

Delft University of Technology

Dynamic Mesh Simulations in OpenFOAM: A Hybrid Eulerian–Lagrangian Approach

Pasolari, R.; Ferreira, Carlos; van Zuijlen, A.H.; Baptista, C.F.

DOI
10.3390/fluids9020051
Publication date
2024
Document Version
Final published version
Published in
Fluids

Citation (APA)
Pasolari, R., Ferreira, C., van Zuijlen, A. H., & Baptista, C. F. (2024). Dynamic Mesh Simulations in
OpenFOAM: A Hybrid Eulerian–Lagrangian Approach. Fluids, 9(2), Article 51.
https://doi.org/10.3390/fluids9020051

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3390/fluids9020051
https://doi.org/10.3390/fluids9020051

Citation: Pasolari, R.; Ferreira, C.S.;

van Zuijlen, A.; Baptista, C.F.

Dynamic Mesh Simulations in

OpenFOAM: A Hybrid

Eulerian–Lagrangian Approach.

Fluids 2024, 9, 51. https://doi.org/

10.3390/fluids9020051

Academic Editor: Pengtao Yue

Received: 8 January 2024

Revised: 8 February 2024

Accepted: 13 February 2024

Published: 16 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fluids

Article

Dynamic Mesh Simulations in OpenFOAM: A Hybrid
Eulerian–Lagrangian Approach
Rention Pasolari * , Carlos Simão Ferreira , Alexander van Zuijlen and Carlos Fernando Baptista

Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS Delft, The Netherlands;
c.j.simaoferreira@tudelft.nl (C.S.F.); a.h.vanzuijlen@tudelft.nl (A.v.Z.); cfd.baptista@gmail.com (C.F.B.)
* Correspondence: r.pasolari@tudelft.nl or r.pasolari@gmail.com

Abstract: The past few decades have witnessed a growing popularity in Eulerian–Lagrangian solvers
due to their significant potential for simulating aerodynamic flows, particularly in cases involving
strong body–vortex interactions. In this hybrid approach, the two component solvers are mutually
coupled in a two-way fashion. Initially, the Lagrangian solver can supply boundary conditions to
the Eulerian solver, while the Eulerian solver functions as a corrector for the Lagrangian solution
in regions where the latter cannot achieve high accuracy. To utilize such tools effectively, it is vital
for them to be capable of handling dynamic mesh movements. This study builds upon the previous
research conducted by our team and extends the capabilities of the hybrid solver to handle dynamic
meshes. While OpenFOAM, the Eulerian component of this hybrid code, incorporates built-in
dynamic mesh properties, certain modifications are necessary to ensure its compatibility with the
Lagrangian solver. More specifically, the evolution algorithm of the pimpleFOAM solver needs to be
divided into two discrete steps: first, updating the mesh, and later, evolving the solution. This division
enables a proper coupling between pimpleFOAM and the Lagrangian solver as an intermediate step.
Therefore, the primary objective of this specific paper is to adapt the OpenFOAM solver to meet the
demands of the hybrid solver and subsequently validate that the hybrid solver can effectively address
dynamic mesh challenges using this approach. This approach introduces a pioneering method for
conducting dynamic mesh simulations within the OpenFOAM framework, showcasing its potential
for broader applications. To validate the approach, various test cases involving dynamic mesh
movements are employed. Specifically, all these cases employ the Lamb–Oseen diffusing vortex,
but each case incorporates different types of mesh movements, including translational, rotational,
oscillational, and combinations thereof. The results from these cases demonstrate the effectiveness of
the proposed OpenFOAM algorithm, with the maximum relative errors —when compared to the
analytical solution across all presented cases—capped at 2.0% for the worst-case scenario. This affirms
the algorithm’s capability to successfully handle dynamic mesh simulations with the proposed solver.

Keywords: OpenFOAM; dynamic meshes; hybrid Eulerian–Lagrangian solvers; vortex particle methods

1. Introduction

Hybrid Eulerian–Lagrangian solvers are attracting an increasing amount of attention
in recent years [1–5], particularly within the field of external aerodynamics. The funda-
mental concept behind the hybrid framework is to combine a mesh-based Eulerian solver
with a mesh-free Lagrangian solver in order to exploit their strengths while mitigating
their inherent weaknesses. Specifically, Eulerian methods, such as Finite Volumes, Finite
Elements, or Finite Differences, excel in resolving regions proximate to solid bodies, par-
ticularly boundary layers. They adeptly capture near-wall phenomena with efficiency
and high fidelity due to their capacity to leverage anisotropic elements. However, these
methods are in general dissipative and dispersive, making the deployment of vast amounts
of elements throughout the computational domain or the adoption of high-order discretiza-
tion schemes essential, increasing computational cost significantly. On the other hand, in

Fluids 2024, 9, 51. https://doi.org/10.3390/fluids9020051 https://www.mdpi.com/journal/fluids

https://doi.org/10.3390/fluids9020051
https://doi.org/10.3390/fluids9020051
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fluids
https://www.mdpi.com
https://orcid.org/0000-0002-6138-4832
https://orcid.org/0000-0003-0192-3651
https://doi.org/10.3390/fluids9020051
https://www.mdpi.com/journal/fluids
https://www.mdpi.com/article/10.3390/fluids9020051?type=check_update&version=1

Fluids 2024, 9, 51 2 of 20

Lagrangian approaches, like the Vortex Particle Method (VPM), the artificial diffusion can
be reduced significantly, especially in regions where viscous phenomena are not dominant
(e.g., wakes). Nevertheless, they are not capable of using anisotropic elements, making the
process of resolving boundary layers extremely difficult. An extensive description of VPMs
can be found in [6], while a detailed analytical review of the method was conducted in [7].
By combining these methods, hybrid solvers emerge, capable of utilizing the Eulerian
solver for the near-wall regions and the Lagrangian solver across the remainder of the
computational domain.

