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Abstract 

This work is a small extension of our NACA studies of the early fifties 
that predicted amplification of turbulence on passing through a shock wave 
(observed for turbul ent boundary 1 ayers), as well as the generat i on of 
intense noise (observed for supersonic jets). The first solved the basic 
gasdynamics problem of the interaction of an infinite planar shock with a 
single three-dimensional spectrum component of turbulence (an oblique 
sinusoidal "shear wave"). The second developed the comprehensive 30 
spectrum analysis necessary to generalize the scenario to the interaction of 
a shock wave with convected homogeneous turbulence. Numerical calculations 
were carried out to yield curves (vs. Mach number) of rms sound pressure, 
temperature fluctuation, and two components of turbulent velocity downstream 
of the shock, for two cases of preshock turbul ence. The present numeri cal 
study reproduces these for one case and provides in addition their 
one-dimensional power spectra (vs. wavenumber or frequency). Ratios of the 
several post shock spectra to the 1 ongi tudi na 1 preshock turbul ence spectrum 
(10) have been computed for a wide range of Mach numbers; curves vs. 
wavenumber are presented for two scenarios of preshock turbulence: isotropy 
and axisymmetry, both based on the von Karman 30 spectrum. 
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Nomenclature 

= 1.3390, pure number 

= 55/18M, pure number 

= pre- and postshock sound speeds, respectively 

= c rit i ca 1 sound speed 

= flux of acoustic energy from unit shock area 

= flux of preshock turbulence kinetic energy into unit shock area 

= nondimensional wavenumber vector (Kl' K2' K3 or K, e, 4>, Fig. 1; 
also Kr' Kl' e, Fig. 2) 

k = K/aL, actual wavenumber vector 

L = longitudinal scale of turbulence 

MA = UA/cA' preshock Mach number 

MI = U/c, postshock Mach number 

P = transfer function relating dp" to du 

P = ambient pressure 

p" = pressure perturbation 

T = transfer function relating d.1 to du 

T = ambient temperature 

r, 4>, Xl = cylindrical coordinates 

UA' U = pre- and postshock stream velocity, respectively 

u, v, w = nondimensional components of velocity perturbation in directions 
Xl' X2, X3, respectively (actual components/c*) 

X = nondimensional field point vector (Xl' X2, X3, Fig. 1,) 
Xl is 1 shock 

x = ral, actual field point vector 

X = transfer function relating du l to du 

Y = transfer function relating dv~ to dV r 

5 



dZ a 

y 

e 

ecr 

PA' P 

'tI 

4> 

~a 

w 

Note: 

= (complex) wave amplitude associated with a = u,r, 4>, 'tI, pil, 
etc. 

= ratio of specific heats (taken as 1.4) 

= polar angle (Figs. 1-3) 

= critical angle separating evanescent and nonevanescent pressure 
waves 

= fluid density upstream and downstream of shock, respectively 

= temperature perturbation 

= azimuth angle (Figs, 1, 2) 

= one-dimensi onal (10) spectral density associ ated with 
a = u, v, U I, 'tI, pil, etc. 

= rad i an f requency (2 1txf requen cy) 

superscript A signifies actual dimensional quantity. 

6 



INTROOUCTION 

Analytical studies of three-dimensional disturbances convected through 
-- and irt!racting with -- a shock wave seem to have commenced in the early 
1950's. - The disturbances were waves of (1) vorticity, (2) entropy, or 
(3) sound; they were in the form of oblique planar, usually sinusoidal, 
patterns. Any one such wave encountering the shock would generale a~l three 
kind s on jhe downs t ream s i de. It was poi nted out by Ri bner ,5, and by 
Batchelor that the vorticity waves (called therein IIshear waves ll ) were 
three-dimensional Fourier components o~ arbitrary incompressible flows, 
e.g., weak turbulence. (See also Moyal. ) 

The initial papers l - 4 treated the interaction of individual waves of 
arbitrary inclination with an infinite plane shock; th~ analyses were 
linearized in terms of wave amplitude. A later paper developed the 
comprehensive 3D spectrum analysis necessary to describe the interaction of 
turbulence with a shock; the earlier single-wave results were the IIbuilding 
blocks ll • Numerical calculations were carried out for rms values of 
turbulence velocity components, temperature, and pressure (sound) 
fluctuations downstream of the shock, assuming either isotropic or 
axi symmetri c preshock tu rbul ence. The plotted curv es showed that velocity 
components of the post-shock turbulence would be amplified as much as 45% 
relative to preshock levels. Recent measurements do display the phenomenon 
of amplification (e.g., Refs. 9, 10). 

The calculation of such turbulence amplification on PîJS~~e through a 
shock has received renewed attentlon ln recent years. - The term 
turbulence in this context is, however, a misnomer: these papers have 
reverted to dealing with a single 30 spectral component of turbulence. They 
oversimplify in interpreting the single-wave results as representative of 
the broar2s~3ctrum of waves constituting turbulence. On the other hand, two 
of them ' pioneer in the application of numerical integration of the 
Euler equations to the single-wave shock-interaction problem. By coping 
with nonlinearity they test the range of applicability of the results of the 
linear analysis. 

Some other studies based on the same fluid dynamics, but quite distinct 
in orientation, may be noted. These relate to the passage of a columnar 
vortex broadside through a planar shock v/ave: a cylindrical sound wave 
appears on the downstream side, partly cut off by the shock, as well as a 
modified vortex. The single-wave (single Fourier component) results of, 
e.g., Ref. 11, c.an serve as the IIbuilding blocks ll to compute this sound wave 
in detail. 4,1!:> Unlike the shock-turbulence interaction problem, which is 
stochastic, th\î pfjnomenon is deterministic (and is more readily verifiable 
by experiment ' ). Nevertheless, the underlying analytical framework is 
the same. Both problems have been considered relevant to the generation of 
IIshock ~oi~ell 6b~5 lMrbulence . passing through the shock pattern of a 
supersonlc Jet.' , 

It appears then that, despite other results both old and new, the only 
genuine calculations of turbulence interacting with a shock wave are those 
of the early reference 6. But these, as noted above, have been limited to 
rms values of the relevant disturbances: there are no computed spectra. 
The present study is an extension of that paper (in a very limited sense) ; 
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it seeks to provide the one-dimensional power spectra (vs. wave number or 
frequency) of velocity, temperature, and pressure perturbations, and of the 
acoust ic energy fl ux emanat i ng from the shock. The procedure is one of 
numerical integration of the corresponding 30 spectra. These are adapted 
from Ref. 6, with the 30 spectrum of the preshock turbulence specified. 

