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Abstract

Knowledge Based Engineering (KBE) is a particularly relevant technology for addressing the in-
creasing complexity of engineering systems, the need for rapid time-to-market, and the need for achiev-
ing reductions in the costs of product development. KBE applications can be effective means of au-
tomating repetitive engineering design tasks, enabling engineers to enhance their designs through
optimization and innovation. However, the current development process of KBE applications can be
improved, as it has shortcomings that limit a wider adoption of KBE technology. Currently, two primary
approaches are employed in the development of KBE applications. The first approach involves directly
coding the engineering knowledge within the application itself, while the second approach entails mod-
eling the engineering knowledge outside the application and subsequently converting it into executable
code, manually. Both approaches result in applications that are perceived, to varying degrees, as “black
boxes”. This makes it challenging to understand how the application reaches its conclusions, which can
hinder the end-user’s trust in the application and limit its acceptance. To date, a suitable methodology
to effectively support KBE app development is lacking, which has considerable implications on the time
required for application development, as well as the quality of the applications in terms of traceability of
requirements and domain knowledge within the KBE application code, the applications’ maintainability
and scalability, and (eventually) the ability to preserve and efficiently reuse engineering knowledge.

To address the outlined shortcomings of the current KBE app development process, this thesis pro-
poses a novel framework for the development of KBE applications, based on Model-Based Systems
Engineering (MBSE) concepts, to model domain knowledge and requirements, and to support (semi-
yautomatic generation of KBE apps through visual editing, as opposed to standard coding. The key
objectives of this framework are to improve knowledge capture and formalization, requirements trace-
ability, and knowledge reuse in KBE applications. In the proposed framework, the knowledge required
for developing a KBE application is first captured in a formal knowledge model that uses the industry-
standard Systems Modeling Language (SysML). Source code is then automatically generated for the
targeted KBE system (ParaPy) using a model-to-code tool developed in this research. Traceability of
requirements onto the various elements of the KBE app architecture is also provided, thereby reducing
the typical black-box effect of KBE applications. Furthermore, the framework allows to reuse knowl-
edge from previously generated knowledge models, enabling effective project-to-project knowledge
transfer.

This thesis presents the development of three distinct KBE applications using the proposed frame-
work, with the aim of evaluating it in terms of ease of modeling, development time, and quality of the
automatically generated (skeleton) code. Preliminary results show that the learning curve to modeling
is intuitive and easy enough to learn; the time required for generating the knowledge models is lower
than current modeling processes; the automatically generated code is error-free, well-structured, and
complies with existing coding standards, providing a correct starting point for further app development,
while resulting in time savings in the development of the app skeleton.
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Introduction

In today’s competitive global marketplace, organizations are under pressure to deliver innovative prod-
ucts to market quickly. As modern engineering systems become increasingly complex, often involving
numerous interacting components, intricate design requirements, and multidisciplinary considerations,
traditional design processes struggle to handle this complexity efficiently and accurately [1]. Traditional
design processes often involve repetitive tasks and redundant efforts, resulting in prolonged develop-
ment cycles and increased development costs [2, 3].

Knowledge Based Engineering (KBE) provides a systematic approach to manage and leverage
knowledge effectively, enabling engineers to tackle the complexities involved in the design and analysis
of modern engineering systems, while enhancing the engineers’ productivity. KBE involves the use of
dedicated software tools called KBE systems, to capture and reuse product and process engineering
knowledge in order to reduce the time and costs of product development. KBE achieves these goals by
automating repetitive, non-creative, design tasks and supporting multidisciplinary design optimization
in all the phases of the design process [4].

Engineering applications developed to automate design tasks using KBE systems are called KBE
applications. The development of a KBE application encompasses the acquisition of necessary product
and process knowledge from the domain experts, which is followed by the translation of this knowledge
into code using the programming language provided by the KBE system at hand.

There are several methodologies available in the literature that attempt to formalize and improve
the KBE application development process. The most well-known and established is the Methodology
and software tools Oriented to Knowledge-based engineering Applications, also known as, MOKA [5].
The main objectives of MOKA are to reduce the lead times and costs of developing KBE applications,
by providing a consistent way of developing and managing KBE applications.

However, MOKA has several shortcomings that hinder a wider adoption of KBE technology [6].
Firstly, the application of MOKA requires the involvement of specialized knowledge engineers, whose
availability is scarce, posing challenges for its practical implementation. Additionally, MOKA primarily
caters to support knowledge engineers rather than domain experts or developers. Moreover, MOKA
does not entirely identify knowledge representation mechanisms and supporting tools. Consequently,
the methodology is perceived as too difficult and complex, especially for small teams [7, 8], and as a



result it is rarely used in practice.

Currently, two primary approaches are employed in the development of KBE applications [9]. The
first approach involves directly coding the engineering knowledge within the application itself and gener-
ating a separate knowledge book, using the so-called Rapid Application Development (RAD) methods.
However, this creates an application that functions as a “black box” (i.e., generating output from input
without providing insight into the underlying reasoning or decision-making process), making it chal-
lenging to understand how the application reaches its conclusions, which can hinder the end-user’s
trust in the application and limit its acceptance. The second approach entails modeling the engineer-
ing knowledge outside the application and subsequently converting it into executable code, manually.
This approach leads to a disconnection between the modeled knowledge and its implementation in
the application. As a result, it becomes difficult to comprehend how the modeled knowledge has been
incorporated into the application, reinforcing its black-box perception.

Based on the current KBE application development process, the following limitations can be identi-
fied:

1. The current process of encapsulating knowledge within source code for KBE applications relies
heavily on manual efforts, resulting in a significant dependence on effective communication and
understanding between domain experts and developers. However, this manual approach is highly
susceptible to human errors. Consequently, the extensive knowledge transfer combined with
identifying and rectifying the errors within the KBE application leads to long development times.

2. Itis common for the source code of KBE applications to be extensive. With manual programming,
the knowledge and understanding of the source code are typically limited to the original developer.
Consequently, the task of tracing errors within the code, extracting the embedded knowledge
rules, and ensuring compliance with requirements becomes challenging if the original developer
is unavailable during project execution. This situation effectively transforms the KBE application
into a “black box”, where its internal workings and reasoning processes are not transparent or
accessible to other stakeholders involved in the project.

3. In case a formal knowledge model is not developed prior to (manual) code generation, perma-
nent knowledge loss can occur if the domain expert and the programmer leave the organization,
which can severely impede the transfer of knowledge from one project to another, hindering the
continuity and effectiveness of knowledge (re)utilization in subsequent endeavors.

To improve the current KBE app development process, the aforementioned challenges must be
addressed. Therefore, the key motivation for the work presented in this thesis is the development of
a novel methodological approach for the development of KBE applications. This novel methodological
approach shall improve the transparency of KBE applications and reduce their development time.

Model-Based Systems Engineering (MBSE) is a promising engineering approach that has the ca-
pacity to solve a key challenge in KBE applications: their black-box perception. MBSE uses graphical
and textual models (in contrast to the document-based approach of traditional systems engineering)
to support the design, analysis, verification, and validation of complex systems, throughout the system
development lifecycle [10].



As discussed in the following chapters, MBSE can aid in modeling domain knowledge and re-
quirements, facilitating knowledge capture and formalization, requirements traceability, and knowledge
reuse within KBE applications. Furthermore, MBSE can solve the current problem of the disconnec-
tion between the modeled knowledge and the KBE application encoding that knowledge, thanks to its
support for automatic generation of source code from knowledge models.

Consequently, the adoption of an MBSE-based KBE app development methodology holds potential
to make the knowledge encoded within the applications more explicit and transparent, and reduce the
development time of KBE applications. This should increase engineers’ trust and acceptance of KBE
applications, potentially improving the adoption of KBE technology in the industry.

The structure of this thesis report is then organized as follows. Chapters 2 and 3 provide a theoretical
background on KBE and MBSE, respectively, while overviewing the state of the art in these fields
and setting the foundation for the subsequent chapters. Chapter 4 presents the formulated research
objective and the research questions addressed in this thesis. Chapter 5 describes the methodological
approach used in this research work to develop a novel framework for developing KBE applications
based on MBSE concepts. This leads into Chapter 6, where the methods used to verify and validate
the developed framework are described. Subsequently, Chapter 7 presents a case study in which
the developed framework was employed in the development of a real-world KBE application. Finally,
conclusions and recommendations for future work are addressed in Chapter 8.



Knowledge Based Engineering

This chapter provides essential theoretical background relevant to understand the need for the research
work carried out. It begins by introducing the concept of Knowledge Based Engineering and highlighting
its advantages. Subsequently, an analysis of the state of the art in the development of KBE applications
is presented, followed by an identification of the existing limitations within the field.

2.1. What is KBE?

Knowledge Based Engineering is defined, according to La Rocca [4], as “a technology based on the
use of dedicated software tools called KBE systems, which are able to capture and reuse product and
process engineering knowledge, with the final goal of reducing time and costs of product development
by means of [...] automation of repetitive and non-creative design tasks [and] support of multidisci-
plinary design optimization in all the phases of the design process” (p. 161).

There are several arguments for adopting Knowledge Based Engineering. Most of these arguments
are based on the opportunities offered by KBE in the formalization of knowledge and in the automation
of design in the conceptual and preliminary design phases [6]. A major advantage in adopting KBE is
the considerable reduction in time and costs in the product development process, while allowing more
time for innovative work, thanks to its automation of repetitive and non-creative design tasks that can
make up to 80% of the typical design process [5, 11, 12]. Moreover, the increased time for creative
design, provided by the adoption of KBE, allows the engineers to explore a larger part of the design
envelope, which is essential before making decisions with a high impact on committed costs, thus
allowing for a lower percentage of committed cost at the end of the preliminary design phase. These
advantages are illustrated in Figure 2.1. Various examples where KBE has been successfully deployed
with benefits in time savings and cost reduction, in different domains, can be found in the literature [5,
13-15].
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Figure 2.1: Advantages of adopting KBE on the product design process

KBE applications are key enablers towards the automation of complex systems design as they
allow users to exploit the object-oriented programming (OOP") paradigm, provide runtime caching?
and dependency tracking® capabilities, demand-driven evaluation*, and have a tight integration with a
Computer-Aided Design (CAD) kernel [17]. KBE systems allow capturing engineering knowledge into
powerful automated solutions for product configuration, design space exploration and multidisciplinary
design optimization [17].

Following the principles of OOP, KBE applications are predominantly composed of class declara-
tions that conform to a standardized structure for defining generic object types. These classes encom-
pass attributes that provide detailed specifications of their characteristics. This standardized structure
holds significant value for the purpose of automating the generation of source code for KBE applica-
tions (this capability will be further explored in this research - see Section 5.4). A snippet of the source
code from a simplistic KBE application used for wing design is presented in Figure 2.2.

A software development approach that organizes data and behavior into reusable entities called objects. This paradigm
promotes code reusability, modularity, and extensibility, making it suitable for building complex and scalable software systems.

2The capability to store and retain computed results during runtime, commonly known as caching, allowing for subsequent
reuse without the need for redundant re-computation, unless necessary.

3The capability of continuously monitoring the current validity of cached values, invalidating them once they are deemed
invalid, and re-computing them selectively, only if they are requested again.

4A computational approach where the evaluation of expressions or computations is deferred until their results are explicitly
requested by the user, or indirectly requested while trying to satisfy a user demand.
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from parapy.geom import LoftedSurface
from user_defined_classes import Airfoil

class Wing:
root_chord = Input()
tip_chord = Input()
span = Input()

@Attribute
def taper_ratio(self):
return self.root_chord / self.tip_chord

@Part
def root_airfoil(self):
return Airfoil(airfoil_name='A320_root_airfoil',
chord=self.root_chord

)

@Part
def tip_airfoil(self):
return Airfoil(airfoil_name='A320_tip_airfoil',
chord=self.tip_chord,
position=translate(self.position, "y", self.span)

)

@Part
def wing_surface(self):
return LoftedSurface(profiles=[self.root_airfoil, self.tip_airfoill)

Figure 2.2: Snippet of the Source Code from a simplistic KBE Application used for Wing design. The standardized structure of
KBE apps is highlighted by the green and red boxes, representing the definition of the class and its attributes, respectively.

The process of developing a KBE application involves acquiring the necessary product and process
knowledge from domain experts, and subsequently translating it into executable code, using the pro-
gramming language supported by the specific KBE system at hand. This is a complex process that
requires expertise both in knowledge acquisition and modeling, as well as in code generation and veri-
fication, and involves communication among several stakeholders: the domain expert, the knowledge
engineer, the developer, the project lead, and the end-user. The domain expert has the knowledge
required to develop a KBE application, usually it's an engineer specialized in a certain field which typ-
ically has no experience in developing KBE applications. The knowledge engineer is a specialized
engineer that captures and formalizes the knowledge required to develop the KBE application. The
developer is the engineer that reads the formal models created by the knowledge engineer and devel-
ops the KBE application. The project lead is the engineer that oversees the development of the KBE
application. The end-user is the engineer that uses the KBE application after it has been developed,
often the domain expert is also the end-user.

2.2. State of the Art in KBE App Development

Over the years, numerous KBE platforms have emerged, employing distinct programming lan-
guages. Nevertheless, a common characteristic among these platforms is their utilization of an OOP
language. However, one drawback of KBE platforms is that they often employ either a difficult to learn or
platform-specific programming language, posing a limitation. A significant advancement in the realm
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of KBE languages was introduced in 2016 by ParaPy®, which leverages the widely adopted Python
programming language, enhancing the appeal and accessibility of the platform.

