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Abstract

Humans make decisions when presented with choices based on influences. The Internet
today presents people with abundant choices to choose from. Recommending choices
with an emphasis on people’s preferences has become increasingly sought. Grundy
(1979), the first computer librarian Recommender System (RS), provided users with
book recommendations. Growing volumes of user data in the ’90s saw increased usage
of commercially available RS for e-commerce, music, movies, books, and social network-
ing services. Due to their effectiveness in providing recommendations, Collaborative
Filtering (CF) algorithms are predominantly used to build these RS. However, tradi-
tional CF algorithms adopting Matrix Factorization (MF) and Nearest Neighbor (NN)
methods suffer from handling sparse data or model scalability. With exponentially
increasing sparse data, building scalable and accurate RS models is of focus.
This thesis uses tensors and graphs to represent available data. Emphasis is given to
capturing higher-order interactions present between the data. The use of tensors is
motivated as matrices cannot capture data with higher-order relations, such as vari-
ation of user ratings to items with time. The transition to using tensors has been
promising with the development of efficient tensor decomposition methods and power-
ful machines. Graphs can capture the correlation between different entities, providing
additional information intrinsic to the underlying graph structure. A Graph Regu-
larized CANDECOMP/PARAFAC (GRCP) tensor decomposition model framework
is proposed in this thesis. The thesis highlights how to graph Laplacian regularizers
(GLRs) benefit CP tensor decomposition methods to build RS. The model framework
is evaluated with the MovieLens data set. The model records lesser Normalized Mean
Squared Error (NMSE) values than those reported in the literature. The combination
of varied data sources notably aids in overcoming the drawbacks of current RS models,
offering scalability with computational efficiency in linear time.
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sarvasya cāhaṁ hr.di sannivis.t.o
mattah. smr.tir jñānam apohanaṁ ca
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Chapter 1

Introduction

A surge in the growth of social networks has provided availability and accessibility
of user data in this Internet era. Users actively create and share information on the
World Wide Web and want recommendations that match their interests. This requires
systems that can provide recommendations specific to user preferences. Recommender
Systems (RS) have been vital in identifying and providing users with what they want
by focusing on information retrieval, data mining, and machine learning [2, 3, 4, 5].
With exponentially increasing user-information data on which these RS frameworks
operate, providing accurate and robust recommendations has increasingly been sought.
A few applications of RS deployed are search engines (Google, Microsoft Bing, etc.), e-
commerce websites (Amazon, Alibaba, etc.), music recommendations (iTunes, Spotify,
etc.), and for movies, the famous Netflix Prize problem [6].

Given a set of users and items, RS gives recommendations by considering explicitly
or implicitly available data. RS model this data by providing a rating basis for each
unique user present. The rating basis comprises users providing ratings to an item or
those implied from user actions and other available data. Once modeled, data filtering
methods such as Content-based, Collaborative Filtering (CF), and Hybrid approaches
are utilized.

Traditional RS incorporates CF, which has proven to be one of the most successful
recommendation approaches. CF techniques can help recommend an item to a user
based on similarities to other users in the RS framework [7, 8, 9]. Similar users are
obtained based on correlations between users, items, or user-item pairs. It considers
the ratings previously given and offers recommendations to a user for a particular item
based on these ratings. These ratings are represented as a rating matrix formed between
each unique user and item, as shown in Table (1-1). The question marks in the matrix
are ratings that are to be completed.

Master of Science Thesis Rohan Chandrashekar



2 Introduction

Item 1 Item 2 Item 3 Item 4 Item 5
User 1 ? ? 1 ? 5
User 2 1 5 0 2 ?
User 3 4 0 ? ? 2
User 4 3 ? 4 0 ?
User 5 ? 4 ? 1 0

Table 1-1: Example User-Item Rating matrix for CF-based RS frameworks

CF can be classified based on how the data is processed in an RS framework. Memory-
based approaches focus on finding similarities between users or items for recommenda-
tions. In contrast, model-based approaches use the given rating basis to train a model
to predict recommendation ratings.
Memory-based approaches establish similarity measures between users, items, or
user-item pairs. They predict the ratings of users based on the ratings of similar users
for a user-based CF method or the ratings of users based on the ratings provided to
similar items for an item-based CF [10]. Similarity measures are computed between
users or items with the available ratings. The computation popularly uses Cosine sim-
ilarity (Vector Space Similarity) or the Pearson Correlation Coefficient. [11]. Since the
similarity measures depend on neighbors, the models are also known as Nearest Neigh-
bor (NN) estimators. The kNN approach that utilizes similarity measures calculated
between k-Nearest Neighbors can be interpreted as a Graph.
Constructing a graph that best captures the available data requires defining its struc-
tural and spectral properties. The choice of a function used to calculate similarity
measures over the graph dictates the spectral properties of a kNN graph [12]. The con-
structed graph can further be used for regularization by including them as additional
sources of information. Graph signal processing is utilized to analyze and extract in-
formation from the underlying graph structure [13].
Model-based approaches employ an end-to-end model to predict ratings [14]. These
methods use dimensionality reduction techniques to make efficient predictions, particu-
larly sparse rating matrices. Dimensionality techniques project a given matrix structure
onto lower dimensions, thus, extracting the most fundamental factors that influence the
matrix. Popular model-based methods include Probabilistic and Statistical analysis,
Neural Networks, and Matrix Factorization techniques. Matrix Factorization (MF)
techniques are often adopted where SVD and NMF are widely used [15, 16, 17].
Techniques predominantly based on MF decompose the rating matrix into several
smaller matrices, choosing the most contributing factors of the matrix. The efficacy
of MF methods in terms of accuracy and computational complexity is known. Multi-
dimensional structures represent varied contexts if the data comprises more than two
dimensions. Structures that can capture multi-linear interactions within the data while
retaining matrix operations’ benefits are sought.
Tensors capture relations and interactions between data points in higher-order dimen-
sions. For example, a tensor of three dimensions can incorporate data such as users,
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1-1 Recommender System Modelling 3

items, and time. The flexibility of the number of dimensions of a tensor enables captur-
ing data beyond the user-item matrix for RS. In addition, tensor-based decomposition
methods result in low-rank approximations (or) latent factors of a tensor. The original
tensor can be reconstructed using the latent factors obtained from the decomposition.
The reconstruction error using tensor decomposition methods is smaller than standard
MF techniques [18]. While tackling the tensor decomposition problem, the focus ar-
eas are the interpretability of the factor matrices, uniqueness, storage, and run-time
complexities as the number of dimensions increases [19].

Figure 1-1: Collaborative Filtering Techniques

1-1 Recommender System Modelling

Let the set of users be represented by U = [u1, u2, . . . , uP ] and the set of items be
represented by I = [i1, i2, . . . , iQ]. Every user rates a subset of items with a rating score
having a lower bound of rlb and an upper bound of rub. A rating matrix is represented
by R ∈ RP ×Q is created between the set of users and items where each entry is a rating
score rij given by the unique user to an item. The objective of the recommender system
is to predict the ratings for items that have not been given by users using the known
ratings.
A well-known approach is to use a low-rank matrix factorization method that ap-
proximates the rating matrix R ∈ RP ×Q into factor matrices that best capture the
interactions between user u and item i [16].

R ≈ ATB

where A = [a1, a2, . . . , aP ] ∈ RL×P and B = [b1, b2, . . . , bQ] ∈ RL×Q with L <
min(P, Q). To learn the factor matrices A and B, we minimize the squared error
on the set of available ratings.

min
A,B

1
2

P∑
i=1

Q∑
j=1

wij

(
rij − aT

i bj

)2
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4 Introduction

where wij indicates whether a given user has rated an item (1) or not (0). Introducing
regularization terms in the objective function can avoid overfitting the above model.

min
A,B

1
2

P∑
i=1

Q∑
j=1

wij

(
rij − aT

i bj

)2
+ λ1

2 ||A||
2
F + λ2

2 ||B||
2
F (1-1)

where λ1, λ2 > 0 and || · ||2F is the squared Frobenius norm of a matrix.
Extending the rating matrix to a multi-dimensional problem has benefited from using
tensors. Using tensor factorization models, incorporating specific contexts with user-
item ratings is possible. These contexts could be user attributes, item properties,
or temporal contexts. Introducing a low-rank tensor factorization model, the rating
tensor T is approximated to X̂ as T ≈ X̂ = [[λ; X(1), X(2), . . . , X(d)]] where T ≈ X̂ ∈
RI1×I2×...×Id is the approximated rating tensor with d dimensions. The approximated
tensor is factorized into factor matrices [X(1), X(2), . . . , X(d)] with normalizing coefficient
λ ∈ RR. The dimensions of the factor matrices are X(n) ∈ RIn×R with n ∈ [1, d], R ∈
Z+. Adapting Equation (1-1) to tensors, the loss function is written as,

min
X̂
∥WΩ(T − X̂ )∥2 + Ψ(X̂ ) (1-2)

where T is the ground truth tensor, X̂ is the tensor being reconstructed, WΩ indicates
whether a given user has rated an item or not, and || · ||2 is the squared tensor norm.
Ψ(X̂ ) is a regularization function that regularizes the factor matrices being minimized.
Combining functions that are known to aid predictions for RS while avoiding model
overfitting is sought. Having defined the objective function, a combination of sum-
of-squared errors with regularization terms, we can incorporate an Alternating Least
Squares (ALS) or a gradient-based method to learn the factor matrices.

1-1-1 Benefits and Challenges

Rating matrices used in RS modeling are of significant dimensions and are sparse. As
a result of having less data, the recommendation problem becomes challenging when
making accurate and robust predictions. Some of the known issues of these types of RS
are sparsity of the user-item rating matrix, cold-start issues, user biases that may be
inherently present in the data, or time-varying user preferences [20]. While sparsity is
prevalent with existing users and items, adding new users or items leads to a cold start
where the RS knows very little or nothing to make recommendations. Biases in rating
values are assumed to be independent of user-item interactions where the system has
users providing higher ratings to a specific subset of items. The issues mentioned above
are when the rating matrix is static, i.e., it does not account for temporal effects that
might result in user-item ratings drifting to time.
Discussing RS using traditional CF models, memory-based approaches are easier to
implement and scale well with correlated items. Graphs inherently capture information
that might be intrinsic to the built RS. However, these approaches are not viable when
presented with sparse rating matrices. Influenced by user ratings previously given, the
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1-2 Thesis Motivation and Research Aims 5

models need to be corrected for any bias or temporal drifts that might be present.
Straightforward to implement, limited scalability constrains the use of memory-based
models. This is due to the generation of similarity measures between entities with
increased data, i.e., nodes to be processed [21].
Model-based approaches better address sparsity and scalability issues with improved
prediction capabilities, despite losing information due to dimensionality reduction. The
challenges of this approach appear when deploying them for real-time applications.
Training end-to-end models using model-based methods requires significant computa-
tional resources each time. They can make better and more robust predictions but
come at a trade-off between scalability and performance prediction [22].

1-2 Thesis Motivation and Research Aims

Current literature elaborates on how memory and model-based models using traditional
CF algorithms capture and process data to make recommendations. The drawbacks of
traditional CF algorithms are significant when scaling the algorithm for RS handling
sparse data.
The main contribution of this thesis is the Graph Regularized CP (GRCP) tensor
decomposition model framework for RS. This thesis formulates a unified model using
complementary data sources. Furthermore, we aim to leverage tensors to accommodate
multi-contextual data and graph structures to capture underlying intrinsic relationships
in the data to build the GRCP model. The main research question that we focus on in
this thesis is:

How does the GRCP model make better recommendations for large-scale
RS applications?

The research question is broken down into further sub-questions to answer the main
research question.
(RQ.1) How does the GRCP model capture and utilize available data?
The GRCP model captures available data using tensors and graphs. First, we shall cover
the literature on how tensors and graphs can represent data to model latent interactions.
Tensors can accommodate data having varied contexts such as users, items, time, etc.
Similarly, graphs effectively capture similarity measures between varied contexts in the
data. The literature also covers the fundamental mathematical operations on shared
underlying data structures to extract and use the information captured.
(RQ.2) How is the data combined in GRCP to aid recommendations?
The focus of this research question shall be on the methodology available to utilize
the available data effectively. Exploring possibilities of data fusion from varied sources
is proposed to build a robust and accurate RS. Having covered sufficient literature
highlighting the benefits of combining two sources of information, the GRCP model
is ideated. The proposed model consists of an error-fitting term and a regularization
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6 Introduction

term. We particularly focus on the regularization term in Equation (1-2), aiming to
incorporate regularizer functions to alleviate the sparsity problem in RS.

(RQ.3) How does the GRCP address the drawbacks that current RS are susceptible to?

The thesis shall address the final question by conducting extensive numerical experi-
ments on synthetic and real datasets. The proposed model converges to a global op-
timum of the problem by using an Alternating Least Squares (ALS) algorithm with a
Conjugate Gradient (CG) solver. Evaluation metrics such as Normalized Mean Squared
Error (NMSE), Percentage of Fit (POF), and the computational complexity of the pro-
posed solver evaluate the proposed model. While scaling the model, one must also
ensure solvability by utilizing minimal computational resources and run-time.
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1-3 Thesis Outline 7

1-3 Thesis Outline

The rest of the thesis document is structured as follows. Chapter 2 consolidates the
necessary background for this thesis. Chapter 3 covers the literature and methodology
proposed to develop the Graph Regularized Tensor Decomposition model framework.
Chapter 4 tests and investigates the proposed model framework for its applications in
image representation and denoising. Chapter 5 evaluates the proposed model frame-
work on datasets for an RS application and highlights the obtained performance metrics.
Finally, Chapter 6 consolidates the work carried out and discusses this thesis’s future
scope of work.
The code repositories for the GRCP model framework implemented for the Synthetic
Dataset and MovieLens Dataset is made available in the hyperlinks given.

Table 1-2: Table of Symbols Used

Symbol Significance
x, x, X, X scalar, vector, matrix, tensor

◦ Outer Product
⊗ Kronecker Product
⊙ Khatri-Rao Product
×n n-mode Product

X(n) n-mode matricization of tensor X
XT Matrix Transpose
X† Moore-Penrose Pseudoinverse
||A||F Frobenius norm of a matrix
RId Set of all real numbers in the dimension Id ∈ Z+

Master of Science Thesis Rohan Chandrashekar
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Chapter 2

Tensors and Graphs: A Mathematical
Background

2-1 Motivation

Recommender System (RS) models make recommendations using data available to the
system. The information available can be explicit (user ratings, user-item informa-
tion) or implicit (user behavior, trends, and interactions) [23]. RS frameworks process
the data by employing state-of-the-art tools. Filtering algorithms are typically used
depending on the context for whom and what recommendations are made.
Unlike matrices that capture data having only binary relations, tensors can capture
higher-order relations. These interactions between data allow an RS to incorporate
contextual information to make accurate and context-aware recommendations. On the
other hand, graphs capture complex interactions between data beyond those given as
a matrix. This chapter discusses the fundamentals of tensor theory and graph signal
processing.

2-2 Tensor Theory

2-2-1 Notations and Basics

Tensors are generalized representations of multi-dimensional arrays. The order of a
tensor is the number of modes or the dimension space it covers. A vector represents
a tensor of order one, a matrix represents a tensor of order two, and tensors having
order d represent an dth-order or high-order tensors. Each tensor can be represented
as an outer product of d vector spaces. Tensor algebra deals with different notations
for tensors of various orders. In this thesis, we denote vectors symbolized by boldface
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2-2 Tensor Theory 9

lowercase letters, e.g., x, matrices symbolized by boldface capital letters, e.g., X and
higher-order tensors symbolized by boldface Euler script letters, e.g., X .
Tensor Elements: The elements present in a tensor are indexed by the number of
indices the tensor contains. The order of the tensor dictates the number of indices, e.g.,
a third-order tensor element present in X is given by the indices (i, j, k) and an element
present in the tensor is denoted by xijk. The two most commonly used representations
for tensors are fibers and slices. Fibers are obtained by fixing all indices of the tensor
except one, while slices represent two-dimensional sections of a tensor, i.e., all indices
are fixed except two.

Definition 1. [1] Tensor Norm: The tensor norm of X ∈ RI1×I2×···×Id is given by
the square root of the sum of the square of all its elements ∥X∥ =

√∑I1
i1=1

∑I2
i2=1 · · ·

∑Id
id=1 x2

i1i2···id
.

