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Abstract

This work is a small extension of our NACA studies of the early fifties
that predicted amplification of turbulence on passing through a shock wave
(observed for turbulent boundary layers), as well as the generation of
intense noise (observed for supersonic jets). The first solved the basic
gasdynamics problem of the interaction of an infinite planar shock with a
single three-dimensional spectrum component of turbulence (an oblique
sinusoidal ‘"shear wave"). The second developed the comprehensive 3D
spectrum analysis necessary to generalize the scenario to the interaction of
a shock wave with convected homogeneous turbulence. Numerical calculations
were carried out to yield curves (vs. Mach number) of rms sound pressure,
temperature fluctuation, and two components of turbulent velocity downstream
of the shock, for two cases of preshock turbulence. The present numerical
study reproduces these for one case and provides in addition their
one-dimensional power spectra (vs. wavenumber or frequency). Ratios of the
several postshock spectra to the longitudinal preshock turbulence spectrum
(1D) have been computed for a wide range of Mach numbers; curves VvsS.
wavenumber are presented for two scenarios of preshock turbulence: isotropy
and axisymmetry, both based on the von Karman 3D spectrum.
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Nomenclature

1.3390, pure number

55/18n;, pure number

pre- and postshock sound speeds, respectively

critical sound speed

flux of acoustic energy from unit shock area

flux of preshock turbulence kinetic energy into unit shock area

nondimensional wavenumber vector (Kl, Kys K3 or K, 8, ¢, Fig. 1;

also K., K;, 6, Fig. 2)

K/;L, actual wavenumber vector
longitudinal scale of turbulence
Up/cps preshock Mach number

U/c, postshock Mach number

transfer function relating dp" to du
ambient pressure

pressure perturbation

transfer function relating d<' to du

ambient temperature

= cylindrical coordinates

pre- and postshock stream velocity, respectively

nondimensional components of velocity perturbation in directions
X1s Xy, X3, respectively (actual components/c*)

nondimensional field point vector (Xl, X,s X3, Fig. 1,)
X, is 1 shock

Xal, actual field point vector
transfer function relating du' to du

transfer function relating dv; to dv




dz = (complex) wave amplitude associated with o= u,r, ¢, <, p",

etc.
Y = ratio of specific heats (taken as 1.4)
9 = polar angle (Figs. 1-3)
Or = critical angle separating evanescent and nonevanescent pressure
wav es
Pps P = fluid density upstream and downstream of shock, respectively
4 = temperature perturbation
¢ = azimuth angle (Figs, 1, 2)
3 = one-dimensional (1D) spectral density associated with
g3 W, Vs T P,
W = radian frequency (2nxfrequency)

Note: superscript ~ signifies actual dimensional quantity.



INTRODUCTION

Analytical studies of three-dimensional disturbances convected through
— and 1Ptfracting with — a shock wave seem to have commenced in the early
1950's.1"% The disturbances were waves of (1) vorticity, (2) entropy, or
(3) sound; they were in the form of oblique planar, usually sinusoidal,
patterns. Any one such wave encountering the shock would genera&e a%l three
kinds on yhe downstream side. It was pointed out by Ribner 5950 and by
Batchelor’! that the vorticity waves (called therein "shear waves") were
three-dimensional Fourier components of arbitrary incompressible flows,
e.g., weak turbulence. (See also Moyal.®)

The initial papersl'4 treated the interaction of individual waves of
arbitrary inclination with an infinite plane shock; thg analyses were
linearized in terms of wave amplitude. A later paper® developed the
comprehensive 3D spectrum analysis necessary to describe the interaction of
turbulence with a shock; the earlier single-wave results were the "building
blocks" . Numerical calculations were carried out for rms values of
turbulence velocity components, temperature, and pressure (sound)
fluctuations downstream of the shock, assuming either isotropic or
axisymmetric preshock turbulence. The plotted curves showed that velocity
components of the post-shock turbulence would be amplified as much as 45%
relative to preshock levels. Recent measurements do display the phenomenon
of amplification (e.g., Refs. 9, 10).

The calculation of such turbulence amplification on p?isﬁ%? through a
shock has received renewed attention in recent years.” "~ The term
turbulence in this context is, however, a misnomer: these papers have
reverted to dealing with a single 3D spectral component of turbulence. They
oversimplify in interpreting the single-wave results as representative of
the broafzsqgctrum of waves constituting turbulence. On the other hand, two
of them “* pioneer in the application of numerical integration of the
Euler equations to the single-wave shock-interaction problem. By coping
with nonlinearity they test the range of applicability of the results of the
linear analysis.

Some other studies based on the same fluid dynamics, but quite distinct
in orientation, may be noted. These relate to the passage of a columnar
vortex broadside through a planar shock wave: a cylindrical sound wave
appears on the downstream side, partly cut off by the shock, as well as a
modified vortex. The single-wave (single Fourier component) results of,
€.g., Ref. 1&,]%?n serve as the "building blocks" to compute this sound wave
in detail.”"? Unlike the shock-turbulence interaction problem, which is
stochastic, thg% ppfnomenon is deterministic (and is more readily verifiable
by experiment-°>"). Nevertheless, the underlying analytical framework is
the same. Both problems have been considered relevant to the generation of
“shock noise" 6b¥5 Rgrbu]ence passing through the shock pattern of a
supersonic jet.”*"7?