SHOCK-TURBULENCE INTERACTION 

Transfer Functions Connecting Fourier Components (Oeterministic) 

A snapshot of an arbitrary flow field may be represented by a Fourier-
Stieltjes integral in three dimensions, as 

uC~) = Jdu = J dZu (~)exp (i~ .!); K = Kl' K2, K3 

v(!) = Jdv = JdZv(~)exp( i~·!); I~I - K = 2n/wave 1 ength (la) 

w(!) = Jdw = JdZw(~)exp( i~ .!); X = Xl' X2• X3 

This integral is effectively a superposition of plane sinusoidal waves with 
wavenumber Knormal to the planes of constant phase; variation of K implies 
a distributlon of wavelengths and orientations. We can apply this format to 
weak, essentially "frozen" turbulence (a pattern with negligible time 
dependence); this will behave almost incompressibly, governed by 

(lb) 

even though convected at high speed. Applying this constraint to (la) shows 
that the amplitude dl and wave number ~ are orthogonal: 

(lc) 

Thus an individual wave is transverse; it may be interpreted physica11y as 
an oblique sinusoidal wave of shearing motion (Fig. 1). 

Such a wave, when convected into al s~ock, interacts in a predictable 
fashion according to linear theory: - a "refracted" shear wave, a 
superposed entropy wave,and a pressure wave emerge on the downstream side. 
If the initial pattern of waves (upstream turbulence) is known only 
stat i st i ca 11y, then the downstream pattern (modifi ed turbul ence, entropy 
"spottiness", and noise) can be determined statistica11y. That is, spectra, 
correlations, and mean square values can be calculated. 

To this end, we incorporated the deterministic singlg-wave relations 1 
into a comprehensive spectrum analysis in three dimensions for homogeneous 
turbulence. A brief account of relevant parts of the development is given 
below. The physical quantities are normalized so as to be nondimensional: 

u, v, w, etc. = velocity components/critical sound speed, c* 
pil = pressure perturbat i on/ ambi ent, P " 
.' = temperature perturbation/ambient, T 

(But addition of a superscript A to u, pil, .', etc., removes the normaliza­
tion.) 
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It will be convenient to re-express the velocity field of an incident 
shear wave (Fig. 1) in cylindrical coordinates as (see also Fig. 2 where the 
wave is viewed edge-on) 

du = dlu exp (i ~ ... !) 

d v r = dIr ex p (i ~ -!) 

dvep = dIep exp(i ~-!) 

(2) 

where du is parallel to Xl (normal to the shock), dV r is parallel to r, and 
dvep is perpendicular to rand Xl in the direction of increasing ep. The 
planes of constant phase K-X (= k-x, see below) = constant make an angle 9 
with the Xl axis. The-wave nurilber K and position vector X are non­
dimensional; they are formed from their almensional counterparts K and ~ as 

L = turbulence longitudinal scale 
(3) 

! = ~/äL; ä = pure number 

respectively. 

Fi gure 3 shows the results of the encounter of the i nci de nt wave, Eq. 
(2), with the shock. The three waves that appear on the downstream side 
are: 

refracted shear wave, with components: 

dU' = dl'(K')exp(i KI-X); dl I = Xdlu u - - - U 

dv ' = dl I (K I ) exp ( i E -!); dIl = Ydlr r r- r (4) 

dv~ = dl~(~' )exp(i ~I _!); dl~ = dIep 

entropy wave, aligned with refracted shear wave: 

d't ' = dl'(K')exp(i KI-X); 't _ _ _ dl~ = Tdlu (5) 

sound wave: 

dp" = dll(K")exp(i Kil-X); p - - - dl" = Pdl P u (6) 

The planes of constant phase KI -X = constant and Kil-X = constant make angles 
9

1 
and 9", respectively, with t"he Xl axis or shock-normal (Fig. 3). These 

angl es are funct i ons of the angl e e of the i nci dent wave (and of the Mach 
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number). For lel in the range from zero to a critical value ecr.' the 
pressure wave decays exponentially with distance from the shock (in 
proportion to wave number): such waves are cal led evanescent. For I el in 
the range from ecr to ~/2 the wave shows no decay and is cal led 
nonevanescent herein. 

The ri ght hand set of equat i ons rel ates the respect i ve ampl itudes of 
the downstream waves with those of ~he~initial shear wave components, dZu ' 
dZr' dZ~. The transfer functions X, Y, T, and P are all dependent on the 
incident wave angle 0, as well as Mach number M; they are the results of a 
gasdynamic analysis carried out in Ref. 1. Functional expressions, taken or 
adapted therefrom, are given in Appendix A herein. The transfer functions 
are quite different in the regimes 0 to ec and ecr to ~/2; in particular, 
the form of P dictates evanescence in the former and nonevanescence in the 
latter. 

