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Summary

This dissertation develops intrinsic approaches to learning and computing on curved surfaces.

Specifically, we work on three tasks: analyzing 3D shapes using convolutional neural networks

(CNNs), solving linear systems on curved surfaces, and recovering appearance properties from

curved surfaces using multi-view capture. We argue that we can find more efficient and better

performing algorithms for these tasks by using intrinsic geometry.

Chapter two and three consider CNNs on curved surfaces. We would like to find patterns with

meaningful directional information, such as edges or corners. On images, it is straightforward to

define a convolution operator that encodes directional information, as the pixel grid provides

a global reference for directions. Such a global coordinate system is not available for curved

surfaces. Chapter two presents Harmonic Surface Networks. We apply a 2D kernel to the surface by

using local coordinate systems. These local coordinate systems could be rotated in any direction

around the normal, which is a problem for consistent pattern recognition. We overcome this

ambiguity by computing complex-valued, rotation-equivariant features and transporting these

features between coordinate systems with parallel transport along shortest geodesics.

Chapter three presents DeltaConv. DeltaConv is a convolution operator based on geometric

operators from vector calculus, such as the Laplacian. A benefit of the Laplacian is that it is

invariant to local coordinate systems. This solves the problem of a missing global coordinate

system. However, the Laplacian operator is also isotropic. That means it cannot pick up on

directional information. DeltaConv constructs anisotropic operators by splitting the Laplacian

into gradient and divergence and applying a non-linearity in between. The resulting convolution

operators are demonstrated on learning tasks for point clouds and achieve state-of-the-art results

with a relatively simple architecture.

Chapter four considers solving linear systems on curved surfaces. This is relevant for many

applications in geometry processing: smoothing data, simulating or animating 3D shapes, or

machine learning on surfaces. A common way to solve large systems on grid-based data is a

multigrid method. Multigrid methods require a hierarchy of grids and the operators that map

between the levels in the hierarchy. We show that these components can be defined for curved

surfaces with irregularly spaced samples using a hierarchy of graph Voronoi diagrams. The

resulting approach, Gravo Multigrid, achieves solving times comparable to the state-of-the-art,

while taking an order of magnitude less time for pre-processing: from minutes to seconds for

meshes with over a million vertices.

Chapter five demonstrates the use of intrinsic geometry in the setting of appearance modeling,

specifically capturing spatially-varying bidirectional reflectance distribution functions (SVBRDF).

A low-cost setup to recover SVBRDFs is to capture photographs from multiple viewpoints. A

challenge here, is that some reflectance behavior only shows up under certain viewing positions

and lighting conditions, which means that we might not be able to tell one material type from

another. We frame this as a question of (un)certainty: how certain are we, based on the input

data? We build on previous work that shows that the reflection function can be modeled as a

convolution of the BRDF with the incoming light. We propose improvements to the convolution

model and develop algorithms for uncertainty analysis fully contained in the frequency domain.

The result is a fast and uncertainty-aware SVBRDF recovery on curved surfaces.



Samenvatting

Dit proefschrift ontwikkelt intrinsieke methoden voor algoritmes op gekromde oppervlakken.

We behandelen drie taken: analyse van 3D-vormen met convolutionele neurale netwerken

(CNN’s), stelsels van lineaire vergelĳkingen op gekromde oppervlakken en de reconstructie van

materiaaleigenschappen op basis van foto’s uit verschillende kĳkhoeken. We betogen dat gebruik

van intrinsieke geometrie efficiëntere en beter presterende algoritmes mogelĳk maakt.

Hoofdstuk twee en drie behandelen CNN’s op gekromde oppervlakken. We willen patronen

herkennen met een richting, zoals randen en hoeken. Voor afbeeldingen is dit eenvoudig, omdat

het pixelraster een globaal referentiekader geeft voor richtingen. Zo’n globaal coördinatenstelsel is

niet aanwezig op gekromde oppervlakken. Hoofdstuk twee presenteert Harmonic Surface Networks.
We plaatsen een 2D-kernel op het oppervlak door gebruik te maken van lokale coördinatenstelsels.

Deze lokale coördinatenstelsels zouden in elke richting rond de normaal kunnen worden gedraaid,

wat een probleem is voor consistente patroonherkenning. We lossen deze ambiguïteit op door

features te berekenen die equivariant zĳn voor draaiingen en als complexe getallen worden

opgeslagen. Deze features worden tussen coördinatenstelsels verplaatst met behulp van parallel

transport langs de kortste geodeten.

Hoofdstuk drie presenteert DeltaConv. DeltaConv is een convolutie-operator op basis van

geometrische operatoren uit de vectoranalyse, zoals de Laplace-operator. De Laplace-operator

verandert niet als lokale coördinatenstelsels veranderen. Dit lost het probleem op van een

ontbrekend globaal coördinatenstelsel. Een nadeel hiervan is dat de Laplace-operator isotroop is,

wat betekent dat deze geen patronen met richting kan oppikken. DeltaConv splitst de Laplace-

operator op in de gradiënt en divergentie en past een non-lineariteit toe tussen beide, waardoor

een anisotrope operator wordt verkregen. De methode is getest op de analyse van 3D puntwolken

en behaalt competitieve resultaten met een relatief eenvoudige architectuur.

Hoofdstuk vier behandelt stelsels van lineaire vergelĳkingen op gekromde oppervlakken. Deze

zĳn relevant voor vele toepassingen: smoothing van data, simuleren en animeren van 3D-vormen,

en machine learning. De multigrid-methode is een veelvoorkomende manier om grote stelsels

van lineaire vergelĳkingen op te lossen. Multigrid-methoden vereisen een hiërarchie van rasters

en een manier om tussen niveaus te communiceren. We laten zien dat dit mogelĳk is voor

gekromde oppervlakken met onregelmatig verdeelde punten via een hiërarchie van Voronoi-

diagrammen op grafen. Onze methode, Gravo Multigrid, behaalt oplostĳden die vergelĳkbaar zĳn

met de competitie, terwĳl het een ordegrootte minder tĳd nodig heeft voor de voorbereidende

berekeningen: van minuten naar seconden voor meshes met meer dan een miljoen knooppunten.

Hoofdstuk vĳf demonstreert het gebruik van intrinsieke geometrie in de context van materi-

aaleigenschappen, het vastleggen van spatially-varying bidirectional reflectance distribution functions
(SVBRDF). Een laagdrempelige manier om SVBRDF’s te meten is met foto’s uit verschillende

kĳkhoeken. Sommige reflecties zĳn echter alleen te zien onder bepaalde kĳkhoeken en lich-

tomstandigheden, waardoor we sommige materialen moeilĳk kunnen onderscheiden onder

bepaalde omstandigheden. We formuleren dit als een kwestie van (on)zekerheid: hoe zeker zĳn

we op basis van de data? Eerder werk toont aan dat de reflectiefunctie kan worden gezien als

een convolutie van de BRDF met het inkomende licht. We stellen verbeteringen voor aan dit

model en ontwikkelen algoritmen voor onzekerheidsanalyse die volledig in het frequentiedomein

plaatsvinden. Het resultaat is een snelle SVBRDF-reconstructie met informatie over onzekerheid.
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Introduction 1

Figure 1.1: Triangles covering a curved

landscape. Original: “Blick von Warm-
brunn auf die Kleine Sturmhaube” by Cas-

par David Friedrich (1810).

Of all the topics he could have picked, Professor Gauss chose

geometry. Bernhard Riemann was preparing for his habilitation

dissertation, the final examination for the qualification to teach at the

university of Göttingen. It was tradition for the candidate to propose

three potential topics for this important talk. Riemann had chosen

two topics he had already worked on and, as a third topic, geometry.

It was expected that the advisor would pick the first, familiar,

topic. It must have been a remarkable pick for Gauss to choose the

third one. Riemann was said to have had a minor breakdown, but

quickly recouped, presenting his habilitation dissertation ‘Über die
Hypothesen, welche der Geometrie zu Grunde liegen’ (On the Hypotheses

which lie at the Foundations of Geometry) on June 10, 1854. Even

more remarkable is that the impact of the habilitation dissertation

would stretch far beyond the lecture rooms of Göttingen, directly

influencing Albert Einstein’s general theory of relativity.

It comes as no surprise that Gauss had an interest in geometry.

Gauss had been involved in a number of geodesy surveys years

before. The surveyors would measure distances and angles between

key points on the landscape, tracing out triangles across the map.

These triangles then form a web of key points, distances, and angles,

straddling the surface of the land (Figure 1.1). It was of interest

to understand the curvature of these triangles. For example, the

triangles on a mountain peak form a sharp cone. A flat stretch of

farmland has the triangles laying in a planar disc. Gauss had studied

ways to measure such curvature in his landmark 1827 paper, titled

‘General Investigations of Curved Surfaces.’ In this paper, Gauss

describes a way to measure curvature (Gaussian curvature) and

derives the Theorema Egregium, the remarkable theorem.



2 1 Introduction

The Theorema Egregium states that the Gaussian curvature of a

surface can be derived from measurements taken from within the

surface, intrinsic measurements: distances and angles and how they

change on the surface. This is remarkable, because he did not expect

to get such rich information from only intrinsic measurements.

Going back to the geodesy survey, this means that one can use the

distances and angles between key points to know the curvature of

the land. Gauss himself connects the dots in his 1827 paper and

provides some example computations based on a geodesy survey

he had performed himself. On a larger scale, it means that you

could conclude that the earth is round, without ever leaving the

surface of the earth. You could simply take measurements of angles

and distances on a curved triangle drawn over the surface of the

earth. One step further, on a more abstract level, Gauss’ theory

allows us to study surfaces that are impossible to realize in physical,

three-dimensional space, such as hyperbolic surfaces and, as we will

see later, four-dimensional spacetime. Truly remarkable, indeed.

In the abstract of his paper on curvature, Gauss drew the following

consequence regarding relations (e.g., distances between points) on

surfaces, relevant to this dissertation:

We see that two essentially different relations must be distin-
guished, namely, on the one hand, those that presuppose a
definite form of the surface in space; on the other hand, those
that are independent of the various forms which the surface
may assume.

In other words, some relationships depend on how a shape sits

in space, such as the coordinates in an external frame of reference.

If you transform the shape, the coordinates will transform as well.

In this dissertation, we will refer to this information as extrinsic
geometry. Other relationships do not change when the surface

is transformed without stretching it, such as distances or angles.

Imagine a piece of cloth that is folded and bent, but not stretched.

The distances along the cloth do not change as you manipulate it.

We will refer to this information as intrinsic geometry.

Let us return the story of Riemann, before continuing to the con-

tributions of the current dissertation. In his habilitation dissertation,

Riemann picked up where Gauss left off. His first point of business

was to define spaces and surfaces in higher dimensions. Gauss

had studied surfaces in 3D space, which makes sense, given our

experience of the space around us. But what if you wanted to add

other dimensions, such as colour? Surfaces with higher dimensions

would be named manifolds and curvature on these manifolds could

also be defined using intrinsic measurements, such as distances

and angles. The crucial question is how these distances should be

measured. What is the analog of a ruler that we can use to measure

distance in an abstract space, such as colour? Riemann describes
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how to do this with infinitesimally short line-elements and we call

this measurement ‘device’ the metric tensor. In short, Riemann gave

us the tools to study curvature of higher dimensional surfaces (man-

ifolds) intrinsically. Musing on the implications of these findings,

Riemann states that

this leads us into the domain of another science, of physics, of
which the object of this work does not allow us to go today.

Einstein took over the baton and applied Riemann’s theory in

physics. He realized that the dimension of time is linked with the

three dimensions of space, resulting in a four-dimensional space-

time. Even though we are three-dimensional beings, we can study

the curvature of four-dimensional spacetime by taking intrinsic

measurements (Theorema Egregium). In this way, he was able to

predict verifiable measurements that show that spacetime is curved,

providing an explanation for gravity: the general theory of relativity.

The purpose of this history is to illustrate the power of using

intrinsic geometry to study the world around us. In this dissertation,

we seek to apply this perspective in learning and computing on

curved surfaces: the organic forms of human bodies and digital char-

acters, the slight bends and sharp corners of household appliances,

or a sphere representing lighting and viewing directions. We focus

on tasks where we require intrinsic geometric information and want

to be robust to changes in extrinsic geometry, such as varying human

poses. In the words of Gauss, we want to use “those [properties]

that are independent of the various forms which the surface may

assume.” By using intrinsic geometry, we can find more efficient

and better performing algorithms for complex, real-world problems.

This is possible, because we ignore details that are irrelevant or

counterproductive to the problem at hand.

While intrinsic approaches could simplify our theoretical anal-

ysis, they are challenging to implement in practice. Typical signal-

processing algorithms work with signals discretized in grids: equally

spaced samples on a flat domain. For example, images are processed

on a pixel grid. In contrast, we need to deal with irregularly-spaced

samples on a curved domain to formulate intrinsic algorithms for

data on curved surfaces. The irregularity of the samples compli-

cate implementations of typical procedures like convolution, signal

reconstruction, and up- or down-sampling. Curvature means that

the metric (how distances and angles are measured) varies across

the surface and that we have no global coordinate system to work

with. This introduces a number of problems that we highlight in

this dissertation.
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1.1 CNNs on Curved Surfaces

In Chapter two and three, we consider convolutional neural networks

on curved surfaces. Convolutional neural networks (CNNs) are

used in machine learning to analyze and synthesize signals that

exhibit translation-invariant patterns. CNNs are used, for example,

to classify and segment images [127] and as a building block in

denoising diffusion models to generate images [94]. In a CNN, a

localized kernel with learned weights is convolved over the input

image. The benefit of using convolution is that the weights are

shared across the input image. This requires fewer parameters

(more efficient learning) and the operations are translation invariant

(better generalizability).

On images, it is straightforward to define a convolution operator,

as we can assume that each pixel is laid out on a grid. This makes

it simple to implement convolution using 2D arrays and implies a

global coordinate system to align the kernel to. Consider a kernel

that detects edges. We can exploit the fact that each pixel is aligned

to the same pixel grid to find vertical and horizontal edges using

a vertical and horizontal edge-kernel. On surfaces, points are not

laid out on a pixel grid, but spaced irregularly. There is no global

coordinate system for tangential directions. Yet, we would like

to find patterns with meaningful directional information, such as

edges and corners. Chapter two and three present solutions to this

problem from two different perspectives.

In chapter two, we present Harmonic Surface Networks. We apply a

2D kernel to the surface by using a local parametrization: features

on the curved surface are mapped to the tangent plane using the

exponential map. The exponential map tells us for each point on the

surface where it lands on the tangent plane by flattening a local patch

of surface. The lack of a global coordinate system for curved surfaces

shows up in this setting, because the kernel could be rotated in any

direction around the normal. Rather than choosing one direction

ad-hoc, we accept this ambiguity and locally resolve mismatches

in direction between different points. This is achieved by using

rotation-equivariant kernels and transporting the resulting complex-

valued features between coordinate systems without changing their

direction (parallel transport) along shortest geodesics.

In Chapter three, we present DeltaConv. In this chapter, we in-

terpret convolution through the lens of geometric operators. An

example of the connection between convolution and operators is

the heat equation, 𝜕𝑦/𝜕𝑡 = Δ𝑦, which describes the change of a

function 𝑦 over time 𝑡 to the Laplacian operator applied to 𝑦. For

any time 𝑡, this equation can be solved by convolving 𝑦 with a

heat kernel. The Laplacian has been applied in neural networks

for surfaces and graphs, for example in GCN [112] and Diffusion-

Net [201]. A benefit of the Laplacian to define convolution, is that
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the Laplacian is invariant to local coordinate systems. This solves

the problem of a missing global coordinate system. However, the

Laplacian operator is also isotropic; it does not distinguish between

different directions. That means it cannot pick up on directional

information. With DeltaConv, we show how to learn anisotropic

operators. We split the Laplacian into gradient and divergence and

apply a non-linearity in between. We demonstrate the resulting

convolution operators on learning tasks for point clouds and show

that we can achieve state-of-the-art results with a relatively simple

architecture.

1.2 Geometric Multigrid

In Chapter four, we shift our focus to solving linear systems on

curved surfaces. Such linear systems show up in many geometry-

processing tasks: smoothing data, simulating or animating 3D

shapes, or machine learning on surfaces. The size of these linear

systems depends on the resolution of the surface discretization,

which could run into millions of vertices or points. A common

way to solve such large systems on grid-based data is a multigrid

method, where the linear system is solved on multiple grids in a

hierarchy. The two main components of a multigrid method are the

hierarchy of grids and the operators that map between the levels in

the hierarchy. Our challenge lies in defining both these components

for a curved surface with irregularly spaced samples. We show that

this can be achieved with a hierarchy of graph Voronoi diagrams.

The resulting approach, called Gravo Multigrid, achieves solving

times comparable to the state-of-the-art, while taking an order of

magnitude less time for pre-processing: from minutes to seconds

for meshes with over a million vertices.

1.3 Material appearance capture

In the penultimate chapter of this dissertation, we transition out of

the geometry processing territory toward material- and appearance

capture. We show that the strategy of using intrinsic geometry for

solving complex real-world problems can also be applied in this

setting.

Object acquisition is the task of capturing the geometry and ap-

pearance of a physical object. The resulting digital copy of the object

can be used to render the objects in virtual settings, for example,

the original setting of a cultural-heritage object or a scene in an

animated movie. For many objects, it suffices to model how light

interacts with the object at the surface. We can model how light

reflects off the surface using a bidirectional reflectance distribu-

tion function (BRDF). When this function varies over the surface,

a spatially-varying BRDF (SVBRDF) is used. A low-cost setup to
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recover the SVBRDF is to capture a number of photographs from

multiple viewpoints and to capture the lighting environment. How-

ever, even with hundreds of photographs, one might not be able

to recover the parameters of the SVBRDF at every point. This is

because some reflectance behavior only shows up under certain

viewing positions and lighting conditions. How can we know when

we have the right conditions for capture?

In Chapter five, we provide insight into these questions by transi-

tioning from the spatial domain to the frequency domain. We build

on previous work that shows that the reflection function can be

modeled as a convolution of the BRDF with the incoming light [190].

If the incoming- and outgoing light are known, the task of finding

the BRDF can be seen as a deconvolution. This signal processing

perspective can help us answer if we have the right signal available

for recovery. We propose improvements to the convolution model

and propose algorithms for uncertainty analysis fully contained in

the frequency domain. The result is a fast and uncertainty-aware

SVBRDF recovery on curved surfaces.

1.4 Curved surfaces, convolution, and least-squares

Even though the chapters in this dissertation span a wide range

of application domains, we soon get familiar with a recurring cast

of characters. Each of the chapters considers a problem defined on

a curved domain; we aim to use convolution on this domain; and

use least-squares as a way to map concepts defined in a continuous

setting to the discrete setting. The reason for this recurrence is the

underlying strategy to use the intrinsic geometry of a problem to

generate simpler and better algorithms. For CNNs on surfaces and

geometric multigrid methods, the problem can be reduced to a 2D

curved surface embedded in 3D space. For reflectance, the problem

can be reduced to the sphere of incoming and outgoing directions.

Both are examples of curved surfaces. We simplify the problems by

using convolution: hereby, our solutions become invariant to trans-

lations and rotations. Finally, it is challenging to create algorithms

that work on irregular and sparse discretizations. We find this is the

case for meshes and point clouds, but also for samples of a radiance

field from a sparse set of viewpoints. Our algorithms are robust to

these sparse and irregular samples by using a least-squares approach

and fitting regularization.

In the following chapters, we further detail these efforts. Each

chapter provides a detailed introduction to the problem context

and related work, a description of the method, and experiments

demonstrating the claimed benefits. The dissertation is concluded

with chapter seven, where we reflect on the lessons learned and

challenges for future work.



CNNs on Surfaces using
Rotation-Equivariant Features 2

This chapter * is concerned with a fundamental problem in geometric
deep learning that arises in the construction of convolutional neural
networks on surfaces. Due to curvature, the transport of filter kernels
on surfaces results in a rotational ambiguity, which prevents a uniform
alignment of these kernels on the surface. We propose a network architecture
for surfaces that consists of vector-valued, rotation-equivariant features.
The equivariance property makes it possible to locally align features, which
were computed in arbitrary coordinate systems, when aggregating features
in a convolution layer. The resulting network is agnostic to the choices of
coordinate systems for the tangent spaces on the surface. We implement our
approach for triangle meshes. Based on circular harmonic functions, we
introduce convolution filters for meshes that are rotation-equivariant at the
discrete level. We evaluate the resulting networks on shape correspondence
and shape classifications tasks and compare their performance to other
approaches.

Rotation-equivariant
vector features

Rotation-invariant
vector features

Figure 2.1: We propose CNNs on sur-

faces that operate on vectors and sepa-

rate rotation-equivariant and rotation-

invariant features.

*
This chapter is based on the paper “CNNs on Surfaces using Rotation-Equivariant

Features” published in ACM Transactions on Graphics (SIGGRAPH 2020) [244].
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2.1 Introduction

The success of Deep Learning approaches based on convolutional

neural networks (CNNs) in computer vision and image processing

has motivated the development of analogous approaches for the

analysis, processing, and synthesis of surfaces. Along these lines,

approaches have been proposed for problems such as shape recog-

nition [218], shape matching [13], shape segmentation [152], shape

completion [138], curvature estimation [79], and 3D-face synthesis

[191].

In contrast to images, which are described by regular grids in a

Euclidean domain, surfaces are curved manifolds and the grids on

these surfaces are irregular. In order to still use regular grids, one

can work with multiple projections of the surface on planes [218] or

with volumetric grids [252].

An alternative to learning on regular grids is generalized deep

learning, often referred to as geometric deep learning [23], which

targets irregularly sampled manifolds and graphs. A central element

of such geometric CNNs is a generalized convolution operator. For

CNNs on images, the convolution layers are built from convolution

kernels, which are transported across the image. As a result, the pa-

rameters that define one kernel describe the convolution across the

whole image, which significantly reduces the number of parameters

that need to be learned. This is a motivation for exploring construc-

tions of generalized convolution operators on surfaces based on

convolution kernels.

To apply a convolution kernel defined on ℝ2
to a function at

a point on a surface, the Riemannian exponential map is used to

locally lift the function from the surface to a function defined on

the tangent plane at the point. By identifying the tangent plane

with ℝ2
, the convolution of the kernel and the lifted function can

be computed. In this way, the convolution kernel can be applied

everywhere on the surface. However, a problem arises, since there is

a rotational degree of freedom when ℝ2
is identified with a tangent

plane. Moreover, the transport of filters on a surface depends on the

chosen path. If a filter is transported along two different ways from

one point of a surface to another, the transported filters are rotated

against each other. This rotation ambiguity problem is fundamental

and caused by the curvature of the surface.

The rotation ambiguity problem can be addressed by specifying

a coordinate system at each point of the surface, e.g. according

to the principal curvature directions [13, 163, 178] or the direction

of maximum activation [155, 221]. As a consequence, however,

the coordinate systems in the local neighborhoods are arranged

in different patterns for each point. For a network this means

that, when features are aggregated to form the next layer of the

network, the features are not only dependent on the sequence of
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convolution kernels that are applied, but also on the arrangement

of coordinate systems in the local neighborhoods. Loosely speaking,

the information contained in the features in the neighborhood of

a point can be arbitrarily rotated against the coordinate system at

the point. One can think of this as in a cubist painting, where the

elements that make up a structure, for example the eyes, nose, and

mouth on a face, are rotated against each other.

Multi-Directional Geodesic CNNs (MDGCNN) [184] provide an

alternative approach to the rotation ambiguity problem. The idea is

to sample the rotational degree of freedom regularly, to compute the

convolutions for each of the sample directions, and to feed the results

for all directions into the network. The multi-directional features are

pooled at the final layer. The disadvantage of this approach is that

each filter must not only be evaluated once at each point, but also

for rotated versions of the filter and the results need to be stored. To

build an operable network, the filters are only evaluated in some

sample directions and the results are linearly interpolated to get

results in intermediate directions, introducing inaccuracies in each

consecutive layer.

We introduce a novel network architecture that does not suffer

from the rotation ambiguity problem. The features in this network

are rotation-equivariant and organized in streams of different equiv-

ariance classes (Figure 2.1). These streams interact with each other in

the network and are finally merged into a rotation-invariant output.

The resulting network is independent of the choice of coordinate

systems in the tangent spaces, which means that it does not suffer

from the rotation ambiguity problem. To realize this network, we

work with vector-valued, instead of scalar-valued, features and in-

troduce rotation-equivariant convolution and pooling operators on

meshes. The convolution operators use the Riemannian exponential

map and parallel transport to convolve vector-valued kernels on ℝ2

with tangent vector fields on meshes.

As kernels onℝ2
we use the circular harmonics, which are known

to be rotation-equivariant. We prove that the resulting discrete

convolution operators on meshes are equivariant with respect to

rotations of the coordinate system in the tangent spaces. Due to the

rotation-equivariance property, it suffices to compute the convolu-

tion at each point with respect to an arbitrary reference coordinate

system in the tangent plane. Then, if the result with respect to any

other coordinate system is required, one only needs to transform

the result of the convolution in the reference coordinate system to

the other coordinate system. The rotation-equivariance property is

still valid if several of these filters are applied consecutively, e.g. in

the deeper layers of a network. Rotation-equivariance enables the

vector-valued convolution operator to always align the features in a

local neighborhood of a point to the coordinate system at the point.

Our network architecture builds upon Harmonic Nets [247], which
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are used for rotation-equivariant learning on images. Therefore, we

call the networks Harmonic Surface Networks (HSN).

We implement the Harmonic Surface Networks for triangle

meshes. Based on circular harmonic filters, we derive discrete

convolution filters that are equivariant with respect to basis trans-

formations in the tangent spaces associated to the vertices of the

mesh. The parameters of the filters separate radial and angular

direction, which leads to a low number of parameters for each

kernel, when compared to other filter kernels for surface meshes.

We experimentally analyze the properties and performance of the

HSNs and compare the performance to other geometric CNNs for

surface meshes.

In summary, our main contributions are:

▶ We introduce Harmonic Surface Networks, which combine a

vector-valued convolution operation on surfaces and rotation-

equivariant filter kernels to provide a solution to the rotation

ambiguity problem of geometric deep learning on surfaces.

▶ Based on circular harmonics, we derive convolution filters for

meshes that have the desired rotational-equivariance proper-

ties at the discrete level, and, additionally, allow for separating

learning of parameters in radial and angular direction.

▶ We analyze the Harmonic Surface Networks for surface

meshes and compare the performance to alternative ap-

proaches.

2.2 Related work

In this section, we provide a brief overview of work on geometric

deep learning closely related to our approach. For a comprehensive

survey on the topic, we refer to [23].

Charting-based methods Closest to our work are so-called charting-
based methods. For convolution, these methods use local parametriza-

tions to apply filter kernels to features defined on the surface. A

seminal approach in this direction are the Geodesic CNNs (GCNN,

[155]). They consider a parametric model of convolution filters in

ℝ2
using Gaussian kernels placed on a regular polar grid. For con-

volution, the filters are mapped to the surface using the Riemannian

exponential map. Other intrinsic methods use anisotropic heat ker-

nels [13], learn the shape parameters of the kernels [163], learn not

only the parameters of the kernels but also pseudo-coordinates of

the local parametrizations [230], or use B-Splines [64] or Zernike

polynomials [221] instead of Gaussians.

A challenging problem for these constructions is the lack of

canonical coordinate systems on a surface, inducing the rotation

ambiguity problem, discussed in the introduction. To address the
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ambiguity, maximum pooling over the responses to a sample of

different rotations can be used [155, 221] or the coordinate systems

can be aligned to the (smoothed) principal curvature directions

[13, 163, 178]. Both approaches have their downsides. Angular pool-

ing discards directional information and the alignment to principal

curvature directions can be difficult as the principal curvature direc-

tions are not defined at umbilic points and can be unstable in regions

around umbilic points. A sphere, for example, consists only of um-

bilic points. A solution to this problem are the Multi-Directional

Geodesic CNNs (MDGCNN) [184]. At every point, the filters are

evaluated with respect to multiple choices of coordinate systems.

This can be formalized by describing the features by so-called direc-

tional functions instead of regular functions. Parallel transport is

used to locally align the directional functions for convolution.

Our approach provides a different solution to the rotation ambigu-

ity problem that does not require computing the filters in multiple

directions and storing the results. Once the filter in one direction is

computed, the rotation-equivariance property of our filters allows

us to obtain the results for the other directions by applying a rotation.

We compare our approach to MDGCNN in Section 2.5. Parallel

Transport Vector Convolution [198] is a convolution operation for

vector fields on manifolds that was used to learn from vector valued

data on surfaces. Similar to this approach, we also use parallel trans-

port to define convolution for vector fields on surface. A concept

for the construction of Gauge-equivariant convolution filters on

manifolds is introduced in [32] along with a concrete realization of

a Gauge CNN for the icosahedron. In recent work, an adaption of

Gauge CNNs to surface meshes was introduced [40].

Instead of local charts, one can also parametrize an area globally

and then learn on the parameter domain [152, 84]. An advantage of

this approach is that standard CNNs can be applied to the parameter

domain. A disadvantage is that global parametrizations lead to larger

metric distortion than local parametrizations. In addition, typically

different global parametrization methods are needed for surfaces of

different genus.

Spectral methods and graph CNNs An alternative to charting-

based methods are spectral methods. For images, CNNs can operate

in the Fourier domain. Spectral Networks [24] generalize CNNs

to graphs using the spectrum of a graph Laplacian. To reduce the

computational complexity, ChebNet [41] and Graph Convolutional

Networks (GCN) [112] use local filters based on the graph Laplacian.

Recently, various approaches for defining CNNs on graphs have

been introduced, we refer to [273, 251] for recent surveys. This line

of work diverges from our approach since we specialize to discrete

structures that describe two-dimensional manifolds. Furthermore,

we aim at analyzing the surface underlying a mesh, which means
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our method aims to be agnostic of the connectivity of the mesh,

i. e. the graph underlying a mesh. The concept of local filtering

has also been applied to surfaces using the Laplace–Beltrami and

Dirac operator [117]. MeshCNN [85] generalizes graph CNNs to

mesh structures by defining convolution and pooling operations for

triangle meshes.

Point clouds PointNet [186] is an approach for creating CNNs for

unordered sets of points. First, a neighborhood is constructed around

each point with a radius ball. To retrieve a response for point 𝑖, a

function is applied to each neighbor of 𝑖 and the maximum activation

across 𝑖’s neighbors is stored as the new response for 𝑖. PointNet++

[187] is an extension of PointNet with hierarchical functionality.

Because PointNet applies the same function to each neighbor, it is

effectively rotation-invariant. DGCNN [236] extends PointNet++ by

dynamically constructing neighborhood graphs within the network.

This allows the network to construct and learn from semantic

neighborhoods, instead of mere spatial neighborhoods. PointCNN

[132] learns a 𝜒-transformation from the point cloud and applies

the convolutions to the transformed points. TextureNet [98] uses

4-rotational symmetric fields to define the convolution domains

and applies operators that are invariant to 4-fold symmetries. While

we evaluate our approach on meshes, our method can be used to

process point clouds sampled from a surface.

Symmetric spaces Specialized approaches for symmetric surfaces

such as the sphere [31, 115] have been proposed. On the one hand,

the approaches profit from the highly symmetric structure of the

surfaces, while on the other hand they are limited to data defined

on these surfaces.

Rotation-equivariance Our approach builds on Harmonic Net-

works [247]. This work is part of a larger effort to create group-

equivariant networks. Different approaches such as steerable filters

[67, 142, 34, 241], hard-baking transformations in CNNs [33, 151,

61, 124], and learning generalized transformations [93] have been

explored. Most relevant to our approach are steerable filters, since

we use features that can be transformed, or steered, with parallel

transport. The core idea of steerable filters is described by [67] and

applied to learning by [142]. The key ingredient for these steerable

filters is to constrain them to the family of circular harmonics. [247]

added a rotation offset and multi-stream architecture to develop

Harmonic Networks. The filters in Harmonic Networks are designed

in the continuous domain and mapped to a discrete setting using

interpolation. Harmonic Networks was built on by [225] for Ten-

sor Field Networks. Tensor Field Networks achieve rotation- and

translation-equivariance for 3D point clouds by moving from the
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family of circular harmonics to that of spherical harmonics. In doing

so, they lose the phase offset parameter, as it is not commutative in

SO(3). Spherical harmonics were also used for rigid motion-invariant

processing of point clouds [185].

2.3 Background

Harmonic Networks Harmonic Nets (H-Nets) [247] are rotation-

equivariant networks that can be used to solve computer vision

tasks, such as image classification or segmentation, in such a way

that a rotation of the input does not affect the output of the network.

H-Nets restrict their filters to circular harmonics, resulting in the

following filter definition:

𝑊𝑚(𝑟, 𝜃, 𝑅, 𝛽) = 𝑅(𝑟)𝑒 𝑖 (𝑚𝜃+𝛽) , (2.1)

where 𝑟 and 𝜃 are polar coordinates, 𝑅 : ℝ+ → ℝ is the radial profile,
𝛽 ∈ [0, 2𝜋) is a phase offset, and 𝑚 ∈ ℤ is the rotation order. The

cross-correlation of 𝑊𝑚 with a complex function 𝑥 at a point 𝑝 is

given by the integral

[𝑊𝑚 ★ 𝑥](𝑝) =
∫ 𝜖

0

∫
2𝜋

0

𝑅(𝑟)𝑒 𝑖 (𝑚𝜃+𝛽)𝑥(𝑟, 𝜃) 𝑟 𝑑𝜃 𝑑𝑟. (2.2)

This filter is rotation-equivariant with respect to rotations of the

domain of the input to the filter:

[𝑊𝑚 ★ 𝑥𝜙](𝑝) = 𝑒 𝑖𝑚𝜙[𝑊𝑚 ★ 𝑥0](𝑝), (2.3)

where 𝑥0(𝑟, 𝜃) is a complex function and 𝑥𝜙(𝑟, 𝜃) = 𝑥(𝑟, 𝜃 − 𝜙)
is the same function defined on a rotated domain. The rotation

order 𝑚 determines how the output of the filters changes when the

domain of the input is rotated. For𝑚 = 0, the result does not change

and the filter is rotation invariant. For 𝑚 ≥ 1 the result is rotated

by an angle that is 𝑚 times the original angle, which we refer to as

𝑚-equivariance.