In the realm of external aerodynamic simulations, the presence of dynamic motions is a
ubiquitous phenomenon. This field encompasses a diverse range of applications, including
wind turbines, helicopters, cars, airplanes, and more. In Computational Fluid Dynamics
(CFD), the availability of tools capable of simulating flows around moving bodies is of
paramount importance. Simulation of moving bodies has been rigorously explored using
both Eulerian [8–10] and Lagrangian [11] solvers. Moreover, dynamic mesh simulations
have been successfully conducted through the integration of hybrid solvers. For instance,
in [12], simulations were conducted involving elastically mounted cylinders in a tandem
arrangement, utilizing their strongly coupled compressible Eulerian–Lagrangian solver.
In another noteworthy study, the authors of ref. [13] managed to simulate a four-bladed
advancing rotor by coupling compressible solver OVERFLOW with a VPM. Lastly, in
ref. [14], the authors carried out rotor simulations in hover conditions by employing a
hybrid method that combines an Eulerian-based Reynolds-averaged Navier–Stokes solver
with a Lagrangian-based viscous wake method.

In this study, the primary focus is on the hybrid solver introduced in [1], and specif-
ically the extension of the solver’s capability to handle dynamic meshes. The original
paper [1] presents a 2D hybrid Eulerian–Lagrangian solver that underwent validation in
fixed mesh cases. The Eulerian component of this hybrid solver was developed within the
OpenFOAM framework [15]. OpenFOAM is an open-source software tool renowned for its
capabilities in solving, pre-processing, and post-processing tasks related to Computational
Fluid Dynamics (CFD) and continuum mechanics problems. It is widely used in both
academia and industry since it is a powerful and flexible tool that allows for the customiza-
tion of existing solvers, the development of novel solver solutions, and the integration with
in-house software. The built-in solver of OpenFOAM that is used in this work is pimple-
FOAM, an incompressible, transient solver, which has been used in many studies [16,17].
Furthermore, OpenFOAM offers built-in features for handling moving meshes through
the utilization of the “dynamicMeshDict” dictionary. Various methods are available within
OpenFOAM for addressing the movement of bodies, with the most known in the field of
aerodynamics being the overset mesh, the morphing mesh and the sliding interfaces using
Arbitrary Mesh Interfaces (AMI). In ref. [9], the authors make a comparison between the
morphing and the overset mesh methods by simulating the forced and free oscillations of a
2D cylinder. In ref. [10], the authors use the sliding interfaces method to conduct airfoil
simulations. Solid-body motion, another available mesh motion in OpenFOAM primarily
used for internal flows like sloshing tanks [18,19], is less commonly employed in the field
of external aerodynamics.

In the context of a hybrid solver, where the Eulerian domain is placed in close proximity
to the simulated body, the use of solid-body mesh motion can be a potential method for
incorporating dynamic mesh options in the solver and so it is suggested here. This approach
involves enabling the entire computational mesh to be moved as a solid body while having
the requisite boundary conditions imposed by the vortex particle method. However, to
achieve this, modifications are required in the pimpleFOAM solver. In the original version
of pimpleFOAM, mesh updating and equation solving occur in the same time-step. To
establish coupling with the Lagrangian solver, these two steps need to be separated. As
a result, the mesh is first updated, followed by the calculation of necessary boundary
conditions by the Lagrangian solver, and finally the Eulerian solution is allowed to evolve.
The primary objective of this paper is to address the modification of pimpleFOAM to make

Fluids 2024, 9, 51 3 of 20

it compatible with a VPM for dynamic mesh simulations and to validate the hybrid code’s
ability to handle dynamic mesh cases. For validation purposes, simple benchmark cases
are utilized, without the presence of any solid bodies. Specifically, these cases involve the
Lamb–Oseen diffusing vortex, with each scenario incorporating various types of mesh
movements, including translational, rotational, oscillational, and combinations thereof.

The structure of this paper is the following: Section 2 briefly describes the idea behind
the hybrid solver as well as the mathematics behind the VPM. Section 3 deals with the
modifications that are employed in the pimpleFOAM solver in order to achieve coupling
with the Lagrangian solver. Then, in Section 4, the validation of the proposed method
is presented. Finally, in Section 5, the conclusions of the study are presented, and the
potentials of the solver are discussed.

2. Hybrid Solver

The hybrid solver that is studied here employs the Domain Decomposition Method
that was proposed in [20] and applied in [1,21]. The way that the computational domain is
decomposed can be seen in Figure 1. The Eulerian solver is responsible for providing an
accurate solution near the solid, while the Lagrangian particles are evolving the solution
downstream, eliminating most of the artificial diffusion that the Eulerian solver introduces.
It has to be mentioned here that there is a complete overlap between the regions that are
resolved by each solver.

Figure 1. Domain decomposition of the computational domain for the hybrid solver. The Eulerian
mesh extends up to the numerical boundary, which is a short distance away from the solid boundary,
while the Lagrangian solver covers the entire computational domain.

2.1. Vortex Particle Method (VPM)

Here, a brief overview of the VPM is presented. For more comprehensive information
about this specific method, reference can be made to the analytic description in [6], review
paper [7], or the paper that outlines the current hybrid solver, [1].

VPM is a method which belongs to the Lagrangian approach family, where the observer
operates within the particle’s frame of reference. The fundamental quantity characterizing
the flow conveyed by particles is vorticity, which holds significant relevance in determining
the aerodynamic forces acting on bluff bodies. Lagrangian methods, including VPMs, can

Fluids 2024, 9, 51 4 of 20

significantly reduce the numerical diffusion and numerical dispersion that Eulerian solvers
introduce. Furthermore, due to the inherent nature of the method, acceleration techniques
are widely adopted in VPMs, as the vorticity field originates from the linear solution of the
Laplace equation, allowing for efficient parallel solving using Graphics Processing Units
(GPUs) [22]. Additionally, Fast Multipole Methods (FMMs), as discussed in [23,24], can
significantly enhance computational speed, rendering VPMs a formidable tool for fluid
dynamics simulations.