At present, development teams involved in KBE application development employ a diverse array
of tools for capturing requirements, desired functionalities, architectural design, and the user interface
of a KBE application. However, the utilization of multiple tools hampers the ability of these teams
to collaboratively create and share a unified and cohesive application design among themselves and
with the customer. Consequently, this results in the development of applications that do not align with
customer needs, necessitating substantial modifications after the initial software release. Furthermore,
the absence of a structured approach during the codification phase creates time constraints and adds
pressure on the development timeline. The KBE application development process currently employed
at ParaPy is schematically represented in Figure 2.3a. Additionally, the current KBE app development
process employed at GKN Aerospace Fokker EImo® for developing ParaPy-based KBE applications is
schematically represented in Figure 2.3b.

Start

Does the customer
agree with the process
and the mock-up?

Model

Create
Input/Output Model

Process Steps CHEUR Orthe

ﬁ 3 App UI@

Create useable
User Interface

,v

Create
KBE App Code

m

Satisfies
customer
needs?

[Yes]

End

(a) Current KBE App Development Process at ParaPy

Satisfies
all
requirements?

Start

Translate Model
to KBE Code
(manually)

Create
Product

Create
Process

Create
Requirements
Model

(b) Current KBE App Development Process at GKN Aerospace Fokker EImo

Figure 2.3: Examples of Current KBE App Development Processes. The icons indicate the tool used to perform each task. The
tasks are performed by a team of domain experts and KBE developers. Note that the figures shows a generalization of the tasks
that are usually performed, but often the order of these tasks can be interchanged depending on the project and the expertise of
the people involved, which can make the overall knowledge acquisition process less structured/consistent.

The current practice in the development of KBE applications at ParaPy typically consists of the
following tasks:

1. The input and output (I/O) data of the application is modeled in Microsoft Excel”.

Shttps://parapy.nl (Accessed: 15/06/2023)
Bhttps://www.gknaerospace.com/en/about-us/fokker-technologies/ (Accessed: 15/06/2023)
"https://www.microsoft.com/en-us/microsoft-365/excel (Accessed: 15/06/2023)


https://parapy.nl
https://www.microsoft.com/en-us/microsoft-365/excel
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2. The process steps are modeled in draw.io® using UML® activity diagrams.

3. A mock-up of the user interface (Ul) of the application is created in Balsamiq'™. This task is
performed as an extra means to elicit customer requirements (e.g., functionality, /O management,
user experience), however a model of the app’s requirements is not created.

4. The knowledge required to develop the KBE application is directly implemented in the KBE appli-
cation code (manually) using the PyCharm'! integrated development environment (IDE).

The current practice in the development of KBE applications at GKN Aerospace Fokker EImo typi-
cally consists of the following tasks:

1. The requirements of the application are modeled in Microsoft Excel.
2. A model of the process steps is created in Microsoft Visio'? using UML activity diagrams.

3. A model of the product features is created in Microsoft Visio using a combination of UML class
diagrams and composite structure diagrams.

4. The generated product model is manually translated to KBE code using the PyCharm IDE.

Figure 2.3 helps highlight the major shortcomings of the current KBE app development process,
namely: captured knowledge becoming outdated, multiple tools needed (leading to a steep learning
curve), no consistency between knowledge models, duplication of work (in the form of knowledge mod-
eling and coding), and lack of overview.

Currently, there is a need to develop a framework capable of addressing the aforementioned chal-
lenges, in order to enhance the efficiency of designing KBE applications, while offering a structured
approach to the knowledge acquisition phase. This framework should allow developers/users to (for-
mally) capture the different aspects of an application within a unified environment, alleviating the exist-
ing issue of fragmentation. Furthermore, it should expedite the codification process through automatic
code generation and, additionally, facilitate review by users who lack expertise in the KBE language.

To date, a suitable development methodology to effectively support the development of KBE applica-
tions is lacking, which has considerable implications on the time required for application development,
as well as the quality of the applications in terms of requirement compliance, traceability, maintainability,
scalability, and (eventually) the ability to preserve and efficiently reuse engineering knowledge.

2.2.1. Current Practice in Knowledge Modeling

There are several methodologies available in the literature that attempt to formalize and improve
the KBE application development process. Examples of these methodologies are CommonKADS
[18], DEKLARE [19], KOMPRESSA [20], KCM [21], KNOMAD [22], and MOKA [5]. Although several
methodologies exist, two of the most well-know, developed as part of European Union projects, are
the Common Knowledge Acquisition and Design Support (CommonKADS), and the Methodology and
tools Oriented to Knowledge-based engineering Applications (MOKA). However, CommonKADS lacks
specialization to engineering design, focusing on the organizational aspect of Knowledge Based Sys-
tems (KBS) development and the communication and interrelationships between the different agents
involved, making it a generic-purposed framework [23]. Thus, the most accepted and established
methodology for KBE app development appears to be MOKA, with several research works attempting

8https://app.diagrams.net (Accessed: 15/06/2023)

9Unified Modeling Language - http://www.uml .org (Accessed: 15/06/2023)

https://balsamiq.com (Accessed: 15/06/2023)

"https://www. jetbrains.com/pycharm/ (Accessed: 15/06/2023)
2https://wuw.microsoft.com/en-ww/microsoft-365/visio/flowchart-software (Accessed: 15/06/2023)
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to extend this methodology [24—-26].

The primary objectives of the MOKA research project'® were to reduce the lead times and costs of
developing KBE applications, to provide a consistent way of developing and maintaining KBE applica-
tions, and to develop a methodology which would form the basis of an international standard [27]. One
of the main achievements of the MOKA research project was the identification of the typical KBE life
cycle, which is presented in Figure 2.4.

1. Identify 6. Activate
Study industrial need Introduce and Use
Assess technical feasibilitv Maintain
2. Justify \

Study profitability 5. Package
Validate scope KBE application Develop
Analyse risks lifecycle anplication

3. Capture 4. Formalise
Collect MOKA Phases 7 Develop product & process

and structure the models
raw knowledge

Figure 2.4: The KBE life cycle identified in the MOKA project.
Source: [27]

The MOKA methodology focuses mainly on the Capture and Formalise phases of the KBE applica-
tion life cycle. It deliberately avoids the Package phase in order to preserve MOKA's neutrality to KBE
platforms [27].

The MOKA model resulting from the Capture and Formalise phases is composed of three sub-
models, as shown in Figure 2.5. It involves the generation of an informal knowledge model, followed
by the formulation of a formal knowledge model, which is then stored in a neutral language knowledge
model [28]. Finally, the neutral language knowledge model is converted to KBE application code.

Knowledge
Management System

i i Informal Knowledge Formal Knowledge Neutral Language
Raw Expert — Model Model Knowledge Model -
ICARE forms UML Based Model XML Based

Development System
Knowledge

Specific KBE Code

MOKA Model

Figure 2.5: MOKA knowledge models.
Source: [28]

The informal knowledge model is structured upon a set of forms called “|CARE forms”. The acronym
ICARE stands for lllustration, Constraints, Activities, Rules, and Entities, representing the 5 different

3MOKA European project (No. 25418) conducted within the ESPRIT-IV framework
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kinds of forms that can be used to capture and structure engineering knowledge. An example of an
Entity form is shown in Figure 2.6. These forms allow the structuring of product and process knowledge
at an informal level that is easily understood by both the knowledge engineer and the domain expert,
which is essential since the domain expert must be able to validate the knowledge before it can be
formalized in the next phase [24]. However, the application of the ICARE forms for informal knowledge
modeling may not always be intuitive to domain experts, who primarily work in terms of requirements,
processes, and products. This is why the assistance of a knowledge engineer is often required during
MOKA's knowledge capture phase. Domain experts perceive the conversion of their knowledge into
the ICARE format as an additional pedagogical endeavor, which may not yield substantial returns in
terms of the invested time.

Figure 2.6: Example of MOKA (ICARE) Entity Form of a bottle assembly.
Source: [5]

The subsequent stage involves utilizing the informal knowledge model to develop a formal knowl-
edge model, comprising of two parts: the Product Model and the Design Process Model. The Product
Model is used to represent the object-level knowledge within the domain, encompassing various as-
pects such as structures, functions, behaviors, and geometry, along with their associated attributes,
relations, and constraints. On the other hand, the Design Process Model is used to represent the
problem-solving activities, control knowledge, and the interconnections to the Product Model [27]. A
general example of these models is presented in Figure 2.7. In this stage, the information from the
ICARE forms is manually converted by a knowledge engineer into a formal model notation. The MOKA
Modelling Language (MML), an extension of UML, is employed to represent the knowledge in a format
that is both understandable by knowledge engineers and software engineers, and is suitable for the
subsequent development of the KBE application [6].
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Figure 2.7: Example of MML Product Model (left) and Design Process Model (right).
Source: [9]

Finally, the formal model is converted to a neutral language knowledge model, providing a crucial link
between the MML formal model and the subsequent KBE application code. The objective is to develop
a model which can readily be translated - possibly with a high degree of automation - into the KBE
development platform source code [28]. MOKA recommends the use of Extensible Markup Language
(XML) in order to build the neutral model. However, due to its aim of being a system-independent
methodology, MOKA does not provide a detailed mechanism to create this model [9, 28]. This is one
of the key shortcomings of MOKA.

2.2.2. Current Practice in KBE Code Generation

Since MOKA does not specify how to create the neutral language knowledge model nor provides any
automation scripts or software programs to assist (even partially) in generating the code, developers
are responsible for manually converting the formal knowledge model into source code. This means that
the developer has complete discretion over the architecture of the code and the organization of rules
and requirements within it. However, developers can often use an implicit programming style, which
may be difficult for other developers and domain experts to understand, making it challenging to ensure
that all knowledge rules and requirements are complied with. Additionally, the manual conversion of
the formal model to source code can result in human errors. Furthermore, this leads to duplication of
work in the form of knowledge modeling and coding, resulting in a disconnection between the knowl-
edge that has been captured in the formal model and the knowledge that has been encoded in the KBE
application. All these factors can ultimately lead to (significant) knowledge losses, particularly if the
developer of the original source code is unavailable for consultation during the project where the KBE
application must be executed.

To address the disconnection between knowledge models and KBE application code, an effective
approach is to utilize tools that automatically generate source code from knowledge models. Several
examples of such tools are available in the literature.

For instance, Dewitte [29] developed an online platform that enables the creation of UML-like class
diagrams and the automatic generation of code for each element in the diagrams. This platform specif-
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ically targets the Genworks GDL'* KBE system. However, a limitation of this platform is that it only
allows to model product-related knowledge, overlooking the need to model also requirements and
process-related knowledge.

Similarly, industry examples exist, such as ParaPy’s Visual Editor tool, depicted in Figure 2.8. The
Visual Editor allows the use of UML-like class diagrams to create knowledge models. The knowledge
models are then stored in a JSON'® format from which application source code is automatically gen-
erated for the ParaPy KBE system, using a dedicated translation engine. However, this tool exhibits
shortcomings that impede its effectiveness in addressing the present limitations of the KBE app devel-
opment process.

For example, ParaPy’s Visual Editor, only allows for the modeling of product knowledge, overlooking
the modeling of requirements and processes. As a result, multiple tools are still needed to capture the
various aspects of the knowledge required for the development of KBE applications.

Additionally, although the model can be exported to UML class diagrams, there is no support for
exporting it to an industry-standard neutral language knowledge model. Consequently, the tool lacks
system-independence and restricts direct conversion to ParaPy KBE code, potentially limiting code
generation for other KBE languages.

Furthermore, while the modeling process is relatively straightforward to learn, it relies on a custom
modeling language blending UML-like class diagrams and composite structure diagram features. Uti-
lizing an industry-standard modeling language may be more appropriate for this purpose in order to
facilitate industry adoption of the tool.

Moreover, the tool confines knowledge modeling to a single drawing canvas, limiting model organi-
zation, particularly in complex KBE applications.

P Parapy Visual Editor X+
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Figure 2.8: ParaPy’s Visual Editor showcasing the (product) model of a KBE application used for designing Simple Airplanes.

The central area depicts the drawing canvas where the model is constructed. On the right, the KBE code automatically generated
from the model is presented.

“https://www.genworks.com (Accessed: 15/06/2023)
Shttps://wuw.json.org/json-en.html (Accessed: 15/06/2023)
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2.2.3. Stakeholder's Trust in KBE applications

The KBE application development process can be categorized into three main scenarios. Each of
these will be discussed in the following paragraphs.

The first scenario is the one described in the MOKA methodology, where there is a knowledge
engineer available to structure and formalize the knowledge from the domain expert (which usually
has no coding experience) into models, so that it's understandable by the application developer. This
scenario is more common in large companies that have already been using KBE for some time, and it
is schematically represented in Figure 2.9.

Raw Structure Informal Formahse Formal Develop KBE Verify Use
Knowledge Knowledg Model nowledg Model Appllcatlon Application Appl|cat|on Appllcatlon
A

Domain Expert Knowledge Engineer Developer Project Lead End-user

Figure 2.9: Current steps of scenario 1 in the KBE app development process.
Source: Adapted from [25]

In this scenario, the domain expert is expected to populate a knowledge base to develop an applica-
tion. However, the domain expert is not able to understand how the knowledge has been implemented
in the KBE application (i.e., the expert is unable to trace where the rules and requirements are placed),
resulting in a lack of trust in the KBE application [30]. Moreover, the lack of transparency in KBE
applications gives the domain expert a feeling of exclusion, causing insufficient participation in the de-
velopment of a KBE application which could hinder adoption of KBE technology [31].

The second and third scenarios are more common in Small and Medium-sized Enterprises (SMEs),
or in conceptual design projects (having small design teams and short lead-time), where often a single
engineer fulfils multiple roles (e.g., as a domain expert and as a developer), and there is no specialist
knowledge engineer available to structure and formalize the knowledge from the domain expert into
models.

The second scenario is the one where the domain expert has little to no experience in coding (soft-
ware engineering). In this case, the domain expert provides the required knowledge for the KBE appli-
cation to the developer via a set of unstructured informal models/documents. This scenario is schemat-
ically represented in Figure 2.10.

