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Abstract

Liquid storage tanks are used worldwide to contain liquids such as drinking water, fuel
and chemicals. Loss of containment during a seismic event can add to an earthquake’s
destructiveness by posing a fire hazard, spilling toxic substances or reducing the supply of
drinking water. It is therefore important that they remain operational at a pre-defined level
of functionality during and after an earthquake event.
Two effects that are recognized to play a role in the seismic behavior of liquid storage tanks
are fluid-structure interaction and soil-structure interaction. Numerical models have the
ability to describe the dynamic behavior of each domain accurately, but they tend to be
time consuming compared to many of the available simplified analytical models. While the
latter can be useful for design purposes, they do not necessarily yield accurate solutions to
the complex system at hand.
In this thesis, a semi-analytical model is put forward based on previous work by Canny (2018)
and Molenkamp (2018) that combines both fluid-structure and soil-structure interaction with
a dynamic substructuring approach. The model offers a computational efficiency and ease of
use comparable to the aforementioned analytical models, but the only sacrifices to accuracy
are the limitations imposed by the underlying assumptions and a number of discretizations.
The tank, soil and fluid domains are treated separately. The tank is considered with Love’s
thin shell theory and the soil as a visco-elastic continuum. The fluid is assumed to be
incompressible, irrotational and inviscid, allowing the application of linear potential theory.
The solutions to the homogeneous equations of Love’s shell theory, describing the behavior
of the tank’s bottom plate and wall segments, are found as eigenfunction expansions. By
satisfying the boundary and interface conditions of the different tank parts, an eigenvalue
problem is formulated that leads to the eigenfrequencies and mode shapes of the tank.
The fluid velocity potential is rewritten as the superposition of three fluid velocity potentials
that each satisfy a set of conditions regarding the velocity continuity at the wall and at
the plate, and the free surface condition at the fluid surface. The velocity potential in
addition needs to satisfy Laplace’s equation and solutions are found again as an expansion
of eigenfunctions that represent the fluid’s modes.
For the soil, Green’s influence functions for uniform horizontal and vertical loads on a circular
area at the soil surface have been used to assemble a dynamic soil stiffness matrix. The
influence functions are again in the form of an eigenfunction expansion that is the solution
to the homogeneous wave equation describing the soil’s motions.
Through satisfaction of a set of conditions at the fluid-structure and soil-structure interfaces,
respectively velocity and stress continuity, and displacement and stress continuity, a final set
of equations is obtained. The only unknowns remaining in this set are the modal amplitudes
that after solving can be used to linearly combine the mode shapes to give the full dynamic
behavior of the tank-fluid system. Motions and stresses at the soil surface can be found
with the dynamic soil stiffness matrix.
The dynamic soil-structure interaction is taken into account in the model by considering
all wave fields present in the soil, namely the free-field (or incident), the scattered and the
radiated wave field. Subsequent satisfaction of the soil-structure interface conditions ensures
that soil-structure interaction is properly considered, and it yields a simple result in which
the usually known free-field wave field can directly be applied in the excitation term of the
plate’s equations of motion.
Results are obtained in the frequency domain and can be transformed to the time domain
with the inverse Fourier transform. Output can be obtained similar to the output of FE
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models with stresses and displacements at each location of the tank domain. In the fluid
domain, velocities can be found as well as related variables, such as the fluid pressures at
the fluid-tank interfaces and the fluid elevation at the fluid surface (sloshing). Regarding
the soil, stresses can be obtained at the soil-structure interface and displacements at the
soil surface. Besides, the model can give more insight in the effects of SSI, compared to a
tank-fluid system founded on a rigid soil.
Limitations of the model include the inability to model nonlinear effects, as a result of the
linearity of the model, so that nonlinear failure mechanisms as buckling cannot be modeled,
or nonlinear stress-strain relations. At the same time, nonlinear effects are not extensively
covered in the other available analytical methods either.
With regard to engineering practice, roofs, ring stiffeners and anchors are commonplace, but
have yet to be included in the model. Similarly, the capacity to model multiple soil layers
would bring the model a step closer to reality. Besides more accurate modeling of the soil
composition at a greater depth, it would admit a more realistic model of the soil directly
underneath the tank, which is often improved in case of initially unsuitable grounds. Before
the model can be applied in practice however, it needs to be validated, for example with a
FE model or experimentally.
To increase the model’s competitive advantage of computational efficiency, measures can be
taken to improve it. The greatest improvements can be made in the assembly of the dynamic
soil stiffness matrix by reducing the number of elements of the soil-structure interface. With
the applied axisymmetric discretization, many of the matrix entries are the same, so that
only a small number actually needs to be computed. However, a large number of very small
elements is concentrated in the center of the soil-structure interface that does not add to the
accuracy of the solution. Other discretizations could reduce computation time by reducing
the number of elements and thereby the size of the dynamic soil stiffness matrix.
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1 Introduction

Liquid storage tanks are essential structures in most societies for the storage of potable
water, petroleum, fuel and chemicals, and for the treatment of sewage. Each of these liq-
uids can be either of critical importance directly after an earthquake event or destructive
by causing fires or chemical hazards. To prevent or mitigate health-related, economic and
environmental losses, it is imperative to be able to design liquid storage tanks such that
they satisfy safety requirements during seismic events.
Therefore, the seismic behavior of liquid storage tanks has been a subject of research for
decades. While basic models were developed as early as the 1950’s, the interaction effects
that occur between both the soil and the tank as well as the fluid and the tank are com-
plex. Ongoing research is aimed at developing ever more accurate or faster models through
different approaches. In this thesis, a model is presented to predict the seismic response
of cylindrical liquid storage tanks on shallow foundations, including both soil-structure and
fluid-structure interaction with a semi-analytical approach. The purpose of this approach
is to increase computational efficiency while maintaining the accuracy of more advanced
models such as finite element models.
The remainder of the introduction is aimed at summarizing the various aspects of pre-
dicting the seismic response of liquid storage tanks, providing an overview of the current
methodology, formulating the main research questions, and presenting the outline of this
thesis.

1.1 Theoretical background

1.1.1 Earthquakes

Earthquakes are a shaking of the ground, caused by releases of energy in the earth’s crust
that are transported through seismic waves. The origins of the releases of energy can
be natural, such as tectonic plate movements or volcanic eruptions, and human-made or
induced, such as bomb explosions, filling of reservoirs or the collapse of underground cavities
as a result of mining or drilling (Elnashai and Di Sarno (2015)).
The response of a structure to a release of energy is determined by the combination of two
main aspects. The first is the excitation, or the fraction of the original release of energy
that reaches the structure and the wave forms in which the energy is transported. While
tectonic plate movements tend to have the highest energy release and generally lead to the
most destructive earthquakes, induced earthquakes with a smaller energy release can also
lead to significant damage in cases of a small focal depth or unfavourable soil conditions.
The second aspect is the manner in which the structure responds to such excitations, or its
structural dynamic behavior.
Concentrating on the aspect of the excitation, seismic waves come in different forms. A first
distinction can be made between body waves that travel through the earth’s interior layers
and surface waves that travel across the earth’s outer layers (Elnashai and Di Sarno (2015)).
Body waves can then be subdivided between P-waves (longitudinal, pressure or primary
waves) and S-waves (transverse, shear or secondary waves). P-waves displace particles
parallel to the direction of propagation and cause the medium to expand and contract.
S-waves displace particles perpendicular to the direction of propagation and thereby incite
shear deformations in the medium, which can be subdivided into horizontal (SH) and vertical
(SV) shear deformation.
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In turn, surface waves, which originate from the constructional interference of body waves,
can be subdivided into Rayleigh waves and Love waves (figure 1.1). Love waves behave
like SH-waves with horizontal particle motion perpendicular to the wave direction. On the
other hand, Rayleigh waves behave like coupled PSV-waves with vertical particle motion
perpendicular to the wave direction, and horizontal particle motion parallel to the wave
direction, resulting in a retrograde vertical elliptic motion (Novotny (1999)).

(a) (b)

Figure 1.1 – Depiction of Rayleigh wave (a) and Love wave (b), adapated from Bolt (1999)

Besides a distribution among different wave types, the released energy is distributed among
waves with different frequencies. For example, at the source, the energy of a signal generated
by an earthquake will be distributed more evenly accross all frequencies than the energy of
a signal generated by a machine vibrating at a certain frequency.
What fraction of the released energy reaches the location of interest, and how that energy
is distributed among the different wave types and frequencies, is dependent on the media
through which the waves travel. Material properties determine the wave speeds and the
amount of energy dissipation, while differences in material properties influence to what
extent waves are reflected or transmitted and through which wave types (P- or S-waves)
(see the book by Aki and Richards (2009) for more detail). In addition, the waves of each
type will differ in wave length for each frequency of excitation and they are, in practice,
dispersive.
In the end, the manner in which the seismic waves excite the structure also depends on
the dynamic properties of the structure itself. The interaction between soil and structure is
explained in more detail in the next subsection.

1.1.2 Soil-structure interaction

When ground surface motions are unhindered by the presence of structures, they are called
free-field surface motions; the free-field waves thus make up the entire wave field at the
ground surface. Whenever a structure is present, the ground motions influence the motions
of the structure, while the structure affects the free-field motions. The effect soil and
structure have on each other are collectively called soil-structure interaction (SSI) (Kramer
(1996); Wolf (1985)).
First, if the shape of the structure does not match the shape of the free-field waves, the
waves are reflected or scattered from the soil-structure interface. The total wave field then
no longer consists of just the free-field waves, but is altered to include the scattered wave
field. Since the motions of the structure can be imagined to average out the motions at
the interface of the soil in the free-field situation, this effect is sometimes called base slab
averaging (Stewart, Comartin, and Moehle (2004)). Second, if the structure is in motion,
it transfers stresses to the supporting soil due to its inertia, thereby causing an additional
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wavefield to the free-field waves. As a result of soil stiffness properties, the stresses generated
are dependent on the frequencies of the structures’ motions. The two interaction effects are
called kinematic and dynamic soil-structure interaction respectively.
The relevance of SSI effects for a structure’s design depend on the dynamic properties
of both the structure and the soil. Interaction effects occur, when the behavior of the
structure’s domain influences the boundary of the soil domain and vice versa. In case the
soil is extremely stiff, the structure’s behavior will hardly influence the soil domain, so that
interaction effects are negligble (Wolf (1985)). In less extreme cases, the presence of soil
essentially introduces a flexible component into the system, which increases the fundamental
periods of the system. Whether this is beneficial for the structure depends on the frequency
content of the seismic input motion. Considering the response spectra in figure 1.2, including
SSI can move the modeled system to a part of the spectrum with lower energy content to the
right of the plateaus. On the other hand, a system with the relevant fundamental periods
left of the plateaus, the incorporation of SSI can shift the period into the range of high
seismic excitation.

Figure 1.2 – Elastic response spectra for single degree of freedom system for various soil types, from
EN 1998-1 (2005)

Another SSI effect is an increase of the system’s damping, resulting from travelling waves
that carry energy away from the structure. For soils resembling a half-space, this occurs in
both horizontal and vertical direction, while waves can be reflected back to the structure
in case of layered soils. In addition, soil layers act as wave guides, so that waves will
not propagate at frequencies below the cut-off frequency, which depends on the soil layer’s
material and geometrical properties.
Finally, the wave-passage effect becomes relevant, when wave lengths approach the relevant
dimensions of the structure (Elnashai and Di Sarno (2015)). The general relation between
wave speed, wavelength and frequency is at its simplest

c =
ω

k
(1.1)

in which c is the wave speed, k the wavenumber, equal to the inverse of the wavelength, and
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ω the angular frequency. The wave speed increases with stiffer soils, so at a given frequency
the wavelength will increase. As the magnitude of wavelengths approaches relevant dimen-
sions of the considered structure, which is most often the case for softer soils, the motions
of the structure become more affected.

Recognition and modeling of SSI are far from new and the theoretical framework, still used
in more modern methods today, was developed over the course of the 19th and 20th century,
as described by Kausel (2010). Lamé and Clapeyron discussed, for example, the half-space
problem early in the 19th century and Thompson (or Lord Kelvin) and Stokes offered the
first fundamental solutions for, respectively, static (1848) and dynamic forces (1849) in infi-
nite elastic media. The first research into dynamic SSI was performed by Reissner, published
in 1936, when he examined the dynamic behavior of circular disks (representing an actual
structure) on an elastic half space. Kinematic SSI in its turn was first shown to exist by
Housner (1957), who concluded, based on measurements, that the presence of a structure
can filter out waves of certain lengths.
More recent methods to model SSI can be subdivided into the direct and indirect, or sub-
structuring, approaches (Lu (2016); Tsouvalas (2017)). In the direct approach, both soil
and structure are modeled in one model, whereas the substructuring approach treats soil
and structure as separate systems that are subsequently coupled at their interface.
The direct approach requires fewer assumptions and offers the possibility to include non-
linearities, making it theoretically more accurate. It is generally applied using the finite
element method (FEM), which poses certain challenges. For example, the software needs
to be able to compute both soil and structure accurately, the boundaries of the soil domain
need to properly handle the combination of radiating waves and seismic input motions, and
the element size needs to be small enough to model the shortest waves, while the soil domain
needs to be large enough to model the longest waves (Tsouvalas (2017)). Obtaining a stable
model and useful results is time-consuming and therefore more expensive.
The substructuring approach is limited to linear models, but in general computationally
much more efficient than the direct approach. Most often, the FEM is applied for the struc-
ture, and the soil is reduced to a dynamic stiffness matrix that can be directly applied in
the structure’s model. The soil domain, the cause of most issues in the direct approach,
can be modeled more efficiently this way, for example by employing the boundary element
method (BEM) or analytical methods.
Common numerical methods to model the soil domain are the FEM and more recently the
BEM, in which the boundary of a domain of interest is discretized, instead of its interior.
Considering the particular issue of needing small enough elements in a large enough soil
domain, discretizing a surface instead of a volume can lead to significant time savings. In
addition, the BEM automatically satisfies the radiation conditions, without the need for
special boundary conditions (Menglin, Huaifeng, Xi, and Yongmei (2011)).
Analytical models of the dynamic soil stiffness comprise springs and dashpots in various
configurations (even lumped for simplified structures). The simplest of these is the Win-
kler foundation, which consists of uncoupled, frequency independent, linear elastic, vertical
springs. While computationally efficient, it disregards most of the complexity of soils. Efforts
to improve the model are, for example, to add dashpots to the components, representing
material and radiation damping, to couple the components and to add horizontal compo-
nents to represent shear effects (Horvath (2002)). The increase in accuracy, however, comes
at the cost of having to determine additional parameters that are usually site-specific.
More accurate analytical models to describe the dynamic response of soils have been pro-
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vided by Kausel (1974, 2010) and Wolf (1985). They regarded the soil in their models as
an elastodynamic continuum and have presented fundamental solutions for various types of
loading and soil configurations, such as a half-space or soil strata on top of a half-space.
These models can also be applied in modeling SSI, as shown by Molenkamp (2018), whose
model is also applied in this thesis to represent the soil.

1.1.3 Fluid-structure interaction

When a fluid and a structure are in contact and the motions of the fluid affect the motions
of the structure, while the motions of the structure in turn influence the motions of the fluid,
fluid-structure interaction (FSI) occurs (Bhakade, Kumbhar, Mohite, and Kengar (2016)).
FSI is not limited to civil structures, but is also an area of interest in marine technology for
the design of propellors, in offshore engineering for determining wave impact, in aerospace
engineering for the stability analysis of wings and in biomechanics for blood flow through
vessels.
As in the case of SSI, and many other fields of mechanics and dynamics, the field of FSI
was developed largely in the 19th and 20th century. Among the first to describe FSI effects
was Bessel in 1828, who introduced the concept of hydrodynamic mass while investigating
the motion of a pendulum in fluid (Jo (2008)). Stokes in 1843 was the first to quantify the
added mass, considering the case of an infinite cylinder moving through an infinite fluid
medium with a uniform acceleration. Further developments in the 20th century were also
driven by practical applications in a variety of fields. Stability analysis was needed for the
advancement of aeronautics and the design of bridges, of which the Tacoma Narrows bridge
is a notorious example. Also, the earthquake resistance of nuclear power plants and dams
was researched (Westergaard in 1933). From the 1960s onward, the development of com-
puters opened up many new possbilities in numerical analysis of FSI problems (Bungartz,
Mehl, and Schäfer (2010)). While in specific cases, that admit simplifications of the fluid’s
behavior, analytical solutions are available, often the complexity of the physical processes
involved requires numerical methods to be applied.
As in the case of SSI, the modeling of FSI can be subdivided in direct and substructuring
approaches, which in literature are more often called monolithic and partitioned respectively
(Bhakade et al. (2016); Bungartz et al. (2010); Zawawi et al. (2018)). In the monolithic ap-
proach both fluid and soil domains are modeled in one model and the equations regarding
their behavior are solved at once. In the partitioned approach both domains are solved
separately, with consideration of the behavior of the other domain through satisfaction of
conditions at the interface between the two domains.
Since for the monolithic approach both domains are modeled in the same model and solved
simultaneously, the discretization method for both domains is the same, generally the FEM.
While the approach is relatively stable, because the coupling of the domains is done di-
rectly, the partitioned approach is much more popular in practice (Bhakade et al. (2016)).
For structural analysis, the dominant discretization method is the FEM, whereas the pre-
ferred method of discretization for the fluid domain is highly dependent on the physical
process that is being modeled (Bungartz et al. (2010)). Having to model both domains with
the same discretization method can therefore be disadvantageous.
With the partitioned approach, the separate domains can be modeled with the most effective
and appropriate methods. The use of specialized software, based on principles of computa-
tional fluid dynamics, permit modeling of fluid processes otherwise infeasible. At the same
time, partitioning increases the difficulty of coupling the domains at the interface, especially
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when nonlinear effects are considered. Solutions for both domains need to converge, while
satisfying the behavior of the other domain at the interface. The interface conditions must
also be satisfied at each time step, even though the time steps of both domains are not
necessarily the same, as a result of computational optimization (Bungartz et al. (2010)).
Analytical models of FSI consider the fluid through the linear wave equation and assume
the fluid to be inviscid and irrotational. Through the latter assumption, the fluid velocity
may be expressed as the gradient of a scalar velocity potential, which simplifies much of
the mathematics involved. Linearization does require that the amplitude of the motions of
the fluid and structure are small compared to the wavelengths involved (Linton and McIver
(2001)), and is therefore not suitable for all cases of FSI. An advantage of the analyti-
cal models, however, is that they are computationally efficient compared to the numerical
methods described above.

1.1.4 Liquid storage tanks

Liquid storage tanks come in different configurations. Regarding their foundation, they can
be elevated, based on the soil surface or embedded, and can be founded on piles in each of
these cases. Most often tanks are made of steel, but concrete and composite tanks are not
unusual either. Finally, common shapes are cylindrical (either horizontally or vertically),
rectangular or spherical, depending on the tank’s use case.
Concentrating on the vertically cylindrical tanks, common failure mechanisms include buck-
ling of the walls, failure of the roofs and the roof-wall connections, and local rupture of the
base plate (Maekawa (2012)). The buckling modes include bending buckling in the form
of elephant foot buckling (elasto-plastic) or diamond buckling (elastic), and shear buckling
(see figure 1.3).

Figure 1.3 – Visualizations of various buckling modes, from Maekawa (2012)

Failure of tank roofs and roof-wall connections is associated with sloshing, when the fluid
comes into contact with the roof. Finally, the base plate of a tank can fail, when the hor-
izontal motion of the fluid causes an overturning moment so large that part of the bottom
plate is lifted. In the case of anchored tanks, the overturning moment can result in failure
of the anchors.

– 6 –



MSc thesis - D. P. Kroon 1 Introduction

What exactly constitutes failure depends in addition on the safety requirements imposed on
the design, which stem from the risks associated with a loss of containment and the required
functionality during or after an earthquake event. For instance, the Eurocode defines an
ultimate limit state, which is the state prior to structural collapse, and a damage limitation
state. The latter corresponds to an ‘integrity’ requirement, satisfied if the tank remains
leakproof and fully operational, or a ‘minimum operating level’, which allows limited dam-
age to occur to a degree at which the system can still operate at a pre-defined level.
The application of FSI in the examination of cylindrical liquid storage tanks dates back to
1949, when Jacobsen found the dynamic fluid pressures that develop during an earthquake
in a cylindrical tank containing fluid (Housner George W. (1957)). Housner later formulated
the concept of the impulsive mass, the part of the fluid that moves synchronously with the
walls, and the convective mass, the oscillating mass that represents the so-called sloshing
part of the fluid (Housner (1963)). The simple model he presented is still at the base of
design codes today (see figure 1.4).

(a) (b)

Figure 1.4 – Housner’s mechanical model (a) and lumped mass approximation (b) with M0 as the
impulsive mass and M1 as the convective mass, from Housner (1963)

However, the behavior of the liquid storage tanks proved more complex than these simple
models suggested, as observed from the discrepancies between expected and measured be-
havior (Haroun (1980)). One such example is the original focus on just the asymmetrical
vibrations resulting from horizontal excitations and neglect of the axisymmetrical response
resulting from vertical excitation (Shahverdiani, Rhai, and Khoshnoudian (2008)). Also,
the flexibility of the tank itself significantly affects the behavior of the fluid-structure sys-
tem (Nicolici and Bilegan (2013)). Since then, research has been aimed at improving the
predictive capacity of models and development of simple design methods. Both analytical
and numerical paths of research have been pursued.
Edwards (1969) was the first to apply numerical methods to research this topic by employ-
ing the FEM and many others have followed, such as Haroun and Housner (1981), Veletsos
(1984) and Tang (1986). In more recent years, improvements in numerical models are still
being made, mostly in adding nonlinear effects (Phan and Paolacci (2018)).
At the same time, analytical methods were developed to solve the coupled fluid-structure
problem. Relatively simplified models include for example the one by Veletsos, who included
a flexible wall in the model of Housner. The more advanced models have been linear in na-
ture and make use of shell theory for the tank. The fluid is generally modeled as inviscid,
irrotational and incompressible, which allows linear potential theory to be applied. Many
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of the studies, however, included either a flexible wall and rigid bottom plate or vice versa,
thereby capturing only part of the physical processes (see Amabili, Päıdoussis, and Lakis
(1998) for a more extensive list). Bauer and Siekmann (1971) did include both a flexible wall
and a flexible bottom plate, but these were not connected. Amabili et al. (1998) overcame
this problem by coupling both parts through rotational springs. Still, in these models that
consider FSI accurately, the soil domain is considered either as rigid, or simplified as a Win-
kler foundation, in some cases supplemented with viscous dampers. The latter is developed
by Canny (2018); Tsouvalas, Canny, Versluis, Peng, and Metrikine (2018), whose fluid-tank
model is incorporated in this thesis.
While analytical methods have been developed to accurately assess soil behavior as dis-
cussed above, these have not widely been applied in models for liquid storage tanks. Some
have modeled the effect of SSI on a liquid-tank system, such as Tang and Veletsos (1990)
who consider kinematic and dynamic SSI, or Haroun and Abdel-Hafiz (1986) and Larkin
(2008), whose work seems to build on the work by Gazetas (1983) that includes frequency
dependent springs, but is based on the motion of just a rigid plate. Even though they
have shown that SSI influences the behavior of the liquid-tank system, these studies lump
the soil behavior into greatly simplified parameters, such as a single stiffness and damping
parameter. Malhotra (1997) divides the bottom plate into segments that individually treat
the repsonse of the soil at each location, but he in turn simplifies the fluid as a lumped
parameter.
Some efforts have been made to model liquid storage tanks with FSI and SSI effects using
a nonlinear FEM (Chaithra, Krishnamoorthy, and Naurin Nafisa (2017); Gibson, Mistry,
Go, and Lubkowski (2015)), claiming that accurate modeling of all domains, as opposed to
lumping domains into simplified parameters, allows optimization of the tank design. This
can lead to material savings or a safer tank design. Especially in extreme cases, such as
very large tanks in areas prone to earthquakes, a more detailed assessment might be desired,
than can be provided by simplified design rules.

1.2 Research questions

As can be concluded from the above, both SSI and FSI can play an important role in the
seismic behavior of liquid storage tanks. Models that consider all domains in detail are finite
element models that tend to be expensive in computation and calibration time. Analytical
models on the other hand usually are computationally efficient, but model at most one of
the two interaction effects accurately. Even though these studies can yield useful results
depending on the case at hand, information is lost that may be valuable for a more safe and
economic tank design.
In summary, an improvement over the current set of available tools for modeling liquid
storage tanks including both SSI and FSI would be a model that can make predictions at
the speed of an analytical model with the accuracy of a more advanced numerical model. In
addition, a model that accurately incorporates both FSI and SSI could be used to contribute
to the current body of knowledge with a more in-depth study of the effects of various soil
parameters on the seismic response of liquid storage tanks. The main question addressed in
this thesis is therefore:

To what extent can the seismic behavior of cylindrical liquid-storage tanks on shallow foun-
dation be predicted with a semi-analytical dynamic substructuring technique considering both
soil-structure and fluid-structure interaction?
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To provide an answer to the main question, the following subquestions are answered:

How can dynamic soil-structure interaction be included in a semi-analytical tank-fluid model?

What is the influence of soil layer height, shear wave speed and tank aspect ratio on the seis-
mic response of a liquid storage tank?

How can the amount of damping be determined of the tank-fluid system through soil-structure
interaction?

The goal of the model can be specified as being able to generate results with an analytical
model that are comparable to the output of a finite element model, e.g. stresses and dis-
placements at any location in the tank, stresses at the soil-structure interface, soil surface
displacements outside the soil-structure interface and the fluid pressures acting on the tank.

1.3 Layout of report

In the next section (section 2) of this report, the soil-fluid-structure model is presented.
First, an overview is given of all included elements, the underlying assumptions and the
limitations. This is followed by a mathematical formulation of the model, describing the
motions of the substructures and the conditions at their boundaries and interfaces. The
excitation of the system is also described, as well as the manner in which soil-structure
interaction is properly considered.
In section 3, convergence of the model is verified and the model is applied to a realistic case
study, showing the possibilites it offers.
In the subsequent section, section 4, the model is used to assess the impact of the height
of the soil layer, of the soil type and of the tank’s aspect ratio on the increase of the
fundamental period of the tank. The model is also compared to a soil model consisting of
uncoupled static springs and dashpots.
The final section, section 5, provides concluding remarks, a discussion of the model and
recommendations for future improvements.
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2 Methods

In this section, the proposed semi-analytical approach to model the soil-structure-fluid sys-
tem is treated in more detail. Descriptions of the tank, fluid and soil domain are presented,
followed by a more in-depth explanation of the method of solution and the underlying as-
sumptions. Next, the differential equations governing the motions of each domain are given,
as well as their solutions. The latter are applied in the conditions that need to be satisfied
at the boundaries and interfaces of the domains to arrive at the final set of equations that
needs to be solved.