An important property of these filters is that, if filters of orders

𝑚
1

and 𝑚2 are chained, rotation-equivariance of order 𝑚
1
+ 𝑚2 is

obtained:

[𝑊𝑚1
★ [𝑊𝑚2

★ 𝑥𝜙] = 𝑒 𝑖𝑚1𝜙𝑒 𝑖𝑚2𝜙[𝑊𝑚1
★ [𝑊𝑚2

★ 𝑥0] (2.4)

= 𝑒 𝑖 (𝑚1+𝑚2)𝜙[𝑊𝑚1
★ [𝑊𝑚2

★ 𝑥0]. (2.5)

This is integral to the rotation-equivariance property of the network

as a whole. The network architecture of H-Nets is structured in

separate streams per rotation order as illustrated in Figure 2.2.

For each feature map inside a stream of order 𝑀, we require

that the sum of rotation orders 𝑚𝑖 along any path reaching that
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Figure 2.2: Harmonic Networks sep-

arate the result of different rotation

order convolutions into streams of 𝑀-

equivariance.
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Figure 2.3: The Riemannian

exponential- and logarithmic map.

feature map equals 𝑀. In the last layer of an H-Net, the streams

are fused to have the same rotation order. The rotation order of

the output stream determines the class of equivariance of the

network and is chosen to match the demands of the task at hand.

For rotation invariant tasks, the last layer has order 𝑚 = 0. Still,

in the hidden layers of the network, rotation-equivariant streams

capture and process information that is not rotation-invariant, which

yields improved performance compared to networks built only from

rotation-invariant filters.

Riemannian exponential map Let 𝑣 be a vector in the tangent

plane 𝑇𝑝S at a point 𝑝 of a surface S. Then, there is exactly one

geodesic curve starting at 𝑝 in direction 𝑣. If we follow this geodesic

curve until we have covered a length that equals the norm of 𝑣, we

end up at a point 𝑞 on the surface. The Riemannian exponential

map associates each vector 𝑣 in 𝑇𝑝S to the corresponding point

𝑞 on the surface. This map is suitable as a local parametrization

of the surface, because it is a local diffeomorphism, i. e., bĳective

and smooth with smooth inverse. Furthermore, the mapping is

an isometry in radial direction away from 𝑝. The construction of

the Riemannian exponential map and its inverse, the logarithmic

map, is illustrated in Figure 2.3. An example of the Riemannian

exponential map is the azimuthal projection of the sphere, which is

used in cartography and is included in the emblem of the United

Nations.

In graphics, the Riemannian exponential map is used, for example,

for texture decalling [196] and shape modeling [197]. In geometric

deep learning [23], it is used to map filter kernels defined on the

tangent plane to filters defined on the surface and to lift functions

defined on the surface to functions defined on the tangent plane.

Recent approaches for computing the Riemannian exponential map

on surface meshes are based on heat diffusion [204, 90]. These

methods reduce the computation of the exponential map to solving

a few sparse linear systems and can be accurately computed globally.

Alternatives are approaches based on Dĳkstra’s algorithm [196, 159].

Parallel transport of vectors In the Euclidean plane one can

describe vector fields by specifying 𝑥 and 𝑦 coordinates relative to a

global coordinate system. There is no such coordinate system on
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curved surfaces. To be able to compare vectors at neighboring points

𝑝 and 𝑞 of a surface, we use the parallel transport along the shortest

geodesic curve 𝑐 connecting the points. If 𝑣 is a tangent vector at

𝑝 which has the angle 𝛼 with the tangent vector of 𝑐 at 𝑝, then the

vector transported to 𝑞 is the tangent vector that has an angle of 𝛼
with the tangent of 𝑐 at 𝑞 and has the same length as 𝑣.

To describe tangent spaces on meshes and to compute the parallel

transport, we use the Vector Heat Method [204], which we also use

to calculate the Riemannian exponential map.

2.4 Method

In this section, we describe the building blocks of Harmonic Surface

Networks. We start by introducing notation and then discuss convo-

lutions, linearities, non-linearities, and pooling. Finally, we discuss

why the networks provide a solution to the rotation ambiguity

problem by analyzing how the choices of coordinate systems in the

tangent spaces affect the convolution operations and HSNs.

Notation The features in an HSN are associated to the vertices (or

just a subset of the vertices) of a triangle mesh. To each vertex, we

assign a coordinate system in the tangent plane at the vertex and use

complex numbers to represent tangent vectors with respect to the

coordinate system. We denote the feature vector of rotation order 𝑀

in network layer 𝑙 at vertex 𝑖 by x𝑙
𝑖 ,𝑀

. To simplify the notation, we

leave out the indices 𝑙 and 𝑀 when they are not relevant. For HSN,

these feature vectors are complex-valued. Every operation applied

to these vectors is performed element-wise. For example, when we

multiply a feature vector with a complex number, each component

of the vector is multiplied by this number. We use parallel transport

along the shortest geodesic from vertex 𝑗 to vertex 𝑖 to transport

the feature vectors. The transport depends on the geometry of the

mesh, the chosen coordinate systems at the vertices, and the rotation

order of the feature. It amounts to a rotation of the features. In

practice, we store the rotation as a complex number with the angle

of rotation 𝜙 𝑗𝑖 as its argument and apply rotations to vectors via

complex multiplication:

𝑃𝑗→𝑖(x𝑗 ,𝑀 ) = 𝑒 𝑖 (𝑀𝜙 𝑗𝑖 )x𝑗 ,𝑀 . (2.6)

For every vertex, we construct a parametrization of a local neigh-

borhood of the vertex over the tangent plane using the Riemannian

logarithmic map. We represent the map by storing polar coordinates

𝑟𝑖 𝑗 and 𝜃𝑖 𝑗 with respect to the coordinate system in the tangent

plane for every vertex 𝑗 in the neighborhood of vertex 𝑖.
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Figure 2.4: We parametrize the radial

profile by learning the value at 𝑄
equally spaced rings and linearly in-

terpolating for values in between.

Convolution The convolution layers of HSNs combine the rotation-

equivariance of circular harmonics with the transport of features

along surfaces. We use compactly supported filter kernels to limit the

number of neighboring features that are used in a convolutional layer.

Let N𝑖 denote the set of vertices that contribute to the convolution

at 𝑖. In the case of continuous features on a Euclidean space, the

correlation with𝑊𝑚 is given by an integral, see (2.2). For discrete

meshes, we approximate the integral with a sum and use parallel

transport and the Riemannian logarithmic map to evaluate the filter:

x(𝑙+1)
𝑖 ,𝑀+𝑚 =

∑
𝑗∈N𝑖

𝑤 𝑗

(
𝑅(𝑟𝑖 𝑗)𝑒 𝑖 (𝑚𝜃𝑖 𝑗+𝛽)𝑃𝑗→𝑖(x(𝑙)𝑗 ,𝑀 )

)
, (2.7)

where 𝑟𝑖 𝑗 and 𝜃𝑖 𝑗 are the polar coordinates of point 𝑗 in 𝑇𝑖S, and

𝑃𝑗→𝑖 is the transport of features defined in (2.6). The integration

weights 𝑤 𝑗 are

𝑤 𝑗 =
1

3

∑
𝑗𝑘𝑙

𝐴𝑗𝑘𝑙 (2.8)

where 𝐴𝑗𝑘𝑙 is the area of triangle 𝑗𝑘𝑙 and the sum runs over all

triangles of the mesh containing vertex 𝑗. The weights can be derived

from numerical integration with piecewise linear finite elements,

see [239].

The radial profile 𝑅 and the phase offset 𝛽 are the learned param-

eters of the filter. To represent the radial profile, we learn values

at equally spaced locations in the interval [0, 𝜖], where 𝜖 provides

a bound on the support of the filter. To get a continuous radial

profile, the learned values are linearly interpolated as illustrated in

Figure 2.4. At a point with radial coordinate 𝑟𝑖 𝑗 , the radial profile is

𝑅(𝑟𝑖 𝑗) =
𝑄∑
𝑞

𝜇𝑞(𝑟𝑖 𝑗)𝜌𝑞 , (2.9)

where 𝜇𝑞(𝑟𝑖 𝑗) is a linear interpolation weight and 𝜌𝑞 a learned

weight matrix. We set 𝜌𝑄 = 0, which bounds the support of the

kernel.

To speed up training, we precompute three components: the

integration weight, the interpolation weight to each radial profile

point, and the rotation by the angle 𝜃𝑖 𝑗 :

precomp𝑖 𝑗 =

(
𝑤 𝑗𝜇𝑞(𝑟𝑖 𝑗)𝑒 𝑖𝑚𝜃𝑖 𝑗

)
. (2.10)

We precompute the polar coordinates and integration weights with

the Vector Heat method [204]. The precomputation is stored in a [Q

x 2] matrix for each (𝑖 , 𝑗) pair.

Linearities Linearities are applied to complex features by applying

the same linearity to both the real and imaginary component,



2.4 Method 17

resulting in a linear combination of the complex features.

Non-Linearities We follow Harmonic Networks [247] for complex

non-linearities: non-linearities are applied to the radial component of

the complex features, in order to maintain the rotation-equivariance

property. In our experiments, we used a complex version of ReLU

ℂ-ReLU𝑏(X𝑒 𝑖𝜃) = ReLU(X + 𝑏)𝑒 𝑖𝜃 , (2.11)

where 𝑏 is a learned bias added to the radial component. If the

non-linearity were to be applied without bias, it would be an identity

operation, as the radius is always positive.

Pooling and unpooling Pooling layers downsample the input by

aggregating regions to representative points. We need to define an

aggregation operation suitable for surfaces and a way to choose

representative points and create regions. We use farthest point

sampling and cluster all non-sampled points to sampled points

using geodesic nearest neighbors.

The aggregation step in pooling is performed with parallel trans-

port, since the complex features of points within a pooling region

do not exist in the same coordinate system. Thus, we define the ag-

gregation step for representative point 𝑖 with points 𝑗 in its pooling

cluster C𝑖 as follows:

x𝑖 ,𝑀 = □𝑗∈C𝑖𝑃𝑗→𝑖(x𝑗 ,𝑀 ), (2.12)

where□ is any aggregation operation, such as sum, max, or mean. In

our implementation, we use mean pooling. Pooling happens within
each rotation order stream, hence the rotation order identifier 𝑀

for both x𝑖 and x𝑗 .
The sampling of points per pooling level and construction of

corresponding kernel supports are performed as a precomputation

step, so we can compute the logarithmic map and parallel transport

for each pooling level in precomputation.

Unpooling layers upsample the input by propagating the fea-

tures from the points sampled in the pooling layer to their nearest

neighbors. Parallel transport is again applied to align coordinate

systems.

Rotation orders To maintain rotation-equivariance throughout the

network, the output of the filters is separated in streams of rotation

orders. The output of a filter applied to x𝑗 ,𝑀 with rotation order 𝑚

should end up in rotation order stream 𝑀′ = 𝑀 + 𝑚. The output

from two convolutions resulting in the same stream is summed. For

example, a convolution on x𝑗 ,1 with 𝑚 = −1 and a convolution on

x𝑗 ,0 with 𝑚 = 0 both end up in the stream 𝑀′ = 0 and are summed.

A visual overview can be found in Figure 2.6, on the right. We only



18 2 Harmonic Surface Networks

apply parallel transport to inputs from the 𝑀 > 0 rotation-order

streams, as the values in the 𝑀 = 0 stream are rotation-invariant.

Properties of HSNs In the following, we show that the result

of convolutions (2.7) as well as the layers of HSNs commute with

transformations of the coordinate systems in the tangent spaces.

This means that we can choose any coordinate system in the tangent

spaces and use it to build, train, and evaluate our networks. A

different choice of the coordinate systems leads to the same network,

only with transformed features.

As a consequence, HSNs do not suffer from the rotation ambiguity

problem, which we described in the introduction. The rotation

ambiguity problem is caused by the fact that due to the curvature

of a surface, there is no consistent choice of coordinate systems on a

surface. So if a filter that is defined onℝ2
is to be applied everywhere

on the surface, coordinate systems in the tangent planes must be

defined. Since there is no canonical choice of coordinate systems, the

coordinate systems at pairs of neighboring points are not aligned.

Due to the commutativity property (Lemma 2.4.1), a convolution

layer of our HSNs can use the features that are computed in arbitrary

coordinate systems and locally align them when computing the

convolutions.

In contrast, a network without that property cannot locally align

the features. If one would want to align the coordinate systems’

features locally, they would have to recompute the features starting

from the first layer. Since this is not feasible, one needs to work

with non-aligned coordinate systems. The result is that the same

kernel is applied with different coordinate systems at each location.

Moreover, as features are combined in later layers, the network will

learn from local relations of coordinate systems. This is undesirable,

as these relations hold no meaningful information: they arise from

arbitrary circumstances and choices of coordinate systems.

To prove that the features of HSNs commute with the coordinate

changes, this property must be shown for the individual operations.

The non-linearity is invariant to changes of the basis as it only

operates on the radial coordinates. Here, we restrict ourselves to

convolution, as for pooling, one can proceed analogous to this proof.

Lemma 2.4.1 The convolution (2.7) commutes with changes of coordi-
nate systems in the tangent planes.

Proof. We represent the coordinate system of a tangent space by

specifying the 𝑥-axis. Coordinates of points are then given by a

complex number. If we rotate the coordinate system at vertex 𝑖 by

an angle of −𝜙, the features of order 𝑀 transform to

x𝑖 ,𝑀 = 𝑒 𝑖𝑀𝜙x𝑖 ,𝑀 , (2.13)
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where x𝑖 ,𝑀 is the feature in the rotated coordinate system. The

change of coordinate system also affects the polar coordinates of

any vertex 𝑗 in the tangent plane of 𝑖 and the transport of features

from any vertex 𝑗 to 𝑖

𝜃̃𝑖 𝑗 = 𝜃𝑖 𝑗 + 𝜙 𝑃̃𝑗→𝑖(x𝑗 ,𝑀 ) = 𝑒 𝑖𝑀𝜙𝑃𝑗→𝑖(x𝑗 ,𝑀 ), (2.14)

where 𝜃̃𝑖 𝑗 is the angular coordinate of 𝑗 in the tangent plane of 𝑖

with respect to the rotated coordinate system and 𝑃̃ is the transport

of features with respect to the rotated coordinate system. Then,

convolution with respect to the rotated coordinate system is given

by

x(𝑙+1)
𝑖 ,𝑀+𝑚 =

∑
𝑗∈N𝑖

𝑤 𝑗

(
𝑅(𝑟𝑖 𝑗)𝑒 𝑖 (𝑚𝜃̃𝑖 𝑗+𝛽)𝑃̃𝑗→𝑖(x(𝑙)𝑗 ,𝑀 )

)
. (2.15)

Plugging (2.14) into (2.15), we get

x(𝑙+1)
𝑖 ,𝑀+𝑚 =

∑
𝑗∈N𝑖

𝑤 𝑗

(
𝑅(𝑟𝑖 𝑗)𝑒 𝑖𝑚𝜙𝑒 𝑖 (𝑚𝜃𝑖 𝑗+𝛽)𝑒 𝑖𝑀𝜙𝑃𝑗→𝑖(x(𝑙)𝑗 ,𝑀 )

)
(2.16)

= 𝑒 𝑖 (𝑀+𝑚)𝜙x(𝑙+1)
𝑖 ,𝑀+𝑚 . (2.17)

The latter agrees with the basis transformations of the features, see

(2.13). If the coordinate system at a vertex 𝑗 that is neighboring 𝑖

is rotated by some angle, then this affects the transport of features

𝑃𝑗→𝑖 from 𝑗 to 𝑖 and the feature x(𝑙)
𝑗 ,𝑀

. However, since the transport

and feature are rotated by the same angle but in opposite directions,

the term 𝑃𝑗→𝑖(x(𝑙)𝑗 ,𝑀 ) is not affected.

We visualize the convolution of a simple 𝑚 = 0 feature with

𝑚 = 0 and 𝑚 = 1 filters in Figure 2.5. For each example, 𝛽 = 0

and 𝑅(𝑟) = 1 − 𝑟. The inputs are basic patterns: a) a vertical edge,

b) a diagonal edge, c) two vertical edges, and d) two horizontal

edges. We observe that 𝑚 = 0 convolutions smooth the signal and

𝑚 = 1 convolutions activate on edge boundaries. We can also see

Equation 2.13 at work: the input in a) and b) differs by a 45°-rotation

of the domain. The 𝑚 = 0 outputs therefore are related by the same

rotation of the domain. The equivariant𝑚 = 1 outputs are related by

a rotation of the domain and an additional rotation of the features.

The same holds for c) and d), now with a rotation by 90°.

Discretization In this chapter, we detail Harmonic Surface Net-

works for meshes, as they are sparse and convenient representations

of surfaces. Yet, we have attempted to formulate the building blocks

for HSNs as general as possible. Thus, one could replace the use of

the words ‘mesh’ and ‘vertex’ with ‘point cloud’ and ‘point’ and the

method would remain largely the same. The main differences would
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Figure 2.5: Examples of simple input

vector fields (one feature) and the re-

sponse of a convolution with 𝑚 = 0

and 𝑚 = 1 kernels.
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be (1) how to compute the logarithmic map and parallel transport

and (2) how to define a weighting per point. The first question has

been answered by [204]: the Vector Heat method can compute a

logarithmic map for any discretization of a surface. The latter can

be resolved with an appropriate integral approximation scheme.

2.5 Experiments

The goal of our experiments is twofold: we will substantiate our

claims about improved performance with comparisons against state-

of-the-art methods and we aim to evaluate properties of HSNs in

isolation, in particular the benefits of the multi-stream architecture

and rotation-equivariance.

2.5.1 Implementation

In the following paragraphs we discuss the architecture and data

processing used in our experiments.

Following recent works in geometric deep learning [230, 85, 184],

we employ a multi-scale architecture with residual connections.

More specifically, we recreate the deep U-ResNet architecture from

[184]. The U-ResNet architecture consists of four stacks of ResNet

blocks, organized in a U-Net architecture with pooling and unpool-
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Figure 2.6: HSN U-ResNet architecture used for correspondence and shape segmentation. On on the left, the full architecture; on

the right, a detail of the ResNet Block.

ing layers (Figure 2.6). Each stack consists of two ResNet blocks,

which, in turn, consist of two convolutional layers with a residual

connection. We use 16 features in the first scale and 32 features in the

second scale. Finally, we configure our network with two rotation

order streams: 𝑀 = 0 and 𝑀 = 1, learning a rotation-equivariant

kernel for every connection between streams.

For pooling operations, we sample a quarter of the points on

the surface using farthest point sampling and take the average

of the nearest neighbors. These neighbors are computed with the

Heat Method [36], by diffusing indices from sampled points to all

other points with a short diffusion time (𝑡 = 0.0001). With each

pooling step, we grow the filter support by 1/
√

ratio. Thus, we grow

the radius with a factor 2. At the unpooling stage, we propagate

the features from the points sampled in the pooling stage to the

nearest neighbors, using parallel transport. We use ADAM [111] to

minimize the negative log-likelihood and train for 100 epochs on

correspondence and 50 epochs for shape segmentation and mesh

classification.

For each experiment, we normalize the scale of each shape, such

that the total surface area is equal to 1. We then compute local

supports for each vertex 𝑖 by assigning all points within a geodesic

disc of radius 𝜖 to its neighborhood N𝑖 . We normalize the weighting

described in Equation 2.8 by the sum of weights for each neighbor-

hood, to compensate for the different sizes of support of the filters

in the different layers, in particular, after pooling and unpooling.

Next, we employ the Vector Heat Method out of the box [204, 203]

to compute the logarithmic map and parallel transport for each

neighborhood. For our multi-scale architecture, we first compute

local supports for each scale and coalesce the resulting graph

structures into one multi-scale graph. This way, we can precompute

the necessary logarithmic maps in one pass. Wherever we can, we

use raw xyz-coordinates as input to our network. To increase the

robustness of the network against transformations of the test set, we

randomly scale and rotate each shape with a factor sampled from



22 2 Harmonic Surface Networks

Table 2.1: Results for shape classifica-

tion on 10 training samples per class of

HSN against previous work.

Method Accuracy

HSN (ours) 96.1%
MeshCNN 91.0%

GWCNN 90.3%

GI 88.6%

MDGCNN 82.2%

GCNN 73.9%

SG 62.6%

ACNN 60.8%

SN 52.7%

U(0.85, 1.15) and U(− 1

8
𝜋, 1

8
𝜋), respectively. For correspondence,

we use SHOT descriptors, to provide a clean comparison against

previous methods.

The networks are implemented using PyTorch Geometric [63].

The implementation can be retrieved from

https://github.com/rubenwiersma/hsn.

2.5.2 Comparisons

Following from the benefits outlined in the introduction, we ex-

pect HSNs to show improved results over existing spatial methods,

even though fewer parameters are used for each kernel. We ex-

perimentally validate these expected benefits by applying HSN on

three tasks: shape classification on SHREC [135], correspondence on

FAUST [12], and shape segmentation on the human segmentation

dataset proposed by [152].

Shape classification We train an HSN to perform classification on

the SHREC dataset [135], consisting of 30 classes (Figure 2.7). We

only train on 10 training samples per class. Like [85], we take multiple

random samplings from the dataset to create these training sets and

average over the results. We train for 50 epochs, compared to the 200

epochs used in previous works. This task is challenging due to the

low number of training samples and labels. Therefore, we reduce

the size of our network and consequently, the number of parameters

to learn. We only use the first half of the U-ResNet architecture,

with only one ResNet block per scale. To obtain a classification, we

retrieve the radial components from the last convolutional layer,

followed by a global mean pool. The initial radius of our filters is

𝜖 = 0.2 and the number of rings in the radial profile is 6.

For our comparisons, we cite the results from [85] and [58],

comparing our method to MeshCNN [85], SG [21], SN [252], GI

[210], and GWCNN [58]. Additionally, we train MDGCNN [184],

GCNN [155], and ACNN [13] with the exact same architecture as

Figure 2.7: Two example classes with

four shapes each from the SHREC

shape classification dataset.

https://github.com/rubenwiersma/hsn
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Table 2.2: Results for shape segmenta-

tion by HSN and related methods.

Method # Features Accuracy

HSN (ours) 3 91.14%

MeshCNN 5 92.30%
SNGC 3 91.02%

PointNet++ 3 90.77%

MDGCNN 64 89.47%

Toric Cover 26 88.00%

DynGraphCNN 64 86.40%

GCNN 64 86.40%

ACNN 3 83.66%

HSN. The results are outlined in Table 2.1. HSN outperforms all

previous methods, demonstrating the effectiveness of our approach,

even for lower training times. One explanation for the large gap

in performance is the low number of training samples. HSN uses

fewer parameters, resulting in fewer required training samples. This

is supported by results in [247], who also show higher performance

for small datasets compared to other methods. The low number of

samples also explains why some non-learning methods outperform

learning methods. An additional problem faced by ACNN is the low

quality of the meshes, resulting in a disparate principal curvature

field. This obstructs the network from correctly relating features at

neighboring locations and degrades performance. This same effect

is observed when applying HSN without parallel transport, aligned

to principal curvature directions (Table 2.5).

Shape segmentation Next, we demonstrate HSN on shape seg-

mentation. We train our network to predict a body-part annotation

for each point on the mesh. We evaluate our method on the dataset

proposed by Maron et al. [152], which consists of shapes from FAUST

(𝑛 = 100) [12], SCAPE (𝑛 = 71) [7], Adobe Mixamo (𝑛 = 41) [1],

and MIT (𝑛 = 169) [232] for training and shapes from the human

category of SHREC07 (𝑛 = 18) for testing. The variety in sources

provides a variety in mesh structures as well, which tests HSN’s

robustness to changes in mesh structure.

We use the U-ResNet architecture, providing xyz-coordinates

as input and evaluate the class prediction directly from the final

convolutional layer. The logarithmic map and parallel transport

are computed using the original meshes from [152]. To limit the

training time, 1024 vertices are sampled on each mesh using farthest

point sampling to be used in training and testing. This type of

downsampling is also applied by [85] (to 750 vertices) for similar

reasons. The initial support of our kernels is 𝜖 = 0.2 and the number

of rings in the radial profile is 6.

We report the accuracy as the fraction of vertices that was classified

correctly across all test shapes. For the comparisons, we cite the

results from [184], [84] and [85]. HSN produces competitive results

compared to state-of-the-art methods, performing only slightly

worse than MeshCNN.

Figure 2.8: Vector-valued featuremap

and label predictions from our Har-

monic Surface Network trained on

shape segmentation.
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(a) Fraction of correspondences for a given geodesic error on

the remeshed FAUST dataset using HSN (ours), MDGCNN,

GCNN, PointNet++, and DGCNN.
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(b) Fraction of correspondences for a given geodesic error

on the original FAUST dataset using HSN (ours), MDGCNN,

and GCNN. Note: the x axis is set to logarithmic scale.

To understand the complex features learned by the network, we

visualize the features on the model, alongside our predictions for

segmentation. We can interpret the complex features as intrinsic

vectors on the surface and visualize them as such using Polyscope

[200]. Figure 2.8 shows a single feature in the 𝑀 = 1 stream from

the second-to-last layer. We observe high activations on certain

bodyparts (legs, hands) and note that the intrinsic vectors are aligned.

Our interpretation is that the corresponding filter ‘detects’ legs and

hands. The alignment of features is beneficial to the propagation

of these activations through the network; if features are oriented in

opposing directions, they can cancel each other out when summed.

Correspondence Correspondence finds matching points between

two similar shapes. We evaluate correspondence on the widely used

FAUST dataset [12]. FAUST consists of 100 scans of human bodies in

10 different poses with ground-truth correspondences. We set up

the network to predict the index of the corresponding vertex on the

ground-truth shape. To this end, we add two fully connected layers

(FC256, FC𝑁vert) after the U-ResNet architecture. The initial radius

of our filters is 𝜖 = 0.1 and the number of rings in the radial profile

is 2.

Figure 2.10: Geodesic error visualised

on the test shapes, shown: the first test

shape for MDGCNN and HSN, for both

the original and remeshed dataset.
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We train on the first 80 shapes and report the fraction of correct

correspondences for a given geodesic error on the last 20 models

(Figures 2.9a and 2.9b). As input to our network, we provide 64-

dimensional SHOT descriptors, computed for 12% of the shape area.

Similar to Poulenard and Ovsjanikov [184], we train our network on

a remeshed version of the FAUST dataset as well, since the original

FAUST dataset exhibits the same connectivity between shapes. The

remeshed dataset is a challenge that is more representative of

real applications, where we cannot make any assumptions about

the connectivity or discretization of our input. Having recreated

the same architecture, with the same input features, we can fairly

compare our method to MDGCNN and report the results obtained

by Poulenard and Ovsjanikov [184].

The results in Figures 2.9a, 2.9b, and 2.10 show that HSN out-

performs the compared state-of-the-art methods. More importantly,

HSN improves existing results on the remeshed FAUST dataset,

demonstrating the robustness of the method to changes in the

discretization of the surface.

Parameter count and memory usage The following calculation

shows that HSN achieves this performance using fewer parameters

and with less impact on memory during computation. Let 𝑛𝑖 and 𝑛𝑜
be the number of input and output features, 𝑛𝜌 and 𝑛𝜃 the number

of rings and angles on the polar grid, and 𝑛𝑚 the number of rotation

order streams. MDGCNN [184] and GCNN [155] learn a weight

matrix for every location on a polar grid, resulting in a parameter

complexity of 𝑂(𝑛𝑖 𝑛𝑜 𝑛𝜌 𝑛𝜃). HSN learns the same weight matrix,

but only for the radial profile and the phase offset. We chose to learn

these weights separately for every connection between streams,

resulting in a parameter complexity of 𝑂(𝑛𝑖 𝑛𝑜 (𝑛𝜌 + 1) 𝑛2

𝑚). If one

chooses to learn weights per stream, which the original H-Nets

opt for, this is reduced to 𝑂(𝑛𝑖 𝑛𝑜 (𝑛𝜌 + 1) 𝑛𝑚). Removing the de-

pendency on 𝑛𝜃 has a high impact on the number of parameters:

for 𝑛𝜌 = 2 and 𝑛𝜃 = 8, HSN uses 75% of the parameters used by

MDGCNN [184] (122880 vs. 163840), only considering the convolu-

tional layers. If we were to use the same number of rings and angles

as used by GCNN [155], 𝑛𝜌 = 5 and 𝑛𝜃 = 16, HSN would use only

30% of the parameters used by other spatial methods.

Concerning space complexity, MDGCNN [184] stores the result

from every rotation throughout the network, multiplying the mem-

ory complexity of the model by the number of directions used,

which tends to be between 8 and 16. In comparison, HSN’s complex-

valued features only increase the memory consumption for storing

the separate streams and complex features. For two streams, this

increases the space complexity by a factor of 4. This is important

for the ability to scale our method to higher-resolution shapes and

larger datasets, necessary for use in applications.
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Figure 2.11: Architecture for classifica-

tion of Rotated MNIST.

M = 0

M = 1

= Conv and ℂ-ReLU = pooling = global mean pool

81 8 8 16 16 16 32 32 10

8 8 8 16 16 16 32 32

Figure 2.12: Rotated MNIST mapped

to a sphere

Table 2.3: Results of HSN tested on Ro-

tated MNIST mapped to a sphere for

a single- and double-stream configura-

tion.

Method Streams Accuracy

HSN 0, 1 94.10%
HSN 0 70.68%

HSN (param x4) 0 75.57%

2.5.3 Evaluation

Aside from comparisons with other methods, we intend to get a

deeper understanding of the properties of HSN; specifically, the

benefit of the 𝑀 = 1 stream w.r.t. rotation-invariant methods and a

single 𝑀 = 0 stream.

To evaluate the benefit of different rotation order streams in

our method, we compare two different stream configurations of

our method: a single-stream architecture (𝑀 = 0) and a double-

stream architecture (𝑀 = 0 and 𝑀 = 1). We limit this experiment

to only these two configurations, because (1) experiments from

[247] demonstrate that rotation order streams of 𝑀 > 1 do not

significantly improve the performance of the network and (2) the

𝑀 = 0 and 𝑀 = 1 stream features have an intuitive interpretation

on the surface as scalar values and intrinsic vectors, respectively.

We evaluate the two configurations on a new task: classification

of digits from the Rotated MNIST mapped to a sphere, as well as the

shape segmentation and classification tasks from the comparison

experiments.

Rotated MNIST on a sphere. We use an elliptical mapping [66]

to map the grayscale values from the images of the Rotated MNIST

dataset [125] to the vertices of a unit sphere with 642 vertices. The

Rotated MNIST dataset consists of 10000 randomly rotated training

samples, 2000 validation samples, and 50000 test images separated

in 10 classes. We use an architecture similar to the one in [247]:

Conv8, Conv8, Pool0.5, Conv16, Conv16, Pool0.25, Conv32, Conv32,

Conv10 (Figure 2.11). The kernel supports for each scale are the

following: 0.3, 0.45, 0.8 (the geodesic diameter of the unit sphere is

𝜋).

The two stream architecture demonstrates significant improve-

ment over the single-stream architecture with a higher parameter

count to compensate for using only one stream: 94.10% vs. 75.57%
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Table 2.4: Results of HSN tested on

shape segmentation for multiple con-

figurations.

Method Streams Accuracy

HSN 0, 1 91.14%

HSN 0 88.74%

HSN (param ×4) 0 87.25%

HSN (pc aligned) 0, 1 86.22%

Table 2.5: Results of HSN tested on clas-

sification for multiple configurations.

Method Streams Accuracy

HSN 0, 1 96.1%

HSN 0 86.1%

HSN (pc aligned) 0, 1 49.7%

(Table 2.3). This affirms the benefit of rotation-equivariant streams

for learning signals on surfaces.

Shape Segmentation and Classification We repeat our experi-

ments for shape segmentation and classification in four different

configurations: the double-stream configuration used in section 5.2;

a single-stream configuration; a single-stream configuration with

four times the parameters; and the double stream configuration

aligned to a smoothed principal curvature field, instead of local

alignment with parallel transport. The single-stream configurations

aim to provide insight into the benefit of the rotation-equivariant

stream and to rule out the sheer increase in parameters as the cause

of this performance boost. The last configuration shows the benefit

of locally aligning rotation-equivariant features over aligning ker-

nels to smoothed principal curvature fields, as is done by ACNN

[13].

The results in Table 2.4 and Table 2.5 show that the double-stream

architecture improves the performance from satisfactory to compet-

itive. Furthermore, an increase in parameters has a negative impact

on performance, likely due to the relatively low number of training

samples. This becomes even more apparent when comparing the

learning curves for each configuration in Figure 2.13: the double-

stream configuration is more stable and performs better than both

single-stream configurations. These results support the benefit of

the rotation-equivariant stream.

