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1. Emergence of max-plus approach. A system theory tailored
for synchronization

This paper summarizes the history of max-plus algebra within
the field of discrete event systems. It is based on brief survey of
the role of max-plus algebra in the field of discrete event sys-
tems that appeared in Komenda, Lahaye, Boimond, and van den
Boom (2017), but extended in several directions. In particular, there
is a section, where computational aspects are discussed together
with results about max-plus algebra from the computer science lit-
erature.

The emergence of a system theory for classes of discrete event
systems (DES), in which max-plus algebra and similar algebraic

* The research was supported by GACR grant S15-2532 and by RVO 67985840.
* Corresponding author.
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tools play a central role, dates from the early 1980’s. We empha-
size that the idempotent semiring (also called dioid) of extended
real numbers (R U {—o0}, max, +) is commonly called max-plus al-
gebra, while it is not formally an algebra in the strictly mathematic
sense.

Its inspiration stems certainly from the following observation:
synchronization, which is a very non smooth and nonlinear phe-
nomenon with regard to “usual” system theory, can be modeled by
linear equations in particular algebraic structures such as max-plus
algebra and other idempotent semiring structures (Cohen, Dubois,
Quadrat, & Viot, 1983; Cuninghame-Green, 1979).

Two important features characterize this approach often called
max-plus linear system theory:

- most of the contributions have used as a guideline the “classi-
cal” linear system theory;
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Fig. 1. A timed event graph.

- it is turned towards DES performance related issues (as op-
posed to logical aspects considered in other approaches such
as automata and formal language theory) by including timing
aspects in DES description.

A consideration has significantly contributed to the promotion
and the scope definition of the approach: a class of ordinary'
Petri nets, namely the timed event graphs (TEGs) has been iden-
tified to capture the class of stationary? max-plus linear systems
(Cohen, Dubois, Quadrat, & Viot, 1985) and subsequent publica-
tions by Max Plus team.?> TEGs are timed Petri nets in which each
place has a single input transition and a single output transition.
A single output transition means that no conflict is considered for
the tokens consumption in the place, in other words, the atten-
tion is restricted to DES in which all potential conflicts have been
solved by some predefined policy. Symmetrically, a single input
transition implies that there is no competition in supplying tokens
in the place. In the end, mostly synchronization phenomena (cor-
responding to the configuration in which a transition has several
input places and/or several output places) can be considered, and
this is the price to pay for linearity.

Example 1. Fig. 1 depicts a TEG, that is a Petri net in which each
place (represented by a circle) has exactly one input transition
(represented by a rectangle) and one output transition. The num-
ber next to a place indicates the sojourn time for a token, that is
the number of units of time that must elapse before the token be-
comes available for the firing of the output transition. Let u(k) de-
note the date of the k'™ firing of transition u (same notation for x;,
X, and y). Considering the earliest firing rule (a transition is fired as
soon as there is an available token in each input place), we have
the following evolution equations

x1(k) = max(2 + u(k), 1 +x,(k—1))

X(k) =3+x(k—-1)

y(k) =1+ x(k).

Denoting & (resp. ®) the addition corresponding to max operation

(resp. the multiplication corresponding to usual addition), we ob-
tain linear equations in max-plus algebra, that is:

x1(k) =2uk)®1x(k—-1)
X3(k) =3®x1(k—1)
y(k) =10x(k)

Rewriting the resulting equations in max-plus-algebraic matrix no-
tation leads to a state-space representation:

X1 (k) e 1 x1(k—=1) 2
[x;(k)} = [3 e|® |:x;(k - 1)i| ® |:8i| ®u(k)

x1(k)
v =[e 1]o |0

where ¢ is equal to —oo.

1 Petri nets in which all arc weights are 1.

2 Stationarity is defined conventionally but over operators of max-plus algebra.

3 Max Plus is a collective name for a working group on max-plus algebra, at
INRIA Rocquencourt, comprising: Marianne Akian, Guy Cohen, Stéphane Gaubert,
Jean-Pierre Quadrat and Michel Viot.

This new area of linear system theory has benefited from
existing mathematical tools related to idempotent algebras such
as lattice theory (Birkhoff, 1940), residuation theory (Blyth &
Janowitz, 1972), graph theory (Gondran & Minoux, 1979), optimiza-
tion (Zimmermann, 1981) and idempotent analysis (Kolokoltsov &
Maslov, 1997), however it is worth mentioning that the progress
has probably been impeded by the fact that some fundamental
mathematical issues in this area are still open.