2.1 Model description

To find the linear response of the structure-fluid-soil system, a semi-analytical dynamic sub-
structuring approach is applied, specifically the mode-matching technique, or eigenfunction
expansion technique. To that end, the system is divided into three substructures: the tank,
the fluid and the soil (figure 2.1). The tank can be filled with fluid up to any level, and is
located on top of the soil, so not embedded and without a pile foundation. Because of the
circular symmetry of the system, a cylindrical coordinate system is adopted.

�

�

�

Tank

Fluid  

Free surface

  

Soil body

  

Bedrock

Figure 2.1 – Liquid storage tank, partially filled with fluid, located on top of a horizontally unbounded
soil layer. The global coordinate system has its origin at the center of the mid-surface of the
tank’s bottom plate.

2.1.1 Solution method

First, eigenvalue problems are solved for the tank and fluid separately. By satisfying their
respective boundary and interface conditions, the vibration modes or shapes of both domains
can be found. Combining these modes in an infinite series allows them to form any arbitrary
shape by assigning the proper amplitudes to each mode. While the mode shapes are constant
system properties, the amplitudes vary with the load case.
To find the motions of the coupled fluid-tank system, the mode shapes of both domains
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must be assembled in such linear combinations that their final motions respect the behavior
of the other domain at the interface. To that end, interface conditions are formulated that
must be satisfied in addition to the equations governing the motions of both domains.
The soil is substructured in a slightly different manner. As with the other domains, an
eigenvalue problem is solved for the soil layer, yielding displacement shapes that can be
combined linearly to produce any vibration shape. Contrary to the other two domains,
the response of the soil is found for unit surface loads in horizontal and vertical directions,
uniformly distributed over a circular area with an arbitrary radius. The functions describing
the relation between the load and the response are called Green’s influence functions (Wolf
(1985)). By discretizing the soil-structure interface into circles with sufficiently small radii
(infinitesimally small to obtain an exact solution) loads and displacement fields of arbitrary
shape can be represented. Instead of matching the shapes of soil and structure at their
interface, as was the case for the fluid-structure interface, the stresses from the soil acting
on the tank bottom are related to the tank’s displacement field in the tank’s equations of
motion. The advantage of this approach is that incorporating more soil layers only changes
the Green’s influence functions.
Finally, to find the modal amplitudes and thereby the motions of the tank and fluid, the
earthquake excitation is introduced into the system. As the seismic waves excite the system
through the soil and its interface with the structure, a displacement field is prescribed in
the soil stress term of the equations of motion of the tank’s bottom plate. Now a system
of algebraic equations equal in number to the unknown modal amplitudes can be solved.
While that number should, in theory, be infinity to obtain an exact solution, computational
limitations require the truncation of this infinite series of modes, so that the found solution
is an approximation of the actual solution. The final system of equations is simplified by
using the orthogonality properties of the vibration modes.
To solve the soil-structure-fluid system in the frequency domain, the Fourier transform pair
is used to transform equations from the time domain to the frequency domain, or vice versa.
The Fourier transform can also be applied to transform equations from a spatial domain to
its related wavenumber domain:

F(ω) =

∫ ∞
−∞

f(t)e−iωtdt

f(t) =
1

2π

∫ ∞
−∞
F(ω)eiωtdω

F(k) =

∫ ∞
−∞

f(x)e−ikxdx

f(x) =
1

2π

∫ ∞
−∞
F(k)eikxdk

(2.1)

Because solutions in the frequency domain take account of frequency content, but not time,
they are usually applied to find the steady-state response of a system. However, transient
responses can in principle still be handled by superposition of harmonics through the inverse
Fourier transform. In the case of earthquakes, the excitation signal is of finite duration and
variable frequency content over time. Very short earthquake signals might not have the time
to excite all modes in full. To analyze the response of a tank to an actual earthquake, use
can be made, for example, of the short-time Fourier transform.
One of the advantages of the substructuring approach is that variations of the substructures
do not require recalculation of the entire system, but just of the relevant substructure.
This allows, for example, relatively quick sensitivity analyses. An advantage of a semi-
analytical approach is that within the assumptions of the linear regime, the model can
achieve very high accuracy. The only approximations present are the discretization of the
soil-structure interface, the modal truncation, and the rounding errors in the determination
of the eigenfrequencies and eigenwavenumbers. At the same time, the number of equations
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to be solved is minimal compared to a FEM or BEM model, making the computation more
efficient.

2.1.2 Assumptions

The tank itself is modeled as a combination of shell elements; the bottom plate is a circular
plate, while the wall is represented by cylindrical shell elements. Liquid storage tanks often
have walls consisting of multiple stacked segments of varying thickness, which is reflected in
the model by the possibility to incorporate any number n wall segments. All parts of the
tank are assumed to be connected at their mid-surfaces. The tank model does not include
ring stiffeners, a roof, or anchors.
The description of the shell’s motions is based on Love’s theory. This assumes a small shell
thickness, compared to the smallest radius of curvature, so that the in-plane motions vary
linearly through the shell thickness. Furthermore, small displacements and strains are as-
sumed in order to accurately describe motions in the linear regime. In addition, straight
lines normal to the middle surface remain straight during deformations, which implies that
shear strains, as well as normal strains in the out-of-plane direction, are 0 (Soedel (2005)).
The tank’s material is considered to be homogeneous, isotropic, and linearly elastic. Fi-
nally, if material damping is included, possible through adding an imaginary term to the
material’s modulus of elasticity (Tsouvalas (2015)), coupled complex modes are found in
theory, so that linear superposition of the modes is not possible. However, for small material
damping values, e.g. of steel, the effect of coupling of the modes on the tank’s total response
is considered negligible.
The fluid is modeled as being inviscid, irrotational, and incompressible, as is customary for
this type of system (Amabili et al. (1998); Bauer and Siekmann (1971)). The latter assump-
tion does not allow normal strains to develop, so that compressional waves, and therefore
the effects of disturbances, move with an infinite wave speed. Considering the compressional
wave speeds in different types of fluid and the dimensions of the tank, disturbances can be
considered to spread through the tank’s content approximately instantaneously, so that this
simplification is acceptable.
The effects of vorticity, or rotational flow, are in fluid dynamics related to the influence of
a boundary. In the case of the liquid storage tanks, however, the influence of the vorticity
at the small layer near the fluid-structure interface on the seismic behavior of the entire
system is considered to be negligible. Assuming an inviscid fluid neglects the development
of viscous stresses that arise from the energy transport between two fluid domains that
travel with different speeds (Linton and McIver (2001)). While this energy transport tends
to occur for the flow of a fluid near a rigid boundary, as was the case for rotational flow,
this effect is not considered to have any significant impact on the seismic behavior of the
entire system.
The soil substructure is considered as a homogeneous, isotropic, linear elastic, infinite, hor-
izontal layer on top of immovable bedrock. Few soils satisfy all assumptions, given that
soil is often heterogeneous and behaves nonlinearly. However, the representation of soil
as a three-dimensional continuum is considered to be far more realistic than previous soil
representations in tank-fluid-soil models. In addition, extending the model to incorporate
a larger number of soil layers to improve the model further is relatively easy and does not
introduce additional complexity in the solution method elaborated in this thesis.
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2.2 Tank

The tank substructure consists of two parts, namely the bottom and the wall, that are
described by a plate element and cylindrical shell elements, respectively. Both parts expe-
rience motions in-plane and out-of-plane of the mid-surface, which can be described with
three degrees of freedom.
For both parts, the equations of motion are formulated below, describing the forces (in units
of pressure) that are related to the motions of the plate. These can thus be regarded as the
dynamic conditions the system needs to satisfy. They are formulated according to Love’s
shell theory and are of the form (Soedel (2005))

Li(u1, u2, u3) + qi = ρh
∂2ui
∂t2

(2.2)

in which ui is the displacement in the i-th degree of freedom, L represents internal forces
from deformations, q represents external forces, and the right-hand side of the equation
describes the inertia forces. The external forces for each tank part are attributed to a
combination of pressure from the fluid and stresses from the soil.
For each degree of freedom, the eigenfunctions are presented, with references made to the
relevant appendices for their derivations. To arrive at the vibration shapes of the entire
tank, the boundary and interface conditions are formulated, to which the different tank
parts must adhere (section 2.2.3). This is followed by a short description of the numerical
procedure followed to determine the eigenfrequencies and vibration shapes of the entire
tank.

2.2.1 Equations of motion - bottom plate

The equations of motion of the circular bottom plate are given below with degrees of freedom
in radial, circumferential, and vertical direction. Please note that positive displacements of
the plate in the vertical direction are downward, as a result of aligning the positive directions
of the circumferential degree of freedom for the bottom plate and the wall (figure 2.2).

ℎ�

Mid−surface�, ,�� �� ��

, ,��;� ��;� ��;�

�
�

�

Figure 2.2 – Geometrical and material properties of the bottom plate. External forces shown in positive
z-direction, but can act in each degree of freedom.

The three equations can be written in matrix form as

Lpup(r, θ, t) + Ipüp(r, θ, t) = σs(r, θ, t) + pfl(r, θ, t) (2.3)

The 3× 3 matrix Lp, representing the stiffness of the plate, and the 3× 3 matrix Ip, repre-
senting the inertia of the plate, are given in more detail in section A.1.2. Displacements are
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denoted by up(r, θ, t) = [up;r, up;θ, up;z]
T , Newton’s dot notation is used to denote its time

derivatives, fluid pressure by pfl = [0, 0, pfl;z]
T and soil stresses by σs = [σs;r, σs;θ, σs;z]

T .
With the forward Fourier transform (equation (2.1)), equation (2.3) can be rewritten as

Lpũp(r, θ, ω)− ω2Ipũp(r, θ, ω) = σ̃s(r, θ, ω) + p̃fl(r, θ, ω) (2.4)

In the applied solution method, the soil is considered through a dynamic soil stiffness matrix,
Ks(ω), which comes into expression in the soil stresses acting on the plate as

σs(r, θ, ω) = Ks(r, θ, ω)
(
ũi(r, θ, ω)− ũp(r, θ, ω)

)
=

Krr Krθ Krz

Kθr Kθθ Kθz

Kzr Kzθ Kzz



ui;rui;θ
ui;z

−
up;rup;θ
up;z




(2.5)
The dynamic soil stiffness matrix is treated more in-depth in section 2.4, whereas details
on the incorporation of dynamic and kinematic SSI can be found in section 2.4.4. It is
noted that equation (2.5) holds when the prescribed displacements ũi(r, θ, ω) have the same
positive direction as ũp(r, θ, ω).
Although the equations of the in-plane motion are uncoupled from the equation of the out-
of-plane motion for the general case, as shown in section A.1.2, including SSI through the
dynamic soil stiffness matrix couples the degrees of freedom. Through the stiffness matrix,
a displacement in the z-direction causes stresses in the θ- and r-directions, and similarly,
forces develop for the other combinations of degrees of freedom.
Through formulation of the eigenvalue problem

Lpũp(r, θ, ω)− ω2Ipũp(r, θ, ω) = 0 (2.6)

and transformation to the frequency domain and separation of variables, the following eigen-
function expansions are found for each degree of freedom of the plate (section A.1.2):

ũp;r(r, θ, ω) =

∞∑
m=1

∞∑
n=0

[
C̃mn

dJn(kΦ;mnr)

dr
+ D̃mn

n

r
Jn(kΨ;mnr)

]
cos(nθ)

ũp;θ(r, θ, ω) =

∞∑
m=1

∞∑
n=0

[
−C̃mn

n

r
Jn(kΦ;mnr)− D̃mn

dJn(kΨ;mnr)

dr

]
sin(nθ)

ũp;z(r, θ, ω) =

∞∑
m=1

∞∑
n=0

[
ÃmnJn(kmnr) + B̃mnIn(kmnr)

]
cos(nθ)

(2.7)

The trigonometric functions give the shapes in circumferential direction, whereas the terms
with Jn and In, respectively the Bessel function and modified Bessel function (both of the
first kind) express the shapes in radial direction. The value of n is the eigenwavenumber
in circumferential direction and kΦ;mn, kΨ;mn and kmn are the eigenwavenumbers in radial
direction of radial mode m and circumferential mode n. They are defined as

k2
Φ;mn =

ω2
mnρp
Ep

(1− ν2
p)

k2
Ψ;mn =

ω2
mnρp
Ep

2(1 + νp)

k4
mn =

ω2
mnρp
Ep

12(1− ν2
p)

h2
p

(2.8)
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The only unknowns in equations (2.7) and (2.8) are the eigenfrequencies ω2
mn and the con-

stants Amn, Bmn, Cmn and Dmn. The procedure to determine them is explained in more
detail in section 2.2.4.

2.2.2 Equations of motion - wall segments

The cylindrical shells representing the wall segments that make up the tank wall also have
degrees of freedom in the vertical, circumferential, and radial direction. Basic properties of
the wall segments are shown in figure 2.3.

�
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�

Mid−surface
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�
ℎ

(i)
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�;� �
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�;�
�
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Figure 2.3 – Geometrical and material properties of wall segment i. External forces shown in positive
r-direction, but can act in each degree of freedom.

Their coupled equations of motion can be written in matrix form as

L(i)
w u(i)

w (z, θ, t) + I(i)
w ü(i)

w (z, θ, t) = p
(i)
fl (z, θ, t) (2.9)

The 3 × 3 matrix L(i)
w represents the stiffness of wall segment i, and the 3 × 3 matrix I(i)

w

represents the inertia of wall segment i. Their expressions can be found in more detail in

section A.1.3. Displacements are denoted by u
(i)
w (z, θ, t) = [u

(i)
w;z, u

(i)
w;θ, u

(i)
w;r]T and Newton’s

dot notation is used to denote its time derivatives. The external force in this case is the
fluid pressure, p

(i)
fl = [0, 0, p

(i)
fl ]T .

Eigensolutions to satisfy the eigenvalue problem associated with equation (2.9)

L(i)
w u(i)

w (z, θ, t) + I(i)
w ü(i)

w (z, θ, t) = 0 (2.10)

– 15 –



MSc thesis - D. P. Kroon 2 Methods

are sought in the form:

u(i)
w;z(z, θ, ω) =

∞∑
m=1

∞∑
n=0

8∑
l=1

U
(i)
z;mnl exp(λ

(i)
mnlz) cos(nθ) exp(iωmnt)

u
(i)
w;θ(z, θ, ω) =

∞∑
m=1

∞∑
n=0

8∑
l=1

U
(i)
θ;mnl exp(λ

(i)
mnlz) sin(nθ) exp(iωmnt)

u(i)
w;r(z, θ, ω) =

∞∑
m=1

∞∑
n=0

8∑
l=1

U
(i)
r;mnl exp(λ

(i)
mnlz) cos(nθ) exp(iωmnt)

(2.11)

The exponential function related to time expresses the assumption that the tank wall is
expected to vibrate harmonically at the eigenfrequencies ωmn. The latter are at this stage
unknown, but can be found by specifying boundary conditions, substituting equation (2.11)
into those boundary conditions, and finding the nontrivial solution of the related eigenvalue
problem. This is discussed in more detail in section 2.2.4.
The trigonometric functions again represent the shapes in circumferential direction. For
the summation over their wavenumber, the same symbol, n, the foresight is used that
the circumferential modes of the plate and the cylindrical shells are coupled through the
interface between the wall and the plate. The linear combination of the exponential functions
determines the vibration shape in vertical direction.

The eigenwavenumbers λ
(i)
mnl are the eigenvalues of the eigenvalue problem in equation (2.10).

After substitution of equation (2.11) into equation (2.10), the function related to time cancels
out and the stiffness and inertia matrix can be summed to form a new matrix, M. The
characteristic equation related to this matrix is a polynomial of order eight, hence the
summation limits of l. A polynomial of this order has no closed-form solution, as was the
case for the plate’s wavenumbers in equation (2.8).

Finally, the unknown constants U
(i)
z;mnl, U

(i)
θ;mnl and U

(i)
r;mnl are related to one another through

U
(i)
z;mnl = γ

(i)
mnl U

(i)
r;mnl

U
(i)
θ;mnl = δ

(i)
mnl U

(i)
r;mnl

(2.12)

The factors γ
(i)
mnl and δ

(i)
mnl depend on the stiffness and inertia properties of wall segment i

and can be expressed through matrix M as

γ
(i)
mnl =

M12M23 −M13M22

M2
12 −M11M22

δ
(i)
mnl =

M12M13 −M11M23

M2
12 −M11M22

(2.13)

At each eigenfrequency ωmn, each wall segment i therefore has eight unknown constants,

U
(i)
r;mnl.

2.2.3 Boundary and interface conditions

Up to this point, the equations of motion and the eigenfunction expansions have been for-
mulated for each tank part individually. However, the tank parts are connected to each
other, while the top of the wall is free to vibrate. To include these physical aspects in the

– 16 –



MSc thesis - D. P. Kroon 2 Methods

mathematical description of the tank, boundary and interface conditions must be specified.
Thus, these must represent the fact that the bottom plate is connected monolithically to
the lowest wall segment, that the wall segments are also connected monolithically to each
segment above and below, and that the upper edge of the upper wall segment is free to
displace and rotate around the circumferential axis. These conditions have been specified
by Tsouvalas (2006), based on the work by Soedel (2005).
At the interface between the bottom plate and the lowest wall segment, the following condi-
tion specifies at the outer edge of the bottom plate and the bottom edge of the bottom wall
segment, the continuity of displacements in z, θ and r, as well as the continuity of slopes φ.

ub
w(z = 0, θ, t) = up(r = R, θ, t) (2.14)

with ub
w = [ubw;z, u

b
w;θ, u

b
w;r, φ

b
w;z]

T (with φbw;z = −∂ubw;z/∂z) and up = [up;z, up;θ, up;r, φp;r]
T

(with φp;r = −∂up;r/∂r) (see figure 2.4).
In addition, at this interface, there is a continuity of forces, namely

fb
w(z = 0, θ, t) = fp(r = R, θ, t) (2.15)

with fw = [Mzz, Nzz, Vzr, Tzθ]
T and fp = [Mrr, Vr, Nrr, Nrθ]

T .
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���

���

���

���

���

Figure 2.4 – Bottom view of displacement (left) and force (right) continuity at the interface between
the bottom plate and the bottom wall segment.

Each wall segment, except for the bottom and top ones, is connected monolithically to the
wall segments above and below. Again, this means continuity of the displacements in all
degrees of freedom and the slope along the vertical direction (figure 2.5), so

u(i)
w (z = Z

(i)
if , θ, t) = u(i+1)

w (z = Z
(i)
if , θ, t) (2.16)

with u
(i)
w = [u

(i)
w;z, u

(i)
w;θ, u

(i)
w;r, φ

(i)
w;z]T . The index i denotes the i-th wall segment, and Z

(i)
if the

z-coordinate at which the interface between wall segment i and i+ 1 is located. In addition,
there is a continuity of forces at the interfaces between the wall segments, expressed as

f (i)
w (z = Z

(i)
if , θ, t) = f (i+1)

w (z = Z
(i)
if , θ, t) (2.17)

again with fw = [Mzz, Nzz, Vzr, Tzθ]
T .
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Figure 2.5 – Displacement (left) and force (right) continuity at the interface between two wall seg-
ments.

Finally, at the top of the top wall segment, the shell is free to displace. As a result, the
internal forces at the top edge are equal to zero:

f t
w(z = H, θ, t) = 0 (2.18)

in which H is the height of the tank, so the coordinate at the upper edge of the top wall
segment, and f t

w are the forces in the top wall segment, which are the same as shown in
figure 2.5.

2.2.4 Mode shapes and eigenfrequencies

To find the mode shapes and eigenfrequencies of the tank, an eigenvalue problem must be
formulated and solved. It is noted that each of the displacements and forces specified in the
boundary and interface conditions (equations (2.14) to (2.18)) can be expressed in terms of
known material and geometrical properties and unknown displacements up;r, up;θ, up;z, uw;z,
uw;θ and uw;r. At the same time, expressions for the displacements have been formulated
in terms of eigenfunction expansions in equations (2.7) and (2.11). As was stated before,
the only unknowns in these expressions are the eigenfrequencies and unknown constants: 4
for the plate and 8 per wall segment.
To formulate the eigenvalue problem, equations (2.7) and (2.11) are substituted into equa-
tions (2.14) to (2.18). This produces a system of 4 + 8nsegments equations and an equal
number of unknown constants, which can be rewritten to

Gc = 0 (2.19)

in which the entries of matrix G are frequency dependent and the vector c contains the
unknown constants of the eigenfunction expansions. By setting

Det (G) = 0 (2.20)

the nontrivial solution to the system of equations can be found. The values of the frequency
at which equation (2.20) holds, are the eigenfrequencies, while the related eigenvector, c,
gives the ratios of all the unknown constants in equations (2.7) and (2.11). Due to the
transcendental nature of Det(G), an infinite number of eigenfrequencies can be found. Given

the fact that the ratios between the unknowns Ãmn, B̃mn, C̃mn, D̃mn and Ũ
(i)
r;mnl have been
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found, the vibration shapes or modes at each eigenfrequency are now known. The amplitudes
of each mode are dependent on the frequency of excitation and can be expressed by a single
parameter, Xmn. Expressions for the motions the plate and the wall segments can be written
as

ũp(r, θ, ω) =

∞∑
m=1

∞∑
n=0

X̃mn(ω)Ũp;mn(r, θ) (2.21)

in which

Ũp;mn(r, θ) =

Ũp;rmn(r) cos(nθ)

Ũp;θmn(r) sin(nθ)

Ũp;zmn(r) cos(nθ)

 (2.22)

and

ũw(z, θ, ω) =

∞∑
m=1

∞∑
n=0

X̃mn(ω)Ũw;mn(z, θ) (2.23)

in which

Ũw;mn(z, θ) =

Ũw;zmn(z) cos(nθ)

Ũw;θmn(z) sin(nθ)

Ũw;rmn(z) cos(nθ)

 (2.24)

Finally, the vibration mode shapes satisfy the orthogonality relation∫ 2π

θ=0

∫ R

r=0

Ũ
T

w;mnŨw;qsdrdθ +

∫ 2π

θ=0

∫ R

r=0

Ũ
T

p;mnŨp;qsdrdθ = Γmnδmqδns (2.25)

which will be applied at a later stage in section 2.5.
Because equation (2.20) has no closed-form solution, the eigenfrequencies of the tank are
found numerically. The procedure is performed by considering a range of frequencies, using
each frequency to compute all frequency dependent values in matrix G and checking whether
equation (2.20) holds. While theoretically the inclusion of material damping would yield
complex modes and eigenfrequencies, in this case the damping is assumed to be negligible,
so that the imaginary part of the modes is negligible. Eigenfrequencies are therefore sought
in the postive real domain.

2.3 Fluid

The fluid in the tank is modeled as inviscid, irrotational and incompressible, as described
previously. The first two allow the application of potential flow theory (Linton and McIver
(2001)), so that the velocity of the fluid may be expressed as

vfl(r, θ, z, t) = ∇φ(r, θ, z, t) (2.26)

The assumption of incompressibility further reduces the wave equation that describes the
fluid’s motion to Laplace’s equation, so

∇2φ(r, θ, z, t) = 0 (2.27)

The motions of the fluid in the tank in all degrees of freedom, once again r, θ and z, can
now be described in terms of the velocity potential. The resulting pressures (figure 2.6) on
the tank can be found from the linearized Bernoulli equation:

pfl(r, θ, z, t) = −ρfl φ̇(r, θ, z, t) (2.28)
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More detailed derivations can be found in the work of, for example, Linton and McIver
(2001); Tsouvalas (2017).
The approach to solving equation (2.27) is again to find the eigenfunctions and use them in
a modal series expansion with amplitudes that depend on the excitation.

�
�

�

�

�fl

�fl;r �fl;z

�f

Figure 2.6 – Material properties of the fluid and the positive directions of the fluid pressure.

2.3.1 Velocity potential

Some foresight is used regarding the satisfaction of the boundary conditions and the velocity
potential is rewritten as the superposition of three potential functions

φ(r, θ, z, t) = φ1(r, θ, z, t) + φ2(r, θ, z, t) + φ3(r, θ, z, t) (2.29)

that each must satisfy equation (2.27). The boundary and interface conditions the system
needs to adhere to are: velocity continuity at the interface with the wall, velocity continuity
at the interface with the plate, and the free surface at the water level. While displacement
continuity was used in the case of the tank, using the velocity is simpler in this case.
Mathematically, these are expressed respectively as

∂φ(r, θ, z, t)

∂r

∣∣∣∣∣
r=R

=
∂uw;r(z, θ, t)

∂t

∂φ(r, θ, z, t)

∂z

∣∣∣∣∣
z=0

= − ∂up;z(r, θ, t)

∂t

1

g

∂2φ(r, θ, z, t)

∂t2

∣∣∣∣∣
z=Hfl

= − ∂φ(r, θ, z, t)

∂z

∣∣∣∣∣
z=Hfl

(2.30)

The decomposition in equation (2.29) can now be applied to have each of the scalar functions
of the total potential satisfy a subset of the conditions, while the others satisfy a homoge-
neous boundary condition. As such, the fluid-tank system is regarded as the summation of
three fluid-tank systems, that each satisfy the boundary and interface conditions, such that
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their sum yields the original fluid-tank system (see figure 2.7).
The fluid velocity at the wall, for example, is then the summation of the velocities of each
of the three virtual fluid-tank systems, only the first of which has a non-zero velocity at the
fluid-wall interface, so that

∂φ(r, θ, z, t)

∂r

∣∣∣∣∣
r=R

=
∂φ1(r, θ, z, t)

∂r

∣∣∣∣∣
r=R

+ 0 + 0 (2.31)

Since each of the potential functions now, in addition, has homogeneous boundary conditions
in one of the directions, a solution can be found through an eigenfunction expansion. So
first, each of these functions is transformed to the frequency domain (equation (2.1)) and
solved by means of the method of separation of variables. This procedure is treated in
detail by others, such as Amabili et al. (1998); Bauer and Siekmann (1971); Canny (2018);
Tsouvalas et al. (2018), so is not covered further in this thesis.

Figure 2.7 – Satisfaction of the boundary conditions through the decomposition of the fluid potential,
adopted from Tsouvalas et al. (2018).