Finally, we find that HSN performs significantly better when using

parallel transport than when aligned with a smoothed principal

curvature direction (pc aligned): for shape segmentation, the benefit

introduced by the 𝑀 = 1 stream is diminished, and for shape

classification, we observe a large drop in performance, likely induced

by the coarseness of the meshes and the resulting low-quality

principal curvature fields.
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Figure 2.13: Validation accuracy per

training epoch several configurations

of HSN on shape segmentation.
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2.6 Conclusion

We introduce Harmonic Surface Networks, an approach for deep

learning on surfaces operating on vector-valued, rotation-equivariant

features. This is achieved by learning circular harmonic kernels and

separating features in streams of different equivariance classes. The

advantage of our approach is that the rotational degree of freedom,

arising when a filter kernel is transported along a surface, has no

effect on the network. The filters can be evaluated in arbitrarily

chosen coordinate systems. Due to the rotation-equivariance of the

filters, changes in the coordinate system can be recovered after the

convolutions have been computed by transforming the results of

the convolution. The convolution operator uses this property and

always locally aligns the features.

We implement this concept for triangle meshes and develop con-

volution filters that have the desired equivariance properties at the

discrete level and allow for separating learning of parameters in the

radial and angular direction. We demonstrated in our comparisons

that HSNs are able to produce competitive or better results with

respect to state-of-the-art approaches and analyzed the benefits of

rotation-equivariant streams as an addition to rotation-invariant

streams and parallel transport for local alignment compared to

global alignment.

While we only implemented our method for meshes, every com-

ponent of HSNs can be transferred to point clouds. We aim to extend

our implementation and evaluate the benefits of HSNs for learning

on point clouds.

Another promising direction is the application of outputs from

the rotation-equivariant stream. We expect that the ability to learn

intrinsic vectors on a surface can facilitate new applications in

graphics and animation.



DeltaConv:
Anisotropic Operators for Geometric

Deep Learning on Point Clouds 3

Learning from 3D point-cloud data has rapidly gained momentum,
motivated by the success of deep learning on images and the increased
availability of 3D data. In this chapter*, we aim to construct anisotropic
convolution layers that work directly on the surface derived from a point
cloud. This is challenging because of the lack of a global coordinate system for
tangential directions on surfaces. We introduce DeltaConv, a convolution
layer that combines geometric operators from vector calculus to enable the
construction of anisotropic filters on point clouds. Because these operators
are defined on scalar- and vector-fields, we separate the network into a
scalar- and a vector-stream, which are connected by the operators. The
vector stream enables the network to explicitly represent, evaluate, and
process directional information. Our convolutions are robust and simple to
implement and match or improve on state-of-the-art approaches on several
benchmarks, while also speeding up training and inference.

Figure 3.1: Images have a global coor-

dinate system (left). Point clouds do

not (right), complicating the design of

anisotropic convolutions.

*
This chapter is based on the paper “DeltaConv: Anisotropic Operators for Geometric

Deep Learning on Point Clouds” published in ACM Transactions on Graphics

(SIGGRAPH 2022) [246].
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3.1 Introduction

The success of convolutional neural networks (CNNs) on images and

the increasing availability of point-cloud data motivate generalizing

CNNs from images to 3D point clouds [82, 143, 23]. One way to

achieve this is to design convolutions that operate directly on the sur-

face. Such intrinsic convolutions reduce the kernel space to tangent

spaces, which are two-dimensional on surfaces. Compared to extrin-

sic convolutions, intrinsic convolutions can be more efficient and

the search space for kernels is reduced, they naturally ignore empty

space, and they are robust to rigid- and non-rigid deformations [13].

Examples of intrinsic convolutions on point clouds are GCN [112],

PointNet++ [187], EdgeConv [236], and DiffusionNet [201].

Our focus is on constructing intrinsic convolutions which are

anisotropic or direction-dependent. This is difficult because of the

fundamental challenge that non-linear manifolds lack a global

coordinate system. As an illustration of the problem, consider a

CNN on images (Figure 3.1, left). Because an image has a globally

consistent up-direction, the network can build anisotropic filters that

activate the same way across the image. For example, one filter can

test for vertical edges and the other for horizontal edges. No matter

where the edges are in the image, the filter response is consistent.

In subsequent layers, the output of these filters can be combined,

e.g., to find a corner. Because we do not have a global coordinate

system on surfaces (Figure 3.1, right), one cannot build and use

anisotropic filters in the same way as on images. This limits current

intrinsic convolutions on point clouds. For example, GCNs filters

are isotropic. PointNet++ uses maximum aggregation and adds

relative point positions, but still applies the same weight matrix to

each neighboring point.

We introduce a new way to construct anisotropic convolution

layers for geometric CNNs. Our convolutions are described in terms

of geometric operators instead of kernels. The operator-based per-

spective is familiar from GCN, which uses the Laplacian on graphs.

While the Laplacian is a natural fit for intrinsic learning on surfaces,

it is isotropic. A classical way of creating anisotropic operators is to

write the Laplacian as the divergence of the gradient and apply a

linear or non-linear operation on the intermediate vector field [240].

We build on this idea by constructing learnable anisotropic opera-

tors from elemental geometric operators: the gradient, co-gradient,

divergence, curl, Laplacian, and Hodge-Laplacian. These operators

are defined on spaces of scalar fields and tangential vector fields.

Hence, our networks are split into two streams: one stream contains

scalars and the other tangential vectors. The operators map along

and between the two streams. The vector stream encodes feature

activations and directions along the surface, allowing the network

to test and relate directions in subsequent layers. Depending on the
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Figure 3.2: A ResNet with varying con-

volutions is overfitted to a target image

created with twenty anisotropic diffu-

sion steps. DeltaConv can reproduce

the filter well, where other convolu-

tions struggle. (Courtesy NASA)

task, the network outputs scalars or vectors. A property of a network

constructed from these operators is that it is coordinate-independent:

though bases of the tangent spaces of a point cloud need to be cho-

sen, the weights learned by the network will be the same no matter

what bases are chosen. Hence, we can realize direction-dependent

convolutions despite the lack of global coordinate systems on sur-

faces and without the need of specially constructed tangent space

bases. We name our convolutions DeltaConv.

To get an idea of the benefits of DeltaConv, consider the anisotropic

image filter proposed by Perona and Malik [181]. The Perona–Malik

filter integrates an anisotropic diffusion equation in which the

anisotropic operator combines the gradient, a non-linearity, and the

divergence. DeltaConv has access to the building blocks needed

to construct such an anisotropic operator and to perform explicit

integration steps of the diffusion equation. This is illustrated in

Figure 3.2. We trained a simple ResNet [87] to match the result

of twenty anisotropic diffusion steps on a sample image. While

DeltaConv can reproduce the filter well, other intrinsic convolutions

and regular image convolutions fail to capture the effect, producing

overly smooth signals or artifacts instead. Additional benefits of

our approach are the following: by maintaining a stream of vector

features throughout the network, our convolutions can relate direc-

tional information between different points on the surface. Together

with the increased expressiveness of convolutions due to anisotropy,

this results in increased accuracy over isotropic convolutions, as

well as state-of-the-art approaches, as we show in our experiments.

Also, each operator is implemented as a sparse matrix and the

combination of operators is computed per point, which is simple

and efficient.

In our experiments, we demonstrate that a simple architecture

with only a few DeltaConv blocks can match and, in some cases,

outperform state-of-the-art results using more complex architectures.

We achieve 93.8% accuracy on ModelNet40, 84.7% on the most

difficult variant of ScanObjectNN, 86.9 mIoU on ShapeNet, and

99.6% on SHREC11, a dataset of non-rigidly deformed shapes. Our
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ablation studies show that adding the vector stream can decrease

the error by up to 25% (from 90.4% to 92.8%) on ModelNet40 and

up to 21% for ShapeNet (from 81.1 to 85.1 mIoU), while the use of

per-point directional features speeds up inference by 1.5 − 2× and

the backward pass by 2.5 − 30× compared to edge-based features.

Summarizing our main contributions:

▶ We introduce a new construction of convolution layers for

geometric CNNs that supports the construction of anisotropic

filters. This is achieved by letting networks learn convolutions

as compositions and linear combinations of geometric differ-

ential operators and point-wise non-linearities. Moreover, the

networks maintain a stream of vector features in addition to

the usual stream of scalar features and use the operators to

communicate in and between the streams.

▶ We propose a network architecture that realizes our approach

and adapt the differential operators to work effectively in our

networks.

▶ We implement and evaluate the network for point clouds
†

and

propose techniques to cope with undersampled regions, noise,

and missing information prevalent in point cloud learning.

3.2 Related work

We focus our discussion of related work on the most relevant topics.

Please refer to surveys on geometric deep learning [23, 22] and

point cloud learning [82, 143] for a more comprehensive overview

of this expanding field.

Point cloud networks and anisotropy A common approach for

learning on point-cloud data is to learn features for each point using

a multi-layer perceptron (MLP), followed by local or global aggrega-

tion. Many methods also learn features on local point pairs before

maximum aggregation. Well-known examples are PointNet and its

successor PointNet++ [186, 187]. Several follow-up works improve

speed and accuracy, for example by adding more combinations of

point-pair features [270, 220, 261, 126, 146, 188, 256, 149]. Some of

these point-wise MLPs explicitly encode anisotropy by splitting

up the MLP for each 3D axis [123, 146]. Concepts from transform-

ers [228] have also made their way to point clouds [271, 264, 137].

These networks use self-attention to compute aggregation weights

for (neighboring) points. Spatial information is incorporated by

adding relative positions in 3D. Attention-based aggregation could

be used in our approach as a replacement of maximum aggregation.

The distance between points could serve as an intrinsic spatial

encoding.

†
The implementation is available at https://github.com/rubenwiersma/deltaconv.

https://github.com/rubenwiersma/deltaconv
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Pseudo-grid convolutions are a more direct translation of image

convolutions to point clouds. Many of these are defined in 3D and

thus support anisotropy in 3D coordinates. Several works learn a

continuous kernel and apply it to local point-cloud regions [145, 17,

144, 224, 250, 92, 8, 64, 255]. Others learn discrete kernels and map

points in local regions to a discrete grid [97, 128, 133, 30, 76]. We

go into an orthogonal direction by building intrinsic convolutions,

which operate in fewer dimensions and naturally generalize to

(non-)rigidly deformed shapes.

Finally, graph-based approaches create a k-nearest neighbor- or

radius-graph from the input set and apply graph convolutions [209,

236, 265, 141, 205, 48, 28, 223, 62, 234, 268, 177]. DGCNN [236]

introduces the EdgeConv operator and a dynamic graph component,

which reconnects the k-nearest neighbor graph inside the network.

EdgeConv computes the maximum over feature differences, which

allows the network to represent directions in its channels. Channel-

wise directions can resemble spatial directions if spatial coordinates

are provided as input, which is only the case in the first layer for

DGCNN. In contrast, our convolutions support anisotropy directly

in the operators.

Rotation-equivariant approaches Architectures with two streams

and vector-valued features are also used in rotation-equivariant

approaches for point clouds and meshes. A group of works stud-

ies rotation-equivariance in 3D space, aiming to design networks

invariant to rigid point-cloud transformations [57, 225, 31, 185].

This concept is also incorporated in the transformer setups [68].

Rotation-equivariant kernels typically output vector-valued features.

Vector Neurons simplify their use by linearly combining 3D vectors,

followed by a vector non-linearity [42]. Our use of vector MLPs is

similar. Differences are that we use tangential vectors, rather than

3D vectors, and we derive these vectors inside the network using

geometric operators.

An alternative approach is to build networks using intrinsic

rotation-equivariant convolutions on meshes [40, 244, 32, 184, 242,

72]. These networks use local parametrizations and apply rotation-

or gauge-equivariant kernels in the parameter domain to achieve

independence from the choice of bases in the tangent spaces. Our

approach is an alternative to gauge-equivariant networks. The use

of differential operators also makes our networks independent of

the choice of local coordinate systems. A benefit of our approach

is that local parametrizations are not needed. For example, gauge-

equivariant approaches typically use the exponential map for local

parametrization but neglect the angular distortion induced by the

parametrization. To the best of our knowledge, we are the first to

implement and evaluate an intrinsic two-stream architecture on

point clouds.
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Geometric operators Multiple authors use geometric operators to

construct convolutions. The graph-Laplacian is used in GCN [112].

Spectral networks for learning on graphs are based on the eigen-

pairs of the graph-Laplacian [24]. Surface networks for triangle

meshes [117] interleave the Laplacian with the extrinsic Dirac op-

erator [139]. Parametrized Differential Operators (PDOs) [105] use

the gradient and divergence operators to learn from spherical sig-

nals on unstructured grids. DiffGCN [54] uses finite difference

schemes of the gradient and divergence operators for the construc-

tion of graph networks. DiffusionNet [201] learns diffusion using the

Laplace–Beltrami operator and directional features from gradients.

DeltaConv uses a larger set of operators, combining and concate-

nating operators from vector calculus. In addition, it allows the

processing of directional information in the stream of vector-valued

features. A related approach is HodgeNet [212], which learns to

build operators using the structure of differential operators. Outside

of deep learning, differential operators are widely applied for the

analysis of 3D shapes [35, 39].

3.3 Method

We construct anisotropic convolutions by learning combinations of

geometric differential operators. Because these operators are defined

on scalar- and vector fields, we split our network into scalar and

vector features. In this section, we describe these two streams, the

operators and how they are discretized, and how combinations of

the operators are learned. Finally, we consider the properties that

result from this construction.

Streams Consider a point cloud P ∈ ℝ𝑁×3
with𝑁 points arranged

in an 𝑁 × 3 matrix. All points can be associated with 𝐶 additional

features, which are stored in a matrix X ∈ ℝ𝑁×𝐶
. Inside the network,

we refer to the features in layer 𝑙 at point 𝑖 as x(𝑙)
𝑖
∈ ℝ𝐶𝑙 . All of these

features constitute the scalar stream.

The vector stream runs alongside the scalar stream. Each feature

in the vector stream is a tangent vector, encoded by coefficients

(𝛼𝑢
𝑖
, 𝛼𝑣

𝑖
) with respect to a basis in the corresponding tangent plane.

The basis can be any pair of orthonormal vectors that are orthogonal

to the normal vector. The coefficients are interleaved for each point,

forming the matrix of features V(𝑙) ∈ ℝ2𝑁×𝐶𝑙
. One channel in V(𝑙)

is a column of coefficients: [𝛼𝑢
1
, 𝛼𝑣

1
, . . . , 𝛼𝑢

𝑖
, 𝛼𝑣

𝑖
, . . . , 𝛼𝑢

𝑁
, 𝛼𝑣

𝑁
]⊺ . The

input for the vector stream is a vector field defined at each point.

In our experiments, we use the gradients of the input to the scalar

stream. We will refer to the continuous counterparts of X and V as

𝑋 and 𝑉 , respectively.
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3.3.1 Scalar to scalar: maximum aggregation

A simplified version of point-based MLPs is applied inside the scalar

stream, building on PointNet++ [187] and EdgeConv [236]. We apply

an MLP per point and then perform maximum aggregation over

a 𝑘-nn neighborhood N(𝑖). The features in the scalar stream are

computed as

x(𝑙+1)
𝑖

= ℎΘ0 (x
(𝑙)
𝑖
) + max

𝑗∈N(𝑖)
ℎΘ1 (x

(𝑙)
𝑗
), (3.1)

where ℎΘ0 and ℎΘ1 denote multi-layer perceptrons (MLPs), con-

sisting of fully connected layers, batch normalization [101], and

non-linearities. If point positions are used as input, they are central-

ized before maximum aggregation: p𝑗 = p𝑗 − p𝑖 .
The biggest difference with EdgeConv and PointNet++ is that

we use only point-based features within the network instead of

edge-based features. The matrix multiplication used inside the

MLP is thus not applied to 𝑘𝑁 feature vectors, but 𝑁 point-wise

feature vectors. This has a significant impact on the run time of the

forward and backward passes. Directional information is encoded

in per-point vectors instead of edges.

3.3.2 Scalar to vector: Gradient and co-gradient

The gradient and co-gradient operators connect the scalar stream to

the vector stream. The gradients of a function represent the largest

rate of change and the directions of that change as a vector at each

point. The co-gradients are 90-degree rotations of the gradients.

Combined, the gradients and co-gradients span the tangent planes,

allowing the network to scale, skew, and rotate the gradient vectors.

We construct a discrete gradient operator using a moving least-

squares approach on neighborhoods with 𝑘 neighbors [167]. This

approach is used in modeling and processing for point clouds

and solving differential equations on point clouds [36, 136]. The

procedure and accompanying theory is outlined in the supplemental

material. The gradient operator is represented as a sparse matrix

G ∈ ℝ2𝑁×𝑁
. It takes 𝑁 values representing features on the points

and outputs 2𝑁 values representing the gradient expressed in

coefficients of the tangent basis of each point. The matrix is highly

sparse as it only contains 2𝑘 elements in each row. The co-gradient

JG is a composition of the gradient with a block-diagonal sparse

matrix J ∈ ℝ2𝑁×2𝑁
, where each block in J is a 2 × 2 90-degree

rotation matrix.

Point clouds typically contain undersampled regions and noise.

This can be problematic for the moving least-squares procedure.

Consider the example in Figure 3.3, a chair with thin legs. Only a

few points lie along the line constituting the legs of the chair. Hence,

the perpendicular direction to the line is undersampled, resulting



36 3 DeltaConv

Figure 3.3: Gradient of the x-coordinate

on a chair without regularization (left)

and with regularization (right).

λ = 0

�

�

λ = 0.0001

in a volatile least-squares fit: a minor perturbation of one of the

points can heavily influence the outcome (left, circled area). We

add a regularization term scaled by 𝜆 to the least-squares fitting

procedure, which seeks to mitigate this effect (right). This is a known

technique referred to as ridge regression or Tikhonov regularization.

We also argue that the gradient operator should be normalized,

motivated by how information is fused in the network. If G exhibits

diverging or converging behavior, features resulting from G will

also diverge or converge. This is undesirable when the gradient is

applied multiple times in the network. Features arising from the

gradient operation would then have a different order of magnitude

which needs to be accounted for by the network weights. Therefore,

we normalize G by the ℓ∞-operator norm, which provides an upper

bound on the scaling behavior of an operator

G = G/|G|∞ , where |G|∞ = max

𝑖

∑
𝑗

|G𝑖 𝑗 |. (3.2)

3.3.3 Vector to scalar: Divergence, Curl, and Norm

The vector stream connects back to the scalar stream with divergence,

curl, and norm. These operators are commonly used to analyze vector

fields and indicate features such as sinks, sources, vortices, and the

strength of the vector field. The network can use them as building

blocks for anisotropic operators.

The discrete divergence is also constructed with a moving least-

squares approach, which is described in the supplement. Divergence

is represented as a sparse matrix D ∈ ℝ𝑁×2𝑁
, with 2𝑘𝑁 elements.

Curl is derived as −DJ.

3.3.4 Vector to vector: Hodge Laplacian

Vector features are diffused in the vector stream using a combination

of the identity I and the Hodge Laplacian 𝚫 of 𝑉 . Applying the

Hodge Laplacian to a vector field 𝑉 results in another vector field

encoding the difference between the vector at each point and its

neighbors. The Hodge Laplacian can be formulated as a combination
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of grad, div, curl and J [20]

𝚫 = −(grad div +Jgrad curl ). (3.3)

In the discrete setting, we replace each operator with its discrete

variant

L = −(GD − JGDJ). (3.4)

3.3.5 Why these operators?

The operators we use are related to each other in a fundamental

way. They form a metric version of the de Rham complex of a surface

[238]. The following diagram lays out the connections described in

the previous sections, where each of the operators maps between

functions (scalar fields) and vector fields.

𝑋 𝑉 𝑋
grad

div

curl

co-grad

(3.5)

Note that the bottom row is a 90-degree rotated version of the top row.

If we follow the diagram from left to right and apply grad and then

curl to any function, the output will always be zero. The same holds

for the path from right to left. The operators listed are first-order

derivatives. Laplacians, which are second-order derivatives, can be

formed by composing the first-order operators. For functions: to

vector fields with grad and back again with div (Laplace-Beltrami).

For vector fields: we go to scalars with div and curl and back

again with grad and co-grad (Hodge-Laplacian). DeltaConv learns

to combine these operators and supports anisotropy by adding

non-linearities in-between.

3.3.6 DeltaConv: Learning Anisotropic Operators

Each of the operations either outputs scalar-valued or vector-valued

features. We concatenate all the features belonging to each stream

and then combine these features with parametrized functions

v′
𝑖
= hΘ0 (v𝑖 , (GX)𝑖 , (LV)𝑖),

x′
𝑖
= ℎΘ1 (x𝑖 , (DV′)𝑖 , (−DJV′)𝑖 , ∥v′𝑖 ∥) +max

𝑗∈N𝑖
ℎΘ2 (x𝑗). (3.6)

We use the prime to indicate features in layer 𝑙+1. All other features

are from layer 𝑙. ℎΘ1 and ℎΘ2 denote standard MLPs. hΘ0 denotes

an MLP used for vectors. The vector MLPs scale and sum vectors,

which means they do not work on individual vector coefficients and

are coordinate-independent. Recall that V ∈ ℝ2𝑁×𝐶(𝑙)
interleaves

the vector coefficients for each point in the columns. One layer in
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Figure 3.4: Schematic of DeltaConv.
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the vector MLP is applied to V as follows

V′ = 𝜎(VW), (3.7)

where W ∈ ℝ𝐶(𝑙)×𝐶(𝑙+1)
is a weight matrix and 𝜎 is a non-linearity

applied to vector norms. Matrix multiplication with W linearly

combines the vector features but the individual coefficients of a

vector are not mixed. Before the vector MLP is applied, we con-

catenate the 90-degree rotated vectors to the input features. This

allows the MLP to also rotate vector features and enriches the set

of operators. For example, the 90-degree rotated gradient is the

co-gradient. The vector MLP can learn to combine information from

local neighborhoods (through the gradient and Hodge–Laplacian),

as well as information from different channels (through the identity).

A schematic overview of Equation 3.6 can be found in Figure 3.4.

While Equation 3.6 formulates DeltaConv in terms of MLPs and

feature concatenation, an alternative perspective is to consider the

operations in Equation 3.6 as linearly combining the elementary

operators and composing them with non-linearities in-between to

form anisotropic geometric operators.

3.3.7 Properties of DeltaConv

The building blocks of DeltaConv, such as the gradient, divergence,

curl, and the combination with non-linearities allow DeltaConv to

build nonlinear anisotropic convolution filters. This is illustrated

by the example of the Perona–Malik filter in Figure 3.2. The vector

stream also allows DeltaConv to process vector features and their

relative directions directly with the appropriate operators.

DeltaConv is formulated in terms of smooth differential operators

and is not restricted to a specific surface representation. In this work,

we implement DeltaConv for point clouds and images. However,

the concepts generalize to other representations. For example, an

implementation for meshes could be done using finite element

discretizations [20] or discrete exterior calculus [35].

DeltaConv is coordinate-independent, meaning that the weights

used in DeltaConv do not depend on the choices of tangent bases. For
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example, a forward pass on a shape with one choice of bases leads

to the same output and weight updates when run with different

bases. The coordinate-independence follows from the fact that all

elementary operations in DeltaConv, such as applying geometric

operators and vector MLPs, are coordinate-independent. It is known

from differential geometry that one obtains the same results with

geometric operators, no matter which basis is chosen [175]. This

property is preserved by the discretization of the operators and thus

inherited by DeltaConv.

Finally, each of the building blocks of DeltaConv is isometry

invariant. That means DeltaConv does not change if a shape is

isometrically deformed. This property can be beneficial for tasks

where shapes are rigidly or non-rigidly deformed. If the surface

orientation is flipped, rotations in the tangent plane are flipped as

well. DeltaConv is robust to this if only the gradient and divergence

are used.

3.4 Experiments

We validate our approach with comparisons to state-of-the-art

approaches on classification and segmentation. In addition, we

perform ablation studies to provide more insight into the effect of

the vector stream on anisotropy, accuracy, and efficiency.

3.4.1 Implementation details

In our experiments we use network architectures based on DGCNN

[236]. We replace each EdgeConv block with a DeltaConv block

(Figure 3.4) and do not use the dynamic graph component. Thus, the

networks operate at a single scale on local neighborhoods. Despite

this simple architecture, DeltaConv achieves state-of-the-art results.

To show what architectural optimizations mean for DeltaConv, we

also test the U-ResNet architecture used in KPFCNN [224] but

with the convolution blocks in the encoder replaced by DeltaConv

blocks. In the downsampling blocks used by these networks, we

pool vector features by averaging them with parallel transport [244].

More details are provided in the supplemental material. Code is

available at https://github.com/rubenwiersma/deltaconv.

Data transforms. A 𝑘-nn graph is computed for every shape. This

graph is used for maximum aggregation in the scalar stream. It is

reused to estimate normals when necessary and to construct the

gradient. For each experiment, we use xyz-coordinates as input to

the network and augment them with a random scale and trans-

lation, similar to previous works. Some datasets require specific

augmentations, which are detailed in their respective sections.

Training. The parameters in the networks are optimized with

stochastic gradient descent (SGD) with an initial learning rate of 0.1,

https://github.com/rubenwiersma/deltaconv
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Table 3.1: Classification results on Mod-

elNet40.

Method Mean Overall

Class Accuracy Accuracy

PointNet++ [187] - 90.7

PointCNN [133] 88.1 92.2

DGCNN [236] 90.2 92.9

KPConv deform [224] - 92.7

KPConv rigid [224] - 92.9

DensePoint [144] - 93.2

RS-CNN [145] - 93.6

GBNet [189] 91.0 93.8
PointTransformer [271] 90.6 93.7

PAConv [255] - 93.6

Simpleview [75] - 93.6

Point Voxel Transformer [264] - 93.6

CurveNet [254] - 93.8

DeltaNet (ours) 91.2 93.8

momentum of 0.9 and weight decay of 0.0001. The learning rate is

updated using a cosine annealing scheduler [147], which decreases

the learning rate to 0.001.

3.4.2 Classification

For classification, we study ModelNet40 [253], ScanObjectNN [227],

and SHREC11 [135]. With these experiments, we aim to demonstrate

that our networks can achieve state-of-the-art performance on a

wide range of challenges: point clouds sampled from CAD models,

real-world scans, and non-rigid, deformable objects.

ModelNet40 The ModelNet40 dataset [253] consists of 12,311 CAD

models from 40 categories. 9,843 models are used for training and

2,468 models for testing. Each point cloud consists of 1,024 points

sampled from the surface using a uniform sampling of 8,192 points

from mesh faces and subsequent furthest point sampling (FPS).

We use 20 neighbors for maximum aggregation and to construct

the gradient and divergence. Ground-truth normals are used to

define tangent spaces for these operators and the regularizer is set

to 𝜆 = 0.01. As input to the network, we use the xyz-coordinates.

The classification architecture is optimized for 250 epochs. We do

not use any voting procedure and list results without voting.

The results for this experiment can be found in Table 3.1. Delta-

Conv improves significantly on the most related maximum aggre-

gation operators and is on par with or better than state-of-the-art

approaches.

ScanObjectNN ScanObjectNN [227] contains 2,902 unique object

instances with 15 object categories sampled from SceneNN [96]

and ScanNet [37]. The dataset is enriched to ∼ 15, 000 objects by

preserving or removing background points and by perturbing
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Method no bg bg t25 t25r t50r t50rs

3DmFV [10] 73.8 68.2 67.1 67.4 63.5 63.0

PointNet [186] 79.2 73.3 73.5 72.7 68.2 68.2

SpiderCNN [258] 79.5 77.1 78.1 77.7 73.8 73.7

PointNet++ [187] 84.3 82.3 82.7 81.4 79.1 77.9

DGCNN [236] 86.2 82.8 83.3 81.5 80.0 78.1

PointCNN [133] 85.5 86.1 83.6 82.5 78.5 78.5

BGA-PN++ [227] - - - - - 80.2

BGA-DGCNN [227] - - - - - 79.9

GBNet [189] - - - - - 80.5

GDANet [256] 88.5 87.0 - - - -

DRNet [188] - - - - - 80.3

DeltaNet (ours) 89.5 89.3 89.4 87.0 85.1 84.7

Table 3.2: Classification results on

ScanObjectNN.

Table 3.3: Classification results on

SHREC11.

Method Accuracy

MeshCNN [85] 91.0

HSN [244] 96.1

MeshWalker [121] 97.1

PD-MeshNet [160] 99.1

HodgeNet [212] 94.7

FC [162] 99.2

DiffusionNet (xyz) [201] 99.4

DiffusionNet (hks) [201] 99.5

DeltaNet (ours) 99.6

bounding boxes. The variant without background points is tested

without any perturbations (no bg). The variant with background

points is both tested without (bg) and with perturbations: Bounding

boxes are translated (t), rotated (r), and scaled (s) before each shape

is extracted. This means that some shapes are cut off, rotated, or

scaled. t25 and t50 denote a translation by 25% and 50% of the

bounding box size, respectively.

We use a modified version of the classification architecture with

four convolution blocks with the following output dimensions: 64,

64, 64, 128. This setup matches the architecture used for DGCNN

in [227]. Normals are estimated with 10 neighbors per point and

the operators are constructed with 20 neighbors and 𝜆 = 0.001. As

input, we provide the xyz-positions, augmented with a random

rotation around the up-axis and a random scale 𝑆 ∈ U(4/5, 5/4).
The network is trained for 250 epochs.

Our results are compared to those reported by the authors of

ScanObjectNN (row 1-8) [227] and other recent approaches in Ta-

ble 3.2. We find that our approach outperforms all networks for every

type of perturbation, including networks that explicitly account for

background points.

SHREC11 The SHREC11 dataset [135] consists of 900 non-rigidly

deformed shapes, 30 each from 30 shape classes. This experiment

aims to validate the claim that our approach is well suited for non-

rigid deformations. Like previous works [85, 244, 201], we train on

10 randomly selected shapes from each class and report the average

over 10 runs. We sample 2048 points from the simplified meshes

used in MeshCNNs experiments [85] and use 20 neighbors and

mesh normals to construct the operators (𝜆 = 0.001). As input, we

provide xyz-coordinates, which are randomly rotated along each

axis. We decrease the number of parameters in each convolution of

the classification architecture to 32, since the dataset is much smaller

than other datasets. The network is trained for 100 epochs. We find
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Table 3.4: Part segmentation results on

ShapeNet.

Method Mean

inst. mIoU

PointNet++ [187] 85.1

PointCNN [133] 86.1

DGCNN [236] 85.2

KPConv deform [224] 86.4

KPConv rigid [224] 86.2

GDANet [256] 86.5

PointTransformer [271] 86.6

PointVoxelTransformer [264] 86.5

CurveNet [254] 86.8

DeltaNet (ours) 86.6

Delta-U-ResNet (ours) 86.9

that our architecture is able to improve on state-of-the-art results

(Table 3.3), validating the effectiveness of our intrinsic approach on

deformable shapes.

3.4.3 Segmentation

For segmentation, we evaluate our architecture on ShapeNet (part

segmentation) [263]. ShapeNet consists of 16,881 shapes from 16

categories. Each shape is annotated with up to six parts, totaling

50 parts. We use the point sampling of 2,048 points provided by

the authors of PointNet [186] and the train/validation/test split

follows [26]. The operators are constructed with 30 neighbors and

ground-truth normals to define tangent spaces (𝜆 = 0.001). The

xyz-coordinates are provided as input to the network, which is

trained for 200 epochs. During testing, we evaluate each shape with

ten random augmentations and aggregate the results with a voting

procedure. Such a voting approach is used in the most recent works

that we compare with.

The results are shown in Table 3.4, where our approach, especially

the U-ResNet variant, improves upon the state-of-the-art approaches

on the mean instance IoU metric and in many of the shape cate-

gories (full breakdown in the supplemental material). For each

category, DeltaConv is either comparable to or better than other

architectures and significantly better than the most related intrinsic

approaches (PointNet++ and DGCNN). In Figure 3.5, we provide

feature visualizations to give an idea of the features derived by the

network.

3.4.4 Ablation Studies

We aim to validate the claim of anisotropy, isolate the effect of the

vector stream, validate the choices to regularize and normalize the

gradient and divergence operators, and investigate the impact of our

approach on the timing and parameter counts of these networks.

Anisotropy To validate that DeltaConv supports anisotropy, we

train a network to mimic anisotropic diffusion [181]. A ResNet [87]

with 16 layers and 16 channels in the hidden layers is trained for 100

iterations with Adam [111] to match a target image generated with

20 anisotropic diffusion steps. In each diffusion step, the gradients

are scaled with exp(−(|𝑣 |/0.05)2). We vary the convolution blocks in

the network with the ones from DiffusionNet [201], EdgeConv [236],

PointNet++ [187], GCN [112], and regular image CNNs. For Dif-

fusionNet, we set the diffusion time to a fixed value, as we are

interested in the ability of the convolution to derive anisotropic

filters through its gradient features. For all other convolutions, the
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Figure 3.5: For each layer of the net-

work, we show how a single scalar-

or vector-feature varies over shapes in

ShapeNet. The last row shows the out-

put of the network. The features tend

to activate on similar regions.

neighborhoods are 3x3 pixel blocks. The results are shown in Fig-

ure 3.2 and in the supplement. DeltaConv achieves a good match.

The other operators tend to blur the image or produce artifacts. For

PointNet and EdgeConv, this is likely due to the variable nature

and sharpness of the maximum aggregation. DiffusionNet lacks

the divergence and curl operators and does not maintain a vector

stream, which is necessary to analyze the relative directions of vector

features in local neighborhoods.