Definition 2. [24] Tensor Nuclear Norm: The tensor nuclear norm of X ∈
RI1×I2×···×Id ,
n ∈ [1, d] is defined as,

∥X∥∗ := infmum
{

R∑
r=1

∥∥∥x(1)
r

∥∥∥ · · · ∥∥∥x(d)
r

∥∥∥ : X =
R∑

r=1
x(1)

r ◦ · · · ◦ x(d)
r , x(n)

r ∈ RIn , R ∈ Z+

}

This can be expressed as,

∥X∥∗ = infmum
{

R∑
r=1
|λr| : X =

R∑
r=1

λrx(1)
r ◦ · · · ◦ x(d)

r ,
∥∥∥x(n)

r

∥∥∥ = 1, R ∈ Z+
}

(2-1)

Definition 3. [1] Tensor n-Mode Matricization: Reordering the elements of an
d-way tensor to represent it as a matrix is called as matricization of a tensor. It is
also known as the unfolding or flattening of a tensor to represent it as a matrix given
its n-th mode. This means arranging the mode-n fibers of a given tensor to be columns
of the resulting matrix. The n-mode matricization of a tensor X ∈ RI1×I2×···×Id can be
denoted as X(n) who’s dimensions are given by In × (I1I2 . . . In−1In+1 . . . Id).

Taking an example, let the frontal slices of tensor X ∈ R3×4×2 be,

X(:, :, 1) =

 1 4 7 10
2 5 8 11
3 6 9 12

 , X(:, :, 2) =

 13 16 19 22
14 17 20 23
15 18 21 24


The order of the tensor being three will have three unfoldings of the tensor given by,

X(1) =

 1 4 7 10 13 16 19 22
2 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24



X(2) =


1 2 3 13 14 15
4 5 6 16 17 18
7 8 9 19 20 21
10 11 12 22 23 24


X(3) =

[
1 2 3 4 5 · · · 9 10 11 12
13 14 15 16 17 · · · 21 22 23 24

]
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10 Tensors and Graphs: A Mathematical Background

2-2-2 Tensor Operations

Definition 4. [1] Tensor Inner Product: Given two same-sized tensors X ,Y ∈ RI1×I2×···×Id,
the inner product is defined as the sum of the products of their respective entries given by,
⟨X ,Y⟩ = ∑I1

i1=1
∑I2

i2=1 · · ·
∑Id

id=1 xi1i2···id
yi1i2···id

. This immediately can be confirmed by com-
puting the square of the norm of the given tensor, i.e., ⟨X ,X⟩ = ||X ||2.

Definition 5. [25] Kronecker Product: Given two matrices A ∈ RI×J and B ∈ RK×L,
the Kronecker product of these matrices is given by A ⊗ B. This resulting matrix is of size
(KI)× (LJ).

A⊗B =


a11B a12B · · · a1JB
a21B a22B · · · a2J B

...
... . . . ...

aI1 B aI2 B · · · aIJ B


=
[

a1 ⊗ b1 a1⊗ b2 a1 ⊗ b3 · · · aJ ⊗ bL−1 aJ ⊗ bL

]
Definition 6. [25] Khatri - Rao Product: Also known as the "matching columnwise"
Kronecker product, given two matrices A ∈ RI×K and B ∈ RJ×K , the Khatri - Rao product
is given by A⊙B. The resulting matrix is of size (JI)×K.

A⊙B =
[

a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK

]
Definition 7. [1] Tensor n-Mode Product The tensor n-mode product multiplies a tensor
by a matrix (or a vector) in its n-th mode. The n-mode product of a tensor X ∈ RI1×I2×···×Id

with a matrix U ∈ RJ×In is denoted by X ×n U ∈ RI1×...×In−1×J×In+1×...×Id. Expanding it
elementwise, it is (X ×n U)i1···in−1j in+1···id

= ∑In
in=1 xi1i2···id

ujin.

Each mode-n fiber is multiplied by the matrix U and can be expressed in terms of the
unfolded tensors as Y(n) = UX(n). Taking an example for the same, we consider the tensor

as in Definition 3. Given a matrix U ∈ R2×3 where U =
[

1 3 5
2 4 6

]
. The Tensor n-Mode

matrix product Y = X ×1 U ∈ R2×2×2 is,

Y(:, :, 1) =
[

22 49 76 103
28 64 100 136

]
, Y(:, :, 2) =

[
130 157 184 211
172 208 244 280

]

2-2-3 CANDECOMP/PARAFAC (CP) Tensor Decomposition

The canonical decomposition (CANDECOMP) and parallel factors (PARAFAC), also known
as the CP decomposition, breaks down a given tensor into its corresponding component rank-
one factors [26, 27]. The sum of these factors gives back the closest approximation to the
original tensor.

Definition 8. [1] CP Tensor Rank: The CP rank of a given tensor X ∈ RI1×I2×···×Id

is defined as the sum of minimum number of R rank-one tensors required to generate the
original tensor X .
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2-2 Tensor Theory 11

By combining the rank-one components as columns, the same can represent what is known
to be factor matrices given by X = [X(1), X(2), . . . , X(d)] with X(n) = ∑R

r=1 x(n)
r where x(n) ∈

RIn , n ∈ [1, d]. The given tensor X is said to be of rank one if it can be expressed as the
outer product of d vectors, which is given by X = x(1) ◦ x(2) ◦ . . . ◦ x(d).

Definition 9. [1] The CP decomposition of a tensor X ∈ RI1×I2×···×Id is an approximation
of the given tensor with the sum of its respective factors given by X ≈ X̂ = ∑R

r=1 x(1)
r ◦ x(2)

r ◦
. . . ◦ x(d)

r , ∥X − X̂∥2 < ϵ; where x(n) ∈ RIn for R ∈ Z+, n ∈ [1, d] and ϵ > 0.

Considering a third-order tensor as seen in Figure (2-1) for further discussion, each of the
rank-one components can be combined to form its factor matrices, i.e., A = [a1 a2 . . . aR]
with similar representations for the B and C matrices. These factor matrices represent the
CP model as X̂ = [[A, B, C]] = ∑R

r=1 ar ◦ br ◦ cr. The columns of the factor matrices are
normalized to length one with their weights absorbed into a normalizing coefficient λ ∈ RR.

X̂ = [[λ; A, B, C]] =
R∑

r=1
λrar ◦ br ◦ cr

2-2-3-1 Alternating Least Squares (ALS) Algorithm

Straightforward to implement and provide unique decompositions while being memory ef-
ficient, the CP-ALS has been a prevailing optimization approach to solving the tensor de-
composition problem. The key idea is to fix all the available factor matrices except the one
to be optimized. This step is repeated for all the available factor matrices until a suitable
stopping criterion has been met. The unconstrained objective function for the ALS algo-
rithm to minimize can be written as min

X̂
∥X − X̂∥2 where X̂ = [[λ, X(1), X(2) . . . X(d)]] with

X(n) = ∑R
r=1 x(n)

r , n ∈ [1, d] and λ is the normalizing coefficient for the columns of the
obtained latent factors.

Algorithm 1 CP-ALS Algorithm for order d Tensor [1]
1: function CP-ALS(Y,R)
2: initialize X(n) ∈ RIn×R for n ∈ [1, d]
3: repeat
4: for n = 1 ,. . . , d do
5: A← X(1)TX(1) . . . X(n−1)TX(n−1)X(n+1)TX(n+1) . . . X(d)TX(d)

6: X(n) ← Y(n)(X(d) ⊙ . . .⊙X(n+1) ⊙X(n−1) ⊙ . . .⊙X(1))A†

7: normalize columns of X(n) and store norms as λ
8: end for
9: until max. iterations reached or stopping criteria are met

10: return λ, X(1), X(2), . . . , X(d)

11: end function

The CP-ALS is unique under mild conditions, combined with additional constraints. Com-
putationally, the CP-ALS algorithm’s main drawback is the MTTKRP, as given in line 6 of
the Algorithm (1). Primarily, it leads to a larger convergence time for the algorithm. It also
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12 Tensors and Graphs: A Mathematical Background

includes the potential for the algorithm to be numerical ill-conditioning and non-convergence
to the global optimum. Regularization constraints on the factor matrices help impose condi-
tions for the algorithm’s numerical stability and global convergence. Another drawback is that
there is no defined method to choose the number of rank-one components R for the CP-ALS
algorithm. This depends on the available data and is considered a tunable hyperparameter
in the optimization process [28, 29].

Figure 2-1: CP Decomposition of a 3-way tensor into its factor approximations [1]

2-3 Graph Theory

2-3-1 Notations and Basics

Graphs are nonlinear data structures that contain a set of nodes V and a set of edges E between
connected nodes, denoted by G = (V, E). In the case of a weighted graph, it is represented as
G = (V, E ,W), where W are the assigned weights to the edges connected between nodes.

Definition 10. [30] Undirected Graphs: A graph where the set of connected nodes is
bidirectional. Given nodes u and v, then the edge (u, v) ∈ E connecting them is equivalent
to (v, u) ∈ E. The neighbourhood set of node u is given as N := {v|(u, v) ∈ E}. The weight
matrix W for such graphs is symmetric.

Graph Linear Algebra: The structure of a graph is understood by representing it as
algebraic matrices. These matrices depict how the nodes in a graph interact with each other.

• Adjacency Matrix: The adjacency matrix A of a graph gives the connectivity between
its various nodes. Unweighted graphs have entries of the matrix to be binary; 1 if two
nodes are connected and 0 if they are not.

• Degree Matrix: The degree of a node u in an undirected graph is equal to the sum of
the weights of all edges connected to the particular node, i.e., du := ∑N

v=1 Auv. The
matrix is defined to be a diagonal matrix given by D = diag(d1, . . . , dN ).

• Laplacian Matrix: Defined for undirected graphs, the Laplacian matrix L is the differ-
ence between the degree and adjacency matrix, i.e., L = D−A. It is a symmetric and
positive semidefinite matrix.
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(a) Undirected Graph (b) Weighted Graph

Figure 2-2: Graph structures depicted with nodes as circles and edges connecting nodes as lines

2-3-2 Graph Signals and Spectra

A graph signal assigns a real signal value to the nodes. Each signal x maps the node set i to
the real set, i.e., xi : i −→ R. Each edge connecting these nodes plays a role in determining
how the signal values diffuse over the network.

Definition 11. [31] Graph signal shifting: Given a graph shift operator S, graph signal
shifting is defined as x(1) = Sx where, x(1) stands for the one-shift of a graph signal x. The
shift operator dictates how signal values diffuse to neighboring nodes in a graph.
Depicting a more general case of the shift operation, the kth shift of a graph signal over a
graph network can be computed as x(k) = Skx = S(Sk−1x) = Sxk−1, k ∈ Z+

0 .

Given a signal x over an undirected graph G = (V, E), we are interested in finding the variation
of the signal over a particular edge ei,j = (u, v) being valued at node u. This is given by the
edge derivative [30]. The edge derivative ∂x

∂ei,j

∣∣∣
u

=
√

Si,j (xi − xj) indicates how much a given
signal value changes in two connected nodes. The larger the derivative, the more variation
in signal values xi and xj . This notion of signal variation can be applied to entire graph
networks using the p-Dirichlet form of x.

Sp(x) = 1
p

∑
uk∈V

∥∇ul
x∥p2 = 1

p

∑
uk∈V

 ∑
νj∈Ni

Si,j (xi − xj)2


p
2

S1(x) refers to the total signal variation across a graph network while S2(x) refers to the
graph Laplacian quadratic form given as S2(x) = xTLx. The latter is used to measure signal
variation predominantly in undirected graphs, measuring the smoothness of a signal. The
smaller the smoothness measure, the slower the signal changes over the graph. Similarly, the
larger the smoothness measure, the more rapidly the signal changes over the graph.
This particular shift operator could be either of the graph matrices discussed previously. For
S=A, the graph shift operation takes the signals from the neighbors and combines them with
the edge weights. For S=L, the operation takes information from the neighboring nodes and
merges them with the current node’s state.
Graph Spectra: Studying the eigenvalue decomposition of the graph algebraic matrices, as
mentioned in Section (2-3-1), has important applications in graph spectral theory [12]. The
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14 Tensors and Graphs: A Mathematical Background

spectral analysis requires a symmetric matrix, which can be carried out on a given graph’s
Laplacian matrix L = UΛUT; where, Λ = diag(λ1, λ2, . . . , λN ) is a diagonal matrix with
the eigenvalues increasing along the diagonal (0 = λ1 ≤ λ2 ≤ . . . ≤ λN ) and eigenvectors
U= [u1, u2, . . . , uN ]. Certain properties of the above Laplacian eigendecomposition are:

• Given the eigenvalues of Λ are arranged in increasing order, the constant unit energy
eigenvector u1 corresponding to the first eigenvalue λ1 = 0 signifies the DC energy
component of the graph. This is given by 1/

√
N .

• The eigenvectors uk associated with lower magnitude λk correspond to elements vary-
ing slowly across the graph. Similarly, those eigenvectors uk associated with higher
magnitude λk correspond to elements varying quickly across the graph.

2-3-3 Generating Similarity Measures: Graph Kernels

Kernels map a particular input set Ω to a set of real numbers R. These mapping functions
k(·, ·) : Ω× Ω −→ R measure the similarity between the entities in the input set.

Kernel functions give meaning to measures such as the distance between two graph nodes. One
such application is to find similar entities in a graph defined by this distance. Furthermore,
they are extensively used to statistically learn an adequate similarity measure to analyze
nonlinear interactions between entities in the graph network [32]. Therefore, constructing a
valid kernel that can capture information inherent to a graph structure is essential.

Given a set of entities x1, x2, . . . , xn ∈ Ω of rank r, where X = [x1, x2, . . . , xn] ∈ Rn×r, a
n × n symmetric kernel matrix K can be generated. The entries of K are inner products of
the set of entities i.e., [K]ij = kij = xT

i xj. Although simple to evaluate, the inner product is
not always a preferred similarity measure as the kernel matrix should satisfy the property of
being positive semidefinite. Real symmetric matrices not meeting the requirement of being
positive semidefinite can be made so with the addition of an identity matrix multiplied by a
scalar constant α ≥ |λmin| such that all the eigenvalues of the kernel matrix are non-negative
and (K + αI) is positive semidefinite [33].

One kernel that has shown consistent performance in information retrieval and collaborative
filtering applications is the regularized graph Laplacian kernel. Based on graph spectral
theory, the kernel has been widely used to capture information propagation in social networks.
The kernel matrix can thus be computed as K = ∑∞

k=0 αk(−L)k = (I + αL)−1 where, 0 <
α < ρ(L)−1 and ρ(L) is the spectral radius of L. The kernel variables for calculating the
similarities are obtained by attributing spectral information with each node attribute.

2-3-4 Regularization with Graph Laplacian

The prior knowledge about how a particular signal varies is fundamental in regularizing and
retrieving signals of interest from a given graph network. To estimate the signal of interest x
from noisy observations y, we need to solve the following optimization problem,

x̂ = argmin
x∈RN

∥y− x∥22 + γf(x; S) (2-2)
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where, x̂ is the optimal estimated signal, ∥y − x∥22 is the quadratic optimization objective
function which we are looking to minimize between the signal x and noisy observations y.
f(x; S) is the regularisation term which acts as a penalty function for the estimated signal
using the graph shift operator S. This incorporates prior information about the graph signal
x while estimating the optimal signal x̂.

Using the graph Laplacian L as the shift operator, the most commonly used regularizer
is given by f(x; S) = xTLx, which gives the signal smoothness measure over the set of
observations guarantees smoothness of the estimated signals over the graph. This is also
known as the graph Laplacian regularizer (GLR). The variable γ > 0 dictates the trade-off
between the objective function and the regularisation term. γ −→ 0 results in the optimization
problem using little prior information from the graph structure. γ −→ ∞ gives more weight
to the prior information and less to the observations, which is used in the cases where the
observations y are excessively corrupted by noise. Using a penalized regularizer equally has
its limitations. The global smoothness measure is penalized rather than the variability in a
node’s surroundings.

Thus, we can rewrite the Equation (2-2) by imposing different penalties on different nodes.
A local regularisation problem can be formulated as follows, x̂(ω) = argmin

x∈RN

∥y − x∥22 +

(diag(ω)x)TL(diag(ω)x) where diag(ω) is a diagonal matrix with ω = [ω1, ω2, . . . , ωN ] ∈ RN

being the different penalty weights imposed on the regularization term [34].

2-4 Discussions

Several efficient and state-of-the-art tensor decomposition methods are available in the lit-
erature. The CP is an explanatory model, i.e., the factor matrices of the decomposition
offer insights into the variation of contextual data. Unlike matrix decompositions, the CP
decomposition method using an ALS method is unique under much weaker conditions. The
effects of scaling indeterminacy and matrix degeneracy leading to numerical instability must
be considered. Improper scaling could lead the algorithm to converge at a local minimum of
a fixed iteration. Methods to normalize and apply low-rank constraints to each factor matrix
have been found to solve these problems [1, 35].