In VPMs, the Navier–Stokes (N-S) equations are written in a velocity–vorticity formu-
lation:

∂ω

∂t
+ (u ·∇)ω = (ω ·∇)u + ν∇2ω in 3D (1)

∂ω

∂t
+ (u ·∇)ω = ν∇2ω in 2D (2)

The fluid is discretized into vortex elements, where the total field results from the
summation of the induced fields of all these elements. To achieve a smooth representation
of the vorticity field, as opposed to the spurious one produced by Dirac distributions,
mollified particles are frequently employed. The induced velocity and vorticity fields,
utilizing the Gaussian kernel as a smoothing function, are expressed as follows:

up(x) = −∑
p

1
2πσ2

1 − e
−
|x − xp|2

2σ2

 1∣∣x − xp
∣∣2 (x − xp)× ezΓp + u∞ (3)

ωp(x) = ∑
p

1
2πσ2 e

−
|x − xp|2

2σ2 Γp (4)

The particles are advected and diffused in time and space making use of the Viscous
Splitting Algorithm proposed in [25]. The algorithm is characterized by the following
equations:

∂ω

∂t
+ u · ∇ω = 0 advection step (5)

∂ω

∂t
− ν∇2ω = 0 diffusion step (6)

The convection step is resolved utilizing the fourth-order Runge–Kutta integration
scheme, while the diffusion process is represented by the Vortex Redistribution Method as
proposed in [26]. Further details regarding the Lagrangian solver employed in this context
can be located in the primary paper of this hybrid code [1].

2.2. Flowchart of the Hybrid Solver

The two component solvers of the hybrid solver are coupled in a two-way fashion.
Initially, in the first step, the Lagrangian particles compute boundary conditions for the
numerical boundary (refer to Figure 1) of the Eulerian solver. Subsequently, in the next
coupling step, the Eulerian solution is employed to correct the Lagrangian solution within
the interpolation region (see Figure 1). Within a given time-step, assuming that both the
Eulerian and Lagrangian solutions adequately represent the flow fields, the processes
occurring within a single hybrid solver time-step are illustrated in Figure 2.

Fluids 2024, 9, 51 5 of 20

Figure 2. The flowchart of the steps that are taking place in one hybrid solver time-step.

It has to be mentioned here that these steps are taking place once in each time-step,
resulting in weak coupling between the two solvers. The processes governing the evolution
of the Eulerian mesh and the evolution of the Eulerian solution are depicted in the same
color, as both of them pertain exclusively to the Eulerian solver.

Most of these steps have already been discussed in detail in [1]. The primary distinction
lies in the fact that the Eulerian mesh is now in motion. Therefore, before calculating the
Eulerian boundary conditions, the Eulerian solver updates its mesh using the prescribed
motion specified by the user. It is important to emphasize that Fluid–Structure Interaction
(FSI) is not addressed in this context, and special modifications are required in the code to
account for such scenarios. Here, the mesh undergoes motion solely based on predefined
motion patterns. The mesh is in motion, and consequently the interpolation region moves
as well, as illustrated in Figure 3.

Figure 3. The mesh is in motion, and along with it, the interpolation region is also in motion. It is
important to note that this illustration depicts an exaggerated movement for visualization purposes.
In practice, the mesh cannot move to such an extent within a single time-step.

Hence, prior to computing any boundary conditions, the updated coordinates of the
Eulerian mesh are exported. Additionally, the data for the new interpolation region are
exported, as they are utilized in subsequent correction steps.

Fluids 2024, 9, 51 6 of 20

2.3. Boundary and Initial Conditions

In the hybrid framework, the Lagrangian particles can calculate the initial and bound-
ary conditions for the Eulerian solver. Specifically, depending on the flow that is simulated,
a set of particles can be initialized offering the locations and the strengths of the particles.
Using the set of particles and the induced velocity equations (see Equation (3)), the initial
velocity field in OpenFOAM can be determined. During the simulation, the particles also
determine the boundary conditions for the Eulerian solver. OpenFOAM needs velocity and
pressure boundary conditions only, when the turbulence options is disabled. The boundary
conditions that are used in OpenFOAM are the following:

• Dirichlet boundary conditions for velocity across the boundary (un, f).
• Neumann boundary conditions for pressure across the boundary (∂p/∂n).

The pressure gradient is obtained from the unsteady Bernoulli equation (Equation (7)).
Knowing the induced velocity from all the particles, all the terms in the right-hand side
(RHS) can be calculated in order to obtain the pressure gradient. These values are assigned
at the center of the outer faces.

∇ p̄ = −
(

∂u
∂t

+ (u · ∇)u + ν∇2u
)

, p̄ = p/ρ (7)

3. PimpleFOAM Modification

In this project, OpenFOAM v9 [27] is employed as the Eulerian component of the
hybrid solver. Specifically, the solver utilized in this context is pimpleFOAM, an incompress-
ible, transient solver capable of accommodating dynamic mesh simulations. pimpleFOAM
uses the PIMPLE algorithm [28] for correcting the velocity and pressure fields to enforce
the continuity equation. In a standard OpenFOAM case, when the user invokes the pim-
pleFOAM solver, it triggers a while loop that runs from the initial to the simulation’s end
time. The details of this loop’s formulation can be found in Appendix A. However, this
particular formulation is not suitable for accommodating the coupling of OpenFOAM with
an additional solver, as is the case here. In this hybrid approach, coupling steps must
occur immediately before and after each Eulerian step to establish the necessary coupling.
Moreover, in the context of a moving mesh, actions need to be taken in the interim. This is
because, after the mesh undergoes motion, boundary conditions must be computed for the
updated coordinates of the boundary faces.