The overview of the contributions reveals that main concepts
from linear system theory have been step by step specified into
max-plus linear system theory. Without aiming to be exhaustive:

« several possible representations have been studied, namely state-
space equations, transfer function in event domain (Cohen et al.,
1983; 1985), time domain (Caspi & Halbwachs, 1986), and
two-dimensional domain using series in two formal variables
(Cohen, Moller, Quadrat, & Viot, 1986) (with more details in
Cohen, Moller, Quadrat, & Viot, 1989);

- performance analysis and stability are mostly based on the inter-
pretation of the eigenvalue of the state-matrix in terms of cycle-
time, with its associated eigenspace and related cyclicity prop-
erty (Baccelli, Cohen, Olsder, & Quadrat, 1992; Gaubert, 1997);

- a wide range of control laws have been adapted such as:

- open-loop structures overcoming system output tracking
(Baccelli et al., 1992, chap. 5.6), (Cofer & Garg, 1996; Men-
guy, Boimond, Hardouin, & Ferrier, 2000) or model reference
tracking (Libeaut & Loiseau, 1996),

- closed-loop structures taking into account disturbances and
model-system mismatches (Cottenceau, Hardouin, Boimond,
Ferrier et al., 1999; Liiders & Santos-Mendes, 2002), possi-
bly including a state-observer (Hardouin, Maia, Cottenceau,
& Lhommeau, 2010),

- model predictive control scheme (De Schutter & van den
Boom, 2001; van den Boom & De Schutter, 2002) with em-
phasis on stability in Necoara, De Schutter, van den Boom,
and Hellendoorn (2007).

For a large survey on max-plus linear systems theory, we re-
fer to books (Baccelli et al., 1992; Butkovi¢, 2010; Gunawardena,
1998; Heidergott, Olsder, & van der Woude, 2006), to manuscript
(Gaubert, 1992) and surveys (Akian, Bapat, & Gaubert, 2003; Co-
hen, Gaubert, & Quadrat, 1999; Cohen et al., 1989; Gaubert, 1997).

2. Some extensions focused on synchronization in DES

There is an important connection between min-max-plus
systems, in which time evolution depend on both max and
min, but also addition operation and the game theory. It goes
back to Olsder (1991), where spectral properties of such sys-
tems are studied. More recent references on this topic are
Gunawardena (2003) and Akian, Gaubert, and Guterman (2012).
The latter work establishes an equivalence with mean payoff
games, an important open complexity problem in computer sci-
ence, and it seems many verification problems for max-plus sys-
tems reduce to mean payoff games. We mention that many the-
oretical works on max-plus algebra and max-plus systems do not
make use of the words “max-plus” but rather “tropical”. The ad-
jective tropical was invented by French mathematicians, in honor
of the Brazilian mathematician and computer scientist Imre Simon
(1943-2009).

A natural generalization of deterministic max-plus-linear sys-
tems are stochastic max-plus-linear systems, which have been
studied for more than two decades. Ergodic theory of stochastic
timed event graphs is developed in Baccelli et al. (1992), where
most of the theory is covered. In particular, asymptotic proper-
ties of stochastic max-plus-linear systems are studied therein in
terms of the so-called Lyapunov exponents that correspond to the
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asymptotic mean value of the norm of the state variables. In the
case the underlying event graph is strongly connected the Lya-
punov exponent is the unique value to which the mean value al-
most surely converges. For general event graphs there is a maximal
Lyapunov exponent.

Uncertainty can also be considered through intervals defin-
ing the possible values for parameters of the system. In
Lhommeau, Hardouin, Cottenceau, and Jaulin (2004) TEGs, in
which the number of initial tokens and the time delays are only
known to belong to intervals, are represented over a semiring of
intervals and robust controllers are designed.

Another way of extending techniques for linear systems is to
consider that parameters of the models may vary, that is study
non-stationary linear systems. This possibility has been examined
within the max-plus linear setting (Brat & Garg, 1998; Lahaye, Boi-
mond, & Hardouin, 1999; 2004) with contributions mainly focused
on representation, control and performance analysis.

Continuous TEGs in which fluids hold rather than discrete to-
kens and the fluid flow through transitions can be limited to a
maximum value. Moreover, an initial volume of fluid can be de-
fined in places and times can be associated with places to model
fluid transportation times (MaxPlus, 1991). Such graphs are rele-
vant for example to approximate the behavior of high throughput
manufacturing systems in which the number of processed parts is
very large. In parallel, a similar approach called network calculus
has been developed by considering computer network traffic as a
flow (based on the use of ‘leaky buckets’) to approximate the high
number of conveyed packets (Cruz, 1991; Le Boudec, 2001). Exten-
sion on fluid timed event graphs with multipliers in a new algebra,
analogous to the min-plus algebra, has been proposed in Cohen,
Gaubert, and Quadrat (1995, 1998).

Switching Max-Plus-Linear (SMPL) systems are discrete-event
systems that can switch between different modes of operation
(van den Boom & De Schutter, 2006). The switching allows to
change the structure of the system, to break synchronization, or to
change the order of events. In each mode the system is described
by a max-plus-linear state equation and a max-plus-linear output
equation. Note that regular max-plus-linear systems are a subclass
of SMPL system, namely with only one mode. In van den Boom and
De Schutter (2011), authors describe the commutation between
different max-plus-linear modes and shows that an SMPL system
can be written as a piecewise affine system which allows for us-
ing similar techniques in such seemingly different classes of sys-
tems. In cyclic DES the operations appear in a cyclic way. After all
operations in a system have been completed, the cycle is closed
and a new cycle begins. In the case of changes in operations and
resources per cycle the system is called semi-cyclic. SMPL mod-
els can be used to describe the dynamics of various semi-cyclic
DES.