The resulting modal expressions of the liquid potentials are

φ̃(r, θ, z, ω) = φ̃1(r, θ, z, ω) + φ̃2(r, θ, z, ω) + φ̃3(r, θ, z, ω)

=

∞∑
n=0

∞∑
a=1

P̃na(ω)Φ̃1
na +

∞∑
n=0

∞∑
b=1

Q̃nb(ω)Φ̃2
nb +

∞∑
n=0

∞∑
c=1

S̃nc(ω)Φ̃3
nc

(2.32)

Φ̃1
na(r, θ, z) = In

(
π(2a− 1)r

2Hl

)
cos

(
π(2a− 1)z

2Hl

)
cos(nθ)

Φ̃2
nb(r, θ, z) =

(
cosh(εnbz/R)− sinh(εnbz/R)

tanh(εnbHl/R)

)
Jn(εnbr/R) cos(nθ)

Φ̃3
nc(r, θ, z) = cosh(εncz/R)Jn(εncr/R) cos(nθ)

(2.33)

2.4 Soil

The soil substructure is reduced in the model to a dynamic stiffness matrix, connected to the
tank-fluid system through the equations of motion of the bottom plate (equation (2.3)). To
construct that matrix, first, the force response of the soil layer (figure 2.8) is found to a unit
uniform time-dependent load on a circular area on the soil surface, both in horizontal and
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vertical directions (figure 2.9). Then, the soil-structure interface is discretized into circular
elements. The response at each location i to a load at each location j can be calculated and
structured as the entries of the dynamic stiffness matrix.
This matrix is subsequently implemented in the equation of motion of the bottom plate, as
it relates the displacements of the plate to the resulting stresses from the soil. The surface
Green’s functions are thus applied because the soil-structure interaction occurs at the soil
surface. The incorporation of SSI is explained in more detail in section 2.4.4.

�

�

�

�earthquake
, , ,�� �� �� ��

ℎ

Figure 2.8 – Soil layer of height h with a free surface, located on top of bedrock and excited by seismic
waves.

The initial assumptions under which the flexibility functions are derived, stresses on the
circular area and zero stresses outside the circular area (figure 2.9), may seem to be violated
through this discretization of the interface into many loaded elements. However, the model is
linear, so that the principle of superposition may be applied. The stress field can be thought
of as a superposition of stress fields in which each of the elements is loaded by itself, while the
other elements are not loaded. The response to the superposition of these load situations
is the superposition of the individual responses to each load situation. The advantage of
this approach is that, with a sufficiently fine discretization, any displacement field can be
transformed into a corresponding stress field acting on the bottom plate. Alternatively,
finding the Green’s functions relating stress and displacement for any given displacement
field in a circle is relatively complex.

Figure 2.9 – Vertical (left) and horizontal (right) load case

Below, the Green’s functions are given, as well as an explanation on their derivation. For the
complete derivation of these functions, see Molenkamp (2018) and Wolf (1985). Also, the
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applied discretization is briefly discussed, as well as the assembly of the dynamic stiffness
matrix in cylindrical coordinates. This section concludes with remarks on the inclusion of
kinematic soil-structure interaction.

2.4.1 Green’s influence functions

The displacements in the soil layer are specified below as a function of the amplitudes of the
load described in figure 2.9, the Green’s influence functions. Similar to the displacements of
the tank and the velocity potential of the fluid, the displacements are written as an infinite
sum over vibration shapes that in this case depend on the wavenumbers of SH-waves and
PSV-waves. The equations in this section are adopted from Molenkamp (2018) and Wolf
(1985) with only minor changes.
The vibration shapes and related wavenumbers are found through solving the eigenvalue
problem to the motions of the soil, which are described by the wave equation

Gs∇2u + (λs +Gs)∇∇ · u + f = ρsü (2.34)

in which ∇2 is the Laplace operator, u represents the three-dimensional soil displacements
and f represents the three-dimensional forces. The parameters λs and Gs are Lamé’s first
parameter and the shear modulus respectively, expressed as

Gs =

√
Es(1 + iξs)

2(1 + νs)

λs =
Esνs(1 + 2iξs)

(1 + νs)(1− 2νs)

(2.35)

in which Es is the soil’s modulus of elasticity, ξs the soil material damping ratio and νs the
soil’s Poisson’s ratio.
Solutions to the wave equation contain a function related to the horizontal coordinates and
the vertical coordinate:

ũn =
1

k

∂Jn(kr)

∂r
u(z) +

n

kr
Jn(kr)v(z)

ṽn =
n

kr
Jn(kr)u(z) +

1

k

∂Jn(kr)

∂r
v(z)

w̃n = −Jn(kr)w(z)

(2.36)

with the solution for the vertical coordinate:

u(z) = lx

(
Ape

iksz +Bpe
−iksz

)
−mxt

(
Asve

iktz −Bsve−iktz
)

v(z) = Asheiktz +Bshe−iktz

w(z) = −ilxs
(
Ape

iksz −Bpe−iksz
)
− imx

(
Asve

iktz +Bsve
−iktz

) (2.37)

Through the constitutive relations, solutions can also be found for the stresses at the soil
surface:

σ̃zr =
1

k

∂Jn(kr)

∂r
σzr(z) +

n

kr
Jn(kr)σzθ(z)

σ̃zθ =
n

kr
Jn(kr)σzr(z) +

1

k

∂Jn(kr)

∂r
σzθ(z)

σ̃zz = −Jn(kr)σzz(z)

(2.38)
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with

σzr(z) = i2lxsGs

(
Ape

iksz −Bpe−iksz
)

+ ikmx(1− t2)Gs

(
Asve

iktz −Bsve−iktz
)

σzθ(z) = iktGs

(
Asheiktz +Bshe−iktz

)
σzz(z) = −klx(1− t2)Gs

(
Ape

iksz +Bpe
−iksz

)
− 2kmxtGs

(
Asve

iktz −Bsve−iktz
) (2.39)

As was the case for the other substructures, the unknowns in this case are the wavenumbers
and the amplitudes related to the eigenfunctions.
A difference in this case is that the soil is bounded in the vertical direction, but unbounded
in horizontal direction. While standing waves, or vibrations, are the result of constructive
interference of reflected waves, waves will not be reflected in an unbounded domain, so that
standing waves can only form for the vertical coordinate. For a given frequency and for
every mode with a given vertical component, kv, a horizontal component, kh, can be found
through

k2
h =

ω2

c2
− k2

v (2.40)

which is the value that is summed over in the modal summation in equations (2.43) and (2.44).
The value of this component additionally determines whether the waves are propagating
(real or complex values) or evanescent (imaginary values).
Through substitution of equations (2.36) to (2.39) into the free vibration boundary condi-
tions of the soil layer, namely free displacements at the surface and a rigid boundary at the
bottom of the layer, the following two matrix equations result:

lxeiksh lxe−iksh −mxte
ikth mxte

−ikth

−ilxseiksh ilxse
−iksh −imxeikth −mxe−ikth

2iklxsGs −2iklxGs ikmx(1− t2)Gs ikmx(1− t2)Gs
−klx(1− t2)Gs −klx(1− t2)Gs 2kmxtGs −2kmxtGs



Ap
Bp
Asv
Bsv

 = 0

(2.41)
and [

eikth e−ikth

iktGs −iktGs

] [
Ash
Bsh

]
= 0 (2.42)

Equation (2.41) is related to the PSV wavenumbers, while equation (2.42) is related to the
SH wavenumbers.
The wavenumbers and mode shapes can then be used to find the displacements at any
location in the soil layer, as a function of the vertical distributed load amplitude, as shown
on the left in figure 2.9, through the expressionsu(r)
v(r)
w(r)

 = reπi
∑
kP

H
(2)
1 (kP re)

FuzJ1(kP r)/(∂Fuw/∂kP )
0

FwzJ0(kP r)/(∂Fuw/∂kP )

 pz −
 0

0
Fwz(0)

 pz, 0 < r ≤ re

= reπi
∑
kP

J1(kP re)

FuzH(2)
1 (kP r)/(∂Fuw/∂kP )

0

FwzH
(2)
0 (kP r)/(∂Fuw/∂kP )

 pz, re ≤ r

(2.43)
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The displacements as a function of the horizontal distributed load amplitude, as shown on
the right in figure 2.9, are expressed asu(r, θ)

v(r, θ)
w(r, θ)

 = reπiD(θ)
∑
kP

H
(2)
1 (kP re)

Fux(J0(kP r)− J1(kP r)/kP r)/(∂Fuw/∂kP )
FuxJ1(kP r)/(kP r∂Fuw/∂kP )
−FwxJ1(kP r)/(∂Fuw/∂kP )

 px
+ reπiD(θ)

∑
kS

H
(2)
1 (kSre)

 FvxJ1(kSr)/(kSr∂Fv/∂kS)
Fvx(J0(kSr)− J1(kSr)/kSr)/(∂Fv/∂kS)

0

 px
− 1

2
D(θ)

Fux(0) + Fvx(0)
Fux(0) + Fvx(0)

0

 px, 0 < r ≤ re

= reπiD(θ)
∑
kP

J1(kP re)

Fux(H
(2)
0 (kP r)−H(2)

1 (kP r)/kP r)/(∂Fuw/∂kP )

FuxH
(2)
1 (kP r)/(kP r∂Fuw/∂kP )

−FwxH(2)
1 (kP r)/(∂Fuw/∂kP )

 px

+ reπiD(θ)
∑
kS

J1(kSre)

 FvxH
(2)
1 (kSr)/(kSr∂Fv/∂kS)

Fvx(H
(2)
0 (kSr)−H(2)

1 (kSr)/kSr)/(∂Fv/∂kS)
0

 px
− r2

e

r2
D(θ)

Fvx(0)− Fux(0)
Fux(0)− Fvx(0)

0

 px, re ≤ r

(2.44)

The amplitudes of the loads acting in horizontal and vertical directions are px and pz,
respectively, and the radius of the element on which the loads act is re. The functions J0

and J1 are Bessel functions of the first kind of orders 0 and 1, and H
(2)
0 and H

(2)
1 are Hankel

functions of orders 0 and 1. They represent the shapes of the modes included and also
originate from the transformation of the load shape to the wavenumber domain.
The matrix D(θ) is a diagonal matrix to consider the variation of the response amplitude
over the circumferential coordinate. It has the entries [cos(θ),− sin(θ), cos(θ)] for a load in
x-direction and the entries [sin(θ), cos(θ), sin(θ)] for a load in y-direction. This matrix is only
present in the response to the horizontal load, as the vertical load produces an axisymmetric
response.
The flexibility of the soil is represented by the following flexibility functions:

Fux = sin(hk(s+ t))st− sin(hk(s− t))st+ sin(hk(s+ t)) + sin(hk(s− t)))(t2 + 1)t

Fuz = Fwx = (−1− st3 + (−2s2 + 1)t2 + 3st) cos(hk(s− t))
+ (1− st3 + (2s2 − 1)t2 + 3st) cos(hk(s+ t)) + 2st(t2 − 3)

Fwz = (sin(hk(s+ t))st+ sin(hk(s− t))st+ sin(hk(s+ t))− sin(hk(s− t)))(t2 + 1)s

Fuw = ((−t4 + 4st+ 2t2 − 1)(st− 1) cos(hk(s− t))
− (t4 + 4st− 2t2 + 1)(st+ 1) cos(hk(s+ t))− 8st3 + 8st)kG

Fvx = sin(kth)

Fv = ktG cos(kth)

(2.45)
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The parameter h represents the thickness of the soil layer, and s and t are expressed as

s = −i
√

1− 1

l2x
with lx =

cp
c

and cp =

√
λs + 2Gs

ρs

t = −i
√

1− 1

m2
x

with mx =
cs
c

and cs =

√
Gs
ρs

(2.46)

in which ρs is the soil density, cs is the shear wave velocity, cp is the compressional wave
velocity, and c = ω/k. The flexibility functions are thus dependent on the material and
geometrical properties of the soil layer, and the frequency of excitation with the related
wavenumbers.

2.4.2 Soil-structure interface discretization

In order to produce a stiffness matrix that can be applied in the equations of motion of
the tank’s bottom plate, the soil-structure interface needs to be discretized into circular
elements. Although discretizing a circle into smaller circles will lead to some overlap of the
elements, this should have a negligible effect if the elements are small and the location of the
elements and their radii are determined such that the area and the second moment of area
remain the same as those of the undiscretized interface. In that case, the force equilibria
are not violated and the stress distributions approximate the original one.
The method of discretization here is as follows. First, the interface is split into parts of equal
degrees along the circumferential direction and increasing size along the radial direction in
order to obtain parts that are not too slender (see figure 2.10). Then circles are fitted to the
resulting parts with the same area and second moment of area with respect to the center of
the soil-structure interface. The radius of the element is determined through

∫ 2π/nθ

θ=0

∫ ri+1

ri

rdrdθ = πr2
e = Ae → re =

√
r2
i+1 − r2

i

nθ
(2.47)

in which nθ is the number of segments in circumferential direction, ri is the smaller radial
boundary of a part and ri+1 the larger radial boundary of a part. The distance of the center
of each element to the center of the interface is calculated with∫ 2π/nθ

θ=0

∫ ri+1

ri

r3drdθ =
π

2
r4
e = Ie → r =

√
r2
i+1 − r4

i

2nθr2
e

− r2
e

2
(2.48)
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Figure 2.10 – Discretization of soil-structure interface

To determine the required number of elements, a convergence criterium needs to be applied,
which is discussed in more detail in section 3.2.
Please note that this discretization is also applied to the plate’s mode shapes, so that the
dynamic stiffness matrix can be applied in the plate’s equations of motion. This means that
the displacement functions ũp(r, θ, ω) and ũi(r, θ, ω) in equation (2.4) need to be evaluated
at the locations of the center of the circular elements of the discretization.

2.4.3 Matrix assembly

To find the entries of the stiffness matrix, first, the displacements from equations (2.43)
and (2.44) are described in the global Cartesian coordinate system:uxuy

uz

 =

cos(θe) − sin(θe) 0
sin(θe) cos(θe) 0

0 0 1

uv
w

 (2.49)

in which θe is the element’s local circumferential coordinate. To apply the stiffness matrix
in the equations of motion of the tank’s bottom plate, defined in cylindrical coordinates,
an additional transformation is needed. The operation can be performed by making use of
rotation matrices based on the circumferential coordinate of each element with respect to
the global coordinate system. In the latter, θ = 0 coincides with the x-axis. A force at
location i in the Cartesian coordinate system is related to the cylindrical coordinate system
through

f i,Cart =

cos(θi) − sin(θi) 0
sin(θi) cos(θi) 0

0 0 1

 f i,cyl = Rif i,cyl (2.50)
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in which θi is the angle between location i and the x-axis with the origin of the coordinate
system at the center of the plate. A similar relation holds for displacements at location j:

uj ,Cart =

cos(θj) − sin(θj) 0
sin(θj) cos(θj) 0

0 0 1

uj ,cyl = Rjuj ,cyl (2.51)

The relation between a force at location i and displacements at location j can then be given
by

uj ,Cart =

Rxx Rxy Rxz
Ryx Ryy Ryz
Rzx Rzy Rzz

 f i,Cart = RCart f i,Cart (2.52)

in which the elements of RCart contain the Green’s functions from equations (2.43) and (2.44).
Finally, the stresses at location i due to a displacement in j can be found as

f i,cyl = RT
i R−1

CartRjuj ,cyl = Kcyluj ,cyl (2.53)

in which use is made of the identity R−1
i = RT

i that originates from the orthogonality of Ri.
By assembling the matrices Kcyl for all elements, the complete dynamic stiffness matrix is
formed.

2.4.4 Excitation

The excitation of the system during a seismic event stems from accelerations of the soil,
which are transferred to the structure through stresses acting on the soil-structure interface.
Generally, measurements of such accelerations are available for the free-field response, so it
would be beneficial to be able to apply such measured signals directly in the model. At the
same time, the description of the excitation of the system in the model needs to incorporate
both kinematic and dynamic soil structure interaction.
At the interface between the soil and the structure, interface conditions hold. It is assumed
that the soil and structure are connected monolithically, meaning that there is a continuity
of displacements and stresses, expressed mathematically as

up = us

σp = σs
(2.54)

in which the displacements of the soil and the plate at the interface are us = [us;r, us;θ, us;z]
T

and up = [up;r, up;θ, up;z]
T , respectively. The stresses σs = [σs;zr, σs;zθ, σs;zz]

T are the soil
stresses acting on the surface normal to the z-coordinate and σp = [σp;zr, σp;zθ, σp;zz]

T are
the plate stresses on the surface normal to the z-coordinate. Note that the stress continuity
condition is satisfied in the plate’s equation of motion.
As introduced in section 1.1.2, the dynamic SSI is mainly concerned with stresses originat-
ing from the motions and inertia of the plate, causing a radiated wave field, whereas the
kinematic SSI is concerned with the alteration of the free-field waves by the addition of a
scattered wave field resulting from the presence of a structure. Due to the linearity of the
model, the total motions of the soil can be regarded as the superposition of these two cases:

us = ur + ui + usc (2.55)

– 28 –



MSc thesis - D. P. Kroon 2 Methods

in which ur is the radiated wave field, ui is the free-field wave field and usc is the scattered
wave field. Substitution of equation (2.55) into the displacement continuity condition in
equation (2.54) yields

up = ur + ui + usc (2.56)

which can be rewritten as
up − ui = ur + usc (2.57)

The soil stresses acting on the plate, σs, can be expressed with use of the dynamic stiffness
matrix as defined in the previous sections through

σs = Ksur + Ksui + Ksusc (2.58)

Realizing that the free-field displacement field by definition produces zero stresses at the
soil surface, the second term in the right-hand side of equation (2.58) disappears, so that

σs = Ks (ur + usc) (2.59)

Substituting equation (2.57) into equation (2.59) results in

σs = Ks

(
up − ui

)
(2.60)

As such, the soil stresses are conveniently expressed in terms of a generally known free-field
displacement field and the unknown displacements of the plate that the plate’s equations
of motion will be solved for. Both dynamic and kinematic soil-structure interaction are
thus accounted for. For application in equation (2.3) on the right-hand side, the sign of
equation (2.60) needs to reflect that positive motions of the plate generate stresses from the
soil that act in the opposite direction.
Finally, the excitation is usually given as an acceleration signal with components in Cartesian
coordinates, which can be transformed to a frequency spectrum with equation (2.1). The
displacement field can then be given asũi;r(r, θ, ω)

ũi;θ(r, θ, ω)
ũi;z(r, θ, ω)

 = − 1

ω2

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

ãx(ω)Px(r, θ, ω)
ãy(ω)Py(r, θ, ω)
ãz(ω)Pz(r, θ, ω)

 (2.61)

in which the x-direction coincides with θ = 0. The functions Px, Py and Pz are shape
functions that describe the distribution of the accelerations at each frequency across the
soil-structure interface. In case of a Rayleigh-type surface wave, for example, they would
be Px = Py = Pz = exp(−ir cos(θ)ω/cR), while they are Px = Py = Pz = 1 for uniform
accelerations in each direction.

2.4.5 Damping

A system is damped if energy is dissipated from it over time. In the system at hand, damp-
ing can stem from material damping in the tank, from the sloshing of the fluid, from the soil
material damping and the radiation damping. It is generally assumed that the soil damp-
ing is relatively large compared to the damping from the tank-fluid system itself, which is
reflected in the maximum values allowed by the Eurocode for each type of damping. These
are 5%, 0.5% and 25% for the structure, fluid and soil respectively (EN 1998-4 (2007)).
Currently, in the model only material damping of the tank and soil, and radiation damping
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are incorporated.
To obtain a measure of the damping caused by the soil, it is proposed in this thesis to
evaluate the amount of dissipated energy as a percentage of the total energy in the system
at a given frequency over the time duration of one period.
The amount of energy that is dissipated over one period can be determined with the imagi-
nary part of the complex valued dynamic soil stiffness matrix (Gazetas (1983); Molenkamp
(2018)), that represents the damping part of the soil. When the tank is in motion, each ele-
ment of the discretized soil-structure interface can experience displacements resulting from
the plate’s displacements and generates damping forces through the imaginary part of the
soil stiffness matrix. By evaluating the amount of dissipated energy for each element and
summing over all elements, the total amount of dissipated energy can be found.
In general, the energy dissipated by a viscous damper can be expressed as

∆W =

∫
Fcdu (2.62)

Realizing that the velocity is the time derivative of the displacement, v = du/dt, we can
write that du = vdt. The amount of dissipated energy over time is then

∆W =

∫
Fcvdt (2.63)

in which T = 2π/ω. Radiation damping occurs when soil waves carry energy away from the
fluid-tank system. In order for these waves to be generated, the bottom plate of the tank
must move relative to the motions that the soil would experience without the presence of
the tank. This difference, which was also applied in the equations of motion of the bottom
plate of the tank, is expressed as

ũ∆(r, θ, ω) = ũi(r, θ, ω)− ũp(r, θ, ω) (2.64)

The damping force can thus be calculated by

F̃c(r, θ, ω) = i Im
(
Ks(r, θ, ω)

)
ũ∆(r, θ, ω) (2.65)

Considering equation (2.63), to obtain the amount of dissipated energy, the velocity needs
to be known, which can be expressed in the frequency domain as

ṽ∆(r, θ, ω) = iωũ∆(r, θ, ω) (2.66)

To obtain the total amount of energy dissipated through the soil over a duration of time
in the time domain, F̃c(ω)ṽ∆(ω) can first be transformed to the time domain with the
inverse Fourier transform (equation (2.1)). The resulting value Fcv can then be applied in
equation (2.63) for given time limits of integration. As such, the total amount of energy
dissipated through the soil can be computed for an earthquake event.
It is also possible to compute the amount of dissipated energy at each frequency over one
period. In that case equation (2.63) can be evaluated to

∆W =

∫ ω/2π

0

iω|ũ∆(r, θ, ω)| i Im
(
Ks(r, θ, ω)

)
|ũ∆(r, θ, ω)|dt (2.67)

in which the phase of ũ∆(r, θ, ω) is discarded by taking its absolute value, which is allowed,
because the damping will be determined over one period. Transforming the terms in the
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integral to the time domain, evaluating the integral and transforming the result back to the
frequency domain, yields the dot product

∆W = π
∣∣ũ∆(r, θ, ω)

∣∣ Im (Ks(r, θ, ω)
) ∣∣ũ∆(r, θ, ω)

∣∣ (2.68)

Then the total amount of energy present in the tank-fluid system needs to be determined.
The motions of the tank are expressed as a summation of vibration modes, each containing
an amount of energy that is the sum of the kinetic energy and the strain energy. Over the
course of one period, the strain energy will attain a maximum value as the displacements
reach a maximum. At this specific point in time, the velocity will be zero. On the other
hand, realizing that the vibrations are harmonic in time, at each location in the tank, the
stresses will be zero at some moment during the time span of a period, so that the strain
energy at that location is then zero.
The velocity at that moment attains a maximum value, so that the total energy at that
location at that moment in time is equal to the kinetic energy. The fluid on the other hand
is assumed to be incompressible and can therefore not contain any strain energy. Its total
energy is therefore also evaluated on the basis of the kinetic energy.

Wtank = Ww +Wp (2.69)

dmw = ρwhwRdθdz (2.70)

dWw =
1

2
dmwv

2
w =

1

2
ρwhwR

[
iωũw(r, θ, ω)

]2
dθdz (2.71)

Ww =

∫
dWw =

∫ H

z=0

∫ 2π

θ=0

1

2
ρwhwR

[
iωũw(r, θ, ω)

]2
dθdz (2.72)

with

ũw(r, θ, ω) =

∞∑
m=1

∞∑
n=0

X̃mn(ω)Ũw;mn(r, θ) (2.73)

dmp = ρphprdθdr (2.74)

dWp =
1

2
dmpv

2
p =

1

2
ρphpr

[
iωũp(r, θ, ω)

]2
dθdr (2.75)

Wp =

∫
dWp =

∫ R

z=0

∫ 2π

θ=0

1

2
ρphpr

[
iωũp(r, θ, ω)

]2
dθdr (2.76)

with

ũp(r, θ, ω) =

∞∑
m=1

∞∑
n=0

X̃mn(ω)Ũp;mn(r, θ) (2.77)

For the fluid, we have for an infinitesimal fluid volume of dimensions rdθ x dr x dz a total
kinetic energy of

dWfl =
1

2
dmflv

2
fl =

1

2
ρfl

(
∇φ̃(r, θ, z, ω)

)2

rdθdrdz (2.78)

in which equation (2.26) is substituted, which gives the velocity of the fluid in terms of its
velocity potential. The total kinetic energy of the fluid is then found by integrating over
the entire fluid domain:

Wfl =

∫
dWfl =

∫ Hfl

z=0

∫ R

r=0

∫ 2π

θ=0

1

2
ρfl

(
∇φ̃(r, θ, z, ω)

)2

rdθdrdz (2.79)
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Evaluation of the fluid velocity term with the use of equations (2.32) and (2.33) in the
frequency domain gives

ṽfl(r, θ, z, ω) = ∇φ̃1(r, θ, z, ω) +∇φ̃2(r, θ, z, ω) +∇φ̃3(r, θ, z, ω)

=

∞∑
n=0

∞∑
a=1

P̃na(ω)∇Φ̃1
na +

∞∑
n=0

∞∑
b=1

Q̃nb(ω)∇Φ̃2
nb +

∞∑
n=0

∞∑
c=1

S̃nc(ω)∇Φ̃3
nc

(2.80)

The amplitudes are known, as are the velocity shape functions that they need to be mul-
tiplied with, so the velocity can be found at each location of interest. The related fluid
volume is computed numerically with rdθ x dr x dz. The contributions of each fluid volume
are finally added up to give the total kinetic energy of the fluid.

2.5 System of equations

The total number of equations that need to be solved is equal to the number of modes
considered. First, the equations governing the vibrations in each degree of freedom of the
tank (three for the plate and three for the wall) are written in terms of modal expressions.
Then, as all modes for the different degrees of freedom of the tank are related to each other,
their equations can simply be added up. As such, the number of equations related to the
tank’s modes of vibrations equal the number of considered tank modes.
Then the equations that consider the interface conditions between the fluid and tank and
the boundary condition at the fluid’s free surface are presented, both in terms of modal
expressions. This number of equations equals the number of considered fluid modes.
Finally, the system of equations that needs to be solved to find the modal amplitudes is
presented.