For this purpose, the original structure of pimpleFOAM is modified, resulting in the
creation of a new class-based solver called EulerianPimpleFoam. All the processes within
the Eulerian solver are now encapsulated as member functions of this class, providing
enhanced control and coordination. In the hybrid solver, at any given time, the Eulerian
component can halt its operations, export data, receive new inputs, and establish efficient
communication with the Lagrangian solver. This structure facilitates a more organized
and flexible interaction between the Eulerian and Lagrangian components. The solver’s
structure is visually depicted in Figure 4.

Another noteworthy advantage of this solver’s specific structure is its ability to handle
multiple OpenFOAM cases simultaneously. Each OpenFOAM case can be instantiated as
an object of the class and executed independently. This capability enables the simulation
of multi-body scenarios, with Lagrangian particles facilitating interconnections between
various Eulerian regions.

Fluids 2024, 9, 51 7 of 20

Figure 4. EulerianPimpleFoam class structure.

As previously mentioned, to facilitate dynamic mesh simulations within the hybrid
framework, the mesh motion and solution evolution need to be separated. Consequently,
when conducting a dynamic mesh simulation, the Eulerian evolution comprises two distinct
steps: evolve_mesh() and evolve_only_solution() functions. These functions presented
in a pseudocode format can be seen in Algorithms 1 and 2. The original codes in the
OpenFOAM language format can be seen in Appendix A. It is apparent that, in contrast
to the original structure outlined in Appendix B, the mesh is initially updated before
proceeding with solution evolution.

Algorithm 1 The evolve_mesh member function that updates only the mesh of the Eulerian
part.

Function evolve_mesh()

if LTS then
Include “setRDeltaT.H”

else
Include “CourantNo.H”
Include “setDeltaT.H”

end if

runTime++ ▷ Increment the simulation time

fvModels.preUpdateMesh() ▷ Perform pre-mesh update operations for finite volume
models

mesh.update() ▷ Update the mesh

Fluids 2024, 9, 51 8 of 20

Algorithm 2 The evolve_only_solution member function that evolves the Eulerian solu-
tion without moving the mesh.

Function evolve_only_solution()

while pimple.loop() do

if pimple.firstPimpleIter() or moveMeshOuterCorrectors then

if mesh is changing then
MRF.update() ▷ Update MRF (Moving Reference Frame)

if correctPhi is enabled then
Include “correctPhi.H”

end if

if checkMeshCourantNo is enabled then
Include “meshCourantNo.H”

end if

end if

end if

fvModels.correct() ▷ Correct finite volume models
Include “UEqn.H” ▷ Solve for the velocity field U

while pimple.correct() do
Include “pEqn.H” ▷ Solve for the pressure field p

end while

if pimple.turbCorr() then
laminarTransport.correct() ▷ Correct laminar transport
turbulence.correct() ▷ Correct turbulence models

end if

end while

vorticity = compute curl(U) ▷ Calculate vorticity
runTime.write() ▷ Write simulation run time details

4. Validation
4.1. Validation Cases

Now that the hybrid solver and the modifications to the Eulerian part were discussed,
it is time for the validation to be provided. The solver is validated in unbounded cases,
meaning that solid boundaries are not present. In all the cases that are presented here,
the same Eulerian mesh is used. This mesh, illustrated in Figure 5, is a structured square
mesh with an edge length of L, while the distance of the mesh edges to the edges of the
interpolation region is denoted as dbdry.

Fluids 2024, 9, 51 9 of 20

Figure 5. The geometry and mesh utilized for the validation cases, showcasing the Eulerian domain,
the Lagrangian domain, and the interpolation region.

The various cases chosen for validation, as depicted in Figure 6, encompass trans-
lational motion, rotational motion, linear oscillation, and multi-motion, which combines
linear oscillation and rotation. In each of these cases, a stationary Lamb–Oseen vortex [29]
is present within the flow. The Eulerian domain is in relative motion to the vortex, follow-
ing the specified motion patterns. The Lamb–Oseen vortex is characterized by analytical
solutions outlined in the following equations:

uθ =
Γc

2πr

[
1 − exp

(
− r2

4ν(t + τ)

)]
, ur = 0 (8)

ω =
Γc

4πν(t + τ)
exp

(
− r2

4ν(t + τ)

)
(9)

where uθ is circumferential velocity, ur is radial velocity and ω is vorticity. Γc is the strength
of the vortex, t is simulation time, τ is the time constant (for smooth distribution of the
vorticity field), ν is kinematic viscosity and r is the distance from the core center.

(a) Translation (b) Rotation

Figure 6. Cont.

Fluids 2024, 9, 51 10 of 20

(c) Linear Oscillation (d) Multi-motion

Figure 6. Validation cases featuring a stationary vortex of strength Γ, with the Eulerian subdomain
exhibiting relative motion. The following relative motions are considered: (a) Translation, (b) Rotation,
(c) Linear Oscillation, and (d) Linear Oscillation with Rotation (Multi-Motion).

In all cases, comparison is conducted with analytical results. Table 1 provides an
overview of geometry and motion parameters for the various cases presented. To en-
sure a fair comparison among the different motion scenarios, the time-step is adjusted
individually in each case to achieve a nearly identical maximum Courant number, which
is approximately set to be 1.0. Table 2 summarizes the simulation parameters that are
consistent across all cases.

Table 1. Variable parameters associated with domain motion across the different cases.