Effectiveness of vector stream To study the benefit of the vector

stream and its effect on different types of intrinsic scalar convolu-

tions, we set up three different scalar streams: (1) a Laplace–Beltrami

operator, Δ = −div grad, (2) GCN [112], and (3) maximum aggre-

gation (Equation 3.1). We test three variants of each network: (1)

only scalar stream, (2) scalar stream with the number of parameters

adjusted to match a two-stream architecture, and (3) both the scalar

and vector stream.
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Table 3.5: Ablations of DeltaConv on

ShapeNet (Seg) and ModelNet40 (M40)

with varying scalar streams.

Scalar Vector Match Seg mIoU M40 mcA M40 OA

Convolution Stream # params

Laplace– - - 82.5 86.1 90.4

Beltrami - ✓ 82.5 87.1 90.6

✓ - 84.9 89.4 92.2

GCN - - 81.1 87.3 90.4

- ✓ 81.2 87.3 90.8

✓ - 85.1 90.6 92.8

Max aggregation - - 85.7 89.2 92.2

- ✓ 85.7 89.5 92.6

✓ - 86.1 91.2 93.8

Table 3.6: Timing and parameter

counts for classification on Model-

Net40. The timing for training and in-

ference includes all necessary precom-

putations.

Convolution Data Training Backward Inference # Params

Transform

DeltaConv (Lapl.) k-nn + ops 80ms 5ms 80ms 2,036,938

DeltaConv k-nn + ops 130ms 60ms 125ms 2,037,962

EdgeConv k-nn 196ms 147ms 186ms 1,801,610

We test each configuration on ModelNet40 and ShapeNet. For

both of these tasks, we use the DGCNN base architecture. The

model for ShapeNet is trained for 50 epochs to save on training time

and no voting is used, which results in slightly lower results than

listed in Table 3.4. The results are listed in Table 3.5. We find that the

vector stream improves the network for each scalar stream for both

tasks, reducing the error between 19 − 25% for classification and

3 − 21% for segmentation. For maximum aggregation on ShapeNet,

the improvements are lower, but still considerable, given the rate of

progress on this dataset over the last few years. Simply increasing the

number of parameters in the scalar stream does not yield the same

improvement as adding the vector stream, showing that the vector-

valued features are of meaningful benefit. Maximum aggregation

in the scalar stream yields the highest accuracy.

Timing and parameters In our method section we argue that

computing the gradient matrix is lightweight and that the simplified

maximum aggregation operator is significantly faster than edge-

based operators in PointNet++ and DGCNN. The main bottleneck

in these convolutions is maximum aggregation over each edge.

In this experiment, we demonstrate this by reporting the time it

takes to train and test the classification network on one batch of 32

shapes with 1,024 points each. This includes all precomputation

steps, such as computing the k-nearest neighbor graph (∼ 15ms) and

constructing the gradient and divergence operators (∼ 30ms). The

EdgeConv network is tested without a dynamic graph component,

so that only the effect of precomputation and convolutions remains.

All timings are obtained on the same machine with an NVIDIA

RTX 2080Ti after a warm-up of 10 iterations. We implemented each
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Table 3.7: Classification accuracy on

ModelNet40 with and without regular-

ization and normalization.

𝜆 Norm. Mean Overall

Class Acc. Acc.

10
−32 ✓ 85.2 90.3

10
−2

- 86.6 90.5

10
−2 ✓ 89.4 92.2

method in PyTorch [179] and PyTorch Geometric [63]. The results

are listed in Table 3.6. We find that our network only increases

the number of parameters by 10%. Our network is significantly

faster than the edge-based convolution: 1.5× faster in training and

inference and 2.5× faster in the backward pass. DeltaConv with a

Laplacian in the scalar stream is even faster: > 2× faster in training

and inference and 30× faster in the backward pass.

Gradient regularization and normalization In our method sec-

tion, we argue that the least-squares fit for constructing the gradient

and divergence should be regularized and the operators should be

normalized. In this experiment, we intend to validate these choices.

We train a model that is entirely based on our gradient operator,

with a Laplace–Beltrami operator in the scalar stream. This means

that every spatial operator in the network is influenced by regular-

ization and scaling. The model is trained on the ModelNet40 for 50

epochs. The results are listed in Table 3.7. We notice a considerable

difference between our approach with- and without regularization.

There is a 2.8 percentage point decrease in mean class accuracy and

1.7 percentage point decrease in overall accuracy when the operator

is not normalized.

3.5 Conclusion

In this work, we propose DeltaConv, a new convolutional layer

for point cloud CNNs that is capable of extracting and processing

directional features. DeltaConv separates features into a scalar- and

vector stream and uses linear combinations and compositions of

a selected set of geometric operators from vector calculus to map

between and along the streams. This construction allows DeltaConv

networks to learn anisotropic convolutions fitting to the data and task

at hand. We demonstrate improved performance on a wide range

of tasks, showing the potential of using DeltaConv in a learning

setting on point clouds. We hope that this work will provide insight

into the functionality and operation of neural networks for point

clouds and spark more work that combines learning approaches

with powerful tools from geometry processing.

We limit our study to analysis tasks. While we do not think it is

impossible to adapt our operators for generative tasks, it is unclear

if and when the operators should be recomputed when a surface is

generated. Our work opens up interesting possibilities for future

work. Besides exploring more applications of the vector stream, we

want to test our approach on other surface discretizations and other

manifolds (e.g., hyperbolic spaces and higher dimensional spaces)

for which these operators are available, and also intend to study

how other variants of the scalar stream impact the network.



4 A Fast Geometric Multigrid Method
for Curved Surfaces

We introduce a geometric multigrid method for solving linear systems
arising from variational problems on surfaces in geometry processing,
Gravo MG*. Our scheme uses point clouds as a reduced representation of
the levels of the multigrid hierarchy to achieve a fast hierarchy construction
and to extend the applicability of the method from triangle meshes to
other surface representations like point clouds, nonmanifold meshes, and
polygonal meshes. To build the prolongation operators, we associate each
point of the hierarchy to a triangle constructed from points in the next
coarser level. We obtain well-shaped candidate triangles by computing
graph Voronoi diagrams centered around the coarse points and determining
neighboring Voronoi cells. Our selection of triangles ensures that the
connections of each point to points at adjacent coarser and finer levels
are balanced in the tangential directions. As a result, we obtain sparse
prolongation matrices with three entries per row and fast convergence of the
solver. Code is available at https://graphics.tudelft.nl/gravo_mg.

Hierarchy construction time

…
i

k

j

A
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B
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Figure 4.1: Illustration of our hierarchy construction for one level. Starting from a mesh or point cloud, A) we construct a neighbor

graph on the surface. B) We then sample a spatially uniform set of nodes, C) compute the graph Voronoi diagram of the samples,

and D) project unsampled points onto triangles formed by edges between Voronoi neighbors. This is repeated for every level.

Right: Comparison of run time for solving a Laplace system on a triangle mesh. Our hierarchy construction is fast, while achieving

similar solver performance to the state-of-the-art.

*
This chapter is based on the paper “A Fast Geometric Multigrid Method for Curved

Surfaces” published in SIGGRAPH 2023 Conference Proceedings [245].

https://graphics.tudelft.nl/gravo_mg
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4.1 Introduction

Many geometry processing methods are based on variational prob-

lems and partial differential equations on curved surfaces. The

discretization of these problems leads to sparse linear systems to be

solved. One class of efficient solvers are Geometric Multigrid (GMG)

methods, which use iterative solvers on a hierarchy of grids. They

are more efficient than alternatives, such as sparse direct solvers,

in many application scenarios [140]. While geometric multigrid

solvers are well-studied for regular grids in Euclidean domains, the

construction of effective geometric multigrid hierarchies remains

challenging for irregular meshes on curved domains.

We distinguish two approaches to the design of GMG methods

on curved surfaces. The first approach is to construct a hierarchy of

meshes by mesh coarsening and then mapping between the meshes.

This approach obtains efficient prolongation operators that lead

to fast convergence. A recent example is the intrinsic multigrid

scheme by Liu et al. [140]. The downside of this approach is a costly

hierarchy construction. The second approach is to represent levels

by graphs constructed by coarsening the edge graph of the input

mesh [207]. This approach results in a fast construction but slower

convergence.

We propose a new GMG method combining the strengths of both

approaches. On the one hand, we use point clouds and neighbor

graphs to represent levels, enabling a fast hierarchy construction.

On the other hand, we use geometric operations to create local

triangulations when constructing the prolongation operators for fast

convergence. Our method solves linear systems as fast as the scheme

of Liu et al., while reducing hierarchy-construction time by more

than an order of magnitude. Moreover, our method is more generally

applicable as it can be used not only for manifold triangular meshes

but also for other discrete surface representations such as point

clouds, non-manifold meshes, and polygonal meshes. Thus, we can

solve systems set up with discrete differential operators for these

representations, which were developed in recent years [136, 202, 6].

Our hierarchy construction is more expensive compared to Shi

et al. [207]. Yet, the solving time is most often reduced more than

the increase in hierarchy construction. This benefit increases for

applications where multiple systems need to be solved.

The technical novelty of our method lies in a geometric multigrid

method that is point-based, while still incorporating the geometry

of the underlying surface. Our guiding idea is to construct intrinsic

Delaunay triangulations on points sampled from the surface. Every

other point can then be mapped from- and to the sampled points

using barycentric coordinates in the intrinsic triangles. To get a fast

and practical approach, we transfer this idea to a point-cloud setting.

For every level in the hierarchy, we start by sampling points from
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the previous level using a fast uniform sampling strategy. Next,

we compute graph Voronoi diagrams on the finer level using the

sampled points as seeds and construct a neighborhood graph based

on Voronoi cell adjacencies. Mimicking Delaunay triangulations, we

construct triangles from the edges of the Voronoi adjacency graph.

Each point of the finer level is projected to its closest triangle and

barycentric coordinates are used for prolongation. This construction

leads to sparse prolongation matrices with at most three entries per

row and hence to fast prolongations and restrictions. The use of

graph Voronoi cells ensures that the prolongation matrix and its

transpose (the restriction matrix) contain entries corresponding to

neighbors that are well-distributed over the tangential directions.

We name our hierarchy construction Gravo MG, for graph Voronoi

multigrid.

We evaluate Gravo MG in ablations and comparisons to [140],

[207], and algebraic multigrid methods. Furthermore, we demon-

strate the benefits of our scheme over sparse direct solvers in

application scenarios.

4.2 Related Work

Geometric multigrid Multigrid methods [18] are among the most

efficient iterative methods for solving linear systems. We call them

geometric multigrid methods if the hierarchy construction is exclu-

sively on the domain and no information is used about the system to

be solved. GMG methods on regular grids are well studied [83] and

used in graphics, e.g., for fluid simulation [156, 47], image processing

[180, 119], and surface reconstruction [109, 107]. GMG methods for

irregular grids on Euclidean domains are used for the simulation of

cloth (2D) [104, 237] and elastic objects (3D) [71, 176].

In this work, we consider GMG methods for curved surfaces. Since

the domain is no longer a Euclidean space but a curved manifold,

methods from the Euclidean setting do not transfer directly and

new methods are needed. Existing GMG methods on surfaces focus

on triangle mesh representations of discrete surfaces. If the mesh is

already equipped with a hierarchy, for example from a subdivision

method, it can be used directly for a multigrid method [77]. However,

usually, only a fine-scale mesh is given and a hierarchy must be

built. Based on earlier work on multiresolution representations of

triangle meshes, [95, 114], edge collapses are used to create multigrid

hierarchies in [192, 5, 168]. The prolongation operators are defined

by weighted averaging with the one-ring neighbors. There are two

approaches to guaranteeing that each vertex in a finer level has

at least one neighbour in the coarser level: either the coarsening

process is restricted to only collapsing edges, so that a maximal

independent set of vertices (MIS) is removed [168, 5], or the edge

collapses are restricted so that a MIS is preserved [5]. Liu et al. [140]
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introduce an intrinsic multigrid scheme that uses edge coarsening

to create the meshes for the different levels and maintains bĳective

mappings between the meshes on consecutive levels. The map

between two meshes is used to define the prolongations. The map

assigns to each vertex of the finer mesh a point in a triangle of the

coarser mesh and linear interpolation in the triangle is used for

prolongation. The resulting prolongation matrix has at most three

entries per row. An alternative to mesh coarsening is to use graph

coarsening for hierarchy construction [207, 208]. A multigrid scheme

for the computation of Laplace–Beltrami eigenpairs on surfaces

is introduced in [166]. The hierarchy used for the eigenproblem,

however, is much coarser than the hierarchies used for solving linear

systems: only two or three levels are used. A multigrid solver for

the computation of harmonic foliations on surfaces is introduced

in [235].

Algebraic multigrid Algebraic multigrid (AMG) methods [19, 217]

are an alternative to GMG. They use the matrix of the linear system

to be solved to build the hierarchy instead of using the domain. This

has the advantage that AMG can be used for problems coming from

arbitrary domains. Nevertheless, AMG methods need to rebuild the

hierarchy when the system matrix changes, whereas GMG methods

only need to rebuild the hierarchy when the domain changes. An

efficient multigrid preconditioner specifically for Laplace systems

on images and meshes was introduced in [118]. Although fast, it

has the disadvantage of requiring the Laplace matrices to have only

non-positive off-diagonal entries, which is often not satisfied by

mesh Laplacians, such as the cotangent-Laplacian [183].

Direct solvers Sparse direct solvers [38] are reliable, accurate, and

commonly used for Laplace systems in geometry processing. Once

a factorization of a matrix is computed, these solvers can solve

multiple systems with the same matrix but different right-hand

sides. In special cases, such as low-rank changes of the matrix,

the factorization can be updated efficiently [29, 89, 91]. However,

substantial changes require a new factorization. A disadvantage

of these solvers is that they do not scale well neither in terms of

memory requirements nor computation time. In Section 4.5, we

compare the performance of our method to direct solvers in different

scenarios.

4.3 Background: Multigrid Solver

Multigrid solvers use a hierarchy of grids to solve systems of

equations. Iterative solvers converge at different speeds for different

scales, depending on the resolution of the grid on which they operate.

Thus, by performing iterations on different grids, a multigrid scheme
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extends the range in which the solver converges particularly fast.

Here, we describe a multigrid solver, which will later be used to

evaluate our proposed hierarchy and prolongation operators.

We consider the multigrid solver in Algorithm 1. To solve an

𝑛-dimensional linear system 𝐴𝑥 = 𝑏 for 𝑥, it operates on a multigrid

hierarchy with 𝜆 levels, where level 1 is the finest and level 𝜆 is

the coarsest level. A function on the 𝑙𝑡ℎ grid is represented by

a vector in ℝ𝑛𝑙 , where the grid has 𝑛𝑙 degrees of freedom. The

mappings between the grids are realized by prolongation and

restriction matrices. The prolongation matrices 𝑃𝑙 ∈ ℝ𝑛𝑙×𝑛𝑙+1
map

from level 𝑙 + 1 to level 𝑙. We use the transposed matrices of the

prolongation matrices 𝑃⊤
𝑙

as restriction matrices. The advantage is

that a symmetric matrix 𝐴 implies that the linear systems in the

coarse grid correction, which involve the restricted matrices 𝑃⊤
𝑙
𝐴𝑙𝑃𝑙 ,

are also symmetric.

The multigrid solver first builds the prolongation matrices. We

keep this step abstract at this point but discuss it in detail in

the following section. In the next step, lines 3-6, the restricted

matrices for all levels are constructed. After the precomputation,

multigrid iterations are executed until convergence of the solution.

The multigrid iterations traverse the hierarchy from fine to coarse

and back. This process is called a𝑉-cycle and is simple but effective.

Alternatively, instead of directly going up to the coarsest grid,

one could first go back to finer grids. Such strategies can help to

counteract error accumulation when several levels are traversed and

thereby reduce the required number of multigrid iterations. On the

other hand, the V-cycle is fast. The multigrid iterations, Algorithm 2,

apply relaxation steps before and after the coarse grid correction. We

use Gauss–Seidel iterations for this. Alternatives are schemes such

as Jacobi iterations or conjugate gradient iterations. The number of

Gauss–Seidel iterations applied in the pre and post relaxations is

specified by the parameters 𝜈𝑝𝑟𝑒 and 𝜈𝑝𝑜𝑠𝑡 . For 𝑉-cycles, one sets

𝜈𝑝𝑟𝑒 = 𝜈𝑝𝑜𝑠𝑡 .
The norm used for the convergence test in line 9 of Algorithm 2

depends on the context. A common choice is the standard norm

of ℝ𝑛 . For the Poisson and smoothing problems, we use a mass-

weighted 2-norm [239].
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Algorithm 1: Multigrid solver

Input: Matrix 𝐴 ∈ ℝ𝑛×𝑛
, initial vector 𝑥 ∈ ℝ𝑛

, right-hand side

𝑏 ∈ ℝ𝑛
, error tolerance 𝜀, number of levels 𝜆, numbers of

pre/post-relaxations steps 𝜈𝑝𝑟𝑒 , 𝜈𝑝𝑜𝑠𝑡
Output: Solution 𝑥 ∈ ℝ𝑛

to the linear system 𝐴𝑥 = 𝑏
1 Function Multigrid(𝐴, 𝑥, 𝑏, 𝜀,𝜆, 𝜈𝑝𝑟𝑒 , 𝜈𝑝𝑜𝑠𝑡):
2 Build prolongation matrices 𝑃1 , 𝑃2 , 𝑃3 ..., 𝑃𝜆
3 𝐴1 ← 𝐴
4 for 𝑙 ← 2 to 𝜆 do
5 𝐴𝑙 ← (𝑃𝑙−1

)⊤𝐴𝑙−1
𝑃𝑙−1

// Build level 𝑙 matrix

6 repeat
7 𝑥 ←MGI(𝑥, 𝑏, 1)

8 until ∥𝐴𝑥 − 𝑏∥ ≤ 𝜀 ∥𝑏∥ // Convergence test
9 return 𝑥

10 End Function

Algorithm 2: Multigrid Iteration (𝑉-cycle)

Input: Current iterate 𝑥 ∈ ℝ𝑛𝑙 , right-hand side 𝑏 ∈ ℝ𝑛𝑙 , level 𝑙
Output: New iterate 𝑥 ∈ ℝ𝑛𝑙

1 Function MGI(𝑥, 𝑏, 𝑙):
2 if 𝑙 < 𝜆 then
3 𝑦 ←Relax(𝐴𝑙 , 𝑥, 𝑏, 𝜈𝑝𝑟𝑒 ) // Pre-relaxation

4 𝑢 ←MGI(0, 𝑃⊤
𝑙
(𝑏 − 𝐴𝑙 𝑦), 𝑙 + 1) // Recursive call

5 𝑥 ←Relax(𝐴𝑙 , 𝑥 + 𝑃𝑙𝑢, 𝑏, 𝜈𝑝𝑜𝑠𝑡 ) // Post-relaxation

6 else
7 Solve 𝐴𝜆𝑥 = 𝑏 using a direct solver

8 return 𝑥
9 End Function

4.4 Hierarchy Construction

Our goal is to design a hierarchy construction that is faster than

the intrinsic multigrid method by Liu et al. [140]. It should be

compatible with point clouds and general surface representations,

while maintaining fast convergence during solving. Before giving an

overview of our method, we revisit the idea that guided our design.

In the scheme of Liu et al., each level is represented by a mesh

and mappings to adjacent levels. An intrinsic multigrid approach

can alternatively represent levels by multiple intrinsic triangulations

of the same surface. For example, each level can be a point sampling

with corresponding intrinsic Delaunay triangulation. This idea,

however, does not reflect a fast and more general construction. To

achieve this, we transfer the idea into a point-cloud setting.

4.4.1 Overview

Our approach takes as input a set of point locations 𝑉 sampled

from a surface and a set of edges 𝐸 between these points denoting

local neighborhoods. For a mesh {𝑉, 𝐸, 𝐹}, we use the vertices 𝑉
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and edges 𝐸. For a point cloud, edges could be taken from a radius

graph or the 1-ring in a local Delaunay triangulation [202].

The algorithm outputs a sequence of sparse prolongation matrices

𝑃𝑙 , mapping signals from 𝑛𝑙+1
points to 𝑛𝑙 points, where 𝑛𝑙+1

< 𝑛𝑙 .

Relating 𝑛𝑙+1
and 𝑛𝑙 , we refer to points in level 𝑛𝑙+1

as coarse points
and points in 𝑛𝑙 as fine points. Level 1 are the input points.

Algorithm overview The hierarchy is constructed one level at

a time. For each level, the algorithm takes the input graph from

level 𝑙, {𝑉𝑙 , 𝐸𝑙}, and outputs the graph in level 𝑙 + 1, {𝑉𝑙+1
, 𝐸𝑙+1

}.
The algorithm also produces the prolongation matrix 𝑃𝑙 . This is

repeated until level 𝜆 is reached. Here, we describe one such step.

Figure 4.1 provides a corresponding visual overview.

First, the point cloud is subsampled using a fast greedy algorithm

that aims to enforce a minimum edge length in the next graph

(subsection 4.4.2). Next, we create a graph Voronoi diagram, where

the coarse points (sampled points) act as Voronoi centers and

the fine points are the loci of the Voronoi cells. We then seek a

mapping from the coarse points to the fine points. Mimicking the

construction of a Delaunay triangulation as the dual of a Voronoi

diagram, we construct a neighbor relation of the graph Voronoi

cells (subsection 4.4.3) and compute all the triangles formed by the

edges between Voronoi cell centers (subsection 4.4.4). Finally, the

fine points are projected onto these triangles to find the triangle

closest to the fine point. The neighbor relations of the graph Voronoi

diagram are then used as edges for the next level 𝐸𝑙+1
.

4.4.2 Sampling

Every level contains fewer points than the previous and the sampling

should be spatially uniform [140, 207]. We seek a dense sample set

𝑆, in which no pair of points is closer than a fixed distance 𝑟. To find

such a set, we use an algorithm based on the maximum independent

set: we sweep once over 𝑉 , keeping track if points are eligible for

addition to 𝑆. Initially, all points are eligible. If a point 𝑝 is eligible,

we add it to 𝑆 and mark the points within geodesic distance 𝑟 of 𝑝

as ineligible. The radius 𝑟 is based on the fraction 𝜙 < 1 of points

we wish to keep and the average edge length 𝑒

𝑟 = 𝜙−
1

3 𝑒. (4.1)

In our experiments, 𝜙 = 1/8 and we stop at 1000 points, yielding

roughly log
8
(𝑁/1000) levels. We only search for nearby points in

the 2-ring, striking a good balance between construction speed

and sampling quality. In paragraph 4.5.3 we validate that we reach

the desired fraction of samples and Figure 4.2 demonstrates the

uniformity of the resulting sampling and corresponding triangles.
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Figure 4.2: The input shapes and triangles in the last levels. Shapes: Bimba, Lakoon (non-manifold), Murex Romosus, Nefertiti, and

Wolf Skull.

4.4.3 Neighbor graph

We use graph Voronoi diagrams [56] to define neighborhoods for

the sampled points. Since we build the levels successively from fine

to coarse, the neighbor graph {𝑉𝑙 , 𝐸𝑙} is already built on level 𝑙

when level 𝑙+ 1 is visited. The points𝑉𝑙+1
are the seeds of the graph

Voronoi diagram in {𝑉𝑙 , 𝐸𝑙}. For each seed 𝑖 ∈ 𝑉𝑙+1
, the Voronoi

cell consists of the points in 𝑉𝑙 that are closer in graph distance to

𝑖 than to all other points of 𝑉𝑙+1
. The graph Voronoi diagram can

be efficiently computed by a multisource Dĳkstra algorithm. For

points 𝑖 , 𝑗 ∈ 𝑉𝑙+1
, we add an edge {𝑖 , 𝑗} to 𝐸𝑙+1

, if there is an edge

in 𝐸𝑙 that connects a point of the Voronoi cell of 𝑖 with a point of

the Voronoi cell of 𝑗.

4.4.4 Prolongation

Prolongation operators map functions on level 𝑙 + 1 to functions on

level 𝑙, by matrices 𝑃𝑙 ∈ ℝ𝑛𝑙×𝑛𝑙+1
. The restrictions, mapping from

level 𝑙 to level 𝑙+1, are given as the transpose matrices 𝑃⊤
𝑙

. Important

for the design of the prolongation matrices is their sparsity. The

sparser the prolongation matrices, the sparser the restricted matrices

𝑃⊤
𝑙
𝐴𝑃𝑙 , and the faster the mappings between the levels. To construct

the prolongation, we use linear interpolation in triangles. Hereby,

we get very sparse prolongations matrices. Other interpolation

methods, such as radial basis functions or spline interpolations,

would result in much denser prolongation matrices.

First, a set of candidate triangles on the coarse points is constructed.

Every coarse point has a Voronoi cell on the finer level. Two coarse

points 𝑖 , 𝑗 are connected by an edge {𝑖 , 𝑗} ∈ 𝐸𝑙+1
in the coarser level

if their corresponding Voronoi cells are neighbors. We consider

all triangles that can be constructed from these edges: all triplets

{𝑖 , 𝑗 , 𝑘} such that {𝑖 , 𝑗}, { 𝑗 , 𝑘}, {𝑘, 𝑖} ∈ 𝐸𝑙+1
.

The motivation to use these edges is the duality between (intrinsic)

Voronoi diagrams and Delaunay triangulations (two points in a

Delaunay triangulation are connected by an edge iff their Voronoi

cells are adjacent). Since graph Voronoi cells are not continuous, but
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Figure 4.3: Input point clouds and considered triangles for the last two levels of the hierarchy. From left to right: Caesar, Ignatius,

Truck, and Dancing Children.

approximations computed from a sampling, the triangles we obtain

are not necessarily Delaunay triangles, and they do not necessarily

form a manifold. However, as illustrated in Figure 4.2 and 4.3, we

mostly get well-shaped triangles and a good coverage of the surface,

even for point clouds.

To get the prolongation weights for a fine point 𝑝, we search

for the closest candidate triangle. For efficiency, we restrict this

search to the triangles that include the coarse point closest to 𝑝.

The weights are the barycentric coordinates of the closest point to

𝑝 in the selected triangle (this can be on an edge or a vertex). The

barycentric coordinates of the projected point are then entered into

the prolongation matrix.

Edge-cases In some cases, a suitable triangle cannot be found

within the Voronoi neighborhood of the closest point. This might

happen, for example, if all points in the neighborhood are (nearly)

co-linear, or if the fine point falls outside of the triangles formed in

the neighborhood. In these cases, we resort to finding the closest

three points within the neighborhood and use inverse-distance

weights. This is preferable over projecting to a single vertex, as it

helps the spread of information during prolongation. In practice,

this only happens in a fraction of cases (roughly 0.25%).

Reducing single-entry rows The resulting prolongation matrices

are very sparse with maximally three non-zero entries per row. Since

the coarse points are created by subsampling the fine points, the fine

points that are sampled transfer their function value directly to the

corresponding coarse point during prolongation. Therefore, there is

only one entry in the corresponding rows. We obtain prolongation

matrices with fewer single-entry rows by moving each sampled

point to the mean of the points that form its graph Voronoi cell

before we compute the closest point projections. In our experiments,

we obtained a slight improvement of solving times with this strategy

over not moving the coarse points.
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4.5 Experiments

We evaluate Gravo MG and compare to state-of-the-art GMG meth-

ods and AMG approaches. For reference, we provide results for

direct solvers. We also provide insights into design choices via

ablation studies.

4.5.1 Implementation

Our multigrid-solver implementation builds on Liu et al.’s code,

where the prolongation matrix definition is exchanged. In every

experiment, we set the number of pre/post-relaxation steps 𝑣𝑝𝑟𝑒 =

𝑣𝑝𝑜𝑠𝑡 = 2. The hierarchy construction uses custom routines built

around Eigen [78] and only requires a matrix of points and an array

of edges. The code for our solver is available as a C++ library and

Python package, along with scripts to replicate the main tables and

figures in this chapter: https://graphics.tudelft.nl/gravo_mg.

We use an Intel®Core™i9-9900 CPU (3.10GHz, 32GB memory).

The code does not employ multithreading but could be parallelized.

None of the methods in our comparisons are parallelized, except

Pardiso. A discussion on the potential for parallelization of the

solver we used can be found in Section 7 of Liu et al. [140].

4.5.2 Problems

In our ablations and comparisons, we test our approach on two stan-

dard problems that can be written as linear systems: data smoothing

and Poisson problems. For meshes, both problems involve the cotan

Laplace matrix 𝑆 and the lumped mass matrix 𝑀, see [239]. In the

case of point clouds and non-manifold meshes, we use the robust

Laplacian by Sharp and Crane [202]. Data can be smoothed by

solving

(𝑀 + 𝛼𝑆)𝑥 = 𝑀𝑦, (4.2)

where 𝑦 is the noisy input function and 𝛼 a parameter that de-

termines how much the data is smoothed. The Poisson problem

is

(𝑆 + 𝜂𝑀)𝑥 = 𝑀𝑦, (4.3)

where 𝑦 is a random vector. The term 𝜂𝑀 is added to obtain a

positive-definite system matrix. The parameter 𝜂 is chosen to be

very small, for example 𝜂 = 1 × 10
−6

. Our solver terminates when

tolerance 𝜀 is reached (line 9 of algorithm 1) or after a maximum

number of iterations.

4.5.3 Ablation Studies

We would like to understand the effects of our design choices on the

hierarchy construction and subsequent solving steps. We structure

https://graphics.tudelft.nl/gravo_mg


56 4 Gravo Multigrid

Figure 4.4: Comparison of the decay

rate between M𝛿IS used by Shi et al.

[207] and our approach on XYZ dragon.

The y-axis is in log
2

scale.

these experiments along three themes: sampling, prolongation

selection, and weighting. In each ablation, we compare variants of

our approach on a fixed set of meshes and point clouds and run a

data smoothing problem as detailed above. We smooth a random

function with 𝛼 = 1 × 10
−3

and tolerance 1 × 10
−4

. Each variant

is then evaluated in terms of time to construct the hierarchy, the

number of iterations required to reach the target tolerance, and the

total time.

Sampling We seek a sampling method that balances run-time

during hierarchy construction and sampling quality. To validate

that our approach effectively balances these demands, we compared

our approach to random sampling, Poisson-disk-sampling (PDS),

geodesic farthest point sampling (FPS), and maximal independent

set (MIS) selection. For every method, we set the target ratio between

levels to 1/8th. In Table 4.1, we observe that our approach is faster

than the others when solving. When considering the full hierarchy

construction, our approach is faster than every other sampling

approach, because we perform part of the graph Voronoi diagram

construction during sampling and have fewer points per level to

consider than MIS.

We also compare decay rate between the maximal 𝛿-independent

set, used in [207], and our sampling. In Figure 4.4, we see that it is

possible to decay much faster with our approach than M𝛿IS, because

it must always be a superset of the MIS. This is an advantage of our

approach; we can perform faster and fewer iterations, while having

a fast sampling time.

Prolongation selection Our approach uses triangles of coarse

points for the prolongation operator. This results in sparse prolon-

gation matrices that spread information in each tangential direction.

In this ablation, we seek to support this choice. In Table 4.2, we

compare our approach to the following variants that do not ex-

plicitly work with triangles: simply prolonging to the closest two,

three, or four points from the graph Voronoi neighbors and picking

three random points. We also test a variant that considers triangles

without restricting to Voronoi edges, ‘closest tri’. This results in less

consistent triangulations, as shown in Figure 4.5. For each of the

non-triangle selection approaches, we use inverse distance weights.

Table 4.1: Data smoothing timings

with variations of the sampling step

(Smp). We compare our approach

to random sampling, Poisson Disk

Sampling (PDS), geodesic Farthest

Point Sampling (FPS), and Maximum-

Independent Set (MIS). All timings are

in seconds, unless otherwise specified.

Ours Random PDS FPS MIS

Model #V Smp Solve Smp Solve Smp Solve Smp Solve Smp Solve

Brd Man 691k 0.08 0.62 0.01 1.01 0.47 0.63 1m 0.79 0.02 0.87

Rd Circ. Box 701k 0.08 0.81 0.01 1.30 0.39 1.10 1m 1.38 0.02 1.01

Nefertiti 1m 0.12 1.10 0.01 2.05 1.02 1.29 2m 1.65 0.04 1.15

Murex 1.8m 0.42 3.02 0.03 4.84 1.47 3.41 6m 4.83 0.11 3.68

XYZ Dragon 3.6m 0.35 5.72 0.06 12.95 2.48 4.92 27m - 0.11 7.38
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Table 4.2: Timings for hierarchy construction and solving on data smoothing with variations of the entries in the prolongation

operator. Ours only considers triangles formed by Voronoi edges. The other variants either pick 𝑛 closest points, pick 𝑛 random
points or pick the three Voronoi neighbors that form the closest triangle. All timings are in seconds.

2 points 3 points 4 points

Closest Ours Random Closest vert Closest tri Closest

Model #Vert Hier #It Solve Hier #It Solve Hier #It Solve Hier #It Solve Hier #It Solve Hier #It Solve

Beard Man 691k 0.46 9 0.91 0.64 4 0.62 0.42 26 2.91 0.50 5 0.72 0.87 5 0.77 0.51 5 0.83

Red Circular Box 701k 0.49 10 1.03 0.67 6 0.79 0.49 31 3.45 0.52 7 0.95 1.01 8 1.06 0.58 7 1.01

Nefertiti 1m 0.67 9 1.68 0.93 4 1.05 0.60 29 5.75 0.69 6 1.36 1.35 5 1.29 0.73 5 1.37

Murex Romosus 1.8m 1.80 11 4.15 2.64 5 3.11 1.70 40 15.07 2.07 6 3.60 3.82 6 3.41 1.97 6 3.91

XYZ Dragon 3.6m 2.41 15 7.55 3.46 9 5.72 2.28 45 25.10 2.61 14 8.35 4.45 16 8.76 2.68 11 7.32

We observe that our approach solves faster than all other variants,

while increasing the hierarchy construction time only a bit.