The ALS method is the "workhorse" algorithm to solve a CP decomposition [1]. Although
it takes more iterations to converge, the solution quality is better for a chosen CP rank
R than other popular tensor decomposition methods [36]. Linearizing the nonlinear block
Gauss-Seidel algorithm makes it computationally advantageous [35]. The minimizer globally
converges, provided the function is coercive and real analytic [37]. Derivative-based algorithms
require more memory and computational time and no guarantee of the minimizer converging
globally [38]. A trade-off between the dataset dimensions, algorithm convergence properties,
and computational capability is made, and the ALS method is chosen for this thesis.

Building relevant graph structures for diverse data, considering its source and characteristics,
is essential while building RS. This data can be classified as interaction data (user-item
interaction matrix) or side information data (user preferences and item attributes varying
over time) [39]. Each data class has a specific graph structure to capture the data to the best
possible extent. kNN graphs are undirected graphs representing similar entities or nodes in
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a graph. The interactions between each unique node are edges that connect two nodes. The
interactions can be mapped to similarity coefficients and represented as edge weights using
graph kernel functions.

Graphs have several advantages in RS applications in mitigating issues of sparsity [40, 41].
The choice of graph Laplacians is well motivated to be used as a regularizer. In this thesis,
the GLR is utilized to maintain any structure in the data. Treating the data as graph
signals, graph signal processing is used to build the graph Laplacians [30]. Its symmetric and
positive semi-definite property makes it favorable for optimization algorithms that require
such matrices.

2-5 Conclusion

This chapter reviews the necessary background for the research topics to be discussed in
this thesis. It highlights the theory behind the structures and mathematical operations used
in the thesis. First, we discuss basic tensor notations, tensor products, and the CP tensor
decomposition method. Core to model training, we also highlight the standard optimization
algorithm for CP tensor decomposition methods. Next, we review graph basics and how graph
structures are represented as matrices. Finally, we discuss how to compute graph spectra on
graph networks and the algebra behind graph signal processing. Focus is given to graph
regularization using graph Laplacians and its efficacy in information retrieval.
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Chapter 3

Graph Regularized (GRCP) Tensor
Decomposition

3-1 Motivation

Capturing data with higher-order relations while exploiting its underlying geometric structure
is key to building accurate and efficient RS models. A literature review highlighting these
is provided. Improving prediction metrics such as NMSE with model scalability has been
core to tensor decomposition methods. Combining heterogeneous data sources has proven
beneficial in building accurate, scalable, and computationally efficient RS frameworks.

This chapter proposes a Graph Regularized CP (GRCP) tensor decomposition model frame-
work. The objective function is a combination of real analytic and semialgebraic functions.
An ALS method solves the objective function by keeping all but one of the factor matrices
constant. These factor matrices are locally minimized using a Polak Ribiere Conjugate Gra-
dient (CG) solver. The convergence and computational complexity of the proposed method
are also discussed.

3-2 Literature Review

3-2-1 Tensors for RS

Tensors are being used for RS applications to build context-aware models. For example, users
assigning ratings to items have several factors, such as a particular tag relating to a user and
item or time-changing user preferences and item relevance. These contexts highlight data
with higher-order relations that a standard matrix cannot capture.

Using GPS data, [42] develops a tensor-based recommender system considering activities car-
ried out by users at a given location. The objective contains graph Laplacian regularized users
and activity factor matrices. A CP decomposition is carried out, solving the factor matrices
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18 Graph Regularized (GRCP) Tensor Decomposition

using a gradient-based solution. However, they do not discuss the initialization methods of
the algorithm, given that a gradient-based approach does not provide a global solution. The
algorithm’s scalability is questionable given each gradient iteration takes O(mnr+m2+r2) op-
erations where m, n are the tensor dimensions, and r is the CP rank of the model. This scales
quadratically with an increase in tensor dimensions, becoming significant for r ≪ n < m.
Context-aware Point of Interest recommender systems developed in [43] use information
obtained from check-in data that are location specific. They construct a user-location-
time frame tensor X and apply the CP decomposition to reconstruct the given tensor as
X̂ = ∑R

r=1 x(1)
r ◦ x(2)

r ◦ x(3)
r . They additionally impose the user’s social connections L as

additional regularization to improve the accuracy of predictions.

min
X(1),X(2,X(3)

1
2∥X − X̂∥

2
F + 1

2 Tr
{

X(1)T(λI + αL)X(1)
}

+ λ

2 Tr
{

X(2)X(2)T + X(3)X(3)T}
where {Tr} is the matrix trace operator. Successfully capturing the ternary relationships
present within the data obtained from Location-Based Social Networks, the suggested method
shows better Precision and Recall metrics compared to other baseline algorithms. The ALS
algorithm provides no information on how the gradients are evaluated.
With the focus shifting to incorporate data with multiple contexts, students’ grades are
predicted for new courses in [44], investigating a CP tensor decomposition method. They
propose a model allowing side information integration without increasing the required tensor
rank. The authors conclude that models incorporating additional contextual information have
better prediction metrics than matrix factorization methods. They, however, do not impose
a low-rank solution in their decomposition models, and the convergence of their solution is
poorly motivated.
The introduction of the nuclear norm to matrix factorization for RS applications is discussed in
[45]. The article provides an overview of applications extended to CP tensor decompositions.
Coupled matrix-tensor decomposition methods incorporating smoothness measures and rank
regularization such as ∥X∥∗ = min

A,B|X=ABT
1
2
(
∥A∥2F + ∥B∥2F

)
are proposed. Important to note

that given the model’s rank is to be penalized, one cannot impose orthogonality constraints
of the nature XTX = I. Several possible design choices to formulate the objective function
are discussed, some of which are used in this thesis.
Recently, authors in [46] propose a tensor factorization model that incorporates users’ trust
and implicit feedback in their model. The trust model consists of two types, where the weight-
ing used to model the trust factors uses constant and similarity functions. The model incor-
porates various biases and factor matrix norm regularization. A gradient descent approach
is adopted to minimize the loss function. The same model is extended to a time-varying bias
factorization model in [47] with the contexts provided to the tensor dimensions. Interestingly,
varying the number of time bins in a user-item-time context model provides different results
for the same dataset.

3-2-2 Graphs for RS

Graph regularization has been applied to matrix and tensor factorization methods. This aids
methods in a matrix or tensor completion problem by appending additional information [48].
The choice of penalty penalization and spectral properties of the regularizer have been studied
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3-2 Literature Review 19

and have found uses in decomposition-based methods. As a result, the obtained models are
robust, scalable, and better at predicting values providing low reconstruction error measures.

One of the most common penalization methods to solve a least-squares problem is the
Tikhonov regularization [49]. Two well-known regularizer functions of this form are the nu-
clear norm and GLRs. Minimizing objective functions of this form to obtain direct numerical
solutions is possible. The data-fitting term is commonly penalized with a GLR and has var-
ious applications in data classification, semi-supervised learning, and graph signal denoising
[50, 34]. For building RS model frameworks, the end objective is to balance the data-fitting
term with the regularization term [51].

It was first noted in [52] that matrix factorization techniques could significantly improve the
learning performance of data points having similar embeddings. They considered the local
invariance and exploited the underlying geometric structure in the data. The factor matrices
are solved using a gradient descent-based method. The model is evaluated on parameters
such as the number of nearest neighbors and the weighting scheme selected to capture the
geometric structure in the data. Discussions on parameters for datasets containing images are
carried out. The proposed model is better than the baselines included. However, algorithm
run-time and scalability comments for the proposed model are insufficiently provided.
Following this, [53] highlights tackling the low-rank matrix completion problem by incor-
porating pairwise relationships among variables known via graphs L(a) and L(b). Casting
a generalized version of a weighted nuclear norm as a graph regularizer was unique in this
literature. They also propose an efficient Graph Regularized ALS algorithm to optimize the
issue at hand, thus making the proposed method highly scalable.

≡ min
A,B

1
2
∥∥WΩ

(
R −ABT)∥∥2

F
+ 1

2
{

Tr
(
ATL(a)A

)
+ Tr

(
BTL(b)B

)}
(3-1)

Furthermore, this thesis explores their methodology for tensor decomposition methods using
an ALS algorithm. Notably, the algorithm ensures global convergence in linear time.

As observed in [34], it is necessary for nodes with piecewise-smooth or piecewise-constant
signals to be penalized differently from a global GLR. The paper provides scalable methods
for solving regularized linear systems using a CG method. In adaptation to tensor decompo-
sition, this translates to solving for each factor matrix with a global Laplacian regularizer.
Investigating a bias-variance trade-off was essential in determining the regularization parame-
ter’s efficacy. As proposed, penalizing local variability instead of global smoothness improves
regularization.

3-2-3 Tensors and Graphs for RS

Motivating the need to use tensors and graphs, we now review literature presented exclusively
for tensors and graph regularization for RS applications. The sparse literature on the inter-
section of the three topics forms the basis for this thesis. The available literature is studied,
and a unified model is proposed.

A graph regularized low-rank tensor representation is proposed in [41] for feature selection
using a graph embedding-based approach. The method uses an ALS method to solve the
objective function by evaluating the derivative of the objective for the factor matrix being
solved. Various image datasets are used to test and validate the model. The downsampling

Master of Science Thesis Rohan Chandrashekar



20 Graph Regularized (GRCP) Tensor Decomposition

of the pixels allows feasibility in computing the inverse of the graph Laplacian. However,
this questions the model’s scalability for higher-resolution images and would proportionately
increase the computational burden. Furthermore, adapting the objective as defined in the
paper would not be feasible for RS as the tensor dimensions exponentially grow. The same
discussions apply to the model proposed in [54] that incorporates a graph Laplacian-based
tensor decomposition method.
A novel method is developed in [55] to decompose a tensor X coupled with graph data G(n) as
regularizers. The joint analysis method demonstrates the latent structure of related hetero-
geneous data. Their proposed method consists of a CP decomposition X̂ = [[X(1), X(2), X(3)]]
for the tensor with an ADMM method to obtain the latent factor matrices.

min
X ,{X(n),d(n),G(n)}3

n=1

∥∥∥X − [[X(1), X(2), X(3)]]
∥∥∥2

F
+ µ

3∑
n=1

∥∥∥G(n) −X(n) diag
(

d(n)
)

X(n)T∥∥∥2

F

The first term || · ||2F is the squared Frobenius norm of the model error and the second term ac-
counts for the Symmetric Nonnegative Matrix Factorization model. Nonnegative constraints
on the factor matrices X(n) > 0 and diagonal matrices d(n) > 0 are imposed. Their method
is compared with the results obtained using CP, nonnegative tensor decomposition meth-
ods, and other decomposition algorithms. The proposed algorithms achieve more accurate
predictions and perform better than the alternatives mentioned in the paper.
A graph signal processing framework is made in [56] to propose a Tensor Robust PCA on
graphs. The model consists of a tensor X ∈ RI1×I2×I3 and graphs built on each tensor n-mode
matricization X(n), n ∈ [1, 2, 3]. The graph regularizers L(n) = P(n)Λ(n)P(n)⊤ with P(n) ∈
RIn×R, Λ(n) ∈ RR×R incorporate the geometrical structure information with which the data
intrinsically is present. They use a low-frequency power concentration method to determine
the rank R of the tensor decomposition resulting in vec(X ) =

(
P1 ⊗P2 ⊗P3) vec(Z) with

Z ∈ RR×R×R. The objective function is given by

min
Z(n)

∥∥∥X(n) −P(n)Z(n)P(i)⊙i̸=n⊤∥∥∥
1

+ γ

∥∥∥∥√Λ(n)Z(n)

√
Λ(i)⊙i̸=n

∥∥∥∥
∗

with || · ||1 is the l1 norm, γ > 0 and ⊙i ̸= n is the Khatri-Rao product of all matrices in
(·)(i)⊙i ̸=n except n. Using an ALS method to solve the factor matrices, the algorithm is convex
and globally converging, overcoming the computational burden of Tensor Robust PCA using
a GPU. The proposed model is observed to be robust while improving the model’s prediction
metrics, showing promising scalability.

3-2-4 Discussions

The key focus of the literature review was aggregating information sources along with tensor
decomposition methods and how they aid in making accurate and robust recommendations.
The reviewed literature suggests that carrying out data aggregation and incorporating it
simultaneously with the factorization technique is advantageous for building RS models. Ex-
tracting information from graph structures and utilizing them in conjecture with tensors for
the factorization methods was highlighted in the review. Providing better prediction models,
the reviewed models highlight how information from graphs can be used as regularization
terms while formulating the optimization objective.
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3-3 Graph Regularized CP (GRCP) Tensor Decomposition Model 21

The literature review does not cover data fusion methods between tensor and graph struc-
tures for RS applications. Discussions on nuclear norm regularized decompositions and their
influence on CP rank is limited. The selection of similarity measures between entities in a
graph is discussed in graph signal processing methods. The use of graph signal processing is
lacking while addressing the regularization of each tensor mode. The importance of GLR for
RS model frameworks has not been explored much. Scalability and computational complexity
are significant bottlenecks while formulating and solving RS application problems.

This thesis will use data fusion from two data structures, tensors, and graphs, to train RS
models. The notion is that data with higher-order relations are fundamental to building
accurate and robust RS. We propose a Graph Regularized CP (GRCP) tensor decomposition
model framework that will use graph signal processed information and incorporate it into a
CP decomposition method. The CP tensor decomposition is constrained by the underlying
structural information that a graph can preserve. The constraints will be beneficial in making
more accurate and robust recommendations and help identify data trends not restricted to
binary relations. The proposed model aims to solve RS frameworks’ much-discussed sparsity
issues to make recommendations. Finally, the proposed model adds to the existing literature
with experiments with tensor nuclear norm and graph Laplacian regularization values on
the optimization problem. Another drawback observed in the literature is the scalability of
models to larger datasets. Using a linear solver for a system of equations makes the proposed
model unique and scalable with reduced computational complexity.

3-3 Graph Regularized CP (GRCP) Tensor Decomposition Model

Formulating the objective function of the problem to be minimized, we begin by combining
Equations (1-2) and (3-1) and formulate it as a tensor decomposition problem.

min
X̂
∥WΩ(T − X̂ )∥2 + Ψ(X̂ , L(n))

where T is the ground truth tensor, X̂ is the tensor being reconstructed, and Ψ(X̂ , L(n)) is
the regularization function of the tensor X̂ and graph Laplacians L(n). The regularization
function in our proposed model will be the main contribution to existing literature. The
function will consist of the nuclear norm and GLR.

The CP decomposition of T ≈ X̂ ∈ RI1×I2×...×Id with X̂ = [[λ; X(1), X(2), . . . X(d)]] can be
bounded such that ||X̂ ||2 <∞. However, individual factor matrices X(n), n ∈ [1, d] can have
norms that are either tending to infinity or zero. It is essential to lower bound the factor
matrices such that they do not degenerate while handling sparse tensors, i.e, ||X(n)||F → 0.
The motivation to use the nuclear norm is to obtain well-posed low CP rank solutions to
the problem. The nuclear norm lower bounds the factor matrices while solving the objective
function [35, 57, 58]. The direct relation between the influence of nuclear norm regularization
on CP rank is unknown and shall be investigated in this thesis.

As discussed in Section (2-3-4), regularization using graph Laplacians gives a measure of
smoothness to the reconstructed factor matrices. Proven in [53], the GLR is a general-
ized version of the weighted nuclear norm. This allows us to regularize each factor matrix
separately while adopting the ALS algorithm. The graph Laplacians incorporate similarity
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22 Graph Regularized (GRCP) Tensor Decomposition

relationships that tensors cannot capture. As an additional source of information, they are
utilized to solve sparsity issues that RS models encounter.

Introducing the GRCP model framework, we propose the following objective function to
minimize,

min
X(n)

1
2

∥∥∥∥∥WΩ(n)

(
T(n) −X(n)

[(
X(i)

)⊙i ̸=n
]T
)∥∥∥∥∥

2

F

+ λn

∥∥X(n)
∥∥

∗ + λl

2

{
Tr
(

X(n)T
L(n)X(n)

)}
(3-2)

where at a given iteration, we minimize X̂ = [[λ; X(1), X(2), . . . X(d)]]. This is done by min-
imizing X(n) ∈ RIn×R, n ∈ [1, d] by keeping all other factor matrices constant. WΩ(n) ∈
RIn×I1I2...Id is the observable tensor of the ground truth tensor T(n) ∈ RIn×I1I2...Id .