Raw Informal Develop KBE Verify Use
Knowledge Model Appllcat|on Application Appllcatlon Appllcat|on

A

Domain Expert Developer Project Lead End-user

Figure 2.10: Current steps of scenario 2 in the KBE app development process

Here again, the domain expert faces the same challenges as in case of scenario 1. Furthermore, the



2.2. State of the Art in KBE App Development 14

developer has additional challenges as there are no formal models available. The lack of an overarch-
ing architectural view can hinder developers’ efficiency and effective collaboration with their colleagues,
as a clear overview of the interactions between different parts of the KBE application is not provided.
Additionally, understanding a colleague’s application code can be challenging as most of the knowledge
embedded in the code is represented by formulas and data without clear context [32], making it difficult
to process. Moreover, the lack of formal models to compare the code with can further aggravate the
black-box perception. Without any formal model, the developer will be prone to making errors in case
the comprehension from the informal model is not correct.

The third scenario is similar to the second scenario. However, in this case, the domain expert
also has experience in coding (software engineering) and therefore is also the developer of the KBE

application. In this case, the domain expert usually skips the knowledge modeling step and implements
the required knowledge directly into the KBE application. This scenario is schematically represented

in Figure 2.11.
Develop KBE Verify Use
Knowledge Appllcatlon Application Appllcatlon Appllcatlon

Domain Expert / Developer Project Lead End-user

Figure 2.11: Current steps of scenario 3 in the KBE app development process

Here, if the domain expert leaves the company (or is unavailable for consultation in the project), the
knowledge contained in the expert is lost since there are no structured and formalized models of the
knowledge used to develop the KBE application. Moreover, other domain experts cannot understand
the knowledge written as application code, which is also hard to find due to the usually large amount
of application code, enforcing an application with a black-box behavior [25].

This is the most acute problem when one engineer takes on multiple roles of developer, knowledge
engineer and domain expert. Furthermore, motivating the domain expert/developer to formalize their
knowledge into a model is challenging because they do not find directly any returns on the time invested
in formalization.

In all the scenarios mentioned above, the project lead has to verify that the developed application
complies with the requirements. However, due to the black-box nature of the source code, it becomes
challenging for the project lead to determine whether the knowledge has been implemented correctly,
or if the application is generating the intended output. The only way to verify if the application is func-
tioning as required is by running it and testing with some values. However, even if the application
produces the desired outcome, it does not necessarily mean that it has done so by deriving the correct
information. This makes it extremely challenging to validate the application, and in turn, challenging to
convince the customer that it is performing as intended [25].

The end-user is the stakeholder that uses the KBE application to automate (part of) the design
process. Often, the domain expert is also the end-user of the KBE application. Thus, depending on the
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scenario, the end-user’s trust on the code might vary. In scenarios 1 and 2, the end-user might have a
lack of trust in the application as they are not able to determine how the application is computing the
results. Here, the application just “magically” computes an output from some inputs [25]. In such cases,
adoption of KBE applications in the design process becomes challenging. This is also the case if the
end-user is not necessarily the domain expert. In scenario 3, there is no trust-deficit in the developed
application. However, the maintainability and scalability of the code in the absence of the original
developer becomes challenging.

2.3. Limitations of the Current KBE App Development Process

The main issues resulting from the current practice in the development of KBE applications can
be found in the literature [6]. Based on the current KBE application development process, the main
limitations can be summarized as follows:

Case-based, ad hoc development

Due to the shortcomings of existing KBE app development methodologies, such as MOKA's, rather
than employing a structured methodology to develop KBE applications, the development of these apps
is mostly case-based and ad hoc. Developers tend to improvise KBE solutions based on custom de-
velopment processes, without formally modeling the knowledge before (manually) generating the ap-
plication source-code. This is a serious problem if the domain expert and the developer leave the
organization, since it can lead to permanent knowledge loss, misuse and under-utilization, as well as
higher maintenance costs due to the non-standard development of the application.

Black-box Perception

In general, KBE applications tend to have a large source-code. When the source-code is manually
developed, the information contained within the code is known only to the developer. Consequently,
detecting errors in the code, extracting the embedded knowledge rules, and ensuring that the KBE
application complies with requirements becomes challenging in the absence of the original developer.
Therefore, KBE applications tend to acquire a black-box perception. One of the main reasons that
further enforces this perception is that, in the traditional KBE practice, the information models are
contained within the applications and, most of the times, the captured knowledge is represented as
context-less data and formulas. Although this approach is effective for the fast development of ad hoc
KBE applications, it hinders the transparency of the applications and the traceability of requirements,
which is problematic for the validation of the applications, as well as the long-term maintenance, sharing
and reuse of the underlying knowledge.

Knowledge Reuse

The previously presented shortcomings are closely tied with the difficulty of reusing knowledge in
KBE systems since case-based black-box applications are not well suited for knowledge reuse. Another
factor that further hinders knowledge reuse is the lack of data exchange standards for KBE in order to
facilitate the interoperability between different KBE applications and platforms.

Longer Development Times
The current process of incorporating knowledge into source code for KBE applications predomi-
nantly involves manual efforts, relying on effective communication and understanding between domain
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experts and developers. However, this manual approach is prone to human errors, resulting in pro-
longed development times due to the need for extensive knowledge transfer and error identification
and rectification within the KBE application.

Additionally, as noted by Baxter et al. [33], approximately 20% of a designer’s time is dedicated to
searching for and assimilating information, and 40% of all design requirements are satisfied by personal
stores, despite the possible existence of more appropriate information sources. This indicates that
design knowledge is not available in a shared and easily accessible knowledge repository. In such
situations, reusing knowledge with the help of an established KBE app development framework could
lead to substantial savings in time and effort. The lack of knowledge reuse in KBE systems contributes
to a longer development time of applications.

Lack of Supporting Tools

Verhagen et al.[6] identify key issues and under-developed areas of research that could help move
from case-based to methodology-guided development approaches, namely, the low availability of sup-
porting tools and technologies for KBE implementation and translators to support the automatic con-
version of formal models into KBE application code.

Although commercial tools like Visual Paradigm'® exist for converting UML models into source code,
they are currently limited to traditional programming languages and do not support KBE languages. On
the other hand, tools like ParaPy’s Visual Editor enable the conversion of models into KBE source code,
but they have their own limitations. For instance, these tools lack the capability to fully capture the
knowledge necessary for developing KBE applications, as they only focus on modeling product-related
knowledge while neglecting the importance of modeling requirements and process-related knowledge.

®Bhttps://www.visual-paradign.com (Accessed: 16/06/2023)
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Model-Based Systems Engineering

This chapter introduces Model-Based Systems Engineering, addressing its key concepts, benefits, and
challenges, while giving an outlook on the state of the art in this field. The presented theoretical back-
ground on MBSE is essential to understand the rationale behind the decision-making process during
the development of the novel framework for KBE app development.

3.1. What is MBSE?

Model-Based Systems Engineering is defined, according to the International Council on Systems
Engineering (INCOSE) [34], as “the formalized application of modeling to support system requirements,
design, analysis, verification and validation activities beginning in the conceptual design phase and con-
tinuing throughout development and later life cycle phases” (p. 15). MBSE emphasizes the usage of
digital models, in contrast to the document-based approach of traditional systems engineering.

The importance of MBSE in modern engineering is driven by the growing complexity of systems
in various domains, such as aerospace, defense, automotive, healthcare, and others. These systems
often consist of thousands of components and interact with other systems, making it difficult to manage
their design, implementation, and operation. MBSE provides a structured and formalized approach to
systems engineering, which can help engineers manage this complexity, ensuring that the system will
meet all requirements.

In MBSE, a system is represented as a set of interrelated (digital) models that capture different
aspects of the system’s behavior, structure, and requirements [34]. A model is a simplified representa-
tion of a system, which captures its essential features and interactions in a formalized way. The model
can be viewed in the form of diagrams, tables, or reports generated by querying the model repository,
enabling understanding and analysis of different aspects of the same system model. In this approach,
documents can still serve as a means for reporting information, however the information contained in
the documentation is generated from the model. The model provides more precise control of the infor-
mation than is available in a document-based approach, where the information may be spread across
various documents and the relationships may not be explicitly defined [10].

17
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The key aspects captured by the system model are in fact the same key concepts that are rele-
vant when dealing with the development of KBE applications (Requirements, Behavior/Process, and
Structure/Product), and this relationship is an essential factor for considering the possibility of using an
MBSE approach for the development of KBE applications.

3.2. Benefits of MBSE
MBSE offers several benefits for engineering complex systems over traditional document-based
systems engineering. Some of these benefits include [10, 35]:

» Improved Communication - MBSE emphasizes the use of models to represent system compo-
nents and their interactions, which can improve communication among the team, and other stake-
holders who may have different backgrounds and perspectives. Models provide a common lan-
guage for system design, which can reduce misunderstandings and errors.

Enhanced System Understanding - By allowing to capture and manage complex system require-
ments, which are often difficult to express in natural language, and providing more rigorous trace-
ability between requirements, design, analysis, and testing, MBSE can help engineers better
understand the system being designed.

* Reduced Errors - By using models to represent system components and their interactions, en-
gineers can identify errors and inconsistencies early on, reducing the cost and risk of system
development.

Increased Efficiency - MBSE can lead to increased efficiency in system development, as models
can be reused across multiple projects and used to automate certain design and testing tasks.

Improved System Design - MBSE allows engineers to explore different design alternatives and
evaluate the impact of design decisions on the system as a whole. This can lead to better designs
and more efficient use of resources.

3.3. Challenges of MBSE

There are several challenges that organizations may face when implementing MBSE that must be
addressed to effectively implement the approach. Some of these challenges include [10, 36]:

» Paradigm Shift - MBSE requires a shift in mindset from traditional document-based processes to
a model-based approach. This can be difficult for some organizations that are used to traditional
methods and may not have the necessary training or expertise in modeling languages.

+ Tool Selection and Integration - The process of selecting and integrating tools to support MBSE
can be complex. Different tools may use different modeling languages and formats, posing chal-
lenges when attempting to integrate them with existing tools and workflows. The lack of standard-
ization in modeling tools and practices can lead to interoperability issues and make it difficult to
share models across different organizations and domains. Organizations may need to invest in
new tools and ensure that they are compatible with existing ones to ensure seamless integration.

Modeling Complexity - MBSE can be a complex process, and the models used to represent the
system can be equally complex. This can make it difficult to manage and understand the models,
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and can lead to errors or omissions in the model. Organizations need to invest in proper modeling
techniques and methodologies to ensure that the models are accurate and reliable.

» Cost and Resources - Implementing MBSE can be costly and requires considerable resources, in-
cluding expertise in modeling languages, tools, and methodologies. Organizations need to invest
in training and hiring staff with the necessary expertise to ensure successful implementation.

» Adoption and Acceptance - Finally, MBSE adoption and acceptance can be a challenge. Some
stakeholders may be resistant to change and may not see the value of MBSE. Organizations need
to invest in stakeholder engagement and education to ensure that all stakeholders understand
the benefits of MBSE and are willing to adopt it.

3.4. Key Concepts in MBSE

In order to implement Model-Based Systems Engineering a modeling language, tool, and method
are necessary. These concepts are described in the following sections.

3.4.1. Modeling Language

A modeling language is a formal (graphical) language used to describe, specify, and represent dif-
ferent aspects of a system. Modeling languages can be used to create models that capture system
requirements, behavior, structure, and other important aspects of the system. The purpose of a model-
ing language is to provide a standardized way for stakeholders to communicate about the system being
modeled. Modeling languages allow stakeholders to create models that can be easily understood by
others, regardless of their background or expertise. This enables stakeholders to collaborate more
effectively and make better decisions about the system being modeled.

There are several modeling languages used in MBSE, each with its own strengths and weaknesses.
Some of the most commonly used modeling languages in MBSE include SysML" (Systems Modeling
Language), UML (Unified Modeling Language), and BPMN? (Business Process Model and Notation).
SysML is designed specifically for systems engineering, while UML is more general-purpose and widely
used in software engineering, and BPMN is used to model business processes and workflows.

SysML

Anticipating the selected modeling language to be used in the novel framework for the development
of KBE applications (see Section 5.3.1), a brief introduction to SysML is presented here.

SysML is a general-purpose graphical modeling language that supports the analysis, specification,
design, verification, and validation of complex systems. The modeled systems may include hardware,
software, data, procedures, people, facilities, and other elements [10]. Furthermore, SysML supports
modeling of requirements, structure, behavior, and parametrics (the so-called “4 pillars of SysML”) in
order to provide a complete description of a system, its components, and its environment. The lan-
guage includes 9 types of diagrams, presented in Figure 3.1b, that can be used to describe different
views of the system being modeled [10].

SysML is defined as a lightweight profile of UML 2.x, the industry standard modeling language for
software-intensive applications, as illustrated in Figure 3.1a. It is designed with relatively small mod-
ifications to the underlying UML language, using simple stereotypes, tagged values, and constraints

"https://www.omg.org/spec/SysML/ (Accessed: 16/06/2023)
2https://www.bpmn.org (Accessed: 16/06/2023)
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[37]. This approach allows for the reuse of the mature notation and semantics of UML 2.x, which is
well established among software engineers and already implemented by many modeling tool vendors.
SysML’s status as a UML profile has advantages in terms of facilitating its adoption and implementation.
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Figure 3.1: Overview of the Systems Modeling Language

SysML inherits many of the UML diagrams, these are either reused without modification or slightly
modified with lightweight customizations. In addition, SysML adds two new diagrams specifically de-
signed for modeling requirements and parametrics. The presence of a dedicated diagram for modeling
requirements sets SysML apart from UML, and is a decisive factor that allows SysML to be selected
as the key enabling modeling language of the developed framework. Some of these diagrams will be
discussed in more detail in the following chapters, and examples of the diagrams used in the novel
framework for KBE app development are presented in Section 6.2.1. Furthermore, SysML targets sys-
tems engineers, while UML targets software engineers [39]. Thus, SysML provides advantages for
defining complex systems by offering additional features such as satisfaction and allocation matrices,
which are essential for modeling the information and relationships related to the requirements, process,
and product knowledge needed to develop KBE applications.