Another extension of the class of systems that can be mod-
eled in max-plus algebras consists in considering hybrid Petri nets,
and more particularly, hybrid TEGs that consist of a discrete part
(a TEG) and a continuous part (a continuous TEG). It has been
shown in Komenda, El Moudni, and Zerhouni (2001) that a linear
model can be obtained based on counter function if only one type
of the interface between continuous and discrete part is present.
However, for application to just in time control this constraint can
be relaxed as it has been shown in Hamaci, Boimond, and La-
haye (2006).

The weighted* TEGs make it possible to describe batching and
duplication (unbatching) phenomena. In Cottenceau, Hardouin, and
Trunk (2017), authors show that such graphs can be also linearly
modeled by transfer series in a particular max-plus algebra. In ad-

4 Arcs weights can be any positive integers.

dition to event and time shifts, two additional operators are used
to describe the batching/unbatching operations.

P-time Petri nets form an important extension of Petri nets,
where the timing of places/transitions is nondeterministic. P-time
Event Graphs have been studied in max-plus algebras in Declerck
and Alaoui (2004, 2005). They find their applications e.g. in model-
ing of electroplating lines or chemical processes, where both upper
and lower bound constraints processing time are required, see e.g.
Spacek, Manier, and Moudni (1999).

3. Timed DES with shared resources

A major issue with application of max-plus linear systems to
modeling of timed DES (important among others in manufacturing
systems or in computer and communication networks) is that it
appears difficult to model resource sharing within TEGs that cor-
respond to stationary max-plus linear systems. In real manufactur-
ing systems, however, there are typically several processes (tasks)
that share (and compete for) given resources such as robots in
manufacturing systems or memory in computer systems. In the
max-plus systems literature various resource allocations policies
have been proposed to integrate conflict resolution with other typ-
ical phenomena of timed DES, namely synchronization and paral-
lelism. For instance, within timed Petri nets resource allocations
policies has been studied based on the dual counter function de-
scription in the idempotent semiring min-plus (Cohen, Gaubert, &
Quadrat, 1997). General Petri net models have been addressed by
preselection rules in Cohen et al. (1995), which enables to describe
their evolution using max-plus dynamics. More general monotone
homogeneous dynamics, relevant to free choice Petri nets, and
their optimal routing is studied in Gaujal and Giua (2004).

More recently, conflicts among several TEGs have been stud-
ied in Addad, Amari, and Lesage (2012), where conflicting TEGs
(CTEG) have been proposed with some fairly restrictive assump-
tions. It should be stated that resource allocation policies studied
in Addad et al. (2012) are either FIFO or cyclic (periodic) policies.
On one hand the performance analysis (computation of an upper
bound on the cycle time of CTEG) has been proposed and it is de-
pendent on the cycle time of individual TEGs and on timing of the
conflict places. On the other hand, the approach has not yet been
applied to control problems.

Unlike the approach based on TEGs, where different resource
allocation policies are handled one by one, there exists a max-
plus automata based approach that allows simultaneous modeling
of different resource allocation policies within a single model as
long as these policies can be represented by a regular language.
An automaton-based model it can handle several such policies at
the same time within a single model without having to rebuild the
model each time the policy is changed.

The framework of max-plus automata has enabled a deep in-
vestigation of performance evaluation (Gaubert, 1995) of DES with
shared resources. Max-plus automata can be viewed as a rather
special class of automata models enriched with time, because un-
like timed automata they do not time non determinism, where
both lower and upper bounds on timing of events can be de-
fined. However, they have strong expressive power in terms of
timed Petri nets as shown in Gaubert and Mairesse (1999) and
Lahaye, Komenda, and Boimond (2015a). In particular, every safe
timed Petri net can be represented by special max-plus automa-
ton, called heap model.

Example 2. A safe timed Petri net is depicted on Fig. 2. The num-
ber next to the label of a transition specifies its firing duration,
that is the minimal time that must elapse, starting from the time
at which it is enabled, until the transition can fire. All the places
are assumed to have a sojourn duration equal to 0 unit of time. Its
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Fig. 2. A timed Petri net.
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Fig. 3. Heap model and associated (max,+) automaton to represent the timed Petri
net of Fig. 2.

behavior can be described by the heap model on the left-hand side
of Fig. 3. In few words, a heap model is composed of

« slots which correspond to resources (tokens in the Petri net)
and one slot is associated to each place (possibly containing a
token),

« pieces which represent activities (firings of transitions in the
Petri net) and one piece is associated to each transition.

The activities require resources (transitions consume token(s) to
be fired in the Petri net and pieces occupy slots in the heap model)
during predefined durations (transitions firing durations rendered
by specific heights of pieces in slots). The dynamics is then mod-
eled by the sequence of pieces (transitions firing sequence in the
Petri net) pilling up according to the Tetris game mechanism. It can
be shown that the height of heaps of pieces is recognized by a par-
ticular (max,+) automaton (especially useful for algebraic compu-
tations). The (max,+) automaton derived from the example of heap
model is depicted® on the right-hand side of Fig. 3.