Parameter Symbol Value Dimension
Case 1—Translation

Eulerian mesh initial center coordinates (xE,initial , yE,initial) (0.5, 0.5) m
Vortex particle coordinates (xp, yp) (0.0, 0.5) m
Mesh velocity umesh [−1.0 0.0] m/s

Case 2—Rotation
Eulerian mesh initial center coordinates (xE,initial , yE,initial) (0.5, 0.5) m
Vortex particle coordinates (xp, yp) (0.5, 0.5) m
Mesh rotational speed ωrot,mesh 1.571 rad/s
Origin of rotation (xR, yR) (0.5, 0.5) m

Case 3—Linear oscillation
Eulerian mesh initial center coordinates (xE,initial , yE,initial) (0.5, 0.5) m
Vortex particle coordinates (xp, yp) (0.5, 0.5) m
Axis of oscillation axis x −
Mesh oscillation frequency ωosc,mesh 1.571 rad/s
Origin of oscillation (xO, yO) (0.5, 0.5) m
Amplitude of oscillation A 0.75 m

Case 4—Multi-motion
Eulerian mesh initial center coordinates (xE,initial , yE,initial) (0.5, 0.5) m
Vortex particle coordinates (xp, yp) (0.5, 0.5) m
Axis of oscillation axis x −
Mesh oscillation frequency ωosc,mesh 1.571 rad/s
Origin of oscillation (xO, yO) (0.5, 0.5) m
Amplitude of oscillation A 0.75 m
Mesh rotational speed ωrot,mesh 1.571 rad/s
Origin of rotation (xR, yR) (0.5, 0.5) m

Fluids 2024, 9, 51 11 of 20

Table 2. Simulation parameters for all the moving domain cases.

Parameter Symbol Value Dimension

Particle strength Γ −0.5 m2/s
Freestream velocity uin f [0.0 0.0] m/s
Lamb–Oseen time constant τ 4.0 s
Kinematic viscosity ν 5 × 10−4 kg/(m· s)
Simulation time tsim 2.0 s

Eulerian mesh density Ncells 320 × 320 −
Domain edge length L 1.0 m
Eulerian time-step ∆tE 0.001 s

Vortex particles spacing h 0.006 m
Gaussian kernel width spreading k 2 −
Overlap ratio λ 1 −
Diffusion and convection time step ∆tc = ∆td 0.001 s
Interpolation domain offset from Eulerian boundary dbdry 3 · h m

4.1.1. Translational Motion

The first results to be examined are those of the mesh in translational motion. As
depicted in Figure 6a, the vortex initially lies outside the Eulerian domain, with the Eulerian
mesh traveling across the vortex in the −x direction passing through the vortex. Figure 7
displays a comparison of the x and y components of the velocity field for both the analytical
and hybrid solutions within the same contour. The contour is divided, with the upper part
corresponding to the analytical solution and the lower part to the hybrid solution. The red
dashed box denotes the position of the Eulerian mesh at the corresponding time instance.
Evidently, there is a substantial agreement between the two solutions. To assess the error
between the two solutions in the vorticity field, Figure 8a illustrates the relative error in
the vorticity field for the two solutions. The error is computed in a manner that prevents
division by very small numbers in regions where vorticity is close to zero, as described in
Equation (10).

ωrel,error|t =
ωh − ωa

max{ωa|t}
· 100 (10)

where ωrel,error|t is the relative vorticity error at time t, ωh is hybrid vorticity and ωa is
analytical vorticity. It is noteworthy that, for all time instances, the error remains below
1.5%. The error is negligible when the Eulerian domain has not reached the vortex, and
there is a sudden increase when it crosses the vortex. This increase in the error is primarily
due to discretization and interpolation from the Eulerian field to the Lagrangian field.
Figure 8b presents a comparison of the L2 vorticity error for six different cases within the
translational domain. These cases employ various mesh sizes and particle spacings to
demonstrate the convergence of the solution as mesh size increases or particle spacing
decreases. In all the results provided, the finest mesh size and particle spacing are used,
specifically 320 × 320 cells and h = 0.006 m.

Fluids 2024, 9, 51 12 of 20

(a) Velocity-x (Translation) (b) Velocity-y (Translation)

Figure 7. Comparison of the velocity field between the analytical (top) and hybrid (bottom) solutions
for the translational case. The x-component of velocity is depicted on the left, while the y-component
is shown on the right. The analytical and hybrid solutions are separated by a black dashed line []
and the Eulerian domain at the corresponding time instance is defined by a red rectangle, . The
dashed box extends to the analytical part only for visualization purposes and is illustrated with a
thinner green line.

(a) Vorticity error (Translation) (b) Convergence test (Translation)

Figure 8. On the left, the relative error of the vorticity field between the hybrid and the analytical
solution for the translational case is illustrated. The Eulerian domain at the corresponding time
instance is defined by a red rectangle, . On the right, the convergence test for the mesh size and
the particles’ spacing is depicted.

Fluids 2024, 9, 51 13 of 20

4.1.2. Rotation

The second validation case involves the pure rotation of the Eulerian domain, as
depicted in Figure 6b. This time, the vortex is situated within the Eulerian domain, and
the domain initiates a rotational motion around its center, coinciding with the center of the
vortex’s core. In this and subsequent cases, only the vorticity field and the associated error
are presented. Figure 9b illustrates a noteworthy agreement in the vorticity field between
analytical and hybrid solutions. Specifically, the maximum errors are constrained to 1.0%,
and this error is present from the beginning of the simulation due to discretization. As the
vortex neither enters nor exits the Eulerian domain in this case, no additional errors are
introduced.

(a) vorticity (Rotation) (b) Vorticity error (Rotation)
Figure 9. On the left is the comparison of the vorticity field between the analytical (top) and hybrid
(bottom) solutions for the rotational case. The analytical and hybrid solutions are separated by a
black dashed line [] and the Eulerian domain at the corresponding time instance is defined by a red
rectangle, . The dashed box extends to the analytical part only for visualization purposes and is
illustrated with a thinner green line. On the right, the relative error of the vorticity field between the
hybrid and analytical solutions for the rotational case is illustrated.