It appears then that, despite other results both old and new, the only
genuine calculations of turbulence interacting with a shock wave are those
of the early reference 6. But these, as noted above, have been limited to
rms values of the relevant disturbances: there are no computed spectra.
The present study is an extension of that paper (in a very limited sense);




it seeks to provide the one-dimensional power spectra (vs. wave number or
frequency) of velocity, temperature, and pressure perturbations, and of the
acoustic energy flux emanating from the shock. The procedure is one of
numerical integration of the corresponding 3D spectra. These are adapted
from Ref. 6, with the 3D spectrum of the preshock turbulence specified.

SHOCK-TURBULENCE INTERACTION

" Transfer Functions Connecting Fourier Components (Deterministic)

A snapshot of an arbitrary flow field may be represented by a Fourier-
Stieltjes integral in three dimensions, as

u(X) = fdu = [dZ,(K)exp(iKX); K

v(X)

w(X)

Kys Koo K3

1]
]|

Jdv = [dZ,(K)exp(ikK<X); |K| = K = 2m/wavelength (1a)

fdw = [dZ,,(K)exp(iK+X); X = X, Xp, X3

This integral is effectively a superposition of plane sinusoidal waves with
wavenumber K normal to the planes of constant phase; variation of K implies
a distribution of wavelengths and orientations. We can apply this format to
weak, essentially "frozen" turbulence (a pattern with negligible time
dependence); this will behave almost incompressibly, governed by

du/dXq + ov/dXy + dw/dX3 (1b)

even though convected at high speed. Applying this constraint to (la) shows
that the amplitude dZ and wave number K are orthogonal:

KidZ, + KpdZ, + K3dZ, = KedZ = 0; dZ = dZ,, dZ,, dZ, (lc)
Thus an individual wave is transverse; it may be interpreted physically as
an oblique sinusoidal wave of shearing motion (Fig. 1).

Such a wave, when convected into a sHock, interacts in a predictable
fashion according to linear theory:l' a "refracted" shear wave, a
superposed entropy wave, and a pressure wave emerge on the downstream side.
If the initial pattern of waves (upstream turbulence) is known only
statistically, then the downstream pattern (modified turbulence, entropy
"spottiness", and noise) can be determined statistically. That is, spectra,
correlations, and mean square values can be calculated.

To this end, we incorporated the deterministic sing]g—wave relations1
into a comprehensive spectrum analysis in three dimensions™ for homogeneous
turbulence. A brief account of relevant parts of the development is given
below. The physical quantities are normalized so as to be nondimensional:

= velocity components/critical sound speed, c*
= pressure perturbation/ambient,
= temperature perturbation/ambient, T

u, v, w, etc.
"
P

(But addition of a superscript ~ to u, p", t', etc., removes the normaliza-
tion.)



It will be convenient to re-express the velocity field of an incident
shear wave (Fig. 1) in cylindrical coordinates as (see also Fig. 2 where the
wave is viewed edge-on)

dv. = dZ. exp(i K<X) (2)

dv¢ = dZ¢ exp(i K<X)

where du is parallel to X; (normal to the shock), dv. is parallel to r, and
dvey is perpendicular to r and X; in the direction of increasing ¢. The
planes of constant phase K*X (= k+x, see below) = constant make an angle ©

with the X; axis. The wave number K and position vector X are non-
dimensional; they are formed from their dimensional counterparts k and x as

K = kaL; L

turbulence longitudinal scale

(3)

n
n

x/aL; pure number

respectively.

Figure 3 shows the results of the encounter of the incident wave, Eq.
(2), with the shock. The three waves that appear on the downstream side
are:

refracted shear wave, with components:

du' = dZd(Ef)exp(i K'«X); dZd = XdZu
dvp = dZi(K")exp(i K'*X); dzp = Ydz,. (4)
dv = dZy(K')exp(i K'*X);  dz} = dz,

entropy wave, aligned with refracted shear wave:

dt' = dZ3(K")exp(i K'X); dz = TdZ, (5)

sound wave:

dp" = de(E_)exp(i K"*X); dZﬁ = PdZ,, (6)

The planes of constant phase K'<X = constant and K"+X = constant make angles
6' and 6", respectively, with the X, axis or shock normal (Fig. 3). These
angles are functions of the angle 6 of the incident wave (and of the Mach



number). For |8| in the range from zero to a critical value 8cpr» the
pressure wave decays exponentially with distance from the shock (in
proportion to wave number): such waves are called evanescent. For |6| in
the range from 0 cr to n/2 the wave shows no decay and is called
nonevanescent here1n.

The right hand set of equations relates the respective amplitudes of
the downstream waves with those of the initial shear wave components, dZ,,

dZ dZ The transfer functions X, Y, T, and P are all dependent on the
1nc1dent wave angle 6, as well as Mach number M; they are the results of a
gasdynamic analysis carried out in Ref. 1. Funct1ona1 expressions, taken or
adapted therefrom, are given in Appendix A herein. The transfer functions
are quite different in the regimes 0 to 6., and 6.. to n/2; in particular,
the form of P dictates evanescence in the Fbrmer and nonevanescence in the
latter.