Three-Oimensional and One-Oimensional Power Spectra (Stochastic) 

For application to a stochastic field such as turbulence it is 
necessary to go over to statistical relations. If we form an ensemble 
avera~e for waves of different wave numbers K and K in respective ranges d 3K 
and d ~ it is easily proved that 

(7) 

if the turbulence is homogeneous. 8 ,19 The quantity [uuJ is a special symbol 

for the three-dimensional spectral density of u2 in wave number space K. 
The vani shing of ö( K-K) for K ., K impl ies that waves of different 
wavelengths or inclinations (sinee K and K are vectors) are statistically 
independent. - -

The ' integral of (7) over ~-space may be written, by virtue of the 
ö-function, 

dZu (~)dZn (K) = [uuJ d 3~ (8) 

In similar fashion we can develop corresponding expressions for the 30 
spectra [UIUIJ, [-&I-&IJ, [plp"J, etc. The integral of (8) over ~-space is 
u2 , that of [-&1-&1] over K1-space is -&1 2 , and so on. 

Application of these procedures to (4) to (6) leads t06 
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u2 = IJJ [uuJd 3!. 

"" u I 2 = JIJ IJJ [U ' u ' Jd 3!.' = I XI2[UUJ d3!. 
(9) 

't '2 = JIJ ['tl 'tI Jd 3!.' = JIJ ITI2[uu]d3!. 

p"2 = JIJ [p"pIJd 3!." = JIJ IPI2[uu]d3!. 

where the integration limits are ± a> in Kl' K2' K3' etc. 

We shall limit attentionto axisymmetric turbulence, with main emphasis 
on the speci al case of i sotropy. Thi s and the ax~symmetry of the shock 
interaction process led us in the earlier material to employ cylindrical 
coordinates. In these coordinates, 

d3~ = d$ KrdKrdKl (10) 

A first integration with respect to d$ then yields a factor 21t, so that 

CD CD CD 

u2 = 21t J J [uu JKrdKrdKl - J çI>u (K 1 )dK 1 
_a> 0 _a> 

~= 
CD CD "" a> 

21t J J IXl2[uuJKrdKrdKl = J çI>u I (K1)dK l 
-CD 0 

_a> 

(11) 

't '2 = 
CD a> CD 

21t J J I Tl 2[uu JKrdKrdKl - J çI>'t 1 (K1)dK l 
_CD 0 

_a> 

p"2 = 
a> a> a> 

21t J J I Pl2[uuJKrdKrdKl - [a> çI>p 11 (K 1 ) d K 1 
_a> 0 

respectively. 

The last equality in each line defines a one-dimensional spectrum; 
these are explicitly: 
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co 

~u (Kl) = 21t f [uu]KrdKr 
o 

co ,.... 
~u I (Kl) = 21t f I XI2[UuJKrdKr 

o 

co 

~'tl (Kl) = 21t f I TI2[UuJKrdKr 
o 

co 

~p"(KI) = 21t f IPI2[Uu]Kr dKr 
o 

(12) 

As formulated, all four spectra are functions of the upstream longitudinal 
wave number Kl' This is convenient and puts them on a common basis. 
Moreover, Kl is proportional to radian frequency w in the form 

(13) 

[This follows from 

k l = w /UA (14) 

and the definition, Eq. (3), connecting the two k's.J 

Althqugh th~ interaction process of Fig. 3 conserves Kr but not Kt, 
(Kl " Kl 'f Kl)' the frequency w is invariant (w = wl ~w" • 
That is, an observer percei ves the same frequency as each of the wave 
patterns moves past. This is, of course, a necessary result for a 
statistically steady process. A geometrie analysis formally confirms the 
invariance of w. 

Isotropie Pres hoek Turbulence 

For evaluation of the 10 spectra of (11) the 3D spectrum, [uuJ, of the 
input turbulence must be specified. The von Karman spectral model (called 
911 in Ref. 20) is chosen; in our notation it is 

,.... 

u2 BK 2 
[uuJ = r (15) 

21t[1 + K 2 + K 2J17/6 
I r 

,.... 
B = 55/181ta, a = 1.3390 

where the longitudinal scale L of the turbulence is incorporated in K = kal. 
The pure number a is a normalizing constant chosen so that 
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For numerical evaluation of the 10 spectra it will be convenient to 
express the cylindrical wave number component Kr in terms of the 
longitudinal component Kl and the polar angle 9. This will replace the 
infinite range in Kr by a finite range in 9. It will also be easier to 
interpret the integral in terms of the geometry of Fig. 3. Compatibly with 
Ref. 6 (Eq. 56) we put (Figs. 1,2): 

Kl = -K sine, K 2 = K cos 9 cos <I> 

K 3 = K cos 9 sin <1>, (17) 

Inserting (15) and (17) into (11) gives, af ter some reduction, the following 
format for evaluation of the 10 spectra: 

(18) 

where 

and 

for i = u, UI, ~I, p", ri = 1, X T, P. 

These express the general form to be numerically integrated for the shock­
interaction products in the present case; namely, isotropic preshock 
turbulence with statistics described by the von Karman 30 spectrum. 

One Oimensional Spectra of v 2 and V'2 

The one-dimensional spectra of v 2 and ~ involve a less straight-
forward derivation. The following section sets forth the basic equations 
and final spectra. 

For isotropic and axisymmetric turbulence, ~ = W2 upstream of the 

shock and VI 2 = W'2 downstream of the shock: the respective 10 spectra have 
similar equalities. The corresponding 30 spectra, evv] and [ww], [VIvI] and 

13 



[WIW
I
], are not respectively equal, nor are they axisymmetric. The sums, 

howev er, can be shown to be axi symmet ri c: they depend on Kr rather than 
on K2 and K3 separately. Tèese sums on both sides of the shock have a 
relatively simple connection, 

[ViVi] + [WIW I ] = (I rl 2 - 1) tan 2e [uuJ + evv] + [ww], (19) 

where the analytical form of the transfer function Y is given in Appendix A 
herein. 