3.4.2. Modeling Tool

A modeling tool is a software application used to create, edit, and manage models. Modeling tools
provide a graphical user interface (GUI) and other features that enable stakeholders to create and
manipulate models using a modeling language. Modeling tools can be used to create different types
of models, such as requirements models, design models, and behavioral models. The purpose of
a modeling tool is to enable stakeholders to create, manage, and analyze complex systems using
a standardized modeling language. Modeling tools can help stakeholders to create more accurate
and complete models, identify and resolve issues more quickly, and collaborate more effectively with
other stakeholders in the system development process. Modeling tools can also provide features for
simulation and analysis, enabling stakeholders to evaluate the behavior and performance of the system
being modeled.

There are several Commercial Off-The-Shelf (COTS) as well as Free and Open-Source Software
(FOSS) modeling tools available for implementing MBSE. Some of the most commonly used nowadays
are presented in Table 3.1. In addition to modeling knowledge, some of these tools also provide a
mechanism to automatically convert diagrammatic knowledge models into neutral language knowledge
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models that use an open standard file format called XML Metadata Interchange (XMI®), developed
by the Object Management Group (OMG). As a result, neutral language knowledge models in this
format can be opened and edited in other SysML modeling tools that support the XMI standard. This
is an important enabling step in speeding up the KBE application development process, which was not
previously possible with MOKA. Moreover, some modeling tools, such as Magic Systems of Systems
Architect (MSoSA), also support the automated translation of UML models into programming languages
such as Java or C++.

Table 3.1: Main Modeling Tools currently available for implementing MBSE

Modeling Tool Tool Vendor License Type
MSoSA2/ CSMP Dassault Systémes coTsh
ESDR® IBM COTS
EAd Sparx Systems COTS
Papyrus® Eclipse FOSS!
Capella’ Eclipse FOSS
Modellio? Modeliosoft FOSS

a8 MSoSA: Magic Systems of Systems Architect (Accessed: 20/03/2023)

b CSM: Cameo Systems Modeler (Accessed: 20/03/2023)

¢ ESDR: Engineering Systems Design Rhapsody (Accessed: 20/03/2023)
d EA: Enterprise Architect (Accessed: 20/03/2023)

€ https://www.eclipse.org/papyrus (Accessed: 20/03/2023)
fhttps://www.eclipse.org/capella (Accessed: 20/03/2023)

9 https://www.modeliosoft.com/en (Accessed: 20/03/2023)

h COTS: Commercial Off-The-Shelf

i FOSS: Free and Open-Source Software

When selecting a modeling tool, there are several assessment criteria that should be considered.
These criteria are as follows [10]:

1.

The functionality of the tool should be assessed to ensure it has the necessary features and
capabilities to create, manage, and analyze models, and to support specific modeling languages
and standards.

The usability of the tool should be evaluated to ensure that it is easy to use and intuitive, with a
clear and easily navigable user interface.

The scalability of the modeling tool should be considered to ensure that it can handle projects
of different sizes and complexities.

The integration of the tool should be consideration, as the modeling tool should be able to inte-
grate with other tools and systems used in the development process.

The customization capabilities are also important, as the tool should allow for customization
and configuration to meet the specific needs of the project, such as the ability to create custom
templates, add custom model elements, or create custom reports.

Lastly, a comprehensive documentation and support system should be available for the modeling
tool, including user manuals, online forums, and customer support, to ensure that any issues that
arise during the modeling process can be quickly resolved.

Shttps://www.omg.org/spec/XMI/ (Accessed: 16/03/2023)
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Magic Systems of Systems Architect / Cameo Systems Modeler

To identify the most suitable modeling tool for this research, a brief evaluation was conducted on
three widely used commercial modeling tools. This assessment was guided by recommendations from
the literature* [40] and involved hands-on experimentation with the tool most frequently recommended
(Magic Systems of Systems Architect / Cameo Systems Modeler). The author’s evaluation of these
tools against the aforementioned selection criteria is presented in Table 3.2. FOSS SysML modeling
tools were not included in this assessment. This decision was based on the fact that COTS SysML mod-
eling tools generally provide superior support and documentation, are well established in the industry,
and offer a stable platform with fewer bugs in comparison.

Table 3.2: Assessment of COTS modeling tools against specific selection criteria

Assessment Criteria MSoSA=® ESDR® EA°
Functionality + +/- -
Usability +/- +/- +/-
Scalability + + +
Integration + - +/-
Customization +/- +/- -
Support + +/- +/-

8 MSoSA: Magic Systems of Systems Architect (by Dassault Systemes)
b ESDR: Engineering Systems Design Rhapsody (by IBM)
¢ EA: Enterprise Architect (by Sparx Systems)

While evaluating the three SysML-compliant COTS modeling tools, Magic Systems of Systems Ar-
chitect (MSoSA), Engineering Systems Design Rhapsody (ESDR), and Enterprise Architect (EA), each
tool demonstrated strengths and weaknesses. However, MSoSA stood out as a pragmatic choice for
implementing MBSE, as it strictly enforces SysML'’s syntax and semantics, provides support for basic
requirements traceability, and allows to automatically export the SysML models to neutral language
models using the XMI industry-standard format. Despite the noted challenges at times with its complex
user interface, the tool’s extensive functionality and support made it a strong contender for the frame-
work’s specific requirements. In comparison, ESDR’s weak support for Activity diagrams and lack of
integration with multiple platforms, and EA’s limited enforcement of SysML well-formedness rules, and
crude extension mechanisms made them less favorable options. Therefore, based on the evaluation
of the key assessment criteria, Magic Systems of Systems Architect / Cameo Systems Modeler was se-
lected as the preferred modeling tool for formalizing KBE specific knowledge using SysML, as it offers
the most robust standards-compliant SysML solution. This is in alignment with the prevalent industry
practices [40].

3.4.3. Modeling Method

A modeling method is a systematic approach to creating, managing, and analyzing models that
comprehensively represent the various aspects of a complex system. It establishes a structured frame-
work for capturing the system’s requirements, architecture, behavior, and other relevant elements using
modeling languages like SysML. By offering guidelines, principles, and best practices, modeling meth-
ods ensure the creation of accurate, complete, and consistent models. These methods define the

“https://sysml.org/sysml-tools/
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specific activities involved in modeling, including the production and development of artifacts such as
diagrams [10]. The purpose of a modeling method is to ensure that models are created in a consistent
and repeatable way, enabling stakeholders to effectively communicate and collaborate with each other.
Modeling methods can help stakeholders improve the quality of the models being created, and ensure
that the models are aligned with the goals and objectives of the system being developed.

There are several modeling methods available in the literature, with several examples documented
by Estefan [41] in a Survey of Model-Based Systems Engineering Methodologies. Some of the most
notable modeling methods in MBSE are presented in Table 3.3.

Table 3.3: Notable Modeling Methods available for implementing MBSE

Modeling Method Method Developer
OOSEM? INCOSE
OPMP Dori
RUP SE° IBM
MagicGrid¢ Dassault Systemes

@ OOSEM: Object-Oriented Systems Engineering Method [10, 35]
b OPM: Object-Process Methodology [42]

¢ RUP SE: Rational Unified Process for Systems Engineering [43]
d MagicGrid [44]

MagicGrid

Anticipating the selected modeling method to be used in the novel framework for the development
of KBE applications (see Section 5.3.3), a brief introduction to the MagicGrid method is presented here.
The MagicGrid method is a culmination of best practices from numerous MBSE adoption projects and
is designed to be modified or extended to support specific customer needs [45].

The method’s compatibility with vanilla SysML, tool-independence (as long as the tool supports
SysML), and capability to be modified to support the specific scope being addressed are key factors
that justify its selection as the chosen modeling method to be implemented in the novel framework.

The MagicGrid method can be represented as a Zachman style matrix (see Figure 3.2) and is de-
signed to guide the engineers through the modeling process of complex systems.
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As illustrated in Figure 3.2, the MagicGrid method defines the Problem, Solution, and Implemen-
tation domains for the development of the system of interest (Sol). Each domain is represented as
an individual row within the MagicGrid matrix. The Problem domain row is further divided into two seg-
ments to indicate that defining the problem domain entails examining the Sol from both a black-box and
white-box perspective. The Solution domain row is subdivided into multiple inner rows to emphasize
the possibility of specifying the solution architecture at various levels of granularity. The Implementation
domain row is not fully highlighted like the upper rows, denoting that, apart from the implementation
requirements specification, other elements within this domain are not a part of MBSE and therefore
appear outside the scope of the matrix [44].

Each domain’s definition encompasses distinct aspects of the Sol, aligning with the four pillars of
SysML: Requirements, Structure, Behavior, and Parameters (also referred to as Parametrics). Addi-
tionally, the Safety & Reliability aspect is also considered. These aspects are represented as columns
within the matrix.

A cell located at the intersection of a specific row and column represents a view of the system model,
which may consist of one or more presentation artifacts. These artifacts can take the form of diagrams,
matrices, maps, or tables. The modeling workflow is defined by the order of the cells in a left-to-right
and top-to-bottom manner.



Research Objective and
Research Questions

This chapter presents the research objective and research questions that guide the performed research
work.

From the review on the state of the art of existing methodologies and current practices in the devel-
opment of KBE applications, it can be concluded that the existing methodologies have shortcomings
that consequently impact the time required to develop applications, their quality (i.e., requirement com-
pliance & traceability, maintainability, scalability, etc.), and the eventual capability to preserve and
efficiently reuse engineering knowledge. To improve the development of KBE applications and tackle
their current limitations, the following research objective of this thesis work is defined.

Research Objective

Create a methodological approach to improve KBE applications in terms of transparency,
requirements traceability, reuse of knowledge, and development time.

Considering MBSE’s promising capabilities in tackling the aforementioned challenges, the aim is to
achieve the research objective by creating a framework for developing KBE applications, that imple-
ments an MBSE-based methodological approach.

In order to verify the attainment of the research objective, the main research question is formulated
as:

Q.1. Main Research Question

“What is the impact of using MBSE to support the development of KBE applications in
terms of their transparency, requirements traceability, knowledge reuse, and
development time?”

To guide the research process, a set of sub-questions, derived logically from the main question, is
formulated. The main research question can initially be approached by answering the following sub-
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question:

“To which phases of the KBE app development process can MBSE be applied, and which
customizations are necessary to support it?”

As explained in Chapter 3, MBSE is primarily concerned with creating digital knowledge models
of complex systems. Hence, it can be expected that MBSE will be used in the proposed framework,
during the knowledge modeling (i.e., capture and formalization) phase of the KBE app development
process, to create digital knowledge models that capture the knowledge required for developing KBE
applications. As such, the following sub-question that could be addressed is:

“How to bridge the gap between the knowledge modeling phase and the code formulation
phase in the KBE app development process?”

As mentioned in Section 2.2.2, an effective approach to address the disconnection between knowl-
edge models and KBE application code, is the utilization of tools that automatically generate source
code from knowledge models. Therefore, this approach will be implemented in the current reserach
work. As such, a sub-question that originates naturally from this, can be formulated as:

“What is the maturity of the automatically generated KBE code in terms of completeness,
reliability, and quality?”
Furthermore, it is necessary to address considerations related to the maintenance and future devel-

opments of KBE applications. As such, the following sub-question must be answered:

“How to guarantee the synchronization and consistency between the knowledge models and
the KBE application encoding that knowledge?”



Development of the Novel
MBSE-for-KBE Framework

This chapter describes the development of the novel KBE app development framework based on MBSE
concepts. It begins by outlining the proposed key solutions to the identified challenges in KBE app
development. Subsequently, it provides an overview of the developed framework, highlighting its main
components and functionalities. The chapter then delves into a detailed explanation of the process
employed in creating the framework. Finally, a new KBE application development process is proposed,
utilizing the developed framework as a central component.

5.1. Framework Overview

In order to improve the current KBE app development process, it is necessary to address the chal-
lenges summarized in Section 2.3. The proposed key solutions to those challenges can be summarized
as follows:

1. To enhance the involvement of domain experts in the development of KBE applications, a new
knowledge formalization technique should be implemented, instead of the more complex ICARE
forms which are not intuitive for domain experts. The new knowledge formalization technique
should capture the KBE application’s requirements and associate them with appropriate pro-
cess steps and product features (i.e., a Requirement-Product-Process Ontology as shown in
Figure 5.1), which is a more intuitive approach for domain experts.

2. The outcome of the knowledge capture and formalization phase should consist of digital models
(instead of documents) that can be used to automatically generate neutral language knowledge
models. This will provide a direct connection between the formal knowledge models and the KBE
application code, thereby enabling automatic generation of code from the models.

3. The neutral language knowledge model should be utilized to automatically generate (part of) the
KBE application code. This will justify the effort spent on creating the formal knowledge model,
as developers will save time by generating the KBE application source code automatically.