Weighting We project the fine points onto the triangles formed by

coarse points and use barycentric weights as predictors for the value

of the fine point. Previous works suggest that the choice of weighting

schemes has little effect on convergence times [5, 207], while Liu

et al. argue that the weighting scheme is crucial for some shapes.

In Table 4.3, we compare our approach with uniform weights and

inverse distance weights alongside a variant where we do not shift

the coarse points to the barycenters. We observe that our approach

works best with barycentric coordinates (Ours). Inverse-distance

weights are not far behind. Shifting coarse points has benefits for

some, but not all shapes. This is not the core contribution of our

work and could be left out in some cases. A benefit of not shifting

coarse points is that each iteration is faster because the prolongation

matrix contains more single-entry rows.

4.5.4 Comparisons

We compare our approach on a wide range of meshes and point

clouds for a Poisson problem with 𝜂 =1 × 10
−6

and target tolerance

of 1 × 10
−4

. The input function 𝑦 is a random vector sampled from

N(0, 1).
The shapes were selected to have at least 100k vertices and ex-

hibit a wide variety: uniform meshes (e.g., Nefertiti), non-uniform

meshes (e.g., Alfred Jacquemart, Indonesian statue), broken and

non-manifold meshes. The meshes also exhibit detailed features

(e.g., XYZ dragon) and complex curvature (e.g., Murex Romosus).

Ours Uniform Inv. Dist. No shift

Model #Vert #It Solve #It Solve #It Solve #It Solve

Beard Man 691k 4 0.63 12 1.30 5 0.71 4 0.56
Red Circular Box 701k 6 0.80 23 2.36 6 0.80 10 1.12

Nefertiti 1m 4 1.04 14 2.68 5 1.21 4 0.97
Murex Romosus 1.8m 5 3.09 16 6.54 6 3.37 5 2.71
XYZ Dragon 3.6m 9 5.71 23 12.23 9 5.74 18 9.28

Table 4.3: Timings for solving on

data smoothing with variations of

the weighting scheme. We compare

barycentric coordinates (Ours) to uni-
form weights, inverse distance weights,

and barycentric coordinates without

chaging the positions of the coarse

points before projection (No shift). All

timings are in seconds.
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All the shapes are shown in Figure 4.6. We make no use of additional

pre-processing steps, such as remeshing or fixing non-manifold

edges: every mesh is used as-is in the highest resolution available

from the respective sources. For the point clouds, we opted for high-

resolution scanned data. The point clouds come from the Tanks

and Temples benchmark dataset [113] and from range scans in the

AIM@Shape repository [59].

Gravo MG is compared to the GMG solvers by Liu et al. and Shi et

al., and the AMG methods Ruge–Stuben and Smoothed Aggregation.

For reference, we list the timings of direct solvers. For Liu et al.,

we use their provided implementation. We reimplemented Shi et

al. based on their paper. The latter mentions multiple weighting

schemes, including uniform weights and inverse distance weights.

We tested both and report the best-performing approach: inverse

distance weights. For the AMG approaches, we use the implemen-

tation provided in PyAMG [9] with default settings provided by

the package. We set the maximum number of iterations for all

iterative solvers to 100, since more iterations would not change the

overall picture regarding which solver is faster. The direct solver

references are the Cholesky LLT factorization provided in Eigen

and Intel®MKL’s Pardiso solver, which is highly optimized and

parallelized [100].

Our approach yields faster solving times for the majority of input

meshes (Table 4.4). More results for manifold meshes are listed in

the supplement in Table 1. On average, our construction is 36x faster

than Liu et al. and only 1.8x slower than Shi et al.’s method. With

regards to solving time, Liu et al. takes 3% more time on average

for the Poisson problem and 7% for data smoothing and Shi et al.

takes 274% more time for the Poisson problem and 81% for data

smoothing. Note that we require less time for one iteration than

Liu et al., because we use a higher decay rate (1/8 vs. 1/4). This

is balanced out in most cases by a higher iteration count and the

overall solving times are similar when we use a decay rate of 1/4.

GMG methods are most beneficial in settings where a user would

iterate on the system matrix, but the benefit of using Gravo MG is

already noticeable starting with the first solve. For all meshes larger

Figure 4.5: Using dual Voronoi trian-

gles results in a more consistent set of

candidate triangles than using all tri-

angles in the coarse point’s 1-ring.
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Table 4.4: Comparison of our hierarchy construction and solver for a Poisson problem with 𝜂 =1 × 10
−6

mass matrix coefficient

and tolerance of 1 × 10
−4

. Missing entries are not available for the given method. The maximum number of iterations for iterative

solvers is set to 100.

Gravo MG (Ours) Liu et al. Shi et al. AMG-RS AMG-SA Eigen Pardiso

Model #Vert Hier #It Solve Hier #It Solve Hier #It Solve Hier #It Solve Hier #It Solve Fact. Subst. Fact. Subst.

manifold triangular meshes

Aim Dragon 152k 0.14 7 0.19 5.14 8 0.27 0.06 27 0.62 0.15 26 0.46 0.31 29 0.48 0.81 0.02 0.58 0.04

Blade Smooth 195k 0.15 4 0.17 5.87 3 0.17 0.09 18 0.60 0.18 100 2.42 0.40 42 0.94 0.76 0.02 0.69 0.04

Moses 258k 0.42 12 0.55 8.72 5 0.35 0.30 100 4.30 0.27 100 3.64 0.55 100 3.33 0.90 0.02 1.04 0.05

Julius Caesar 387k 0.30 11 0.58 12.10 17 1.09 0.16 28 1.54 0.39 100 4.89 0.77 70 2.79 5.07 0.06 1.29 0.09

Bimba 502k 0.43 7 0.65 15.58 6 0.74 0.24 48 4.16 0.51 100 6.97 1.15 69 4.45 3.54 0.05 2.13 0.10

Antique Head 651k 0.53 4 0.51 20.07 4 0.60 0.28 14 1.22 0.64 100 8.48 1.37 67 4.33 15.02 0.11 2.43 0.17

Beard Man 691k 0.59 4 0.56 22.15 3 0.58 0.26 14 1.43 0.52 100 7.07 1.46 14 0.96 24.57 0.14 2.72 0.19

Red Circular Box 701k 0.64 6 0.74 22.97 6 0.97 0.34 66 6.67 0.72 100 8.98 1.51 66 5.01 17.76 0.11 2.84 0.17

Dancing Children 724k 0.69 9 1.10 23.21 8 1.25 0.41 39 4.54 0.68 100 9.32 1.23 100 8.70 6.18 0.09 2.78 0.17

Ramses 826k 0.79 7 1.21 28.90 5 1.18 0.47 40 6.03 0.91 100 11.82 2.08 49 5.40 6.24 0.09 3.60 0.18

Nefertiti 1m 0.89 4 0.94 34.22 4 1.18 0.56 65 11.69 1.09 100 14.74 2.58 46 6.14 9.15 0.10 4.54 0.22

Isidore Horse 1.1m 1.12 11 1.90 35.60 5 1.27 0.50 70 11.03 1.11 100 14.60 2.50 88 10.72 24.01 0.17 4.56 0.28

Ram 1.3m 2.40 3 1.95 56.18 - - 1.14 49 13.39 2.45 100 25.95 4.72 100 21.71 17.07 0.15 6.99 0.33

Murex Romosus 1.8m 2.32 6 2.85 73.05 5 3.32 0.99 63 20.79 2.38 100 29.83 5.08 58 15.28 40.06 0.26 9.13 0.44

XYZ Dragon 3.6m 3.24 9 5.32 121.97 7 5.32 1.57 55 28.95 3.16 100 43.75 9.14 75 30.54 77.62 0.69 15.88 0.94

non-manifold triangular meshes

Lakoon 188k 0.16 8 0.29 - - - 0.09 41 1.33 0.21 100 2.77 0.47 48 1.12 0.42 0.01 0.71 0.04

Indonesian Statue 294k 0.26 11 0.58 - - - 0.16 64 3.15 0.30 100 3.92 0.63 100 3.55 0.92 0.03 1.18 0.06

Beethoven 383k 0.45 4 0.49 - - - 0.23 60 4.00 0.51 20 1.29 0.96 100 5.30 2.39 0.04 1.65 0.09

Bayon Lion 749k 1.42 6 1.55 - - - 0.70 26 4.31 1.30 100 15.36 2.49 43 5.57 5.99 0.08 3.79 0.18

Helmet Moustache 941k 2.04 9 2.89 - - - 0.74 57 11.15 2.03 100 19.66 3.31 38 6.14 24.66 0.14 5.56 0.25

Zeus 1.3m 2.47 11 3.86 - - - 1.17 58 15.91 2.34 100 27.21 4.11 100 22.68 30.40 0.20 7.19 0.35

Alfred Jacquemart 1.4m 3.33 5 3.79 - - - 1.67 43 16.21 3.03 100 30.33 5.44 51 12.78 8.88 0.14 8.07 0.35

point clouds

Oil Pump 103k 0.07 9 0.12 - - - 0.04 15 0.22 0.10 100 1.27 0.19 55 0.56 0.17 0.01 0.31 0.02

Caesar Merged 388k 0.29 6 0.40 - - - 0.17 18 1.14 0.41 100 5.52 0.83 87 3.98 4.90 0.06 1.50 0.10

Truck 1.2m 0.99 17 3.20 - - - 0.65 26 5.53 1.27 100 18.87 3.67 72 10.77 5.63 0.14 5.09 0.29

Ignatius 1.4m 1.26 7 1.87 - - - 0.78 33 8.41 1.59 100 21.61 4.42 100 17.78 8.92 0.18 6.13 0.36

than 100k vertices, our approach is faster than Liu et al. for both

the Poisson problem and data smoothing. The same holds for Shi

et al. for the Poisson problem. For data smoothing, we are faster

for one solve in 83% of cases and for three solves in 93% of cases.

Compared to the Pardiso solver, we are faster for one solve of the

Poisson problem in 92% of cases and for three solves in 95% of cases

(data smoothing, 1x: 95%, 3x: 98%). Note, however, that our solver

stops at a higher residual error than direct solvers. The strength of

multigrid approaches is in settings where one needs a quick and

relatively accurate solution. A direct solver is often preferable in

settings where high accuracy is required.
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Figure 4.6: All (non)manifold triangular meshes used in our experiments. Mosaic generated with code from Qingnan Zhou.
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Figure 4.7: Residual over iteration

count for Ours, Liu et al., and Shi et al.

for data smoothing on Murex Romosus

with 𝛼 =1 × 10
−3

. See Figure 4.1 for a

plot over time.

To provide insight into the convergence of our approach compared

to the other GMG schemes, we plot convergence for a data smoothing

problem with 𝛼 =1×10
−3

for the Murex Romosus shape in Figure 4.1

and the same plot against number of iterations in Figure 4.7. Again

we see that our approach is on par with Liu et al. and beats Shi et

al. with a high margin. More convergence plots for data smoothing,

including plots over the number of iterations, can be found in the

supplement. These confirm our results. There are some outliers: for

Red Circular Box, Shi et al. converges faster than the other GMG

approaches and for Moses, Gravo MG slows down around a residual

of 1 × 10
−6

.

4.5.5 Applications

We evaluate our solver in three scenarios: data smoothing, a geo-

metric flow, and physical simulation. We compare solving times to

a sparse Cholesky solver, commonly used for these problems.

Data smoothing For data smoothing, we consider an input func-

tion y on a surface and compute a smoother function x by minimizing

a quadratic objective

(𝑥 − 𝑦)⊤𝑀(𝑥 − 𝑦) + 𝛼𝑥⊤𝑆𝑥 + 𝛽𝑥⊤𝑆𝑀−1𝑆𝑥. (4.4)

The first term is a data term that penalizes deviation from the input

function, the second and third terms are Laplace and bi-Laplace

smoothing energies and 𝛼, 𝛽 ∈ ℝ≥0
are parameters. Results are

shown in Figures 4.8 and 4.9. The figures list timings for solving the
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Chol 9.8s
Ours 1.0s

α = 1 × 10−4

Noisy dataInput shape
Chol 9.8s
Ours 1.0s

α = 1 × 10−3

Chol 10.0s
Ours 1.1s

α = 1 × 10−2

Figure 4.8: Smoothing of scalar data on

a surface mesh with various parameter

settings (Model: Nefertiti, 1m vertices)

using the Dirichlet energy as smooth-

ness energy.

Cholesky
81.0s

Noisy dataInput shape
Ours
3.56s

Figure 4.9: Smoothing of scalar data

on a surface mesh (Model:Oilpump,

570k vertices) using a weighted sum of

the Dirichlet energy and a bi-Laplacian

energy as smoothness energy.

linear systems with our method and Eigen’s sparse Cholesky solver.

When changing parameter 𝛼 to adjust the amount of smoothing, the

direct solver needs to compute a new matrix factorization resulting

in significant solving-time differences compared to our solver, in

particular, when the bi-Laplacian energy is included.

Conformal flow As an example of a nonlinear geometric flow,

we consider the conformal flow [108]. For robustness, we use an

implicit time-integration that requires solving a linear Laplace

system for every time step. We show results in Figures 4.10 and 4.11

and compare our solving times to those of Eigen’s sparse Cholesky

solver. Since the system matrix changes every time step, the direct

solver constantly needs to compute new factorizations, resulting in

substantial differences when performing multiple steps.

Balloon inflation As an example of a physical simulation, we

consider the balloon inflation from [211]. A surface mesh represents a

thin-layered rubber balloon that undergoes membrane deformation

subject to air pressure. For time-integration an implicit Euler scheme

is used and the resulting nonlinear equations are solved using a

Newton scheme. To find the descent direction a sparse linear system

is solved. As for the geometric flow, due the simulation’s nonlinearity,

the system matrix changes with every time step, forcing the direct

solver to compute a new factorization in every time step. Results

and timings are shown in Fig 4.12.
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Figure 4.10: Conformal flow on poly-

gon mesh. (Bunny model, 626k ver-

tices).

Conformal flow

Cholesky
39.0s

per solve

Ours
2.5s

per solve

Figure 4.11: We compare the perfor-

mance of our multigrid solver against a

direct solver on conformal mean curva-

ture flow on a nonmanifold mesh. (In-

donesian statue model, 295k vertices).

Conformal flow

Cholesky
2.3s

per solve

Ours
0.3s

per solve

Figure 4.12: Simulation of balloon infla-

tion (Model: Armadillo, 180k vertices).

Initial shape

Step 5

Step15

Step 30

Cholesky
23.4s + 164.8s

for 1 step

Ours
23.4s + 36.0s

for 1 step
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4.6 Conclusion

We introduce Gravo MG, a surface multigrid method that features

fast hierarchy construction, applicability to general surface repre-

sentations, and fast convergence. Our experiments demonstrate

excellent performance compared to other GMG and AMG methods

and direct solvers.

Conceptually, our method deviates from the common paradigm

of GMG to represent levels via watertight meshes obtained by edge

collapse. We use the geometry of the surface, while AMG ignores it

for hierarchy construction. This opens a new direction for GMG on

manifolds, which are generally applicable and fast to build, hereby

improving the scalability of geometry processing methods.

In future work, graph Voronoi diagrams could be used for point

cloud processing. We are excited about the quality of the triangles

we generate from the graph Voronoi diagrams and see a potential

use, when fast triangulations or uniform samples on point clouds are

needed. Regarding theory, it would be interesting to explore under

which conditions this approach can provide guarantees regarding

the triangulation. Further acceleration is still possible. An important

aspect is parallelization of both the hierarchy construction and the

solver. Our solver could also become a preconditioner for a Krylov

method like GMRES or CG to accelerate convergence.



5
Fast and Uncertainty-Aware SVBRDF
Recovery from Multi-View Capture
using Frequency Domain Analysis

Relightable object acquisition is a key challenge in simplifying digital
asset creation. Complete reconstruction of an object typically requires
capturing hundreds to thousands of photographs under controlled illumi-
nation, with specialized equipment. The recent progress in differentiable
rendering improved the quality and accessibility of inverse rendering opti-
mization. Nevertheless, under uncontrolled illumination and unstructured
viewpoints, there is no guarantee that the observations contain enough
information to reconstruct the appearance properties of the captured object.
We thus propose to consider the acquisition process from a signal-processing
perspective. Given an object’s geometry and a lighting environment, we
estimate the properties of the materials on the object’s surface in seconds.
We do so by leveraging frequency domain analysis, considering the recovery
of material properties as a deconvolution, enabling fast error estimation.
We then quantify the uncertainty of the estimation, based on the available
data, highlighting the areas for which priors or additional samples would
be required for improved acquisition quality. We compare our approach to
previous work and quantitatively evaluate our results, showing similar
quality as previous work in a fraction of the time, and providing key
information about the certainty of the results.*

*
This chapter is based on the paper submitted as “Fast and Uncertainty-Aware SVBRDF

Recovery from Multi-View Capture using Frequency Domain Analysis” and currently

under review.
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Metallicity

Color Our estimate 5s
RelightingSpherical Harmonics

Mitsuba estimate 70s

Roughness

Uncertainty

Figure 5.1: We present fast multi-view material acquisition for objects captured in uncontrolled setups (left). We propose to build

upon and extend the signal processing framework for inverse rendering proposed by Ramamoorthi and Hanrahan [190]: we

improve the model with shadowing and masking and propose a lightweight objective function for BRDF fitting using spherical

harmonics power spectra (center). Using this objective, we propose an uncertainty estimation approach relying on statistical

entropy. We show that our material estimation is significantly faster than previous work and achieves similar or better results.

5.1 Introduction

Object reconstruction is highly attractive for a variety of applica-

tions: from creating assets and environments for movies and video

games, to preserving cultural-heritage objects digitally. Completely

capturing the appearance properties of an object would require

hundreds of photographs under controlled viewpoints and lighting

conditions. Unfortunately, fine control of the lighting and viewing

conditions is inconvenient, and impossible in many setups, such

as outdoors or in a crowded museum. In such scenarios only a

more “passive” capture of object appearance is possible. In this

work, we therefore assume no control over lighting and suppose

that views are captured in an unstructured manner. While this type

of capture can be enough to recover the geometry of an object, it is

more challenging to acquire accurate appearance properties.

Recent approaches for BRDF recovery from (under-constrained)

multi-view capture can mainly be classified into two categories:

(a) acquisition from only a few images, relying on deep network

priors [44] and (b) optimizing directly for appearance parameters

using differentiable rendering [102, 164]. The methods typically

do not provide accuracy guarantees, and the latter ones optimize

an ill-posed system, without providing any uncertainty measure.

The optimization methods are often slow, due to requiring many

iterations of full differentiable rendering for every view.

It is easy to miss information about the specular behavior of

an object when lighting and viewpoints are uncontrolled, as it

requires a lucky alignment of light sources and viewing directions.

To shine a metaphorical light on this missing information, we

propose to jointly estimate the object’s SVBRDF parameters and

the associated uncertainty (Figure 5.1). We improve upon a seminal

work studying inverse rendering problems from a signal-processing
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perspective in the frequency domain [190]. Moving to the frequency

domain allows one to gain insight about the expected stability of

an inverse rendering system to solve. For example, the incoming

light must contain enough amplitude in high-frequency bands to

recover certain roughness values for a microfacet BRDF. Otherwise,

noise in the signal could make the inversion unstable. Without

any amplitude, the inversion would be ill-conditioned, but this is

unlikely to occur for natural lighting. Unfortunately, mapping the

analysis in the frequency domain to practical algorithms is non-

trivial: For instance, samples are often assumed to be equally spaced

for frequency analysis while we deal with unstructured sparse

samples. Moreover, in its original formulation, the conclusions

from Ramamoorthi and Hanrahan [190] require a priori knowledge

of the BRDF to conclude whether the inversion problem is well-

conditioned.

In this work, we tackle these problems with an improved frequency-

based formulation, providing both computational efficiency and

insight into the underlying uncertainty. Our SVBRDF estimation

is as accurate as differentiable rendering-based optimization and

13−35 times faster than the state-of-the-art differentiable path tracer,

Mitsuba 3 [102]. By finetuning our results with Mitsuba, we achieve

better relighting results (+0.5dB PSNR) in less than a third of the

time. Thanks to our extension of the signal processing framework,

we obtain an accurate estimate of statistical entropy, interpreted

as an uncertainty measure for each surface point. We show that

this uncertainty can be used to improve acquisition by information

sharing or providing information about the information provided

by a given view.

To allow meaningful analysis or efficiency gains, we make the as-

sumption that the geometry and lighting are estimated or captured

using existing methods. For geometry we can use SDF extraction

[195] or scanning [120], while lighting can be captured using a

chrome ball or an omnidirectional camera. This is unlike recent

inverse rendering methods, which assume all components are un-

known [164, 219]. Our underlying goal is to make the best use of

the available data and to better understand where signal is missing,

before resorting to data-driven or ad hoc priors.

Following Ramamoorthi and Hanrahan, we model reflected light

from a surface as a convolution of BRDF and incoming light on the

hemisphere. To obtain the BRDF, we reconstruct this convolution

filter and map it to analytical BRDF parameters. Working in the

frequency domain, a convolution is a per-coefficient multiplication,

which greatly simplifies analysis and computational complexity. We

propose several key improvements to Ramamoorthi and Hanrahan’s

approach. First, we handle irregular light-field sampling by trans-

forming the observations of both the outgoing and incoming light

into spherical harmonics, using an efficient regularized least-squares
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approach. Hereby, we can use sparse irregular data from the view

sampling as well as regular Fibonacci samples from the environment

lighting in a common representation. Next, we include the shadow-

ing and masking terms of the BRDF, discarded by Ramamoorthi and

Hanrahan, and update the spherical harmonics coefficients during

a gradient-descent optimization. We obtain results on par with

a full-featured differentiable rendering system [102]. We leverage

the relationship between the spherical harmonic power spectra of

incoming and outgoing light to define a new objective function

for inverse rendering. As this objective is extremely lightweight to

evaluate, both in terms of time and memory, we can evaluate the

error for many parameter combinations in parallel. We interpret the

error as a posterior distribution, encoding how likely each material

parameter combination is, given the observations. This statistical

perspective lets us compute the entropy of the posterior distribution

as a measure of uncertainty. Intuitively, observations that can be

well explained by many different parameter combinations lead to

a ‘spread-out’ probability distribution with high entropy, which

reflects a higher uncertainty. In contrast, when only a few parameter

combinations are likely, the distribution is concentrated with low

entropy, reflecting high certainty. Similarly, we can estimate the

information gain from a new view by estimating its impact on

entropy, potentially providing interactive guidance during capture.

This uncertainty is also highly relevant to weigh priors, increasing

prior weights for uncertain estimations.

We validate our material parameter- and uncertainty estimation

in both synthetic and real acquisition conditions, comparing the

estimation with recent methods. Our solution performs on par with

state-of-the-art while being 13 times faster and providing uncer-

tainty. Further, we validate our refined signal-processing framework

through ablation studies, demonstrating clear improvement over

Ramamoorthi and Hanrahan. In summary, we enable fast mate-

rial reconstruction and uncertainty estimation via contributions to

the space of SVBRDF estimation from multi-view captures under

natural lighting:

▶ a frequency-space method using spherical-harmonics power

spectra for efficient BRDF approximation and parameter ex-

ploration from sparse, irregular samples,

▶ we improve the convolution approximation of Ramamoorthi

and Hanrahan by incorporating shadowing and masking,

▶ we quantify uncertainty in BRDF recovery by leveraging

statistical entropy,

▶ we evaluate various applications for improved reconstruction

based on fast acquisition and uncertainty.
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5.2 Related Work

Capturing real-world, spatially varying, surface reflectance models

from several camera views has been a long-standing challenge in

computer graphics. The spatially varying bidirectional reflectance

distribution function (SVBRDF) maps incoming light from a given

direction to outgoing light observed at another direction and varies

over six dimensions. Obtaining SVBRDFs from multi-view images

has typically been addressed through optimization, using simplified

models, and using data-priors trained on either realistic or synthetic

SVBRDFs, or real-world measurements.

5.2.1 Optimization-based Capture

Various methods recover the associated material properties through

optimization using a set of photographs of an object or surface.

This task typically requires many photographs and controlled light-

ing [3, 165, 52] or object orientations [49] during acquisition to

guarantee that specular effects are sufficiently observed. Some ap-

proaches rely on specialized hardware, for example to capture

polarimetric information [99]. Others propose to rely on priors, such

as stationarity of the captured materials [4, 2, 259, 88] to compen-

sate for limited information. Multiple methods [164, 148, 171, 231]

leverage recent progress in differentiable rendering [174, 102, 173,

260, 122, 170, 169, 172, 213, 257, 249, 27] to propose joint optimiza-

tion of light, geometry, and material properties. Recent approaches

build on novel representations for volumetric scenes, such as neural

networks [161] and 3D Gaussians [110], to include optimization for

material properties [15, 14, 55, 267, 215, 106, 266, 11, 150, 269, 248].

In general, these approaches cannot guarantee that the optimized

results are accurate, as there is no guarantee that the provided

photographs sample the necessary light-view angle pairs to qual-

ify the specular behavior and are unable to provide any measure

of certainty. Moreover, they rely on a heavy optimization process.

Inspired by Ramamoorthi and Hanrahan [190], who describe the

reflection function as a convolution in the frequency domain, we

propose to leverage the efficiency of this framework to both esti-

mate the material properties and their uncertainty, providing key

information about which part of the material properties are likely

faithfully reconstructed and for which parts we simply do not have

enough information.

5.2.2 Data priors for Capture

Various approaches propose using data-based priors to simplify

and enable low-information acquisition, allowing for estimating

(SV)BRDFs from as little as a single image. Many such approaches
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target flat surfaces, trained on a large amount of data using envi-

ronmentally lit image(s) [131, 153, 229, 206] or flash-lit image(s) [43,

44, 45, 199, 275, 276, 274, 80] for acquisition. MaterialGAN [81] and

Gao et al. [70] propose to optimize in latent spaces of deep neural

networks, hereby remaining in the manifold of valid materials. In

the context of 3D object acquisition, methods often focus on ma-

terial extraction using a few (or even single) flash or multi-focal

photographs [134, 46, 16, 60]. These approaches are orthogonal

to our method, as we focus on recovering the SVBRDF from the

provided signal without initial prior, quantifying the uncertainty of

the process. Our uncertainty can in turn be used to better guide the

use of priors to surface regions which most need it.

5.2.3 Frequency-based light transport

Our work builds on the frequency analysis of light transport, in

particular with the idea that BRDFs can be expressed as low-pass

filters [53, 190]. From this, one can express the reflection of light

with a BRDF as a multiplication in the frequency domain. This idea

is successfully used in the context of controlled illumination [73, 3],

controlling the frequency of light patterns to estimate the BRDF filter

parameter through a deconvolution of the reflected light. We do not

assume control of the light and operate in the spherical-harmonics

frequency domain rather than the Fourier domain [3] or custom

basis functions [73]. This allows our analysis to work with arbitrary

natural lighting environments. Closest to our approach is the work

by Ramamoorthi and Hanrahan [190], which explicitly derives the

concept of reflection as convolution in a signal-processing frame-

work. They further outline the implications of this perspective on

the well-posedness of BRDF- and light estimation from multi-view

inputs and optimize for BRDF parameters through the frequency

domain. Our work differs in a number of ways: First, we add theo-

retical insights on uncertainty and sampling. We propose methods

to quantify these concepts, so they can be used in downstream

tasks and show how to accelerate this approach using the power

spectrum. Second, our approach supports arbitrary light setups and

treats all frequencies in the same framework, rather than separating

high and low frequency lighting. We do so by robustly estimating

spherical harmonic coefficients directly on sparse, irregular samples

using a regularized least-squares method. Finally, we propose to

improve the BRDF model described by Ramamoorthi and Hanrahan

to include shadowing and masking and show how to map the model

to the widely used simplified principled BRDF [25].

5.2.4 Uncertainty estimation

Uncertainty estimation in the context of acquisition is highly de-

sirable, as it can guide the capturing process and the use of priors,
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or simply inform on the expected quality of a given reconstruc-

tion. Lensch et al. [129] estimate an object’s material properties

by clustering similar BRDF estimations within an object. To guide

the clustering and its splitting, the covariance of the parameters

are used. In Lensch et al. [130], the uncertainty of BRDF parame-

ters is estimated using similar covariance matrices. More recently,

Rodriguez-Pardo et al. [193], taking inspiration from Bayesian meth-

ods [69], use Monte-Carlo dropout to estimate the uncertainty of

material estimation from a single picture. In the context of novel

view synthesis, Goli et al. [74] propose to evaluate the inherent

volumetric uncertainty of NeRF [161] reconstructions posterior to

training. They use ray perturbations and an approximation of the

Hessian to quantify uncertainty and show a correlation between

uncertainty and absolute error. In this work, we use a different

approach to estimate uncertainty. We use a fast BRDF estimation

approximation for many parameter combinations and interpret the

resulting error as a negative log-likelihood from which we derive

an entropy measure.

5.3 Background

Our method builds on prior work in inverse rendering and spherical

harmonics. We summarize required background knowledge and

refer to related work for further depth.

5.3.1 Spherical Harmonics

Spherical harmonics are a series of orthonormal basis functions

on the sphere, indexed by their degree ℓ and order 𝑚. We use

them to represent incoming and outgoing radiance over incoming

and outgoing directions on the unit sphere. Spherical harmonics

are analogous to the Fourier series on a flat domain, where the

frequency of the Fourier series corresponds to the degree ℓ and

order 𝑚. We provide a brief overview of properties relevant to

our method. For further details, a helpful reference and software

package is published by Wieczorek and Meschede [243].

Any real, square-integrable function on the sphere can be ex-

pressed as a spherical-harmonics series:

𝑓 (𝜃, 𝜙) =
∞∑
ℓ=0

ℓ∑
𝑚=−ℓ

𝑓ℓ𝑚𝑌ℓ𝑚(𝜃, 𝜙), (5.1)

where 𝑓ℓ𝑚 is the coefficient for spherical harmonic 𝑌ℓ𝑚(𝜃, 𝜙),
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1: Because the spherical harmonics are

orthormal, the inner product between

any spherical harmonic with ℓ > 0 and

the constant function (ℓ , 𝑚 = 0) equals

zero.

given as

𝑁ℓ𝑚 =

√
(2 − 𝛿𝑚0)(2ℓ + 1)

4𝜋
(ℓ − 𝑚)!
(ℓ + 𝑚)! (5.2)

𝑌ℓ𝑚(𝜃, 𝜙) =
{
𝑁ℓ𝑚𝑃

𝑚
ℓ
(cos𝜃) cos𝑚𝜙 if 𝑚 ≥ 0,

𝑁ℓ𝑚𝑃
|𝑚 |
ℓ
(cos𝜃) sin |𝑚 |𝜙 if 𝑚 < 0.

(5.3)

𝑁ℓ𝑚 is a normalization factor, 𝛿𝑚0 is the Kronecker delta function,

which evaluates to 1 when𝑚 = 0, and 𝑃𝑚
ℓ

is the associated Legendre

function for degree ℓ and order 𝑚. The total number of spherical

harmonics up to- and including a maximum degree, ℓ ∗, equals

(ℓ ∗ + 1)2. A useful property of spherical harmonics in our setting is

that a rotational convolution on the sphere is equal to multiplication

of coefficients in the spherical harmonic domain.

The power spectrum of a spherical function 𝑓 can be computed

from the spherical harmonic coefficients per degree

𝑆 𝑓 (ℓ ) =
ℓ∑

𝑚=−ℓ
𝑓 2

ℓ𝑚
. (5.4)

The power spectrum is invariant to rotations of the coordinate

system. In our context that means the power spectrum is invariant

to slight perturbations of the normals at each point.

Computing spherical harmonic coefficients One can find the SH

coefficients for a function 𝑓 by computing the inner product with

the basis functions

𝑓ℓ𝑚 =

∫
𝑆2

𝑓 (𝜃, 𝜙)𝑌ℓ𝑚(𝜃, 𝜙)𝑑𝜔. (5.5)

A useful property holds for the coefficient of degree ℓ = 0, for

which the spherical harmonic is constant; 𝑌00(𝜃, 𝜙) = (4𝜋)−
1

2 . The

corresponding coefficient, 𝑓00, is equal to the integral of 𝑓 times

the normalization constant, (4𝜋)− 1

2 . The spherical harmonics for

higher degrees all integrate to zero
1
. This is relevant in the context

of rendering, because the total integrated incoming and outgoing

radiance can be read from the 0
𝑡ℎ

degree coefficient and that

coefficient alone. In the general case, we estimate the coefficient for

𝑓ℓ𝑚 based on samples of 𝑓 . The sampling method determines how

these coefficients are estimated.

Regular sampling If 𝑓 is sampled on a grid with equally spaced

longitudinal and latitudinal angles, Equation 5.5 can be accelerated

using a fast Fourier transform in the longitudinal direction 𝜙 and a

quadrature rule in the latitudinal direction 𝜃 [51]. This approach can

be used for environment maps represented as rectangular textures.
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Irregular sampling During capture the camera is often placed at

irregular positions, leading to non-uniform (𝜃, 𝜙) samples. Further,

a point on the surface might be observed from only a few positions.

We therefore often need to use sparse and irregular samples to fit

spherical harmonic coefficients. We do so by fitting the coefficients

using least-squares, expressing Equation 5.1 as a linear system

Yc ≈ f, (5.6)

where f is a vector of 𝑛 discrete samples from 𝑓 , Y is a matrix of

size 𝑛 × (ℓ ∗ + 1)2 containing the spherical harmonics sampled at the

same locations as 𝑓 , and c is a vector of the (ℓ ∗ + 1)2 coefficients we

want to find. We can find c by solving a least-squares system

Y⊺Yc = Y⊺f. (5.7)

To be well posed, this system requires 𝑛 > (ℓ ∗ + 1)2 independent

samples, which can be challenging in the context of sparse sampling,

making the system under-constrained. We propose to use a custom

regularizer in Section 5.4.2 for cases where the number of samples

is too low.