Three-Dimensional and One-Dimensional Power Spectra (Stochastic)

For application to a stochastic field such as turbulence it is
necessary to go over to statistical relations. If we form an ensemb]e
average for waves of different wave numbers K and k in respective ranges d K
and d°k it is easily proved that

dZ,, (K)dz¥*(x) = [uu] &(x - K)d3K d3k, (7)

if the turbulence is homogeneous.8 19 The quantity [uu] is a special symbol

for the three-dimensional spectral density of u2 in wave number space K.
The vanishing of &(kx-K) for k # K implies that waves of different
wavelengths or inclinations (since K and K are vectors) are statistically
independent .

The - integral of (7) over k-space may be written, by virtue of the
5-function,

dz, (K)dZ*(K) = [uu] d3K (8)

u u

In similar fashion we can develop corresponding expressions for the 3D
spectra [u'u'], [+'<'], [p"p"], etc. The integral of (8) over K-space is

u2, that of [t't'] over K'-space is z'2, and so on.

Application of these procedures to (4) to (6) leads to®

10
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N
1]

[[] Tuuld3K

W2 = fff [u'u'Ta3K* = [ff [X|2[uu] 03K "
9

2 = fff [+'v'}3K' = [ff |T|2[uuld3K

p"2 = [ff [p"p"Ja3k" = [[f |P|2[uuld3K

where the integration limits are * = in K, K,, K3, etc.
We shall limit attention to axisymmetric turbulence, with main emphasis
on the special case of isotropy. This and the axgsymmetry of the shock

interaction process led us in the earlier material” to employ cylindrical
coordinates. In these coordinates,

d3K = do K.dK.dK, (10)

A first integration with respect to d¢ then yields a factor 2n, so that

f =t
N
1]

2n [ 7 [uuKedkodk, = [ @y (K, )dK,
0 -

-0

27

=
n

—
8

X2 =
jo | X| 2[uu IK.dK.dK,

1]
—
]
o
—~
~
—
S
o
=~

(11)

©2=2n [ [ |T|2[uulKpdKpdKy = [ @00 (K )dK,
- 00 o - Q0

=2
N
1]

2n |7 7 |P|2[uuIK.dK dK,
[¢]

Im By (K )dK,
respectively.

The last equality in each line defines a one-dimensional spectrum;
these are explicitly:

11




=]

3,(K)) = 2= £ [uuXK.dK.

2n [ |X|2[uuK.dK,.
(0]

Dy (Kl)

@, (Ky) = 2n [ |T|2[uuIK.dK,. -
0

Byu (Ky) = 2n JIP|2[uulK.dK,.
0

As formulated, all four spectra are functions of the upstream longitudinal
wave number K,. This 1is convenient and puts them on a common basis.
Moreover, Kl is proportional to radian frequency w in the form

[This follows from
ky = w /Up (14)
and the definition, Eq. (3), connecting the two k's.]

Althqugh the interaction process of Fig. 3 conserves K. but not K,,
(K, # Ky # K;), the frequency w is invariant (0 = o' = u").
That is, an observer perceives the same frequency as each of the wave
patterns moves past. This is, of course, a necessary result for a
statistically steady process. A geometric analysis formally confirms the

invariance of w.

Isotropic Preshock Turbulence

For evaluation of the 1D spectra of (11) the 3D spectrum, [uu], of the
input turbulence must be specified. The von Karman spectral model (called
6,, in Ref. 20) is chosen; in our notation it is

BK.2
3 (15)

uuj = E
e 2n[l + K2 + K 211776 -

B = 55/18x%, § = 1.3390 -

where the Tongitudinal scale L of the turbulence is incorporated in K = k3l.
The pure number @ is a normalizing constant chosen so that

12



[, dky f Cuulemdk, = u?

For numerical evaluation of the 1D spectra it will be convenient to
express the «cylindrical wave number component K, in terms of the
lTongitudinal component K, and the polar angle 6. This will replace the
infinite range in K, by a finite range in 6, It will also be easier to
interpret the integral in terms of the geometry of Fig. 3. Compatibly with
Ref. 6 (Eq. 56) we put (Figs. 1, 2):

Ky

1]

K cos® cos¢

-K S'ine, K2

K3

~
]

K cos® sing, r = 7Ky2 + K32 = K |cote (17)
dKp, = |K{|csc2ede

Inserting (15) and (17) into (11) gives, after some reduction, the following
format for evaluation of the 1D spectra:

&. (K B /2 3
li 1) - B5 . f Imy 12 — . cos °6d 6 . (18)
K, /3 7o sin°6[b' + cotZe]l7/e

where
b' = (1 + K{?)/K,?

and
for i = u, u', ', p", ry=1,XT, P.

These express the general form to be numerically integrated for the shock-
interaction products in the present case; namely, isotropic preshock
turbulence with statistics described by the von Karman 3D spectrum.

One Dimensional Spectra of v2 and v'2

The one-dimensional spectra of v2and v'2 involve a less straight-
forward derivation. The following section sets forth the basic equations
and final spectra.

For isotropic and axisymmetric turbu]ence,'77 = w2 upstream of the

shock and v'?2 = w'?2 downstream of the shock: the respective 1D spectra have
similar equalities. The corresponding 3D spectra, [vv] and [ww], [v'v'] and

13



[w'w'], are not respectively equal, nor are they axisymmetric. The sums,
however, can be shown to be axisymmetric: they depend on Kr rather than
on K, and K3 separately. u?ese sums on both sides of the shock have a
relatively simple connection,

[v'v'] + [w'w'] = (|7]2 - 1) tan26 [uu] + [vv] + [ww], (19)

where the analytical form of the transfer function Y is given in Appendix A
herein.