2.5.1 Tank - general

For every mode of vibration of the tank, it holds that

Lunm − ω2
nmIunm = 0 (2.81)

as the modes are the solution to the eigenvalue problem as presented in section A. Sub-
stituting the modal expressions found previously into the equations of motion that for all
parts of the tank are of the form

Lu− ω2Iu = q (2.82)

results in
∞∑
n=0

∞∑
m=1

(
Lunm − ω2Iunm

)
=

∞∑
n=0

∞∑
m=1

qnm (2.83)

Rearrangement of equation (2.81) gives

Lunm = ω2
nmIunm (2.84)

which can be substituted into equation (2.83), to yield

∞∑
n=0

∞∑
m=1

(ω2
nm − ω2)Iunm =

∞∑
n=0

∞∑
m=1

qnm (2.85)

thereby eliminating stiffness matrix L.
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2.5.2 Bottom plate

Substitution of equation (2.84) in the equations of motion of the plate (equation (2.4)) gives(
ω2
nm − ω2

)
Iũp;nm(r, θ, ω) = Ks(ω)

(
ũi(r, θ, ω)− ũp;nm(r, θ, ω)

)
+ q̃fl;nm (2.86)

Taking the term related to the unknown plate displacements ũp;nm(r, θ, ω) to the left hand
side and substituting the modal expressions (equation (2.21)) into the equations of motion
(equation (2.86)) gives

∞∑
n=0

∞∑
m=0

(ω2
nm − ω2)ρphpX̃nm(ω)Ũp;mn(r, θ) + Ks(ω)

∞∑
n=0

∞∑
m=0

X̃nm(ω)Ũp;mn(r, θ)

= Ks(ω)

ũi,z(r, θ, ω)
ũi,θ(r, θ, ω)
ũi,r(r, θ, ω)


−iωρfl r

∞∑
n=0


∞∑
a=0

P̃na(ω)Φ̃1
na(r, θ, z) +

∞∑
b=0

Qnb(ω)Φ̃2
nb(r, θ, z) +

∞∑
c=0

Snc(ω)Φ̃3
nc(r, θ, z)


∣∣∣∣∣∣∣
z=0

(2.87)
with Ks as shown in equation (2.5), Ũp;mn(r, θ) as shown in equation (2.22), Φ̃1

na(r, θ, z),

Φ̃1
na(r, θ, z), and Φ̃1

na(r, θ, z) as shown in equation (2.33), and r = [0, 0, 1]T . Application of
the orthogonality property of the trigonometric functions, multiplication with each coordi-
nate’s respective axial mode shape and integration over the radius, and finally, addition of
the three equations of motion yields:

∞∑
m=0

(ω2
nm − ω2)ρphpX̃nm

∫ R

r=0

Ũ
∗T
p;mn(r)Ũ

∗
p;mn(r)dr

+

∞∑
m=0

X̃nm

∫ R

r=0

Ũ
∗T
p;mn(r)

∫ 2π

θ=0

K̂sdθŨ
∗
p;mn(r)dr

=
1

π(1 + δn0)

∫ R

r=0

∫ 2π

θ=0

Ũ
T

p;mn(r, θ)Ksũi(r, θ, ω)dθdr

− iωρfl

cos(nθ)

∫ R

r=0


∞∑
a=0

P̃naΦ̃1
na(r, θ, 0) +

∞∑
b=0

QnbΦ̃
2
nb(r, θ, 0) +

∞∑
c=0

SncΦ̃
3
nc(r, θ, 0)

 Ũp;znm(r)dr

(2.88)
with

K̂s =

Krr 0 Krz

0 Kθθ 0
Kzr 0 Kzz

 (2.89)

which contains zeros to account for the elimination of some terms due to the orthogonality
properties of the trigonometric functions. The vector

Ũ
∗
p;mn(r) =

Ũp;rnm(r)

Ũp;θnm(r)

Ũp;znm(r)


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is not to be confused with Ũp;mn(r, θ) as defined in equation (2.22). Vector ũi(r, θ, ω) =
[ũi;r, ũi;θ, ũi;z] represents the incident wave field. The division of the first term on the right-
hand side by π(1 − δ0n) accounts for the result of the integration in the application of the
orthogonality property of the trigonometric functions, which yields 2π for n = 0 and π for
n ≥ 1. The Kronecker delta δij evaluates to zero for i 6= j and to one for i = j. The addition
of the three equations of motion is required to be able to apply the orthogonality condition
of the mode shapes, given in equation (2.25).
A more detailed treatment of the steps taken to obtain equation (2.88) from equation (2.87)
can be found in section C.1.

2.5.3 Wall

Substitution of equation (2.81) in the equations of motion of the wall (equation (2.9)) gives(
ω2
nm − ω2

)
Iũw;nm(z, θ, ω) = q̃fl;nm (2.90)

Substitution of the modal expressions (equation (2.23)) in the equations of motion (equa-
tion (2.90)) gives

∞∑
n=0

∞∑
m=0

(ω2
nm − ω2)ρwhwX̃nm(ω)Ũw;mn(z, θ) =

−iωρfl r

∞∑
n=0


∞∑
a=0

P̃na(ω)Φ̃1
na(R, θ, z) +

∞∑
b=0

Q̃nb(ω)Φ̃2
nb(R, θ, z) +

∞∑
c=0

S̃nc(ω)Φ̃3
nc(R, θ, z)


(2.91)

with Ũw;mn(z, θ) is defined in equation (2.24) and r = [0, 0, 1]T .
Application of the orthogonality property of the trigonometric functions, multiplication with
each coordinate’s respective axial mode shape and integration over the height, and finally,
addition of the three equations of motion yields:

∞∑
m=0

(ω2
nm − ω2)ρphpX̃nm

∫ H

z=0

Ũ
∗T
w;mn(z)Ũ

∗
w;mn(z)dz =

− iωρfl

cos(nθ)

∫ Hfl

z=0


∞∑
a=0

P̃naΦ̃1
na(R, θ, z) +

∞∑
b=0

QnbΦ̃
2
nb(R, θ, z) +

∞∑
c=0

SncΦ̃
3
nc(R, θ, z)

 Ũw;rnm(z)dz

(2.92)
The vector

Ũ
∗
w;mn(z) =

Ũw;znm(z)

Ũw;θnm(z)

Ũw;rnm(z)


is not to be confused with Ũw;mn(z, θ) as defined in equation (2.24). A more detailed
treatment of the steps taken to obtain equation (2.92) from equation (2.91) can be found in
section C.2.
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2.5.4 Kinematic conditions

At the interface between the fluid and the tank, interface conditions apply. The kinematic
conditions are the velocity continuity at the tank wall:

∂φ(r, θ, z, t)

∂r

∣∣∣∣∣
r=R

=
∂uw;r(z, θ, t)

∂t
(2.93)

the velocity continuity at the plate bottom: Also transformation to the frequency domain.

∂φ(r, θ, z, t)

∂z

∣∣∣∣∣
z=0

= − ∂up;z(r, θ, t)

∂t
(2.94)

The free surface boundary condition:

1

g

∂2φ(r, θ, z, t)

∂t2

∣∣∣∣∣
z=Hfl

= − ∂φ(r, θ, z, t)

∂z

∣∣∣∣∣
z=Hfl

(2.95)

Substitution of the modal expressions of the fluid velocity potentials and the tank’s mode
shapes results in

∂

∂r

 ∞∑
n=0

∞∑
a=1

PnaΦ̃1
na(r, θ, z)

∣∣∣∣∣
r=R

= iω

∞∑
n=0

∞∑
m=1

X̃nmŨw;rnm(z) cos(nθ) (2.96)

Multiplication of both sides with cos(qθ) and integration from 0 to 2π, as well as multipli-
cation of both sides with the z-dependent part of Φ̃1

na(r, θ, z) and integration of the fluid
height eliminates the summation over n and the summation over a:

Pna
∂

∂r

[
In

(
π(2a− 1)r

2Hl

)]∣∣∣∣∣
r=R

Hl

2
δad = iω

∫ Hfl

z=0

∞∑
m=1

X̃nmŨw;rnm(z) cos

(
π(2a− 1)z

2Hl

)
dz

(2.97)
A more detailed treatment of the steps taken to arrive at equation (2.97) from equation (2.96)
is given in section C.3.
For the second interface condition, concerning the velocity continuity at the plate, the
modal expressions of the tank bottom displacement in z-direction and of the fluid potential
(equations (2.21) and (2.32)) are substituted into equation (2.94), yielding

∂

∂z

 ∞∑
n=0

∞∑
b=1

QnbΦ̃
2
nb(r, θ, z)

∣∣∣∣∣
z=0

= −iω

∞∑
n=0

∞∑
m=1

X̃nmŨp;znm(r) cos(nθ)

(2.98)
Making use of the orthogonality properties of the trigonometric functions and the Bessel
functions by multiplying both sides by cos(qθ) and the r-dependent part of Φ̃2

nb(r, θ, z), and
finally, integrating from 0 to 2π and over the radius results in

Qnb
εnbJn(εnbr/R)

2 tanh(εnbHl/R)

[
Jn+1(εnb)

]2
= −iω

∫ R

r=0

∞∑
m=0

X̃nmŨp;znm(r)rJn(εner/R)dr (2.99)
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in which the summation over n and over b are eliminated. A more detailed treatment of the
steps taken to arrive at equation (2.99) from equation (2.98) is given in section C.4.
Finally, the modal expression of the fluid potential (equation (2.32)) is substituted into the
free surface condition, equation (2.95), yielding

ω2

g

∞∑
n=0

∞∑
c=0

SncΦ̃
3
nc(r, θ, z) =

∂

∂z

 ∞∑
n=0

∞∑
a=0

PnaΦ̃1
na(r, θ, z) +

∞∑
n=0

∞∑
b=0

QnbΦ̃
2
nb(r, θ, z) +

∞∑
n=0

∞∑
c=0

SncΦ̃
3
nc(r, θ, z)

∣∣∣∣∣
z=Hfl

(2.100)
Making use of the orthogonality properties of the trigonometric functions and the Bessel
functions by multiplying both sides by cos(qθ) and the r-dependent part of Φ̃3

nc(r, θ, z), and
finally, integrating from 0 to 2π and over the radius results in

ω2

2g
Snc cosh

(
εnc

Hfl

R

)[
Jn+1(εnc)

]2
= Snc

εnc
2R

sinh(εncHfl/R)
[
Jn+1(εnc)

]2
+

∫ R

r=0

∞∑
a=0

PnaIn

(
π(2a− 1)r

2Hl

)(
cos(πa)π(2a− 1)

2Hl

)
rJn(εnfr/R)dr

+Qnb
εnb
2R

(
sinh(εnbHfl/R)− cosh(εnbHfl/R)

tanh(εnbHfl/R)

)[
Jn+1(εnb)

]2
(2.101)

in which the summation over n, over b, and over c are eliminated. A more detailed treatment
of the steps taken to arrive at equation (2.100) from equation (2.101) is given in section C.5.

2.5.5 Final set of equations

By summing equations (C.7) to (C.9) and (C.16) to (C.18), the orthogonality relation can
be used in equation (2.25). Together with equations (C.22), (C.27) and (C.31), they form
the final set of equations to be solved, and can be written in the matrix equation

Gx = f (2.102)

in which G contains the mode shapes, x contains the unknown modal amplitudes and f
contains the systems loading components, which are related to the earthquake excitation.
In theory, an infinite number of modes should be considered. In practice, this is not possible,
so in order to accurately solve for the displacements of interest, a proper truncation rule
must be specified. In this case, the cut-off criterion is that an additional mode does not
change the results by more than 1%. This criterion is also applied to the discretization
of the soil, in that an additional ring or angular segment of elements does not change the
results by more than 1%.
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3 Case study

This section treats two topics. The first is the convergence of the solution and the adoption
of criteria for the truncation of the number of modes and the number of soil-structure
interface elements. The second is the dynamic response of the tank-fluid-soil system to a
realistic ground motion.

3.1 Case description

For the case study, a scenario is examined of a medium-sized tank in the area of Groningen,
the Netherlands. A recorded earthquake signal will be applied to the tank that is located
on top of a layer of soil. The soil stiffness is selected sufficiently low to expect a detectable
amount of soil-structure interaction, while stiff enough to represent a realistic case. The
number of wall segments may vary with the size of the tank, but is for this case set at three.
The number of segments can easily be adjusted to fit the requirements of a specific design.
The considered fluid is water and the tank is assumed to be completely full.
The values of the various model parameters are described in more detail, after which the
results are presented and discussed.

3.1.1 System parameters

The soil layer has a thickness of hs = 30m, and is considered to be medium stiff. From
table 3.1 in EN 1998-1, this corresponds to a shear wave speed of cs = 270m/s. The
parameters in the soil model, Es, νs and ρs are selected such that the given shear wave
speed is obtained. Reasonable combinations of these parameters are derived from table 2.16
by Fredlund, Rahardjo, and Fredlund (2012), regarding the soil densities. Table 14.4 by
Fredlund et al. (2012) and table 5-16 from the U.S. Department of Transportation (2006)
provide information regarding the Poisson’s ratios.
The soil material damping is fixed at ξs = 0.02 (introduced in equation (2.35)). The material
damping ratio is, as are all soil parameters, not a straight-forward parameter either and is
dependent on soil type, loading regime, strain level and measurement methods. However,
ranges reported, for example, by Bolton Seed, Wong, Idriss, and Tokimatsu (1986), Vucetic
and Dobry (1991), or Lin, Ni, Wright, and Stokoe (1988) include the 2% damping ratio in
the linear regime. The applied parameters are listed in table 3.1.

The considered fluid, as stated previously, is water and is considered to fully occupy the
tank. The parameter values can again be found in table 3.1.

A steel tank is considered with a radius of R = 15m, and an aspect ratio of 1.0, so that
the height of the tank is H = 15m. The tank wall consists of three wall segments, each
with a height of 5m. To determine the wall thicknesses, sections 8.3.1 and 9.2.2 (based on
Barlow’s formula) of European code EN 14015 (2004) are applied. The wall thickness, ec,
of a segment is given as

ec = max

{
D

20S

(
98W [Hc − 0.3] + p

)
+ c ; 5mm

}
(3.1)

in which D is the tank’s diameter, S = 230N/mm2 is the assumed allowable stress, W is the
fluid density, Hc is the distance from the bottom of the segment to the fluid level, p = 0mbar
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Table 3.1 – Model parameter values for case study

Tank Fluid Soil

R 15m H(1) 5m Hfl/H 1 ρs 1800kg/m3

H 15m H(2) 5m ρfl 1000kg/m3 cs 270m/s
hp 7mm H(3) 5m νs 0.3

ET 200GPa h
(1)
w 10mm hs 30m

νT 0.27 h
(2)
w 7mm ξs 0.02

ρT 7800kg/m3 h
(3)
w 6mm

the assumed internal pressure and c = 0mm is the assumed corrosion allowance. The plate
thickness, ea, is determined with

ea = max

{
3 +

e1

3
; 6mm

}
(3.2)

in which e1 is the thickness of the bottom wall segment.

3.1.2 Excitation

For the excitation of the system, an accelerogram is used that was obtained in the Groningen
area in the Netherlands (Deltares (2015)). The time signal is transformed to the frequency
domain with the use of the Fourier transform in equation (2.1), as presented in figure 3.1.
Due to the shallowness of the induced earthquake, with a focal depth of approximately 3km,
the signal shows a significant vertical component.
The spectral accelerations are transformed to the incident displacement field with equa-
tion (2.61). The horizontal component of the earthquake is chosen to be in the direction of
θ = 0, so that ũi(r, θ, ω) becomesũi;r(r, θ, ω)

ũi;θ(r, θ, ω)
ũi;z(r, θ, ω)

 = − 1

ω2

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

ãx(ω) exp(−ir cos(θ)ω/cR)
0

ãz(ω) exp(−ir cos(θ)ω/cR)

 (3.3)

with cR = ζ
√
Gs/ρs and ζ = (0.862 + 1.14νs)/(1 + νs).
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Figure 3.1 – Vertical (left) and horizontal (right) components of earthquake signal in time (top) and
frequency (bottom) domain (source: Deltares (2015))

3.2 Convergence

The analytical nature of the model theoretically allows an exact solution to the problem,
however, the introduction of a number of discretizations practically limits its accuracy.
Refinement of the discretizations improves the model’s accuracy, but also increases its com-
putation time. In this section, the convergence of the model is therefore investigated.
A ‘global’ discretization is introduced with the summation over the structure and the fluid
modes. A ‘local’ discretization is introduced with the division of the soil-structure interface
into circular elements. Both the number of modes and number of elements included in the
model for the analyses are determined in this section.
While all discretizations should be checked for convergence at each frequency of excitation,
this is computationally expensive. The checks are instead performed for a number of rele-
vant frequencies of excitation of fexcitation = {2, 3, 4, 6}Hz, at which the earthquake spectra
(figure 3.1) contain a relatively large amount of energy. The examined cases are considered
to be representative for the other frequencies of excitation and the resulting discretizations
are applied for each of them.
Finally, it is checked whether uplift occurs, by considering the dynamic stresses at the soil-
structure interface and adding the static pressure of the tank-fluid system. If the resulting
stresses on the soil surface are upwards, uplift is considered to occur and the results are
considered to be invalid.

3.2.1 Structure modes

The tank’s modes have radial and circumferential components. Convergence for the radial
modes is considered here in relation to the maximum stresses in the tank wall. Since, roughly
categorized, the lower order modes are related to the plate and the higher order modes to
the wall, a response of the wall is more suitable to base the criterium on. The maximum
von Mises stress in the wall at cross-section θ = 0 is determined with 15, 20, 25, 30 and
35 radial modes (figure 3.2). The error εσ is defined as the percent difference between the
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Figure 3.2 – Convergence of maximum von Mises stress in cross-section of wall at θ = 0 for an
increasing number of axial structure modes m

found von Mises stresses and the estimated asymptotic von Mises stresses that the results
converge towards:

εσ = |σvM,max − σvM,max;asymp|/σvM,max;asymp (3.4)

While the error is relatively large at lower numbers of modes, the difference between 30
and 35 modes at each of the considered frequencies is less than 2.7%. The decrease of εσ
is not monotonic. The ‘available’ shapes at m = 15 to linearly combine into the modeled
response of the tank cannot be combined to capture the actual response. While adding
more modes should bring the modeled response closer to the actual response, the resulting
maximum stress in the tank wall of an erroneous response is not necessarily closer to the
actual maximum stress, especially since the vertical coordinate of the maximum stress may
vary.
By the same means, the number of circumferential modes n can be determined. It was
found that the increase of n = 4 to n = 5 changed the maximum von Mises stress by less
than 0.9%. The numbers of modes applied are therefore m = 35 and n = 5.

3.2.2 Fluid modes

The fluid is also discretized into axial and circumferential modes. Convergence of the axial
fluid modes is related here to the satisfaction of the interface conditions at the wall and
bottom plate, which prescribe velocity continuity of the fluid and tank. The satisfaction
of the interface conditions was examined for a = b = c = {10, 20, 30, 40, 50}. Since the
satisfaction of the interface conditions was in all cases better for the plate than the wall,
the results of the wall are reported (figure 3.3).
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Figure 3.3 – Convergence of satisfaction of velocity continuity condition at wall for an increasing
number of axial fluid modes a = b = c.

The error εIC is defined as

εIC = average
{
|vfl;r − vw ;r |/vfl;r

}
(3.5)

in which vfl;r is the velocity of the fluid at the wall and vw ;r is the velocity of the wall.
The error is thus the average of the velocity difference between the fluid and the wall over
the height of the interface, relative to the fluid velocity. As the number of mode shapes
increases, the actual fluid response can better be approximated and the relative error to
satisfaction of the interface decreases monotonically. At a = b = c = 50, the relative error
is reduced to 4%. In practice a = b = c = 100 is applied with an error of 1.2%, which is
deemed acceptable.
The number of circumferential modes n is the same number that was checked for the struc-
ture modes. No additional verifications for this number are thus required.

3.2.3 Soil-structure interface

The final convergence check performed is on the discretization of the soil-structure interface.
As reported, the interface is divided into a number of rings, nr, and a number of angular
segments, denoted nθ. Convergence is related here to the pressure of the fluid on the
wall at the location (r = R, θ = 0, z = 0). The fluid pressure is determined for interface
discretizations with 24, 30, 36, 42 and 48 radial segments and with 30, 40, 50, 60 and 70
angular segments (figure 3.4).
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Figure 3.4 – Convergence of fluid pressure at (r = R, θ = 0, z = 0) for increasing numbers of radial
and angular segments.

The error εp is defined as the relative difference between the found fluid pressures and the
estimated asymptotic fluid pressure that the results converge towards:

εp =
{
|pfl − pfl;asymp|/pfl;asymp

} ∣∣∣
r=R,θ=0,z=0

(3.6)

While εp can be large and unpredictable at low numbers of nr and nθ, the results stabilize for
larger numbers. The unpredictability at rough discretizations is not necessarily surprising,
as the solution method is essentially a weighted fitting of the mode shapes. Due to the
complexity of the system it is not trivial to predict which mode shapes might just fit at
which discretizations to give an unexpected response.
The largest difference at the finest discretizations is observed at f = 3Hz from nr = 42 to
nr = 48 with 6.9%. In the analyses, nr = 48 and nθ = 70 are applied.
Finally, at the soil-structure interface, no tensile stresses from the soil can in reality develop
to hold the tank attached to the soil. If they are present in the model at any location of the
interface, this would in reality imply the occurence of uplift. A check is therefore performed
by adding the static pressure of the fluid to the dynamic stresses at the interface. No uplift
was detected, which is unsurprising given the low aspect ratios and the low excitation.

3.3 Results

3.3.1 Tank

After finding the modal amplitudes, the displacements and stresses can be determined at
any location in the tank in the frequency domain, and with the inverse Fourier transform
in equation (2.1) also in the time domain. Figure 3.5 shows the stresses σzz at the vertical
coordinates z = 0.30m, 5.04m, 10.02m of the tank wall, each in a different wall segment, at
θ = 0. The stresses σzθ and σθθ can also be determined, as well as the von Mises stresses.
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Figure 3.5 – Static and dynamic stresses for a location in each wall segment z = 0.30m, 5.04m, 10.02m
at the circumferential section θ = 0

The stresses shown are the superposition of the static and the dynamic stresses. The static
stresses, which result from the hydrostatic fluid pressure, are similar in the lower two seg-
ments, whereas the static stresses in the top segment are lower. Due to the minimum
thickness criterium in the EN 14015 code, the material’s resistance capacity is not fully
mobilized. At the same time, the dynamic stresses in the top two segments are much lower
than those in the bottom segment. This is related to the vibration shapes of the tank-fluid
system, which is treated in more detail below.
Considering the entire tank’s displacements and stresses at a moment in time, which can be
found in figures 3.6 and 3.7, it is easily seen that the largest stresses occur at the bottom of
the tank wall. The displacement and stress patern resemble the elephant foot bulge shown
in figure 1.3. There is some variation over the height, but the magnitude of those values is
small compared to those found in the bottom segment.

Figure 3.6 – Displacements (scaled by 500) of tank at time t = 1.6s
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Figure 3.7 – Dynamic stresses σzz of tank (left) and of section at θ = 0 at outer surface of wall at
time t = 1.6s

Although difficult to see, the stresses jump in magnitude at the interface between the wall
segments. The increases are substantial in this specific case with 40% between the bottom
and middle segment and 27% between the middle and top segment. Given the small values
at both interfaces compared to the static stresses, these jumps are not considered relevant
for this scenario, but they can be in other cases. It is thus beneficial to be able to compute
them in a direct manner.
Finally, it is noted that, contrary to what is expected of a system with damping, the system’s
response does not decrease over time, while the excitation does decrease (see figure 3.1). This
is the result of the applied lowest considered frequency and frequency resolution, both of
0.2Hz. In the time domain this smallest frequency results in a periodic signal with at most
a period of 5s. It is therefore not possible with the applied frequency range to model the
response to the signal that lasts almost 10s. The remainder of the results in this section
will therefore be presented in the frequency domain. While this invalidates the results in
figures 3.5 to 3.7, the figures do show the model’s possibilities given the proper frequency
range.

3.3.2 Fluid

The behavior of the fluid was split up by Housner into the so called convective and impulsive
components (see section 1.1.4). The convective mass is the part of the fluid mass that exhibits
a sloshing behavior, whereas the impulsive mass is the part of the fluid mass that moves in
tandem with the tank wall. This distinction is observable in figure 3.8, where the elevation
of the fluid level represents the sloshing component, and the fluid pressure at the interface
between plate and wall represents the impulsive component.
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Figure 3.8 – Absolute values of fluid pressure at (z = 0, θ = 0) and fluid elevation at (z = Hf , θ = 0)
in the frequency domain

The behavior of the convective mass is dominated by much longer period behavior than
the impulsive mass, as was shown by Amabili et al. (1998); Bauer and Siekmann (1971);
Veletsos (1984). Comparing figure 3.8 with figure 3.5 shows that the impulsive mass and
stresses σzz are closely related, both dominated by vibrations at f = 2.4Hz.
The contribution of the fluid pressure on the wall and plate, as well as the elevation of the
fluid level at that frequency to the final solution are shown in figures 3.9 to 3.11.

Figure 3.9 – Pressure of the fluid acting on the wall at f = 2.4Hz with positive values acting outwards
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Figure 3.10 – Pressure of the fluid acting on the plate at f = 2.4Hz with positive values acting down-
wards

It is noted that filling the considered tank to the rim will lead to spilling of its contents at
any amount of sloshing, which is why a freeboard is applied in practice.

Figure 3.11 – Elevation of the fluid fluid level at f = 2.4Hz scaled by 1000

3.3.3 Soil

In order for the tank to withstand a seismic event, not just the tank itself needs to be
verified, but also the soil it is founded on. With knowledge of the stresses at the soil-
structure interface, verifications can be performed for the soil. The stresses acting from the
soil on the tank’s bottom plate are known, as they serve as input in the plate’s equations
of motion. They are equal to the stresses acting from the plate on the soil, expressed in
the stress continuity condition at the soil-structure interface (equation (2.54)). As is the
case for all variables in the model, the interface stresses can be presented in both time and
frequency domain at every location on the interface.
Comparing the stresses σzz at the soil surface with the fluid pressure at f = 2.4Hz (see
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figure 3.10) shows the relation between those two in figure 3.12. While the figure shows a
stress patern that somewhat resembles the fluid pressure pattern, this image is distorted by
the effects that the tank and the incident wave field have on the interface stresses.
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Figure 3.12 – Stresses σzz acting from the soil on the soil-structure interface at f = 2.4Hz

It is also clear that the stresses at the edge of the interface are much higher. This is related
to a phenomenon noted also by Molenkamp (2018), namely that the effective stiffness at the
edge of the interface is larger than at the center. This is also reflected in figure 3.13.
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Figure 3.13 – Absolute values of soil-structure interface stresses and displacements at edge (solid)
and center (dashed) in frequency domain with positive values acting upwards

While stresses and displacements are both higher at the edge of the soil-structure interface,
the ratio between the two is larger at the edge than at the center, indicating a higher
effective stiffness. The bigger displacements at the edge indicate a rocking behavior, while
the presence of vertical displacements at the center indicate that the tank also undergoes
vertical translations. The latter is not surprising given the relatively large vertical excitation
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component (figure 3.1).
Besides stresses and displacements at the soil-structure interface, the effect can be shown of
the motions of the tank-fluid system on the soil displacements surrounding it (figure 3.14).
The figure shows that modes of the tank are excited in which the bottom plate vibrates
with a relatively high wavenumber. While the figure’s scaling exaggerates this effect, it is
noted that the low thickness of the plate makes it flexible, allowing this behavior at low
frequencies of vibration. In practice, this is unlikely to occur, as some form of foundation
improvement would be applied, e.g. a concrete slab or soil improvements, that would reduce
the observed behavior.