S. Gaubert has presented several important analysis results
in Gaubert (1995), where the worst case, the optimal case, and
the mean case performance of max-plus automata are examined
in detail. Better results are naturally obtained for deterministic
max-plus automata, but most of the paper is focused on general
nondeterministic max-plus automata. We emphasize that not all
max-plus automata can be determinized and their determiniza-
tion, i.e. existence of a deterministic max-plus automaton having
the same behavior (recognizing the same formal power series), is
still an open problem and it is not even known if determinization
of a given nondeterministic max-plus automaton is decidable. In
Gaubert (1995) a sufficient condition in terms of projectively finite
semigroups for determinization of max-plus automata is provided,
which can be used as a semi-algorithm for determinization (with

5 The graphical representation of a (max,+) automaton is such that: nodes cor-
respond to states, an arrow from a state to another with label a/n denotes a state
transition requiring n units of time before event a can occur, an input arrow sym-
bolizes an initial state.

no guarantee of success). Several other works on determiniza-
tion of max-plus automata have appeared later. Mohri developed
a semi-algorithm for determinization of max-plus automata in
Mohri (1997) with a very successful application in speech recog-
nition. It is known that the twins property, generalized to clones
property for polynomially ambiguous in Kirsten (2008), is a suffi-
cient condition for the termination of this algorithm. In Kirsten and
Lombardy (2009) the authors propose an algorithm for deciding
unambiguity and sequentiality of polynomially ambiguous min-
plus automata, which leaves the unambiguity and sequentiality
problem open only for non polynomially ambiguous class of both
max-plus and min-plus automata.

4. Max-plus-algebra and theoretical computer science

In this section we will address algorithms in max-plus-algebra
from a computer science perspective, where a special emphasis is
put on complexity issues. Time and space complexities of algo-
rithms are important in the whole theory of discrete-event sys-
tems, which includes among others supervisory control, stochastic
discrete systems (Markov Chains), and timed discrete event sys-
tems. Max-plus algebra finds its applications mainly in timed dis-
crete event systems. Although the underlying system models vary
from deterministic-time models such as timed event graphs to non
deterministic-time models such as time event graphs, the main op-
erations used in equations describing the evolution of these sys-
tems are the rational matrix operations: sum, product, and the
Kleene star. Matrix multiplication, including the one in the max-
plus-algebra is well known to have the worst case complexity
0(n3) for square matrices with n lines and columns. This rather
naive bound can be improved, which is a major topic of research in
algebraic complexity theory, where algorithms for matrix multipli-
cation and inversion in n® with » <2.373 are known for matrices
over field. The complexity of the matrix product and Kleene star in
the tropical setting is a major open problem, see Williams (2014).
The important aspect is, however, that all rational operations on
matrices (including the Kleene star, which reduces to the finite
sum of the first n+ 1 max-plus-powers) are of polynomial worst
case complexity. The same complexity result obviously holds for
matrix residuation used in solutions to various control problems,
because matrix residuation can be viewed as a dual multiplica-
tion with the so called conjugate matrix (Cuninghame-Green &
Butkovic, 2008). This is a very good news, because control prob-
lems for max-plus-linear systems listed in Section 1 are based on
matrix multiplication and residuation, i.e. can be solved in polyno-
mial time.

Similarly, the max-plus and min-plus operations on vectors are
of polynomial time complexity. We recall that min-plus convolu-
tion of two vectors plays a central role in the dynamic program-
ming. Since the early 1960s, it is known that it can be computed
in O(n?) time. This bound can be further improved in some spe-
cial cases, e.g. for two convex sequences it can be computed in
O(n) time (Brenier, 1989; Lucet, 1996) by a simple merge (the
Minkowski sum) of two convex polygons (Rockafellar, 1970). This
special case is already used in image processing and computer vi-
sion.

However, the above discussion mainly applies to approaches
covered in Sections 1 and 2. One should bear in mind that choice
phenomena (i.e. resource sharings) are then excluded and the
models correspond to recurrent equations on natural numbers that
count events, without making distinction between them. As men-
tioned in Section 3, some DES including choice phenomena can
be seen as max-plus linear systems, e.g. max-plus automata, if
one uses recurrent equation on words reflecting sequences of dif-
ferentiated events. The complexity picture is then very different,
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because we will recall below that many fundamental verification
problems are already undecidable.