We now restrict ourselves to the special case of isotropic preshock
turbulence. Then invoking the cited equalities and the axisymmetry of (19)
and employing the input spectrum and methods of the last section leads to
the desired 1D-spectra (details are given in Appendix B). The results are:

N _ B M2 (2+ cot20)cosedo  _ JlKy) (20)
u?2 k373 °  sin3e[b' + cot20]17/6 2
& (k) _ (ki) B (Y2 _(1¥]2 - 1)cosedo . o' (Ky) (21)
u? u? 2K, °  sin3e[b' + cot20]17/6 u?2

One-Dimensional Spectrum of Acoustic Energy Flux

The Tlast of equations (18) gives the 1D spectrum of the sound pressure
generated downstream by the passage of isotropic turbulence through a shock.
The connection to acoustic energy flux is not trivial, as in the case of
quasi-plane yTves propagating through still air. An analysis has been given
by Ribner invoking energy flow relations for a moving medium
(B]okhintsevzz). The integral of Eq. (15) of Ref. 21 reads, in the present
notation,

A 52 ;)2
Iii =k
&%l

e dp"2(e")(1 + M;sin6") (M, + sine") (22)
% 2 e

This evaluates the flux of acoustic energy emanating from unit area of the
shock. Since only nonevanescent waves figure in Ipncs the Timits of
integration correspond to that range. The result after numerical
integration is plotted in Ref. 21.

The quantity dp"2(©) can be identified with the integrand (including
the 2mn factor) of the 1last of Egs. (11) herein. Hence the further
development leading to the last of Eqs. (18) may be applied. This yields

the one-dimensional spectrum of this flux, &ﬁC(Kl)’ in the form

14



Bpe (Ky) .2 ()2 A fn/Z IP|2(1 + M sin®") (M, + sin6")cos36do
2

5yZ “c* 573 ‘¢ : 3 ’
Y MK} cr sin%e [b' + cot29]17/6 (23)

ITurs

when the input turbulence has the von Karman (3D) spectrum. This flux has
been ratioed to the flux of kinetic energy of turbulence through the shock,

ITurg = -g—-PAUAC*2 u? = g-PUC*Z u? (24)

(The — perhaps surprising — factor 5/2 results from the definition

Tning = %_pA [(Up + c*u)Z + (c*v)2 + (c*w)2](Up + c*u) - %-PAUA3 (25)

and the postulated isotropy, u2 =v2 = w2,)

One-Dimensional Spectral Ratios; Lack of Uniqueness (Aliasing)

The component of turbulent velocity normal to the shock — called u
herein — has a central role in the analysis. The three dimensional

spectrum of Gi.governs the shock-interaction effects, and the resulting 1D
spectra are conveniently scaled to u2. Suppose, however, that we scale

these 1D spectra to the 1D spectrum of u2: then this ratio in each case may
be regarded as a sort of power spectrum transfer function; it will be a
function of K;. Up to this point these quantities have been evaluated only
for the von Karman 3D preshock spectrum, a particular case of isotropic
turbulence. The question may now be asked, how much will these spectral
ratios change with changes in the preshock spectrum?

Such changes will be explored in the present section. They are

expected to be nonzero because the 1D spectrum of u? (in K,) does not
uniquely determine its 3D spectrum (in K;, K,, K3) on which the shock
interaction depends. (The 3D spectrum, on the other hand, does uniquely
determine the 1D spectrum as a result of the double integration over K, and
K3.) This lack of uniqueness has been termed an aliasing effect. We shall
apply the term as well to lack of uniqueness in the postshock/preshock 1D
spectral ratios.

A geometric interpretation may be developed with the aid of Fig. 2.
The 3D spectrum of turbulence is an aggregate of waves like the one shown
with a wide range of wavelengths 27m/K and angles © (and ¢). If ®K,;) is the
1D spectrum, the differential ®(K,)dK; is a narrow band of these waves with

component wavelengths close to 2m/K;. It is evident that a variety of wave
inclinations © with appropriate wavelengths 2n/K (functions of ©) could be

15



chosen to have this same x,-direction intercept 2n/K . Thus the 3D wave
pattern corresponding to ®K;) is not unique.

Axisymmetric Turbulence

A convenient example of aliasing changes in spectral ratios can be
obtained by modifying the preshock spectrum to change it from full isotropy
(v2 = w2 = u?) to axial symmetry (v2 = w2 =/ u2). The conditions for g 3D
spectrum tensor to be axisymmetric have been discussed by Batchelor2 and
others; for full generality they are very complex. However, we are
concerned here with but an example of axisymmetry. This can be obtained
from the von Karman spectrum (a particular case of isotropic turbulence) by
a simple modification: we merely multiply the longitudinal spectrum [uu]
(the only one of concern herein) by an arbitrary non-negative function of
wave angle © (or of K,/K,. = tan®), (O is considered to be a polar angle
and is restricted to the range 0 to w/2.)