We now restrict ourselves to the special case of isotropic preshock 
turbulence. Then invoking the cited equalities and the axisymmetry of (19) 
and employing the input spectrum and methods of the last section leads to 
the desired 10-spectra (details are given in Appendix B). The results are: 

'\ (Kl) 
= B f~/2 (2 + cot 2e)cosEXie = 

~(Kl) 

u2 2K 5 / 3 0 sin 3e[b ' + cot 2e]17/6 u2 
1 

(20 ) 

ibv,(Kd ~ (Kl) Jlt/2 
~ 

~,(Kl) 
= + B (IYI 2 - l)cosecte = 5/3 

u2 u2 2Kl 0 sin 3 e[b I + cot 2e] 17/6 u2 
(21) 

One-Oimensional Spectrum of Acoustic Energy Flux 

The last of equations (18) gives the 10 spectrum of the sound pressure 
generated downstream by the passage of isotropic turbulence through a shock. 
The connection to acoustic energy flux is not trivial, as in the case of 
quasi-plane ~ives propagating through still air. An analysis has been given 
by Ribner invoking energy flow relations for a moving medium 
(Blokhintsev 22 ). The integral of Eq. (15) of Ref. 21 reads, in the present 
notation, 

" p"2 ~/2--
I = - J dpl2(e")(l + Mlsine")(M l + sine") 

AC pc e 
cr 

(22) 

This evaluates the flux of acoustic energy emanating from unit area of the 
shock. Since only nonevanescent waves figure in I AC ' the limits of 
integration correspond to that range. The result af ter numeri cal 
integration is plotted in Ref. 21. 

The quantity dp" 2(e) can be identified with the integrand (including 
the 2lt factor) of the last of Eqs • . (11) herein. Hence the further 
development leading to the last of Eqs. (18) may be applied. This yields 
the one-dimensional spectrum of this flux, ~AC(Kl)' in the form 
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sin 5e [b" + cot 2eJl7/6 (23) 

when the input turbulence has the von Karman (30) spectrum. This flux has 
been ratioed to the flux of kinetic energy of turbulence through the shock, 

(24) 

(The -- perhaps surprising -- factor 5/2 results from the definition 

and the postulated isotropy, ~ = ~ = w2 .) 

One-Oimensional Speet ral Ratios; Lack of Uniqueness (Aliasing) 

The component of turbulent velocity normal to the shock -- cal led u 
herein -- has a central role in the analysis. The three dimensional 
spectrum of ~ governs the shock-interaction effects, and the resulting 1D 
spectra are conveniently scaled to~. Suppose, however, that we scale 
these 10 spectra to the 10 spectrum of~: then this ratio in each case may 
be regarded as a sort of power spectrum transfer function; it will be a 
function of Kl. Up to this point these quantities have been evaluated only 
for the von Karman 30 preshoek speet rum, a part i cul ar case of i sot ropi c 
turbulence. The question may now be asked, how much will these spectral 
ratios change with changes in the preshoek spectrum? 

Such changes will be explored in the present section. They are 
expected to be nonzero because the 10 spectrum of U2 (in Kl) does not 
uniquely determine its 30 spectrum (in Kl' K2 , K3) on whicti the shock 
interaction depends. (The 30 spectrum, on the other hand, does uniquely 
determine the 1D spectrum as a result of the double integration over K

2 
and 

K3.) Thi s lack of uniqueness has been termed an al iasing effect. We shall 
apply the term as well to lack of uniqueness in the postshock/preshock 1D 
speet ra 1 rat i os. 

A geometrie interpretation may be developed with the aid of Fig. 2. 
The 30 spectrum of turbulence is an aggregate of waves like the one shown 
wlth a wide range of wavelengths 21t/K and angles 9 (and $). If cl>(K I ) is the 
10 spectrum, the differential cl>(KddK I is a narrow band of these waves with 
component wavelengths close to 21t/KI. It is evident th at a variety of wave 
inclinations e with appropriate wavelengths 21t/K (functions of 9) could be 
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chosen to have this same xcdirection intercept 2n/K p Thus the 30 wave 
pattern corresponding to ~Kl) is not unique. 

Axisymmetric Turbulence 

A convenient example of aliasing changes in spectral ratios can be 
obtained by modifying the preshock spectrum to change it from full isotropy 
(~ = w2 = ~) to axial symmetry (~ = w2 =/~2). The conditions for a 30 
spectrum tensor to be axi symmetric have been discussed by Batchelor2J and 
others; for full generality they are very complex. However, we are 
concerned here with but an example ofaxisymmetry. This can be obtained 
from the von Karman spectrum (a particular case of isotropic turbulence) by 
a simple modification: we merely multiply the longitudinal spectrum ruu] 
(the only one of concern herein) by an arbitrary non-negative function of 
wave angle e (or of KtfKr = tane). (e is considered to be apolar angle 
and i s rest ri cted to the range 0 to n/2.) 

This axisymmetric spectrum then takes the form 

[uu]AX I = F 2( e) ruu] (26) 

This is justified by comparison with the second of Eqs. (12) 

~ 

[UiUi] = IxI 2 ruu] ( 27) 

that relates the postshock longitudinal spectrum, [UiUi], to the preshock 
value, ruu], ~ being the transfer function. There being no preferred 
direction in the plane of the shock (1 to u), [UiUi] must surely be 
axisymmetric. But the argument for axisymmetry does not depend on the 
particular form of the factor X: it could be an arbitrary function of 
KtfKr (or of e). 