Figure 3.14 – Soil displacements at soil-structure interface (r ≤ R) and the soil surface surrounding
the tank (r > R) as a result of the motions of the tank at t = 2.4Hz

Radiation damping is a form of damping caused by traveling waves that carry energy away
from the tank-fluid system. However, traveling waves generated by the motions of the tank-
fluid system appear to be absent in figure 3.14. This can be explained considering the
wavelengths of the waves traveling at this frequency in this soil, which can be computed to
be over 100m with

λ =
cR
ω

=
0.862 + 1.14νs

1 + νs

cs
ω

(3.7)

in which cR is the Rayleigh wave speed. The propagating waves are thus simply not visible
in figure 3.14. For practical reasons and the prospect of limited additional information, it
was decided to not increase the boundaries of the soil domain of the figure.
As was presented in section 2.4.5, the amount of energy leaving the system over the duration
of one period can be computed at every frequency. Expressed as a fraction of the energy in
the tank-fluid system, the damping can be shown (figure 3.15) to be frequency dependent.
The low values of damping at the lower frequencies can be explained by the cut-off frequency
of the soil layer. Waves with frequencies below this value, do not propagate and therefore
do not carry much energy away from the tank-fluid system. The occuring damping is the
result of material damping.
The fluctuations stem from soil resonances, as was shown by Molenkamp (2018). Depending
on the main mode of vibration, e.g. translational or rocking motions, different values of
effective damping are expected. Paired with the different combinations of horizontal and
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vertical excitation this obscures which exact mechanisms dominate the damping behavior at
each frequency. It is also noted that values up to 70% might seem high, but are comparable
to the amount of energy dissipated over one period by a single degree of freedom system
with a damping ratio of 0.2. The computed damping does not vary linearly with the single
degree of freedom damping ratios as values of 50% compare to a damping ratio of 0.1.
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Figure 3.15 – Ratio of dissipated energy to total energy in the system

– 49 –



MSc thesis - D. P. Kroon 4 Parameter study

4 Parameter study

This section is concerned with the influence of the thickness of the soil layer, the soil mate-
rial properties and the aspect ratio of the tank on the fundamental period of the tank-fluid
system. This period increase is one of the main effects of including soil-structure interac-
tion and its incorporation can shift the modeled fundamental eigenperiod to a part of the
earthquake spectrum with a lower or actually higher excitation.
The current model employs a frequency dependent fully coupled soil stiffness matrix to
represent the soil. Others, e.g. Tsouvalas et al. (2018), have used uncoupled vertical and
horizontal springs and dashpots, of which the static values are derived from formulas pre-
sented by Gazetas (1983), based on a rigid plate. A short comparison is presented to evaluate
to what extent this representation of the soil substructure is appropriate.
First, the different parameters and their applied values are discussed in more detail, followed
by the parameter study. The comparison between the two soil models is then presented and
this section is concluded with some general remarks on the results.

4.1 Parameters

As the attention is centered on the effect of soil-structure interaction, the material and
geometrical properties of the soil layer are varied. For the comparison of the two soil
models, these soil properties are converted to the respective model parameters with the
formulas presented by Gazetas (1983). Also, a number of tank sizes is compared with
constant ratios of hs/R (layer thickness to tank radius), so that potential scaling effects can
be observed. Fluid-structure interaction of liquid storage tanks with the current modeling
approach has been discussed by others, e.g. Amabili et al. (1998); Bauer and Siekmann
(1971); Canny (2018), so is left out of the analyses here.

4.1.1 Soil

The soil’s geometrical parameter is the layer thickness that is assumed to be positively
related to the flexibility of the system. A thickness of zero is equivalent to a infinitely
stiff rigid foundation, whereas an infinite thickness is a half-space. The selected values are
in between these limit cases, so that the system will to some extent experience the rigid
boundary at the bottom of the layer. The dimensions of the tank itself are also relevant for
the effective stiffness of a soil layer. The parameter varied in the investigation is therefore
the ratio between the height of the soil layer and the radius of the tank, hs/R. In addition,
a number of tanks with different radii, but a constant hs/R ratio is examined for potential
scaling effects.
The soil material properties that are varied are the stiffness and the density of the soil. While
soil is a complex material with greatly varying properties and combinations of properties,
the model requires relatively simple parameters that capture soil behavior in general terms.
One type of classification of soil in terms of dynamic properties is in shear wave speed
(Larkin (2008) or EN 1998-1 (2005)).
Based on table 3.1 in EN 1998-1, wave speeds are selected of 120m/s and 270m/s, that
represent soft and moderately dense soils. Reasonable combinations of the parameters of
the soil model are selected to obtain these wave speeds. The soil densities ρs are derived
from table 2.16 by Fredlund et al. (2012). The soil’s moduli of elasticity and Poisson’s ratios
Es and νs are found in table 14.4 by Fredlund et al. (2012) and table 5-16 from the U.S.
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Department of Transportation (2006).
The final soil parameter is the material damping parameter ξs, which is kept constant at 2%
for both soil types. Maintaining a fixed material damping ratio allows for better comparison.
An overview of the applied soil parameters can be found in table 4.1.

Table 4.1 – Soil parameter values

Soil type h/R [-] ρs [kg/m3] νs [-] cs [m/s]

1 {1; 2; 4} 1600 0.4 120
2 {1; 2; 4; 6} 1800 0.3 270

In order to compare the currently applied soil model with the one applied by Tsouvalas et
al. (2018), model parameters for the latter must be selected such that they represent the
same soil layer. The parameters are determined with the formulas presented by Gazetas
(1983), which give lumped values of static stiffness parameters for a circular rigid plate on
a soil layer over a rigid boundary:

Kv =
4GsR

1− νs

(
1 + 1.28

R

hs

)
for h/R ≥ 2

Kh =
8GsR

2− νs

(
1 +

R

2hs

)
for h/R ≥ 1

Kr =
8GsR

3

3(1− νs)

(
1 +

R

6hs

)
for 4 ≥ h/R ≥ 1

(4.1)

The shear modulus Gs is expressed by rewriting equation (2.46) as

Gs = ρsc
2
s (4.2)

Following Canny’s approach, the area, A = πR2, and second moment of area, I = πR4/4, of
the soil-structure interface can be used to transform the lumped parameters to distributed
spring parameters. Both Kv and Kr lead to a different value of the vertical spring stiffness,
so as a simple compromise the average of the two values is used. The distributed spring
values are therefore

kh = Kh/Ap

kv =
Kv/Ap +Kr/Ip

2

(4.3)

Following Tsouvalas et al. (2018), the damping ratios are taken as ch = 0.03kh and cv =
0.03kv.

4.1.2 Fluid

Since fluid-structure interaction is not of primary concern in this investigation, the fluid
properties are kept constant. The fluid parameters are the density and the fill ratio, which
is defined as the level of the fluid relative to the height of the tank (Hfl/H). Their values
are reported in table 4.2.
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Table 4.2 – Fluid parameter values

Parameter Value Unit

Density 1000.0 kg/m3

Fill ratio 1.0 -

4.1.3 Tank

The geometrical parameter of the tank substructure that has the highest impact on its
seismic behavior is the aspect ratio, which is defined as AR = H/R. As shown in figure 1.3,
different aspect ratios are associated with different failure modes and tanks with higher
aspect ratios tend to exhibit a rocking motion, whereas tanks with lower aspect ratios tend
to display more translational motions (Larkin (2008)). Although these potential differences
would be interesting to examine, most tanks with high aspect ratios are anchored, due to
the risk of uplifting.
Uplift occurs when, after superposition of the static and dynamic stresses, the net stresses
from the tank acting on the soil are upwards. In the model, the soil and tank displacements
are equal so that the soil will exert downward stresses on the tank. In reality, the tank will
simply lift from the soil, or, in the case of anchored tanks, the anchors will exert the stresses
to resist uplift. However, this will lead to different stress distributions that are currently not
in the model, so that tanks with such high aspect ratios are not included in the analyses.
Another parameter of the tank, its radius relative to the soil layer height, was discussed
earlier. To examine the previously mentioned potential scaling effect, tanks with three
different radii are applied in the analyses, associated with small up to large liquid storage
tanks.
The applied material of the tanks is steel, which is not varied. The values of the material
properties can be found in table 4.3.
To determine the wall and plate thicknesses, use is made of sections 8.3.1 and 9.2.2 of EN
14015 (2004), so that a consistent rule is applied in the determination of the wall and plate
thicknesses of all considered tanks. The wall thickness ec of a segment is computed with

ec = max

{
D

20S

(
98W [Hc − 0.3] + p

)
+ c ; 5mm

}
(4.4)

in which D is the tank’s diameter, S = 230N/mm2 is the assumed allowable stress, W is the
fluid density, Hc is the distance from the bottom of the segment to the fluid level, p = 0mbar
the assumed internal pressure and c = 0mm is the assumed corrosion allowance. The plate
thickness, ea, is found with

ea = max

{
3 +

e1

3
; 6mm

}
(4.5)

in which e1 is the thickness of the bottom wall segment. An overview of the applied tank
parameter values can be found in table 4.3.

Table 4.3 – Tank parameter values

R [m] H/R [-] ρt [kg/m3] νt [-] Et [GPa] hw [m] & hp [m]

{7.5; 15.0; 30.0} {0.5; 1.0} 7800 0.27 210 From EN 14015
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4.1.4 Excitation

The excitation of the system consists of an incident displacement field (equation (2.61)).
The analyses concentrate on the increase of the system’s fundamental period, as a result
of incorporating SSI and varying the system parameters. The least confounding input
displacement field to examine the sensitivity of the system’s response to varying system
parameters is a horizontal and a vertical uniform displacement. A range of frequencies is
considered between 0.2 - 25.0Hz with a step size of 0.2Hz, and an acceleration amplitude at
each frequency of 1m/s2/Hz.

Table 4.4 – Excitation parameter values

Type Freq. range [Hz] Resolution [Hz] Amplitude [m/s2/Hz]

Uniform hor. & vert. 0.2 - 25.0 0.2 1.0

4.2 Results

4.2.1 Determination eigenperiods

The increase of the first eigenperiod is expressed as T0/Tstiff , in which Tstiff is the first
eigenperiod of a tank-fluid system on a rigid foundation and T0 the first eigenperiod of the
same tank-fluid system, founded on a flexible soil layer (Tstiff < T0). The first eigenperiods
of the systems, T0 are determined by means of so-called peak picking, which is a method of
finding the frequency response function of a system and identifying the frequencies at which
the frequency response function attains a peak value (see for example figure 4.1).
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Figure 4.1 – Peak picking example for a tank with R = 15m, aspect ratio of 0.5 on a soil layer with a
thickness of hs = 15 of soil type 2, loaded in vertical direction

To find the first eigenperiods of a system with a rigid foundation, the following soil parame-
ters were applied in equations (4.1) and (4.3): ρs = 2200kg/m3, νs = 0.4 and cs = 800m/s.
The resulting spring stiffnesses were multiplied by 10, resulting in values approximately
1000 times as large as the ones representing flexible soils. For the load case of horizontal
excitation at the soil surface, the first eigenperiods of the systems with a rigid foundation

– 53 –



MSc thesis - D. P. Kroon 4 Parameter study

can also be found from equation A.35 in EN 1998-4 (2007), which were compared to the
ones obtained from peak picking. The eigenfrequencies for the vertical excitation of the soil
surface were obtained just from the peak picking method.

4.2.2 Soil type and layer height

For soil type 2, representing a moderately stiff soil, four ratios of layer height to tank radius
were examined (figure 4.2). The fundamental periods of the systems increase compared to
the case with a rigid foundation, as the soil layer thickness increases. Especially from hs/R
ratios of 2 to 4 and from 4 to 6, a diminishing effect on the period increase is observed. This
is in line with the expectation that the relative layer thickness decreasingly influences the
results as the layer thickness increases.
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Figure 4.2 – Period increase for a tank with radius R = 15m on a soil layer of soil type 2 with varying
layer height: 15m, 30m, 60m and 90m

The trajectory of the scenario of the vertically excited tank with an aspect ratio of 0.5
slightly deviates from the expected pattern at hs/R = 2. This is most likely related to
the frequency dependency of the behavior of a soil layer. As shown by Molenkamp (2018),
sudden decreases in the effective stiffness and damping can occur at the soil’s resonance
frequencies. These frequency dependent stiffness and damping properties do not follow
a simple relation with the increase of the hs/R ratio. As the dynamic soil stiffness is the
added component to the system, it is not unexpected that some of the found period increases
deviate from the expected pattern.
It is also noted that the period increase varies little between tanks with different aspect
ratios or between the load directions. For horizontal loading, differences could be expected
for different overall behavior, such as rocking as opposed to translational motions. However,
in order to observe such differences, tanks with a higher aspect ratio need to be examined.
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Figure 4.3 – Period increase for a tank with radius R = 15m on a soil layer of soil type 1 with varying
layer height: 15m, 30m and 60m

For soil type 1, three layer heights were examined, at hs/R ratios of 1, 2 and 4 (figure 4.3).
Compared to soil type 2, the most obvious observation is that the period increase at each
hs/R ratio is much larger with values of up to 4. These results seem high, but are actually
similar to the values reported by Larkin (2008) for a tank of similar dimensions based on a
design rule by Veletsos (see figure 4.4).

Figure 4.4 – Period increase for a tank with radius of 10m and a height of 15m on a half space for
varying shear wave velocities of the soil (source: Larkin (2008))

4.2.3 Scale effects

To examine a potential scaling effect, three tanks are considered of radii R = {7.5, 15, 30}m
on a soil of type 2, with layer heights increasing in tandem with the radii.
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Figure 4.5 – Period increase for tanks with constant hs/R = 2 and soil type 2 for varying tank radii
of R = {7.5, 15, 30}m

From figure 4.5 it appears that the larger tanks on the thicker soil layers experience a smaller
period increase. In general, structures with a larger foundation lead to a stiffer soil response
as the reaction of a larger volume of soil is mobilized. For rocking, the effect of the radius is
even stronger as the resistance of the soil to the overturning moment will involve the second
moment of inertia of the interface. At the same time, a larger soil thickness should lead to
a less stiff response, as the influence of the rigid boundary becomes less marked. It could
be expected that the stiffness lowering aspect of increased soil layer thickness would offset
the added stiffness of the increased foundation footing.
Figure 4.5 shows that the positive influence on effective soil stiffness of an increased foun-
dation footing is stronger than the negative influence of a larger layer thickness. This is
corroborated by Gazetas’ formulas (equation (4.1)), in which this effect is even stronger. It
is noted however, although they are insightful, the formulas do not consider the flexibility
of the tank, nor the additional mass from the fluid, which are likely to have an effect on
the mobilized soil. Figure 4.5 at least shows that the influence of the hs/R ratio on the
fundamental period increase shown in figures 4.2 and 4.3 should be complemented by a scale
factor.

4.3 Comparison soil models

In this section a comparison is made between soil modeled as a spring-dashpot foundation,
as presented by Tsouvalas et al. (2018), and the soil as a dynamic soil stiffness matrix.
Roughly, two categories are compared, namely a relatively small tank on a relatively stiff
soil and a larger tank on a relatively soft soil. As such, potential differences between the
two models can be observed for systems that are expected to have relatively high and low
fundamental eigenperiods respectively.
In the stiff category is a tank with a radius of R = 7.5m and an aspect ratio of 1.0, founded
on a soil layer with a thickness of hs = 15m of soil type 2 (see tables 4.1 and 4.3). The
spring parameters are calculated with equation (4.3) and the excitation is applied as uniform
horizontal soil surface displacements.
The first natural frequencies of the dynamic soil stiffness model and the modified Winkler
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model are 6.6Hz and 7.6Hz respectively (figure 4.6). Compared to the first eigenfrequency
of a rigidly founded tank of 8.4Hz, this difference is considered to be substantial. It is noted
that, with the exception of the magnitude of the fluid pressure at the first eigenfrequency,
the frequency response functions are rather similar, especially at the second eigenfrequency.
It is also noted that the modified Winkler model produces smoother results than the dynamic
soil stiffness model. This can be explained by the frequency dependency of the soil’s effective
stiffness and damping that are reflected in the dynamic response of the entire system.

0 5 10 15 20
0

50

100

150

200

250

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

Figure 4.6 – Frequency response functions of tank with radius R = 7.5m, aspect ratio of 1.0 on soil
with hs = 15m of soil type 2, horizontally excited

Changing the aspect ratio of the previous scenario to 0.5 yields fundamental eigenfrequen-
cies of 10.8Hz and 12.2Hz for the dynamic soil stiffness and the modified Winkler model
respectively (figure 4.7). Compared to the first eigenfrequency of 13.8Hz for a rigid founda-
tion, the difference is again considered to be substantial.
Other observations are also similar to the previous case. The magnitude of the fluid pres-
sure at the first eigenfrequency is higher for the dynamic soil stiffness case, which might be
explained by the frequency dependent damping of the soil. Molenkamp (2018) has shown
that the damping of the soil can experience sharp decreases at the resonance frequencies of
the soil. It is well possible that the these coincide with the eigenfrequency of the system.
However, a more detailed analysis is required to investigate whether this is the case. For
the comparison of the fundamental period increase between the two soil models, the current
depth of analysis is sufficient.
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Figure 4.7 – Frequency response functions of tank with radius R = 7.5m, aspect ratio of 0.5 on soil
with hs = 15m of soil type 2, horizontally excited

In the category of systems with a low expected eigenfrequency, a tank is considered with a
radius of R = 15m and an aspect ratio of 1.0 on top of a soil layer with thickness hs = 60m
of soil type 1 (see tables 4.1 and 4.3 for more details), excited in horizontal direction. This
system experiences a considerable period increase with the first eigenfrequency at 1.0Hz and
2.8Hz for the dynamic soil structure and modified Winkler models respectively (figure 4.9),
compared to the first eigenfrequency of 3.8Hz for the rigid foundation case. Relative to the
stiffer previous cases, the difference between the two soil models is greater.
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Figure 4.8 – Frequency response functions of tank with radius R = 15m, aspect ratio of 1.0 on soil
with hs = 60m of soil type 1, horizontally excited
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Finally, the same tank is considered with uniform vertical displacements of the soil surface.
The first eigenfrequencies of the dynamic soil stiffness and the modified Winkler models are
1.2Hz and 3.2Hz respectively (figure 4.8), whereas the first eigenfrequency of the tank on
a rigid foundation is 4.4Hz. Again, the difference in the estimate of the first eigenperiod
between the soil models is greater than in the stiffer scenarios.
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Figure 4.9 – Frequency response functions of tank with radius R = 15m, aspect ratio of 1.0 on soil
with hs = 60m of soil type 1, vertically excited

Overall, it is observed that the prediction of the first eigenfrequency of the two considered
soil models diverges. The discrepancies increase for softer soils and larger soil layer thick-
nesses. The soil models differ in two main respects. The first is that the springs of the
modified Winkler model have been derived from equations applicable for rigid plates, while
the dynamic soil stiffness model is not. The second is that the modified Winkler model is
frequency independent, while the dynamic soil stiffness model is not. Additional research
would be required to find how much of the discrepancies between the results of the two
models is caused by which of the main two model differences.

4.4 Conclusion

In this section, the effect of soil layer height and soil type as well as tank dimensions on the
period increase of the system were examined. Then, the results of the dynamic soil stiffness
model were compared to those of the modified Winkler model.
Overall, it is observed that both soil layer height and soil type have a substantial effect on
the period increase of the system. Increasing the hs/R ratio to 6 increased the first eigenpe-
riod of the system up to 1.7 for soil type 2, representing a moderately stiff soil. For soil type
1, representing a soft soil, the period increased up to 4 times for a hs/R ratio of 4. These
results were similar to results obtained by Larkin (2008) for a tank of similar dimensions.
It was also found that the tanks experience a scaling effect. For a constant hs/R ratio and
soil type, tanks with a larger radius and the same aspect ratio experience a smaller period
increase. This effect was supported by the formulas by Gazetas that show for a rigid plate
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that doubling both layer thickness and plate radius doubles the stiffness of the soil.
To observe significant differences in fundamental period increases for rocking as opposed to
translational motions, tanks with a higher aspect ratio need to be included. As these are at
risk of uplift, a nonlinear effect that cannot be modeled by the linear model, anchors should
be included in the model.

The comparison between the modified Winkler model and the dynamic soil stiffness model
showed that the modified Winkler model estimates lower period increases than the dynamic
soil stiffness model. This effect is stronger for softer soils with a larger layer thickness and
is attributed to two main differences between the models. First, the spring parameters of
the modified Winkler model are derived from formulas for a rigid plate. As Molenkamp
(2018) showed, there is a difference in effective stiffness between the edge and the center of
the interface that becomes larger for softer soils. This effect is not considered by a model
for a rigid plate. Second, the modified Winkler model is not frequency dependent, while the
response of the system was observed to be influenced by the soil’s frequency dependency
for the dynamic soil stiffness model. Certainty on the extent to which either of the two
model differences influences the observed differences in period increases requires additional
research, e.g. with a rigid bottom plate. It can however be concluded that accurate in-
corporation of soil-structure interaction is not just relevant for very soft soils, but also for
moderately stiff ones.
Regarding computational efficiency, the modified Winkler model outperforms the dynamic
soil stiffness model. To improve the latter, reducing the number of elements of the soil-
structure interface should be considered. The axisymmetry of the applied discretization
offers the advantage of having to compute many values just once, as they can be reused
for other entries of the matrix. However, at the center, more elements are defined than
necessary for accuracy purposes. As the sheer size of the matrix slows the computation
down, it could be beneficial to develop an axisymmetric discretization with fewer elements
at the center.
Finally, in practice, tanks such as the ones presented in figures 4.8 and 4.9 will not be
constructed as such without foundation improvements. Although the scenarios are of the-
oretical value, in practice the layering of soil or addition of a foundation slab should be
included in the model to examine tanks on such soft soils.

– 60 –



MSc thesis - D. P. Kroon 5 Conclusions & discussion

5 Conclusions & discussion

In this thesis, a model has been presented to predict the seismic response of liquid stor-
age tanks, incorporating both fluid-structure and soil-structure interaction through a semi-
analytical dynamic substructuring technique. As the main contribution has been the cou-
pling of a more advanced soil model to the tank-fluid system, the focus is on soil-structure
interaction.
The purpose has been to develop a model with the computational efficiency and ease of use
comparable to other analytical models, while performing at a level of accuracy comparable
to FE models. To achieve this, the computationally efficient mode-matching technique is
used. This technique only sacrifices on accuracy through the limitations imposed by the
assumptions of the underlying theories and a number of truncations. These are the number
of soil, structure and fluid modes and the number of elements of the discretization at the
soil-structure interface.
The model properly incorporates dynamic soil-structure interaction and the influence of soil-
structure interaction is shown on the fundamental period increase of the tank-fluid system.
In addition, a method is presented to determine the amount of damping of the tank-fluid
system that occurs through soil-structure interaction.

5.1 Conclusions

5.1.1 Model

Results of the soil, structure and fluid domains can be obtained both in the time and the
frequency domain. These include displacements and stresses at any location in the tank,
fluid pressure on the tank at any location of the fluid-structure interface, the fluid surface
elevation, the stresses and displacements at the soil-structure interface and displacements
at the soil surface surrounding the tank. In addition, an earthquake signal can be applied
in the model as traveling waves. The model is thus capable of producing output similar
to numerical models, such as FE models, with the ease of use and computational efficiency
comparable to other analytical models.

As the model’s accuracy stems from the analytical nature of the model, each of the pre-
viously mentioned approximations needs to be limited. Therefore, the numbers of modes
and elements were truncated such that additional modes or elements did not contribute
substantially to the system’s response. All discretizations showed convergence and changes
were found of less than 3% for the addition of a number of modes. Only the soil-structure
interface was slightly above that value, but truncated for practical purposes. Given the
convergence of the model, it is concluded to be sufficiently accurate. A convergence check
is however no replacement for a model validation, which still needs to be performed before
the model can be applied in practice.

It is shown that dynamic soil-structure interaction is properly considered in the model,
through a simple application of the usually known free-field ground motions in the equa-
tions of motion of the bottom plate. By considering all expected wave fields (free-field,
scattered and radiated) associated with soil-structure interaction in the satisfaction of the
conditions at the soil-structure interface, soil-structure interaction is properly accounted for.
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5.1.2 Soil-structure interaction effects

For a fictitious case study, it was shown how the amount of damping of the tank-fluid sys-
tem can be determined at each frequency of excitation. With the imaginary component of
the dyanmic soil-stiffness matrix, the damping force for each element can be found. After
transformation of the damping force and velocity to the time domain, the total amount of
energy dissipated through the soil can be calculated for a given time domain. It can also
be computed at each frequency over the time duration of one period and divided by the
total amount of energy in the tank-fluid system. It then gives an indication of the effect of
soil-structure interaction on system damping. Damping increases for frequencies above the
cut-off frequency of the soil layer as radiation damping then starts to play a significant role.

The model was also applied to investigate the influence of the soil layer height, the soil type
and tank dimensions on the fundamental period increase of the system. Both layer height
and soil type were found to have substantial effects with an increase of approximately 1.7
times for a moderately stiff soil (cs = 270m/s) and a hs/R ratio of 6 and an increase of up
to 4 for soft soil (cs = 120m/s) with a hs/R ratio of 4. These values were comparable to
those reported by Larkin (2008) for a tank of similar dimensions.
In addition, it was found that larger tanks with the same hs/R ratio tend to experience a
smaller period increase. This is not surprising as structures with larger foundations expe-
rience stiffer soil behavior. The difference in the increase of the effective stiffness and the
increase of the eigenperiod is related to the aproportional changes in the mass and stiffness
of the tank-fluid system itself.
Finally, the dynamic soil stiffness model was compared to a modified static Winkler model
consisting of horizontal and vertical uncoupled springs and dashpots. For softer soils with
a greater layer thickness, higher discrepancies were observed. Two main model differences
cause this effect. First, as concluded by Molenkamp (2018), there is a difference in effective
stiffness at the edge and at the center of the interface, which becomes greater for softer soils.
This is not included in the modified Winkler model. Second, the frequency dependent stiff-
ness and damping were shown to have an effect on the results of the dynamic soil stiffness
model, which is also not incorporated in the static modified Winkler model. The extent to
which either of these model differences influences the observed response differences could be
investigated further by eliminating one of the model differences, for example with a rigid
tank bottom plate. From the analyses it can be concluded that soil-structure interaction
should not only be considered properly for structures founded on very soft soils, but also on
moderately dense soils.