27
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Figure 5.1: Relationships between Requirement, Process, and Product. The requirements can be satisfied by process steps or
product features. The process steps are associated to relevant product features by the allocation relationship of SysML.
Source: Adapted from [46]

A structured three-part research methodology was employed to implement the previously identified
key solutions. The first part involved defining an ontology (i.e., set of concepts and relationships be-
tween them) to effectively describe the knowledge involved in the development of KBE applications
namely, its requirements, processes, and products. This ontology is then mapped to the ontology of a
target KBE system, to establish a correspondence between the modeled knowledge and the language
of the KBE system. This is an essential step to support the automatic generation of application code
from a knowledge model. The second part identified a suitable modeling language, tool, and method
for capturing the engineering knowledge used in KBE app development. Finally, the third part involved
the development of translation engines that could be used to automatically generate skeleton code
from the knowledge models. It is important to note that the development process was not strictly linear
but rather iterative, with feedback and refinement loops between the three parts. The outcome of this
research methodology was the development of an MBSE-based KBE app development framework that
is schematically represented in Figure 5.2. In this research work the target KBE system was ParaPy.
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Figure 5.2: Overview of the MBSE-based Framework for KBE App Development. The dashed lines represent proposed func-
tionalities for future works, aimed at enhancing the capabilities of the framework beyond the scope of this research.
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The main components of the developed framework are the following:

» Formal System Model: A formal model of the system knowledge is created by a team of domain
experts and KBE developers. This model encompasses information about the system’s (i.e.,
KBE app) requirements, processes, and products. In this research, SysML is chosen as the
modeling language, and MSoSA is selected as the modeling tool, based on the criteria discussed
in Section 5.3.1 and Section 5.3.2, respectively.

» Knowledge Repository: Once the knowledge model reaches an adequate level of maturity, it
is exported and stored in a Knowledge Repository. The knowledge models are exported in the
neutral XML Metadata Interchange (XMI) standard, enabling them to be opened and edited in
other SysML modeling tools that support this standard.

The knowledge repository includes a collection of (primitive) geometry knowledge provided by
the target KBE system, as well as knowledge captured from previous projects and stored in the
XMI format. During the development of the formal system model in the modeling tool, existing
knowledge in the repository can be imported, facilitating effective knowledge reuse.

* Translation Engine: A Python-based code generator was developed in this research, the trans-
lation engine. lIts function is to automatically generate KBE application code by parsing neutral
language knowledge models stored in the XMI format. By leveraging the mapping between the
knowledge model and the target KBE system (see Section 5.2.3), the translation engine produces
the appropriate KBE code.

Currently, the translation engine is specifically designed to work with ParaPy. However, the
framework’s design, which incorporates a neutral language knowledge model and an explicit
mapping between the knowledge model and the KBE system, allows for easy extension to other
KBE languages. This can be achieved by establishing a similar mapping between the knowledge
model and the ontology specific to the new KBE language.

+ KBE Application: Depending on the level of detail in the system knowledge model, the trans-
lation engine can generate either a code skeleton or the complete application code. The code
skeleton consists of key classes, attributes, and their relationships in a correct file structure, while
the complete application code is ready for immediate use.

In the case of the code skeleton, KBE developers can augment it by manually adding the
programming-intensive aspects using specialized IDEs like PyCharm, which are better suited for
coding than SysML modeling tools.

Currently, the framework developed in this research is limited to generating application skeleton
code, whose development is acknowledged to be a critical part in the overall KBE app development
process. The skeleton code is then manually completed by the KBE application developer. However,
a potential issue arises when modifications are made to the knowledge model after manual code addi-
tions, as regenerating the code from the model would result in the loss of the previously added code.

To prevent this knowledge loss, there is a need for capabilities that enable the generation of the
knowledge model from the application source code, commonly known as reverse engineering [47].
Reverse engineering can be useful in the process of formalizing manually added code within the knowl-
edge model, as well as generating knowledge models from pre-existing KBE applications.

Furthermore, a “round-trip” functionality, which combines code generation and reverse-engineering
capabilities, could be developed. This functionality would enable domain experts and developers to
seamlessly transition between code and models, facilitating the validation, updating, and reuse of the
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underlying knowledge, while ensuring consistency and synchronization between the models and the
application code. However, the development of this functionality was considered beyond the scope of
this research and will be addressed in the future recommendations presented in Section 8.2.

The proposed framework does not seek to reject any ideas from the MOKA methodology, but rather
aims to extend and tailor them for a more comprehensive system description. This is achieved by uti-
lizing a more expressive formal model using SysML, as opposed to MOKA's formal model using MML.
Additionally, the proposed framework aims to streamline the KBE application development process by
eliminating the need for an informal knowledge model (MOKA's ICARE forms) and the involvement of
a specialized knowledge engineer. The proposed framework has the potential to allow for a knowledge
modeling step in the KBE application development process, while solving the problem of the discon-
nection between the knowledge models and the application code.

The three phases of the structured research methodology employed in the development of the
framework are described in the following sections.

5.2. Ontology Definition

An ontology is “an explicit description of concepts in a specific domain, defining a formal domain
vocabulary. An ontology defines relationships between the concepts in the domain, and adds attributes
to further specify a concept, making it a suitable means of capturing and reusing knowledge” [14].

The first part of the framework development focused on defining an ontology capable of describing
the knowledge involved in KBE applications and allow for an effective knowledge capture and formal-
ization. This ontology, referred to as the “Knowledge Ontology”, aims to define exactly which concepts
and relationships between those concepts can be captured in a formal knowledge model of a KBE appli-
cation. This gives domain experts and KBE developers a clear formal domain vocabulary for capturing
the knowledge systematically in digital models.

The definition of the Knowledge Ontology involved several key steps. Firstly, the foundational con-
cepts necessary for KBE application development were identified based on the top-level concepts (Re-
quirements, Process, and Product) illustrated in Figure 5.1. Secondly, the ontology of the target KBE
system, ParaPy, was examined, and the identified concepts and relationships were integrated into the
Knowledge Ontology. This integration is crucial for facilitating the mapping between the two ontologies,
in order to enable automatic code generation for the target KBE system from the modeled knowledge.
The third step involved identifying and incorporating specific elements and terminology from the chosen
modeling language, SysML, into the Knowledge Ontology. This step aimed to ensure that the ontology
aligned with the modeling language and allowed for the effective capture and representation of knowl-
edge using SysML. Finally, the last step consisted of mapping the Knowledge Ontology to the ontology
of the target KBE system. This is an essential step to enable automatic code generation, as it gives
information on what form the knowledge takes when represented as application code. Additionally, this
mapping serves as a validation mechanism to ensure that all elements in the knowledge model can be
effectively represented in the application code, and vice versa. An overview of the ontologies and their
mapping is presented in the following sections.
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5.2.1. Knowledge Ontology

Semantic Triples were employed as the chosen representation format for the developed Knowledge
Ontology. This decision was motivated by the format’s ability to express knowledge in a clear, unam-
biguous, and machine-readable manner [48], which aligns well with the goal of formalizing knowledge

in a digital model. In semantic triples, a subject is connected to an object via a predicate, as illustrated
in Figure 5.3.

Figure 5.3: Semantic Triples. Used to define how two concepts relate to each other.
Source: Adapted from [48]

In the context of KBE applications, the primary focus of domain experts and KBE developers re-
volves around Requirements, Process, and Product. Hence, these concepts were established as the
top-level components of the Knowledge Ontology. To comprehensively capture the knowledge neces-
sary for modeling and developing a complete KBE application, these top-level components were further
expanded into more specific concepts. The initial version of the Knowledge Ontology, encompassing
the foundational concepts pertinent to KBE application development, is depicted in Figure 5.4.

Figure 5.4: Initial Definition of the Knowledge Ontology considering only the foundational concepts involved in the development
of KBE applications
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In the initial definition of the Knowledge Ontology, within the Requirements sub-ontology, two founda-
tional concepts were identified, namely, Stakeholder Needs and (system) Requirements. Stakeholder
needs represent the users’ needs for the KBE application in an unstructured and general (ambiguous)
manner. On the other hand, requirements add structure and rules to those needs so that they are clear,
unambiguous, and verifiable.

Within the Process sub-ontology, two foundational concepts were identified, namely, Tasks per-
formed by the KBE application and the Steps required to complete each task. Tasks represent the dis-
tinct activities undertaken by the KBE application, while Steps outline the necessary actions or stages
involved in accomplishing each task.

Within the Product sub-ontology, two foundational concepts were identified, namely, Classes and
Attributes. Classes denote the different types of entities or objects relevant to the KBE application,
while Attributes specify the characteristics or properties associated with each class.

Through multiple iterations, the Knowledge Ontology was refined and expanded by incorporating
relevant concepts from the target KBE system and the modeling language. This iterative process aimed
to ensure the ontology’s completeness and suitability for its intended purpose. The final version of the
Knowledge Ontology, achieved after these refinement iterations, is presented in Figure 5.5. Additionally,
Table 5.1 provides definitions for the relationships among the various elements within the ontology.

Table 5.1: Definitions of the Relationships between Elements of the Knowledge Ontology and mapping of those Relationships
to SysML syntax.
Source: Adapted from [49]

Knowledge Type of . ] SysML syntax
. . Brief semantics
Ontology Relationship source target
“imports” The source element depends on
“derived from” Dependency the target element and may
“‘depends on” be affected by changes to it.
“satisfied by”
Y L The description of a set of
“allocated to” Association ) )
3 ) links between objects.
represented as
The t t el ti
“composed of” Composition © target element 1s

a part of the source element.

“contains”

Containment

The source element
contains the target element.

“specialization of”

“inherits from”

Generalization

The source elementis a
specialization of the
more general target element.

“instance of”

Realization

The source element guarantees to
carry out the contract specified
by the target element.
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Figure 5.5: Final Definition of the Knowledge Ontology after incorporating the concepts from the target KBE system (ParaPy) and
the modeling language (SysML). The foundational concepts previously identified (with different terminology) are represented with

a red star, the concepts incorporated from the target KBE system ontology are represented with a green star, and the concepts

incorporated from the modeling language are represented with a blue star.
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The main element of the final Knowledge Ontology is the Model, which contains all the knowledge
required to build the KBE application. A Model must contain at least three Packages, namely, Re-
quirements, Process, and Product - the top-level elements of the ontology. Each of these packages
may contain other packages to help better organize the model. A Model may also import Packages
from other Models, facilitating project-to-project knowledge transfer. These top-level elements and
their more specific concepts that must be considered in order to capture the knowledge required to
model/develop a complete KBE application are briefly explained in the following paragraphs.

Requirements Package

The Requirements package is used to capture stakeholder needs and (system) requirements. Each
Requirement must be (implicitly) derived from at least one Stakeholder Need and can also be derived
from other requirements. A requirement must be satisfied by elements from either the Process or
Product packages. Three specific types of requirements are considered, namely Physical Requirement,
Performance Requirement, and Functional Requirement.

Process Package

The Process package is used to represent the behavior of the system (i.e., KBE application) by
capturing its Use Cases and its Activities. Activities and Use Cases are composed of smaller atomic
elements called Actions, which capture a basic step of the system functionality within the specific Activity
or Use Case. Actions must be allocated to elements of the Product package that are responsible for
performing them. Additionally, activities that are performed outside the KBE app are also considered,
which were named External Services. It must be noted that KBE applications do not need to have
their behavior/process explicitly defined, because it is implicitly handled by the dependency tracking
capabilities of KBE systems. The main goal of modeling the Process of a KBE application is to increase
the transparency and traceability of knowledge within the KBE app, thereby decreasing its black-box
perception.

Product Package

The Product package is used to represent the structure of the system by capturing the conceptual
subsystems that are part of the KBE application. These subsystems are captured in what SysML
calls Blocks (equivalent to UML's classes). Blocks are composed of smaller atomic elements called
Properties, which may depend on each other. Five specific types of Properties were considered, namely
Input, Attribute, Part, Action, and Method. These types are directly associated with the slots of the
ParaPy ontology (see Figure 5.6). Additionally, tools external to the KBE app are also considered,
which were named External Tools. External Tools are composed of External Functions, which can be
connected to Attributes.

5.2.2. ParaPy Ontology

The ontology of the target KBE system (in this case ParaPy) was also identified, and is presented
in Figure 5.6. This is an essential step so that later the Knowledge Ontology can be mapped to the
ontology of the target KBE system.
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Figure 5.6: Definition of the ParaPy Ontology. The elements represented in gray are external to the ParaPy KBE system, but
must still be considered during the development of a KBE application since the application interacts with them.

The main element of the ParaPy Ontology is the (KBE) Application. The Application can be com-
posed of multiple Packages, each of which can contain other Packages, to help organize the Application
into logically cohesive groups. Packages may also contain Modules (.py files) that contain the appli-
cation source-code. Each Module is composed of at least one Class. Classes are composed of Slots,
i.e., attributes from the OOP paradigm that specify the characteristics of each class (see Figure 2.2).
Additionally, Classes may also be composed of Methods, i.e., normal Python class methods. Slots
may depend on other Slots or Methods. The three main types of Slots are Input, Attribute, and Part.
Additionally, Derived Input and Action are special types of Input and Attribute, respectively.

5.2.3. Mapping between the Knowledge Ontology and the ParaPy Ontology

Finally, the Knowledge Ontology was mapped to the ParaPy Ontology in order to enable knowledge
traceability from the Knowledge Base to the KBE application code. As previously mentioned, this con-
stitutes an essential step to enable (semi) automatic generation of KBE applications from knowledge
models. This mapping is presented in Figure 5.7.
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It is important to highlight that the mapping process between the Knowledge Ontology and the
ParaPy Ontology focused solely on the Product package. The decision to exclude the mapping of
elements from the Process package was based on the intrinsic capabilities of ParaPy-based KBE ap-
plications. As previously explained, these applications possess a dependency-tracking mechanism,
which determines the appropriate sequence of slot evaluations. Consequently, there is no need to ex-
plicitly map the elements from the Process package to achieve the desired behavior in the application.
The dependency tracking mechanism in ParaPy handles the sequencing of evaluations, ensuring that
the necessary processes are executed in the correct order.

Furthermore, it is important to highlight that most elements of the ontologies have a one-to-one
mapping, except for the Block and Input elements of the Knowledge Ontology.