For our particular example we shall take 

[uu]AXI = [uu]cosNe, with N = 2 (28) 

to describe the 30 axisymmetric preshock longitudinal spectrum in terms of 
an isotropic form ruu]; specifically, the latter is taken as the von Karman 
form that we have used throughout. For this case the 10 spectra ~,(K ), 
~u'JK1)' ~'t,~Kl)' and ~p"(Kl) are given by Eqs. (12) with an extra ractor 
cos e 1n the 1ntegrands. 
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RESULTS ANO DISCUSSION 

Isotropic Preshock Turbulence 

RMS Values Of Postshock Disturbances, and Noise in Decibels 

Figure 4 gives the variation with upstream Mach number of the various 
shock interaction products for a specific scenario: the preshock turbulence 
is isotropic with an intensity of 1% of free stream. The curves display rms 
perturbations of longitudinal velocity u and lateral velocity v or w in 
percent of initial stream velocity, and of rms temperature and pressure 
(noise) in percent of ambient. The figure is adapted from Fig. 4 of Ref. 
6. The curves represent, in effect, the integral s with respect to Kl of the 
respective one-dimensional spectra; th at is, the integrals displayed in Eqs. 
(11). (The actual procedure, however, bypassed the 10 spectra and employed 
only the specification of preshock isotropy. The results are independent of 
the preshock spect ra, 30 or 10, so long as they are consistent with 
isotropy. ) 

The amplification of both the longitudinal and lateral components of 
the postshock turbulence is evident; it reaches some 45%, as noted in the 
Introduction, for the lateral component at high Mach number. The other two 
curves in Fig. 4 refer to the temperature and pressure fluctuations, 
respectively. (These are both spatial and temporal : rms values are the 
same from either poi nt of view.) In fi rst order, these are absent from the 
postulated upstream flows (extremely weak second order pressure and 
i sent ropi c temperatu re fl uctuat i ons are associ ated with the specifi ed 1% 
preshock turbulence). 

On an acoustical basis the pressure fluctuation (noise) generated by 
the shock-turbulence interaction is very intense. This is shown in Fig. 5, 
where the noise level in decibels corresponding to Fig. 4 is plotted vs. 
Mach number. (The definition is 

~ 

PREF = 2 xl0- 1 0 atm (29) 

when the postshock ambient pressure is taken as 1 atmosphere.) For 1% 
preshock turbulence the postshock noise level is predicted to exceed 140 dB 
for all upstream Mach numbers above 1.05. 

Figure 6 displays normalized (nondimensional) 10 power spectra 
calculated from the equations presented herein; the scenario is isotropic 
turbulence, governed by the von Karman 30 spectrum, being convected by an 
M = 1.25 flow into a normal shock. The six spectra are: 

~u (K l)j~ 

,. ( ) ~ ~u I Kl ju 

longitudinal comonent of preshock turbulence 

longitudinal component of post shock turbulence 
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temperature fluctuation 

pressure fluctuation just downstream of shock (acoustic 
near field) 

pressure fluctuation far downstream of shock (acoustic 
far field) 

acoustic energy flux emanating from shock 

The first two of these are normalized by~, which is the integral (from 
_co to co in Kl) of ~1(KI) (thus the integral of the first is unity). The 
next three are norm~lized by one or the other of (ambient temperature)2 and 
(ambient pressure) • Finally, &AC is normalized by the flux of kinetic 
energy of preshock turbulence flowlng into the shock. The superscript 
signifies a dimensional value, unsuperscripted forms having been 
nondimensionalized at the outset of the analysis. 

The pressure field (noise) decays from an extremely high value just 
downstream of the shock (X=O) to an asymptotic lower value - still very 
intense acoustically - far downstream (X=co). Figure 6 shows a major 
difference in their spectral content: the X-Q near field is dominated by 
low frequencies, decaying asymptotically like K~5/3 beyond KI=3. The X=co 
far field is very deficient in low frequencies; on a linear scale it has a 
bell-shaped spectrum 1 peaking near KI=l, but with the same asymptotic decay 

- 51 j 
(the Kolmogorov Kl law) beyond KI~3. 

One-Dimensional Spectra and PostshockjPreshock Spectral Ratios 

Figure 6 applies for M=1.25; a series of such figures could be 
presented for a wide range of Mach numbers. A much neater alternative, 

however, is to ratio each of these spectra at each value of Kl to the ~uju2 
spectrum. This ratio, as has been mentioned earl ier, could be regarded as a 
sort of transfer function connecting the ratioed pair of spectra. In this 
format the variation with Mach number can be discerned much more 
systemat i ca lly. 

Figure 7 presents such spectral ratios: it relates the postshock to 
the preshock longitudinal component of turbulence (the ~ divisors cancel) 
for a series of Mach numbers, M. For convenience the curves are normalized 
by factors Z(M) (tabul ated on the fi gure) to force agreement with the ~1=1. 25 
curve at KI=l; this makes the family of curves much more compact. It is 
seen that increasing Mach number enhances the low frequencies of the 
longitudinal component of the postshock turbulence. 

Figure 8 gives the corresponding spectral ratios relating postshock 
lateral component of turbulence to preshock longitudinal component. Here 
the behaviour is the reverse of that in Fig. 7: increasing Mach number for 
the most part decreases the low frequency content. 
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Figure 9 gives the spectral ratios relating postshock temperature 
f1 uctuat i on (ari si ng from entropy "spott i nesslO generated at the shock) to 
preshock longitudinal component of turbulence. It is evident that the low 
frequenci es in the temperature field are somewhat enhanced compared with 
those of the turbulence field. The variation is not, however, monotonic 
with Mach number: there is a foldover of the curves with increasing M. 

Figures 10 and 11 give the spectral ratios relating the near field and 
far field pressure fluctuations (noise), respectively, to the longitudinal 
component of the preshock tu rbu 1 ence. The two famil i es of cu rv es are 
clearly very different. Moving on, Fig. 12 displays the spectral ratios 
connecting the acoustic energy flux emitted by the shock on the downstream 
side to, again, the longitudinal component of preshock turbulence. One 
notes the marked qualitative similarity with Fig. 11. This is not 
surprising, since acoustic energy flux and far-field mean square pressure 
fluctuation are closely related. For a medium at rest the two are exactly 
proportiona~~ whereas in the postshock flow they differ as described by 
Blokhintsev for a moving medium. 