4.1.3. Linear Oscillation

The third validation case involves the oscillation of the Eulerian mesh, as it can be
seen in Figure 6c. The domain moves up to the point that the vortex is entirely outside of
the Eulerian mesh, and when it reaches the peak of its oscillation, it returns to its initial
position. In Figure 10, it is evident that the vorticity field between the analytical solution
and the hybrid solution demonstrates a strong agreement. Regarding errors, all errors
remain below 2.0%. Notably, in this case, where the vortex is initially within the Eulerian
domain, the interpolation error is present from the start of the simulation, and it increases by
approximately 0.7% when the Eulerian domain encompasses the vortex for the second time.

Fluids 2024, 9, 51 14 of 20

(a) Vorticity (Oscillation) (b) Vorticity error (Oscillation)

Figure 10. On the left is the comparison of the vorticity field between the analytical (top) and hybrid
(bottom) solutions for the linear oscillation case. The analytical and hybrid solutions are separated by
a black dashed line [] and the Eulerian domain at the corresponding time instance is defined by a
red rectangle, . The dashed box extends to the analytical part only for visualization purposes and
is illustrated with a thinner green line. On the right, the relative error of the vorticity field between
the hybrid and analytical solutions for the linear oscillation case is illustrated.

4.1.4. Multi-Motion

In the last validation case, the Eulerian mesh performs a more complex motion pattern.
Specifically, the vortex is initially located at the center of the Eulerian mesh, and this starts
a combined linear oscillation in the x axis and a rotation around point (0.5, 0.5). This
combined motion causes the Eulerian domain to pass through the vortex twice. Figure 11
shows a great agreement of the vorticity field between the hybrid and analytical solutions,
while the vorticity error presented in Figure 11b is always lower than 1.75%. An initial
error around 1.0% is present since the start of the simulation, and it grows to 1.75% when
the Eulerian mesh passes through the vortex for the second time.

The final result presented here is Figure 12. In this figure, both the L2 vorticity error
and the circulation deficit are provided for each individual case. Figure 12a demonstrates
that, for all cases, the typical error remains at approximately 1.0%. It is notable that there is
a slight increase in vorticity when the vortex enters the Eulerian domain, but this increase
remains minimal. Figure 12b reveals that, for every case, the circulation of the flow can be
conserved up to three significant digits.

4.2. Conclusions

The results presented above demonstrate that the solver can effectively handle a range
of mesh motions. In all the cases, the L2 vorticity errors are approximately 1.0%, while
the maximum errors in each case remain below 2.0%. These errors are primarily due to
discretization and can be further reduced, as illustrated in Figure 8b. A slight increase in
the error is observed when the vortex enters the Eulerian mesh, but this increase is not
substantial and falls within acceptable limits. No specific mesh motion appears to generate
significantly higher errors, indicating that the solver can consistently and accurately handle
various mesh motions.

Fluids 2024, 9, 51 15 of 20

(a) Vorticity (Multi-motion) (b) Vorticity error (Multi-Motion)
Figure 11. On the left is the comparison of the vorticity field between the analytical (top) and hybrid
(bottom) solutions for the multi-motion case. The analytical and hybrid solutions are separated by a
black dashed line [] and the Eulerian domain at the corresponding time instance is defined by a red
rectangle, . The dashed box extends to the analytical part only for visualization purposes and is
illustrated with a thinner green line. On the right, the relative error of the vorticity field between the
hybrid and the analytical solution for the multi-motion case is illustrated.

(a) L2 vorticity error (b) Circulation deficit

Figure 12. On the left is the L2 vorticity error for all the different scenarios that are presented. On the
right, the circulation deficit for each case is illustrated.

5. Summary and Discussion

This study focuses on dynamic mesh simulations within OpenFOAM, specifically in a
hybrid Eulerian–Lagrangian framework. This paper expands on the previously published
work of our team [1] and extends the solver’s capability in simulating dynamic meshes.
A modification of the original pimpleFOAM solver in OpenFOAM v9 is undertaken to
make it compatible with coupling, as coupling steps are essential within an OpenFOAM

Fluids 2024, 9, 51 16 of 20

time-step. The dynamic mesh movement applied here is solid-motion, typically used when
the outer patches represent walls, as seen in scenarios like sloshing tanks. In this method,
Lagrangian particles are employed to compute boundary conditions for the Eulerian field,
rendering it suitable for open-boundary cases. The solver undergoes testing with different
types of motion to validate its performance across various scenarios.

The results presented in the previous section indicate that the solver effectively han-
dles diverse mesh motions and exhibits excellent agreement with the analytical solution.
This demonstrates the suitability of the proposed method for conducting dynamic mesh
simulations in this manner, paving the way for the application of the hybrid solver in more
complex aerodynamic cases, including scenarios like oscillating cylinders and pitching air-
foils.

Author Contributions: R.P.: Conceptualization, Software development, Validation, Methodology,
Data curation, Visualization, Interpretation, Writing—Original draft. C.S.F.: Conceptualization,
Supervision, Project administration, Reviewing and Editing of draft. A.v.Z.: Conceptualization,
Supervision, Project administration, Reviewing and Editing of draft. C.F.B.: Conceptualization,
Software development, Reviewing and Editing of draft. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: The authors acknowledge the use of OpenAI’s ChatGPT 3.5 AI tool which was
used for grammar and spell-check purposes in the abstract and introduction sections of the paper in
order to increase readability.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

Appendix A

{
// Here make all the definitions

if (LTS)
{

#include "setRDeltaT.H"
}
else
{

#include "CourantNo.H"
#include "setDeltaT.H"

}

runTime ++;

fvModels.preUpdateMesh ();

mesh.update ();
}

Listing A1. The evolve_mesh member function that updates only the mesh of the Eulerian part.