[(
X(i))⊙i ̸=n

]T

is the Khatri-Rao product of all X(i) excluding X(n). The graph Laplacian L(n) ∈ RIn×In

is constructed over every n-mode of the ground truth tensor and is known. λn and λl are
trade-off parameters between the error and regularization terms comprising tensor nuclear
norm and graph Laplacian regularization respectively. || · ||2F is the squared Frobenius norm
of a matrix, and {Tr} is the matrix trace operator.

The tensor nuclear norm is lower bounded by its tensor n-mode matricization [57], i.e.,
∥X(n)∥∗ ≤ ∥X̂∥∗. Thus, we introduce ∥ · ∥∗ as the nuclear norm of X(n) in the objective
function being minimized. Writing the nuclear norm as a function of its factor matrices [45],

∥∥∥X(n)

∥∥∥
∗

= min
X(n)=X(n)

[
(X(i))⊙i̸=n

]T

1
2

{∥∥∥X(n)
∥∥∥2

F
+
∥∥∥∥(X(i)

)⊙i ̸=n
∥∥∥∥2

F

}
(3-3)

All but one-factor matrix X(n) is kept constant. The rest of the factor matrices can be
neglected from the nuclear norm in the optimization objective function as they do not influence
the optimization problem. Rewriting Equation (3-2) by plugging in Equation (3-3) as follows,

min
X(n)

1
2

∥∥∥∥∥WΩ(n)

(
T(n) −X(n)

[(
X(i)

)⊙i ̸=n
]T
)∥∥∥∥∥

2

F

+ λn

2

∥∥∥X(n)
∥∥∥2

F
+ λl

2

{
Tr
(

X(n)T
L(n)X(n)

)}

As ∥X(n)∥2F = Tr
(
X(n)TIX(n)

)
and ||λnI+λlL(n)||2F ≤ ||λnI||2F + ||λlL(n)||2F using the matrix

sub-additive norm property, we sum the norms of a minimization function with L(n) = λnI +
λlL(n) as follows,

min
X(n)

1
2

∥∥∥∥∥WΩ(n)

(
T(n) −X(n)

[(
X(i)

)⊙i ̸=n
]T
)∥∥∥∥∥

2

F

+ 1
2 ||X

(n)TL(n)X(n)||2F (3-4)

The proposed framework shall be adapted and extended to an RS application in this thesis.
The following subsections discuss methods to minimize the objective function using an ALS
algorithm with an efficient CG solver. Convergence analysis of the objective function is carried
out, ensuring global convergence of the algorithm. Further, model evaluation using standard
performance metrics is discussed.
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3-3 Graph Regularized CP (GRCP) Tensor Decomposition Model 23

3-3-1 GRCP Alternating Least Squares (ALS) Algorithm

The ALS algorithm minimizes a given factor matrix by keeping the rest fixed at their last
update. This is done cyclically until the algorithm meets any of its exit requirements.

fk+1
(
X(n)

)
≜ f

(
X(1)

k+1, . . . , X(n−1)
k+1 , X(n), X(n+1)

k , . . . , X(d)
k

)
At iteration (k + 1) for n ∈ [1, d], the objective function to minimize is given by Equation
(3-4). Expanding and separating the term to be minimized in Equation (3-4),

f(X(n)) = min
X(n)

1
2

∣∣∣∣∣∣∣∣X(n)T [C + L(n)
]

X(n) − 2X(n)TY(n)
∣∣∣∣∣∣∣∣2

F

(3-5)

with Y(n) =
(
WΩ(n)T(n)

) (
X(i)

)⊙i ̸=n
∈ RIn×R, C =

[(
X(i)

)⊙i ̸=n
]T [(

X(i)
)⊙i ̸=n

]
∈ RR×R.

Refer to Appendix (A-1) for simplification of the objective function. This can be utilized
to solve each subproblem by casting Equation (3-5) as a quadratic minimization objective
function of the form,

g(x(n)) = min
x(n)

1
2x(n)TH(n)x(n) − x(n)Ty(n) (3-6)

with x(n) = vec(X(n)) and y(n) = vec(Y(n)) ∈ RInR, the Hessian H(n) =
[
C⊗ IIn + IR ⊗ L(n)

]
∈ RRIn×RIn where ⊗ represents the Kronecker product of given matrices. The presence of
the GLR requires alterations in the CP-ALS algorithm discussed in Algorithm (1) to solve
the minimization problem at each iteration. The Hessian of the given problem is always pos-
itive definite at a given iteration (k + 1), thus solving a convex optimization problem. The
sub-problems of the objective function being solved are convex within the function’s domain.
Discussions on proof of convexity and algorithm details to solve the objective function are
provided in Section (3-3-3) and Appendix (A-2) respectively.

3-3-2 Conjugate Gradient Solver

Solving the given problem as described in Equation (3-6) becomes computationally expensive
because Kronecker products of large-sized matrices are present. In addition, the Hessian is
not block-diagonal due to the graph Laplacian term. Thus, the bottleneck is computing the
Hessian and closed-loop solution of the given quadratic problem.

This can be done efficiently by adapting a matrix-vector product method in a CG solver.
Equation (3-6) gives the objective function to be minimized. Taking the gradient to the factor
matrix being minimized, the solution of the equation becomes∇g(x(n)) = H(n)x(n)−y(n) = 0.
Computation of the Hessian matrix-vector product H(n)x(n) can be done by using the relation
vec(AX(n)B) = (BT ⊗ A)x(n) given by H(n)x(n) = vec(X(n)C + L(n)X(n)). The same is
incorporated in Algorithm (3).
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24 Graph Regularized (GRCP) Tensor Decomposition

Algorithm 2 GRCP Conjugate Gradient Solver solving for X̂(n)

1: function GRCP-ConjGrad(λn, λl, L(n), C, X(n)
0 )

2: initialize b = x = vec(X(n)
0 ) ∈ RInR for n ∈ [1, d]

3: initialize L(n) = λnI + λlL(n) ∈ RIn×In

4: r = b−Hessian_Vec(L(n), C, x)
5: p = r
6: repeat
7: r0 = r
8: v = Hessian_Vec(L(n), C, p)
9: α = r0Tr0

pTv
10: x = x + αp
11: r = r0 − αv
12: if ||r|| < tol then
13: break;
14: end if
15: β = max

(
0, rT(r−r0)

r0Tr0

)
▷ Polak-Ribiere method

16: p = r + βp
17: until max. iterations reached
18: return X̂(n) = unvec(x̂)
19: end function

Here, the conjugate direction is β, as given in line 15 of Algorithm (2). We use the Polak
Ribiere method [59] to calculate β instead of the Fletcher–Reeves method [60]. The Polak
Ribiere method has better convergence to a local optimum than the Fletcher-Reeves method,
given that line 11 of Algorithm (2) → 0 as the number of iterations → ∞. Moreover, it
converges equally or faster than the standard steepest descent method. Another criterion for
choosing the Polak Ribiere method is that the descent direction is Lipschitz bounded, while
it is not definite using the Fletcher Reeves method. The choice of Polak Ribiere over Fletcher
Reeves is attributed to numerically stable, and robustness to error-accumulation [61, 62].

Algorithm 3 Hessian Matrix-Vector Mulitplcation
1: function Hessian_Vec(L(n), C, x(n))
2: X(n) = unvec(x(n)) ∈ RIn×R

3: return vec
(
X(n)C + L(n)X(n)

)
4: end function

3-3-3 Convergence Analysis

This section discusses the preliminaries required to prove and verify the convergence of it-
erative optimization algorithms. Solving higher-order decomposition problems as quadratic
subproblems favor using linear block Gauss-Seidel iterations. Each iteration is applied to the
Hessian matrix to obtain a local solution, ensuring the Hessian matrix is positive and definite.
The use of convex real analytic functions with a bounded first derivative allows us to prove
the global convergence of the proposed method.
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The objective function for each factor matrix minimized at each ALS iteration is given in
Equation (3-6). The optimal tensor X̂ = [[λ; X(1)X(2) . . . X(d)]] is obtained by evaluating the
local optimum of each factor matrix at a given iteration. Given the subproblems are quadratic,
the necessary condition for the minimum of the function is the Hessian H(n) should be positive
definite.

Problem Investigation

Investigating the type of problem being solved is important to show the convergence of an
algorithm. Here, we prove that the problem minimized contains convex real analytic functions
with a bounded first derivative, thus globally converging to a solution.

Let T be the ground truth tensor with dom(T ) ∈ RI1×I2×...×Id . The reconstructed tensor
of interest is given by X̂ with dom(X̂ ) ∈ dom(T ). Considering X̂ to be the best rank
approximation of T , the condition

∥∥∥T − X̂∥∥∥ ≤ ∥E∥ applies with T = X̂ + E , where E is
the residual between the original and reconstructed tensor. This lower bounds our objective
function [63]. The following assumptions are made to prove convergence.

Assumption 1. The function g is continuous in its domain, i.e, dom(g).

Assumption 2. The function g is strongly convex for all 0 < L <∞, satisfying the following
inequality condition: g(x(n)

∗ ) ≤ g(x(n))+⟨∇g(x(n)), x(n)
∗ −x(n)⟩+L

2 ||x
(n)
∗ −x(n)||2 with Lipschitz

constant L, ∀x(n), x(n)
∗ ∈ X(n) where X(n) is the n-mode matricization of X̂ .

Convexity of Objective Function [64]

The function g is strongly convex only if the Hessian H(n) is positive definite. The Hessian
H(n) is given by H(n) =

[
C⊗ IIn + IR ⊗ L(n)

]
. The two terms that are to be investigated

are C and L(n). The regularization term consists of L(n) = λnI + λlL(n). Here, the graph
Laplacian L(n) is a symmetric positive semidefinite matrix. With λn, λl > 0, the Hessian H(n)

is positive definite. The term C=
[(

X(i)
)⊙i̸=n

]T [(
X(i)
)⊙i̸=n

]
> 0, i.e, positive definite. Having

λn, λl = 0 still ensures the positive definiteness of the Hessian H(n) provided C is full rank.

Lipschitz Boundedness [65]

Let g : dom(g)→ RIn×R, dom(g) ∈ dom(T ). g belongs to the C∞ class of functions where the
function is differentiable for all degrees of differentiation. The function g is locally Lipschitz
if

g0 : {x(n), x(n)
0 ∈ dom(g) :

∥∥∥x(n) − x(n)
0

∥∥∥ < ϵ} → dom(T )

for some ϵ > 0. Given the exact solution of the minimization function is not possible to obtain
and is lower bounded, the gradient function

[
∂g(x(n))/∂x(n)

]
is locally Lipschitz continuous

and bounded within dom(g), i.e.,
∥∥∥[∂g(x(n))

∂x(n)

]∥∥∥ ≤ B for B > 0, x(n) ∈ dom(g) with Lipschitz
constant L = B. Further proof has been provided in Appendix (A-3-1).
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Kurdyka-Lojasiewicz (KL) Inequality

A function g satisfies the Kurdyka-Lojasiewicz (KL) property at a stationary point x(n)
∗ ∈

dom(∂g), if there exists θ ∈ [0, 1) such that

|g(x(n))− g(x(n)
∗ )|θ

dist(0, ∂g(x(n)))

is bounded around x(n)
∗ , i.e, in a certain neighborhood U of x(n)

∗ , there exists ϕ(s) = cs1−θ for
c ≥ 0 and θ ∈ [0, 1) such that the KL inequality below holds:

ϕ′(|g(x(n))− g(x(n)
∗ )| dist(0, ∂g(x(n))) ≥ 1 (3-7)

The property was first introduced for real analytic functions, which later was extended to
nonsmooth subanalytic functions [66]. A function is said to be real-analytic α if the function
can be represented by a convergent power series on some interval of positive radius centered
at α.

g(x(n)) =
∞∑

j=0
aj(x(n) − α)j (3-8)

The objective function is said to be real analytic on any V ⊆ dom(g) if it is real analytic
at each α ∈ V . Proven in Appendix (A-3-2), we show that the g is a sum of real analytic
functions and, thus, satisfies the KL inequality as given in Equation (3-7). This also verifies
that the objective function is smooth throughout the given domain.

Global Convergence

Global convergence of minimizing an objective function is crucial to obtaining the optimal
point after optimization. Having proven g(x(n)) satisfies the KL inequality at x(n)

∗ and
∇g(x(n)) is Lipschitz continuous in dom(g), global convergence and convergence rate of the
problem are given by the following theorems. Proofs for the theorems are as provided in [37].

Theorem 1. [37] Global Convergence: The sequence {x(n)
k } converges to a critical point

x(n)
∗ where g satisfies the KL inequality under the assumptions stated in [Lemma 2.6, p1770

of [37]]. The sequence {x(n)
k } is said to converge to x(n)

∗ , which is a critical point of g.

Theorem 2. [37] Convergence Rate: Under the assumptions of [Lemma 2.6, p1770 of
[37]] and that x(n)

k converges to a critical point x(n)
∗ at which g satisfies the KL inequality with

ϕ(s) = cs1−θ for c > 0 and θ ∈ [0, 1), the following hold:

• If θ = 0, x(n)
k converges to x(n)

∗ in finitely many iterations (finite convergence).

• If θ ∈ (0, 1
2 ], ||x(n)

k − x(n)
∗ || ≤ Cτk for all k ≥ k0, for certain k0 > 0, C > 0, τ ∈ [0, 1)

(linear convergence).

• If θ ∈ [1
2 , 1), ||x(n)

k − x(n)
∗ || ≤ Ck−(1−θ)/(2θ−1) for all k ≥ k0, for certain k0 > 0, C > 0

(sublinear convergence).
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3-3-4 Performance Evaluation Metrics

Evaluating the proposed model on widely accepted metrics such as Normalized Mean Square
Error (NMSE) and Percentage of Fit (POF). These metrics can evaluate the proposed model
framework by generalizing a tensor completion problem to a prediction problem.

Normalized Mean Square Error (NMSE)

The NMSE for tensor completion models is evaluated on the observable space of the tensors.
This is given as,

NMSE = ||WΩ(X − X̂ )||
||X ||

Percentage of Fit (POF)

Relative Reconstruction Error is a metric that evaluates the relative error between the recon-
structed tensor to the original tensor.

RRE = ||X − X̂ ||
||X ||

In this thesis, we shall be evaluating the Percentage of Fitness (POF) given by,

POF (%) = 1− RRE

Computational Complexity Analysis

Evaluating computational complexity is important for algorithms to ensure they are scalable.
We evaluate the number of required operations for the CG solver at each iteration as given
in Algorithm (2).
The CG solver requires the matrices L(n) ∈ RIn×In , C ∈ RR×R and X0

(n) ∈ RIn×R. The
graph Laplacian L(n) is computed and stored from a predefined kNN graph.

• The MTTKRP is a computationally intensive iteration with computational complexity
O(|Ω|R). The MTTKRP generates an initial point X0

(n) for the CG algorithm.

• C =
[(

X(i)
)⊙i ̸=n

]T [(
X(i)

)⊙i ̸=n
]

can be precomputed in O(R3) operations at each ALS
iteration.

• The Hessian_Vec function as defined in Algorithm (3) is the main computational bottle-
neck of the solver. The cost of computing

[
X(n)C + L(n)X(n)

]
is O(InR2 +nnz(L(n))R).

nnz evaluates the total number of non-zeros present in the computed graph Laplacian.

Given a single ALS iteration optimizing a factor matrix, the total computational cost becomes,

O(|Ω|R) +O(R3) + maxCGiter(O(InR2 + nnz(L(n))R))

where maxCGiter is the maximum number of iterations set for the CG solver.
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3-4 GRCP for Recommender Systems

This section adapts the proposed generic model framework specific to an RS application. A
third-order user-item-time tensor is constructed. The set of users are represented by U =
[u1, u2, . . . , uI1 ], set of items by I = [i1, i2, . . . , iI2 ] and time instance during which the rating
was provided by T = [t1, t2, . . . , tI3 ]. The ground truth tensor is given as T ∈ RI1×I2×I3 .
Beginning with the objective function of minimizing,

minimize
Um,Im,Tm

1
2∥WΩ

(
T − X̂

)
∥2 + 1

2 ||Um
TL(u)Um||2F + 1

2 ||Im
TL(i)Im||2F + 1

2 ||Tm
TL(t)Tm||2F

where the optimal tensor X̂ ≈ [[λm; UmImTm]] ∈ RI1×I2×I3 . Um ∈ RI1×R, Im ∈ RI2×R

and Tm ∈ RI3×R are factor matrices of the CP tensor decomposition, having a normalizing
coefficient λm ∈ RR and CP rank R.
Each factor matrix is regularized with their respective graph Laplacians; namely, L(u) =
λuI + λlL(u) ∈ RI1×I1 the graph Laplacian between a set of users, L(i) = λiI + λlL(i) ∈ RI2×I2

the graph Laplacian between a set of items and L(t) = λtI + λlL(t) ∈ RI3×I3 the graph
Laplacian between time instants.