Axisymmetric Preshock Turbulence 

Postshock/Preshock Spectral Ratios; Aliasing Effect 

Calculations parallel to some of those pertaining to Figs. 7 to 12 
(isotropic turbulence, von Karman spectrum) have been carried out for a 
specified axisymmetric preshock turbulence. As described in the relevant 
earl ier section, the two 30 preshock longitudinal spectra are related by Eq. 
(28) • 

Figure 13 gives the 10 spectral ratio of postshock to preshock 
longitudi nal component of turbul ence for the axi symmetri c preshock 
turbulence specdified above, when [uuJ is the von Karman spectrum (see, 

e.g., Ref. 20). Also plotted is the 10 spectrum <f>1,l/u 2 of the longitudinal 
component of the preshock turbulence. (Normalizatlon of <f>u is by the same 

~ as for Figs. 7-12, not by utXI.) Comparison with Fig. 6 (isotropic 

turbulence) shows that the two spectra of <f>u /u 2 are vastly different. 
Nevertheless, the spectral ratios of Fig. 7 (isotropic turbulence) and Fig. 
13 (axisymmetric turbulence) are qualitatively rather similar, although 
quantitatively different. The spectral ratios are, in fact, very much less 
dissimilar than the spectra of the two kinds of turbulence. This property 
points up the utility of the 10 spectral ratio in describing 
shock-turbulence interaction effects. 

The fact th at the spectral ratios do change (although not radically) 
with marked changes in the 30 spectrum of the preshock turbulence is a 
consequence of the aliasing effect discussed earlier. Comparison of Figs. 7 
and 13 gives a measure, for a particular pair of cases, of this aliasing 
effect. 

Figure 14 gives the spectral ratio relating postshock temperature 
fluctuation to preshock longitudinal component of turbulence. This figure 
(axisymmetric preshock turbulence) is to be compared with Fig. 9 (isotropic 
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turbulence). Again, the sets of spectral ratios are qualitatively generally 
similar. The differences (aliasing effect) are greater than those between 
Figs. 7 and 13. 

Finally, Fig. 15 gives the spectral ratio relating the far field (X=c:o) 
pressure fluctuations (noise) to the longitudinal component of preshock 
turbulence. This figure (axisymmetric preshock turbulence) is to be 
compared with Fig. 11 (isotropic preshock turbulence). The same sort of 
qual itativ e simil arity is found between Fi gs. 9 and 14. The fi rst gl ance 
impression of the similarity is, however, a bit misleading, e.g., for K(l it 
is the M=1.01 curve of Fig. 11 that is very similar to the ~1=1.05 curve of 
Fig. 15. 

These three figures, taken together, give some idea of the changes in 
spectral ratio (the aliasing effect) due to changes in the 30 spectrum of 
the preshock turbulence. But this one comparative example ofaxisymmetric 
vs. isotropic turbulence hardly quantifies the effect. 
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APPENDIX A 

GENERAL RELATIONS AND TRANSFER FUNCTIONS 

The upstream Mach number Mand the incident wave inclination 8 (Figs. 
1-3) are specified. These dictate avirtual Mach numbert:l. Anumberof 
general relations are independent of the magnitude of t:l; the remainder, 
notably the transfer functions, take different functional forms, depending 
on whether R<1 or >1. The ratio of specific heats y is taken as 1.4. (For 
formulas in terms of y see Ref. 6.) 

General Relations 

~1 = specifi ed 

m = 6M2/{M2+5) 

MI = I{M2+5)/{7M2_1) 

8 = specifi ed 

8' = tan- 1 (mtan8) 

R = MI/cOS 8' 

~2 = 1_~,2 

~w = III-W 21 

f.I. = tan- 1{1/t3w) 

8~r = coS- IM 1 

8cr = cot-l(mcot8~r) 

8" = 8~r - 1t/2 cr 

1('12tan8' ] -
8" = -tan- for W ~ 1 

~2 

= 8' - f.I. for W ) 1 

Transfer Functions 

These are defined in terms of functions of other functions. For 
numeri cal calculation the sequence should be in reverse order to the 
listing. The relative ease of programming belies an appearance of 
compl exity. 
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x 
,.... 
y 

S 
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B 

c 

d 

alm 

b/m 

C 

D 

D' 

E 

W ) 1 (ac r .. I a I .. 1t/2 

_ _ ___ --:-____ ei ó.... 2.8Il Iiiï -I-' 

(2 .4m-.4) cos 9cos 9 ' 

= (cos9) {~ e-KrX~w/~2 
m ~ 

= l(atan9-1)2 + (btan9)2 

*O.8(m-1)2/[2.4m-.4)1iiï] e
i6r 

= tan- 1(-B/A) 

= tan- 1[b/(cota-a)] 

1 c~w - dtan 9 ' 
= tan-

d~w+ctana' 

'0 
= [Scos a' /cos 9Je 

1 
S 

i 0 
= [Ssin9'/sina]e S 

= sec a' + 2(m-1) cos a' 

+ (a/m)(m-1)2sina ' 

= (b/m)(m-1)2sin9 ' 

= D'a/m - F' 

= D' b/m 

= (CE + DF)/(C2 + D2) 

= (CF - DE)/(C2 + D2) 

= (1/6 + 2m/3)tana ' 

-(1/2)[(m-1)2+(m-1)/1.2]sin2a' 

p 

Il 

T 

,.... 

x 
,.... 
y 

S 

A 

B 

c 

d 

alm 

b/m 

C' 

= D'PW/~2 D 

= (m-1)[1 + (m-1)cos 2a' ] D' 

= 2 - m/3 + 2(m-1)(~w2/~2)cos2a' E' 

A.2 

= No Change 

cos asi nj.l. 
= c 

mcos a" 

= N.C., with b = 0 

= 0 

= 0 

= 0 

= N.G. 

= N.C. 

= N.G., w;th B = 0 

= N.e. 

= 0 

= N.G. 

= 0 

= (C I + GF') / ( E ' + GD') 

= 0 

= m/3 - 2[1 + (m-1)cos 2a' ] 

= Not used 

= N.G. 