The Block element of the Knowledge Ontology maps to the Module and Class elements of the
ParaPy Ontology because each Block generates a Module with a single Class inside of it. It should be
noted that while most programming languages adhere to this one-class-per-module structure, Python
allows for the definition of multiple classes within a single module. Consequently, this presents a current
limitation within the developed framework, which will be addressed in the future recommendations
outlined in Section 8.2. To overcome this limitation in the current framework, a workaround can be
applied by grouping all Blocks that define Classes intended to be within the same Module inside a
single Package. This ensures that the desired structure and organization are maintained, despite the
constraint imposed by the framework.

The Input element of the Knowledge Ontology maps to the Input and Derived Input elements of
the ParaPy Ontology. However, this does not constitute a limitation because the Input element of the
Knowledge Ontology was defined in a way that can automatically handle both cases of the ParaPy
Ontology.

5.3. Selection and Tailoring of MBSE Key Components

The second part of the framework development focused on selecting the three pillars required in
order to effectively apply Model-Based Systems Engineering to produce and control a coherent system
model. Moreover, this phase involved tailoring these pillars for the purpose of supporting the devel-
opment of KBE applications. The three pillars are the modeling language, tool, and method. Their
description and selection criteria will be further discussed in the following subsections.

5.3.1. Modeling Language

For the purpose of this research, the Systems Modeling Language (SysML) was selected as the
graphical modeling language for MBSE due to its extensive usage and established reputation for meet-
ing industry standards. The rich semantic and expressiveness of the SysML diagrams, together with
their flexibility but conceptual rigor, make it a suitable modeling language for the purpose of modeling
the knowledge required for developing KBE applications. SysML offers three major types of diagrams
that support the modeling of Requirements, Behavior (Process information), and Structure (Product
structure), allowing to fully capture the top-level concepts of the previously defined Knowledge Ontol-
ogy.

SysML itself is extendible to support domain-specific needs or a specific methodology. This is es-
sential in order to tailor it to specific needs of KBE application development. SysML includes several
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diagrams that are not relevant for developing KBE applications. Thus, with the goal of tailoring the lan-
guage to the precise scope being addressed, a subset of SysML called SysML-for-KBE (adapted from
the SysML-Lite originally proposed by Friedenthal et al. [10]) is proposed as the modeling language to
be used to support formal knowledge modeling in the development of KBE applications.

SysML-for-KBE includes five of the nine SysML diagrams, and a small subset of the available lan-
guage features for each diagram kind. The included diagrams are Requirements, Use Case, Activity,
Block Definition, and Internal Block, and are briefly explained as follows:

1. The Requirements Diagram is used to represent text-based requirements and their relationships
to other requirements, design elements, and test cases, supporting requirements traceability.

2. The Use Case Diagram is used to represent the functionality of a system in terms of how external
entities, also known as actors, use it to achieve a specific set of objectives.

3. The Activity Diagram is used to represent behavior in terms of the order in which actions execute,
based on inputs, outputs, and control, as well as how the actions transform inputs to outputs.

4. The Block Definition Diagram is used to represent structural elements called blocks, and their
composition and classification.

5. The Internal Block Diagram is used to represent the interconnections and interfaces between
the components of a block.

Detailed notation tables that describe the symbols used in these diagrams can be found in [10].

Additionally, SysML-for-KBE includes two special matrices that help engineers in assessing the
compliance of requirements and guaranteeing that all the tasks that must be performed by a KBE
application are incorporated in the source code. These matrices are the following:

1. The Satisfy Requirements Matrix, which specifies the product and process elements that satisfy
a given requirement.

2. The Allocation Matrix, which identifies the product elements that perform a given task/action.

Examples of each diagram kind and matrix utilized in SysML-for-KBE are presented in Section 6.2.1.

Furthermore, SysML-for-KBE was tailored through the definition of specific stereotypes. These
stereotypes were introduced to enhance the ability of the modeling language to capture the knowledge
necessary for developing KBE applications. In alignment with the concepts identified in the Knowledge
Ontology, custom stereotypes were created (see Figure 5.8) to represent the following concepts:

* Input, Attribute, Part, Action, Method, and External Function. These stereotypes were defined by
extending the Property Metaclass of SysML.

» External Tool and External Service. These stereotypes were defined by extending the Element
Metaclass of SysML.

» Stakeholder Need. This stereotype was defined by specializing the Requirement Stereotype of
SysML.

The selection of the appropriate metaclass for each stereotype was carefully made to restrict their
application to specific SysML elements. This deliberate choice ensures the proper usage of the stereo-
types by domain experts and KBE developers during the modeling process. The correct usage of these
stereotypes in the models is essential to enable the automatic translation of knowledge from the models
into KBE application code (further details on this will be discussed in Section 5.4.1).
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Figure 5.8: Definition of the KBE-specific stereotypes for SysML

5.3.2. Modeling Tool

For the purpose of this research, any SysML-compliant modeling tool could have been selected.
Based on advice from the literature (see Section 3.4.2), the chosen modeling tool was the industry-
leading Magic Systems of Systems Architect (MSoSA) / Cameo Systems Modeler (CSM) developed
by Dassault Systémes. A key feature of MSoSA that motivated its selection as the chosen modeling
tool for the developed framework was its capability to automatically export the SysML models to neutral
language models in the XMI industry-standard format. This feature played a crucial role in enabling the
subsequent automatic generation of KBE application code from the models.

A breakdown of the user interface of MSoSA is presented in Figure 5.9. The main concepts pre-
sented are also common to most modeling tools currently available.
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In summary, the typical user interface of an MBSE modeling tool is composed of various components

such as the main menu, main toolbar, diagram toolbar, model browser, diagram palette, and diagram
pane. These components are described as follows:

* The main menu is the top-level menu in a modeling tool that typically contains options for opening,
saving, and closing models, as well as options for configuring the tool’s settings, accessing help
documentation, and performing other administrative tasks.

* The main toolbar is a collection of buttons or icons located below the main menu in a modeling
tool that provides quick access to commonly used commands, such as creating new diagrams,
adding elements to the model, and saving changes.

» The diagram toolbar is a collection of buttons or icons located above a diagram pane in a model-
ing tool that provides quick access to commands specific to the currently selected diagram, such
as changing the view or layout of the diagram, adding annotations or text labels, and adjusting
the zoom level.

» The model browser is a pane or window in a modeling tool that displays a hierarchical view of the
model’s elements and their relationships. It is typically used to navigate and manage the model’s
contents, and may include features such as filtering, searching, and grouping elements by type
or other criteria.

» The diagram palette is a collection of pre-defined shapes or symbols that can be used to create
diagrams in a modeling tool. It is typically displayed as a pane or window that can be opened
or closed as needed, and may include multiple categories of shapes or symbols based on the
modeling language or notation being used.

* Finally, the diagram pane is the main area of a modeling tool where diagrams are created, edited,
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and viewed. It typically occupies the largest portion of the tool’s interface and can be customized
to show or hide various elements, such as grid lines, rulers, and object snap settings.

Understanding these different components of an MBSE modeling tool’s user interface is essential for
efficient and effective modeling.

5.3.3. Modeling Method

Effective use of a modeling language requires a well-defined MBSE method. SysML has been de-
veloped with the aim of supporting multiple systems engineering methods. The selection of a particular
method is based on various criteria, including the method’s ease of use, ability to address the range
of systems engineering concerns, and the level of tool support [10]. Taking these criteria into account,
the MagicGrid method [44] was adopted and tailored for the purpose of this research work.

The customizations made to MagicGrid aimed to tailor the method for the development of KBE ap-
plications and to simplify the modeling process by reducing the number of concepts, constructs, and
steps required. This led to the development of MagicGrid-for-KBE, a modified version of the MagicGrid
method that is intended to provide guidance to engineers as they navigate the modeling process for
developing KBE applications. MagicGrid-for-KBE answers important questions such as how to orga-
nize the model, what the modeling workflow is, what artifacts should be produced in each step of the
workflow, and how these artifacts are connected.

The MagicGrid-for-KBE method can be represented as a simplified Zachman style matrix. This
matrix consists of the three main ontological concepts that are essential when dealing with KBE ap-
plications, namely Requirements, Process, and Product, which are represented as columns. Further-
more, the method considers two perspectives of the problem domain, namely Black Box and White Box,
which are represented as rows. The Black Box perspective focuses on the system’s external behavior
and functionality, without delving into its internal workings or implementation details. The White Box
perspective involves a more detailed examination of the system, focusing on its internal structure, com-
ponents, and inner workings. Each element in the matrix represents a view of the system model, which
can consist of one or more presentation artifacts. A presentation artifact can be a (SysML) diagram,
or matrix. The MagicGrid-for-KBE method is depicted in Figure 5.10, providing a visual illustration of
the method’s structure and organization, as well as the presentation artifacts that each system model
view may consist of. The modeling workflow is defined by the order of the cells in a left-to-right and
top-to-bottom manner.



5.3. Selection and Tailoring of MBSE Key Components 42

requremne | oo | prome

X

o 5 Stakeholder Needs: Use Cases: System Context:

2 ~ - Requirement Diagram - Use Case Diagram - Internal Block Diagram

"6 & - Requirement Table - Activity Diagram

@ ]

Q

(7))

B

() 5 s R : . - :

o 2 VSte'P eqmrements. Functional Analysis:  System Structure:
o - Requirement Diagram - Activity Diagram - Block Definition Diagram
‘= - Requirement Table - Allocation Matrix - Internal Block Diagram
= - Derive Requirement Matrix

- Satisfy Requirement Matrix

Figure 5.10: Matrix representation of the MagicGrid-for-KBE method illustrating the different system model views. The gray
cells highlight the system model views, indicated by the text in bold. The dashed points within each cell represent the various
types of presentation artifacts that can be included in each view.

Source: Adapted from [45]

In the problem domain analysis, two phases are carried out to define the System of Interest (Sol),
i.e., the KBE application. In the first phase, the Sol is treated as a black box, focusing on how it interacts
with the environment without getting any knowledge about its internal structure and behavior. In the
second phase, the Sol is considered from a white-box perspective, allowing for an understanding of its
expected behavior and conceptual structure. Both phases involve defining the requirements, process,
and product of the Sol, with the only difference being the perspective taken. The following paragraphs
provide a description of each view of the system model, presented in the order that corresponds to
the modeling workflow. An overview of these system model views, with (simplified) examples of the
presentation artifacts that each view may contain, is illustrated in Figure 5.12.

1. Stakeholder Needs

The Stakeholder Needs cell represents information gathered from various stakeholders of the Sol,
including primary user requirements, government regulations, policies, procedures, and more. The
later refinements in the model make these stakeholder needs structured and formalized.

SysML requirements diagrams or tables, or both, are used to capture and document stakeholder
needs.

2. Use Cases

The Use Cases cell identifies how the Sol is expected to interact with the user and other systems.
In this cell, functional stakeholder needs are refined by defining one or more use cases and use case
scenarios. In comparison to stakeholder needs, use cases provide a more detailed and precise de-
scription of the desired behavior of the system and the intended outcomes of its use. Each use case
must belong to one or more system contexts defined in the System Context cell. Each use case must
have a primary scenario and can also include alternative scenarios.

SysML use case diagrams are used to capture and document use cases, while SysML activity
diagrams are used to capture and document use case scenarios.
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3. System Context

The System Context cell defines an external view of the Sol at a high level of abstraction. It outlines
all external entities that interact with the system but are not part of it. In addition to the Sol itself, the
elements of a specific system context can encompass external systems and users that interact with
the Sol. These entities and their interactions are considered as inputs and outputs of the Sol and are
crucial for understanding the system’s behavior in its operational environment.

SysML internal block diagrams are used to capture and document the system context.

4. System Requirements

The System Requirements cell specifies the technical requirements that the system must satisfy.
These requirements are derived from stakeholder needs during the definition of the functional analysis
and system structure view specifications, and can be updated at any time during the development of
the system architecture. Unlike stakeholder needs, system requirements are verifiable, and traceabil-
ity relationships must be established to assert which elements of the system architecture fulfill which
system requirements.

SysML requirements diagrams or tables, or both, are used to capture and document system require-
ments, while SysML satisfy requirements matrices are used to capture and document which elements
of the systems architecture fulfill each requirement.

5. Functional Analysis

The Functional Analysis cell is the logical continuation of the Use Cases cell. It involves decompos-
ing each top-level function performed by the Sol, previously identified during the black-box analysis,
and repeating this process iteratively until the desired level of detail is reached for the given project.
This breakdown allows for the identification of the conceptual subsystems, or functional blocks, re-
sponsible for performing each function. The goal is to ensure that all functions required by the system
are identified and analyzed thoroughly, allowing for a comprehensive understanding of the system’s
behavior.

SysML activity diagrams are used to capture and document the functional analysis. From the re-
sulting model of the expected system behavior, it is possible to extract an activity decomposition map
that begins with the high-level goals of the Sol and ends with its expected functions.

6. System Structure

While the functional analysis cell helps identify conceptual subsystems, the System Structure cell
captures them in the model. These conceptual subsystems are a group of interconnected and interac-
tive parts that perform one or more expected functions of the Sol. Each conceptual subsystem should
be decomposed into a more elementary structure, until the desired level of detail is reached for a given
project.

A combination of both SysML block definition diagrams and SysML internal block diagrams are used
to capture and document this view.