4.1. Max-plus automata and properties of their series

Max-plus automata have been introduced by S. Gaubert in
Gaubert (1995) as a generalization of both max-plus-linear systems
and standard Boolean automata. Max-plus automata as weighted
automata with weights (sometimes called multiplicities) in the
max-plus semiring have also been studied by the computer sci-
ence community. The basic reference on the theory of automata
of multiplicities developed by Eilenberg and Schutzenberger is
Eilenberg (1974). It has been understood in 1990s that several fun-
damental problems undecidable for general timed systems, such as
timed automata, are already undecidable for max-plus automata.
In particular, it has been shown in Krob (1992) that equalities and
inequalities of rational max-plus formal power series are undecid-
able. Since it is well known that rational max-plus formal power
series are behaviors (weighted languages) of finite (state) max-plus
automata, the result of D. Krob means that, in general, it is not al-
gorithmically possible to compare the behaviors of finite max-plus
automata. Some other verification problems are decidable for max-
plus automata. For instance, it can be decided in polynomial time
(namely O(n3) with n the size of the state set of the recognizer,
see Lombardy & Mairesse, 2006) if a rational max-plus power se-
ries has all coefficients non positive, i.e. (S, w) <0 for all weA*.
This means that existence of weA* with (S, w)>0 can be de-
cided in polynomial time as well. On the other hand, the prob-
lem (S, w) >0 for all weA* is undecidable, cf. (Krob, 1992). It is
also known that equality to a constant is decidable, i.e. for a ra-
tional max-plus power series it can be decided if for all weA* it
holds that (S,w) = c for some real constant c, see Lombardy and
Mairesse (2006). In the literature one encounters also min-plus au-
tomata, which are weighted automata with weight in the (dual)
min-plus semiring. They are also nondeterministic: minimum, in-
stead of maximum, of weights of paths that shared a label is taken
for computation of the corresponding min-plus formal series. For
min-plus automata dual decidability results hold meaning that it
is decidable in O(n3) to check if (S, w) >0 for all weA*, while it
is undecidable to check if (S, w) <0 for all weA*. Very interest-
ing are complexity results concerning the comparisons of max-plus
and min-plus series. It is known that inequality S(w) < S'(w) for all
weA* can be decided if S is a max-plus rational formal power se-
ries and S’ is a min-plus rational series, but the opposite inequality
is then undecidable! In Lombardy and Mairesse (2006) the series
which are recognized both by a finite max-plus and a finite min-
plus automaton, i.e. series at the same time max-plus and min-plus
rational, have been characterized. It has been shown that these
series are precisely the unambiguous max-plus (equivalently, un-
ambiguous min-plus) series. We recall that unambiguous max-plus
series are those recognized by unambiguous max-plus automata:
for every word w, there is at most one successful path labeled by
w. Note that inverting the coefficient of a rational max-plus series,
i.e. multiplying all its coefficients by —1 does not yield a rational
max-plus series, but rather a rational min-plus series. This helps
understanding the above discussed asymmetries in the fundamen-
tal decision problems discussed above.

4.2. Bisimulation properties

It is quite disappointing that several fundamental problems are
undecidable for max-plus automata. We point out that recently
there are also more optimistic complexity results about max-plus
automata. The well known concept of bisimulation, which cap-
tures behavioral equivalence of nondeterministic transition sys-
tems, has been introduced for max-plus automata in Buchholz and

Kemper (2003). It is a stronger property that equality of formal
power series, but may serve as a partial remedy to undecidability
of inequalities and equalities between formal power series. Bisim-
ulation between two max-plus automata means that the related
(equivalent) states match each other’s transitions (not only from
the logical viewpoint: existence of transitions, but also from quan-
titative view point: the weights of two matching transitions should
be identical). Algebraic approach to the investigation of bisimu-
lation relations encoded as Boolean matrices has been adopted
in Damljanovié, Ciri¢, and Ignjatovi¢ (2014), where bisimulation is
characterized by max-plus-linear matrix inequalities (to be distin-
guished from MLI's in classical control theory) and a fix-point al-
gorithm with a polynomial complexity for algebraic computation
of largest bisimulations has been proposed.

In concurrency theory there is a concept of weak bisimulation,
which weakens the bisimulation by not requiring internal (exter-
nally invisible) transitions to be preserved. In Buchholz and Kem-
per (2003) the concept of projected max-plus automaton has ap-
peared first (although it is not explicitly named so). The authors
of that paper define weak bisimulations as (strong) bisimulations
between projected automata, which enables to use their algebraic
characterization. Since bisimulations are stronger than language
(formal power series) equalities, it immediately follows that ex-
istence of a weak bisimulation between two max-plus automata
implies the equality of their projected behaviors. This particular
definition of bisimulation is very much influenced by the concur-
rency theory community, where instead of unobservable events (as
a subset of the event set) as customary in DES community the no-
tion of an internal action denoted by t is used. We believe that
concepts like weak bisimulation will be proven very useful for par-
tially observed max-plus automata in a near future, because firstly
they admit nice algebraic characterization and secondly they can
be computed in a polynomial time.

4.3. Supervisory control

Supervisory control theory can be viewed as a generalization
of verification. The idea is that if a property to be verified fails
to be satisfied it can still be imposed by a supervisor. Supervisory
control is a formal approach introduced first for control of logical
automata with partial transition functions that aims to solve the
safety issue (avoidance of forbidden states given by control spec-
ifications) and nonblockingness (avoidance of deadlocks and live-
locks). If a control specification (property) is given informally, soft-
ware engineers must translate them into control software manu-
ally. The ultimate goal of supervisory control is to develop formal
theory that enables an automated synthesis of controllers that are
correct by construction so that further verification is not needed.
Given a control specification describing required behavior of the
system, one has to construct a supervisor that observes a subset
of events (yielding a possibly partial information about the state of
the plant) and selects actuators, that can control the execution of
some controllable events in order to meet the prescribed specifi-
cation language, which specifies a property of the system such as
certain states must be forbidden. An interesting control approach
to max-plus automata is presented in Klimann (2003), where the
problem of (A, B)-invariance for formal power series is solved.