3-5 Discussions

The use of tensors and graphs has been well motivated by literature, highlighting the advan-
tages and drawbacks of available models. Overall, its seen to be beneficial in using structures
to accommodate data with higher-order relations and aided information sources to build RS
models.
The proposed GRCP model framework is a generic model that, in this case, is applied to
an RS. The same model can be adapted to other applications such as image processing and
computer vision, data classification, and machine learning tasks. The choice of an explanatory
tensor decomposition method in combination with GLRs has been done before and is not new.
Regularizing each factor matrix with the combination of the nuclear norm and GLR has not
been covered adequately in the literature. The proposed framework is modeled accordingly
to provide improved prediction metrics and scalability with reduced computational effort.
The CP-ALS method is globally convergent in the domain of the proposed objective function.
Problems related to scaling and matrix degeneracy have been addressed by incorporating
low-rank constraints and normalizing the factor matrices after every ALS iteration. The CG
solver shows scalability from its computational complexity. Quicker convergence of a factor
matrix to its local optimum is ensured by incorporating the Polak Ribere method. To model
the data correctly, one must choose tensor dimensions and the Laplacian weighting function.
Tuneable free parameters are the CP model rank R, regularizer coefficients λn and λl, and
k-nearest neighbors according to the application.
The proposition paves the way to building multi-context-aware RS models. The projection of
data on a lower dimensional space for interpretability and sparsity of data helps compute fast
tensor, matrix, and vector operations. The motivation to build an efficient and robust RS
framework to help make better recommendations is theoretically feasible and will be tested
on various datasets.
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3-6 Conclusion

This chapter reviews the literature required to propose a unified model in this thesis. We
propose a GRCP tensor decomposition model framework. Solved using an ALS algorithm
incorporating a CG solver, we show that the proposed model is globally convergent, with each
factor matrix being locally optimum at a given iteration. Evaluation metrics of the algorithm
for accuracy and computational complexity have been carried out, showing convergence in
linear time.
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Chapter 4

Model Validation using Synthetic
Dataset

4-1 Motivation

Testing and validation of a proposed model are necessary. This chapter will evaluate the
proposed GRCP model framework on a synthetic dataset. The motivation to use this dataset
is to evaluate the model on data with similar tensor dimensions that will later be used to
validate an RS model. Observations on the synthetic dataset will be made with varying CP
ranks and Laplacian regularization.
Literature is ample for regularized tensor decompositions for images. However, they have
been observed not to scale well. This is due to using decomposition methods that are compu-
tationally intensive or gradient-based methods that are sensitive to initializations. Thus, we
shall use an image as our synthetic data set and evaluate the model for image representation.

4-2 Experiment Setup

Setting up the experiment, we select the image baboon.jpg as shown in Figure (4-1). The
image is an RGB image of pixel dimensions 512 × 512. The image is loaded onto MATLAB
as a tensor I ∈ RI1×I2×I3 ∈ R512×512×3 of class(I) = ‘double’. The third dimension of
the tensor represents the RGB components of the image. The Laplacians are obtained from
a kNN graph built on each tensor mode I(n) ∈ RIn×In with a Gaussian edge weight kernel
defined by,

Wij =

exp
(
−∥(xi−xj)∥2

2
σ

)
if xj is connected to xi,

0 otherwise.
(4-1)

where xi and xj are the ith and jth entities in the graph being built and σ is the variance in
the tensor mode given by σ = ||xi−xj ||2

N , with N ∈ RIn . The noise added to the original image
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is given by In = I + ξ where, ξ ∼ (0, σ(I)) is Gaussian noise with zero mean and standard
deviation σ(I).

Using the GRCP model framework, the image is reconstructed, and the influence of regular-
ization is studied. The image is also added with noise, and the recovery of the original image
using the GRCP model is evaluated. This is done by ensuring that the Laplacians are built
on the image with the added noise.

The computations will be carried out on a MacBook Pro 2017 using an Intel Core 64-bit
i5 Dual-Core Processor running at 2.3 GHz with 8GB DDR3 RAM. The software used is
MATLAB R2021b, and the GSP Toolbox [67] for creating the graph Laplacians.

Figure 4-1: Image baboon.jpg

4-2-1 Algorithm Initialization

Initialization of the factor matrices and parameters for the ALS algorithm and the CG solver is
important for convergence and accurate reconstruction. Experiments are carried out to study
the effect of the number of kNN, CP rank R, regularization λl, and Signal-to-Noise ratio (SNR)
added. The model is trained for a combination of these values, and each hyperparameter’s
effect on image reconstruction and computational time is measured.

Of the different initialization methods discussed in [1] and [68], the factor matrices for the
ALS algorithm are initialized with the leading R left singular values of the given tensor’s
n-mode matricization. If the tensor dimension is smaller than the chosen CP rank In < R,
then the factor matrix is assigned random values between (0, 1). The algorithms used are as
given in (2), (3), and (4). Table (4-1) shows the parameters used.
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Table 4-1: Experiment Setup Parameters: Synthetic Dataset

Parameter Values
ALS Maximum Iterations (maxALSIter) 250

ALS tolerance (tolALS) 2.22e−16

Conjugate Gradient Maximum Iterations (maxCGIter) 30
Conjugate Gradient tolerance (tolCG) 1e−12

kNN members (kNN) [1 1 1; 1 1 2; 2 2 2]
CP Rank (R) [40 60 80 100 120 140]

Laplacian Regularization (LReg) [0, 0.1, 0.01, 0.001]
Added Noise (dB) (SNR) [0 0.1 0.5 1 4 7]

4-3 Results and Discussions

We analyze and report the findings from the output of the GRCP model. The influence of
CP rank, Laplacian regularization, and noise in terms of SNR (dB) on image reconstruction
and representation are recorded.

4-3-1 Influence of CP Rank

Identifying the CP rank of the decomposition is important for the correct representation of
the reconstructed image. Minimizing the error between the original image tensor and the
graph regularized tensor should be ensured. We choose the original noiseless baboon.jpg,
perform the CP decomposition varying the CP ranks, and record the obtained NMSEs.

Figure 4-2: Effect of varying CP Rank on Image Reconstruction with kNN = [1 1 1]. Top Row:
λl = 0, Bottom Row: λl = 0.001, Left to Right: CP Rank R = [20 40 60 80 100 120 140]

Table (4-2) highlights the NMSEs obtained for various CP ranks. Consistent image recon-
struction and representation are observed when using lower CP ranks. The average NMSE
is observed to increase as the CP rank is increased. Increasing the CP rank results in over-
fitting of the data and possibly noise. The algorithm’s reconstruction for higher CP rank
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decompositions is better with regularization, as seen in Figure (4-2). During reconstruction,
regularization is observed to preserve the relationships between neighboring pixels in the data.

CP Rank 40 60 80 100 120 140
Best NMSE 0.101 0.096 0.089 0.113 0.136 0.143

Worst NMSE 1.987 4.162 6.809 7.130 8.262 8.914
Average NMSE 0.223 0.287 0.410 0.718 1.111 1.720

Table 4-2: Aggregate NMSE for varying CP-Rank

Elaborating on Table (4-2), experiments with varying kNN members and regularization values
for a given CP rank are carried out. The values recorded indicate which CP rank is most
suitable for image reconstruction. The average NMSEs indicate the NMSE that a particular
CP rank would achieve by varying the other hyperparameters.

The choice of CP rank is an NP-hard problem and is done based on conducted experiments.
Image reconstruction and average NMSEs are similar and consistent for CP ranks between
40 and 60. This is the case with and without regularization. Choosing a CP rank of 40
would benefit the algorithm computationally. However, we record better NMSE values using
a CP rank of 60. Using CP ranks greater than 60 is not recommended, with the model
being observed to overfit the data with an increase in NMSE values. The next section shall
discuss in detail the influence of the number of kNN members and regularization for images
reconstructed with a CP rank of 60.

4-3-2 Influence of Regularization

Regularization is important for both image representation and retrieving an image that has
been corrupted by noise. We first check how varying the number of kNN members and
regularization affects image reconstruction on the original noiseless baboon.jpg.

Figure (4-3) shows that the choice of kNN members is important for reconstructing the image.
Image reconstruction is best for kNN = [1, 1, 1]. Increasing the number of kNN members
does not provide accurate reconstruction results. This is important to note as the capturing
variation of pixel values over neighboring pixels is preferred and effective over a patch of pixels
in an image.

Table (4-3) highlights the NMSEs obtained for various regularization λl values. The table
records NMSEs for a given regularization value while varying kNN members and CP rank.
Compared to λl = 0, the average NMSEs highlight regularization λl > 0 to benefit image
reconstruction. As recorded, the average NMSE is the least for λl = 0.001.

Preserving any structural information in the data is carried out with the regularization term.
The Laplacian, also known as a spatial high pass filter, is found to detect and preserve the
edges in the image. Fundamental in building kernels/masks in Digital Image Processing, the
same is applicable here while constructing the Laplacians for regularization [69]. Computa-
tionally, the average runtimes with and without regularization are similar, as given in Table
(B-1).
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Figure 4-3: Effect of varying kNN members and regularization on Image Reconstruction with CP
rank = 60. Top to Bottom: kNN members [1 1 1], [1 1 2] and [2 2 2], Left to Right: Laplacian
Regularization λl = [0, 0.1, 0.01, 0.001]

Regularization λl 0 0.1 0.01 0.001
Best NMSE 0.096 0.097 0.089 0.096

Worst NMSE 7.381 8.734 8.914 8.262
Average NMSE 0.785 0.773 0.764 0.658

Table 4-3: Aggregate NMSE for varying regularization λl

The next section shall discuss the influence of adding a certain SNR (dB) noise to the image
attempting to perform a denoising operation with kNN = [1, 1, 1] and λl = 0.001.

4-3-3 Influence of Noise

Having studied the effects of varying CP ranks and regularization values λl, we investigate
the effect of adding a particular SNR (dB) of noise to the image. Attempts to reconstruct
the image with minimal NMSE are made. The Laplacians are constructed on the prefiltered
image with given noise SNR (dB). Highlighted in [70], Laplacians built on prefiltered images
are robust to noise provided the weighting kernel is as given in (4-1). The experiment is
repeated ten times with CP rank R = 60, kNN = [1, 1, 1] and λl = 0.001.

Figure (4-4) shows the reconstructed image and the corresponding noisy image. The Laplacian
is responsible for filtering high-frequency data and providing smoothness during reconstruc-
tion. The applied noise within a band of SNR = (0.1 - 1) dB is filtered well, as observed by
the average NMSE values shown in Table (4-4). It does not help the decomposition method
if the image contains no or low-frequency noise in the data. The NMSEs are consistent when
the criterion for the noise to be bounded is met.
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(a) (b)

(c)

Figure 4-4: Effect of varying with CP rank = 40, kNN = [1 1 1] and λl = 0.001. (a) SNR =
0.1 dB, (b) SNR = 0.5 dB, (c) SNR = 1 dB

SNR (dB) 0 0.1 0.5 1 4 7
Best NMSE 0.096 0.144 0.139 0.135 0.112 0.099

Worst NMSE 8.914 0.236 0.226 0.212 8.130 8.684
Average NMSE 1.732 0.191 0.183 0.173 0.514 0.883

Table 4-4: Aggregate NMSE for varying SNR (dB)

4-3-4 Performance Evaluation Metrics

Having studied the effect of the hyperparameters on image reconstruction, we evaluate the
model on the discussed Performance Evaluation Metrics.
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Normalized Mean Squared Error (NMSE)

NMSE is a good indicator of the quality of image reconstruction from the decomposition.
Iterating the algorithm for the same experimental setup multiple times is important to obtain
an average and consistent NMSE.

Figure (4-5) indicates well the effect of regularization on NMSE with varying CP rank R
and SNR (dB). Across all images, we can observe that the model does not perform well in
reconstructing the image for low and high CP ranks, given by higher NMSE values.

Having no regularization is observed to result in higher NMSE values. Regularization is,
therefore, necessary. Having higher regularization values allows higher CP ranks to be utilized
to provide lower NMSEs. SNR of above 1 dB is seen to have increased NMSE values. As
discussed, the range of noise the model gives the best image representations is from (0.1 - 1)
dB.

Figure 4-5: Influence of NMSE with varying CP Rank, noise SNR (dB), and regularization λl

Algorithm Run Times

The algorithm is timed and aggregated over ten iterations. Dependent on the choice of CP
rank, we evaluate its effect on the algorithm’s run time. With increasing CP rank R, it is
noticed that the computational time increases linearly with R as given in Table (4-5). This
is beneficial for the algorithm while solving larger-scale problems.

The average runtimes for varying regularization and noise do not vary for different values of
λl and SNR (dB). They are observed to not influence the algorithm’s run time as given in
Tables (B-1) and (B-2).
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CP Rank 40 60 80 100 120 140
Min Run Time (s) 1.93 6.58 10.86 16.33 20.18 31.79
Max Run Time (s) 65.82 64.99 116.25 168.66 206.29 256.07

Average Run Time (s) 32.98 44.62 58.15 69.32 88.65 99.16

Table 4-5: Aggregate runtimes for varying CP-Rank

Code Profiling

Comparing run times for varying hyperparameters is representative of their influence on the
algorithm. Understanding the time taken by each code segment as a ratio to the total time
taken to run the code highlights the code’s computational bottlenecks. This shall be done by
profiling the code and measuring the time taken by each function.
The code is profiled for two cases. The first setup is with parameters taking the most time to
solve. Looking at the average run times, we choose a CP rank R = 140, graph kNN members
= [1 1 1], regularization λl = 0 with SNR = 0.5 dB. Refer to Equations (3-5) and (3-6) for
the matrices being evaluated.

Evaluating Function Dimensions Self Time Taken (%)
MTTKRP RIn×R 41.5%

Hessian_Vec (3) RInR 29.7%
Khatri-Rao Product ⊙Ii = ∏d

i ̸=n Ii 7.4%
CG Solver (2) RInR 6.9%

ALS Algorithm (4) RI1×I2...×Id 5.1%
Other function calls - 9.4%

Table 4-6: Code Profile for Worst Case Algorithm Run Time with Total Average Time = 200.62s

The second setup is evaluated on the model providing the best average NMSE results. Here,
the chosen model parameters are CP rank R = 60, graph kNN members = [1 1 1], regular-
ization λl = 0.001 with SNR = 0.1 dB.

Evaluating Function Dimensions Self Time Taken (%)
MTTKRP RIn×R 29.3%

Hessian_Vec RInR 14.4%
Khatri-Rao Product ⊙Ii = ∏d

i ̸=n Ii 8.6%
CG Solver RInR 7.3%

ALS Algorithm RI1×I2...×Id 6.9%
Other function calls - 33.5%

Table 4-7: Code Profile for BEST NMSE Algorithm Run Time with Total Average Time = 7.3s

The MTTKRP and Hessian_Vec functions contain matrix multiplications. An increase in
matrix dimensions makes it computationally intensive for programs running on a CPU. Al-
though scaling well with an increase in matrix dimensions, these functions are the identified
bottlenecks in the code.
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4-4 Conclusions

In this chapter, we extend the application of the proposed GRCP model framework to a
synthetic dataset containing an image. The variation of CP rank R, graph Laplacian regu-
larization λl, and kNN members were observed and discussed. The given baboon.jpg image
was reconstructed with no noise to identify the GRCP model’s hyperparameters. Later, noise
was added to the image, and attempts to recover the original image from the noisy data
were made. NMSE values of graph regularized methods showed more consistent image rep-
resentation than the ones without regularization. The graph Laplacian regularization has
highlighted use cases for image denoising. Given that the synthetic dataset is to evaluate
the GRCP model and observe the effect of varying model hyperparameters, benchmarking
studies were not necessary to be carried out.
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Chapter 5

Model Validation using MovieLens
Dataset

5-1 Motivation

The major contribution of this thesis is to use the proposed framework to build an RS model.
This chapter will evaluate the Graph Regularized CP (GRCP) tensor decomposition model
framework on the MovieLens dataset to build an RS. Numerical experiments are carried out
on the given data set. The effect of varying CP rank R and graph Laplacian regularization λl

will be observed on the dataset used. The model is compared for different values of nuclear
norm regularization λn to evaluate its effect on CP rank. Performance metrics, including
NMSE, Percentage of Fit (POF), and computational run times as defined in Section (3-3-4),
are recorded for the combination of hyperparameters.