Upon successful capture of the conceptual subsystems in the model, functions are allocated to each
subsystem in order to specify which functions they perform. It is important to note that the granularity
of expected system behavior and structure must be consistent in each level of detail, as illustrated in
Figure 5.11. SysML allocation matrices are used to capture and document the traceability between
elements of the functional analysis and elements of the system structure.
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A template has been developed within the modeling tool (MSoSA) to facilitate the implementation of
the MagicGrid-for-KBE method. This template offers users the advantage of skipping the setup process
for a new project and provides them with an appropriate starting point for their modeling activities.
Furthermore, the template serves as a guide throughout the modeling process by offering direct access
to the various system model views and providing textual descriptions of the expected knowledge to be
captured in each view. Furthermore, it ensures the proper organization of the model and includes
dedicated tables and maps that give the user a better overview of the model. The initial frame/page of
the template can be seen within the diagram pane shown in Figure 5.9.
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Figure 5.12: Overview of the MagicGrid-for-KBE method illustrating (simplified) examples of the presentation artifacts contained

in each system model view.

Source: Adapted from [45]
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5.4. Automatic Generation of KBE Application Code

The third part of the framework development focused on developing dedicated translators to parse
the knowledge model and automatically generate source code for the targeted KBE system. Further-
more, a Graphical User Interface (GUI) was developed to facilitate the process of translating the dif-
ferent knowledge representations, and to increase the transparency of KBE applications by allowing
traceability of requirements from the knowledge model to the application code.

5.4.1. Translation Engines

Following the generation of a (complete) SysML model in MSoSA, the information contained within
can be exported to a file format that is compatible with other tools for additional manipulations and
transformations. To enable this, MSoSA employs the use of XML Metadata Interchange (XMI), a stan-
dard established by the Object Management Group (OMG) for metadata exchange using Extensible
Markup Language (XML). By selecting the “UML 2.5 XMI File” option from MSoSA’s export menu, an
XML file (in the XMI standard) is created containing all the information present in the SysML model,
which serves as the main entry point to the developed technological solution.

The developed technological solution for translating the various knowledge representations is com-
posed of two translation engines created using Python. The first translation engine converts the XML
file exported from MSoSA to a intermediate file in JSON format, while the second translation engine
converts the JSON file to the target KBE language (ParaPy). This translation process is illustrated in
Figure 5.13.

ool

XMI Para
I

<) {-} @
XML| @ E PY

Z==3 ==

XML-to-JSON JSON-to-ParaPy
Translation Engine Translation Engine

Figure 5.13: lllustration of the translation process from MSoSA's XMI to ParaPy’s Python-based code

During the development of the translation engines, the following best practices for software devel-
opment were followed:

1. The primary focus was on writing code that is clear and easily understandable, striving for self-
documentation whenever possible. This involved using meaningful names for variables and func-
tions, dividing the code into small, modular functions, adhering to a consistent coding style fol-
lowing PEP8 conventions, employing a logical and meaningful structure for organizing the code,
and ensuring that the code was concise and expressive.

2. Ininstances where the code remained unclear or could not be further simplified, comments were
included to provide additional clarity and explanations.
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3. Regardless of the code’s clarity and the presence of comments, functions and methods were
accompanied by docstrings, which serve as documentation to describe their purpose, parameters,
and return values.

By implementing these practices, the code aimed to convey its intentions and functionality effec-
tively, minimizing the need for extensive external documentation.

The elements involved in the knowledge translation process are discussed in the following subsec-
tions.

Intermediate JSON File

The main reason for converting the XML file exported from MSoSA to an intermediate file in JSON
format was to facilitate the practical implementation of code generation. While it is technically possible
to directly convert the XML file to ParaPy code, this approach is considerably more complex.

The XML file contains a substantial amount of information that is irrelevant for automatically gener-
ating the KBE application source code, such as geometrical and positional details about diagrams and
their elements. Moreover, the pertinent information for source code generation is scattered across dif-
ferent sections of the large XML file. This poses challenges in parsing the file to extract the necessary
information while simultaneously writing the ParaPy code. Consequently, the translation engine’s code
would become overly intricate and difficult to comprehend and develop.

To address these complexities, a two-step process is adopted. First, the necessary information is
extracted from the XML file and stored in an intermediate JSON file. Then, this intermediate file is
utilized to generate the ParaPy code.

The decision to employ JSON as the intermediate file format instead of XML was based on two
considerations. Firstly, JSON offers improved human-readability compared to XML, facilitating the
identification of information within the file and simplifying the development of the second translation
engine responsible for translating the information into ParaPy code. Secondly, JSON aligns with the
format used by ParaPy’s Visual Editor to store model information (albeit with a slightly different schema
due to the differing nature of knowledge captured in ParaPy’s Visual Editor models). Therefore, JSON
emerged as a viable option for this research.

Furthermore, the existence of an intermediate file (in JSON format) offers the advantage of fa-
cilitating future expansions to the developed framework by providing an additional entry point to the
knowledge translation process.

In the future, users of the MBSE-for-KBE framework may not be restricted to using MSoSA as the
exclusive modeling tool for creating their SysML models and exporting XML files. They may have
the flexibility to choose alternative tools capable of exporting files in different formats. Developing a
translation engine capable of directly converting these formats to KBE code would likely be complex,
as previously explained.

Therefore, if these users develop their own translation engine that can convert the format exported
from their modeling tool into a JSON format adhering the JSON schema defined in this research, they
can utilize the JSON-to-ParaPy translator developed in this research to automatically generate source
code for the ParaPy KBE system. This flexibility allows users to leverage various modeling tools based
on their preferences or project requirements, provided they also create the [exported_file format]-to-
JSON translator.
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Another benefit of having an intermediate JSON file is that users who employ MSoSA as their mod-
eling tool but target a different KBE system can still export their models to the XML format provided
by MSoSA. Subsequently, they can extract the relevant information from these files into a JSON file
using the XML-to-JSON translation engine developed in this research. These users would then need to
develop their own translation engine to automatically generate code for their target KBE system from
the JSON file (i.e., JSON-to-[target KBE system_format] translation engine. It is important to note
that in this approach, modifications or extensions may be necessary to the schema of the JSON file to
accommodate the ontology of the specific KBE system being targeted. This implies that the XML-to-
JSON translation engine developed in this research would require some changes or additions. On the
positive side, these users would already have the XML-to-JSON translator developed in this research
as a foundation, thereby eliminating the need to create their own XML-to-JSON translator from scratch.

XML-to-JSON Translation Engine

The XML-to-JSON translation engine parses the XML file and identifies the various model elements
(i.e., data within the file) relevant for generating the source code of the KBE application based on their
tags and attributes. Additionally, it determines the type of each element based on the stereotype ap-
plied to it during the modeling process, enabling the translation of the elements into the appropriate
ParaPy slots. Finally, it consolidates this extracted information into a well-structured, tree-like format
represented in JSON. This consolidation significantly reduces the file size compared to the original XML
file while facilitating easy access and management of the information within the JSSON structure. A sim-
plified example of the data contained in an XML file is presented in Figure 5.14a. And the corresponding
JSON file is presented in Figure 5.14b.

:type='uml:Model' xmi:id='0"' name='Wing Model'>
lement xmi:type='uml:Class' xmi:id='2"' name='Wing'>
rit xmi:type="uml:Property' name="root_chord'/>
e xmi:type='uml:Property’ i ' name="tip_chord'/>
e xmi:type='uml:Property' x ' name='span'/>
‘uml:Property’ ' name='taper_ratio'/>
' name='root_airfoil'/>
' name='tip_airfoil'/>
e xmi:type='uml:Property' i:id="9"' name='wing_surface'/>

t xmi:id="'3_application' base_Property='3'/>

it xmi:id="4_application' base_Property='4'/>

5_application' base_Property='5"'/>
xmi:id='6_application' base_Property='6"'/>

'7_application' base_Property='7"'/>

'8_application' base_Property='8"'/>

t xmi:id='9_application' base_Property='9'/>

(a) Example of the data contained in an XML file. The tags, attribute names, and attribute (b) Example of the data contained in the
values of each model element are denoted by red, yellow, and green text, respectively. corresponding JSON file

Figure 5.14: Comparison of the data contained in an XML file and its corresponding JSON representation after its translation by
the XML-to-JSON translation engine

To illustrate the link between the Knowledge Ontology developed in this research and the structure
of the JSON file, a slightly more elaborate (general) example of the data structure of the JSON file
that is automatically generated by the XML-to-JSON translation engine is shown in Figure 5.15. The
complete formal description of the data schema of the JSON files is presented in Appendix B.
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1 {

2 "Product": -

3 "[Package_1]":{

4 "[Class_1]": {},

5 Uiclasay 21" =4}

6 1

7 "[Class_3]"t—F

8 Pactions"k—{}

9 "attributes": {},
10 "documentation": "",
1" "hyperlinks": [],
12 "import methods": {},
13 "inheritance": [],
14 "inputs": {},

15 "methods":{};

16 "name”: "%,

17 "parts" :(=EF

18 e

19 "[Package_2]": {}

20 17

21 "Requirements": {

22 "[Requirement _1]": {

23 "derived from": [],
24 Hifi g s

25 "namellt N

26 "satisfy slots": {},
27 "text": "",

28 "type": ""

29 1,

30 "[Requirement_2]": {}
31 }

2 }

Figure 5.15: Example of the data structure of the JSON file. The dashed boxes in red, green, and blue illustrate the relationship
between the elements of the file and the elements of the Knowledge Ontology. The dashed boxes in yellow illustrate the stan-
dardized representation of different types of model elements contained in the JSON file.

JSON-to-ParaPy Translation Engine

The JSON-to-ParaPy translation engine parses the JSON file generated by the XML-to-JSON trans-
lation engine. It identifies the contents of the JSON file by analyzing their internal (standardized) struc-
ture and generates Python modules (files) with the necessary ParaPy code. Each module corresponds
to the information extracted from a Class defined within the JSON file due to the mapping established
between the Knowledge Ontology and the ParaPy Ontology (as explained in Section 5.2.3).

Furthermore, this translation engine also generates the Packages defined in the JSON file and
places the Modules inside the corresponding Package, ensuring the correct organization of the KBE
application source code. The internal structure of the KBE application that would have been generated
from the example JSON file presented in Figure 5.15 is illustrated in the directory tree presented in
Figure 5.16. Note that only elements of the Product package are used to generate the KBE application.
No application code is generated from the elements of the Requirements package, as these elements
are only used for providing requirements traceability through the Graphical User Interface developed
in this research (see Section 5.4.2).
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Figure 5.16: Directory tree showcasing an example of the internal structure of a (generic) KBE application automatically gener-
ated by the JSON-to-ParaPy translation engine

Depending on the level of detail of the system knowledge model, and thus in the JSON file, the
JSON-to-ParaPy translation engine can generate either a code skeleton (i.e., key classes, slots and
their relationships in a correct file structure) or the complete application code that is ready for use.
An example highlighting the similarities and differences between the automatically generated skeleton
code and the manually complete code is presented in Figure 5.17.

class Airfoil: class Airfoil:
airfoil_name: str = Input() airfoil_name: str = Input()
chord: float = Input() chord: float = Input()
thickness_factor: float = Input(1.0) thickness_factor: float = Input(1.0)
@Attribute @Attribute
def points(self) -> list[Point]: def points(self) -> list[Point]:
"""points (docstring)...""" ""points (docstring)..."""
raise NotImplementedError( airfoil_file = self.airfoil_name + '.dat’
"The 'points' attribute has not yet been implemented!") file_path = AIRFOIL_DIR / airfoil_file

with open(file_path, 'r') as file:
Automatically generated (skeleton) code point_st = []
for line in file:

tesian coor

X, z = line.split('
point_lst.append(self.position.translate(

he x points a

x", float(x) * self.chord,
"z", float(z) * self.chord * self.thickness_factor))

return point_lst

Manually completed code

Figure 5.17: Comparison between the automatically generated skeleton code (on the left) and the manually completed code
(on the right). The green and red dashed boxes highlight the similarities and differences, respectively, between the two codes.

5.4.2. Graphical User Interface

To enhance the usability of the translation engines and provide additional functionalities for trace-
ability of requirements, a graphical user interface (GUI) was developed. The GUI consists of two main
tabs: the Translation Engines tab and the Requirements Traceability tab.
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MBSE for KBE

Requirements Traceability
Translate XML --> JSON

[ ]
[

1 Select XML File

Translate XML --> JSON --> ParaPy

1 Select XML File 2.

Selected File:
/Users/fabiofernandes/Desktop/Simple Airplane.xml

2. Translate Selected File

Done!

Elapsed time: 0.79 seconds Translate JSON --> ParaPy

Path to .JSON File:

U " o imple Airplane.json 1. Select .JSON File

Open .JSON File

Path to KBE App Repository:
i ; ;

Open KBE App Repository

Figure 5.18: GUI Translation Engines Tab

The Translation Engines tab, depicted in Figure 5.18, is divided into three sections corresponding to
different types of possible file translations/conversions. This division was implemented to offer flexibility
and modularity, allowing for future developments as discussed above. These sections are described
as follows:

» The left section, Translate XML — JSON — ParaPy, serves as the main functionality of the frame-
work, enabling the user to directly translate an XML file to JSON and create the KBE Application
simultaneously.

» The top right section, Translate XML — JSON, enables the translation of XML files into the
intermediate file in JSON format. The idea behind this section is to accommodate users who
generate SysML models using MSoSA but are not using ParaPy as their target KBE system, and
thus intend to use a different translation engine to generate their KBE Application.

» The bottom right section, Translate JSON — ParaPy, enables the automatic creation of a KBE
Application from a intermediate file in JSON format. This section intends to accommodate users
whose target KBE system is ParaPy but are not using MSoSA to generate their SysML models.
Instead, these users can employ alternative modeling tools that export models in a format different
from the XMI used in this research. These models, in a different format, can then be translated
into a JSON file containing the relevant model information using translation engines that the users
need to develop. Users can then leverage this section to translate the JSON file and generate a
ParaPy-based KBE Application.