Supervisory control theory of max-plus automata with com-
plete observations has been proposed in Komenda, Lahaye, and
Boimond (2009), where the basic elements of supervisory con-
trol, such as supervisor, closed-loop system, and controllability are
extended from logical to max-plus automata. However, it follows
from results presented therein that rational (i.e. finite state) con-
trollers can only be obtained for systems (plants) which have be-
haviors at the same time max-plus and min-plus rational. The
problem is that the controller series is based on residuation of the
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Hadamard product of series, which can be seen as a Hadamard
product with a series having all its coefficients inverted. This op-
eration has already been discussed in Section 4.1 and it outputs
a min-plus rational series for a given max-plus rational series.
We then need to work with the class of series that are at the
same time max-plus and min-plus rational in order to have ra-
tional (finite-state) controllers. Unfortunately, it has been shown
in Lombardy and Mairesse (2006) that this class of series coin-
cides with the class of unambiguous series (series recognized by
an unambiguous automaton). Although unambiguous series is less
restrictive property than deterministic series (series recognized by
a deterministic max-plus automaton), a typical approach for im-
posing unambiguity is to determinize a max-plus automaton.

More complete picture about rationality issues extended to
more general setting is presented in Lahaye, Komenda, and Boi-
mond (2015b). More specifically, minimally permissive and just-
after-time supervisors are studied in order to guarantee a minimal
required behavior and to delay the system as little as possible so
that sequences of events occur later than prescribed dates, which
is important for applications in transportation networks (e.g. im-
proving train connections in railway systems), but also in manu-
facturing systems and communication networks. It has been shown
that finite state controllers exist if the system-series and the spec-
ification (reference-series) are both unambiguous. This assump-
tion is met for several classes of practically relevant max-plus au-
tomata, e.g. those modeling a type of manufacturing systems such
as safe Flow-shops and Job-shops. Another class of timed system
called timed weighted systems has been studied in Su, van Schup-
pen, and Rooda (2012). Timed weighted systems are simply mod-
ular automata (collection of local automata) endowed with the so
called mutual exclusion function as well as a time-weighted func-
tion. Timed weighted systems can be understood as a synchronous
product of max-plus automata, which is not made explicit and the
durations of events are described by time-weighted function.

In our opinion max-plus automata form a gateway to the
general timed automata, because systems modeled by max-plus
automata exhibit most of decidability and determinization is-
sues that are present for general timed automata, while they
are conceptually simpler, which allows for better grasping the
core of these fundamental problems. Fortunately, there exist sev-
eral ways how to deal with these issues. For instance, further
progress in determinization of max-plus automata is possible as
it is shown in Lahaye, Lai, and Komenda (2017). There exist ap-
proaches to approximate determinization of weighted automata
(Filiot, Jecker, Lhote, A. Pérez, & Raskin, 2017). Finally, one may re-
place the control specification (requirement) in terms of inequality
of formal power series by a simulation-based specification and in-
troduce the supervisory control theory for imposition of simulation
properties.

5. Max-plus planning and model predictive control

The Model Predictive Control (MPC) design method can be ap-
plied to (switching) max-plus linear systems (van den Boom & De
Schutter, 2006). MPC for conventional (non-DES) systems is very
popular in the process industry (Maciejowski, 2002) and a key ad-
vantage of MPC is that it can accommodate constraints on the in-
puts and outputs. For every cycle the future control actions are
optimized by minimizing a cost function over a prediction win-
dow subject to constraints. If the cost function and the constraints
are piecewise affine functions in the input, output, and state vari-
ables, the resulting optimization problem will be a mixed-integer
linear programming (MILP) problem, for which fast and reliable al-
gorithms exist. An alternative approach is to use optimistic opti-
mization (Xu, De Schutter, & van den Boom, 2014). In De Schut-
ter and van den Boom (2001) MPC for regular max-plus-linear sys-

tems was studied using the just-in-time cost function with con-
straints that were monotonically nondecreasing in the output. In
that case the problem turns out to be a linear programming prob-
lem.

A natural generalization of deterministic max-plus-linear sys-
tems are max-plus-linear systems with uncertainty. This uncer-
tainty can either have a bounded nature or a stochastic nature. The
uncertainty will appear in a max-plus-multiplicative way as per-
turbations of the system parameters (Olsder, Resing, Vries, Keane,
& Hooghiemstra, 1990).

In the bounded uncertainty approach the parameters of the
models may vary, which leads to the study of non-stationary lin-
ear systems approach. This possibility has been examined within
the max-plus linear setting (Brat & Garg, 1998; Lahaye et al., 1999;
2004) with contributions mainly focused on representation, control
and performance analysis. Bounded uncertainty can also be consid-
ered through intervals defining the possible values for parameters
of the system. In Lhommeau et al. (2004) TEGs, in which the num-
ber of initial tokens and the time delays are only known to belong
to intervals, are represented over a semiring of intervals and ro-
bust controllers are designed. A dynamic programming approach to
robust state-feedback control of max-plus-linear systems with in-
terval bounded matrices is given in Necoara, De Schutter, van den
Boom, and Hellendoorn (2009) in which it is shown that the min-
max control problem can be recast as a deterministic optimal con-
trol problem by employing results from dynamic programming.