= F ' (m-1)/2 - (1+2m/3)tana ' 



F = F I ~w/ ~2 F = Not used 

= {m-l )si n2 91 = N.e. 

G = Not used G = -tan 9" 

Note: Errors have been found in one or the other of the two versions of 
Ref. 6 from which the above are taken or derived; these occur in several 
equations and in the list of symbols. Those that are applicable have been 
corrected. Some other errata are corrected in Appendix D herein. 

APPENDIX B 

ONE-DIt1ENSIONAL SPECTRA OF -;ï AND ~ 

The starting point is Eq. (19): 

{[ViVi] + [W'W']}d3~ = (IYl2 - 1) [uu] tan 2e d 3K 

+ {[vv] + [ww]}d 3K 

Invoking the axisymmetry, we may integrate as in Eqs. (11) and (12): 

<XI 

+ 2n f {evv] + [ww]}KrdKr 
o 

(BI) 

The left-hand side is the sum of \,(KI) and ~,(Kl); they are equal, even 
though their respective integrands are not. Tnis lmplies 

<XI 

+ 2n f {[vvJ + [ww]} KrdKr 
o 

(B2) 

Applying the same argument to the right-hand side shows that the second 
integral may be interpreted as 2\ (Kl) = 2~{Kl). 
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Isotropic Turbulence 

If we designate u, v'7w as ql' q2' q3' then the general spectral form 
for isotropic turbulence is: 

[q.q.] = 5J!l (K2ö . . - K·K.) 
1 J 41tK 1+ 1 J 1 J 

(B3) 

~Je take E(K)/41tKI+ to have the von Karman form 

(B4 ) 

Then, af ter a little manipulation, 

(B5) 

(B6) 

where Kr 2 = K/ + K/. Insertion into (B2) then yields 

(B7) 

'" 
+ B u2 Jm (IYI2-I)Kr 2(tan 29)KrdK r 

2 0 [I+K/+Kr2]17/6 
(B8) 

Invoking polar coordinates in the form of Eq. (17) yields: 
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~-

JTt/2 cf?v (K 1 ) = cf?W(K 1) :: B U2 {2+cot 2e)cose de 
2K 5/3 0 sin 3e[b I +cot 2e] 17/6 1 

(B9) 

cf?v I (K 1) = cf?w I (K 1 ) = cf?v(K 1) + 

B~ JTt/2 {IYI2_1)cose de (BlO) 
2K 5/3 0 sin 3e[b ' +cot 2e]17/6 1 

~ 

where bi :: (l+K12)/K 2, and Y is defined in Appendix A. Equations (B9) and 
(BlO) are the desired one dimensional integrals [cited as (20) and (21), 
respectively, in the main text]. 

APPENDIX C 

OBLIQUE SHOCKS 

The analysis and results, on a wavenumber basis, may be applied to 
oblique shocks by the usual procedure. The equivalent normal shock 
transformation 

or (C 1) 

is made, where Mo is the upstream Mach number, and </I is the oblique angle 
between the shock normal and the upstream flow direct ion. In Figs. 4 and 5, 
the designation "1% preshock turbulence" is now to be interpreted as 
"(COS</l)% preshock turbulence". 

The interpretation of all 
unaltered, except for Fig. 12 
inapplicable to oblique shocks: 
(22) and (23) is changed, and no 

figures in terms of wavenumber Kl is 
(acoustic energy flux). That figure is 
the structure of the underlying equations 

simple proportionality will serve. 

The proportionality of Kl to freguency, however, does not carry over ~o 

the oblique shock case:* equations (13) and (14) are inapplicable. If Kl 
is the component wavenumber along the stream velocity Uo' then the two 
equations are replaced by 

*An exception is the case of cf?u(K l ) for isotropic preshock turbulence. 
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~ ~ 

Kl = waL/U 0 ( C2) 

and 
~ 

k l = w/U 0 (C3) 

'" 
respectively. Thus Kl takes over the role of Kl (and Uo the role of UA)· 

'" 
It follows that 10 spectra in terms of K, rather than K ,are 

equival ent to frequency spectra in the obl i que shoc~ case. Thi s imp~ i es a 
coordinate axis rotation of amount ~ about the OX 3 axis: 

Kl = K ICos~ + K 2s i n~ 

K2 = -KIsin~ + K 2cos~ (C5 ) 

'" 
K3 = K3 

with inverse 
~ 

Kl = Klcos~ - K2si n ~ 

'" 
K2 = KIsin~ + K2cos~ (C6) 

~lso spherical polar and cylindrical coordinates ",are defined about the 

Kl-axis, similar to (17); thus (since the magnitude K = K), 

'" 
Kl = -Ksin9, K 2 = Kcos 9 cos 4> 

'" '" 
K3 = Kcos9 si n4> (C7) 

'" '" 
dKr = IKl lcsc 2ede 

'" 
In order to obtain the various",10 spectra in terms",of",K 1 rather than 

Kl' Eq. (12) must be rewritten with Kr and (implicitly) 4>, e replacing Kr' 

A.6 



4>, 9, respectively. Al so the factor 2n must be repl aced by an i ntegrat i on 
~ ~ 

over~d4>; th~s is required since the transfer functions I~ I depend on both 4> 
and 9, not 9 alone. Stated otherwise, the Iri I are axisymmetric relative to 
the shock normal direction (along which Kl is measured), but ~ not 
axisymmetric relative to the oblique-shock flow direction (along which Kl is 
measured). The lD spectra are thus 

2n ~ (D 

= J d4> J I ri 12[uu]KrdK r (C8) 
o o 

Because of the postulated isotropy of the preshock turbulence, [uu] has the 
same form in the rotated referen~e f,[arne as in the original frame. Thus it 
takes the form (15), but with Kt, K replacing Kl' Kr respectively. Then, 
with the use of Eqs. (C6) and (C7 , the explicit form of the lD spectra is 