This axisymmetric spectrum then takes the form
[UU]AXI = F2( 9) [UU] (26)

This is justified by comparison with the second of Eqs. (12)

[u'u'] = |X] 2 [uul S ¥ ey

that relates the postshock longitudinal spectrum, [u'u'], to the preshock
value, [uu], X being the transfer function. There being no preferred
direction in the plane of the shock (L to u), [u'u'] must surely be
axisymmetric. But the argument for axisymmetry does not depend on the
particular form of the factor X: it could be an arbitrary function of
Ki/Kp (or of 6),

For our particular example we shall take
[uulaygg = CuulcosNe,  with N = 2 (28)

to describe the 3D axisymmetric preshock longitudinal spectrum in terms of

an isotropic form [uu]; specifically, the latter is taken as the von Karman

form that we have used throughout. For this case the 1D spectra ¢¥(K 1s

¢h'§KL)’ ®.1(K;), and & u(K,) are given by Eqs. (12) with an extra factor
. p 1

€c0s“6 in the integrands.

16



RESULTS AND DISCUSSION

Isotropic Preshock Turbulence

RMS Values of Postshock Disturbances, and Noise in Decibels

Figure 4 gives the variation with upstream Mach number of the various
shock interaction products for a specific scenario: the preshock turbulence
is isotropic with an intensity of 1% of free stream. The curves display rms
perturbations of longitudinal velocity u and Tlateral velocity v or w in
percent of initial stream velocity, and of rms temperature and pressure
(noise) in percent of ambient. The figure is adapted from Fig. 4 of Ref.
6. The curves represent, in effect, the integrals with respect to K, of the
respective one-dimensional spectra; that is, the integrals displayed in Egs.
(11). (The actual procedure, however, bypassed the 1D spectra and employed
only the specification of preshock isotropy. The results are independent of
the preshock spectra, 3D or 1D, so Tlong as they are consistent with
isotropy.)

The amplification of both the longitudinal and lateral components of
the postshock turbulence is evident; it reaches some 45%, as noted in the
Introduction, for the lateral component at high Mach number. The other two
curves in Fig. 4 refer to the temperature and pressure fluctuations,
respectively. (These are both spatial and temporal: rms values are the
same from either point of view.) In first order, these are absent from the
postulated upstream flows (extremely weak second order pressure and
isentropic temperature fluctuations are associated with the specified 1%
preshock turbulence).

On an acoustical basis the pressure fluctuation (noise) generated by
the shock-turbulence interaction is very intense. This is shown in Fig. 5,
where the noise level in decibels corresponding to Fig. 4 is plotted vs.
Mach number. (The definition is

dB = 20 log, (¥ P"2/Ppep);  Prer = 2¥10710 atm (29)

when the postshock ambient pressure is taken as 1 atmosphere.) For 1%
preshock turbulence the postshock noise level is predicted to exceed 140 dB
for all upstream Mach numbers above 1.05.

Figure 6 displays normalized (nondimensional) 1D power spectra
calculated from the equations presented herein; the scenario is isotropic
turbulence, governed by the von Karman 3D spectrum, being convected by an
M=1.25 flow into a normal shock. The six spectra are:

EM(KI)/EE longitudinal comonent of preshock turbulence
o Yyl . .
@, (K})/u longitudinal component of postshock turbulence

17




A

A
o (K;)/T? temperature fluctuation

[&5u(K1)/32]X=0 presigrﬁ ;1uctuation just downstream of shock (acoustic
near field

[ab“(Kl)/$21X=w pressure fluctuation far downstream of shock (acoustic
far field)

A
8AC(K1)/ITURB acoustic energy flux emanating from shock

The first two of these are normalized by u2, which is the integral (from
-= to « in K,;) of (Ky) (thus the integral of the first is unity)._ The
next three are normg 1zed by one or the other of (ambient temperature)¢ and
(ambient pressure)“. Finally, @ is normalized by the flux of kinetic
energy of preshock turbulence flowing into the shock. The superscript
signifies a dimensional value, unsuperscripted forms having been
nondimensionalized at the outset of the analysis.

The pressure field (noise) decays from an extremely high value just
downstream of the shock (X=0) to an asymptotic lower value — still very
intense acoustica]]y — far downstream (X=«), Figure 6 shows a major
difference in their spectral content: the X-0 near field is dominated by

low frequencies, decaying asymptotically like K =3 beyond K23, The X=w
far field is very deficient in low frequencies; on a linear sca]e it has a
bell-shaped spectrum, peaking near K;=1, but w1th the same asymptotic decay

(the Kolmogorov KI law) beyond K123.

One-Dimensional Spectra and Postshock/Preshock Spectral Ratios

Figure 6 applies for M=1.25; a series of such figures could be
presented for a wide range of Mach numbers. A much neater alternative,

however, is to ratio each of these spectra at each value of K, to the ¢h/u2
spectrum. This ratio, as has been mentioned earlier, could be regarded as a
sort of transfer function connecting the ratioed pair of spectra. In this
format the variation with Mach number can be discerned much more
systematically.

Figure 7 presents such spectral ratios: it relates the postshock to

the preshock Tlongitudinal component of turbulence (the u2 divisors cancel)
for a series of Mach numbers, M. For convenience the curves are normalized
by factors Z(M) (tabulated on the figure) to force agreement with the M=1.25
curve at K;=1; this makes the family of curves much more compact. It is
seen that increasing Mach number enhances the Tlow frequencies of the
longitudinal component of the postshock turbulence.

Figure 8 gives the corresponding spectral ratios relating postshock
lateral component of turbulence to preshock Tlongitudinal component. Here
the behaviour is the reverse of that in Fig. 7: increasing Mach number for
the most part decreases the low frequency content.