5-2 Experiment Setup

The history of the MovieLens dataset is described in detail in [71]. The dataset used in this
thesis is the ML100K dataset, with 100,000 ratings given by 943 users for 1682 movies. The
values of the ratings provided are on a 0-5 rating scale, with 0 for items that have not been
rated by a user. The ratings are dated from September 1997 to April 1998. The number
of known entries (or) sampling varies to see the model’s prediction accuracy and influence
on reconstruction. As defined in Equation (5-1), |Ω| is the number of known entries, and
I1I2 . . . Id are the dimensions of the rating tensor being constructed. Representing the data
as a matrix of dimensions R943×1682, the sampling or data density is 6.37%.

ρ = |Ω|
I1I2 . . . Id

(5-1)

Setting up the experiment, the ML100K dataset is loaded onto MATLAB as a User-Item-Time
tensor T ∈ RI1×I2×I3 ∈ R943×1682×Tm of class(T) = ‘double’. We construct tensors with
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different sampling rates for our numerical simulations. The tensor’s third mode T(3) ∈ RTm ,
represented as time, will be the year or month of rating. When represented with the rating
year, the tensor dimensions are R943×1682×2 with the time dimensions representing the years
1997 and 1998. Similarly, when represented with the month of rating, its dimensions are
R943×1682×8 with the time dimensions representing months from September through to April.

The Laplacians are obtained from a kNN graph built on each tensor mode T(n) ∈ RIn×In

with the edge weight kernel defined by,

Wij =


∥(xi−xj)∥2

2
σ if xj is connected to xi,

0 otherwise.
(5-2)

where xi and xj are the ith and jth entities in the graph being built and σ is the variance
given by σ = ||xi−xj ||2

N , with N ∈ RIn . The weighting kernel used here evaluates the Pearson
Correlation Coefficient matrix between the graph’s xi and xj entities.

The data containing 100,000 ratings are split with an 80-20 ratio for training and validating
the model. With tensor dimensions T ∈ R943×1682×2, the training sampling rate is ρ = 2.5%
while with tensor dimensions T ∈ R943×1682×8, the training sampling rate is ρ = 0.6%. The
GRCP model framework is trained on the training dataset for given tensor dimensions. The
influence of sampling, CP rank, and regularization on model prediction accuracy is studied.

The computations on the ML100K dataset are carried out on the Delft Blue Supercomputer
using Intel XEON E5-6248R 24C 64-bit 24 Core Processor running at 3.0GHz with 64GB
DDR4 RAM [72]. The software used is MATLAB R2021b, and the GSP Toolbox [67] for
creating the graph Laplacians.

5-2-1 Algorithm Initialization

Initialization of the factor matrices and parameters for the ALS algorithm and the CG solver
are studied better for an RS application. By default, MATLAB uses the ‘double’ data
type with a 64-bit representation for variable initializations. This is unnecessary and can be
initialized as ‘single’ data types with a 32-bit representation for the factor matrices and
graph Laplacians. 1 This accelerates the algorithm by improving the memory throughput time
and provides values NMSEs and POF similar to variables initialized as ‘double’ datatype.

The factor matrices for the ALS algorithm are initialized with the leading R left singular
values. If the tensor dimension is smaller than the chosen CP rank In < R, then the factor
matrix is assigned values randomly between (0, 1). The algorithms used are as given in (4),
(2), and (3). Table (5-1) shows the parameters used.

First, the simulations are run for varying kNN members used to construct the graph. Varying
the number of kNN is observed not to affect the prediction accuracy of the obtained models.
Sparsity in the data could be accountable for this observation. Thus, we fix the number of
kNN members with a rule of thumb kNN(n) ∼

√
In. CP rank R, regularizations λn, and λl

1Performing arithmetic operations on single floating point datatype variables provides values of precision
that are acceptable to building RS models. Both range and precision required are met as given in Floating
Point Numbers
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are simulated for the two tensor setups. The model is trained for a combination of these
values, and each hyperparameter’s influence on model accuracy and computational time is
investigated.

Table 5-1: Experiment Setup Parameters: MovieLens ML100K

Parameter Values
ALS Maximum Iterations (maxALSIter) 200

ALS tolerance (tolALS) 2.22e−16

Conjugate Gradient Maximum Iterations (maxCGIter) 30
Conjugate Gradient tolerance (tolCG) 1e−12

Time dimension of Tensor (cT) [‘YY’, ‘MM’] ∈ [R2,R8]
kNN members (kNN) for cT = ‘YY’ [30 40 1]
kNN members (kNN) for cT = ‘MM’ [30 40 4]

CP Ranks (R) for for cT = ‘YY’ [5 7 10 12 15 20 25]
CP Ranks (R) for for cT = ‘MM’ [20 30 33 36 40 50]
Laplacian Regularization (LReg) [0, 0.1, 0.01, 0.001]

5-3 Results and Discussions

The GRCP framework is evaluated for building an RS model with the given data. The
influence of CP rank R, nuclear norm, and graph Laplacian regularization λn and λl are
recorded and analyzed on NMSE and computational run times.

5-3-1 Influence of CP Rank

Varying the sampling of the data, the two tensor models are solved using the GRCP model
framework. Identification of the CP rank, being an NP-hard problem, is different in each
case. Both training and testing NMSEs are recorded. A tradeoff between the recorded
NMSEs is made before selecting a CP rank for a given model. This ensures that the model
does not overfit the data while training. The CP rank is varied as a function of nuclear norm
regularization λn, with each combination of R and λn simulated ten times.

Our first observation is that there is no particular trend when the CP ranks are increased
for both models. A larger CP rank is supposed to have better NMSEs, but this is not the
case. Discussing the trends for the model with ρ = 0.6% as given in Table (5-2), models
having CP ranks R = [36, 40, 50] are found to perform better than the others in terms of both
training and testing data. R = 33 seems to be an outlier in the identification process. One
can argue that R = 50 seems best suited for the model. Although the training NMSEs show
improvement, the testing NMSEs remain comparable to R = [36, 40]. This is identified to
be a case of overfitting. Thus, we chose R ≈ 36, having made a tradeoff between the least
training and testing NMSEs.

With ρ = 2.5%, similar observations are made and recorded in Table (5-3). CP ranks R =
[7, 15, 25] are found to fit the model better while training. While testing the model, R =
[15, 25] performs better, with R = 25 being identified as another model overfitting case.
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Figure 5-1: Influence of varying CP ranks on Training NMSE for ρ = 0.6%

R = 20 is identified as an outlier in the identification process. Similar to ρ = 0.6%, we chose
R ≈ 15. The chosen CP ranks are with the lowest NMSEs and least variance, as seen in
Figures (C-1), (C-2), (C-3) and (C-4) in Appendix (C-1).

CP Rank Training NMSE Testing NMSE
λn = 0 λn = 1 λn = 5 λn = 10 λn = 0 λn = 1 λn = 5 λn = 10

20 0.748 0.748 0.744 0.745 0.800 0.801 0.799 0.800
30 0.743 0.742 0.765 0.742 0.801 0.800 0.821 0.802
33 0.853 0.820 0.775 0.764 0.879 0.843 0.816 0.810
36 0.746 0.746 0.741 0.743 0.798 0.798 0.795 0.796
40 0.738 0.736 0.732 0.733 0.800 0.798 0.798 0.798
50 0.724 0.724 0.721 0.720 0.796 0.797 0.796 0.795

Table 5-2: Aggregate NMSE with varying CP Rank for ρ = 0.6%

The influence of nuclear norm regularization λn on CP rank is investigated. Increasing λn for
a given CP rank benefits model training by recording lesser variance in NMSEs as shown in
Figures (5-1) and (5-2). However, its choice does not profoundly influence the testing NMSEs.
Ensuring the model is not overfitting while making accurate predictions is fundamental. The
choice of CP rank is the identified challenge and does not depend on the value of λn.
Varying ρ, lower aggregate NMSE values are recorded for higher ρ. The difference is the tensor
dimensions adapted to vary the data sampling. The decomposition method is observed to
benefit from dense tensors. One must note that the variance in the solutions obtained for
ρ = 2.5% is more when compared to ρ = 0.6% for a given CP rank. Tables (C-1), (C-2),
(C-3) and (C-4) in Appendix (C-1) highlight this.
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Figure 5-2: Influence of varying CP ranks on Training NMSE for ρ = 2.5%

CP Rank Training NMSE Testing NMSE
λn = 0 λn = 1 λn = 5 λn = 10 λn = 0 λn = 1 λn = 5 λn = 10

5 0.741 0.741 0.739 0.739 0.762 0.762 0.760 0.760
7 0.701 0.701 0.709 0.709 0.746 0.747 0.750 0.750

10 0.723 0.723 0.720 0.720 0.747 0.747 0.745 0.745
12 0.718 0.719 0.715 0.714 0.749 0.750 0.748 0.747
15 0.707 0.707 0.704 0.704 0.742 0.742 0.741 0.742
20 0.723 0.723 0.732 0.732 0.756 0.756 0.760 0.760
25 0.694 0.693 0.691 0.691 0.740 0.740 0.740 0.740

Table 5-3: Aggregate NMSE with varying CP Rank for ρ = 2.5%

5-3-2 Influence of Regularization

The influence of regularization on model training and validation must be understood. Regu-
larization is aimed at aiding the decomposition model and alleviating sparsity issues in RS.
It helps in maintaining any structural information the data might contain. Fixing the CP
rank for each model as identified in Section (5-3-1), the Laplacian regularization λl is varied
as a function of nuclear norm regularization λn. Each combination of λl and λn is simulated
ten times. Figures (5-3) and (5-4) depict how to graph Laplacian regularization aided with
nuclear norm regularization helps in training an RS model.

Tables (5-4) and (5-5) record the variation of NMSEs with varying Laplacian regularization
λl. Discussing the results obtained, regularization is seen to aid both ρ = 0.6% and ρ = 2.5%.
Values of λl = [0.1, 0.01] benefit model training, showing reduced NMSEs compared to λl =
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Figure 5-3: Influence of varying Laplacian Regularization λl on Training NMSE for ρ = 0.6%
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Figure 5-4: Influence of varying Laplacian Regularization λl on Training NMSE for ρ = 2.5%
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[0, 0.001]. However, it is to note that λl = 0.001 provides similar or in some cases, better
testing NMSEs when compared to λl = [0.1, 0.01].
The optimal regularization value is chosen to be λl = 0.01 for ρ = 0.6% and λl = 0.1 for
ρ = 2.5%. The need to promote sparseness in the solution explains the choice of a lower
regularization value for ρ = 0.6%. Laplacians constructed for ρ = 2.5% better capture the
variation of ratings over the tensor, and the model benefits from higher regularization values.

Regularization λl Training NMSE Testing NMSE
λn = 0 λn = 1 λn = 5 λn = 10 λn = 0 λn = 1 λn = 5 λn = 10

0 0.816 0.794 0.780 0.758 0.857 0.833 0.828 0.813
0.1 0.738 0.738 0.735 0.735 0.799 0.799 0.799 0.799

0.01 0.739 0.738 0.735 0.735 0.798 0.797 0.797 0.797
0.001 0.741 0.741 0.737 0.737 0.795 0.795 0.794 0.794

Table 5-4: Aggregate NMSE with varying Laplacian Regularization λl for ρ = 0.6%

Introducing regularization λl provides better-trained models with reduced NMSEs than mod-
els without regularization. No regularization shows high NMSEs during training and testing
for ρ − 0.6% compared to ρ = 2.5%. Across tensor models, regularization aids reproducible
results with lesser variance, as seen in Figures (C-5) and (C-6) of Appendix (C-2). This
greatly influences the NMSEs when the tensors have smaller sampling rates.
Lower aggregate NMSE values are recorded for higher ρ. The role of regularization is better
observed when the sampling rate is lower, i.e., ρ = 0.6%. Obtaining solutions for higher ρ
tensors does not need regularization but benefits if present. Tables (C-5), (C-6), (C-7) and
(C-8) in Appendix (C-2) highlight the variation of regularization for varying ρ.

Regularization λl Training NMSE Testing NMSE
λn = 0 λn = 1 λn = 5 λn = 10 λn = 0 λn = 1 λn = 5 λn = 10

0 0.714 0.714 0.714 0.715 0.749 0.749 0.749 0.750
0.1 0.714 0.714 0.715 0.713 0.749 0.749 0.750 0.748

0.01 0.715 0.715 0.715 0.715 0.748 0.749 0.749 0.749
0.001 0.719 0.718 0.718 0.718 0.750 0.749 0.749 0.749

Table 5-5: Aggregate NMSE with varying Laplacian Regularization λl for ρ = 2.5%

5-3-3 Performance Evaluation Metrics

Percentage of Fit (POF)

Relative Reconstruction Error (RRE) or Percentage of Fit (POF) is the data accurately
recovered by the model. The higher the POF, the better the model fits the training data.
The effect of varying sampling and nuclear norm regularization λn on POF is analyzed.
Starting with the chosen CP ranks, we find that the POF improves with an increase in λn.
Intended to promote sparse solutions, the nuclear norm regularization ensures a low-rank
representation of the models. This is beneficial while training sparse data sets for a given CP
rank. POF increases with CP rank, as seen in Tables (5-6) and (5-7), but could lead to model
overfitting while training.
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CP Rank
λn = 0 λn = 1 λn = 5 λn = 10

20 0.157 0.157 0.160 0.159
30 0.158 0.159 0.022 0.091
33 -0.338 -0.397 -0.168 -0.064
36 0.156 0.156 0.159 0.159
40 0.164 0.165 0.169 0.169
50 0.177 0.176 0.179 0.179

Table 5-6: Aggregate POF with varying CP Rank for ρ = 0.6%

The POFs associated with λl in Table (5-8) highlight the influence of ρ and λl for building
RS using the GRCP framework. Given ρ = 0.6%, the POF obtained is poor with λl = 0.
Introducing λl improves the POF. Contrarily, with ρ = 2.5%, the POFs obtained without
and with λl are consistent with a drop at λl = 0.001. Sparse tensors with low ρ require λl to
ensure a good model POF which is not the case for dense tensors with higher ρ. The POF is
another indicator that highlights the benefits of Laplacian regularization in the GRCP model.

CP Rank
λn = 0 λn = 1 λn = 5 λn = 10

5 0.154 0.154 0.156 0.156
7 0.185 0.185 0.179 0.179

10 0.162 0.162 0.164 0.164
12 0.169 0.168 0.171 0.172
15 0.179 0.179 0.181 0.181
20 0.168 0.168 0.161 0.161
25 0.191 0.191 0.193 0.194

Table 5-7: Aggregate POF with varying CP Rank for ρ = 2.5%

Regularization λl ρ = 0.6% ρ = 2.5%
λn = 0 λn = 1 λn = 5 λn = 10 λn = 0 λn = 1 λn = 5 λn = 10

0 -0.168 -0.207 -0.146 -0.030 0.174 0.174 0.174 0.173
0.1 0.162 0.162 0.165 0.165 0.174 0.174 0.174 0.174

0.01 0.162 0.163 0.165 0.165 0.173 0.172 0.172 0.172
0.001 0.160 0.160 0.163 0.163 0.170 0.170 0.170 0.170

Table 5-8: Aggregate POF with varying λl for ρ = 0.6% and ρ = 2.5%

Increasing data sampling results in better POF of tensor models. However, the evaluation of
POF may be debatable if a tensor is sparse in data. Given that no constraints are imposed
on the factor matrices during the optimization, POF might be misleading. Negative POF
means most of the entries in the obtained model are negative. Increasing λn is needed here
to promote sparsity in solutions, or imposing non-negative constraints on the factor matrices
must be carried out.
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Normalized Mean Square Error (NMSE)

Running the algorithm multiple times and computing the average NMSE is representative of
the model’s accuracy. We plot the average NMSE over ten iterations with varying CP rank
and regularization λl.