2n ~ n/2 ~~ 

J d4> J Ir,.1 2 cos 3EXi9 
2 ~ 17/6 

o n 0 sin 5e[b l + cot 2e] 
(Cg) 

where Iri I = Iri 1(9) is defined in Eq. (18), bi = (1 + K12)/K12, and the 
angl e 9 i s eva 1 uated from 

Icos<jl - (K 2/K l )sin<jl1 
= tan- l --------~_=r_--------~~--------.v~r_~~ 

[sin 2<j1 + (K/Kl)2cos 2<j1 + (K/K l )sin2<j1 + (K3/Kl )2]1!2 
(CID) 

with 
~ ~ 

K/Kl = -cot9 cos4> 
(CU) 

~ ,~ 

K3/Kl = -cot9 sin4> 

Equation (Cg), with (CID) and (C11), evaluates the 10 spectra in the 
!orm of~a double integral. Thus two numerical quadratures are required (in 
4> and 9) for the ob 1 i que shock case. By contrast, only a si ngl e numeri cal 
quadrature was required (in 9) for the normal shock case. 
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APPENDIX 0 

CORRECTIONS TO THE BASIC REFERENCE, RIBNER (1954)6 

The corrected equations are: 

ISI2sin 2e l - sin 2e ________ [uuJ dk + v2 + w2 

cos 2e 

[uu] = k- 2F(k)cos 2e 

-2 fOO f2n fn/ 2 3 
U = 2 F(k)dk d4> cos ede 

000 

2 f~ f2n d~ fn/ 2 2 2 Ui = 2 F(k)dk '+' ISI cos elcosede 
o 0 0 

Corrections to the definitions in Table A (Symbols) are: 

T Multiply by -1 

T For einn/ 2 read e- imn/ 2 

(54) 

(55) 

(57) 

(58) 

There are a number of other typos that are either trivialor self-evident. 
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SHOCK PLANE 
r 

FIG. 1 PERSPECTIVE VIEW OF SHEAR WAVE (30 SPECTRAL COMPONENT OF 
TURBULENCE) IN RELATION TO REFERENCE FRAME. NOTE THAT dl IS NOT IN 
GENERAL IN THE PLANE OF KANO U. 

FIG. 2 PROJECTIVE VIEW OF SHEAR WAVE IN RELATION TO REFERENCE FRAME. 



INITIAL 
SHEAR 
WAVE 

SHOCK 

SOUND 
WAVE 

SHEAR-ENTROPY 
WAVE 

FIG. 3 INTERACTION OF SHEAR WAVE WITH SHOCK: VIEW IN Xl' r-PLANE. 
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RMS VALUES ARE GIVEN IN FIG. 4 (EXCEPT ~,/u2) PLUS TWO OTHERS (SEE 
TEXT). MACH NUMBER M = 1.25 ONLY. 
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"FAR FIELD" NOISE (X = a»/PRESHOCK LONGTUDINAL COMPONENT OF 
TURBULENCE (BOTH NORMALIZED). 
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FIG. 13 RATIO OF 10 SPECTRA FOR AXISYMMETRIC PRESHOCK TURBULENCE: 
POSTSHOCK LONGITUOINAL COMPONENTjPRESHOCK LONGITUOINAL COMPONENT. 
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This work is a small extension of our NACA studies of the ear1y fifties that predicted 
amp1ification of turbu1ence on passing through a shock wave (observed for turbu lent boundary 
1ayers), as well as the generation of intense noise (obse rved for supersonic jets). The first 
solved the basic gasdynamics prob1em of the interaction of an infinite p1anar shock with a 
single three-dimensiona1 spectrum component of turbu1ence (an ob1ique sin usoida1 "shear wave"). 
The second deve10ped the comprehensive 30 spectrum ana1ysis necessary to genera1ize the scenario 
to the i nteracti on of a shock wave wi th convected homogeneous turbu1 ence. Numeri ca 1 
calculations were carried out ta yield curves (vs . Mach number) of rms sound pressure, 
temperature f1 uctuat i on, and two components of turbul ent ve 1 acHy downs tream of the shock, tor 
two cases of pres hoek turbulence. The present numeri cal study reproduces these tor ene case and 
provi des in addi ti on thei r one-dimens; Qna 1 power speet ra (vs . wavenumber or frequency). Rat i os 
of the severa1 postshock spectra to the 10ngitudina1 pre shoek turbu1ence spectrum (lD) have been 
computed tor a wide range of Mach numbers ; curves vs. wavenumber are presented for two 
scenarios of preshoek. turbulence: isotropy and axisymmetry, bath based on the von Karman 30 
spect rum. 
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UTIAS TECHNICAL NOTE NO. 260 

ERRATA AND ADDENDA 

Please replace pages 8 and 9 with the attached revised versions. 

In the original page 9 the remarks concerning integration of dV r and dv~ were inadvertent and incorrect. Valid integrations apply only to the Cartes i an forms du, dv, dw as set forth in Eq. (la) of the new page 8. The components dV r and dv~ in cylindrical pelars serve only to delineate the transfer functlons of the shock-interaction process in simplest form. In the revision, the opportunity has been taken to expand page 8 by providing equ.at i ons that, hopefully, cl arify the verbal statement s. 

Page 5. Definitions of: 

K: In more conventional notation "9" would be replaced by "9 + n/2": see remarks bel ow re defi ni t i on of 9 • 

r, ~, Xl: De1ete "of field point". [Refers to components of K and dZ describing shear wave (Figs. I, 2).J 

X: Delete "or Xl' r, <P, Fig. 2)". 

9: 9 is the polar angle of the velocity vectors, proportional to dZ, in the shear wave, Fig. 1. The polar angle of the wavenumber vector !, normal to thi s transverse wave, is 9 + n/2. 

May 21, 1986 