18



Figure 9 gives the spectral ratios relating postshock temperature
fluctuation (arising from entropy "spottiness" generated at the shock) to
preshock Tlongitudinal component of turbulence. It is evident that the Tow
frequencies in the temperature field are somewhat enhanced compared with
those of the turbulence field. The variation is not, however, monotonic
with Mach number: there is a foldover of the curves with increasing M.

Figures 10 and 11 give the spectral ratios relating the near field and
far field pressure fluctuations (noise), respectively, to the longitudinal
component of the preshock turbulence. The two families of curves are
clearly very different. Moving on, Fig. 12 displays the spectral ratios
connecting the acoustic energy flux emitted by the shock on the downstream
side to, again, the longitudinal component of preshock turbulence. One
notes the marked qualitative similarity with Fig. 11. This is not
surprising, since acoustic energy flux and far-field mean square pressure
fluctuation are closely related. For a medium at rest the two are exactly
proportiona}2 whereas in the postshock flow they differ as described by
Blokhintsev“® for a moving medium.

Axisymmetric Preshock Turbulence

Postshock/Preshock Spectral Ratios; Aliasing Effect

Calculations parallel to some of those pertaining to Figs. 7 to 12
(isotropic turbulence, von Karman spectrum) have been carried out for a
specified axisymmetric preshock turbulence. As described in the relevant
earlier section, the two 3D preshock longitudinal spectra are related by Eq.
(28).

Figure 13 gives the 1D spectral ratio of postshock to preshock
longitudinal component of turbulence for the axisymmetric preshock
turbulence specdified above, when [uu] is the von Karman spectrum (see,

e.g., Ref. 20). Also plotted is the 1D spectrum & /JE of the longitudinal
component of the preshock turbulence. (Normalization of &, is by the same

EE as for Figs. 7-12, not by EEXI.) Comparisgﬂ_with Fig. 6 (isotropic

turbulence) shows that the two spectra of 9, /u? are vastly different.
Nevertheless, the spectral ratios of Fig. 7 (isotropic turbulence) and Fig.
13 (axisymmetric turbulence) are qualitatively rather similar, although
quantitatively different. The spectral ratios are, in fact, very much less
dissimilar than the spectra of the two kinds of turbulence. This property
points up the wutility of the 1D spectral ratio in describing
shock-turbulence interaction effects.

The fact that the spectral ratios do change (although not radically)
with marked changes in the 3D spectrum of the preshock turbulence is a
consequence of the aliasing effect discussed earlier. Comparison of Figs. 7
and 13 gives a measure, for a particular pair of cases, of this aliasing
effect.

Figure 14 gives the spectral ratio relating postshock temperature

fluctuation to preshock longitudinal component of turbulence. This figure
(axisymmetric preshock turbulence) is to be compared with Fig. 9 (isotropic
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turbulence). Again, the sets of spectral ratios are qualitatively generally
similar. The differences (aliasing effect) are greater than those between
Figs. 7 and 13.

Finally, Fig. 15 gives the spectral ratio relating the far field (X==)
pressure fluctuations (noise) to the Tlongitudinal component of preshock
turbulence. This figure (axisymmetric preshock turbulence) is to be
compared with Fig. 11 (isotropic preshock turbulence). The same sort of
qualitative similarity is found between Figs. 9 and 14. The first glance
impression of the similarity is, however, a bit misleading, e.g., for K<1 it
is the M=1.01 curve of Fig. 11 that is very similar to the M=1,05 curve of
rig....15.

These three figures, taken together, give some idea of the changes in
spectral ratio (the aliasing effect) due to changes in the 3D spectrum of
the preshock turbulence. But this one comparative example of axisymmetric
vs. isotropic turbulence hardly quantifies the effect.
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APPENDIX A

GENERAL RELATIONS AND TRANSFER FUNCTIONS

The upstream Mach number M and the incident wave inclination 6 (Figs.
1-3) are specified. These dictate a virtual Mach number W. A number of
general relations are independent of the magnitude of W; the remainder,
notably the transfer functions, take different functional forms, depending
on whether W<I or >I. The ratio of specific heats y is taken as 1.4. (For
formulas in terms of y see Ref. 6.)

General Relations

M = specified
m = 6M2/(M2+5)
M, = /(M2+5)/(7M2-1)
0 = specified
0 = tan~! (mtane)
1] = Ml/cose'
B2 = 1-M2
B = /|1-u2|
m = tan~1(1/8,)
9 = cos‘lMl
Oc = cot™!(mcot o} .)
O e = Bcp = ®/2
" = -tan‘l[fif;izgl] for W <1
B
=0 - pu for W > 1

Transfer Functions

These are defined in terms of functions of other functions. For
numerical calculation the sequence should be in reverse order to the
listing. The relative ease of programming belies an appearance of
complexity.
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W

<1 (0 <6 < 6,

W>1 (6. <]6] <m/2

>

=<

a/m

b/m

2.8 /m

(2.4m-.4)cos6cos 0"

(cos6) vc2+d? e‘KrXBw/B2

m B

/(atan®-1)2 + (btan®)2

*0.8(m-1)2/[2.4m-.4)/m] eiéT

tan-1(-B/A)

tan-1[b/(cote-a)]
1 CBy - dtan®'
dBw + ctané'

tan~

[Scose'/cosé)_lei(SS
[Ssine'/sinele 05
(/Kffr§77m)cose
sec®' + 2(m-1)cos®’
+ (a/m)(m-1)2sine"
(b/m)(m-1)2sine"
D'a/m - F'

D'b/m

(CE + DF)/(C2 + D2)
(CF - DE)/(C2 + D2)
(1/6 + 2m/3)tane"

-(1/2)[(m-1)2+(m-1)/1.2]sin26"

D',/ B2

(m-1)[1 + (m-1)cos 26']

2 - m/3 + 2(m-1) (B, % B?)cos 26"

>

<

a/m
b/m
Cl

EI

No Change

cos6sinp

e €
mcos 6"

N.C., with b =0

N.C.
N.C.