5.2 Discussion and recommendations

A fundamental limitation of the model is that it is linear and that nonlinear effects can
therefore not be included. Neither large displacements and strains of the tank itself can
modeled, nor nonlinear failure mechanisms, such as buckling. Nonlinearities in the soil
include stress-strain relations, sliding effects, nonlinear damping-strain relations and the
inability to withstand tensile stresses other than some possible cohesion effects. However,
this limitation does not disqualify the model. For example, stresses in the tank can still
be calculated to compare to buckling stresses and modeling soil as an elastic continuum
is widely adopted in seismic engineering and is considered accurate enough to describe the
relevant physical phenomena, such as seismic wave propagation (Achenbach (2003); Aki and
Richards (2009)).
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A recommendation to improve the practical applicability of the current model is to add a
roof, ring stiffeners and anchors to the model. The roof and ring stiffeners are likely to
influence the mode shapes of the tank and thus the response, while the anchors will allow
modeling of tanks with higher aspect ratios. Although tanks with higher aspect ratios can
in principle be modeled, they are very likely to experience uplift, which currently invalidates
the model.
It is also recommended to implement the possbility of multiple soil layers. Soils are often
composed of various layers with rather different properties and it allows a more accurate
representation of the soil directly underneath the tank. It was found in the case study
that a tank mode was excited with a high wavenumber, while this mode might be less
dominant in practice, since the material directly below the tank is often made stiffer with
soil improvements or even a concrete slab.
Furthermore, the computational efficiency of the model could be inmproved, for example by
applying a different discretization method that reduces the size of the soil stiffness matrix.
While the axisymmetric discretization offeres computational benefits, the large number of
elements at the center of the interface does not improve the model accuracy. It is therefore
recommended to develop a discretization that is axisymmetric but with fewer elements to
reduce the size of the soil stiffness matrix.
Finally, the model needs to be validated by means other than convergence checks. Finite
element models can be considered with proper inclusion of the fluid, structure and soil,
although strictly speaking, both models could still differ from reality. Another possibility
is therefore experimental validation. Performing at least one of these is essential for safe
future application of the model.
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Appendix A Shells

In this appendix, the eigenfunction expansions are found of the tank’s bottom plate and
wall segments, based on the work by Soedel (2005) and Tsouvalas (2006).

A.1 Shell eigenfunction expansion

A.1.1 Shell equations of motion

First order approximations of vibrations of thin walled shell elements are characterized by
the following 5 general equations, also known as Love’s equations (Soedel, 2005):
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The terms α1 and α2 represent the two-dimensional curvilinear surface coordinates.
A1 and A2 are the so called fundamental form parameters, which are specific to the geometry
under consideration. Their values are defined as

Ai =

∣∣∣∣ ∂r̄∂αi
∣∣∣∣ i = 1, 2 (A.6)

in which r̄ is the position vector for each location P on the shell’s neutral surface.
u1, u2 and u3 represent the displacements in the curvilinear coordinate system, where the
latter is the displacement normal to the shell’s surface.
q1, q2 and q3 are external forces acting in each degree of freedom.
The forcing terms N11, N22, N12, N21, M11, M22, M12 and M21 are expressed as (Tsouvalas,
2009)

N11 =
Eh

1− ν2

((
1

A1

∂u1

∂α1
+

u2

A1A2

∂A1

∂α2
+
u3

R1

)
+ ν

(
1

A2

∂u2

∂α2
+

u1

A1A2

∂A2

∂α1
+
u3

R2

))
(A.7)

N22 =
Eh

1− ν2

(
ν

(
1

A1

∂u1

∂α1
+

u2

A1A2

∂A1

∂α2
+
u3

R1

)
+

(
1

A2

∂u2

∂α2
+

u1

A1A2

∂A2

∂α1
+
u3

R2

))
(A.8)

N12 = N21 =
Eh

2(1 + ν)

(
A2

A1

∂

∂α1

(
u2

A2

)
+
A1

A2

∂

∂α2

(
u1

A1

))
(A.9)

M11 =
Eh3

12(1− ν2)

[(
1

A1

∂φ1

∂α1
+

φ2

A1A2

∂A1

∂α2

)
+ ν

(
1

A2

∂φ2

∂α2
+

φ1

A1A2

∂A2

∂α1

)]
(A.10)
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M22 =
Eh3

12(1− ν2)

[
ν

(
1

A1

∂φ1

∂α1
+

φ2

A1A2

∂A1

∂α2

)
+

(
1

A2

∂φ2

∂α2
+

φ1

A1A2

∂A2

∂α1

)]
(A.11)

M12 = M21 =
Eh3

24(1 + ν)

[
A2

A1

∂

∂α1

(
φ2

A2

)
+
A1

A2

∂

∂α2

(
φ1

A1

)]
(A.12)

in which

φ1 =
u1

R1
− 1

A1

∂u3

∂α1
(A.13)

φ2 =
u2

R2
− 1

A2

∂u3

∂α2
(A.14)

As such, the equations of motion are described in terms of known geometrical and material
parameters and unknown displacements for each degree of freedom.
Kirchhoff’s effective shear forces are (Soedel, p. 36-37):

V13 = Q13 +
1

A2

∂M12

∂α2
(A.15)

V23 = Q23 +
1

A2

∂M21

∂α1
(A.16)

T12 = N12 +
M12

R2
(A.17)

T21 = N21 +
M21

R1
(A.18)

A.1.2 Circular plate

For circular plates it is convenient to adopt a cylindrical coordinate system with r for the
radial, θ for the circumferential and z for the vertical coordinate, so that:

α1 = r α2 = θ (A.19)

Plates are a special case of shells characterized by zero curvature at each location, so 1/Rr =
0 and 1/Rθ = 0. The position vector of the circular plate, r̄, is defined as

r̄ = r cos θē1 + r sin θē2 (A.20)

Substitution of equations (A.19) and (A.20) into equation (A.6) results in

A1 = 1 A2 = r (A.21)

With equations (A.19) and (A.21) Love’s equations (equations (A.1) to (A.5)) can be reduced
to:

− ∂(Nrrr)

∂r
− ∂(Nθr)

∂θ
+Nθθ + rρhür = rqr (A.22)

− ∂(Nrθr)

∂r
− ∂(Nθθ)

∂θ
−Nθr + rρhüθ = rqθ (A.23)

− ∂(Qrzr)

∂r
− ∂(Qθz)

∂θ
+ rρhüz = rqz (A.24)
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∂(Mrrr)

∂r
+
∂(Mθr)

∂θ
−Mθθ −Qrzr = 0 (A.25)

∂(Mrθr)

∂r
+
∂(Mθθ)

∂θ
+Mθr −Qθzr = 0 (A.26)

in which uz = uz(r, θ, t), uθ = uθ(r, θ, t) and ur = ur(r, θ, t). Equations (A.22) to (A.24)
show that the degrees of freedom in radial and circumferential direction are uncoupled from
the degree of freedom in the vertical direction.

Nrr =
Eh

1− ν2

[
∂ur
∂r

+ ν

(
1

r

∂uθ
∂θ

+
ur
r

)]
(A.27)

Nθθ =
Eh

1− ν2

[
ν
∂ur
∂r

+

(
1

r

∂uθ
∂θ

+
ur
r

)]
(A.28)

Nrθ = Nθr =
Eh

2(1 + ν)

[
−1

r
uθ +

∂uθ
∂r

+
1

r

∂ur
∂θ

]
(A.29)

Mrr =
Eh3

12(1− ν2)

[
∂φr
∂r

+ ν

(
1

r

∂φθ
∂θ

+
φr
r

)]
(A.30)

Mθθ =
Eh3

12(1− ν2)

[
ν
∂φr
∂r

+

(
1

r

∂φθ
∂θ

+
φr
r

)]
(A.31)

Mrθ = Mθr =
Eh3

24(1 + ν)

[
r
∂

∂r

(
φθ
r

)
+

1

r

∂φr
∂θ

]
(A.32)

in which

φr = −∂uz
∂r

(A.33)

φθ = −1

r

∂uz
∂θ

(A.34)

By substitution of equations (A.33) and (A.34), equations (A.30) to (A.32) can be further
reduced to

Mrr = − Eh3

12(1− ν2)

∂2uz
∂r2

+ ν

(
1

r2

∂2uz
∂θ2

+
1

r

∂uz
∂r

) (A.35)

Mθθ = − Eh3

12(1− ν2)

ν ∂2uz
∂r2

+

(
1

r2

∂2uz
∂θ2

+
1

r

∂uz
∂r

) (A.36)

Mrθ = Mθr = −(1− ν)
Eh3

12(1− ν2)

∂

∂r

(
1

r

∂uz
∂θ

)
(A.37)

Expressions for the terms Qrz and Qθz in the third equation of motion (equation (A.24))
can be found by rewriting equations (A.25) and (A.26):

Qrz =
1

r

[
∂(Mrrr)

∂r
+
∂(Mθr)

∂θ
−Mθθ

]
(A.38)
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Qθz =
1

r

[
∂(Mrθr)

∂r
+
∂(Mθθ)

∂θ
+Mθr

]
(A.39)

Substitution of equations (A.35) to (A.37) into equations (A.38) and (A.39) gives

Qrz = −1

r

Eh3

12(1− ν2)

∂2uz
∂r2

+ r
∂3uz
∂r3

+ ν

(
− 1

r2

∂2uz
∂θ2

+
1

r

∂3uz
∂r∂θ2

+
∂2uz
∂r2

)
− (1− ν)

1

r

Eh3

12(1− ν2)

(
− 1

r2

∂2uz
∂θ2

+
1

r

∂3uz
∂r∂θ2

)
+

1

r

Eh3

12(1− ν2)

[
ν
∂2uz
∂r2

+
1

r2

∂2uz
∂θ2

+
1

r

∂uz
∂r

]

= −1

r

Eh3

12(1− ν2)

(
∂2uz
∂r2

+ r
∂3uz
∂r3

− 2

r2

∂2uz
∂θ2

+
1

r

∂3uz
∂r∂θ2

− 1

r

∂uz
∂r

)
(A.40)

Qθz =
1

r

−(1− ν)
Eh3

12(1− ν2)

(
1

r2

∂uz
∂θ
− 1

r

∂2uz
∂r∂θ

+
∂3uz
∂r2∂θ

)
−

Eh3

12(1− ν2)

(
ν
∂3uz
∂r2∂θ

+
1

r2

∂3uz
∂θ3

+
1

r

∂2uz
∂r∂θ

)
+ (1− ν)

Eh3

12(1− ν2)

(
1

r2

∂uz
∂θ
− 1

r

∂2uz
∂r∂θ

)
= − Eh3

12(1− ν2)

(
1

r3

∂3uz
∂θ3

+
1

r2

∂2uz
∂r∂θ

+
1

r

∂3uz
∂r2∂θ

)
(A.41)

To express the equations of motion in terms of displacements and their derivatives, and ma-
terial and geometrical properties, the force expressions (equations (A.27) to (A.29), (A.35)
to (A.37), (A.40) and (A.41)) are substituted in the equations of motion (equations (A.22)
to (A.24)):

− Eh

1− ν2

1

r

(
1− ν

2

∂2ur
∂θ2

+ r
1 + ν

2

∂2uθ
∂r∂θ

+ r2 ∂
2ur
∂r2

− 1− ν
2

∂uθ
∂θ

− ∂uθ
∂θ

+ r
∂ur
∂r
− ur

)
+ rρhür = rqr (A.42)

− Eh

1− ν2

1

r

(
∂2uθ
∂θ2

+ r
1 + ν

2

∂2ur
∂r∂θ

+ r2 1− ν
2

∂2uθ
∂r2

+
1− ν

2

∂ur
∂θ

+
∂ur
∂θ

+ r
1− ν

2

∂uθ
∂r
− 1− ν

2
uθ

)
+ rρhüθ = rqθ (A.43)

Eh3

12(1− ν2)

(
2
∂3uz
∂r3

+ r
∂4uz
∂r4

− 2

r2

∂3uz
∂r∂θ2

+
4

r3

∂2uz
∂θ2

+
2

r

∂4uz
∂r2∂θ2

−1

r

∂2uz
∂r2

+
1

r2

∂uz
∂r

+
1

r3

∂4uz
∂θ4

)
+ rρhüz = rqz (A.44)
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Realizing that

∇4 =
∂4

∂r4
+

2

r

∂3

∂r3
− 1

r2

∂2

∂r2
+

1

r3

∂

∂r
+

2

r2

∂4

∂r2∂θ2
− 2

r3

∂3

∂r∂θ2
+

4

r4

∂2

∂θ2
+

1

r4

∂4

∂θ4
(A.45)

equation (A.44) can be rewritten as

D∇4uz + ρhüz = qz (A.46)

in which

D =
Eh3

12(1− ν2)
(A.47)

To find the eigenfrequencies and eigenwavenumbers of the plate, the free vibration (homo-
geneous equation) is analyzed. The two coupled equations of motion in radial and circum-
ferential direction are studied separately from the one in vertical direction. For the latter,
the method of separation of variables is applied. The function uz(r, θ, t) is written as a mul-
tiplication of three functions dependent on just one variable each. For the function related
to time, an exponential function is tried, implying that the plate is expected to vibrate
harmonically in time.

uz(r, θ, t) = R(r)Θ(θ) exp(iωt) (A.48)

Substitution of equation (A.48) into equation (A.46) and division by exp(iωt) results in

∇4R(r)Θ(θ)− λ4R(r)Θ(θ) = 0 (A.49)

in which

λ4 =
ω2ρh

D
(A.50)

Equation (A.49) can be rewritten as

(∇2 + λ2)(∇2 − λ2)R(r)Θ(θ) = 0 (A.51)

which holds for every solution of

(∇2 ± λ2)R(r)Θ(θ) = 0 (A.52)

Substituting

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
(A.53)

gives
d2R(r)

dr2
Θ(θ) +

1

r

dR(r)

dr
Θ(θ) +

R(r)

r2

d2Θ(θ)

dθ2
± λ2R(r)Θ(θ) = 0 (A.54)

Division by R(r)Θ(θ) and multiplication with r2 finally separates the functions related to
both coordinates:

r2

 1

R(r)

(
d2R(r)

dr2
+

1

r

dR(r)

dr

)
± λ2

 = − 1

Θ(θ)

d2Θ(θ)

dθ2
(A.55)

This equation can only hold if both sides of the equation are equal to a constant, which is
called k2 here. Then

− 1

Θ(θ)

d2Θ(θ)

dθ2
= k2 (A.56)
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and

r2

 1

R(r)

(
d2R(r)

dr2
+

1

r

dR(r)

dr

)
± λ2

 = k2 (A.57)

which are both uncoupled ordinary differential equations. In a more common form, equa-
tion (A.56) is:

d2Θ(θ)

dθ2
+ k2Θ(θ) = 0 (A.58)

The general solution to this equation is

Θ(θ) = A cos(kθ) +B sin(kθ) = C cos(k(θ + φ)) (A.59)

Since the vertical displacement of the plate is continuous in the circumferential direction, it
must hold that Θ(0) = Θ(2π). From equation (A.59) it can then be seen that k must be
an integer, denoted from now on as n (= 0, 1, 2, ...,∞). Noting also the role of this function
in equation (A.48) as prescribing the variation of uz in circumferential direction, it can be
regarded as the circumferential vibration mode with wavenumber n.
The constant angle φ will be omitted from here onward, because it only indicates the
orientation of the plate’s displacement pattern with respect to the orientation of the selected
coordinate system. It does not influence the physical behavior of the plate, nor its interaction
with an external force, since the latter’s direction is also an arbitrary choice with respect to
φ.
Rewriting equation (A.57) to

r2 d2R(r)

dr2
+ r

dR(r)

dr
+ (±λ2r2 − k2)R(r) = 0 (A.60)

more clearly shows that it is similar to Bessel’s differential equation, except for the term
λ2r2. In order to obtain Bessel’s differential equation, the following substitution is made:

ξ =
√
±λ2r2 = r

√
±λ2 → ∂ξ

∂r
=
√
±λ2 (A.61)

Through substitution of equation (A.61), equation (A.60) is

ξ2

±λ2

d

dr

(
dR(ξ)

dξ

dξ

dr

)
+

ξ√
±λ2

dR(ξ)

dξ

dξ

dr
+ (ξ2 − k2)R(ξ)

=
√
±λ2

ξ2

±λ2

d

dξ

(
dR(ξ)

dξ

dξ

dr

)
+ ξ

dR(ξ)

dξ
+ (ξ2 − k2)R(ξ)

=ξ2 d2R(ξ)

dξ2
+ ξ

dR(ξ)

dξ
+ (ξ2 − k2)R(ξ) = 0

(A.62)

The solutions to Bessel’s differential equation are Bessel functions, the definitions of which
depend on the circumstances, but are in all cases an infinite series expansion. Since Bessel’s
differential equation is of the second order, the solution consists of two linearly independent
functions.
For real values of ξ, the solution is a Bessel of the first kind and of the order k (in the
above equation), denoted as Jk(λr). While in general Jk(λr) and J−k(λr) are independent
functions and therefore the two solutions to equation (A.62), the value of k was in this case
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determined to be of integer value. Jn(λr) and J−n(λr) (in which n is an integer) are not
independent and the second solution is then the Bessel function of the second kind, Yn(λr).
For complex values of ξ, the solutions to Bessel’s differential equation are the modified Bessel
functions or the first and second kind, denoted by In(λr) and Kn(λr) respectively.
The entire solution to equation (A.62), for both complex and real values of ξ, is then

R(λr) = DJn(λr) + EYn(λr) + FIn(λr) +GKn(λr) (A.63)

As we know that
lim
λr→0

Yn(λr) = lim
λr→0

Kn(λr) =∞ (A.64)

and that at r = 0, uz 6=∞, it can be concluded that E = G = 0.
Finally substituting equations (A.59) and (A.63) into equation (A.48) and writing the ex-
pression as an infinite sum of modes that are excited at the natural frequencies of the plate:

uz(r, θ, t) =

∞∑
m=0

∞∑
n=0

[
AnmJn(kmnr) +BnmIn(kmnr)

]
cos(nθ) exp(iωnmt) (A.65)

in which, in accordance with equation (A.50),

λ4
mn =

ω2
mnρh

D
(A.66)

Note that the natural frequencies in the case of the tank are not of the plate by itself, but
the natural frequencies of the entire tank. These can be found by substituting the modal
expressions of each part of the tank into boundary and interface conditions and solving that
eigenvalue problem.

Considering the free vibrations of the plate in the in plane coordinates r and θ, the plate is
assumed to vibrate harmonically, so that

ur(r, θ, t) = Ur(r, θ) exp(iωt) and uθ(r, θ, t) = Uθ(r, θ) exp(iωt) (A.67)

Substitution of equation (A.67) into the equations of motion (equations (A.42) and (A.43))
and division by r gives

−K 1

r2

(
r

1 + ν

2

∂2Uθ
∂r∂θ

+ r2 ∂
2Ur
∂r2

− ∂Uθ
∂θ

+ r
∂Ur
∂r
− Ur

)
−G 1

r2

(
∂2Ur
∂θ2

− ∂Uθ
∂θ

)
−ω2ρhUr = 0

(A.68)

−K 1

r2

(
∂2Uθ
∂θ2

+ r
1 + ν

2

∂2Ur
∂r∂θ

+
∂Ur
∂θ

)
−G 1

r2

(
r2 ∂

2Uθ
∂r2

+
∂Ur
∂θ

+ r
∂Uθ
∂r
− Uθ

)
−ω2ρhUθ = 0

(A.69)

in which

K =
Eh

1− ν2
and G =

Eh

2(1 + ν)
(A.70)
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Introducing next the displacement potential functions (similar to Senjanović (2014))

Ur(r, θ) =
∂Φ

∂r
+

1

r

∂Ψ

∂θ

Uθ(r, θ) =
1

r

∂Φ

∂θ
− ∂Ψ

∂r

(A.71)

and substituting those into equations (A.68) and (A.69) results in

1

r2

(
−
(
K
ν + 1

2
+G

)
∂3Φ

∂r∂θ2
+Kr

ν − 1

2

∂3Ψ

∂r2∂θ
−G1

r

∂3Ψ

∂θ3
−Kr2 ∂

3Φ

∂r3

+
1

r

(
K
ν + 3

2
+G

)
∂2Φ

∂θ2
−G ∂2Ψ

∂r∂θ
−Kr ∂

2Φ

∂r2
−
(
r2ω2ρh−K

) ∂Φ

∂r
− ∂Ψ

∂θ
rω2ρh

)
(A.72)

1

r2

(
−
(
K
ν + 1

2
+G

)
r
∂3Φ

∂r2∂θ
−Kν − 1

2

∂3Ψ

∂r∂θ2
−K 1

r

∂3Φ

∂θ3
+Gr2 ∂

3Ψ

∂r3

+
1

r

(
K
ν − 1

2
−G

)
∂2Ψ

∂θ2
−K ∂2Φ

∂r∂θ
+Gr

∂2Ψ

∂r2
−
(
r2ω2ρh+G

) ∂Ψ

∂r
− ∂Φ

∂θ
rω2ρh

)
(A.73)

Summing the derivative of equation (A.72) with respect to r and the derivative of equa-
tion (A.73) with respect to θ divided by r results in

Eh

1− v2

(
− 1

r4

∂4Φ

∂θ4
− 2

r2

∂4Φ

∂r2∂θ2
− ∂4Φ

∂r4
+

2

r3

∂3Φ

∂r∂θ2
− 2

r

∂3Φ

∂r3

− 4

r4

∂2Φ

∂θ2
+

1

r2

∂2Φ

∂r2
− 1

r3

∂Φ

∂r

)
− ω2ρh

(
1

r2

∂2Φ

∂θ2
+
∂2Φ

∂r2
+

1

r

∂Φ

∂r

)
= 0 (A.74)

Recognizing the presence of the squared Laplace operator as given in equation (A.45),
equation (A.74) can be written as

K∇2Φ + ω2ρhΦ = 0 (A.75)

Subtracting the derivative of equation (A.73) with respect to r from the derivative of equa-
tion (A.72) divided by r results in

Eh

2(1 + v)

(
− 1

r4

∂4Ψ

∂θ4
− 2

r2

∂4Ψ

∂r2∂θ2
− ∂4Ψ

∂r4
+

2

r3

∂3Ψ

∂r∂θ2
− 2

r

∂3Ψ

∂r3
+

− 4

r4

∂2Ψ

∂θ2
+

1

r2

∂2Ψ

∂r2
− 1

r3

∂Ψ

∂r

)
− ω2ρh

(
1

r2

∂2Ψ

∂θ2
+
∂2Ψ

∂r2
+

1

r

∂Ψ

∂r

)
= 0 (A.76)

Recognizing again the presence of the squared Laplace operator as given in equation (A.45),
equation (A.76) can be written as

G∇2Ψ + ω2ρhΨ = 0 (A.77)
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The equations are now uncoupled and can be solved separately. For both potential functions
the separation of variables method is applied, as was done for the out of plane case, so that

Φ(r, θ) = ΘΦ(θ)RΦ(r)

Ψ(r, θ) = ΘΨ(θ)RΨ(r)
(A.78)

Substituting the written out Laplace operator (equation (A.53)) and equation (A.78) into
the equations of motion (equations (A.75) and (A.77)) results in

d2RΦ

dr2
ΘΦ +

1

r

dRΦ

dr
ΘΦ +

RΦ

r2

d2ΘΦ

dθ2
+ λ2

ΦRΦΘΦ = 0

d2RΨ

dr2
ΘΨ +

1

r

dRΨ

dr
ΘΨ +

RΨ

r2

d2ΘΨ

dθ2
+ λ2

ΨRΨΘΨ = 0

(A.79)

in which

λ2
Φ =

ω2ρh

K

λ2
Ψ =

ω2ρh

G

(A.80)

Division by RΦΘΦ and RΨΘΨ respectively and multiplication both equations with r2, sep-
arates the functions related to both coordinates:

r2

 1

RΦ

(
d2RΦ

dr2
+

1

r

dRΦ

dr

)
+ λ2

Φ

 = − 1

ΘΦ

d2ΘΦ

dθ2

r2

 1

RΨ

(
d2RΨ

dr2
+

1

r

dRΨ

dr

)
+ λ2

Ψ

 = − 1

ΘΨ

d2ΘΨ

dθ2

(A.81)

Following the same reasoning as for the out of plane vibration, the phases of the general
solutions (equation (A.59)) of the functions ΘΦ(θ) and ΘΨ(θ) can arbitrarily chosen, so that
the final solutions are

ΘΦ(θ) = AΦ cos(nθ)

ΘΨ(θ) = AΨ sin(nθ)
(A.82)

The left hand side of equation (A.81) can be written in an manner similar to equation (A.60):

r2 d2RΦ

dr2 + r dRΦ

dr + λ2
Φr

2 − k2RΦ = 0

r2 d2RΨ

dr2 + r dRΨ

dr + λ2
Ψr

2 − k2RΨ = 0
(A.83)

Following the same reasoning, the same solution is found (equations (A.63) and (A.64)),
apart from the constants and wavenumbers. In addition, the modified Bessel functions are
omitted, as λΦr and λΨr will be real-valued. The solutions for the potential functions in
the radial coordinate are thus

RΦ(λΦr) = BΦJn(λΦr)

RΨ(λΨr) = BΨJn(λΨr)
(A.84)
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Substituting equations (A.82) and (A.84) into equation (A.80) and substituting the result
into equation (A.71) gives

Ur(r, θ) = AΦ cos(nθ)BΦ
∂Jn(λΦr)

∂r
+
n

r
AΨ cos(nθ)BΨJn(λΨr)

Uθ(r, θ) = −n
r
AΦ sin(nθ)BΦJn(λΦr)−AΨ sin(nθ)BΨ

∂Jn(λΨr)

∂r

(A.85)

Since AΦ, AΨ, BΦ and BΨ are arbitrary constants, they can be replaced by others. Finally
substituting equation (A.85) into equation (A.67) and writing the expression as an infinite
sum of modes that are excited at the natural frequencies of the plate:

ur(r, θ, t) =

∞∑
m=0

∞∑
n=0

[
Cnm

∂Jn(kΦr)

∂r
+Dnm

n

r
Jn(kΨr)

]
cos(nθ) exp(iωnmt)

uθ(r, θ, t) =

∞∑
m=0

∞∑
n=0

[
−Cnm

n

r
Jn(kΦr)−Dnm

∂Jn(kΨr)

∂r

]
sin(nθ) exp(iωnmt)

(A.86)

A.1.3 Cylindrical shell

For cylindrical shells it is convenient to adopt a cylindrical coordinate system with r for the
radial, θ for the circumferential and z for the longitudinal coordinate, so that:

α1 = z α2 = θ (A.87)

Cylindrical shells are characterized by zero curvature along the z-coordinate and a radius
of curvature along the circumferential coordinate equal to the radius R of the cylinder, so

1/R1 = 0 1/R2 = 1/R (A.88)

The position vector of the cylindrical shell, r̄, is defined as

r̄ = zē1 +R cos θē2 +R sin θē3 (A.89)

Substitution of equations (A.87) and (A.89) and into equation (A.6) results in

A1 = 1 A2 = R (A.90)

Through substitution of equations (A.88) to (A.90) Love’s equations (equations (A.1) to (A.5))
can be reduced to:

∂Nzz
∂z

+
1

R

∂Nθz
∂θ

+ qz = ρhüz (A.91)

∂Nzθ
∂z

+
1

R

∂Nθθ
∂θ

+
1

R
Qθr + qθ = ρhüθ (A.92)

∂Qzr
∂z

+
1

R

∂Qθr
∂θ
− Nθθ

R
+ qr = ρhür (A.93)

∂Mzz

∂z
+

1

R

∂Mθz

∂θ
= Qzr (A.94)

∂Mzθ

∂z
+

1

R

∂Mθθ

∂θ
= Qθr (A.95)
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in which uz = uz(z, θ, t), uθ = uθ(z, θ, t) and ur = ur(z, θ, t). Substitution of equa-
tions (A.87), (A.88) and (A.90) into equations (A.7) to (A.9), (A.13) and (A.14) gives

Nzz =
Eh

1− ν2

[
∂uz
∂z

+
ν

R

(
∂uθ
∂θ

+ ur

)]
(A.96)

Nθθ =
Eh

1− ν2

[
ν
∂uz
∂z

+
1

R

(
∂uθ
∂θ

+ ur

)]
(A.97)

Nzθ = Nθz =
Eh

2(1 + ν)

[
∂uθ
∂z

+
1

R

∂uz
∂θ

]
(A.98)

Mzz =
Eh3

12(1− ν2)

[
∂φz
∂z

+
ν

R

∂φθ
∂θ

]
(A.99)

Mθθ =
Eh3

12(1− ν2)

[
ν
∂φz
∂z

+
1

R

∂φθ
∂θ

]
(A.100)

Mzθ = Mθz =
Eh3

24(1 + ν)

[
R
∂

∂z

(
φθ
R

)
+

1

R

∂φz
∂θ

]
(A.101)

in which

φz = −∂ur
∂z

(A.102)

φθ =
uθ
R
− 1

R

∂ur
∂θ

(A.103)

By substitution of equations (A.102) and (A.103), equations (A.99) to (A.101) can be further
reduced to

Mzz = D

−∂2ur
∂z2

+
ν

R2

(
∂uθ
∂θ
− ∂2ur

∂θ2

) (A.104)

Mθθ = D

−ν ∂2ur
∂z2

+
1

R2

(
∂uθ
∂θ
− ∂2ur

∂θ2

) (A.105)

Mzθ = Mθz =
1− ν

2
D

 1

R

(
∂uθ
∂z
− 2

∂2ur
∂θ∂z

) (A.106)

in which

D =
Eh3

12(1− ν2)
(A.107)
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Equations (A.104) to (A.106) are now used to find expressions for Qzr and Qθr by substi-
tution into equations (A.94) and (A.95).