5.3.2 Reflection as Convolution

Surface reflection can be approximated as the convolution of incom-

ing radiance (from the light direction) with a BRDF [190]. Specifi-

cally, if we assume an isotropic microfacet Torrance-Sparrow BRDF,

combined with a Lambertian term, we can derive the following

approximate equation for outgoing radiance 𝐵 at point 𝑝 in the view

direction 𝜔𝑜

𝐵(𝑝, 𝜔𝑜) ≈ 𝐾𝑑𝐸(𝑝) + 𝐾𝑠𝐹(𝜃𝑜) [𝑆𝛼 ∗ 𝐿(𝑝)]𝜔𝑜 , (5.8)

where 𝐾𝑑 and 𝐾𝑠 are diffuse and specular terms; 𝐸(𝑝) is the irradi-

ance integrated over the hemisphere; 𝐹(𝜃𝑜) is a simplified Fresnel

term, which only depends on the outgoing direction; 𝐿(𝑝) is the in-

coming radiance; and 𝑆𝛼 is a filter parametrized by the distribution

width, 𝛼. This filter is derived from the normal distribution function

of the surface. The ∗ operator represents convolution. A derivation

of this approximation is included in the Appendix C.

In this framework, estimating the specular BRDF parameters

comes down to estimating the convolution kernel. This can be

done efficiently since a convolution in the angular domain can be

represented as a multiplication in the spherical harmonics frequency

domain. Using this representation, one can find the convolution

kernel through a division of the spherical harmonics coefficients of

the outgoing radiance by those of the incoming radiance. This is

analogous to kernel estimation for image deblurring in the Fourier

domain.
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The above leads to crucial insights regarding the well-posedness

of BRDF recovery. Ramamoorthi and Hanrahan state that the re-

covery of BRDF parameters is ill-posed if the input lighting has no

amplitude along certain modes of the filter (BRDF). Those modes

cannot be estimated without additional priors on plausible spatial

parameter variations. For the microfacet BRDF, this leads to the

following conclusion: if the incoming light only contains frequencies

ℓ ≪ 𝛼−1
, multiplying the coefficients of the light with those of the

BRDF only results in a small difference, and the inversion of this

operation is ill-conditioned. To accurately estimate 𝛼, the incoming

light used during the capture needs to exhibit sufficiently high

frequencies.

This insight is based on a derivation for the coefficients of the

microfacet model. The normalized SH-coefficients of the specular

component of the BRDF for normal incidence, 𝑆, are approximated

by

𝑓ℓ𝑚 ≈ 𝑒−(𝛼ℓ )
2

, (5.9)

which is a Gaussian in the frequency domain with a width de-

termined by 𝛼. The kernel is derived from a Beckmann normal

distribution function and the 𝛼 parameter corresponds to the 𝛼
parameter there. Note that these coefficients do not vary with the

Spherical Harmonics order𝑚, since the normal distribution function

is isotropic for outgoing rays in the direction of the normal vector

(𝜃𝑜 = 0). An important approximation employed by Ramamoorthi

and Hanrahan is that this same kernel can be used for any outgoing

direction. While the correct kernel varies with the incoming and

outgoing direction, this approximation does not lead to significant

error for inverse rendering [190] as they note that “it can be shown by
Taylor-series expansions and verified numerically, that the corrections to
this filter are small [for low degrees ℓ ]”.

In this chapter, we expand on the theory established by Ra-

mamoorthi and Hanrahan by improving the reflection as a con-

volution model’s accuracy and developing the implications for

well-posedness into quantifiable metrics on uncertainty without

a-priori knowledge on 𝛼.
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Figure 5.2: An overview of our pipeline showing input, output, and the proposed algorithm. The input to our approach is a set of

photographs of an object from multiple camera points and the associated camera extrinsics and intrinsics. We also provide the

input lighting as an environment map and object geometry. Next, we propose two main variants of our approach: a mixed pipeline

(top) and a pipeline fully contained in the spherical harmonic domain (bottom). The Mixed pipeline first estimates spherical

harmonic coefficients for the input lighting on Fibonacci samples. The light is convolved with the BRDF filter and mapped back to

the angular domain, where the outgoing radiance is attenuated with Fresnel, shadowing, and masking. During acquisition, we

optimize the BRDF parameters by comparing the outgoing light samples to the radiance captured in the input photographs. The
Frequency Domain pipeline first estimates spherical harmonic coefficients on both the incoming and outgoing radiance and then

estimates the effect of different BRDF filters within the power spectrum. This is used to compute a measure of uncertainty on the

predicted parameters for acquisition.

5.4 Method

Our goal is to recover (SV)BRDF properties and quantify uncer-

tainty from multi-view capture of an object under environment

lighting. The input to our method is a set of images Icaptured from

multiple camera positions. The camera extrinsics, intrinsics, object

geometry and HDR lighting are assumed to be known – through

existing methods for camera calibration, photogrammetry, and HDR

environment capture – but not controlled.

For each point 𝑝 on the object surface, we know the incoming

radiance 𝐿(𝑝, 𝜔𝑖) from directions 𝜔𝑖 . These values can be sampled

from the environment map. For higher accuracy, one can attenuate

the light based on self-occlusion, but we do not explore this in our

work. By projecting the captured images onto the surface, we retrieve

the outgoing radiance at each point, 𝐵(𝑝, 𝜔𝑜). Our task is to recover

the BRDF 𝑓 (𝑝, 𝜔𝑜 , 𝜔𝑖) and capture the uncertainty associated with

its parameters. The BRDF relates the incoming radiance of the upper

hemisphere Ω to the outgoing radiance as [182]:

𝐵(𝑝, 𝜔𝑜) =
∫
Ω

𝑓 (𝑝, 𝜔𝑜 , 𝜔𝑖)𝐿(𝑝, 𝜔𝑖) cos𝜃𝑖𝑑𝜔𝑖 . (5.10)

We use the Torrance-Sparrow BRDF model with parameters for

diffuse reflectance 𝐾𝑑 , specular reflectance 𝐾𝑠 , and the slope of

the normal distribution function 𝛼 (Equation 5.8). We denote these

parameters as a vector of parameters, 𝜓. In subsection 5.4.6, we

show how to map a simplified Disney principled BRDF [25] to these

parameters.

To estimate 𝜓, we propose to build on the framework proposed
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by Ramamoorthi and Hanrahan [190]. In the following sections we

carefully highlight how we improve and extend its use compared

to the original formulation. An overview of the pipeline is shown

in Figure 5.2, where we denote our contributions in black and ex-

isting work in gray. In particular, we describe the extension of the

existing convolution model to take shadowing and masking effects

into account. We then describe an efficient spherical-harmonics

fitting from sparse and irregular samples of radiance, enabling

unstructured capture setups. We then propose a carefully validated

approximation of the convolution model to design a lightweight

loss function, leveraging the power spectrum for efficient loss eval-

uation. These improvements enable quick sampling of the BRDF

parameter space, Ψ, which we use to propose a new formulation

for capturing uncertainty relying on statistical entropy. Finally, we

map the Torrance-Sparrow BRDF model parameters to those of the

simplified Disney principled BRDF [25] for use in modern rendering

pipelines.

5.4.1 Improving the Convolution Model

The approximate reflection function in Equation 5.8 does not include

the shadowing or masking terms present in microfacet models [182].

The shadowing and masking terms model occlusion on incoming

light (shadowing) and outgoing light (masking) due to the config-

uration of the microfacets (Figure 5.2, top right). Light at grazing

angles is more likely to be occluded by microfacets, especially if

the microfacet distribution is wide (high roughness). Ramamoorthi

and Hanrahan argue that these terms can be ignored, because they

mostly affect observations made at grazing angles. While this is

true for materials with low roughness, we find that ignoring this

term leads to reconstruction errors for high roughness materials –

we evaluate the terms’ impact in Table 5.4. We therefore propose to

introduce shadowing and masking terms to the convolution model.

Shadowing and masking effects are typically modeled jointly to

avoid an over-correction of the radiance (Pharr et al. [182], Section

9.6.3). However, this joint term cannot be included in the simplified

convolution model as presented in Equation 5.8, because the kernel

would need to vary with both 𝜔𝑖 and 𝜔𝑜 (the 2D kernel only varies

with either 𝜔𝑖 or 𝜔𝑜). Therefore, we assume that shadowing and

masking effects are independent and can be modeled separately as

𝐺𝛼(𝜔𝑖)𝐺𝛼(𝜔𝑜). While we do observe a small overestimation of the

shadowing and masking effect, we show in Table 5.4 that the addition

of the term still leads to improvements for BRDF acquisition. This

way we can first attenuate the incoming light with the shadowing

term, then convolve with the BRDF and then attenuate the result
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with the masking term

𝐵(𝑝, 𝜔𝑜) ≈ 𝐾𝑑𝐸(𝑝) + 𝐾𝑠𝐹(𝜃𝑜)𝐺𝛼(𝜃𝑜) [𝑆𝛼 ∗ 𝐺𝛼(𝜃𝑖)𝐿(𝑝)]𝜔𝑜 , (5.11)

where𝐺𝛼 is the shadowing-masking function in the Trowbridge and

Reitz [226] model (also referred to as GGX [233]). The shadowing

and masking terms both depend on 𝛼, which is not known a-priori.

This means that the shadowing and masking terms change as we

optimize 𝛼. As a consequence, we need to update the coefficients

for the incoming light as 𝐺𝛼(𝜃𝑖) changes. While the estimation of

spherical harmonic coefficients is relatively fast, it can still be quite

cumbersome to update the coefficients in every optimization step.

Therefore, we only update the shadowing term each 𝑚 iterations.

5.4.2 Fitting Spherical Harmonic Coefficients

Much of our computation relies on a convolution applied in the

spherical harmonics domain, which means we require a good spher-

ical harmonics transform. This is challenging, because the outgoing

light field, 𝐵, is sampled sparsely and non-uniformly (Figure 5.3,

second column). Therefore, Ramamoorthi and Hanrahan do not

directly estimate spherical harmonic coefficients on 𝐵, but only per-

form the transformation from the spherical harmonic domain to the

directional domain. This is simpler, because it only requires evaluat-

ing the spherical harmonics at the sample locations (Equation 5.1).

For the incoming light, they represent low-frequency (area sources)

and high-frequency lighting (point sources) separately and limit

their environments to controlled ‘lightbox’-like settings. We would

like to compute an estimate of the spherical harmonic coefficients

for the outgoing radiance, because this would enable algorithmic

analysis fully within the frequency domain. This is highly appealing,

because it has the potential to greatly simplify the analysis of BRDF

recovery, as showcased by Ramamoorthi and Hanrahan.

Next to sparse sampling, a significant challenge is that both the

incoming- and outgoing radiance fields are only supported on

the upper hemisphere when considering reflection. If we were to

consider incoming radiance on the lower hemisphere, we would

implicitly model light ‘leaking through’ the surface. One possible

solution is to simply pad the lower hemisphere with zeros (Fig-

ure 5.3, third column). This is not practical, because it introduces

high frequency variation at the boundary, which disrupts any po-

tential analysis on the spherical harmonic coefficients (bottom row).

Another solution that we explored is to represent the radiance fields

with hemispherical harmonics [272]. In practice, this is equivalent

to mirroring the radiance fields along the meridian, which resulted

in mismatches with the convolution model.

We instead propose a spherical harmonics fitting approach that

is robust to sparse and irregular samples, and supports the lack
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Figure 5.3: A comparison of the options for fitting spherical harmonics on sparse samples. In the first column, top: incoming

radiance (synthetic) on the sphere mapped to a lat-long grid. Middle: synthesized outgoing radiance as a result of filtering

incoming radiance with Equation 5.9, 𝛼 = 0.2. Bottom: power spectra of incoming and outgoing radiance and ground-truth filter

(BRDF) plotted on a log-scale. In the second to fifth column, we show the result of fitting spherical harmonics coefficients to

samples and then transforming back to the spatial domain. We use 100 samples from the upper hemisphere of the input radiance

(first column) and simulate missing samples due to occlusion or missed camera positions by masking some points, leaving 88

samples. The samples are weighted with cos𝜃, which is visualized as the transparency of the samples. We find that our method

with a weighted regularizer is able to smoothly interpolate missing values and retrieves the correct BRDF filter in the power

spectrum, where other variants overfit, or add dark regions in the upper hemisphere.

of lower hemisphere samples and gracefully handles occluded

regions. First, analog to ideas from compressed sensing, we add a

regularization term on the spherical harmonic coefficients. A typical

choice for this term is an 𝐿1 norm, which enforces sparsity in the

spherical harmonic coefficients. The resulting system can be solved

with linear programming. We propose instead to use a weighted 𝐿2

norm which can be solved using standard linear solvers, which we

found to be faster and more stable for our usecase:

(Y⊺Y + 𝜆W)c = Y⊺f, (5.12)

where W is a diagonal weight matrix. If constant, this weight matrix

leads to poor fitting as the regularization is too strong on the lower

spherical harmonics degrees (Figure 5.3, fourth column). We set

the weight equal to 𝑒ℓ , increasing the strength of regularization

for higher spherical harmonics degrees. This is informed by the

observation that many natural images have a power spectrum with

exponential decay [65]. Intuitively, this regularizer encourages filling

unknown regions with low-frequency information, akin to solutions

with a smoothness term (Figure 5.3, right-most column). By applying

the same regularization to both incoming- and outgoing radiance

fitting, we are able to recover the correct filter (bottom row), even

though the recovered incoming radiance looks blurrier (top row).

We fit the signals for which we have complete spatial information

(e.g., incoming environment light) by sampling it in with Fibonacci

samples on the sphere. For partially observed signal (e.g., reflected

light) we use the available samples with the described fitting tech-

nique for sparse and irregular samples. An important consideration
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related to the number of samples, is the frequency of the signal that

we fit spherical harmonics to. We have an in-depth analysis of this

in Appendix C. The practical take-away is that the incoming signal

should be bandlimited to roughly 𝑛
1

2 to avoid aliasing, where 𝑛 is

the number of input views. We ensure this is the case for the incom-

ing radiance by applying the filter in Equation 5.9 with 𝛼′ = 𝑛−
1

2

on the input environment map. The impact on our BRDF estimation

is that we cannot accurately recover 𝛼 < 𝛼′. In our experiments

and analysis in Appendix C, we find that the recovered 𝛼 tends

to be between 0 and 𝛼′ in those cases. A second finetuning pass

with a differentiable path tracer, like the one we demonstrate in the

experiments, can help refine those regions.

5.4.3 Optimizing for SVBRDF Parameters

Using our more complete model described in Equation 5.11, we

can optimize for the object’s material parameters using gradient

descent:

𝜓∗ = arg min

𝜓

∑
𝑝,𝜔𝑜

|𝐵𝜓(𝑝, 𝜔𝑜) − 𝐵′(𝑝, 𝜔𝑜)| (5.13)

With 𝐵𝜓(𝑝, 𝜔𝑜) a rendering operator using Equation 5.11 and

𝐵′ the radiance values projected onto the surface points 𝑝. As

described in subsection 5.4.1, we optimize the parameters 𝜓 for a

number of iterations before updating the shadowing term, as this

step requires recomputing the spherical harmonic fit. The masking

term is included in the forward rendering step and updated every

iteration. Because of the simplicity of the convolution approximation,

we are able to optimize for all points and camera positions in one go,

rather than using stochastic gradient descent with batches of rays.

This lets us run our optimization with fewer iterations than other

approaches. Similar to other methods, we add the total variation

norm on the parameters in texture space as a regularizer to enforce

smoothness, weighted with 1 × 10
−3

.

5.4.4 A Lightweight Objective

In this section we define a particularly efficient-to-compute approxi-

mation of the convolution BRDF model described in Equation 5.11.

Our goal is to develop algorithms to analyze the inverse render-

ing problem fully in the spherical harmonic domain. This would

simplify such analysis tremendously, as convolution is simply a

per-frequency multiplication in this domain.

For this approximation, we propose to ignore the Fresnel and

shadowing and masking terms, letting us express the reflection

function entirely in terms of spherical harmonic coefficients. We
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show experimentally in Section 5.5.4 that the impact of this approx-

imation is acceptable on the underlying application of this objective.

Using Equation 5.9 for the coefficients of 𝑆 we get:

𝐵ℓ𝑚 =

{
𝜋−

1

2 𝐾𝑑𝐸(𝑝) + 𝐾𝑠𝐿ℓ𝑚 , if ℓ = 0.

𝐾𝑠 𝑒
−(𝛼ℓ )2𝐿ℓ𝑚 , otherwise.

(5.14)

We note that the specular component for ℓ = 0 does not depend on

𝛼, because for ℓ = 0, Equation 5.9 equals 1. The term 𝜋−
1

2 𝐾𝑑𝐸(𝑝)
represents the diffuse component as a constant function. We know,

based on the conservation of energy, that the diffuse component

should integrate to 𝐾𝑑𝐸(𝑝) on the upper hemisphere for outgo-

ing directions. Thus, the integral over the full sphere should be

𝐾𝑑2𝐸(𝑝). Equation 5.5 shows that the Spherical Harmonics coeffi-

cient for degree ℓ = 0 should be equal to (4𝜋)− 1

2 times the integral:

(4𝜋)− 1

2 𝐾𝑑2𝐸(𝑝) = 𝜋−
1

2 𝐾𝑑𝐸(𝑝). From this expression, we make two

observations. (a) We cannot recover the ratio between 𝐾𝑑 and 𝐾𝑠
from the ℓ = 0 alone, as we have two unknowns and only one

coefficient and (b) we cannot derive any information on 𝛼 from the

0th degree, as it has no impact there. It follows that we can only

recover 𝐾𝑠 and 𝛼 from degrees ℓ > 0. Once 𝐾𝑠 is known, we can

then estimate 𝐾𝑑 from the 0
th

degree. In other words, we know

diffuse reflectance once we know the contribution of the specular

component. This reduces our analysis of uncertainty to the specular

component on the parameters𝐾𝑠 and 𝛼. Note that this simplification

comes naturally in the frequency domain, because we can simplify

limit our analysis to degrees ℓ > 0. This is non-trivial to separate

out in the directional domain.

We use our proposed spherical harmonic coefficient fitting de-

scribed in Section 5.4.2 to recover 𝐿ℓ𝑚 and 𝐵ℓ𝑚 . 𝐿ℓ𝑚 is estimated

by sampling the known environment lighting 𝐿 with the Fibonacci

sampling, while 𝐵ℓ𝑚 is estimated from the sparse, irregular samples

of the object from the input views as described in Section 5.4.2.

Next, we propose to use the power spectra 𝑆𝐿 and 𝑆𝐵 of the

spherical harmonics fittings 𝐿ℓ𝑚 and 𝐵ℓ𝑚 , which we can express as

𝑆𝐿(ℓ ) =
ℓ∑

𝑚=−ℓ
𝐿2

ℓ𝑚
(5.15)

𝑆𝐵(ℓ ) =
ℓ∑

𝑚=−ℓ
(𝐾𝑠 𝑒−(𝛼ℓ )

2

𝐿ℓ𝑚)2 (5.16)

= 𝐾2

𝑠 𝑒
−2(𝛼ℓ )2

ℓ∑
𝑚=−ℓ

𝐿2

ℓ𝑚
(5.17)

= 𝐾2

𝑠 𝑒
−2(𝛼ℓ )2𝑆𝐿(ℓ ) (5.18)

for degrees ℓ > 0. Using this relationship between the BRDF pa-
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rameters (𝐾𝑠 , 𝛼) and the incoming and outgoing radiance power

spectra (𝑆𝐿(ℓ ) and 𝑆𝐵(ℓ ), we can formulate a lightweight objective:

𝐷(𝐾𝑠 , 𝛼) =
ℓ ∗∑
ℓ=1

(𝑆𝐵(ℓ ) − 𝐾2

𝑠 𝑒
−2(𝛼ℓ )2𝑆𝐿(ℓ ))2. (5.19)

Intuitively this objective evaluates the difference between the ob-

served radiance and the BRDF-convolved incoming radiance with

a given (𝐾𝑠 , 𝛼) through their respective power spectrum. This for-

mulation reduces the computation from ℓ ∗2 to ℓ ∗ evaluations of

the objective, making its evaluation near instantaneous. We show

how this fast estimation is key to unlocking near-instant (<1ms)

uncertainty evaluation as shown in Section 5.4.5 and can be used as

initialization of the optimization described in Section 5.5.6.

5.4.5 Entropy as Uncertainty

In our context of passive acquisition, we have no guarantee that

the illumination on the captured object surface is sufficient to fully

recover the material parameters. This uncertainty is particularly

desirable information as it is key to understanding the quality

of acquisition (e.g. for digital twins), driving the use of priors in

uncertain regions while preserving the correctly recovered surface

areas, or driving the acquisition by maximizing the information

provided by new views when additional captures are possible. We

propose to use a grid search of the parameter space to inform

our uncertainty estimation. This is now tractable, thanks to the

power spectrum approximation discussed in the previous section.

By interpreting the error over the parameter space as a likelihood

function, we can express uncertainty using entropy, which is a

common way to study uncertainty. We detail these contributions in

the following paragraphs.

One can interpret the recovery of the right BRDF parameters, 𝜓∗

as a maximization of the posterior probability distribution of the

parameters given the incoming and outgoing power spectrum

𝜓∗ = arg max

𝜓
𝑝(𝜓 |𝑆𝐿 , 𝑆𝐵). (5.20)

According to Bayes rule, the posterior is proportional to the product

of the likelihood and prior over the parameters:

𝑝(𝜓 |𝑆𝐿 , 𝑆𝐵) ∝ L(𝑆𝐿 , 𝑆𝐵 |𝜓)𝑞(𝜓), (5.21)

Assuming 𝑞(𝜓) to be an uninformative prior, i.e. a uniform distri-

bution on the range of allowed parameter values (typically [0,1]

for BRDF parameters), we can reformulate this objective to an
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2: This is equivalent to computing en-

tropy on a continuous probability den-

sity function using the limiting density

of discrete points [103].
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Figure 5.4: Examples of the likelihood

and entropy 𝐻 resulting from three

sets of power spectra for incoming and

outgoing radiance. The likelihood is

sampled at 100 discrete values. Top:

An ideal situation, where the incom-

ing radiance is a dirac delta (all fre-

quencies are present). Middle: A sit-

uation where the incoming radiance

does not have enough amplitude for

higher degrees. Bottom: A situation

where the incoming radiance is ideal,

but the specular component is too low

to get a proper recovery for 𝛼.

equivalent negative log-likelihood objective

𝜓∗ = arg min

𝜓
− log(L(𝑆𝐿 , 𝑆𝐵 |𝜓)). (5.22)

We interpret the lightweight objective described in Equation 5.19 as

the Negative Log Likelihood (NLL) of the joint probability, given

parameters 𝜓 = (𝐾𝑠 , 𝛼):

L(𝑆𝐿 , 𝑆𝐵 |𝜓) =
1

𝜎
√

2𝜋
𝑒
− 1

2𝜎2
𝐷(𝐾𝑠 ,𝛼) , (5.23)

where 𝐷(𝐾𝑠 , 𝛼) is the squared error measure defined in Equa-

tion 5.19. We can view this as assuming that the error of our model

caused by approximations and measure noise is Gaussian∼N(0, 𝜎2).
We set 𝜎 = 1𝑒−2

, found empirically to capture the change in loss

observed when noticeably changing 𝜓. The scaling constant above

is optional since we will renormalize below in Equation 5.24. With

𝜎 fixed, minimizing the NLL from Equation 5.22 is equivalent to

minimizing 𝐷(𝐾𝑠 , 𝛼).
We explore the material parameter space for 𝜓 = (𝐾𝑠 , 𝛼), dis-

cretized in 𝑛 values in total, 𝜓𝑖=0..𝑛 (

√
𝑛 per variable). Because this

process can be parallelized easily, this step typically takes between

1 − 10ms for common scenarios. The grid search provides us with a

discrete distribution 𝑑 obtained from the 𝑛 samples of 𝜓:

𝑑𝑖 =
L(𝑆𝐿 , 𝑆𝐵 |𝜓𝑖)∑𝑛
𝑖=1

L(𝑆𝐿 , 𝑆𝐵 |𝜓𝑖)
, (5.24)

where 𝑑𝑖 gives the probability that a parameter is within a range

of 1/2𝑛 from 𝜓𝑖 . We use the discrete distribution to compute the

uncertainty with the distribution’s normalized entropy
2
:

𝐻 = − 1

log(𝑛)
𝑛∑
𝑖=1

𝑑𝑖 log(𝑑𝑖). (5.25)

Intuitively, the normalized entropy describes the spread of a proba-

bility distribution: low entropy means that the probability distribu-

tion is highly concentrated, which implies certainty. High entropy

means that the probability distribution is spread out, which implies

uncertainty: many options share a similarly high probability.

We show three examples of power spectra, their corresponding

likelihood and entropy in Figure 5.4. The top row shows incoming

light for a dirac delta light source (constant in the spherical harmonic

domain) and we see that entropy is low (𝐻 = 0.25) and that it is

simple to recover the correct parameters. The middle and bottom

rows are problematic cases. In the middle row, the light only has

amplitude in low frequencies and many roughness values are equally

likely (𝐻 = 0.69), in line with the conclusions from Ramamoorthi

and Hanrahan. The bottom row shows a material with very low
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specular reflectance, resulting in high entropy (𝐻 = 0.87). This could

result in incorrect estimates under noisy conditions. Concluding,

entropy as uncertainty generalizes and quantifies the observations

made by Ramamoorthi and Hanrahan on the uncertainty for certain

incoming light and material parameters, without requiring a prior

estimate of the BRDF parameters.

5.4.6 Disney Principled BRDF

Many modern rendering pipelines employ variants of the Disney

BRDF [25], which is a combination of a diffuse term and a microfacet

term with a user-friendly parametrization. The model also contains

some additional features beyond the scope of the current work. We

can formulate our model using the principled BRDF parameters,

rather than the raw parameters of the Torrance-Sparrow model. We

parameterize base color, metallicity and roughness, mapping these

to the Torrance-Sparrow model as

𝐾𝑑 = 𝑅𝑏 , (5.26)

𝐾𝑠 = 1, (5.27)

𝑅0 = 0.04 + (𝑅𝑏 − 0.04)𝑚, (5.28)

𝐹(𝜃𝑜) = 𝑅0 + (1 − 𝑅0)(1 − cos𝜃𝑜)5 , (5.29)

𝛼 = 𝑟2 , (5.30)

where 𝑅𝑏 is the base color, 𝑚 is the metallicity parameter and 𝑟 is

the roughness. In the ablations where the Fresnel term is not used,

we set 𝐾𝑠 = 𝑅0. Note that we set 𝐾𝑠 to 1, because the specular term

is contained in the Fresnel term as 𝑅0.

5.5 Experiments

Our method yields two main benefits: fast fitting and a measure

of uncertainty. In our experiments, we validate these benefits with

comparisons, provide insight into variations of the algorithm in

ablations, and show applications to demonstrate potential use cases.

5.5.1 Implementation

We implement our full pipeline in PyTorch. The output of our

method is a set of PBR textures (roughness, metallicity, base color)

which are mapped to the input mesh with UV-coordinates to 512x512

textures. For re-renders, we feed the textures produced by our

method into Mitsuba, which is possible due to the mapping to the

principled BRDF described in subsection 5.4.6. Each timing result

is reported on a machine with an NVIDIA RTX4090 GPU and an

AMD Ryzen 9 7950X 16-Core CPU.
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Our main comparison target is Mitsuba 3 [102], as it is a well-

documented, open-source, and research-friendly package for dif-

ferentiable rendering. More recently Sun et al. [219] propose to

jointly optimize for lighting, material and geometry, but did not yet

release a public implementation; given that they rely on a complex

differentiable renderer, we believe Mitsuba 3 to be the best proxy

for their inverse PBR step. When optimizing with Mitsuba, we

sample one ray per pixel in each view. The material parameters are

optimized with stochastic gradient descent, where the gradient for

each step is estimated with a random set of rays to ensure good

convergence. Each primary ray is sampled 32 times, allowing the

reflection directions to be sampled. We run an Adam optimizer until

convergence or a maximum of 10 epochs.

5.5.2 Datasets

We perform experiments on a recent in-the-wild benchmark dataset,

Stanford ORB [120] and on synthetic scenes. Stanford ORB con-

tains 14 objects, each captured 3 times in different scenes (lighting

environments), selected from a total of 7 scenes. The lighting envi-

ronment is captured through a chrome ball and stored as a lat-long

environment map. Each object is also scanned in a separate stage,

providing high-quality geometry. For our evaluation, we focus on

the (SV)BRDF recovery step and use the provided geometry. In our

experiments, we optimize material parameters for each object, for

each of the three environments, and test against the photographs

of the same object in the two environments that were not observed

during optimization.

For the synthetic benchmark, we selected 15 objects with spatially

varying BRDF textures for base color, roughness and metallicity.

We selected four environment maps with varying challenges to

render the objects: two indoor scenes, one outdoor scene with a

clear sky and sun, and one overcast outdoor scene. Because we

have ground-truth material textures for the synthetic scenes, we

can quantitatively evaluate our optimization results and validate

uncertainty directly on the optimized parameters. The objects are

rendered in Mitsuba at 512 × 512 resolution and 256 samples per

pixel. Renders and ground truth views for both Stanford ORB and

the synthetic benchmark are included in the Supplement.

5.5.3 Acquisition comparison

We validate that our improved convolution model results in high-

quality acquisition results. We also quantify the benefit of our

method compared to other methods regarding optimization time.

We test our approach on Stanford ORB and synthetic scenes.
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Table 5.1: Benchmark Comparison for

Novel Scene Relighting from [120]. All

the models listed in this table were

trained with the ground-truth 3D scan

and ground-truth, in-the-wild environ-

ment maps. We report evaluations on

the same dataset and task under dif-

ferent acquisition conditions in the Ap-

pendix.

PSNR-H↑ PSNR-L↑ SSIM↑ LPIPS↓ Time

NVDiffRec [164] 24.319 31.492 0.969 0.036 142.143s

Mitsuba [102] 26.595 34.185 0.977 0.032 69.96s

Ours ‡ 26.677 33.936 0.977 0.029 5.27s

Ours - Spectrum Only 24.478 31.117 0.971 0.037 1.96s

Ours + Mitsuba (1 epoch) 27.038 34.560 0.978 0.030 19.87s

Ours + Mitsuba (2 epochs) 27.199 34.770 0.978 0.029 33.39s

Stanford ORB The similarity metrics for relighting results on

Stanford ORB are presented in Table 5.1. We find that our approach

performs on par with Mitsuba, while demonstrating a 13 times

speedup with little optimization on our side (e.g. we do not im-

plement custom CUDA kernels and use pure PyTorch). We also

compare to NVDiffRec, as it leverages a differentiable rasterizer,

and show that our method achieves better relighting results. For

NVDiffRec, given that we optimize for materials only, we monitor

the loss and record the time for good convergence. We empirically

find 2000 steps to be sufficient for this dataset. We qualitatively

compare our results to Mitsuba and photographs of the objects

under the same illumination in Figure 5.5 and against NVDiffRec in

supplemental material. We present a view of our material channels

projected on the captured object and a few input photographs. The

entropy is visualized using the “Turbo” colormap in Matplotlib.

On the four right columns, we present renderings of our results

and Mitsuba under a novel illumination and compare them against

photographs of the object taken under that same illumination. We

can see that our approach recovers similar appearance in a fraction

of the time.

Synthetic For synthetic datasets, we compare the recovered ma-

terial parameters with the ground-truth parameters. We show the

results in Table 5.2, demonstrating comparable accuracy compared

to Mitsuba despite particularly challenging objects for our method

(e.g. with significant inter-reflections – metallic chess pieces and

self-occlusion – donut). We also propose a qualitative evaluation

in Figure 5.6, showing the parameters in UV space alongside the

entropy maps (visualized using the “Turbo” colormap) for results

optimized from images rendered under the “rural asphalt road”

environment light. On the right columns we compare rerenderings

of our results and Mitsuba’s to ground-truth renderings under a

different illumination, showing once more a good appearance match.

We include visual comparisons on all synthetic cases as well as the

exr files for all light environments in Supplemental Material.
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Figure 5.5: We compare our approach to Mitsuba and photographs for relighting. The first column on the left shows material

parameters and training photographs, while the right column shows relit results and photographs under different lighting. We see

that our results match the appearance of the photographs as well- or slightly better than Mitsuba. We see that the entropy is lower

where inputs provide more information (e.g. well-lit regions). Videos in the Supplement.
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Base Color Roughness Metallic Entropy Relighting 1 Relighting 2 Relighting 3
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Figure 5.6: We compare our results to Mitsuba and ground truth parameters on synthetic data. We see that we achieve similar

matching quality with a 35x speedup in the optimization. The relit renderings are from test views using a lighting environment

unseen during optimization. Here too we see that entropy is higher where inputs provide less information (see supplemental

materials for inputs).
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Table 5.2: Synthetic benchmark comparison (MSE) of Mitsuba and our method to the ground-truth parameters. For each

environment we present the error in the following way: Average (Base Color, Roughness, Metallicity). We also report for each

environment the correlation between the entropy we compute with our power spectrum approximation and the error in Mitsuba’s

optimization to show that our entropy is useful for general inverse rendering pipelines.

