UE,V*, where E, is not diagonal any more, 
are gaining interest. Recent developments are the rank- 
revealing QR factorization [135] which can be updated 
[ 1361, and the rank-revealing URV decomposition [ 1371, 
where E, =: R is upper-triangular. In this decomposition, 

R has a block decomposition into four blocks, such that 
R12 and R22 both have small Frobenius norms, and the 
smallest singular value of R11 is of the order of the smallest 
singular value of X that one does not want to neglect. In 
this way, one still obtains a decomposition of the range 
space of X into a signal subspace and a noise subspace. 
The URV decomposition can be updated and downdated at 
lower computational cost than the SVD, which makes it a 
useful tool for adaptive subspace tracking algorithms. 
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