Qzr =
∂

∂z

D
−∂2ur

∂z2
+

ν

R2

(
∂uθ
∂θ
− ∂2ur

∂θ2

)
+

1

R

∂

∂θ

1− ν
2

D

 1

R

(
∂uθ
∂z
− 2

∂2ur
∂θ∂z

)


= D

−∂3ur
∂z3

+
ν

R2

(
∂2uθ
∂z∂θ

− ∂3ur
∂z∂θ2

)+
1− ν

2
D

 1

R2

(
∂2uθ
∂θ∂z

− 2
∂3ur
∂θ2∂z

)
(A.108)

Qθr =
∂

∂z

1− ν
2

D

 1

R

(
∂uθ
∂z
− 2

∂2ur
∂θ∂z

)
+

1

R

∂

∂θ

D
−ν ∂2ur

∂z2
+

1

R2

(
∂uθ
∂θ
− ∂2ur

∂θ2

)


=
1− ν

2

D

R

(
∂2uθ
∂z2

− 2
∂3ur
∂θ∂z2

)
+
D

R

−ν ∂3ur
∂θ∂z2

+
1

R2

(
∂2uθ
∂θ2

− ∂3ur
∂θ3

)
(A.109)

Substitution of equations (A.96) to (A.98), (A.108) and (A.109) into equations (A.91)
to (A.93) gives the equations of motion for each considered degree of freedom in terms
of just material and geometrical properties:

∂

∂z

 Eh

1− ν2

[
∂uz
∂z

+
ν

R

(
∂uθ
∂θ

+ ur

)]+
1

R

∂

∂θ

(
Eh

2(1 + ν)

[
∂uθ
∂z

+
1

R

∂uz
∂θ

])
+ qz = ρhüz

(A.110)

∂

∂z

(
Eh

2(1 + ν)

[
∂uθ
∂z

+
1

R

∂uz
∂θ

])
+

1

R

∂

∂θ

 Eh

1− ν2

[
ν
∂uz
∂z

+
1

R

(
∂uθ
∂θ

+ ur

)]
+

1

R

1− ν
2

D

R

(
∂2uθ
∂z2

− 2
∂3ur
∂θ∂z2

)
+
D

R

−ν ∂3ur
∂θ∂z2

+
1

R2

(
∂2uθ
∂θ2

− ∂3ur
∂θ3

)


+qθ = ρhüθ

(A.111)

∂

∂z

D
−∂3ur

∂z3
+

ν

R2

(
∂2uθ
∂z∂θ

− ∂3ur
∂z∂θ2

)+
1− ν

2
D

 1

R2

(
∂2uθ
∂θ∂z

− 2
∂3ur
∂θ2∂z

)


+
1

R

∂

∂θ

1− ν
2

D

R

(
∂2uθ
∂z2

− 2
∂3ur
∂θ∂z2

)
+
D

R

−ν ∂3ur
∂θ∂z2

+
1

R2

(
∂2uθ
∂θ2

− ∂3ur
∂θ3

)


− 1

R

 Eh

1− ν2

[
ν
∂uz
∂z

+
1

R

(
∂uθ
∂θ

+ ur

)]+ qr = ρhür

(A.112)
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Through simplification and collection of terms related to the displacement and acceleration
in each degree of freedom, equations (A.110) to (A.112) can be rewritten to the matrix
equation

Luw + Iüw = qw (A.113)

in which L is the 3 × 3 stiffness matrix, I is the 3 × 3 inertia matrix, uw = [uz uθ ur]
T ,

üw = [üz üθ ür]
T and qw = [qz qθ qr]

T . Please note that for the components of L below,
equation (A.110) is multiplied by −1. The components of L are then

L11 = − Eh

1− ν2

∂2

∂z2
− 1

R2

Eh

2(1 + ν)

∂2

∂θ2

L12 = L21 = − Eh

2R(1− ν)

∂2

∂z∂θ

L13 = L31 =
Eh

1− ν2

ν

R

∂

∂z

L22 = −
(

Eh

2(1 + ν)
+
D

R2

1− ν
2

)
∂2

∂z2
− 1

R2

(
Eh

1− ν2
+
D

R2

)
∂2

∂θ2

L23 = L32 =
1

R2

Eh

1− ν2

∂

∂θ
− D

R2

∂3

∂θ∂z2
− D

R4

∂3

∂θ3

L33 = D
∂4

∂z4
+ 2

D

R2

∂4

∂θ2∂z2
+
D

R4

∂4

∂θ4
+

1

R2

Eh

1− ν2

(A.114)

The matrix I is a diagonal matrix with entries Iii = ρh.
Since the mode-matching technique makes use of the modal expressions for each degree
of freedom, the eigenfrequencies and eigenwavenumbers of the tank are sought. In order
to find the eigenfrequencies and eigenwavenumbers of the cylindrical shell, the method of
separation of variables is applied. For the circumferential mode shapes, a periodic function
is assumed, so that continuity of the tank wall is ensured. The cosine and sine functions for
this degree of freedom are based on Soedel (2005) and Tsouvalas (2006). For the vertical
direction a mode shape is assumed as an exponential function. Through time, the tank is
assumed to vibrate harmonically, so that the final applied solutions are

uz(z, θ, t) =
∞∑
m=0

8∑
l=1

Ũz exp(λz) cos(mθ) exp(iωt)

uθ(z, θ, t) =
∞∑
m=0

8∑
l=1

Ũθ exp(λz) sin(mθ) exp(iωt)

ur(z, θ, t) =

∞∑
m=0

8∑
l=1

Ũr exp(λz) cos(mθ) exp(iωt)

(A.115)

Substitution of equation (A.115) into equation (A.113), division by exp(iωt), division by
exp(λz), division by cos(mθ) of the equations of motion for degrees of freedom z and r
and division by sin(mθ) and multiplication with −1 of the equation of motion for degree of
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freedom θ changes the elements of matrix L to

L11 = − λ
2Eh

1− ν2
+
m2

R2

Eh

2(1 + ν)

L12 = L21 = − mλEh

2R(1− ν)

L13 = L31 =
λEh

1− ν2

ν

R

L22 = λ2

(
Eh

2(1 + ν)
− D

R2

1− ν
2

)
+
m2

R2

(
Eh

1− ν2
+
D

R2

)
L23 = L32 = − m

R2

Eh

1− ν2
+
mλ2D

R2
− m3D

R4

L33 = λ4D − 2
m2λ2D

R2
+
m4D

R4
+

1

R2

Eh

1− ν2

(A.116)

and the elements of matrix I to [−ω2ρh ω2ρh ω2ρh]T Since both matrices are now multi-
plied with vector ũw = [Ũz Ũθ Ũr]

T , which contains the complex amplitudes of the assumed
mode shapes, equation (A.113) can be written as

(L + I)ũw = qw (A.117)

For the circumferential modes, the wavenumbers can be seen to be m = 0, 1, 2, ...,∞ to en-
sure continuity of the tank wall in the circumferential direction. To find the eigenwavenum-
bers in vertical direction, the eigenvalue problem needs to be solved, so in equation (A.117)
q = 0. The non-trivial solution is found by setting det(L + I) = 0, resulting in an 8th

degree polynomial with respect to λ. For sake of brevity, this is not written out, but it can
be seen from equation (A.116) that the highest power of λ after multiplying three elements
of (L + I) is 8.
This equation needs to be solved numerically, as polynomials of degree 5 or higher have no
analytical solution, according to the Abel-Ruffini theorem. Note that, as det(L + I) is a
function of wavenumbers λ and m, and frequency ω, the wavenumbers λ are a function of
m and ω.
In order to obtain the eigenfrequencies and eigenwavenumbers of the tank, the expressions
found for the wall’s degrees of freedom must be substituted both in the interface conditions
that link segments of wall and the wall to the bottom and roof of the tank, and in the
boundary conditions. Solving the resulting eigenvalue problem will yield the eigenfrequen-
cies and eigenwavenumbers of the tank, as well as the ratios of the modal amplitudes, so the
mode shapes. The only remaining unkowns are then the values of the modal amplitudes,
which can be solved by substitution of the modal expressions in the equations of motion,
including external forcing.
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A.2 Shell stresses

The general expression for the stresses in the shell elements are (Soedel (2005))

σ11 =
E

1− ν2

[
ε0

11 + νε0
22 + α3(k11 + νk22)

]
σ22 =

E

1− ν2

[
ε0

22 + νε0
11 + α3(k22 + νk11)

]
σ12 = G

(
ε0

12 + α3k12

) (A.118)

with

ε0
11 =

1

A1

∂u1

∂α1

+
u2

A1A2

∂A1

∂α2

(A.119)

ε0
22 =

1

A2

∂u2

∂α2

+
u1

A1A2

∂A2

∂α1

(A.120)

ε0
12 =

A2

A1

∂

∂α1

(
u2

A2

)
+
A1

A2

∂

∂α2

(
u1

A1

)
(A.121)

k11 = − 1

A1

∂

∂α1

(
1

A1

∂u3

∂α1

)
− 1

A1A2
2

∂u3

∂α2

∂A1

∂α2

(A.122)

k22 = − 1

A2

∂

∂α2

(
1

A2

∂u3

∂α2

)
− 1

A2A2
1

∂u3

∂α1

∂A2

∂α1

(A.123)

k12 = −A2

A1

∂

∂α1

(
1

A2
2

∂u3

∂α2

)
− A1

A2

∂

∂α2

(
1

A2
1

∂u3

∂α1

)
(A.124)

By substituting the coordinates and fundamental form parameters of the plate from equa-
tions (A.19) and (A.21) into these equations, the stresses in the wall can be calculated
as

σzz =
Ewhw
1− ν2

w

∂uz
∂z

+
νw
R

∂uθ
∂θ

+
νur
R
± hw

2

− ∂2ur
∂z2

+
νw
R2

[
∂uθ
∂θ
− ∂2ur

∂θ2

]


σθθ =
Ewhw
1− ν2

w

νw ∂uz
∂z

+
1

R

∂uθ
∂θ

+
ur
R
± hw

2

−νw ∂2ur
∂z2

+
1

R2

[
∂uθ
∂θ
− ∂2ur

∂θ2

]


σzθ =
Ewhw

2(1 + νw)

∂uθ
∂z

+
1

R

∂uz
∂θ

+
hw
2R

[
∂uθ
∂z
− 2

∂2ur
∂z∂θ

]
(A.125)
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Similarly, substitution of equations (A.87) and (A.90) leads to expressions of the stresses in
the plate as

σrr =
Ephp
1− ν2

p

∂ur
∂r

+ νp

(
1

r

∂uθ
∂θ

+
ur
r

)
± hp

2

− ∂2uz
∂r2

+ νp

(
− 1

r2

∂2uz
∂θ2

− 1

r

∂uz
∂r

)


σθθ =
Ephp
1− ν2

p

νp ∂ur
∂r

+
1

r

∂uθ
∂θ

+
ur
r
± hp

2

[
−νp

∂2uz
∂r2

− 1

r2

∂2uz
∂θ2

− 1

r

∂uz
∂r

]
σrθ =

Ephp
2(1 + νp)

−1

r
uθ +

∂uθ
∂r

+
1

r

∂ur
∂θ

+
hp
2

[
2

r2

∂uz
∂θ
− 2

r

∂2uz
∂r∂θ

]
(A.126)
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Appendix B Equations of motion

In this section, an alternative approach is shown to find the equations of motion of the
tank’s bottom plate including both dynamic and kinematic soil-structure interaction.
First, the expected wavefields are described, after which the equations of motion of the
soil layer are formulated and the eigenfunctions are found. Next, boundary and interface
conditions are formulated that relate the motions of the soil to the motions of the supported
structure, in this case assumed to be a plate. Substitution of the found solutions into these
conditions can yield expressions for the scattered and radiated wave fields, and the motions
of the plate.

B.1 Scatter

Scattering and refraction of waves occur when a wave propagating through a medium reaches
another medium with different elastodynamic properties. As de Hoop (2009) describes it, the
second medium, or the scatterer, occupies a domain Ds that is surrounded by the domain
of the first medium D. In the case of the liquid storage tank, a soil layer is considered
that is unbounded in horizontal direction and lays on top of immovable bedrock. The soil
column below the tank is here defined as the scatterer occupying domain Ds, while the soil
surrounding it lies within D. In the examined case, the change in elastodynamic properties
is caused by the presence of the tank. Its presence imposes restrictions on the displacements
of the soil through stresses that are absent in the free field situation.
In linear theory, the total wave field is the superposition of an incident wave field and
a scattered wave field (de Hoop (2008)). Although all waves are considered steady-state
waves in both domains, the incident wave is regarded as the cause of the disturbance at
the interface of the domains, and the scattered and refracted waves the consequence. As
a result, the scattered and refracted wave must travel away from the interface (Achenbach
(2003)).
The refracted wave in this case is again reflected at the center of Ds and subsequently
refracted and reflected at the interface between D and Ds, a process that will continue
indefinitely. Since only the combination of all wave fields in Ds is of interest, a distinction
between all reflected and refracted wave fields is not necessary. It will be shown that these
waves all have the same shape, so that their combined action in the steady state can be
captured through the final factor with which the shape is amplified. In other words, these
waves will be standing waves.
It is important to note that the total wave field is not just a superposition of the incident
and the scattered wave fields. The waves that are refracted at the interface will set the tank
in motion that in its turn will set the soil in motion through radiated waves. The total
wave field in the embedding domain D will thus be the superposition of the incident, the
scattered and the radiated wave field.

The scattering of the incident wave is caused by the stresses exerted by the tank on soil
domain Ds. It is assumed, that if the tank bottom remains perfectly still, no energy from
the incident wave is passed on to the tank and all of the energy is scattered away.
A radiated wave caused by the inertia of the tank is also generated through stresses on
the interface between tank plate and Ds. It is speculated that different stress levels at the
soil-structure interface (for example caused by the displacements of the structure) lead to
different ratios of energy scattered away to energy in the incident wave field. Therefore, the
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‘level’ of scattering is time or frequency dependent, as is the radiated wave field.

B.2 Derivation soil equation of motion

The equations governing the motion of the soil are derived, following Achenbach (2003), from
the principle of balance of linear momentum, a kinematic condition, relating displacements
to strains, and Hooke’s law, relating strains to stresses.
Considering in a continuum, a body with volume V on which body forces fi(xi, t) act and
surface S on which surface tractions ti(xi, t) act, and following the principle of balance
of translational momentum, in linear theory the instantaneous rate of change of linear
momentum of the body is equal to the external forces acting on it at an instance in time.
In mathematical terms this is represented as∫

V

fi(xi, t) +

∫
S

ti(xi, t)dS =

∫
V

ρüi(xi, t)dV (B.1)

It can be shown (often for the case of a tetrahedron) that the evaluation of the volume
integrals can be written as the evaluation of the surface integral (a factor multiplied by
∆S) multiplied with a factor representing the third dimension (i.e. h). Dividing all terms
resulting from the evaluation of equation (B.1) by ∆S and taking the limit of h approaching
0, results in the Cauchy stress formula:

ti = τjinj (B.2)

in which the component τji gives the traction in direction xi on a surface with the normal in
direction xj . Substitution of equation (B.2) into equation (B.1) and application of Gauss’s
theorem (equation (B.3)) ∫

S

f · ndS =

∫
V

∇ · fdV (B.3)

results in ∫
V

fi(xi, t) + τji,j(xi, t)− ρüi(xi, t)dV = 0 (B.4)

in which τji,j is the divergence of τji. Since equation (B.4) must hold piecewise,

fi(xi, t) + τij,j(xi, t)− ρüi(xi, t) = 0 (B.5)

also holds, which is known as Cauchy’s first law of momentum. Note that τji = τij , which
can be shown from the balance of rotational momentum.
The kinematic condition that relates displacements to strains can in linear theory be repre-
sented by the tensor ε, defined as

εij =
1

2
(ui,j + uj,i) (B.6)

The constitutive relations that relate stresses to strains are given by Hooke’s law, that is
defined as

τij = Cijklεkl (B.7)

For an elastic, isotropic material, the tensor Cijkl can be expressed as

Cijkl = λδijδkl + µ(δikδjl + δilδjk) (B.8)
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Substitution of equation (B.8) into equation (B.7) results in

τij = λδijεkk + 2µεij (B.9)

To arrive at the differential equation governing the soil’s displacements, equations (B.6)
and (B.9) are substituted into equation (B.5) so that

µui,jj + (λ+ µ)uj,ji + fi = ρüi (B.10)

or in vector notation:
µ∇2u + (λ+ µ)∇∇ · u + f = ρü (B.11)

For finding solutions to the equation of motion, it is beneficial to express the displacement
vector in terms of displacement potentials. Aki and Richards (2009) show that writing the
displacement vector in potentials as

u = ∇φ+∇×∇×ψ +∇× χ (B.12)

with ψ = [0, 0, ψ]T and χ = [0, 0, χ]T , and substituting it in equation (B.11) effectively
allows the equation of motion to be written as 3 uncoupled equations of motion. Each
describes the motion of an unknown potential function, φ, ψ and χ, related to, respectively,
the pressure wave, the vertical shear wave and the horizontal shear wave. After expressing
the body forces in similar form as

f = ∇Φ +∇×∇×Ψ +∇×X (B.13)

with Ψ = [0, 0,Ψ]T and X = [0, 0, X]T , and substituting equation (B.13) in the equation of
motion, equation (B.11) can be rewritten to

∇
(

(λ+ 2µ)∇2φ+ Φ− ρφ̈
)

+∇×∇×
(
µ∇2ψ + Ψ− ρψ̈

)
+∇×

(
µ∇2χ+X − ρχ̈

)
= 0

(B.14)
which is satisfied if

(λ+ 2µ)∇2φ+ Φ− ρφ̈ = 0

µ∇2ψ + Ψ− ρψ̈ = 0

µ∇2χ+X − ρχ̈ = 0

(B.15)

The relation
∇2[0, 0, f ]T = ∇2f (B.16)

is used to reduce the original unknown vector functions in equation (B.14) to the shown
unknown scalar functions in equation (B.15).

B.2.1 Problem statement

The potentials in equation (B.15) describe the total displacement field (through equa-
tion (B.12)) of a considered domain. For domain D, denoted by superscript (I) the total
wave field is considered as the superposition of an incident, a scattered and a radiated wave
field, so that

φ
(I )
tot = φi + φs + φr

ψ
(I )
tot = ψi + ψs + ψr

χ
(I )
tot = χi + χs + χr

(B.17)
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For domain Ds, denoted by superscript (II), the total wave field is considered as the super-
position of a refracted and a radiated wave field, so that

φ
(II )
tot = φrad + φref

ψ
(II )
tot = ψrad + ψref

χ
(II )
tot = χrad + χref

(B.18)

In equation (B.15), the force terms Φ, Ψ and X are disregarded. Energy is introduced into
the system through a known incident wave field. No additional forcing is considered.
Applying the Fourier transform, equation (B.15) is transformed to the form of a Helmholtz
equation as

∇2φ̃+ k2
pφ̃ = 0

∇2ψ̃ + k2
s ψ̃ = 0

∇2χ̃+ k2
s χ̃ = 0

(B.19)

in which the tilde shows that the potentials are expressed in the frequency domain and in
which

k2
p =

ω2ρ

λ+ 2µ

k2
s =

ω2ρ

µ

(B.20)

For domain D, it is assumed that the incident wave field is known. The scattered and
radiated wave fields need to be solved, as well as the refracted and radiated wave fields in
domain Ds.

B.2.2 Solution - separation of variables

Since the differential equations are all of the same form, the solution method (separation of
variables) is shown once for a function F (r, θ, z), which is expressed as a multiplication of
functions that are all dependent on just one of the coordinates r, θ and z:

F (r, θ, z) = R(r)Θ(θ)Z(z) (B.21)

Substitution into
∇2F + k2F = 0 (B.22)

yields

ΘZ
d2R

dr2
+ ΘZ

1

r

dR

dr
+ ZR

1

r2

d2Θ

dθ2
+RΘ

d2Z

dz2
+ k2RΘZ = 0 (B.23)

Division by RΘZ, multiplication by r2 and rearranging gives

1

R
r2 d2R

dr2
+

1

R
r

dR

dr
+ r2 1

Z

d2Z

dz2
+ k2r2 = − 1

Θ

d2Θ

dθ2
(B.24)

which can only hold if both sides are equal to a constant, chosen here as n2. The right hand
side can be rearranged as in equation (A.58), so that the solution can again be given as

Θ(θ) = A cos(n(θ + φc)) (B.25)
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with a phase angle φc that can arbitrarily be chosen, due to the axisymmetry of the system
at hand. It turns out that the values of φc = 0 are convenient for the potentials φ and
ψ, while a value of φc = π/2 is convenient for χ, effectively making Θ(θ) a sine function.
The value n is an integer, due to the continuity of the displacement fields in circumferential
direction.
The left hand side of equation (B.24) is then also equal to the same constant:

1

R
r2 d2R

dr2
+

1

R
r

dR

dr
+ r2 1

Z

d2Z

dz2
+ k2r2 = n2 (B.26)

Division by r2 and rearrangement gives

1

R

d2R

dr2
+

1

R

1

r

dR

dr
+ k2 − n2

r2
= − 1

Z

d2Z

dz2
(B.27)

Again, this can only hold if both sides equal a constant, which is named k2
z here. Evaluating

the right hand side of equation (B.27) gives

Zk2
z +

d2Z

dz2
= 0 (B.28)

The general solution to this ordinary differential equation is

B exp(ikzz) + C exp(−ikzz) (B.29)

The left hand side of equation (B.27) is also equal to the constant k2
z :

1

R

d2R

dr2
+

1

R

1

r

dR

dr
+ k2 − n2

r2
= k2

z (B.30)

Multiplication with Rr2 turns it into

r2 d2R

dr2
+ r

1

r

dR

dr
+ k2

rr
2 − n2 = 0 (B.31)

in which k2
r = k2 − k2

z . This is the same form as equation (A.60), and substituting

ξ =
√
k2
rr

2 (B.32)

leads to equation (A.62), to which the solution is then given as

R(krr) = DH(1)
n (krr) + EH(2)

n (krr) (B.33)

The complete solution is thus given by

F (r, θ, z) = cos(n(θ + φc))
(
B′ exp(ikzz) + C ′ exp(−ikzz)

) (
DH(1)

n (krr) + EH(2)
n (krr)

)
(B.34)

in which B′ = AB and C ′ = AC.
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Domain D For the unknown wave fields in domain D, u
(I )
s and u

(I )
r , use can be made of

Sommerfeld’s radiation condition

lim
r→∞

r

(
∂u

(I )
s

∂r
− iku(I )

s

)
= 0

lim
r→∞

r

(
∂u

(I )
r

∂r
− iku(I )

r

)
= 0

(B.35)

to eliminate from equation (B.34) the term related to H
(1)
n . This term describes waves

traveling towards r = 0, while the wave fields u
(I )
s and u

(I )
r describe waves traveling away

from the tank.
The expressions of the unknown potential fields in domain D are thus

φs =

∞∑
n=0

(
Aφs exp(ikp;zz) +Bφs exp(−ikp;zz)

)
H(2)
n (kp;rr) cos(nθ)

ψs =

∞∑
n=0

(
Aψs exp(iks;zz) +Bψs exp(−iks;zz)

)
H(2)
n (ks;rr) cos(nθ)

χs =

∞∑
n=0

(
Aχs exp(iks;zz) +Bχs exp(−iks;zz)

)
H(2)
n (ks;rr) sin(nθ)

φr =

∞∑
n=0

(
Aφr exp(ikp;zz) +Bφr exp(−ikp;zz)

)
H(2)
n (kp;rr) cos(nθ)

ψr =

∞∑
n=0

(
Aψr exp(iks;zz) +Bψr exp(−iks;zz)

)
H(2)
n (ks;rr) cos(nθ)

χr =

∞∑
n=0

(
Aχr exp(iks;zz) +Bχr exp(−iks;zz)

)
H(2)
n (ks;rr) sin(nθ)

(B.36)

Domain Ds For the unknown wave fields in domain Ds, u
(II )
ref and u

(II )
rad , use is made of

the condition of having finite displacements, so

u
(II )
tot

∣∣∣∣
r=0

=
(
u

(II )
ref + u

(II )
rad

) ∣∣∣∣
r=0

6=∞ (B.37)

The Hankel functions H
(1)
n and H

(2)
n are defined as

H(1)
n (r) = Jn(r) + iYn(r)

H(2)
n (r) = Jn(r)− iYn(r)

(B.38)

The terms with Yn(r) are singular at r = 0, as are their derivatives that would be present in

the final expressions of the displacements u
(II )
tot . The expressions of the unknown potential
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fields in domain Ds are thus

φref =

∞∑
n=0

(
Aφref

exp(ikp;zz) +Bφref
exp(−ikp;zz)

)
Jn(kp;rr) cos(nθ)

ψref =

∞∑
n=0

(
Aψref

exp(iks;zz) +Bψref
exp(−iks;zz)

)
Jn(ks;rr) cos(nθ)

χref =

∞∑
n=0

(
Aχref

exp(iks;zz) +Bχref
exp(−iks;zz)

)
Jn(ks;rr) sin(nθ)

φrad =

∞∑
n=0

(
Aφrad

exp(ikp;zz) +Bφrad
exp(−ikp;zz)

)
Jn(kp;rr) cos(nθ)

ψrad =
∞∑
n=0

(
Aψrad

exp(iks;zz) +Bψrad
exp(−iks;zz)

)
Jn(ks;rr) cos(nθ)

χrad =

∞∑
n=0

(
Aχrad

exp(iks;zz) +Bχrad
exp(−iks;zz)

)
Jn(ks;rr) sin(nθ)

(B.39)

The excitation term is the incident wave field, which can be written in a more convenient
form for finding the final solution to the problem. It is assumed to consist of a plane wave
traveling from x = −∞ with wavenumber k. The vertical particle displacements caused by
the incident wave are written as

φi(r, θ, z, ω) = Φi(z)e
ikr cos(θ) (B.40)

or, using Euler’s formula,

φi(r, θ, z, ω) = Φi(z)
[
cos(kr cos(θ)) + i sin(kr cos(θ))

]
(B.41)

Substituting the following equations (9.1.44-45) from Abramowitz and Stegun (1972)

cos(kr cos(θ)) = J0(z) + 2

∞∑
n=1

(−1)nJ2n(kr) cos(2nθ)

sin(kr cos(θ)) = 2

∞∑
n=0

(−1)nJ2n+1(kr) cos((2n+ 1)θ)

(B.42)

results in

φi(r, θ, z, ω) = Φi(z)

J0(z) + 2

∞∑
n=1

(−1)nJ2n(kr) cos(2nθ)

+2i

∞∑
n=0

(−1)nJ2n+1(kr) cos((2n+ 1)θ)

 (B.43)

which can be rewritten in a more compact form as

φi(r, θ, z, ω) = Φi(z)

∞∑
n=0

inεnJn(kr) cos(nθ) (B.44)
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in which εn is Neumann’s symbol, defined as

εn = 2− δn0 (B.45)

The benefit of this notation is that the plane wave is now expressed in the harmonics
in horizontal direction of the cylindrical coordinate system. Assuming the incident wave
only displaces particles in vertical direction and the direction in which it travels, the same
approach can be applied to the horizontal and vertical shear incident waves to give

ψi(r, θ, z, ω) = Ψi(z)

∞∑
n=0

inεnJn(kr) cos(nθ) (B.46)

χi(r, θ, z, ω) = Xi(z)

∞∑
n=0

inεnJn(kr) cos(nθ) (B.47)

It is worth repeating that the material properties of domains D and Ds are the same, so that
reflected and refracted waves at the interface do not change wavenumbers or frequencies.
As such, the wavenumbers of the incident, the scattered and the refracted wave fields are
the same, and the wavenumbers of both radiated wave fields will be the same.