Stochastic Max Plus Linear systems, defined as MPL systems
where the matrices entries are characterized by stochastic vari-
ables (Heidergott et al., 2006; Heidergott, 2007), have been stud-
ied for more than two decades. As noticed in Section 2, most of
the ergodic theory of stochastic timed event graphs is covered in
Baccelli et al. (1992). Results for MPC of stochastic max-plus lin-
ear systems are given in van den Boom and De Schutter (2004),
where the authors show that under quite general conditions the
resulting optimization problems turn out to be convex. The main
problem with this method is that the computation of the expected
value can be highly complex and expensive, which also results in
a high computation time to solve the optimization problem. To
this end Farahani, van den Boom, van der Weide, and De Schut-
ter (2016) use an approximation method based on the moments of
a random variable to obtain a much lower computation time while
still guaranteeing a comparable performance.

Switching max-plus linear systems with both stochastic and de-
terministic switching are discussed in van den Boom and De Schut-
ter (2012). In general, the optimization in the model predictive
control approach boils down to a nonlinear nonconvex optimiza-
tion problem, where the cost criterion is piecewise polynomial on
polyhedral sets and the inequality constraints are linear. However,
in the case of stochastic switching that depends on the previous
mode only, the resulting optimization problem can be solved using
linear programming algorithms.

In van den Boom, Lopes, and Schutter (2013) a general frame-
work has been set up for model predictive scheduling of semi-
cyclic discrete event systems. In a systematic way the main
scheduling steps, i.e. routing, ordering, and synchronization, can
be modeled. A switching max-plus linear model has been derived
with scheduling parameters for each scheduling step. The system
matrix is max-plus affine in the max-plus binary scheduling pa-
rameters and a model predictive scheduling problem has been for-
mulated. This model predictive scheduling problem can be recast
into a mixed integer linear programming problem. This scheduling
technique has been applied in Kersbergen, Rudan, van den Boom,
and De Schutter (2016), where a railway traffic management al-
gorithm has been derived that can determine new conflict-free
schedules and routes for a railway traffic network when delays oc-
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Fig. 4. Dutch railway network.

cur. See Fig. 4 for the scheme of the railway network in the Nether-
lands.

Scheduling using switching max-plus linear models has also
been described in Lopes, Kersbergen, van den Boom, De Schutter,
and Babuska (2014), where the transition between different gait
transition schemes in legged robots has been discussed and opti-
mal transitions are derived such that the stance time variation is
minimized, allowing for constant acceleration and deceleration. In
Alirezaei, van den Boom, and Babu$ka (2012) an optimal scheduler
for paper-handling in a duplex printer is presented. The scheduling
is based on the max-plus modeling framework. It is shown that the
proposed method successfully finds the globally optimal schedule
for different types of the sheets.

6. Max-plus and min-plus geometry

It is well understood that linear algebra is closely connected to
geometry and that geometric concepts play an important role in
control of linear systems.

As we have argued in previous sections, control theory for
max-plus-linear systems has been inspired mainly by the theory
of linear systems. A fundamental concept in both linear algebra
and geometry is that of vector spaces or more generally modules.
Their max-plus counterparts are known as idempotent semimod-
ules, which are module-like structures, but over an idempotent
semiring (such as max-plus semiring) rather than over a ring. The
basic properties of idempotent semimodules including the con-
cepts of independence and dimension have been studied since late
1980’s by Wagneur (1991) or Russian school (Litvinov, Maslov, &
Shpiz, 2001). A fundamental control theoretic concept is (A, B) in-
variant space, which is a controlled invariance of a semimodule.
Namely, it requires that any trajectory starting in this semimodule
can be controlled such that it remains forever within this semi-
module. It has been investigated in Katz (2007), where a classical
algorithm for the computation of the maximal (A, B)-invariant sub-
space contained in a given space is generalized to the max-plus

linear systems. Although the algorithm needs not converge in a
finite number of steps, the sufficient conditions (of demonstrated
practical interest for a class of semimodules) have been proposed
for the convergence in a finite number of steps.

The study of invariance properties for max-plus linear systems
are inspired by the Wonham’s geometric theory of linear systems
(Wonham, 1974). We emphasize that this theory has been at the
very origin of the supervisory control theory developed in early
1980’s in parallel with the theory of max-plus-linear systems. The
geometric framework has enabled among others to solve distur-
bance decoupling problem for linear systems. Following similar
ideas, modified disturbance decoupling problem for max-plus lin-
ear systems has been studied in Shang, Hardouin, Lhommeau, and
Maia (2016).

Another interesting work is Cohen, Gaubert, and
Quadrat (1996), where projection onto images of operators
and parallel to the kernels of operators have been studied. It
should be noted that these operators are useful not only in control
of max-plus linear systems, but admit also specific application to
aggregation and other problems for Markov chains.

Very important concept, convexity, a powerful tool in optimiza-
tion and operational research, has been extended to the max-
plus framework. Well known Minkowski theorem from linear al-
gebra states that a non-empty compact convex subset of a fi-
nite dimensional space is the convex hull of its set of extreme
points. The max-plus counterpart of Minkowski theorem presented
in Gaubert and Katz (2007) extends this result to max-plus con-
vex sets. This result is very important, because max-plus convex
sets arise in many different domains, ranging from max-plus-linear
systems, abstractions of timed automata to solutions of Hamilton-
Jacobi equations associated with a deterministic optimal control
problem, see e.g. Litvinov et al. (2001).