Figure 5-5: Influence of varying hyperparameters on Training NMSE for ρ = 0.6%

Figure 5-6: Influence of varying hyperparameters on Training NMSE for ρ = 2.5%

One can see that there are distinct values of CP rank and regularization λl for which the
models are well trained. The tensor models being solved are observed to have similar NMSEs
within a neighborhood of varied hyperparameters. Identifying the right CP rank and regu-
larization becomes difficult when the optimization problem has saddle points. This becomes
the case when handling tensors having low sampling, as seen in Figure (5-5). Evaluation of
the model on testing data becomes more vital in deciding the values of the hyperparameters.
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k-Cross Validation and Benchmarking

The proposed model has been evaluated on various performance metrics. Reproducibility of
results when the data within the tensor is shuffled or permuted must be ensured. k-Cross
validation is performed on the given data set, taking k = 5 equally shuffled training and
testing data. The training and validation data sets maintain a ratio of 80-20 evaluation
points.

k-Cross Validation POF Training NMSE Testing NMSE
ρ = 0.6% 0.171 0.724 0.781
ρ = 2.5% 0.18 0.698 0.724

Table 5-9: k-Cross Validation of the chosen models

The model parameters CP rank R= 36, λl = 0.01 and λn = 1 is set for ρ = 0.6% and CP
rank R= 15, λl = 0.1 and λn = 1 is set for ρ = 2.5%. The models are then evaluated on
shuffled data, and their performance metrics are recorded in Table (5-9). The repeatability
and reproducibility of results are observed well with similar aggregated POF and NMSE
values as obtained during model evaluation.
In addition to validating the chosen models, benchmarking the GRCP model against stan-
dard state-of-the-art methods is important. Table (5-10) gives us the benchmarking results
performed on four models: NoReg refers to the standard CP decomposition with λn, λl = 0,
NReg refers to a nuclear-regularized CP decomposition with λn = 1, λl = 0, LReg refers to a
graph Laplacian regularized CP decomposition with λn = 0, λl = [0.01, 0.001] depending on
ρ, and (N+L)Reg is the GRCP model proposed in this thesis.

Benchmarking ρ = 0.6% ρ = 2.5%
NoReg NReg LReg (N+L)Reg NoReg NReg LReg (N+L)Reg

Training NMSE 0.725 0.725 0.723 0.724 0.7 0.701 0.704 0.698
Testing NMSE 0.786 0.785 0.781 0.781 0.732 0.731 0.726 0.724

POF 0.173 0.173 0.171 0.171 0.185 0.184 0.177 0.18

Table 5-10: Benchmarking with other CP tensor decomposition methods

The NMSEs of the GRCP model for training and testing are observed to be better than
other benchmark models. The LReg models show similar NMSE values compared to the
GRCP model for lower values of ρ but requires nuclear norm regularization to promote sparse
solutions as ρ is increased. Evaluating the POF, models with no regularization performs
better compared to other models.

5-4 Scalability

The scalability of the GRCP framework is important in building RS models. Expected to
scale in linear time, we shall evaluate the proposed framework with larger datasets. The
MovieLens 1M data set containing 1,000,209 ratings from 6040 users for 3952 movies is used.
The ratings are similar to the ML100K dataset, which dates from April 2000 to February
2003.
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5-4-1 Experiment Setup

The ML1M dataset is loaded onto MATLAB as a tensor T ∈ RI1×I2×I3 ∈ R6040×3952×Tm of
class(T) = ‘double’. Similar to the ML100K dataset, the tensor’s third mode T(3) ∈ RTm ,
represented as time, will be the year or month of rating. When represented with the rating
year, the tensor dimensions are R6040×3952×4 with the time dimensions representing the years
2000 to 2004. Similarly, when represented with the month of rating, its dimensions are
R6040×3952×12 with the time dimensions representing months from April through March. The
Laplacians are obtained from a kNN graph built on each tensor mode T(n) with the same edge
weight kernel as defined in (5-2).

The data containing 1,000,209 ratings are split with an 80-20 ratio for training and validating
the model. With tensor dimensions T ∈ R943×1682×4, the training sampling rate is ρ = 0.8%
while with tensor dimensions T ∈ R943×1682×12, the training sampling rate is ρ = 0.3%. The
GRCP model framework is trained on the training dataset for given tensor dimensions.

The computations on the ML1M dataset will be carried out on the Delft Blue Supercomputer
using Intel XEON E5-6248R 24C 64-bit 24 Core Processor running at 3.0GHz with 64GB
DDR4 RAM [72]. The software used is MATLAB R2021b, and the GSP Toolbox [67] for
creating the graph Laplacians.

5-4-2 Results and Discussions

The two important aspects determining a model’s scalability are the accuracy of its predictions
and the time taken to train a model. Having identified the best hyperparameters for the
models similar to that carried out in the ML100K dataset, we compare the NMSEs and
algorithm run times of the two datasets.

Given as a function of sampling ρ, the aggregate NMSEs and POFs of the models are presented
in Table (5-11). Smaller tensor dimensions benefit from lower training NMSE and a higher
POF. The training times are also less, given that the time taken to train directly depends on
the tensor dimensions. Noticeably, the testing NMSE reduces with increasing ρ.

Scalability ρ = 0.3% ρ = 0.6% ρ = 0.8% ρ = 2.5%
Training NMSE 0.808 0.724 0.752 0.698
Testing NMSE 0.811 0.781 0.756 0.724

POF 0.113 0.171 0.149 0.18
Run Time (s) 389.12 121.18 347.76 156.18

Table 5-11: Aggregate NMSE and Algorithm Run Times for varying ρ

The algorithm is timed on MATLAB using the tic and toc commands, and the aggregate
run times are recorded. Figures (C-7), (C-8), (C-9) and (C-10) in Appendix (C-4) show the
average runtimes of the algorithms. Written in terms of the big O notation, the number of
floating point operations is calculated as follows,

O(g) = maxALSiter

[
O(|Ω|R) +O(R3) + maxCGiter

d∑
n=1
O(InR2 + nnz(L(n))R)

]
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Table (5-12) gives an approximate Floating Point Operations per Second (FLOPS) that oc-
cur with the given hardware configurations. Increasing the sampling ρ benefits from fewer
FLOPS required. Notably, the required FLOPS scales linearly with ρ, decided by the tensor
dimensions and CP rank.

big O ρ = 0.3% ρ = 0.6% ρ = 0.8% ρ = 2.5%
Time Taken (s) 389.12 121.18 347.76 156.18

No. Floating Point Operations O(8.012e10) O(2.107e10) O(1.456e10) O(3.799e9))
FLOPS 2.06e8 1.74e8 4.18e7 2.43e7

Table 5-12: Computational scalability for varying ρ

5-5 Conclusions

This chapter uses the proposed GRCP tensor decomposition model framework to build an
RS model. The variation of CP rank and graph Laplacian regularization λl are studied
extensively as a function of sampling ρ and nuclear norm regularization λn. Structuring data
in the tensor dictating data sampling (or) sparsity significantly influences NMSE and POF
values. The Laplacians are constructed, and the regularization value is tuned accordingly.
Nuclear norm regularization benefits the tensor decomposition process if not detrimental.
One can conclude that regularization has a vital role in data recovery from sparse and dense
tensors.

The chosen RS model using the ML100K dataset for ρ = 0.6% shows an average training
NMSE of 0.724 and testing NMSE of 0.781. Having ρ = 2.5% shows an average training
NMSE of 0.698 and testing NMSE of 0.724. NMSE measured in absolute terms of prediction
accuracy shows that the model predicts better than traditional CF methods highlighted in
the literature. Furthermore, the computational burden increases linearly with an increase in
CP rank, offering promising scalability.
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Chapter 6

Conclusions and Future Scope of Work

This Master thesis proposes a novel Graph Regularized CP (GRCP) tensor decomposition
framework for building RS models. In our concluding remarks, we revisit the research ques-
tions and highlight the work done in this thesis for each question.
(RQ.1) How does the GRCP model capture and utilize available data?
Data represented as tensors is becoming common. Incorporating multi-contextual information
plays a significant role in building accurate and robust data-based models. Data density
can be controlled by the dimensions chosen for the tensor decomposition method. Smaller
tensor dimensions increase the data density while promising improved prediction metrics and
computational run times. Graphs built on available data have found their use as filters useful
for regularization. The Laplacians built on each tensor mode capture the available interactions
between the modeled entities.
Tensor decomposition methods have become efficient with improved computational resources.
Low-rank representations of data are effective in building prediction models. With increased
data sparsity, identifying a low-rank representation becomes crucial. This thesis discusses a
GRCP-ALS tensor decomposition method to obtain the low-rank representations as factor
matrices for a given CP rank.
Graph signal processing is observed to extract underlying data from graph structures effec-
tively. Defining the k-nearest neighbors for a kNN graph is found to be of significant influence
for dense data. The sparser the data becomes, the choice of kNN members is observed not
to influence the prediction accuracy of the built model. Weighting kernels used to build the
graphs is another essential factor. This thesis shows two types of weighting kernels based on
the application and nature of the data present. The choice of the kernel aids in the recovery of
data that is corrupted with noise. As a result of the built graphs, utilizing graph Laplacians
to impose constraints on how the data should vary aids in building low-rank models.
(RQ.2) How is the data combined in GRCP to aid recommendations?
The addition of regularizers is relatively simple in the explanatory CP decomposition method.
Low-rank solutions are ensured by imposing a nuclear norm in the objective, while the Lapla-
cians influence the latent interactions of data between tensor modes. In conjunction with
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tensor decomposition methods, this thesis uses graph Laplacians to regularize each tensor
mode while solving the optimization problem. This dictates the variability that the data can
contain. Furthermore, it aids tensor decomposition methods by providing accurate factor
matrices for rebuilding a given model.

Nuclear norm regularization has not affected the model’s CP rank. It promotes sparser and
unique solutions to the problem. The choice of Laplacian matrices is also motivated for
convergence analysis of the ALS algorithm. The positive definiteness of the Laplacians makes
it favorable for solving convex optimization problems. The proposed GRCP model is studied
for convergence and computational efficiency. Achieving global convergence, the combination
of information is theoretically seen not to increase the computational burden and depends on
the tensor dimensions and chosen CP rank.

(RQ.3) How does the GRCP address the drawbacks that current RS are susceptible to?

Applying the GRCP framework to build better RS models is the main research question of
the thesis. Issues such as sparsity and robustness in prediction accuracy are studied with the
given framework. The effect of nuclear and Laplacian norm regularization is recorded and
discussed in detail.

Evaluating the model on performance metrics such as NMSE, POF, and computational run
times, variation in data density is important for better performance with regularization.
Nuclear norm regularization ensures reduced variance in NMSEs and robustness to outliers
during model training. Laplacian regularization effectively produces lower NMSEs while
testing a given model. Overall, regularization aids in the reconstruction of entries that are not
observable, thus solving the issue of sparsity observed in current RS models. Benchmarking
with other tensor decomposition models is carried out, with the GRCP performing better
than other standard benchmarks.

The modified CP-ALS methodology using a CG solver benefits the optimization of the factor
matrices. An increase in CP rank affects computational time linearly and, thus, is scalable
for testing on larger datasets. In addition to building RS models, the thesis also discusses
an extended application for image representation and presents use cases for image denoising
using graph Laplacian regularization.

Future Scope of Work

This thesis limits and tests the GRCP framework with matrix dimensions computable by
the given machines. Experimenting on larger datasets must be carried out to verify the
algorithm’s scalability in terms of prediction accuracy. Datasets such as MovieLens ML10M
and ML20M are suggested to carry out this analysis.

GPUs are explicitly intended to perform matrix calculations. The thesis evaluates the GRCP
framework using a CPU. CPUs process data serially, while GPUs have multi-threading and
parallel processing capabilities. Given that the identified bottlenecks of the current code
are matrix multiplications running the proposed framework on GPUs would improve com-
putational efficiency multifold. This would reduce memory throughput times with fast and
accurate floating point arithmetic operations being performed. The code provided in the
repositories is also compatible with GPU computations.
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Another promising data storage format is Tensor Trains. Using Singular Value Decomposition
(SVD) methods, Tensor Train is widely used for efficient and accurate decomposition methods.
Operations can be performed on Tensor Trains represented as vectors or matrices. It uses
SVD computations which are computationally intensive and cannot be parallelized. However,
the Tensor Train representation allows relatively smaller dimensions of the matrices being
evaluated. This helps the use case for building models that current machines can handle
computationally. Requirements for memory storage are also less with the use of Tensor
Trains.

The variability in the data can be well defined using alternates of graph Laplacians. Using
a local weighting scheme to impose smoothness measures has proven effective compared to
a global weighting coefficient. This weighting matrix could also be introduced into the opti-
mization problem to build accurate models. Laplacians of directed or bipartite graphs can be
evaluated and used to define a similar optimization objective function. Variability in the data
can be captured using different smoothness measures such as Sobolev Smoothness or other
kernel-based methods.
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Appendix A

Graph Regularized (GRCP) Tensor
Decomposition

A-1 Graph Regularized CP Tensor Decomposition Model

The proposed objective function for minimization is given by,

f(X(n)) = min
X(n)

1
2

∥∥∥∥∥WΩ(n)

(
T(n) −X(n)

[(
X(i)

)⊙i ̸=n
]T
)∥∥∥∥∥

2

F

+ 1
2 ||X

(n)TL(n)X(n)||2F

Expanding and neglecting the terms that are independent of the minimizing variable,

f(X(n)) = min
X(n)

1
2 Tr

{
X(n)T

[(
X(i)

)⊙i ̸=n
] [(

X(i)
)⊙i ̸=n

]T
X(n) − 2X(n)T (WΩ(n)T(n)

) [(
X(i)

)⊙i ̸=n
]}

+1
2 Tr

{
X(n)TL(n)X(n)

}
We combine similar terms and rewrite the above objective function as a quadratic subproblem
for each ALS iteration.

f(X(n)) = minimize
X(n)∈RIn×R

1
2 Tr

{
X(n)T [C + L(n)

]
X(n) − 2X(n)TY(n)

}

with Y(n) =
(
WΩ(n)T(n)

) (
X(i)

)⊙i ̸=n
∈ RIn×R, C =

[(
X(i)

)⊙i ̸=n
]T [(

X(i)
)⊙i ̸=n

]
∈ RR×R.

Thus, the quadratic minimization objective function is given by the form,

g(x(n)) = 1
2x(n)TH(n)x(n) − x(n)T(Y(n))

with x(n) = vec(X(n)) and H(n) =
[
C⊗ IIn + IR ⊗ L(n)

]
∈ RRIn×RIn .
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A-2 Alternating Least Squares (ALS) algorithm

Presented here is an adaptation of the ALS algorithm as given in Algorithm (1) to the objective
function mentioned in Equation (3-5).

Algorithm 4 CP-ALSLap Algorithm for order d Tensor
1: function CP-ALSLap(T ,WΩ, λn, λl, L(n),R)
2: initialize X = ⟨WΩ, T ⟩ ▷ Tensor Inner Product
3: initialize X(n) ∈ RIn×R for n ∈ [2, d]
4: initialize En = 0
5: repeat
6: Eo = En

7: for n = 1 ,. . . , d do
8: C = X(1)TX(1) . . . X(n−1)TX(n−1)X(n+1)TX(n+1) . . . X(d)TX(d)

9: X(n)
0 = X×n

[(
X(i)

)⊙i ̸=n
]

10: X(n) = GRCP-ConjGrad(λn, λl, L(n), C, X(n)
0 )

11: normalize columns of X(n) and store norms as λ
12: end for
13: En = 1− ||X −X̂ ||F

||X ||F
14: until max. iterations reached or |En − Eo| < tol
15: return λ, X(1), X(2), . . . , X(d)

16: end function

A-3 Convergence Analysis

A-3-1 Lipschitz Boundedness

The quadratic subproblems to be solved using the CG solver is given as follows,

g(x(n)) = 1
2x(n)TH(n)x(n) − x(n)Ty(n)

Let x(n) be the initial point of the algorithm, x(n)
∗ be the solution of the subproblem. The error

between the optimal and initial point is given by e = x(n) − x(n)
∗ . After every iteration, the

initial point is updated such that x(n)
k+1 = x(n)

k +e. This ensures x(n) → x(n)
∗ ,

∥∥∥x(n) − x(n)
∗
∥∥∥ < ϵ

for lim e→ 0 and ϵ > 0.

g(x(n)
k + e) = 1

2(x(n)
k + e)TH(n)(x(n)

k + e)− (x(n)
k + e)Ty(n)

= g(x(n)
k ) + 1

2eTH(n)e

The Hessian H(n) being positive-definite and with lim e→ 0, we can conclude that x(n)
k min-

imizes the objective function. The optimal solution of the subproblem is x(n)
∗ = H(n)−1y(n).
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The method of CG finds the solution of the quadratic subproblem by performing a line search
orthogonal to the gradient and equating it to zeros. Let the error e = αp. Using a Netwton-
Raphson method to evaluate the search direction, the Taylor series approximation of the
function is given by,

g(x(n) + αp) ≈ g(x(n)) + α
[
∇g(x(n))

]T
p + α2

2 pT∇2g(x(n))p
d

dα
g(x(n) + αp) ≈

[
∇g(x(n))

]T
p + αpT∇2g(x(n))p

The residual p is initially set to the negation of the gradient function, i.e., p = −∇g(x(n)) =
y(n)−H(n)x(n), ∇2g(x(n)) is the Hessian H(n). Setting the gradient obtained from the Taylor
series approximation to zero, the orthogonal line search direction α = pTp

pTH(n)p . Substituting
the obtained values in the gradient obtained from the Taylor series approximation, we obtain
the Lipschitz bounds for the objective function as follows,∥∥∥∥[ d

dα
g(x(n) + αp)

]∥∥∥∥ ≈ 2 ∥p∥2

The bounds obtained is the Lipschitz bound of the gradient function as e = αp → 0 with
each CG iteration. With no improvement in the objective function, the CG solver is reset
after max iterations.