B.2.3 Boundary and interface conditions

For domain D, the boundary conditions describe no displacements at the bottom of the
layer, due to the presence of bedrock, as(

u
(I )
i + u(I )

s + u(I )
r

) ∣∣∣∣
z=h

= 0 (B.48)

and no stresses at the top of the layer, since the soil is free to displace, so that(
σ

(I )
i + σ(I )

s + σ(I )
r

) ∣∣∣∣
z=0

= 0 (B.49)

For all wave fields in domain D, the stress vector in equation (B.49) is defined as σ =
[σzr, σzθ, σzz]

T .
For domain Ds, the boundary conditions describe no displacements at the bottom of the
layer, due to the presence of bedrock, as(

u
(II )
ref + u

(II )
rad

) ∣∣∣∣
z=h

= 0 (B.50)

For the plate, the boundary conditions describe no bending moments at the edge of the
plate, as

fp

∣∣∣∣
r=R

= 0 (B.51)

in which the force vector is defined as fp = [Mrr, Vr, Nrr, Nrθ]
T .

At the interfaces between domain Ds and the plate, displacement and stress continuity is
assumed, so that

u
(II )
tot

∣∣∣∣
z=0

=
(
u

(II )
ref + u

(II )
rad

) ∣∣∣∣
z=0

= up (B.52)
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in which all displacement vectors are defined as u = [ur, uθ, uz]
T , and

σ
(II )
tot

∣∣∣∣
z=0

=
(
σ

(II )
ref + σ

(II )
rad

) ∣∣∣∣
z=0

= σp (B.53)

in which all stress vectors are defined as σ = [σzr, σzθ, σzz]
T .

At the interface between soil domains D and Ds, also displacement and stress continuities
are assumed, so that (

u
(I )
i + u(I )

s + u(I )
r

) ∣∣∣∣
r=R

=
(
u

(II )
ref + u

(II )
rad

) ∣∣∣∣
r=R

(B.54)

and (
σ

(I )
i + σ(I )

s + σ(I )
r

) ∣∣∣∣
r=R

=
(
σ

(II )
ref + σ

(II )
rad

) ∣∣∣∣
r=R

(B.55)

Finally, the three rigid body motions of the plate are considered, which provide the final
equations of the system. The rigid body rotation of the plate around the z-axis is taken
into account as∫ R

0

∫ 2π

0

r2σzθdθdr = −ω2up;rb;θ(r, θ, ω)

r

∫ R

0

∫ 2π

0

ρphpr
3dθdr (B.56)

The horizontal rigid body translation of the plate is considered with

FH = −ω2
(
up;rb;r [cos(θ) + sin(θ)] + up;rb;θ[cos(θ)− sin(θ)]

) ∫ R

0

∫ 2π

0

ρphprdθdr (B.57)

with

FH = Fx + Fy =

∫ R

0

∫ 2π

0

(
cos(θ)σzr − sin(θ)σzθ

)
dθdr

+

∫ R

0

∫ 2π

0

(
sin(θ)σzr + cos(θ)σzθ

)
dθdr (B.58)

and the vertical rigid body motion with∫ R

0

∫ 2π

0

σzzrdθdr = −ω2up;z;rb

∫ R

0

∫ 2π

0

ρphprdθdr (B.59)

The number of boundary and interface conditions now is 28, which is equal to the number
of unknowns in the solutions to each displacement field.
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Appendix C Dynamic and kinematic conditions

This appendix is concentrated on the detailed application of the orthogonality properties in
the equations of motion of the tank and the interface conditions between the tank and the
fluid.

C.1 Equations of motion - Plate

This section treats the evaluation of equation (2.87) expanded into three separate equations
for each unknown degree of freedom.
The summation over wavenumber n is removed by making use of the orthogonality property
of the trigonometric functions. For clarity regarding the matrix multiplication with Ks, the
equations are written out. Multiplying the equations related to up;z and up;r with cos(qθ)
and the equation related to up;θ with sin(qθ) and integrating from 0 to 2π gives (adjust
layout)

∫ 2π

θ=0


∞∑
n=0

∞∑
m=0

(ω2
nm − ω2)ρphpX̃nm(ω)Ũp;znm(r) cos(nθ) +Kzz(ω)

∞∑
n=0

∞∑
m=0

X̃nm(ω)Ũp;znm(r) cos(nθ)

+Kzθ(ω)

∞∑
n=0

∞∑
m=0

X̃nm(ω)Ũp;θnm(r) sin(nθ) +Kzr(ω)

∞∑
n=0

∞∑
m=0

X̃nm(ω)Ũp;rnm(r) cos(nθ)

 cos(qθ)dθ =

∫ 2π

θ=0

{
Kzz(ω)ũi;z(r, θ, ω) +Kzθ(ω)ũi;θ(r, θ, ω) +Kzr(ω)ũi;r(r, θ, ω)

}
cos(qθ)dθ

−
∫ 2π

θ=0

iωρfl

∞∑
n=0


∞∑
a=1

Pna(ω)In

(
π(2a− 1)r

2Hl

)
+

∞∑
b=1

Qnb(ω)Jn(εnbr/R) +

∞∑
c=1

Snc(ω)Jn(εncr/R)

 cos(nθ) cos(qθ)dθ

(C.1)∫ 2π

θ=0


∞∑
n=0

∞∑
m=0

(ω2
nm − ω2)ρphpX̃nm(ω)Ũp;θnm(r) sin(nθ) +Kθz(ω)

∞∑
n=0

∞∑
m=0

X̃nm(ω)Ũp;znm(r) cos(nθ)

+Kθθ(ω)

∞∑
n=0

∞∑
m=0

X̃nm(ω)Ũp;θnm(r) sin(nθ) +Kθr(ω)

∞∑
n=0

∞∑
m=0

X̃nm(ω)Ũp;rnm(r) cos(nθ)

 sin(qθ)dθ =

∫ 2π

θ=0

{
Kθz(ω)ũi;z(r, θ, ω) +Kθθ(ω)ũi;θ(r, θ, ω) +Kθr(ω)ũi;r(r, θ, ω)

}
sin(qθ)dθ

(C.2)∫ 2π

θ=0


∞∑
n=0

∞∑
m=0

(ω2
nm − ω2)ρphpX̃nm(ω)Ũp;rnm(r) cos(nθ) +Krz(ω)

∞∑
n=0

∞∑
m=0

X̃nm(ω)Ũp;znm(r) cos(nθ)

+Krθ(ω)

∞∑
n=0

∞∑
m=0

X̃nm(ω)Ũp;θnm(r) sin(nθ) +Krr(ω)

∞∑
n=0

∞∑
m=0

X̃nm(ω)Ũp;rnm(r) cos(nθ)

 cos(qθ)dθ =

∫ 2π

θ=0

{
Krz(ω)ũi;z(r, θ, ω) +Krθ(ω)ũi;θ(r, θ, ω) +Krr(ω)ũi;r(r, θ, ω)

}
cos(qθ)dθ

(C.3)
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Making use of the orthogonality of the trigonometric functions reduces equations (C.1)
to (C.3) to

∞∑
m=0

(ω2
nm − ω2)ρphpX̃nmŨp;znm(r) +

∫ 2π

θ=0

Kzzdθ

∞∑
m=0

X̃nmŨp;znm(r) +

∫ 2π

θ=0

Kzrdθ

∞∑
m=0

X̃nmŨp;rnm(r) =

1

π(1 + δn0)

∫ 2π

θ=0

(
Kzzũi;z(r, θ) +Kzθũi;θ(r, θ) +Kzrũi;r(r, θ)

)
cos(nθ)dθ

−iωρfl


∞∑
a=1

PnaIn

(
π(2a− 1)r

2Hl

)
+

∞∑
b=1

QnbJn(εnbr/R) +

∞∑
c=1

SncJn(εncr/R)


(C.4)

∞∑
m=0

(ω2
nm − ω2)ρphpX̃nmŨp;θnm(r) +

∫ 2π

θ=0

Kθθdθ

∞∑
m=0

X̃nmŨp;θnm(r) =

1

π(1 + δn0)

∫ 2π

θ=0

(
Kθzũi;z(r, θ) +Kθθũi;θ(r, θ) +Kθrũi;r(r, θ)

)
sin(nθ)dθ

(C.5)
∞∑
m=0

(ω2
nm − ω2)ρphpX̃nmŨp;rnm(r) +

∫ 2π

θ=0

Krzdθ

∞∑
m=0

X̃nmŨp;znm(r) +

∫ 2π

θ=0

Krrdθ

∞∑
m=0

X̃nmŨp;rnm(r) =

1

π(1 + δn0)

∫ 2π

θ=0

(
Krzũi;z(r, θ) +Krθũi;θ(r, θ) +Krrũi;r(r, θ)

)
cos(nθ)dθ

(C.6)
Note the division of the equations by π(1 + δn0) to account for the evaluation of the inte-
gration. Also note that taking entries Kij out of the integrals over θ and evaluating their
integration separately is only possible for certain discretizations.
In order to apply the orthogonality conditions of the entire tank and thereby reduce the
number of equations to be solved, the plate’s equations of motion for each degree of freedom
are multiplied by their respective mode shape and integrated over the radius. The terms
independent of the radius are taken out of the integral.

∞∑
m=0

(ω2
nm − ω2)ρphpX̃nm

∫ R

r=0

Ũp;znm(r)Ũp;znl(r)dr +

∫ R

r=0

∫ 2π

θ=0

Kzzdθ

∞∑
m=0

X̃nmŨp;znm(r)Ũp;znl(r)dr

+

∫ R

r=0

∫ 2π

θ=0

Kzrdθdr

∞∑
m=0

X̃nm

∫ R

r=0

Ũp;rnm(r)Ũp;znl(r)dr

=
1

π(1 + δn0)

∫ R

r=0

∫ 2π

θ=0

{
Kzzũi;z(r, θ) +Kzθũi;θ(r, θ) +Kzrũi;r(r, θ)

}
cos(nθ)Ũp;znl(r)dθdr

−iωρfl

∫ R

r=0


∞∑
a=1

PnaIn

(
π(2a− 1)r

2Hl

)
+

∞∑
b=1

QnbJn(εnbr/R) +

∞∑
c=1

SncJn(εncr/R)

 Ũp;znl(r)dr

(C.7)
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∞∑
m=0

(ω2
nm − ω2)ρphpX̃nm

∫ R

r=0

Ũp;θnm(r)Ũp;θnl(r)dr +

∫ R

r=0

∫ 2π

θ=0

Kθθdθ

∞∑
m=0

X̃nmŨp;θnm(r)Ũp;θnl(r)dr

=
1

π(1 + δn0)

∫ R

r=0

∫ 2π

θ=0

{
Kθzũi;z(r, θ) +Kθθũi;θ(r, θ) +Kθrũi;r(r, θ)

}
sin(nθ)Ũp;θnl(r)dθdr

(C.8)
∞∑
m=0

(ω2
nm − ω2)ρphpX̃nm

∫ R

r=0

Ũp;rnm(r)Ũp;rnl(r)dr +

∫ R

r=0

∫ 2π

θ=0

Krzdθ

∞∑
m=0

X̃nmŨp;znm(r)Ũp;rnl(r)dr

+

∫ R

r=0

∫ 2π

θ=0

Krrdθdr

∞∑
m=0

X̃nm

∫ R

r=0

Ũp;rnm(r)Ũp;rnl(r)dr

=
1

π(1 + δn0)

∫ R

r=0

∫ 2π

θ=0

{
Krzũi;z(r, θ) +Krθũi;θ(r, θ) +Krrũi;r(r, θ)

}
cos(nθ)Ũp;rnl(r)dθdr

(C.9)

C.2 Equations of motion - Wall

This section treats the evaluation of equation (2.91) expanded into three separate equations
for each unknown degree of freedom:

∞∑
n=0

∞∑
m=0

(ω2
nm − ω2)ρwhwX̃nm(ω)Ũw;znm(z) cos(nθ) = 0 (C.10)

∞∑
n=0

∞∑
m=0

(ω2
nm − ω2)ρwhwX̃nm(ω)Ũw;θnm(z) sin(nθ) = 0 (C.11)

∞∑
n=0

∞∑
m=0

(ω2
nm − ω2)ρwhwX̃nm(ω)Ũw;rnm(z) cos(nθ) =

− iωρfl

∞∑
n=0


∞∑
a=0

P̃na(ω)In

(
π(2a− 1)R

2Hl

)
cos

(
π(2a− 1)z

2Hl

)
+

∞∑
b=0

Q̃nb(ω)

(
cosh(εnbz/R)− sinh(εnbz/R)

tanh(εnbHl/R)

)
Jn(εnb)+

∞∑
c=0

S̃nc(ω)(cosh(εncz/R))Jn(εnc)

 cos(nθ) (C.12)

Making use of the orthogonality of the trigonometric functions reduces equations (C.1)
to (C.3) to

∞∑
m=0

(ω2
nm − ω2)ρwhwX̃nmŨw;znm(z) = 0 (C.13)

∞∑
m=0

(ω2
nm − ω2)ρwhwX̃nmŨw;θnm(z) = 0 (C.14)
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∞∑
m=0

(ω2
nm−ω2)ρwhwX̃nmŨw;rnm(z) = −iωρfl


∞∑
a=0

P̃naIn

(
π(2a− 1)R

2Hl

)
cos

(
π(2a− 1)z

2Hl

)
+

∞∑
b=0

Q̃nb

(
cosh(εnbz/R)− sinh(εnbz/R)

tanh(εnbHl/R)

)
Jn(εnb) +

∞∑
c=0

S̃nc(cosh(εncz/R))Jn(εnc)


(C.15)

In order to apply the orthogonality conditions of the entire tank and thereby reduce the
number of equations to be solved, the wall’s equations of motion for each degree of freedom
are multiplied by their respective mode shape and integrated over the height. The terms
independent of the vertical direction are taken out of the integral.

∞∑
m=0

(ω2
nm − ω2)ρwhwX̃nm

∫ H

z=0

Ũw;znm(z)Ũw;znl(z)dz = 0

(C.16)
∞∑
m=0

(ω2
nm − ω2)ρwhwX̃nm

∫ H

z=0

Ũw;θnm(z)Ũw;θnl(z)dz = 0

(C.17)

∞∑
m=0

(ω2
nm − ω2)ρwhwX̃nm

∫ H

z=0

Ũw;rnm(z)Ũw;rnl(z)dz =

−iωρfl

∫ Hfl

z=0


∞∑
a=0

P̃naIn

(
π(2a− 1)R

2Hl

)
cos

(
π(2a− 1)z

2Hl

)
+

∞∑
b=0

Q̃nb

(
cosh(εnbz/R)− sinh(εnbz/R)

tanh(εnbHl/R)

)
Jn(εnb) +

∞∑
c=0

S̃nc(cosh(εncz/R))Jn(εnc)

 Ũw;rnl(z)dz

(C.18)

Note that the second term on the right hand side of equation (C.18) is integrated only up
to Hfl to take into account that the water pressure is only present up to the water level.

C.3 Kinematic conditions - Wall

After substitution of the modal expression of the tank wall displacement and of the fluid
potential (equations (2.23) and (2.32)) into equation (2.93), the equation is multiplied by
cos(qθ) and integrated from 0 to 2π, resulting in

∫ 2π

θ=0

 ∂

∂r

 ∞∑
n=0

∞∑
a=1

PnaIn

(
π(2a− 1)r

2Hl

)
cos

(
π(2a− 1)z

2Hl

)
cos(nθ)

∣∣∣∣∣
r=R

 cos(qθ)dθ =

∫ 2π

θ=0

iω

∞∑
n=0

∞∑
m=1

X̃nmŨw;rnm(z) cos(nθ) cos(qθ)dθ

(C.19)

– 92 –



MSc thesis - D. P. Kroon C Dynamic and kinematic conditions

Evaluation of the differentiation and integration operations, gives

∞∑
a=1

Pna

[
n

R
In

(
π(2a− 1)R

2Hl

)
+
π(2a− 1)

2Hfl
In+1

(
π(2a− 1)R

2Hl

)]
cos

(
π(2a− 1)z

2Hl

)
=

iω

∞∑
m=0

X̃nmŨw;rnm(z)

(C.20)

Note the division by π(1 + δn0) to account for the evaluation of the integral. Then, the
equation is multiplied by the function in the mode shape that is related to the z-coordinate,
and integrated of the height of the tank that is in contact with the fluid, so that∫ Hfl

z=0

∞∑
a=1

Pna

[
n

R
In

(
π(2a− 1)R

2Hl

)
+
π(2a− 1)

2Hfl
In+1

(
π(2a− 1)R

2Hl

)]
cos

(
π(2a− 1)z

2Hl

)
cos

(
π(2d− 1)z

2Hl

)
dz =

iω

∫ Hfl

z=0

∞∑
m=1

X̃nmŨw;rnm(z) cos

(
π(2d− 1)z

2Hl

)
dz

(C.21)
Evaluation of the integration operation reduces the equation to

Pna

[
n

R
In

(
π(2a− 1)R

2Hl

)
+
π(2a− 1)

2Hfl
In+1

(
π(2a− 1)R

2Hl

)]
Hl

2
δad =

iω

∫ Hfl

z=0

∞∑
m=1

X̃nmŨw;rnm(z) cos

(
π(2a− 1)z

2Hl

)
dz

(C.22)

C.4 Kinematic condtions - Plate

For the second interface condition, concerning the velocity continuity at the plate, the
modal expressions of the tank bottom displacement in z-direction and of the fluid potential
(equations (2.21) and (2.32)) are substituted into equation (2.94), yielding equation (2.98).
Multiplication with cos(qθ) and integration from 0 to 2π gives

∫ 2π

θ=0

 ∂

∂z

 ∞∑
n=0

∞∑
b=1

[
Qnb

(
cosh(εnbz/R)− sinh(εnbz/R)

tanh(εnbHl/R)

)
Jn(εnbr/R)

]
cos(nθ)

∣∣∣∣∣
z=0

 cos(qθ)dθ =

∫ 2π

θ=0

−iω

∞∑
n=0

∞∑
m=1

X̃nmŨp;znm(r) cos(nθ) cos(qθ)dθ

(C.23)
Evaluation of the differentiation and integration operations eliminates the summation over
wavenumber n, so that

∞∑
b=0

Qnb
εnbJn(εnbr/R)

R tanh(εnbHl/R)
= −iω

∞∑
m=0

X̃nmŨp;znm(r) (C.24)
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in which the division by π(1 + δn0) accounts for the evaluation of the integral. Next,
equation (C.24) is multiplied with r and with the function in the fluid vibration modes
related to the r-coordinate, and integrated over the radius of the bottom plate:∫ R

r=0

∞∑
b=0

Qnb
εnbJn(εnbr/R)

tanh(εnbHl/R)

r

R
Jn(εner/R)dr = −iω

∫ R

r=0

∞∑
m=0

X̃nmŨp;znm(r)rJn(εner/R)dr

(C.25)
Using the orthogonality property of the Bessel functions∫ R

r=0

r

R
Jn

(
r

R
εnb

)
Jn

(
r

R
εne

)
dr =

δbe
2

[
Jn+1(εnb)

]2
(C.26)

equation (C.25) can be reduced to

Qnb
εnbJn(εnbr/R)

2 tanh(εnbHl/R)

[
Jn+1(εnb)

]2
= −iω

∫ R

r=0

∞∑
m=0

X̃nmŨp;znm(r)rJn(εner/R)dr (C.27)

which shows that the orthogonality of the Bessel function, has eliminated the summation
over wavenumber b.

C.5 Free fluid surface condition

Finally, substitution of the modal expression of the fluid potential (equation (2.32)) into
the free surface condition, equation (2.95), yielded equation (2.100). It is then multiplied
by cos(qθ) and integrated from 0 to 2π to give

∫ 2π

θ=0

ω2

g

∞∑
n=0

∞∑
c=0

Snc cosh(εncz/R)Jn(εncr/R) cos(nθ)

 cos(qθ)dθ =

∫ 2π

θ=0

 ∂

∂z

 ∞∑
n=0

∞∑
a=0

PnaIn

(
π(2a− 1)r

2Hl

)
cos

(
π(2a− 1)z

2Hl

)
cos(nθ)+

∞∑
n=0

∞∑
b=0

[
Qnb

(
cosh(εnbz/R)− sinh(εnbz/R)

tanh(εnbHl/R)

)
Jn(εnbr/R)

]
cos(nθ)+

∞∑
n=0

∞∑
c=0

Snc cosh(εncz/R)Jn(εncr/R) cos(nθ)

∣∣∣∣∣
z=Hfl

 cos(qθ)dθ

(C.28)

The differentiation and integration operations are evaluated to eliminate the summation
over wavenumber n:

ω2

g

∞∑
c=0

Snc cosh(εncHfl/R)Jn(εncr/R) =

∞∑
a=0

PnaIn

(
π(2a− 1)r

2Hl

)(
cos(πa)π(2a− 1)

2Hl

)
+

∞∑
b=0

Qnb
εnb
R

(
sinh(εnbHfl/R)− cosh(εnbHfl/R)

tanh(εnbHfl/R)

)
Jn(εnbr/R) +

∞∑
c=0

Snc
εnc
R

sinh(εncHfl/R)Jn(εncr/R)

(C.29)

– 94 –



MSc thesis - D. P. Kroon C Dynamic and kinematic conditions

Then, equation (C.29) is multiplied by r/R and by the function of the fluid’s modal ex-
pression for the free surface in radial direction and integrated over the radius to arrive
at ∫ R

r=0

ω2

g

∞∑
c=0

Snc cosh(εncHfl/R)
r

R
Jn(εncr/R)Jn(εnfr/R)dr =

∫ R

r=0

∞∑
a=0

PnaIn

(
π(2a− 1)r

2Hl

)(
cos(πa)π(2a− 1)

2Hl

)
r

R
Jn(εnfr/R)dr+

∫ R

r=0

∞∑
b=0

Qnb
εnb
R

(
sinh(εnbHfl/R)− cosh(εnbHfl/R)

tanh(εnbHfl/R)

)
r

R
Jn(εnbr/R)Jn(εnfr/R)dr

+

∫ R

r=0

∞∑
c=0

Snc
εnc
R

sinh(εncHfl/R)
r

R
Jn(εncr/R)Jn(εnfr/R)dr

(C.30)
Making use again of the orthogonality of the Bessel function (equation (C.26)), equa-
tion (C.30) can be rewritten as

ω2

2g
Snc cosh

(
εnc

Hfl

R

)[
Jn+1(εnc)

]2
=

∫ R

r=0

∞∑
a=0

PnaIn

(
π(2a− 1)r

2Hl

)(
cos(πa)π(2a− 1)

2Hl

)
rJn(εnfr/R)dr

+Qnb
εnb
2R

(
sinh(εnbHfl/R)− cosh(εnbHfl/R)

tanh(εnbHfl/R)

)[
Jn+1(εnb)

]2
+ Snc

εnc
2R

sinh(εncHfl/R)
[
Jn+1(εnc)

]2
(C.31)

It is shown that, due to the orthogonality of the Bessel function of the first kind, the
summations over wavenumbers b and c are eliminated from the equations.
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