Fluids 2024, 9, 51 17 of 20

void EulerianPimpleFoam :: evolve_only_solution ()
{

Info << "Time␣=␣" << runTime.timeName () << nl << endl;

// --- Pressure -velocity PIMPLE corrector loop
while (pimple.loop())
{

if (pimple.firstPimpleIter () ||
moveMeshOuterCorrectors)

{

if (mesh.changing ())
{

MRF.update ();

if (correctPhi)
{

#include "correctPhi.H"
}

if (checkMeshCourantNo)
{

#include "meshCourantNo.H"
}

}
}

fvModels.correct ();
#include "UEqn.H"

// --- Pressure corrector loop
while (pimple.correct ())
{

#include "pEqn.H"
}

if (pimple.turbCorr ())
{

laminarTransport.correct ();
turbulence ->correct ();

}
}

vorticity = fvc::curl(U);

runTime.write ();

Info << "ExecutionTime␣=␣" << runTime.elapsedCpuTime () << "␣s"
<< "␣␣ClockTime␣=␣" << runTime.elapsedClockTime () << "␣s"
<< nl << endl;

}

Listing A2. The evolve_only_solution member function that evolves the Eulerian solution without
moving the mesh.

Appendix B

Fluids 2024, 9, 51 18 of 20

while (pimple.run(runTime))
{

#include "readDyMControls.H"
if (LTS)
{

#include "setRDeltaT.H"
}
else
{

#include "CourantNo.H"
#include "setDeltaT.H"

}

runTime ++;

Info << "Time␣=␣" << runTime.timeName () << nl << endl;

// --- Pressure -velocity PIMPLE corrector loop
while (pimple.loop())
{

if (pimple.firstPimpleIter () || moveMeshOuterCorrectors)
{

fvModels.preUpdateMesh ();

mesh.update ();

if (mesh.changing ())
{

MRF.update ();

if (correctPhi)
{

#include "correctPhi.H"
}

if (checkMeshCourantNo)
{

#include "meshCourantNo.H"
}

}
}

fvModels.correct ();

#include "UEqn.H"

// --- Pressure corrector loop
while (pimple.correct ())
{

#include "pEqn.H"
}

if (pimple.turbCorr ())
{

laminarTransport.correct ();
turbulence ->correct ();

}
}
runTime.write ();

Listing A3. The original pimpleFOAM solver is OpenFOAM v9.

Fluids 2024, 9, 51 19 of 20

References
1. Pasolari, R.; Ferreira, C.; van Zuijlen, A. Coupling of OpenFOAM with a Lagrangian vortex particle method for external

aerodynamic simulations. Phys. Fluids 2023, 35, 107115. https://doi.org/10.1063/5.0165878.
2. Papadakis, G.; Voutsinas, S.G. In view of accelerating CFD simulations through coupling with vortex particle approximations. J.

Phys. Conf. Ser. 2014, 524, 012126. https://doi.org/10.1088/1742-6596/524/1/012126.
3. Papadakis, G.; Voutsinas, S.G. A strongly coupled Eulerian Lagrangian method verified in 2D external compressible flows.

Comput. Fluids 2019, 195, 104325. https://doi.org/10.1016/J.COMPFLUID.2019.104325.
4. Billuart, P.; Duponcheel, M.; Winckelmans, G.; Chatelain, P. A weak coupling between a near-wall Eulerian solver and a

Vortex Particle-Mesh method for the efficient simulation of 2D external flows. J. Comput. Phys. 2023, 473, 111726. https:
//doi.org/10.1016/j.jcp.2022.111726.

5. Golas, A.; Narain, R.; Sewall, J.; Krajcevski, P.; Dubey, P.; Lin, M. Large-scale fluid simulation using velocity-vorticity domain
decomposition. ACM Trans. Graph. 2012, 31, 1–10. https://doi.org/10.1145/2366145.2366167.

6. Cottet, G.H.; Koumoutsakos, P. Vortex Methods—Theory and Practice; Cambridge University Press: Cambridge, UK, 2000.
7. Mimeau, C.; Mortazavi, I. A review of vortex methods and their applications: From creation to recent advances. Fluids 2021, 6, 68.

https://doi.org/10.3390/fluids6020068.
8. Park, Y.M.; Jee, S. Numerical study on interactional aerodynamics of a quadcopter in hover with overset mesh in OpenFOAM.

Phys. Fluids 2023, 35, 085138. https://doi.org/10.1063/5.0160689.
9. Alletto, M. Comparison of Overset Mesh with Morphing Mesh: Flow Over a Forced Oscillating and Freely Oscillating 2D

Cylinder. OpenFOAM® J. 2022, 2, 13–30. https://doi.org/10.51560/ofj.v2.47.
10. Wu, Y.; Dai, Y.; Yang, C. Time-Delayed Active Control of Stall Flutter for an Airfoil via Camber Morphing. AIAA J. 2022,

60, 5723–5734. https://doi.org/10.2514/1.J061947.
11. feng Tan, J.; wen Wang, H. Simulating unsteady aerodynamics of helicopter rotor with panel/viscous vortex particle method.

Aerosp. Sci. Technol. 2013, 30, 255–268. https://doi.org/https://doi.org/10.1016/j.ast.2013.08.010.
12. Papadakis, G.; Riziotis, V.A.; Voutsinas, S.G. A hybrid Lagrangian–Eulerian flow solver applied to elastically mounted cylinders

in tandem arrangement. J. Fluids Struct. 2022, 113, 103686. https://doi.org/https://doi.org/10.1016/j.jfluidstructs.2022.103686.
13. Stock, M.J.; Gharakhani, A.; Stone, C.P. Modeling rotor wakes with a hybrid OVERFLOW-vortex method on a GPU cluster. In

Proceedings of the 28th AIAA Applied Aerodynamics Conference, Chicago, IL, USA, 28 June–1 July 2010; Volume 1. https:
//doi.org/10.2514/6.2010-4553.