N.C., with B =0
N.C.

0

N.C.

0

(C' + GF')/(E' + GD*)

0

m/3 - 2[1 + (m-1)cos26']

Not used
N.C.
F'(m-1)/2 - (1+2m/3)tané"



F = F'g,/B? F = Not used
F' = (m-1)sin260" F' = N.C.
G = Not used G = -tane"

Note: Errors have been found in one or the other of the two versions of
Ref. 6 from which the above are taken or derived; these occur in several
equations and in the list of symbols. Those that are applicable have been
corrected. Some other errata are corrected in Appendix D herein.

APPENDIX B

ONE-DIMENSIONAL SPECTRA OF v2 AND v'?2

The starting point is Eq. (19):

{[v'v'] + [w'w']ldX = (|7|2 - 1) [uu] tan2e d X

+ {[vv] + [wwl}d 3k

Invoking the axisymmetry, we may integrate as in Eqs. (11) and (12):

2n [ {v'v'] + [w'w'I}kdK. = 2 fm(|7|2-1) [uu] tan?2e K.dK,.
0 o
+2n [ {[vv] + [ww]}KdK,. (B1)
0
The Teft-hand side is the sum of & .(K;) and '(Kl); they are equal, even
though their respective integrands are not. This implies

28,1(Ky) = 28+ (Ky) = 2 [ (1¥]2-1) [uu] tan?e KodK,

+2n [ {[vv] + [ww]} KpdKp. (B2)

0
Applying the same argument to the right-hand side shows that the second
integral may be interpreted as 2¢§(K1) = 28,(K,).
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Isotropic Turbulence

If we designate u, v,

for isotropic turbulence 1's:7

[qiqj] - E(K) (K26.ij - K.iK.)
4 k™ :

We take E(K)/47K" to have the von Karman form

E(K) . BuZ .1
4ak% 2T [14K2]17/6

Then, after a 1ittle manipulation,

EUU] - Bu r

2m [14K 24K, 211776

A el 2 2
[vv] g [ww] 5 B u2 2Kl + Kr

27 [1+K12+Kr2]17/6

where K .2 = K,2 + K42, Insertion into (B2) then yields

W as q;, 95, g3, then the general

® (2K12+Kr2)KrdKr

g (K,) = &,(k,) = B

2 o [1+K12+Kr2]17/6

Q1 (Ky) = gy (Ky) = §(Ky)

. B u? i (1Y]2-1)K.2(tan26)K .dK,.

Invoking polar coordinates in the form of Eq. (17) yields:

A.4

spectral form

(B3)

(B5)

(B6)
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B a2 /2 2
o, (Ky) = g,(K,) = B u f (2+cot26)cos6 do (B9)
2K15/3 o s'in3e[b'+cot29]l7/6

o, (Ky) =9, (Ky) = o, (K)) +

E-u—z J.Tt/z (|712-1)cose dé (B10)
- LR sin3e[b'+cot20]17/6

where b' = (1+K;2)/K,2, and Y is defined in Appendix A. Equations (B9) and
(B10) are the desireé one dimensional integrals [cited as (20) and (21),
respectively, in the main text].

APPENDIX C
OBLIQUE SHOCKS

The analysis and results, on a wavenumber basis, may be applied to

oblique shocks by the wusual procedure. The equivalent normal shock
transformation
M = Mjcos¢ or Uy = Ugcose (C1)

is made, where M, is the upstream Mach number, and ¢ is the oblique angle
between the shock normal and the upstream flow direction. In Figs. 4 and 5,
the designation "1% preshock turbulence" 1is now to be interpreted as
"(cos¢)% preshock turbulence".

The interpretation of all figures 1in terms of wavenumber Ky 1is
unaltered, except for Fig. 12 (acoustic energy flux). That figure is
inapplicable to oblique shocks: the structure of the underlying equations
(22) and (23) is changed, and no simple proportionality will serve.

The proportionality of K1 to frequency, however, does not carry over to

the oblique shock case:* equations (13) and (14) are inapplicable. If K
is the component wavenumber along the stream velocity Uy> then the two
equations are replaced by

*An exception is the case of &,(K;) for isotropic preshock turbulence.
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K, = wal/u, (c2)

and
k= w/Ug (C3)

respectively. Thus El takes over the role of K, (and U, the role of UA).