Photo Studio Overcast Museum Rural Road Avg. Time

Mitsuba 0.04 (0.01, 0.03, 0.07) 0.03 (0.01, 0.02, 0.06) 0.04 (0.01, 0.04, 0.08) 0.04 (0.01, 0.03, 0.07) 0.04 (0.01, 0.03, 0.07) 105.19s

Ours 0.07 (0.02, 0.09, 0.10) 0.06 (0.02, 0.07, 0.09) 0.07 (0.02, 0.08, 0.11) 0.05 (0.01, 0.05, 0.08) 0.06 (0.02, 0.07, 0.09) 3.14s

Ours - Spectrum Only 0.19 (0.07, 0.15, 0.37) 0.20 (0.06, 0.14, 0.40) 0.25 (0.09, 0.20, 0.46) 0.22 (0.06, 0.16, 0.43) 0.21 (0.07, 0.16, 0.41) 1.20s

Error-Entropy correlation 0.21 0.13 0.18 0.14 0.16 -

Table 5.3: Comparing correlation be-

tween entropy computed with Mitsuba

and our approximations.

Entropy using Corr. Mitsuba ↑ Time

Mitsuba 1.00 ± 0.00 15m

Angular 0.90 ± 0.05 2.91s

Power Spectrum 0.89 ± 0.06 0.001s

5.5.4 Uncertainty

We test whether our proposed entropy-based uncertainty metric is

indicative of error in inverse rendering results and representative

for uncertainty in other inverse rendering frameworks.

Stanford ORB Our first claim is that the entropy computed using

our power spectrum or other differentiable renderers will be similar.

We validate this by computing our proposed entropy on the Stanford

ORB dataset with Mitsuba, on a grid of 8× 8× 8 parameters (rough-

ness, metallicity, base color). We compute the Pearson correlation

coefficient, 𝜌, between entropy computed with our power spectrum

approximation and the one computed with Mitsuba’s fully-fledged

differentiable renderer. We find a high correlation between entropy

computed with Mitsuba and both our mixed renderer 𝜌 = 0.90

and the power spectrum approximation 𝜌 = 0.89 as shown in Ta-

ble 5.3. This validates that the entropy we compute with our power

spectrum based model is indeed similar to that computed with a

fully-fledged differentiable renderer. Further, as our power spectrum

approximation is embarrassingly parallelizable, we obtain extreme

speedups over both the mixed spherical harmonics method (2645×)

and Mitsuba (800, 000×) making our uncertainty estimation very

practical.

Synthetic dataset We also evaluate whether low entropy is associ-

ated with lower error after optimization, even for results optimized

with another approach (Mitsuba), indicating if enough information

is in the input. If entropy is high, we have a higher likelihood of

incorrect parameters, though they might still be good. Indeed we

do not expect a one-to-one correlation (𝜌 = 1). For example, if

the likelihood for parameters in uncertain regions is uniform, low

error in a high entropy part is equally likely as high error. That

means a correlation of 0.5 is the most we can reasonably expect. We

study this by computing the correlation between entropy computed

using the power spectrum approximation and the squared error

between the ground-truth material parameters and the parameters

optimized with Mitsuba. On top of uncertainty, there could be other

factors for error, which could result in lower correlation (such as
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Figure 5.7: We demonstrate the informativeness of our fast approximate entropy for other inverse rendering frameworks (in this

case, Mitsuba). We interleave ground truth properties and properties estimated with Mitsuba (base color, roughness, metallicity).

On the right, we show the average estimation error followed by our entropy estimation, which is independent of Mitsuba’s

estimation. We observe that low entropy is indicative of lower error, suggesting that it captures the sufficiency of information in

the input signal. On the dice example (top row), the ‘one’-face is lit less than other faces and we observe highlights with lower

intensity, leading to higher entropy. While we still recover the white albedo correctly, the estimation of roughness and metallicity

for the dot has a high error. Similarly, the inside and lower parts of the doughnut are less observed and not lit by strong light

sources. Again, entropy is high in regions of high error (especially in metallicity). The triceratops collar is down-facing and not

well-lit and our entropy captures the lack of observation that leads to high error in the metallicity part.

global illumination approximations, approximate light environment,

and incorrect geometry). In the last row of Table 5.2 we show the

correlation scores. We show in Figure 5.7 results optimized from

images rendered under the lighting environment “rural asphalt

road” which presents a strong directional illumination (sun, out-

door, see supplemental folder). We can see that areas which are not

directly lit by the sun in the input images exhibit higher entropy,

intuitively, without enough observed specular signal, uncertainty is

high (this is particularly visible on the dice example in the synthetic

Supplemental Materials where 3 faces are well lit, and their opposed

faces are not).

5.5.5 Ablations

Our ablations serve two goals. First, we want to validate that our

proposed improvements to Ramamoorthi and Hanrahan [190] make

a significant difference. Second, we would like to study the sensitivity

of the approach to some hyperparameters (e.g. regularizer weight,

number of spherical harmonics degrees). We vary our method and

report the results on Stanford ORB and the synthetic dataset. Further

ablations on spherical-harmonics fitting are in Appendix C.

BRDF model variants To understand whether our proposed im-

provements to the BRDF model by Ramamoorthi and Hanrahan

[190] result in higher-quality acquisition results, we study variants

of our model with and without the shadowing and masking terms.

We run our ablations with a constant weight on all the samples.

The results on Stanford ORB are presented in Table 5.4. We ob-
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serve that the shadowing- and masking terms improve the results

independently and we get the best results with both.

Convolutional only vs Directional One of the main benefits of

our method is that we can study the effect of the BRDF fully in

the spherical harmonics domain. We can perform the full BRDF

recovery procedure in the spherical harmonic domain or the power

spectrum domain, as done for our initialization and uncertainty.

We show the impact of evaluating the BRDF parameters from the

power spectrum in row four of Table 5.1, compared to running

our our mixed frequency-directional optimization (third row). As

these approximations do not account for effects such as Fresnel or

shadowing/masking, we observe lower appearance matching, as

expected. The approximations however still result in a very good

appearance match and extremely fast computation. Most of the

reported timings in Table 5.1 reflects the fitting of the spherical

harmonics, which only has to be done once, letting us easily explore

hundreds to thousands of possible parameter combinations in a

fraction of a second to compute uncertainty.

5.5.6 Applications

In our applications, we show how fast acquisition and uncertainty

can be used in (SV)BRDF capture to improve results, and guide

understanding of error.

Initialization In the comparisons, our method demonstrated a fast

and high-quality estimate of BRDF parameters. However, there is

still benefit to finetuning our results with a differentiable path tracer.

Such a step could finetune parts of the material that are affected

by global illumination (e.g., in corners, or near highly reflective

surfaces). In this experiment, we show the benefit of this approach by

initializing material textures with the results from our method and

optimizing them with Mitsuba for one epoch and only 16 samples

per pixel (half the samples we used for the other experiments). This

finetuning pass only costs 14s, for a total of 20s combined with

out method as initialization. This is over three times faster than

the 70s required without this initialization (Table 5.1). The results

in Table 5.5 show that the combination of our approach and a

finetuning pass with Mitsuba for one or two epochs achieves better

Stanford ORB Synthetic

Shadowing Masking PSNR-H↑ PSNR-L↑ SSIM↑ LPIPS↓ Time MSE Time

- - 25.646 32.809 0.973 0.035 1.09s 0.16 2.57s

✓ - 26.245 33.399 0.975 0.034 1.21s 0.14 2.81s

- ✓ 26.070 33.101 0.974 0.035 1.19s 0.13 2.89s

✓ ✓ 26.411 33.557 0.975 0.034 1.31s 0.12 3.14s

Table 5.4: We ablate the different com-

ponents of the BRDF. For this ablation

we do not apply a cosine weighting

to the samples, better highlighting the

impact of the shadowing and masking

terms.
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Table 5.5: We apply our results as an ini-

tialization for a short fine-tuning pass

using gradient descent with a differ-

entiable path tracer (Mitsuba): we use

only 1 epoch with 16 samples per pixel

for the first three rows and 2 epochs

with 32 samples per pixel for the fourth

row. The final row shows the result of

a full optimization for Mitsuba.

Initialization PSNR-H↑ PSNR-L↑ SSIM↑ LPIPS↓ Total time

Constant 24.339 30.558 0.969 0.047 14.74s

Ours - Spectrum Only 25.745 33.158 0.975 0.033 16.29s

Ours 27.038 34.560 0.978 0.030 19.87s

Ours (2 epochs) 27.199 34.770 0.978 0.029 33.39s

Full optimization - Constant 26.595 34.185 0.977 0.032 69.96s

Table 5.6: We combine the optimiza-

tion results from multiple environ-

ments into one texture by using the

parameter with the lowest certainty.

We present the MSE in the following

way: Average (Base Color, Roughness,

Metallicity)

MSE Synthetic

Average 0.04 (0.01, 0.03, 0.07)

arg min Entropy 0.03 (0.01, 0.02, 0.06)

performance than only using Mitsuba (+0.5dB PSNR-H, PSNR-L)

for less than a third of the time. We also surpass the results for only

our method, which is to be expected.

Sharing information Points on the surface with low entropy have

reasonable certainty and will likely exhibit lower error than parts

with high entropy. We can use this information to select the best

conditions to recover BRDF parameters, for example from different

lighting setups. As a proof of concept, we merge the texture maps

from the synthetic scenes based on entropy: for every texel, we use

the parameters from the environment with the lowest entropy at that

texel. The result in Table 5.6 shows that this simple approach beats

the average over separate environments by 25%. The score is equal to

the best-performing environment in Table 5.2. With this, we are able

to select the best parameters without knowing the ground-truth.

We believe that this approach would yield even stronger results in

the context of more complementary environments.

Guiding capture Entropy can be applied during capture as a

measure to define the most informative views. If a view decreases

entropy, it’s useful; if it does not, we could discard it. It is difficult

to know what information a view will add without knowing its

contents. A solution to this could be to compute an expected decrease

in entropy (information gain) in case potential views are not known.

Since this is not part of our core contribution, we leave this for

future work. Instead, we show that entropy is useful to measure the

informativeness of views. We ran the synthetic benchmark for one

environment (Rural Road) and randomly drop out views for every

optimization. In Figure 5.8, we show the corresponding average

Figure 5.8: Plots of MSE and Entropy

for varying input view counts on the

synthetic benchmark with the Rural

Road environment, showing that en-

tropy can be used as a proxy of average

MSE for a given set of views.
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MSE over all shapes and channels and the average entropy over

all shapes. We observe a clear relationship between the MSE and

entropy, demonstrating that we can use entropy as a proxy for the

expected success of an optimization. If one were to use entropy in

real time, the alternatives to the power spectrum approximation

quickly become tedious to use: for every frame that is considered,

one would either have to wait a couple of seconds or minutes to

compute the entropy (Table 5.3).

5.6 Challenges and conclusion

In summary, we present a material acquisition and uncertainty esti-

mation method for multi-view capture of objects using a frequency

domain analysis. We do so through efficient spherical harmonics

fitting and a power spectrum approximation that lets us efficiently

compute the error associated with varying material parameters

for a surface. By interpreting this error as a likelihood function,

we can use entropy as a measure of uncertainty. The results indi-

cate correlation of low entropy with low error, both quantitatively

and qualitatively. We show that entropy can be a useful proxy for

acquisition quality. We also propose a way to take into account

shadowing and masking to better reconstruct the target appearance

and estimated properties, compared to the existing signal processing

framework for inverse rendering. Our method yields results that are

on par with the state-of-the-art for a 13x speedup in optimization

and, combined with state-of-the-art, yields improved results for less

than a third of the time.

We see the following challenges for future work. Our method

requires HDR images as input, because the truncation applied for

LDR images could introduce frequencies that are not present in the

original signal. To make our method more accessible for use with

LDR images, it is of interest to study how to use spherical harmonics

decompositions on LDR images. This could be implemented, for

example, as an amendment to the least-squares fitting procedure.

Our current implementation only considers direct illumination,

neglecting self-illumination and self-shadowing which may appear

in challenging concave objects; our method could be extended to

take them into account with a ray tracer, as our core theoretical

and algorithmic contributions are defined for a general directional

radiance field for points in space. Nonetheless, our method produces

accurate estimations of materials and can be used as an initialization

for more complete (and slower) differentiable renderer [102] for

areas showing effects that we do not currently support.

We believe that our renewed exploration and improvement of the

frequency-based model demonstrates the merits of this framework.

We are excited about further applications that take advantage of

entropy as a measure of uncertainty for material recovery.



6 Conclusion

This dissertation explored the use of intrinsic approaches to

learning and computing on curved surfaces. We covered applications

in machine learning, geometry processing, and appearance capture.

The promise of using algorithms that work directly on curved

surfaces in these applications is that they can simplify otherwise

complex problems. This is because we observe information from

inside the 2D surface, rather than their 3D extrinsic configuration.

When this extrinsic information is not necessary for the task, it can

be counterproductive, just like reading a message from a crumpled

piece of paper is much harder than first flattening the paper. The

challenge in each domain is twofold: first, we need to identify the

underlying geometry and formulate the operations that would

be beneficial for our task. Second, we have to deal with practical

challenges from sparse and irregular sampling on curved domains.

For convolutions on surfaces, the intrinsic perspective lets us

define convolution in 2D, rather than 3D, which is especially im-

portant for an expensive operation like convolution. The intrinsic

perspective also makes our approaches robust to non-rigid defor-

mations, which is necessary to generalize to real-world situations

with many deformations. The challenge posed by the intrinsic

perspective is that we have no global coordinate system, which

complicates learning directional information, like edges and cor-

ners. We demonstrated fundamental solutions to this problem with

rotation-equivariant kernels and parallel transport (HSN) and using

coordinate-independent geometric operators from vector calculus

(DeltaConv). We also had to deal with irregular and sparse sampling,

which we approached with area weighting (HSN) and least-squares

regularization (DeltaConv).

For geometric multigrid methods, the intrinsic approach offers a

benefit over purely combinatoric approaches, such as Shi et al. [207],

by providing faster convergence. Compared to extrinsic approaches

in 3D, we can be more efficient. Also, the typical extrinsic approach

would use mesh simplification, followed by a projection between

hierarchy levels. This means that the hierarchies are not nested,

which makes analysis difficult [116]. The challenge lies in creating a

hierarchy and corresponding prolongation and restriction operators

on a curved geometry, which can be slow to compute [140]. By using

a carefully validated combination of geometric and combinatorial

techniques with graph Voronoi diagrams, we were able to attain

both fast convergence and hierarchy construction.

Finally, for material appearance capture, we observe that the

incoming and outgoing light field is sampled on a curved domain:
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the sphere. This insight leads to the formulation of reflection as a

spherical convolution [190]. We show that this perspective enables

faster SVBRDF capture and a quantitative analysis of uncertainty

on the problem of SVBRDF recovery. The challenge of working

directly on the sphere is again the sparse and irregular sampling of

the radiance field. We demonstrate a robust and simple spherical

harmonic transform using regularized least-squares that enables a

high-speed analysis of uncertainty in the frequency domain.

6.1 Challenges and future work

A clear hurdle for using intrinsic approaches is that they require

knowledge of the underlying geometry and specialized algorithms

to deal with that geometry. A well known opinion piece by Richard

Sutton, ‘the bitter lesson’, argues that the success of algorithms is

determined by their scalability, not their ingenuity [222]. Algorithms

that easily scale to large amounts of data and on parallelized hard-

ware, Sutton argues, have historically won over more complicated

algorithms. Following this line of reasoning, one could wonder

whether the benefit of intrinsic approaches is worth the effort.

First, each of the algorithms presented is scalable in terms of

data and parallelized execution. The main challenge is in scaling

the adoption of these algorithms, which is a matter of ease-of-use

and not a technical or theoretical limitation. The transition from

rotation-equivariant kernels to geometric operators between HSN

and DeltaConv was motivated by this consideration. We attempted

to boil down the required operations to the simplest set of in-

structions using well-known and proven ideas. It proved difficult

to demonstrate large improvement on the tasks that we chose to

compare our approach on. Tasks that rely more on directional infor-

mation and robustness to non-rigid deformation could demonstrate

a more pronounced benefit. We also think that cases with limited

data or compute resources can benefit from the geometric priors

included by these methods.

We see a clear opportunity for scalability in combining the tech-

niques developed for CNNs on surfaces (HSN and DeltaConv) and

geometric multigrid. With Gravo Multigrid, we present a fast and

simple hierarchy construction that could be used in conjunction

with convolutional neural networks to enable learning on multiple

grids. Such hierarchies have a proven track record for CNNs on

images, for example, in U-Nets [194] and Vision Transformers [50].

We believe that a better application of hierarchies for 3D surfaces

can help scale these techniques to larger inputs and enable learning

of features at different levels of abstraction.

For our contributions on material capture, we demonstrate clear

benefits of using an intrinsic (here, frequency domain) perspective:

comparable performance in relighting with an optimization that is
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an order of magnitude faster and new insights on uncertainty that

would be multiple orders of magnitude slower with current state-of-

the-art implementations. A challenge here lies in ensuring that each

of the required inputs to our approach is available. At this moment,

we require HDR photographs and a capture of the environment

map. We believe that these inputs are feasible to recover, but a

fully implemented pipeline that also accepts LDR photographs

and recovers the environment lighting from the input photographs

would make the adoption of our algorithms significantly simpler.

We touched on applications of uncertainty estimation for SVBRDF

recovery in chapter five and think these results are indicative of

high potential for more applications of uncertainty estimation, for

example: sharing data, guiding capture, and guiding the use of

learned priors.

6.2 Closing words

We opened this dissertation with the history of Gauss and Riemann

and the development of intrinsic analysis on curved surfaces. We

applied these tools to learning and computing on curved surfaces,

motivated by their effectiveness in mathematics and physics. The

intrinsic perspective yields fundamental and conceptually simple

solutions to otherwise complex problems. This is surely not the end

of this story: there is ample room for application and extension of the

presented approaches. However, borrowing words from Riemann,

this leads us into the scope of future research, of which the object of

this work does not allow us to go today.
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A.1 Discretized Operators

Gradient We construct a discrete gradient using the moving least-

squares approach from [136]. We go through each step to show

how to derive the gradient starting with the general formula from

Riemannian geometry and simplify terms whenever the setting

allows us to do so.

We locally fit a surface patch to estimate the metric at each point 𝑝

using moving least-squares [167]. The surface patch Γ : Ω ⊂ ℝ2 →
ℝ3

, often called a Monge patch, describes the surface as a quadratic

polynomial ℎ(𝑢, 𝑣) over the tangent plane at 𝑝 and is given by

Γ(𝑢, 𝑣) = [𝑢, 𝑣, ℎ(𝑢, 𝑣)]⊺ , (A.1)

where 𝑢, 𝑣 denote local coordinates in the tangent plane. Since the

surface patch should interpolate the point 𝑝 and the surface normal

of the patch at 𝑝 should agree with the normal of the tangent plane

at 𝑝, the constant and linear terms of ℎ(𝑢, 𝑣) vanish

ℎ(𝑢, 𝑣) = 𝛼
1
𝑢2 + 𝛼2𝑢𝑣 + 𝛼3𝑣

2 , (A.2)

ℎ𝑢 = 2𝛼
1
𝑢 + 𝛼2𝑣, (A.3)

ℎ𝑣 = 𝛼2𝑢 + 2𝛼3𝑣. (A.4)

The metric is given as

𝑔 =

[
1 + ℎ2

𝑢 ℎ𝑢 ℎ𝑣
ℎ𝑢 ℎ𝑣 1 + ℎ2

𝑣

]
. (A.5)

And its determinant as

|𝑔 | = (1 + ℎ2

𝑢)(1 + ℎ2

𝑣) − (ℎ𝑢 ℎ𝑣)2 (A.6)

= 1 + ℎ2

𝑢 + ℎ2

𝑣 + ℎ2

𝑢 ℎ
2

𝑣 − ℎ2

𝑢 ℎ
2

𝑣 (A.7)

= 1 + ℎ2

𝑢 + ℎ2

𝑣 . (A.8)

Finally, the inverse of 𝑔 can be computed as

𝑔−1 =
1

|𝑔 |

[
1 + ℎ2

𝑣 −ℎ𝑢 ℎ𝑣
−ℎ𝑢 ℎ𝑣 1 + ℎ2

𝑢

]
. (A.9)

Conveniently, at the center point ℎ𝑢(0, 0) = ℎ𝑣(0, 0) = 0 and thus

𝑔0,0 = 𝑔−1

0,0 = I, |𝑔0,0 | = 1. (A.10)

To obtain nodes for the fitting of the quadratic polynomial, we
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project the points from a local neighborhood of 𝑝 onto the tangent

plane. The gradient of a function 𝑋 on the surface is given as

grad𝑋 =
[
𝜕𝑢Γ 𝜕𝑣Γ

]
𝑔−1

[
𝜕𝑢𝑋
𝜕𝑣𝑋

]
, (A.11)

where 𝜕𝑢 = 𝜕/𝜕𝑢 is a shorthand for partial derivatives. Plugging

Equation A.10 into Equation A.11, we get

grad𝑋 = 𝜕𝑢𝑋𝜕𝑢Γ + 𝜕𝑣𝑋𝜕𝑣Γ. (A.12)

𝜕𝑢Γ and 𝜕𝑣Γ are exactly the basis vectors at point 𝑝. Thus, the

coefficients of the resulting vectors are given by 𝜕𝑢𝑋 and 𝜕𝑣𝑋 . The

function 𝑋 is given by function values at the points. To estimate

the partial derivatives of 𝑋 at a point 𝑝, we locally fit a quadratic

polynomial using the same approach as for fitting a quadratic

polynomial to the surface and compute its partial derivatives. As

for the fitting of the surface patch, we project the points in a local

neighborhood to the tangent plane and use the function values as

nodes for fitting the quadratic polynomial [167].

Discrete Divergence The divergence, including the metric compo-

nents [175], on the surface patch Γ is

div𝑉 = 𝜕𝑢𝑉𝑢 + 𝜕𝑣𝑉𝑣 +𝑉𝑢𝜕𝑢 log

√
|𝑔 | +𝑉𝑣𝜕𝑣 log

√
|𝑔 |, (A.13)

where |𝑔 | denotes the determinant of the metric. At the origin, the

metric of our surface patch is the identity and the derivatives of the

metric at this point vanish. Hence, divergence is given by

div𝑉 = 𝜕𝑢𝑉𝑢 + 𝜕𝑣𝑉𝑣 . (A.14)

To compute the partial derivatives 𝜕𝑢𝑉𝑢 , 𝜕𝑣𝑉𝑣 at 𝑝𝑖 , we require

the coefficients of the vector field at neighboring points {𝑝 𝑗 | 𝑗 ∈
N𝑖}. However, different basis vectors are used at different points.

Therefore, we need to map from the basis vectors at 𝑝 𝑗 to those of 𝑝𝑖 .

While doing so, we account for metric distortion by Γ. The following

equation requires a bit more notation to distinguish between vectors

at different points. We denote the coordinates of 𝑝 𝑗 in the tangent

space of 𝑝𝑖 as (𝑢𝑗 , 𝑣 𝑗), the metric of Γ at 𝑝 𝑗 as 𝑔𝑢𝑗 ,𝑣 𝑗 , the coefficients

of a tangent vector at 𝑝 𝑗 as (𝛼𝑢
𝑗
, 𝛼𝑣

𝑗
), and the basis vectors at 𝑝 𝑗 as

e𝑢
𝑗
, e𝑣
𝑗
. The coefficients of a vector at 𝑝 𝑗 in 𝑝𝑖 ’s parameter domain

are

𝑔−1

𝑢𝑗 ,𝑣 𝑗

[
𝜕𝑢Γ(𝑢𝑗 , 𝑣 𝑗) · e𝑢𝑗 𝜕𝑢Γ(𝑢𝑗 , 𝑣 𝑗) · e𝑣𝑗
𝜕𝑣Γ(𝑢𝑗 , 𝑣 𝑗) · e𝑢𝑗 𝜕𝑣Γ(𝑢𝑗 , 𝑣 𝑗) · e𝑣𝑗

] [
𝛼𝑢
𝑗

𝛼𝑣
𝑗

]
. (A.15)

Equation A.14 and Equation A.15 are combined to form a sparse

matrix D ∈ ℝ𝑁×2𝑁
representing divergence.
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Figure A.1: The two architectures used for classification and segmentation, based on [236]. Please refer to Equation 6 and Figure 4

in the main text for the formulation of each convolution and how the streams are combined.

A.2 Architectures

We based our architectures on the designs proposed in DGCNN

[236]. A schematic overview is presented in Figure A.1 and more

details are provided in the following paragraphs.

Convolutions. Each convolution, denoted as Conv(𝐶0 , . . . , 𝐶𝐿),

learns the function ℎΘ with an MLP that has 𝐿 layers. Each layer in

the MLP consists of a linear layer with 𝐶𝑖 input- and 𝐶𝑖+1
output

channels, batch normalization [101], and a non-linearity. For scalar

features, the non-linearity is a leaky ReLU with slope 0.2 and for

vector features a ReLU. We denote MLPs applied per point as

MLP(𝐶0 , . . . , 𝐶𝐿).

Classification network. The classification network has four convolu-

tion blocks: Conv(3, 64), Conv(64, 64), Conv(64, 128), Conv(128, 256).

Each scalar convolution is interspersed with connections to- and

from the vector stream, which mirrors the number of parameters

in its vector convolutions. The output of each scalar convolution is

concatenated into a feature vector of 512 features and transformed

to 1024 features using an MLP. We return a global embedding by

taking both the maximum and mean of the features over all points.

These are concatenated and fed to a task-specific head: MLP(2048,

512, 256, 𝐶), where 𝐶 is the number of classes in the dataset. This

final MLP has dropout [216] set to 0.5 in between the layers. During

training, we optimize a smoothed cross-entropy loss.

Segmentation network. The segmentation network uses three con-

volutions: Conv(𝐶𝑖𝑛 , 64, 64), Conv(64, 128, 128), Conv(128, 256, 256).

Again, the scalar convolutions are interspersed with connections

to- and from the vector stream. The output of each convolution is

concatenated into a vector of 448 features per point and transformed

to 1024 features with a global MLP. These features are pooled with

maximum pooling. This embedding and an embedding of a one-hot

encoding of the shape category is concatenated to the output of

the convolutions at each point and fed to the task-specific head

for segmentation: MLP(1536, 256, 256, 128, 𝐶). During training, we

optimize a cross-entropy loss.
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U-ResNet architecture The U-ResNet architecture follows the design

proposed in KPFCNN [224] (Figure 9 of the supplementary material

in [224]). This network consists of an encoder that operates on four

scales and a decoder that progressively upsamples the features

to the original resolution. In each scale of the encoder, there are

two ResNet blocks with a bottleneck. In KPFCNN, the first ResNet

block uses strided convolutions, which we replace with pooling

followed by a regular ResNet block. Each scale, we subsample to

1/4 points and increase the number of features by two. In the first

layer, we use 64 features. We add two additional ResNet blocks

with 128 output features after the decoder, as this was shown to

be beneficial in CurveNet [254]. We do not use the other changes

introduced by CurveNet, such as skip attention in the decoder or

squeeze-excitation in the task-specific head. Each convolution block

is replaced by a DeltaConv block, which maintains a vector stream

in the first three scales and in the final two ResNet blocks. During

pooling, scalar features are max-pooled and vector features are

averaged with parallel transport to the coordinate system of the

sampled point [244].

A.3 Additional Results and Visualizations

A.3.1 ShapeNet

The per-category breakdown of results for ShapeNet are listed in

Table A.1.

A.3.2 Visualizations

The anisotropic diffusion experiment was repeated for another

input image with 20 anisotropic diffusion steps (Figure A.2) and

with varying anisotropic diffusion steps (Figure A.3), showing that

a DeltaConv network can approximate anisotropic diffusion for

varying diffusion times.

Table A.1: Per-category breakdown of part segmentation results on ShapeNet part dataset. Metric is mIoU(%) on points.

Mean aero bag cap car chair ear guitar knife lamp laptop motor mug pistol rocket skate table

inst. mIoU phone board

# shapes 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271

PointNet++ 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6

PointCNN 86.1 84.1 86.5 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.3 84.2 64.2 80.0 83.0

DGCNN 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6

KPConv deform 86.4 84.6 86.3 87.2 81.1 91.1 77.8 92.6 88.4 82.7 96.2 78.1 95.8 85.4 69.0 82.0 83.6

KPConv rigid 86.2 83.8 86.1 88.2 81.6 91.0 80.1 92.1 87.8 82.2 96.2 77.9 95.7 86.8 65.3 81.7 83.6

GDANet 86.5 84.2 88.0 90.6 80.2 90.7 82.0 91.9 88.5 82.7 96.1 75.8 95.7 83.9 62.9 83.1 84.4
PointTransformer 86.6 - - - - - - - - - - - - - - - -

PointVoxelTransformer 86.5 85.1 82.8 88.3 81.5 92.2 72.5 91.0 88.9 85.6 95.4 76.2 94.7 84.2 65.0 75.3 81.7

CurveNet 86.8 85.1 84.1 89.4 80.8 91.9 75.2 91.8 88.7 86.3 96.3 72.8 95.4 82.7 59.8 78.5 84.1

DeltaNet (ours) 86.6 84.9 82.8 89.1 81.3 91.9 79.7 92.2 88.6 85.5 96.7 77.2 95.8 83.0 61.1 77.5 83.1

Delta-U-ResNet (ours) 86.9 85.3 88.1 88.6 81.4 91.8 78.4 92.0 89.3 85.6 96.1 76.4 95.9 82.7 65.0 76.6 84.1
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Figure A.2: Comparison of different

convolutions optimized to match the

result of twenty anisotropic diffusion

steps on sample image ‘camera’.

Figure A.3: Comparison of a ResNet

with DeltaConv optimized to match the

result of varying anisotropic diffusion

steps.

Table A.2: Results on human part seg-

mentation [152].

Method Accuracy

PointNet++ [187] 90.8

MDGCNN [184] 88.6

DGCNN [236] 89.7

SNGC [84] 91.0

HSN [244] 91.1

MeshWalker [121] 92.7
CGConv [262] 89.9

FC [162] 92.5

DiffusionNet - xyz [201] 90.6

DiffusionNet - hks [201] 91.7

DeltaNet - xyz 92.2

A.3.3 Human Shape Segmentation

We trained a variant of the simple single-scale DeltaNet (eight layers

with each 128 channels) to predict part annotations on the human

body dataset proposed by Maron et al. [152]. This training set is

composed of meshes from FAUST (100 shapes) [12], SCAPE (71

shapes) [7], Adobe Mixamo (41 shapes) [1], and MIT (169 shapes)

[232]. SHREC07 (18 shapes) is used for testing. Each dataset contains

human bodies in different styles and poses, e.g., realistic, cartoony,

dynamic. We convert the dataset into a point cloud dataset by uni-

formly sampling 8𝑁 points from the faces and downsampling these

to 𝑁 points with FPS. We set 𝑁 = 1024, similar to the experiments

in Wiersma et al. [244], 𝑘 = 20 and 𝜆 = 0.001, similar to the other

experiments. We normalize the area of the shape before sampling

points and augment the input to the network with random rotations

around the up-direction, a random scale between 0.8 and 1.25, and

a random translation of 0.1 points. The network is optimized with

Adam [111] for 50 epochs with an initial learning rate of 0.01. The

results are listed in Table A.2. This experiment shows DeltaConv’s

effectiveness on a deformable shape class and allows us to compare

the results to those of other intrinsic (mesh) convolutions. This

comparison has its limits, as most of the listed methods are trained

on meshes instead of point clouds. Nonetheless, we find that Delta-

Conv is in line with state-of-the-art approaches, with only raw xyz

coordinates as input.
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Table B.1 shows more results for the Poisson problem on manifold

meshes. We report a comparison on data smoothing with 𝛼 =1×10
−3

for manifold meshes in Table B.2 and non-manifold meshes and

point clouds in Table B.3. Convergence plots on data smoothing on

the manifold meshes in the main paper are shown in Figure B.1 and

Figure B.2.
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Figure B.1: Convergence plots showing time on the x-axis for smoothing with 𝛼 =1 × 10
−3

.
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Figure B.2: Convergence plots showing iterations on the x-axis for smoothing with 𝛼 =1 × 10
−3

.

Table B.1: Comparison of our hierarchy construction and solver for a Poisson problem with 𝜂 =1 × 10
−6

mass matrix coefficient

and tolerance of 1 × 10
−4

. The maximum number of iterations for iterative solvers is set to 100.

Gravo MG (Ours) Liu et al. Shi et al. AMG-RS AMG-SA Eigen Pardiso

Model #Vert Hier #It Solve Hier #It Solve Hier #It Solve Hier #It Solve Hier #It Solve Fact. Subst. Fact. Subst.