14. Shi, Y.; Xu, G.; Wei, P. Rotor wake and flow analysis using a coupled Eulerian-Lagrangian method. Eng. Appl. Comput. Fluid
Mech. 2016, 10, 384–402. https://doi.org/10.1080/19942060.2016.1174887.

15. Weller, H.G.; Tabor, G.; Jasak, H.; Fureby, C. A tensorial approach to computational continuum mechanics using object-oriented
techniques. Comput. Phys. 1998, 12, 620–631. https://doi.org/10.1063/1.168744.

16. Lukashin, P.; Melnikova, V.; Shcheglov, G.; Strijhak, S. Using Open Source Software for Solving Aeroelasticity Case for Wind
Turbine Blade. In Proceedings of 6th European Conference on Computational Mechanics (Solids, Structures and Coupled
Problems) (ECCM 6) and the 7th European Conference on Computational Fluid Dynamics (ECFD 7), Glasgow, UK, 11–15 June
2018; pp. 573–584.

17. Pradhan, A.; Arif, M.R.; Afzal, M.S.; Gazi, A.H. On the origin of forces in the wake of an elliptical cylinder at low Reynolds
number. Environ. Fluid Mech. 2022, 22, 1307–1331. https://doi.org/10.1007/s10652-022-09892-z.

18. Li, Y.L.; Zhu, R.C.; Miao, G.P.; Ju, F.A.N. Simulation of tank sloshing based on OpenFOAM and coupling with ship motions in
time domain. J. Hydrodyn. Ser. B 2012, 24, 450–457. https://doi.org/https://doi.org/10.1016/S1001-6058(11)60266-7.

19. Chen, Y.; Xue, M.A. Numerical Simulation of Liquid Sloshing with Different Filling Levels Using OpenFOAM and Experimental
Validation. Water 2018, 10, 1752. https://doi.org/10.3390/w10121752.

20. Daeninck, G. Developments in Hybrid Approaches: Vortex Method with Known Separation Location. Ph.D. Thesis, UCLouvain,
Ottignies-Louvain-la-Neuve, Belgium, 2006.

21. Palha, A.; Manickathan, L.; Ferreira, C.S.; van Bussel, G. A hybrid Eulerian-Lagrangian flow solver. arXiv 2015, arXiv:1505.03368.
22. Hu, Q.; Gumerov, N.A.; Duraiswami, R. GPU accelerated fast multipole methods for vortex particle simulation. Comput. Fluids

2013, 88, 857–865. https://doi.org/10.1016/j.compfluid.2013.08.008.
23. Goude, A.; Engblom, S. Adaptive fast multipole methods on the GPU. J. Supercomput. 2013, 63, 897–918. https://doi.org/10.100

7/s11227-012-0836-0.
24. Engblom, S. On well-separated sets and fast multipole methods. Appl. Numer. Math. 2011, 61, 1096–1102. https://doi.org/10.101

6/j.apnum.2011.06.011.
25. Chorin, A.J. Numerical Study of Slightly Viscous Flow. J. Fluid Mech. 1973, 57, 785–796.
26. Tutty, O.R. A Simple Redistribution Vortex Method (with Accurate Body Forces) arXiv 2010, arXiv:1009.0166.
27. OpenFOAM v9. Available online: https://openfoam.org/version/9/ (accessed on 16 February 2024).

https://doi.org/10.1063/5.0165878
https://doi.org/10.1088/1742-6596/524/1/012126
https://doi.org/10.1016/J.COMPFLUID.2019.104325
https://doi.org/10.1016/j.jcp.2022.111726
https://doi.org/10.1016/j.jcp.2022.111726
https://doi.org/10.1145/2366145.2366167
https://doi.org/10.3390/fluids6020068
https://doi.org/10.1063/5.0160689
https://doi.org/10.51560/ofj.v2.47
https://doi.org/10.2514/1.J061947
https://doi.org/https://doi.org/10.1016/j.ast.2013.08.010
https://doi.org/https://doi.org/10.1016/j.jfluidstructs.2022.103686
https://doi.org/10.2514/6.2010-4553
https://doi.org/10.2514/6.2010-4553
https://doi.org/10.1080/19942060.2016.1174887
https://doi.org/10.1063/1.168744
https://doi.org/10.1007/s10652-022-09892-z
https://doi.org/https://doi.org/10.1016/S1001-6058(11)60266-7
https://doi.org/10.3390/w10121752
https://doi.org/10.1016/j.compfluid.2013.08.008
https://doi.org/10.1007/s11227-012-0836-0
https://doi.org/10.1007/s11227-012-0836-0
https://doi.org/10.1016/j.apnum.2011.06.011
https://doi.org/10.1016/j.apnum.2011.06.011
https://openfoam.org/version/9/

Fluids 2024, 9, 51 20 of 20

28. OpenFOAM guide/The PIMPLE algorithm in OpenFOAM. Available online: https://openfoamwiki.net/index.php/
OpenFOAM_guide/The_PIMPLE_algorithm_in_OpenFOAM (accessed on 16 February 2024).

29. Lamb, H. Hydrodynamics, 6th ed.; Cambridge University Press: Cambridge, UK, 1993.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://openfoamwiki.net/index.php/OpenFOAM_guide/The_PIMPLE_algorithm_in_OpenFOAM
https://openfoamwiki.net/index.php/OpenFOAM_guide/The_PIMPLE_algorithm_in_OpenFOAM

	Introduction
	Hybrid Solver
	Vortex Particle Method (VPM)
	Flowchart of the Hybrid Solver
	Boundary and Initial Conditions

	PimpleFOAM Modification
	Validation
	Validation Cases
	Translational Motion
	Rotation
	Linear Oscillation
	Multi-Motion

	Conclusions

	Summary and Discussion
	Appendix A
	Appendix B
	References