It follows that 1D spectra in terms of E , rather than K,, are
equivalent to frequency spectra in the oblique shock case. This 1’mleies a
coordinate axis rotation of amount ¢ about the 0Xj axis:

Ky, = K\cos¢ + K251n¢
K, = -K;sind + K,cos¢ (C5)
K3 = K3

with inverse
Ky K,cos¢ - Kosing

K, = K;sin¢g + K,cos¢ (C6)

~

Kz = K3

Q]so spherical polar and cylindrical coordinates are defined about the
K,-axis, similar to (17); thus (since the magnitude K = K),

~

Ky= -Ksine, K, = Kcos® cos¢

~

§3 - Kcoso sin; Kp = /E22 + IZ32 = |IZ1|cot5 (C7)
dK,. = K, |csc 2ede

In order to obtain the various 1D spectra in terms of El rather than
Kys Eq. (12) must be rewritten with K. and (implicitly) ¢, © replacing K.,
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b, e,'sespectively. Also the factor 2=n must be replaced by an integration
over d¢; this is required since the transfer functions |rj| depend on both ¢
and 6, not 6 alone. Stated otherwise, the |I;| are axisymmetric relative to
the shock normal direction (a]ong which' K, 1is measured), but not
axisymmetric relative to the oblique-shock flow direction (along which K, is
measured). The 1D spectra are thus

o2 21T ., @ e
o, (Ky) =/ do [ |r|2[uulKedK, (c8)
0 0

Because of the postulated isotropy of the preshock turbulence, [uu] has the
same form in the rotated reference frame as in the original frame. Thus it
replacing K,, K. respectively. Then,

takes the form (15), but with K 10 Kp
with the use of Eqs. (C6) and C7} tﬁe explicit form of the 1D spectra is

= ~ 2n o~ 2 ~ o~
@'(Kl) - B f E do I‘It/ |1"-|2 C053&19 (C9)
— ~573 Z 1 5 \ 2"’ 17/6
u2 K 0 sin e[b + cot 49]
1
where |Ty | = |rjl(e) is defined in Eq. (18), b' = (1 + El2)/zl2,and the

angle © ls evaluated from

= tan-1(|Ky|/7K,2 + K;2)

e_.
= tan-1 |cosd - (Ky/Ky)sing| (C10)
[sin2g¢ + (Ez/E1)2c052¢ * (Ez/E1)51”2¢ * (Es/E1)2]1/2
with

EZ/EI = -cotg cosg
(C11)

K3/K1 -cot® sing

Equation (C9), with (C10) and (Cl1), evaluates the 1D spectra in the
form of a double integral. Thus two numerical quadratures are required (in

¢ and ©) for the oblique shock case. By contrast, only a single numerical
quadrature was required (in 6) for the normal shock case.
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APPENDIX D
CORRECTIONS TO THE BASIC REFERENCE, RIBNER4119541§

The corrected equations are:

|S| 2sin28' - sin2¢

VZ+wd = | [uul dk + v2 + w2 (54)
cos 20

[uu] = k=2F(k)cos 2o (55)

ks ® 2 2
u2 =2 [ F(k)dk [ nd¢ fn/ cos 36d 8 (57)

o o o
s o 2mn /2
u'2=2 [ F(k)dk [ do¢ [ / | S| 2cos26'cosedo (58)
o [¢) (o}

Corrections to the definitions in Table A (Symbols) are:

T Multiply by -1

. - _y M %tane’ .

- -t <0< 6.
T For eiN®/2 readq e-imn/2

There are a number of other typos that are either trivial or self-evident.
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FIG.

SHOCK PLANE

1  PERSPECTIVE VIEW OF SHEAR WAVE (3D SPECTRAL COMPONENT OF
TURBULENCE) IN RELATION TO REFERENCE FRAME. NOTE THAT dZ IS NOT IN
GENERAL IN THE PLANE OF K AND U.

FIG. 2 PROJECTIVE VIEW OF SHEAR WAVE IN RELATION TO REFERENCE FRAME.
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FIG. 3  INTERACTION OF SHEAR WAVE WITH SHOCK: VIEW IN X,, r-PLANE.
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FIG. 4 AMPLIFIED TURBULENCE AND OTHER DISTURBANCES PRODUCED DOWNSTREAM OF
SHOCK BY INTERACTION WITH ISOTROPIC TURBULENCE. PRESHOCK
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STREAM VELOCITY; RMS TEMPERATURE AND PRESSURE (NOISE) IN PERCENT OF
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FIG. 5  NOISE GENERATED BY SHOCK-TURBULENCE INTERACTION (ISOTROPIC
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1 ATM.
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ERRATA AND ADDENDA

Please replace pages 8 and 9 with the attached revised versions.

In the original page 9 the remarks concerning integration of dv,. and
dv, were inadvertent and incorrect. Valid integrations apply only to the
Ca#tesian forms du, dv, dw as set forth in Eq. (1a) of the new page 8. The
components dv[. and dv, in cylindrical pclars serve only to delineate the
transfer functions of ?he shock-interaction process in simplest form. 1In
the revision, the opportunity has been taken to expand page 8 by providing
equations that, hopefully, clarify the verbal statements.

Page 5. Definitions of:

K: In more conventional notation "6" would be replaced by "6 +
n/2": see remarks below re definition of 6.

r, ¢, X;: Delete "of field point". [Refers to components of K and
dZ describing shear wave (Figs. 1, 2).]

X: Delete "or X;, r, ¢, Fig. 2)".
8: © is the polar angle of the velocity vectors, proportional to

dZ, in the shear wave, Fig. 1. The polar angle of the wavenumber
vector K, normal to this transverse wave, is 6 + m/2,
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