More recently, an interesting relation has been discovered
between geometric approach to max-plus-linear systems pro-
posed in Gaubert and Katz (2007) and reachability analysis of
timed automata, cf. Allamigeon, Fahrenberg, Gaubert, Katz, and
Legay (2014). Timed automata are very general models of timed
DES that involve several parallel clocks variables that measure time
elapsed since their last reset and define time constraints (known as
guards) for enabling logical transitions in timed automata.

Interestingly, max-plus geometry can be applied in reachability
analysis of timed automata. Timed automata with infinite (but fi-
nite dimensional) clock spaces are abstracted into finite automata
called region or zone automata, where the infinite clock space is
abstracted by a finite number of regions or geometric zones. This
abstraction is shown to be a timed bisimulations and this enables
to solve several fundamental problems for timed automata such as
non emptiness. The zones are represented by efficient data struc-
tures called difference bound matrices (DBM) that represents the
bounds on differences between state variables. The reachability of
different zones can be studied using max-plus-cones from geomet-
ric theory of max-plus-linear systems.

It has been shown in Lu et al. (2012) that every max-plus cone
(also called max-plus polyhedron) can actually be described as
a union of finitely many DBM'’s as shown in Adzkiya, De Schut-
ter, and Abate (2013). These geometric objects have proven to be
extremely useful for both forward and backward reachability anal-
ysis, see e.g. Allamigeon et al. (2014). Forward reachability analysis
aims at computing the set of possible states that can be reached
under the model dynamics, over a set of consecutive events from
a set of initial conditions and possibly by choosing control actions
(Adzkiya, De Schutter, & Abate, 2015). Backward reachability anal-
ysis consists in computing the set of states that enter a given set
of final states, possibly by choosing control actions. This is of prac-
tical importance in safety control problems consisting in the de-
termination of the set of initial conditions leading to unsafe states.
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However, for backward reachability analysis the system matrix has
to be max-plus invertible, i.e. in each row and in each column
there should be a single finite element (not equal to -oo), which
is restrictive. The main advantage of using max-plus polyhedra is
in saving computational complexity, because time complexity of
these approaches is polynomial as all standard DBM based algo-
rithms.

From a practical perspective, there are two basic ways
of describing max-plus polyhedra. The first one, internal,
gives the extreme points and rays, the second one, exter-
nal, gives linear inequalities over max-plus semiring. It has
been shown in Allamigeon, Gaubert, and Goubault (2010), see
Allamigeon, Gaubert, and Goubault (2013) for more recent work,
how to pass from the external description of a polyhedron to the
internal description. Namely, the extremal points are computed in
a recursive way, where the problem of checking the extremality
of a point reduces to checking whether there is only one minimal
strongly connected component in an hyper-graph. For the latter
problem there exists a fast (almost linear time) algorithm, which
allows quick elimination of redundant generators, but the number
of generators can be exponential in general.

7. Applications

It can appear somewhat surprising that methods based on very
particular structure of max-plus algebra can find a large number
of applications. But it turns out that max-plus system theory has
been indeed applied to a large variety of domains, such as:

capacity assessment, evaluation and control of delays in trans-
portation systems (Braker, 1991; Heidergott et al., 2006; Houssin,
Lahaye, & Boimond, 2007; Kersbergen et al., 2016) and car traf-
fic (Farhi, Goursat, & Quadrat, 2011),

sizing, optimization and production management in manufac-
turing systems (Cohen et al., 1985; Cottenceau, Hardouin, &
Ouerghi, 2008; Imaev & Judd, 2008; Martinez & Castagna,
2003),

performance guarantees in communication networks through so-
called network calculus (Cruz, 1991; Le Boudec, 2001),
high  throughput screening in biology and
(Brunsch, Raisch, & Hardouin, 2012),

modeling, analysis and control of legged locomotion (Lopes
et al., 2014; Lopes, Kersbergen, De Schutter, van den Boom, &
Babuska, 2016),

speech recognition (Mohri, Pereira, & Riley, 2002) or image pro-
cessing (Culik & Kari, 1997) through weighted automata such as
max-plus automata,

optimization of crop rotation in agriculture (Bacaér, 2003),
scheduling of energy flows for parallel batch processes (Mutsaers,
Ozkan, & Backx, 2012),

max-plus model of ribosome dynamics during mRNA translation
(Brackley, Broomhead, Romano, & Thiel, 2012),

paper handling in printers (Alirezaei et al.,, 2012),

performance evaluation of the emergency call center 17-18-112 in
the Paris area (Allamigeon, Beeuf, & Gaubert, 2015),

control of cluster tools in semiconductor manufacturing (Kim &
Lee, 2015),

« biological sequence comparisons (Comet, 2003).

chemistry

This diversity is to be emphasized all the more since these ap-
plications have sometimes suggested new theoretical questions.

We cannot finish this brief overview of the role of max-plus al-
gebra in the history of DES without mentioning the important con-
nections with other fields of research: dynamic programming and
optimal control with solutions to Hamilton-Jacobi-Bellman (partial)
differential equations (Maslov & Kolokoltsov, 1994; Quadrat & Max-

Plus, 1994), statistical mechanics (Quadrat & Max-Plus, 1997), oper-
ations research (Zimmermann, 2003).
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