Beetle 19k 0.01 28 0.06 0.55 18 0.05 0.01 33 0.09 0.03 100 0.29 0.03 100 0.20 0.02 0.00 0.06 0.00

Ogre 19k 0.02 6 0.02 0.54 7 0.03 0.01 13 0.04 0.03 100 0.27 0.04 40 0.08 0.02 0.00 0.06 0.00

Screwdriver 27k 0.02 4 0.03 0.75 4 0.03 0.01 9 0.04 0.03 100 0.35 0.05 24 0.07 0.05 0.00 0.09 0.00

Mumble 34k 0.03 10 0.05 0.97 6 0.04 0.02 9 0.04 0.04 100 0.41 0.05 57 0.17 0.04 0.00 0.11 0.01

Horse 48k 0.04 7 0.05 1.42 6 0.06 0.02 12 0.08 0.05 100 0.58 0.08 41 0.19 0.10 0.00 0.14 0.01

Laurent’s Hand 50k 0.04 5 0.07 1.59 4 0.06 0.02 23 0.18 0.06 100 0.66 0.10 36 0.21 0.10 0.00 0.18 0.01

Dinosaur 56k 0.04 7 0.06 1.71 5 0.06 0.02 17 0.14 0.06 100 0.65 0.09 49 0.28 0.08 0.00 0.18 0.01

Heart 78k 0.06 15 0.18 2.90 29 0.38 0.04 33 0.43 0.08 100 1.06 0.13 100 0.95 0.17 0.01 0.27 0.01

Hannya Mask 83k 0.07 15 0.19 2.56 4 0.09 0.05 19 0.26 0.09 100 1.03 0.13 100 0.91 0.17 0.01 0.30 0.02

Trex 100k 0.10 9 0.16 3.40 4 0.14 0.05 42 0.64 0.12 100 1.39 0.22 97 1.10 0.18 0.01 0.38 0.02

The Thinker 110k 0.09 4 0.08 3.50 4 0.11 0.04 13 0.19 0.10 100 1.10 0.20 26 0.26 0.36 0.01 0.39 0.02

Egea 134k 0.11 4 0.13 4.42 4 0.14 0.06 15 0.31 0.16 100 1.79 0.23 27 0.36 0.94 0.02 0.50 0.03

Sappho’s Head 140k 0.11 6 0.17 4.36 7 0.21 0.07 14 0.35 0.15 100 1.79 0.24 45 0.73 0.38 0.01 0.51 0.03

Human Torso 142k 0.15 4 0.15 4.97 5 0.20 0.06 40 0.85 0.16 100 1.86 0.25 44 0.72 0.73 0.02 0.57 0.03

Aim Dragon 152k 0.14 7 0.19 5.14 8 0.27 0.06 27 0.62 0.15 26 0.46 0.31 29 0.48 0.81 0.02 0.58 0.04

Armadillo 172k 0.16 9 0.28 5.97 7 0.29 0.08 27 0.76 0.20 100 2.37 0.36 52 1.04 0.54 0.02 0.62 0.04

Ronaldo 176k 0.18 8 0.28 6.32 6 0.30 0.10 40 1.19 0.21 100 2.74 0.40 75 1.72 0.60 0.02 0.69 0.04

Isis 187k 0.16 4 0.18 6.25 3 0.17 0.09 15 0.45 0.22 100 2.66 0.31 70 1.39 1.12 0.02 0.65 0.04

Blade Smooth 195k 0.15 4 0.17 5.87 3 0.17 0.09 18 0.60 0.18 100 2.42 0.40 42 0.94 0.76 0.02 0.69 0.04

Max Planck 199k 0.16 7 0.26 5.98 4 0.19 0.08 19 0.55 0.17 100 2.20 0.30 34 0.69 1.94 0.03 0.67 0.05

Vase-Lion 200k 0.17 4 0.20 6.54 4 0.22 0.12 10 0.43 0.21 100 2.68 0.33 36 0.88 0.40 0.02 0.79 0.04

Duck 204k 0.16 8 0.26 5.91 7 0.27 0.08 16 0.45 0.18 100 2.47 0.37 69 1.39 1.68 0.03 0.64 0.05

Mouse 214k 0.19 6 0.23 6.33 4 0.20 0.10 21 0.61 0.20 100 2.60 0.39 60 1.28 1.65 0.03 0.70 0.05

Wolf Skull 228k 0.23 7 0.33 8.07 5 0.33 0.13 38 1.52 0.27 100 3.47 0.53 53 1.59 0.39 0.02 0.92 0.05

Moses 258k 0.42 12 0.55 8.72 5 0.35 0.30 100 4.30 0.27 100 3.64 0.55 100 3.33 0.90 0.02 1.04 0.05

Rockerarm 271k 0.27 3 0.20 9.20 3 0.27 0.16 5 0.34 0.28 100 2.90 0.52 22 0.53 1.79 0.03 1.01 0.06

Pulley2 293k 0.24 5 0.32 8.87 4 0.30 0.14 24 1.04 0.28 100 3.67 0.58 38 1.19 3.03 0.04 1.07 0.07

Heraklion 350k 0.36 20 1.18 12.95 7 0.67 0.21 100 5.79 0.46 100 5.82 0.80 100 4.54 2.39 0.04 1.45 0.08

Julius Caesar 387k 0.30 11 0.58 12.10 17 1.09 0.16 28 1.54 0.39 100 4.89 0.77 70 2.79 5.07 0.06 1.29 0.09

Goyle 393k 0.33 2 0.21 11.44 2 0.26 0.21 12 0.73 0.39 100 4.75 0.79 25 0.97 8.43 0.07 1.32 0.10

Eros 476k 0.41 NaN NaN 14.78 5 0.55 0.21 28 1.90 0.46 100 6.01 0.97 71 3.55 4.03 0.06 1.76 0.11

Roal 484k 0.47 5 0.54 16.52 4 0.59 0.37 37 3.27 0.53 100 6.86 0.84 53 3.08 1.34 0.04 2.08 0.09

Skeleton 494k 0.71 9 1.10 20.60 NaN NaN 0.35 100 9.18 0.66 100 9.42 1.63 100 7.82 3.33 0.05 2.33 0.11

Bimba 502k 0.43 7 0.65 15.58 6 0.74 0.24 48 4.16 0.51 100 6.97 1.15 69 4.45 3.54 0.05 2.13 0.10

Oil Pump 570k 0.47 19 1.57 18.76 12 1.31 0.25 45 3.93 0.55 100 7.29 1.27 74 4.92 6.85 0.07 2.30 0.13

Antique Head 651k 0.53 4 0.51 20.07 4 0.60 0.28 14 1.22 0.64 100 8.48 1.37 67 4.33 15.02 0.11 2.43 0.17

Pulley 660k 0.54 19 1.81 21.54 16 1.88 0.28 53 5.23 0.63 100 8.46 1.49 58 4.31 12.94 0.10 2.68 0.16

Beard Man 691k 0.59 4 0.56 22.15 3 0.58 0.26 14 1.43 0.52 100 7.07 1.46 14 0.96 24.57 0.14 2.72 0.19

Red Circular Box 701k 0.64 6 0.74 22.97 6 0.97 0.34 66 6.67 0.72 100 8.98 1.51 66 5.01 17.76 0.11 2.84 0.17

Dancing Children 724k 0.69 9 1.10 23.21 8 1.25 0.41 39 4.54 0.68 100 9.32 1.23 100 8.70 6.18 0.09 2.78 0.17

John The Baptist 750k 0.73 69 7.74 29.90 10 1.76 0.47 81 10.56 0.86 100 10.53 1.86 100 9.77 6.43 0.08 3.08 0.17

Ramses 826k 0.79 7 1.21 28.90 5 1.18 0.47 40 6.03 0.91 100 11.82 2.08 49 5.40 6.24 0.09 3.60 0.18

Nicolo Da Uzzano 946k 0.76 7 1.02 29.88 6 1.16 0.40 33 4.15 0.85 100 12.08 2.05 82 8.06 17.75 0.16 3.53 0.24

Raptor 1m 0.89 NaN NaN 32.27 NaN NaN 0.43 NaN NaN 1.07 100 13.98 1.83 100 12.14 0.79 0.00 3.77 0.20

Nefertiti 1m 0.89 4 0.94 34.22 4 1.18 0.56 65 11.69 1.09 100 14.74 2.58 46 6.14 9.15 0.10 4.54 0.22

Isidore Horse 1.1m 1.12 11 1.90 35.60 5 1.27 0.50 70 11.03 1.11 100 14.60 2.50 88 10.72 24.01 0.17 4.56 0.28

Horse Head 1.3m 2.42 44 10.76 54.11 10 4.52 1.00 100 24.52 2.12 100 24.57 4.25 100 20.97 12.99 0.13 6.55 0.30

Ram 1.3m 2.40 3 1.95 56.18 NaN NaN 1.14 49 13.39 2.45 100 25.95 4.72 100 21.71 17.07 0.15 6.99 0.33

Murex Romosus 1.8m 2.32 6 2.85 73.05 5 3.32 0.99 63 20.79 2.38 100 29.83 5.08 58 15.28 40.06 0.26 9.13 0.44

XYZ Dragon 3.6m 3.24 9 5.32 121.97 7 5.32 1.57 55 28.95 3.16 100 43.75 9.14 75 30.54 77.62 0.69 15.88 0.94
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Table B.2: Comparison of our hierarchy construction and solver for data smoothing of a random function with smoothing

coefficient 𝛼 =1 × 10
−3

and tolerance of 1 × 10
−4

. The maximum number of iterations for iterative solvers is set to 100.

Gravo MG (Ours) Liu et al. Shi et al. AMG-RS AMG-SA Eigen Pardiso

Model #Vert Hier #It Solve Hier #It Solve Hier #It Solve Hier #It Solve Hier #It Solve Fact. Subst. Fact. Subst.

Beetle 19k 0.01 27 0.06 0.55 12 0.04 0.01 24 0.07 0.03 75 0.22 0.04 92 0.18 0.02 0.00 0.06 0.00

Ogre 19k 0.01 6 0.02 0.54 7 0.03 0.01 8 0.02 0.03 12 0.03 0.04 16 0.03 0.02 0.00 0.06 0.00

Screwdriver 27k 0.02 4 0.03 0.75 4 0.03 0.01 7 0.03 0.03 14 0.05 0.04 12 0.03 0.05 0.00 0.08 0.00

Mumble 34k 0.03 9 0.04 1.00 6 0.04 0.02 7 0.04 0.04 29 0.12 0.05 46 0.13 0.04 0.00 0.11 0.01

Horse 48k 0.04 6 0.04 1.38 6 0.06 0.02 8 0.06 0.05 34 0.20 0.07 15 0.07 0.10 0.00 0.14 0.01

Laurent’s Hand 50k 0.04 5 0.07 1.56 4 0.06 0.02 9 0.08 0.06 17 0.11 0.11 12 0.07 0.10 0.00 0.17 0.01

Dinosaur 56k 0.04 5 0.05 1.72 4 0.06 0.02 7 0.07 0.06 57 0.37 0.09 22 0.13 0.08 0.00 0.18 0.01

Heart 78k 0.06 16 0.19 2.92 26 0.34 0.04 16 0.22 0.08 7 0.08 0.13 60 0.58 0.17 0.01 0.27 0.01

Hannya Mask 83k 0.07 8 0.11 2.56 3 0.08 0.05 11 0.16 0.08 34 0.35 0.13 100 0.92 0.17 0.01 0.30 0.02

Trex 100k 0.10 7 0.13 3.40 4 0.14 0.04 12 0.21 0.13 100 1.40 0.18 23 0.26 0.20 0.01 0.38 0.02

The Thinker 110k 0.09 4 0.08 3.48 3 0.10 0.04 7 0.11 0.10 20 0.22 0.21 11 0.12 0.35 0.01 0.39 0.02

Egea 134k 0.11 5 0.14 4.40 4 0.14 0.06 7 0.17 0.15 35 0.63 0.22 12 0.16 0.90 0.02 0.50 0.03

Sappho’s Head 140k 0.11 6 0.16 4.38 7 0.22 0.07 8 0.22 0.14 100 1.79 0.29 16 0.26 0.38 0.01 0.51 0.03

Human Torso 142k 0.15 4 0.15 4.88 4 0.17 0.06 10 0.24 0.16 97 1.77 0.25 12 0.19 0.74 0.02 0.57 0.04

Aim Dragon 152k 0.13 6 0.17 5.07 8 0.27 0.06 14 0.35 0.15 6 0.11 0.31 10 0.17 0.80 0.02 0.58 0.04

Armadillo 172k 0.15 9 0.27 5.88 7 0.28 0.08 20 0.57 0.20 15 0.36 0.35 34 0.68 0.54 0.02 0.62 0.04

Ronaldo 176k 0.18 7 0.26 6.35 5 0.26 0.10 13 0.44 0.20 64 1.75 0.40 38 0.88 0.62 0.02 0.69 0.04

Isis 187k 0.16 3 0.16 6.29 3 0.18 0.09 10 0.32 0.22 23 0.61 0.31 46 0.92 1.13 0.02 0.65 0.04

Blade Smooth 195k 0.15 4 0.17 5.85 3 0.17 0.09 8 0.30 0.18 21 0.51 0.40 16 0.36 0.76 0.02 0.69 0.04

Max Planck 199k 0.16 7 0.26 5.95 4 0.20 0.08 8 0.26 0.18 100 2.20 0.30 20 0.42 1.97 0.03 0.67 0.05

Vase-Lion 200k 0.17 3 0.17 6.34 2 0.15 0.12 3 0.17 0.20 12 0.32 0.41 11 0.27 0.37 0.02 0.76 0.04

Duck 204k 0.15 6 0.21 5.89 5 0.21 0.08 11 0.32 0.19 100 2.46 0.37 25 0.50 1.66 0.03 0.65 0.05

Mouse 214k 0.19 5 0.21 6.38 4 0.20 0.10 11 0.35 0.20 100 2.59 0.40 31 0.66 1.68 0.03 0.71 0.05

Wolf Skull 228k 0.23 5 0.26 8.01 4 0.29 0.13 13 0.57 0.26 44 1.50 0.51 32 0.94 0.38 0.02 0.91 0.04

Moses 258k 0.48 7 0.37 8.64 4 0.31 0.36 44 1.95 0.27 100 3.64 0.45 100 3.34 0.92 0.02 1.04 0.05

Rockerarm 271k 0.27 3 0.21 9.21 3 0.27 0.17 3 0.27 0.28 22 0.64 0.53 10 0.25 1.84 0.03 1.01 0.06

Pulley2 293k 0.24 4 0.29 8.81 4 0.29 0.14 10 0.49 0.28 96 3.49 0.69 23 0.72 3.07 0.04 1.07 0.07

Heraklion 350k 0.36 13 0.84 12.83 5 0.55 0.20 24 1.52 0.46 100 5.85 0.80 100 4.65 2.43 0.04 1.45 0.08

Julius Caesar 387k 0.30 7 0.41 11.61 9 0.63 0.16 12 0.68 0.36 100 4.89 0.75 36 1.44 5.22 0.06 1.28 0.09

Goyle 393k 0.32 2 0.20 11.39 2 0.26 0.21 4 0.32 0.37 14 0.67 0.79 11 0.43 8.43 0.07 1.32 0.10

Eros 476k 0.41 7 0.55 14.80 5 0.55 0.21 11 0.84 0.46 100 5.98 1.19 35 1.73 4.18 0.07 1.77 0.12

Roal 484k 0.47 4 0.47 16.50 4 0.59 0.38 12 1.20 0.53 64 4.40 1.08 19 1.10 1.31 0.04 2.08 0.09

Skeleton 494k 0.69 7 0.95 20.03 NaN NaN 0.34 18 1.95 0.69 100 9.45 1.65 41 3.23 3.45 0.05 2.32 0.11

Bimba 502k 0.43 6 0.58 15.73 5 0.65 0.24 14 1.34 0.52 100 7.05 0.89 35 2.28 3.54 0.05 2.13 0.10

Oil Pump 570k 0.47 18 1.51 18.79 11 1.22 0.25 30 2.67 0.55 90 6.62 1.30 46 3.10 7.13 0.07 2.36 0.13

Antique Head 651k 0.53 4 0.51 20.10 4 0.60 0.28 9 0.84 0.64 7 0.60 1.37 44 2.82 14.65 0.11 2.42 0.18

Pulley 660k 0.54 18 1.70 21.62 14 1.66 0.28 27 2.77 0.62 100 8.47 1.48 46 3.43 12.80 0.10 2.68 0.16

Beard Man 691k 0.58 4 0.56 22.44 3 0.58 0.26 7 0.81 0.52 5 0.36 1.78 6 0.42 24.65 0.14 2.71 0.19

Red Circular Box 701k 0.64 6 0.74 22.89 6 0.96 0.33 15 1.69 0.72 100 8.94 1.51 44 3.32 17.84 0.11 2.83 0.17

Dancing Children 724k 0.69 7 0.89 23.09 9 1.35 0.40 21 2.54 0.68 100 9.27 1.97 58 4.98 6.34 0.09 2.77 0.17

John The Baptist 750k 0.72 14 1.78 29.71 6 1.19 0.47 14 2.09 0.85 100 10.45 1.78 47 4.59 6.16 0.08 3.06 0.17

Ramses 826k 0.80 5 0.96 29.00 5 1.19 0.47 15 2.46 0.90 100 11.58 2.10 22 2.39 5.97 0.08 3.58 0.18

Nicolo Da Uzzano 946k 0.77 7 1.02 30.04 5 1.02 0.46 12 1.66 0.85 100 12.03 2.01 33 3.24 19.50 0.16 3.65 0.25

Raptor 1m 0.90 36 5.22 32.22 NaN NaN 0.43 52 8.35 1.07 100 13.97 2.40 92 11.14 4.61 0.11 4.24 0.23

Nefertiti 1m 0.89 4 0.94 34.34 4 1.18 0.57 14 2.79 1.09 57 8.41 2.55 14 1.87 9.23 0.11 4.56 0.22

Isidore Horse 1.1m 0.94 10 1.65 35.42 5 1.28 0.50 24 3.98 1.10 100 14.46 2.47 74 8.89 23.25 0.17 4.54 0.28

Horse Head 1.3m 2.36 20 5.71 53.36 11 4.80 1.00 74 19.51 2.18 100 26.10 4.43 100 22.69 12.88 0.14 6.55 0.31

Ram 1.3m 2.72 3 2.18 57.16 NaN NaN 1.21 5 2.53 2.32 83 21.68 4.68 25 5.49 17.59 0.15 7.05 0.33

Murex Romosus 1.8m 2.30 5 2.56 72.19 4 2.87 1.01 26 8.99 2.32 100 29.59 5.16 24 6.30 38.34 0.25 9.06 0.43

XYZ Dragon 3.6m 3.30 9 5.35 123.64 7 5.29 1.56 18 10.27 3.25 100 43.72 8.84 67 27.36 79.75 0.74 16.09 0.96

Table B.3: Comparison of our hierarchy construction and solver for data smoothing of a random function with smoothing

coefficient 𝛼 =1 × 10
−3

and tolerance of 1 × 10
−4

on non-manifold meshes and point clouds. The maximum number of iterations

for iterative solvers is set to 100.

Gravo MG (Ours) Shi et al. AMG-RS AMG-SA Eigen Pardiso

Model #Vert Hier #It Solve Hier #It Solve Hier #It Solve Hier #It Solve Fact. Subst. Fact. Subst.

non-manifold triangular meshes

Lakoon 188k 0.16 5 0.20 0.09 26 0.88 0.20 100 2.76 0.40 17 0.39 0.43 0.02 0.71 0.04

Indonesian Statue 294k 0.26 7 0.42 0.17 7 0.44 0.30 37 1.45 0.63 100 3.53 0.90 0.03 1.18 0.06

Beethoven 383k 0.45 3 0.42 0.22 6 0.56 0.52 5 0.33 0.94 14 0.75 2.45 0.04 1.66 0.09

Bayon Lion 749k 1.44 4 1.20 0.71 8 1.67 1.37 7 1.07 2.45 10 1.28 6.26 0.08 3.75 0.18

Helmet Moustache 941k 2.04 5 2.07 0.74 22 4.97 2.10 15 2.97 3.44 17 2.79 24.99 0.14 5.56 0.26

Zeus 1.3m 2.51 7 2.69 1.20 14 4.52 2.49 29 7.24 4.19 100 20.66 30.96 0.19 7.26 0.35

Alfred Jacquemart 1.4m 3.26 4 3.33 1.68 13 6.16 3.61 7 2.44 5.24 28 8.24 9.08 0.14 8.03 0.35

point clouds

Oil Pump 103k 0.07 4 0.07 0.04 6 0.11 0.10 7 0.09 0.19 12 0.13 0.17 0.01 0.30 0.02

Caesar Merged 388k 0.29 4 0.30 0.17 7 0.52 0.41 7 0.39 0.83 31 1.40 4.81 0.06 1.50 0.10

Truck 1.2m 0.96 6 1.39 0.68 9 2.14 1.27 12 2.30 3.69 46 6.88 5.81 0.15 5.24 0.29

Ignatius 1.4m 1.25 6 1.67 0.78 15 4.14 1.58 30 6.44 4.43 100 17.64 8.89 0.18 6.11 0.35
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C.1 Derivation of Convolution Model

The outgoing radiance at point 𝑝 along direction 𝜔𝑜 , 𝐿𝑜(𝑝, 𝜔𝑜) is
given by

𝐵(𝑝, 𝜔𝑜) =
∫
𝐻2(n)

𝑓𝑟 (𝑝, 𝜔𝑜 , 𝜔𝑖)𝐿(𝑝, 𝜔𝑖) cos𝜃𝑖𝑑𝜔𝑖 , (C.1)

where 𝑓 is the BRDF and 𝐿(𝑝, 𝜔𝑖) is the incident radiance along

direction 𝜔𝑖 . For the Torrance-Sparrow BRDF, 𝑓 is defined as

𝑓 (𝑝, 𝜔𝑜 , 𝜔𝑖) = 𝐾𝑑 + 𝐾𝑠
𝐷(𝜔𝑚)𝐹(𝜔𝑜 · 𝜔𝑚)𝐺(𝜔𝑖 , 𝜔𝑜)

4 cos𝜃𝑖 cos𝜃𝑜
, (C.2)

where 𝜔𝑚 is the half-direction vector 𝜔𝑚 = (𝜔𝑖 + 𝜔𝑜)/| |𝜔𝑖 + 𝜔𝑜 | |;
𝐷(𝜔𝑚) is the normal distribution function; 𝐹(𝜔𝑜 ·𝜔𝑚) is the Fresnel

term. Ramamoorthi and Hanrahan simplify this term to 𝐹(𝜃𝑜), as the

angle 𝜃𝑜 is often close to the angle between 𝜔𝑜 and 𝜔𝑚 ;𝐺(𝜔𝑖 , 𝜔𝑜) is
the shadowing-masking term. Ramamoorthi and Hanrahan ignore

𝐺. We assume shadowing and masking are independent statistical

events, so that 𝐺(𝜔𝑖 , 𝜔𝑜) = 𝐺(𝜔𝑖)𝐺(𝜔𝑜).
There are two important notes about the denominator in Equa-

tion C.2:

1. 1/(4 cos𝜃𝑜) results from the half-direction transform: the

distribution of microfacets with a normal 𝜔𝑚 is transformed

to the distribution of outgoing directions 𝜔𝑜 that the incoming

light ray 𝜔𝑖 reflects toward (see Pharr et al. [182], Equation

9.27).

2. 1/(cos𝜃𝑖) cancels out the cosine term applied to the incoming

radiance (see Pharr et al. [182], equation 9.30).

We now substitute Equation C.2 into Equation C.1 and split the

equation into diffuse and specular

𝐵(𝑝, 𝜔𝑜) = 𝐾𝑑

∫
𝐻2(n)

𝐿(𝑝, 𝜔𝑖) cos𝜃𝑖𝑑𝜔𝑖 (C.3)

+ 𝐾𝑠
∫
𝐻2(n)

𝐷(𝜔𝑚)𝐹(𝜔𝑜 · 𝜔𝑚)𝐺(𝜔𝑖 , 𝜔𝑜)
4 cos𝜃𝑖 cos𝜃𝑜

𝐿(𝑝, 𝜔𝑖) cos𝜃𝑖𝑑𝜔𝑖

This equation is simplified using the assumptions that 𝐹 only

depends on 𝜃𝑜 and shadowing-masking is ignored. We replace the
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integral of incoming radiance with the symbol for irradiance 𝐸.

𝐵(𝑝, 𝜔𝑜) = 𝐾𝑑𝐸(𝑝) + 𝐾𝑠𝐹(𝜃𝑜)
∫
𝐻2(n)

𝐷(𝜔𝑚)
4 cos𝜃𝑜

𝐿(𝑝, 𝜔𝑖)𝑑𝜔𝑖 . (C.4)

Ramamoorthi and Hanrahan rewrite the specular term as a convo-

lution between a filter based on 𝐷, and 𝐿. Crucially, the domain

of 𝐷 in the Torrance-Sparrow model is the half-angle space. In

Ramamoorthi and Hanrahan’s derivation, the spherical harmonic

representation for this filter, in the paper referred to as 𝑆 is derived

in incoming-direction space for normal exitance (Ramamoorthi and

Hanrahan, Equation 27). This has two consequences:

1. We do not have to account for a change of variables and

1/(4 cos𝜃𝑜) can be removed.

2. In reality, 𝑆 depends on the outgoing direction that is observed

and thus, the filter changes shape. This variation is ignored

with the explanation that “the BRDF filter is essentially sym-

metric about the reflected direction for small viewing angles,

as well as for low frequencies l. Hence, it can be shown by

Taylor-series expansions and verified numerically, that the

corrections to equation 20 [Equation 5.9 in our paper] are

small under these conditions.”

This means that we can rewrite Equation C.4 with a convolution

𝐵(𝑝, 𝜔𝑜) = 𝐾𝑑𝐸(𝑝) + 𝐾𝑠𝐹(𝜃𝑜) [𝑆 ∗ 𝐿]𝜔𝑜 , (C.5)

which equals Equations 21 and 22 in Ramamoorthi and Hanrahan.

C.2 Sampling Theory

The transformation from the directional domain to spherical harmon-

ics begs the question: do we have the enough samples to accurately

recover the coefficients of the outgoing radiance? We know from

Equation 5.9 that the BRDF acts as a low-pass filter parameterized

by 𝛼. We connect this knowledge with sampling theory to derive

lower bounds on sampling counts.

The Nyquist-Shannon theorem provides a lower bound on the

number of samples required to exactly recover a band-limited signal

using a Fourier series. Similar theorems have been developed for

spherical harmonics [157, 158, 51]. These state that, to recover a

spherical signal with band-limit ℓ ∗, the number of samples should

be O(ℓ ∗2). The sampling rate and related band-limit have direct

consequences for BRDF recovery. Assume that the incoming light

has been sampled at a high enough rate to be accurately recovered,

for example, from projected photographs or a gazing sphere. Then

the outgoing light is the weakest link, as it is sampled by moving

the camera along 𝑁 positions around the object. Sampling theory
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tells us that we can only accurately recover outgoing radiance that is

band-limited to ℓ ∗ <
√
𝑁 degrees. Signals with non-zero amplitude

in higher degrees will suffer from aliasing.

Fortunately, the BRDF acts as a low-pass filter on the incoming

radiance (Equation 5.9). That means the outgoing radiance can

fall into two categories, based on the 𝛼 parameter of the material

(𝛼 = roughness
2
): 𝛼 is either too low or 𝛼 is high enough to recover

spherical harmonic coefficients. If 𝛼 is too low, the low-pass filtering

from the BRDF does not band-limit the signal enough to accurately

recover with the given sampling rate. The threshold for 𝛼 can be

determined based on Equation 5.9. Let 𝑡 be an acceptable attenuation

factor for degrees ℓ > ℓ ∗. We solve Equation 5.9 for 𝑡 to find the

lower bound, 𝛼′, for accurate recovery

𝛼′ = ℓ ∗−1

√
− ln 𝑡. (C.6)

An acceptable threshold 𝑡 can be determined empirically, by investi-

gating the reconstruction error for a set of environment maps. To

provide some intuition, for 𝑁 = 400 samples and a threshold of

𝑡 = 0.5, 𝛼′ ≈ 0.07. Above this threshold, our method can recover 𝛼
and 𝐾𝑠 to an acceptable accuracy, provided that the incoming radi-

ance has enough amplitude in the right degrees. This also extends to

non-uniform samples, because the Nyquist-Shannon theorem holds

for non-uniform samples [154]. In other words: if a lower bound on

𝛼 is known, it does not matter where the camera is placed, as long

as the average distance to the closest sample is equal to 1/𝑁 . It also

means that one can determine the number of required views based

on the lowest 𝛼 that should be recovered: 𝑁 ∼ 𝛼−2
.

It is important to understand what happens if 𝛼 < 𝛼′. First, we

are uncertain when 𝛼 lands between 0 and 𝛼′, based on the power

spectrum alone. For 0 < 𝛼 < 𝛼′, Equation 5.9 is close to 1 for all

degrees below ℓ ∗. Second, because this situation occurs for low 𝛼,

the outgoing radiance should be similar to the incoming radiance,

up to a scaling factor for absorption and transmission. It is unlikely

that the spherical harmonics decomposition with significant aliasing

will match that of the incoming radiance. Therefore, we can detect

that 𝛼 < 𝛼′: then, the MSE for any parameter combination 𝜓 is high.

Once such a case is detected, we know that our spherical harmonic-

based analysis provides no further insights on (un)certainty. There

is still a chance for accurate BRDF recovery if 𝛼 < 𝛼′. This is the case

when there is high local variation in the incoming light around the

sample locations, resulting in large changes in radiance for small

changes in 𝛼. One could quantify this variation by comparing the

difference between the sample location for 𝛼 = 0 and 𝛼 = 𝛼′ and

use this as a measure of certainty. In our work, we find that our

certainty measure works well, even for 𝛼 < 𝛼′ and thus, we do not

add this measure.
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C.3 Stanford ORB other results

We include the results from Stanford ORB in Table C.1 for reference.

These results were obtained under different acquisition condition

and cannot be directly compared to our results.

PSNR-H↑ PSNR-L↑ SSIM↑ LPIPS↓
NVDiffRecMC [86] † 25.08 32.28 0.974 0.027

NVDiffRec [164] † 24.93 32.42 0.975 0.027

PhySG [266] 21.81 28.11 0.960 0.055

NVDiffRec [164] 22.91 29.72 0.963 0.039

NeRD [14] 23.29 29.65 0.957 0.059

NeRFactor [267] 23.54 30.38 0.969 0.048

InvRender [248] 23.76 30.83 0.970 0.046

NVDiffRecMC [86] 24.43 31.60 0.972 0.036

Neural-PBIR [219] 26.01 33.26 0.979 0.023

Table C.1: Benchmark Comparison for

Novel Scene Relighting of Existing

Methods from [120]. † denotes models

trained with the ground-truth 3D scans

and pseudo materials optimized from

light-box captures. The rest of results

are obtained by optimizing jointly for

illumination, geometry and material.

We report these numbers for reference, how-
ever they cannot be directly compared to
our results.

C.4 Ablations

C.4.1 Spherical Harmonics fitting

Our method computes spherical harmonic coefficients using a least-

squares fit and includes a regularizer. We would like to understand

the effect of the maximum degree that is estimated, find the optimal

weight for the regularizer, and see if the regularizer has the desired

effect (improved accuracy). The results for the maximum degree are

presented in Table C.2. We find that more degrees help, but also

that we obtain good results with a relatively low number of degrees

(from 3 on). In Table C.3, we find that our approach is not very

sensitive to the specific setting of the regularizer, with an optimal

value near 𝜆 =1 × 10
−4

. When optimizing BRDF parameters, it is

typical to weight samples based on their angle with the normal, 𝜃.

For example, samples at grazing angles are often associated with

lower confidence and weighted less than samples near 𝜃 = 0. We

set up a general weighting function, max(0, 1 − (1 − cos 𝑎𝜃)𝑏) that

ignores samples with 𝜃 > 𝑎 𝜋
2

and weights the rest with a smooth

falloff determined by 𝑏. We observe in Table C.4 that 𝑎 = 1, 𝑏 = 1

gives the best results. We also observe that weighting is beneficial,

compared to constant weight (top row).
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Table C.2: Ablation max degree ℓ ∗

ℓ ∗ PSNR-H↑ PSNR-L↑ SSIM↑ LPIPS↓ Time

0 25.670 32.580 0.971 0.042 0.94s

1 25.531 32.536 0.971 0.042 1.08s

2 25.588 32.568 0.971 0.043 1.10s

3 25.881 32.983 0.972 0.041 1.13s

4 26.134 33.142 0.972 0.040 1.21s

5 (Ours) 26.182 33.215 0.972 0.040 1.42s

6 26.199 33.266 0.972 0.040 1.70s

7 26.147 33.227 0.972 0.040 2.05s

8 26.153 33.241 0.972 0.040 3.02s

Table C.3: Ablation regularizer weight

𝜆 PSNR-H↑ PSNR-L↑ SSIM↑ LPIPS↓ Time

1 × 10
−2

26.498 33.683 0.976 0.033 4.32s

1 × 10
−3

26.524 33.703 0.976 0.033 4.33s

1 × 10
−4

26.582 33.762 0.976 0.033 4.33s

1 × 10
−5

26.484 33.667 0.975 0.033 4.33s

1 × 10
−6 26.638 33.807 0.976 0.033 4.33s

1 × 10
−6

constant 26.611 33.788 0.976 0.032 4.36s

1 × 10
−7

26.585 33.750 0.975 0.033 4.33s

Table C.4: Ablation sample weighting

max(0, 1 − (1 − cos 𝑎𝜃)𝑏 ) PSNR-H↑ PSNR-L↑ SSIM↑ LPIPS↓ Time

No weighting 26.457 33.607 0.975 0.034 4.33s

𝑎 = 0.8, 𝑏 = 1 26.445 33.705 0.976 0.032 4.33s

𝑎 = 0.9, 𝑏 = 1 26.529 33.725 0.976 0.032 4.33s

𝑎 = 1, 𝑏 = 1 (Ours) 26.638 33.807 0.976 0.033 4.33s

𝑎 = 1, 𝑏 = 2 26.618 33.800 0.976 0.032 4.33s

𝑎 = 1, 𝑏 = 3 26.588 33.778 0.976 0.033 4.33s

𝑎 = 1, 𝑏 = 4 26.558 33.750 0.975 0.033 4.33s

𝑎 = 1, 𝑏 = 5 26.530 33.719 0.975 0.033 4.33s
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