A-3-2 KL Inequality for Real Analytic Functions

min
X(n)∈RIn×R

1
2

∥∥∥∥∥WΩ(n)

(
T(n) −X(n)

[(
X(i)

)⊙i ̸=n
]T
)∥∥∥∥∥

2

F

+ 1
2 ||X

(n)TL(n)X(n)||2F

where L(n) = λnI + λlL(n). The objective function given above is can be written as a sum of
two functions.

g(X(n)) = ge(X(n)) + gr(X(n))

where ge(X(n)) is the error minimization term and gr(X(n)) is the regularizer term. Dropping
the WΩ(n) term and writing out ge(X(n)),

ge(X(n)) = 1
2

∥∥∥∥∥T(n) −X(n)
[(

X(i)
)⊙i ̸=n

]T
∥∥∥∥∥

2

F

=

∥∥∥X(n) − X̂(n)
∥∥∥2

F

2
∥∥∥∥[(X(i))⊙i ̸=n

]T∥∥∥∥2

F

The above can be written as a power series that is represented as,

ge(X(n)) =
∞∑

j=0
aj(X(n) − α)j
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with aj = 1

2

∥∥∥∥[(X(i))⊙i̸=n
]T
∥∥∥∥2

F

and α = X̂(n). Similarly, the regularizer term gr(X(n)) can be

written out as,

gr(X(n)) = 1
2 ||X

(n)TL(n)X(n)||2F =

∥∥∥X(n)TX(n)
∥∥∥2

F

2||L(n)||2F

The power series when applied to gr(X(n)) becomes gr(X(n)) = ∑∞
j=0 bj(X(n)TX(n))j with

bj = 1
2||L(n)||2F

and α = 0. The objective function can, thus, be written as a power series of
the form as given in Equation (3-8) with,

g(X(n)) =
∞∑

j=0
aj(X(n) − α)j +

∞∑
j=0

bj(X(n)TX(n))j

The series converges as j →∞ on some interval of positive radius centered at the combination
of the two functions. This concludes the proof that the formulated objective function is a
sum of real analytic functions and, thus, satisfies the KL inequality.
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Appendix B

Model Validation Using Synthetic
Dataset

B-1 Performance Evaluation Metrics

B-1-1 Algorithm Run Times

Regularization λl 0 0.1 0.01 0.001
Min Run Time (s) 2.93 1.93 17.85 8.26
Max Run Time (s) 256.07 124.95 205.50 206.29

Average Run Time (s) 66.81 63.72 67.05 64.34

Table B-1: Aggregate runtimes for varying regularization λl

SNR (dB) 0 0.1 0.5 1 4 7
Min Run Time (s) 27.21 8.26 1.93 20.49 19.42 2.93
Max Run Time (s) 134.18 106.95 256.07 117.55 90.69 112.42

Average Run Time (s) 63.46 60.65 71.43 70.59 60.16 61.95

Table B-2: Aggregate runtimes for varying SNR (dB)
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Appendix C

Model Validation Using MovieLens
Dataset

C-1 Influence of CP Rank
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Figure C-1: Influence of varying CP ranks for ρ = 0.6%
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Figure C-2: Influence of varying CP ranks for ρ = 2.5%
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Figure C-3: Influence of varying CP ranks on Testing NMSE for ρ = 0.6%
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Figure C-4: Influence of varying CP ranks on Testing NMSE for ρ = 2.5%

CP Rank 20 30 33 36 40 50 20 30 33 36 40 50
λn = 0 λn = 1

Min NMSE 0.744 0.742 0.730 0.743 0.736 0.720 0.744 0.740 0.730 0.743 0.733 0.720
Max NMSE 0.752 0.744 1.212 0.750 0.741 0.729 0.753 0.744 1.080 0.750 0.741 0.729

Average NMSE 0.748 0.743 0.853 0.746 0.738 0.724 0.748 0.742 0.820 0.746 0.736 0.724
λn = 5 λn = 10

Min NMSE 0.741 0.736 0.728 0.738 0.730 0.717 0.742 0.737 0.728 0.740 0.730 0.717
Max NMSE 0.748 0.847 0.905 0.746 0.736 0.726 0.749 0.757 0.864 0.746 0.736 0.726

Average NMSE 0.744 0.765 0.775 0.741 0.732 0.721 0.745 0.742 0.764 0.743 0.733 0.720

Table C-1: Aggregate Training NMSE with varying CP Ranks for ρ = 0.6%

CP Rank 20 30 33 36 40 50 20 30 33 36 40 50
λn = 0 λn = 1

Min NMSE 0.799 0.798 0.787 0.797 0.798 0.794 0.800 0.797 0.788 0.796 0.796 0.794
Max NMSE 0.801 0.804 1.144 0.798 0.801 0.798 0.802 0.802 1.001 0.799 0.798 0.800

Average NMSE 0.800 0.801 0.879 0.798 0.800 0.796 0.801 0.800 0.843 0.798 0.798 0.797
λn = 5 λn = 10

Min NMSE 0.798 0.796 0.787 0.794 0.795 0.792 0.798 0.795 0.787 0.795 0.795 0.792
Max NMSE 0.800 0.886 0.890 0.796 0.799 0.799 0.802 0.812 0.870 0.798 0.800 0.798

Average NMSE 0.799 0.821 0.816 0.795 0.798 0.796 0.800 0.802 0.810 0.796 0.798 0.795

Table C-2: Aggregate Testing NMSE with varying CP Ranks for ρ = 0.6%
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CP Rank 5 7 10 12 15 20 25 5 7 10 12 15 20 25
λn = 0 λn = 1

Min NMSE 0.739 0.699 0.721 0.716 0.705 0.721 0.691 0.739 0.699 0.721 0.717 0.706 0.722 0.692
Max NMSE 0.744 0.707 0.726 0.721 0.710 0.726 0.697 0.744 0.704 0.726 0.721 0.710 0.726 0.696

Average NMSE 0.741 0.701 0.723 0.718 0.707 0.723 0.694 0.741 0.701 0.723 0.719 0.707 0.723 0.693
λn = 5 λn = 10

Min NMSE 0.737 0.707 0.718 0.713 0.702 0.730 0.690 0.736 0.707 0.717 0.712 0.703 0.730 0.689
Max NMSE 0.740 0.712 0.722 0.717 0.708 0.736 0.693 0.741 0.712 0.723 0.716 0.707 0.734 0.694

Average NMSE 0.739 0.709 0.720 0.715 0.704 0.732 0.691 0.739 0.709 0.720 0.714 0.704 0.732 0.691

Table C-3: Aggregate Training NMSE with varying CP Ranks for ρ = 2.5%

CP Rank 5 7 10 12 15 18 20 5 7 10 12 15 18 20
λn = 0 λn = 1

Min NMSE 0.761 0.745 0.746 0.749 0.740 0.755 0.739 0.761 0.745 0.745 0.749 0.741 0.756 0.739
Max NMSE 0.763 0.747 0.748 0.750 0.743 0.756 0.742 0.763 0.748 0.749 0.751 0.743 0.757 0.741

Average NMSE 0.762 0.746 0.747 0.749 0.742 0.756 0.740 0.762 0.747 0.747 0.750 0.742 0.756 0.740
λn = 5 λn = 10

Min NMSE 0.759 0.749 0.744 0.747 0.740 0.759 0.738 0.758 0.749 0.743 0.747 0.741 0.759 0.739
Max NMSE 0.762 0.750 0.746 0.750 0.741 0.762 0.742 0.762 0.750 0.746 0.748 0.743 0.761 0.741

Average NMSE 0.760 0.750 0.745 0.748 0.741 0.760 0.740 0.760 0.750 0.745 0.747 0.742 0.760 0.740

Table C-4: Aggregate Testing NMSE with varying CP Ranks for ρ = 2.5%

C-2 Influence of Regularization
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Figure C-5: Influence of varying Laplacian Regularization λl on Testing NMSE for ρ = 0.6%
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Figure C-6: Influence of varying Laplacian Regularization λl on Testing NMSE for ρ = 2.5%

Regularization λl 0 0.1 0.01 0.001 0 0.1 0.01 0.001
λn = 0 λn = 1

Min NMSE 0.720 0.721 0.725 0.729 0.720 0.723 0.723 0.729
Max NMSE 1.212 0.745 0.749 0.752 1.080 0.746 0.748 0.753

Average NMSE 0.816 0.738 0.739 0.741 0.794 0.738 0.738 0.741
λn = 5 λn = 10

Min NMSE 0.717 0.720 0.723 0.726 0.717 0.719 0.721 0.726
Max NMSE 0.905 0.742 0.745 0.748 0.864 0.743 0.745 0.749

Average NMSE 0.780 0.735 0.735 0.737 0.758 0.735 0.735 0.737

Table C-5: Aggregate Training NMSE with varying regularization λl for ρ = 0.6%

Regularization λl 0 0.1 0.01 0.001 0 0.1 0.01 0.001
λn = 0 λn = 1

Min NMSE 0.797 0.794 0.792 0.787 0.796 0.794 0.790 0.788
Max NMSE 1.144 0.803 0.801 0.799 1.001 0.802 0.800 0.801

Average NMSE 0.857 0.799 0.798 0.795 0.833 0.799 0.797 0.795
λn = 5 λn = 10

Min NMSE 0.795 0.795 0.792 0.787 0.796 0.794 0.790 0.787
Max NMSE 0.890 0.802 0.800 0.798 0.870 0.802 0.799 0.798

Average NMSE 0.828 0.799 0.797 0.794 0.813 0.799 0.797 0.794

Table C-6: Aggregate Testing NMSE with varying regularization λl for ρ = 0.6%

Master of Science Thesis Rohan Chandrashekar



64 Model Validation Using MovieLens Dataset

Regularization λl 0 0.1 0.01 0.001 0 0.1 0.01 0.001
λn = 0 λn = 1

Min NMSE 0.691 0.693 0.693 0.697 0.692 0.692 0.693 0.696
Max NMSE 0.740 0.739 0.741 0.744 0.739 0.740 0.742 0.744

Average NMSE 0.714 0.714 0.715 0.719 0.714 0.714 0.715 0.718
λn = 5 λn = 10

Min NMSE 0.690 0.691 0.690 0.693 0.689 0.689 0.690 0.694
Max NMSE 0.737 0.739 0.738 0.740 0.739 0.736 0.738 0.741

Average NMSE 0.714 0.715 0.715 0.718 0.715 0.713 0.715 0.718

Table C-7: Aggregate Training NMSE with varying regularization λl for ρ = 2.5%

Regularization λl 0 0.1 0.01 0.001 0 0.1 0.01 0.001
λn = 0 λn = 1

Min NMSE 0.741 0.742 0.739 0.739 0.741 0.741 0.739 0.739
Max NMSE 0.762 0.761 0.762 0.763 0.761 0.761 0.762 0.763

Average NMSE 0.749 0.749 0.748 0.750 0.749 0.749 0.749 0.749
λn = 5 λn = 10

Min NMSE 0.741 0.740 0.738 0.738 0.741 0.740 0.739 0.739
Max NMSE 0.760 0.762 0.759 0.762 0.761 0.759 0.761 0.762

Average NMSE 0.749 0.750 0.749 0.749 0.750 0.748 0.749 0.749

Table C-8: Aggregate Testing NMSE with varying regularization λl for ρ = 2.5%

C-3 Performance Evaluation Metrics

C-3-1 Relative Reconstruction Error (RRE) and POF

CP Rank 20 30 33 36 40 50 20 30 33 36 40 50
λn = 0 λn = 1

Min POF 0.153 0.158 -1.829 0.153 0.161 0.172 0.153 0.158 -2.062 0.153 0.162 0.172
Max POF 0.160 0.159 0.163 0.158 0.166 0.180 0.159 0.160 0.163 0.158 0.167 0.179

Average POF 0.157 0.158 -0.338 0.156 0.164 0.177 0.157 0.159 -0.397 0.156 0.165 0.176
λn = 5 λn = 10

Min POF 0.157 -0.400 -1.154 0.156 0.166 0.174 0.156 -0.122 -0.736 0.156 0.165 0.174
Max POF 0.162 0.164 0.165 0.161 0.171 0.182 0.162 0.163 0.164 0.161 0.171 0.182

Average POF 0.160 0.022 -0.168 0.159 0.169 0.179 0.159 0.091 -0.064 0.159 0.169 0.179

Table C-9: Aggregate POF with varying CP Rank for ρ = 0.6%
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CP Rank 5 7 10 12 15 20 25 5 7 10 12 15 20 25
λn = 0 λn = 1

Min POF 0.152 0.181 0.160 0.167 0.175 0.165 0.187 0.152 0.182 0.160 0.166 0.175 0.165 0.188
Max POF 0.156 0.187 0.163 0.170 0.181 0.170 0.194 0.156 0.187 0.164 0.169 0.181 0.170 0.194

Average POF 0.154 0.185 0.162 0.169 0.179 0.168 0.191 0.154 0.185 0.162 0.168 0.179 0.168 0.191
λn = 5 λn = 10

Min POF 0.155 0.176 0.163 0.169 0.177 0.158 0.190 0.154 0.175 0.162 0.170 0.178 0.159 0.190
Max POF 0.158 0.181 0.165 0.172 0.184 0.163 0.196 0.158 0.181 0.166 0.173 0.183 0.163 0.196

Average POF 0.156 0.179 0.164 0.171 0.181 0.161 0.193 0.156 0.179 0.164 0.172 0.181 0.161 0.194

Table C-10: Aggregate POF with varying CP-Rank for ρ = 2.5%

Regularization λl 0 0.1 0.01 0.001 0 0.1 0.01 0.001
λn = 0 λn = 1

Min POF -1.829 0.153 0.156 0.153 -2.062 0.152 0.156 0.153
Max POF 0.180 0.179 0.176 0.172 0.179 0.178 0.176 0.172

Average POF -0.168 0.162 0.162 0.160 -0.207 0.162 0.163 0.160
λn = 5 λn = 10

Min POF -1.154 0.155 0.159 0.156 -0.736 0.155 0.158 0.156
Max POF 0.182 0.180 0.178 0.174 0.182 0.181 0.179 0.174

Average POF -0.146 0.165 0.165 0.163 -0.030 0.165 0.165 0.163

Table C-11: Aggregate POF with varying regularization λl for ρ = 0.6%

Regularization λl 0 0.1 0.01 0.001 0 0.1 0.01 0.001
λn = 0 λn = 1

Min POF 0.155 0.156 0.154 0.152 0.156 0.155 0.153 0.152
Max POF 0.194 0.193 0.191 0.187 0.194 0.193 0.191 0.188

Average POF 0.174 0.174 0.173 0.170 0.174 0.174 0.172 0.170
λn = 5 λn = 10

Min POF 0.158 0.156 0.156 0.155 0.156 0.158 0.156 0.154
Max POF 0.196 0.195 0.193 0.190 0.196 0.196 0.193 0.190

Average POF 0.174 0.174 0.172 0.170 0.173 0.174 0.172 0.170

Table C-12: Aggregate POF with varying regularization λl for ρ = 2.5%
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C-4 Scalability
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Figure C-7: Algorithm Run Times with varying CP rank for ρ = 0.3%
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Figure C-8: Algorithm Run Times with varying CP rank for ρ = 0.6%
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Figure C-9: Algorithm Run Times with varying CP rank for ρ = 0.8%
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Figure C-10: Algorithm Run Times with varying CP rank for ρ = 2.5%
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Glossary

List of Acronyms

RS Recommender Systems

CF Collaborative Filtering

kNN k Nearest Neighbours

MF Matrix Factorization

PCA Principal Component Analysis

SVD Singular Value Decomposition

CP CANDECOMP/PARAFAC

GRCP Graph Regularized CP Tensor Decomposition

GLR Graph Laplacian Regularizer

ALS Alternating Least Squares

CG Conjugate Gradient

ADMM Alternating Direction Method of Multipliers

MTTKRP Matricized Khatri-Rao Product

NMSE Normalized Mean Square Error

RRE Relative Reconstruction Error

POF Percentage of Fit

KL Kurdyka-Lojasiewicz

SNR Signal to Noise Ratio

RGB Red, Green, Blue

GSP Graph Signal Processing

CPU Central Processing Unit

GPU Graphics Processing Unit
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