Additionally, to ensure the validity of a JSON file that was not automatically generated us-
ing the provided XML-to-JSON translation engine, users can validate the data structure of their
JSON file by clicking the ‘Validate .JSON File’ button, which utilizes the JSON Schema outlined
in Appendix B to inform the user whether the file adheres to the required schema and is deemed
valid.
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® [ ] MBSE for KBE
Translation Engines
Simple Airplane
1. Select Requirements File: Requirement ID: Requirement Name: Requirement Type: Derived From:
Select .JSON File SR-4 Horizontal Tail Physical Requirement SR-2.3: Empennage
Requirement Text: Traceability in the Model:

Selected File:
4 .

Airplane. The airplane shall have a horizontal tail positioned on the Product
A fuselage. Aircraft

right_horizontal_tail

2. Select Requirement:
Requirements
SR-1: KBE App Specification
SR-2: Simple Airplane Specification

SR-2.1: Wings
SR-2.2: Fuselage . L Open Code File
SR-2.3: Empennage 3. Select Satisfying Element: Satisfying Element Code:

SR-2.4: Engines Show Docstring

SR-3: Payload Volume left_horizontal_tail @Part

SR-4: Horizontal Tail def right_horizontal _tail(self):

return LiftingSurface(
dihedral=None,
root_airfoil=self.right_wing.root_airfoil,

SR-5: Vertical Tail

root_chord=None,

span=None,

sweep=None,
tip_airfoil=self.right_wing.tip_airfoil,
tip_chord=None)

Figure 5.19: GUI Requirements Traceability Tab

The Requirements Traceability tab, depicted in Figure 5.19, provides functionality for tracing require-
ments from the knowledge model to the application code. To initiate the process of tracing requirements,
users are required to:

1. Select in section ‘1. Select Requirements File’ a JSON file containing information about the
product and requirements of the KBE application (this is the same JSON file that was used to
previously generate the KBE app using the appropriate translation engine).

2. After selecting afile, the ‘2. Select Requirement’ tree widget is automatically populated, allowing
users to choose a specific requirement. Upon selecting a requirement, detailed information about
the selected requirement is then displayed to the user, including the requirement’s ID, name, type,
text, and any requirements from which it is derived.

3. The ‘3. Select Satisfying Element’ list widget is then automatically populated with elements that
satisfy the selected requirement. Users are expected to choose one of the elements from this list.
Upon selection, the path to the element in the SysML model is displayed in the ‘Traceability in
the Model’ tree widget, and the code corresponding to that element is extracted from the Python
Module that defines its containing class. The extracted code is presented in the ‘Satisfying Ele-
ment Code’ text box. Additionally, users can choose to view the documentation of the code slot
by selecting the ‘Show Docstring’ checkbox.

4. Finally, users have the option to open the Python module/file that contains the displayed code in
their preferred integrated development environment (IDE) by clicking the ‘Open Code File’ button.

Overall, the developed GUI facilitates the utilization of the translation engines and incorporates
features that enhance traceability of requirements from the knowledge model to the application code.
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5.5. Proposed KBE Application Development Process

To improve the current KBE app development process, a new development process that utilizes the
developed framework as a central component is proposed. The newly proposed KBE app development
process for ParaPy-based KBE applications is schematically represented in Figure 5.20.

Satisfies
user needs?

Start

Auto-generate
KBE Code
(skeleton)

Complete
KBE App Code
(manually)

Create/Update
System Model

\
a

Figure 5.20: Newly Proposed KBE Application Development Process. The gray notes indicate the stakeholders responsible for
performing each task. The icons indicate the tool used to perform each task.

The proposed development process for KBE applications using the framework developed in this
research is described as follows:

1. A team of domain experts and KBE developers create a System Model of the KBE application in
Magic Systems of Systems Architect, using SysML as the modeling language and MagicGrid-for-
KBE as the modeling method.

2. Once the system model reaches the desired level of maturity, the translation engines developed in
this research should be used automatically generate the (skeleton) code of the KBE application.

3. Finally, the detailed knowledge and rules of the KBE application should be manually completed
by a team of KBE developers in an IDE like PyCharm. Although it is possible to directly embed
this information within the Internal Block Diagrams of the system model, the author recommends
using an integrated development environment (IDE) such as PyCharm for this purpose. The
rationale behind this recommendation stems from the fact that MSoSA does not provide the same
functionalities for writing code as IDEs, which greatly facilitate coding by offering features such
as syntax highlighting, code completion, formatting, analysis, and refactoring.

In the proposed KBE app development process, a potential issue arises when modifications are
made to the knowledge model after manual code additions, as regenerating the code from the model
would result in the loss of the previously added code. This constitutes a current limitation of the devel-
oped framework and will be addressed in the future recommendations presented in Section 8.2.

The essential set of steps from the MagicGrid-for-KBE method required to successfully develop
KBE applications using the framework developed in this research are presented as an activity diagram
in Figure 5.21.
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Figure 5.21: Activity diagram showing the essential steps required to successfully create a Newly Proposed KBE Application
Development Process. The gray notes indicate the stakeholders responsible for performing each task. The icons indicate the

tool used to perform each task.



Verification & Validation of the
Developed MBSE-for-KBE Framework

This chapter discusses the testing campaign used to verify and validate the developed MBSE-for-KBE
framework.

6.1. Description of the Testing Campaign

The testing campaign used to verify and validate the proposed MBSE-for-KBE framework involved
the development of two distinct KBE Applications using the proposed framework. The development
of these KBE applications aimed to assess the framework in terms of ease of modeling, quality of the
automatically generated (skeleton) code, support for requirements traceability, and application devel-
opment time.

The first KBE application developed using the proposed framework focused on the development a
KBE app for automating the design of Simple Airplane configurations. The basis for the development
of this app were the examples of the pre-existing “Primi Plane” KBE application used in the tutorial
lessons of the KBE course at TU Delft. The main goals of developing this app were manifold, and are
described as follows:

1. Firstly, the aim was to verify and validate the knowledge capture and formalization capabilities
of the developed framework through comprehensive testing of the (knowledge) ontology, model-
ing language, modeling tool, and modeling method. This involved assessing the effectiveness
of these framework components in capturing and representing accurately the required domain
knowledge for developing such an application.

2. Secondly, the aim was to verify and validate the automatic code generation capabilities of the
framework by testing the translation engines developed in this research. This involved evaluating
the accuracy and efficiency of the code generation process, in order to assess the framework’s
ability to transform the modeled knowledge into functional code.

3. Thirdly, the aim was to verify and validate the requirements traceability capabilities provided by

55
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the framework. This involved assessing the correct functionality of the GUI developed in this
research to provide traceability of requirements from the models to the application code.

4. Lastly, the aim was to serve as a proof of concept, demonstrating the feasibility and practicality
of the proposed methodology for developing KBE applications.

The second KBE application developed using the proposed framework focused on the development
of a KBE app for automating the design and selection of off-the-shelf components of Modular Unmanned
Aerial Vehicles (UAVs). The basis for the development of this application was a pre-existing KBE app
previously developed by the author for the KBE course at TU Delft. The main goals of this case study
were twofold, and are described as follows:

1. Firstly, the aim was to model (and develop) a more complex KBE app (compared to the Simple
Airplane app) in order to test additional knowledge capture capabilities and functionalities of the
proposed framework that were not assessed in the development of the Simple Airplane app. This
included assessing the remaining elements of the Knowledge Ontology that had not previously
been needed to model the Simple Airplane app. Furthermore, the capability of reusing knowl-
edge from the knowledge repository developed in this research was also tested. This knowledge
repository contained a package with preset product and process knowledge about commonly
used methods and tools for preliminary analysis of propeller performance, as well as knowledge
stored from previous projects, such as the Simple Airplane app.

2. Secondly, the aim was to evaluate the development time of KBE applications using the proposed
framework. To achieve this, a comparative time study was conducted, focusing on the develop-
ment time of the Modular UAV app. The study involved comparing the time required to develop the
application using the proposed framework with the time taken for the traditional manual approach
previously employed during its development for the KBE course.

The subsequent sections discuss the results obtained from the test campaign conducted for each
developed KBE application.

6.2. Simple Airplane KBE Application
The capabilities of the MBSE-for-KBE framework tested during the development of the Simple Air-
plane KBE application are detailed in the following sections.

6.2.1. Knowledge Capture and Formalization

The development process of the Simple Airplane KBE application followed the proposed KBE app
development process outlined in Figure 5.20, albeit with a small difference. To create the system model
for the Simple Airplane app the MagicGrid-for-KBE method was used. However, in addition to defining
the skeleton structure of the KBE application in MSoSA, the detailed knowledge and rules necessary
to develop a complete KBE application were directly embedded in the system model using MSoSA’s
functionality to write Python code within the specification of each Property. This alternative approach,
enabled by the relatively small size of the KBE application in question, served three main purposes.
Firstly, it aimed to test the functionality provided by MSoSA, i.e., the capability to write code within the
specification of each property. Secondly, it aimed to evaluate the quality of the automatically gener-
ated code in cases where the detailed knowledge and rules were written within MSoSA. Lastly, it aimed
to assess the feasibility of generating a fully functional KBE application directly from the model using
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translation engines, eliminating the need for the subsequent (manual) addition of detailed knowledge
and rules via PyCharm, thereby effectively reducing the number of tools required to implement the pro-
posed framework.

This section presents only the main diagrams of the formal knowledge model of the Simple Airplane
app that are required to provide more specific details about the features implemented and the functional-
ities tested in the development of this app. It should be noted that these diagrams are not (necessarily)
presented in the order in which the knowledge was modeled. The modeling order corresponds to the
one defined in the MagicGrid-for-KBE method presented in Section 5.3.3.

It should be noted that the focus of this case study was not to generate highly realistic descriptions
of the requirements, processes, and products involved in the development of a real airplane. Instead,
contrived descriptions that allowed to thoroughly test the knowledge capturing capabilities of the frame-
work were used. Consequently, the definitions of the requirements, processes, and products were
deliberately simplified.

Requirements Sub-ontology

To assess the applicability of the Requirements sub-ontology to the development of KBE applica-
tions, the requirements diagrams depicted in Figures 6.1 and 6.2 were created. These diagrams define
stakeholder needs, as well as functional, physical, and performance requirements, along with contain-
ment and derivation relationships between requirements.

req [Package] 1 Stakeholder Needs|[ Stakeholder Needs ])

«need» «need»
Design Conventional Maximum Take-Off Weight
Airplanes Id = "SN-2"
Id ="SN-1" Text = "Maximize the
Text = "Have a KBE app to MTOW of the airplane."
automate the design of
simple conventional

airplanes."

Figure 6.1: SysML Requirements Diagram representing the Stakeholder Needs of the Simple Airplane app. Note the use of the
«need» stereotype defined in SysML-for-KBE.
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req [Package] 2 System Requil [ System Requi 1 )

«functionalRequirement»
KBE App Specification
Id ="SR-1"
Text = "The KBE app shall
automatically generate
designs for simple

«requirement»
Simple Airplane Specification

[1d="sR2"

[

conventional airplanes

[

based on parametric «physicalRequirement»

physi

‘gheometr]./l inputs provided by Wings Fuselage ‘ Empennage Engines
e user.
Id ="SR-2.1" Id ="SR-2.2" Id ="SR-2.3" Id = "SR-2.4"
Text = "The airplane shall Text = "The airplane shall Text = "The airplane shall Text = "The airplane shall
have 2 wings." have a fuselage." have a conventional tail." have 2 or 4 wing-mounted
engines."
x r
| |

«deriveReqt»

| L «deriveReqt»
«performanceRequirement» : = 7= 1
Payload Volume
Id = "SR-3"
Text = "The available
payload volume shall be
larger than #### [m"3]."

«physicalRequirement»
Vertical Tail
|ld="SR-5"
Text = "The airplane shall
|have a vertical tail
| positioned on the fuselage.”

«physicalRequirement»
Horizontal Tail

Id = "SR-4"

Text = "The airplane shall
have a horizontal tail
positioned on the fuselage.”

Figure 6.2: SysML Requirements Diagram representing the System Requirements of the Simple Airplane app. Note the use
of the «requirement», «physicalRequirement», «performanceRequirement», and «functionalRequirement» stereotypes provided
by MSoSA by default. Note also the use of containment and derivation relationships between requirements.

Process Sub-ontology

To assess the applicability of the Process sub-ontology to the development of KBE applications, the
activity diagrams depicted in Figure 6.3 were created. These diagrams define activities and actions, as
well as flow relationships between actions.

(‘act [Activity] Generate simple airplane geometry[ Generate simple airplane geometry ]J fact [Activity] Generate Empennage[ Generate Empennage ])

M o

y \l/ﬁ
( :Generate ) |
‘ Fuselage I
N y
7 __V |
“ : Generate ) | P ¥ )
Jngs /' : Generate w
( :Generate ) |
Empennage : Generate
¥ 3 l Vertical Tail |
'+'/

"Engines lé%——]—'
® ®

Figure 6.3: SysML Activity Diagram representing the Top-level Process of the Simple Airplane app. In the diagram on the left,
note the rake symbol on the bottom right corner of the “: Generate Empennage” action, denoting that the “Generate Empennage”
activity (shown on the diagram on the right) is further decomposed in the model an has a direct link/navigation to it.

Product Sub-ontology

To assess the applicability of the Product sub-ontology to the development of KBE applications, the
block definition diagram (BDD) depicted in Figure 6.4 and the internal block diagrams (IBD) depicted
in Figure 6.5 and Figure 6.6, were created. The BDD defines blocks, including their composition and
inheritance relationships. On the other hand, the IBDs define inputs, attributes, parts, and methods,
along with the connections between these elements. Note that in Figure 6.6 only a few elements of the
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diagram are presented, highlighting the definition of methods, as the entire diagram was too extensive

and irrelevant for this section.

bdd [Block] Aircraft[ Aircraft Architecture ] )

«block»

GeomBase

«block»
Aircraft

«input» fuselage_r s : float

«input» fuselage_length: float

«input» fuselage_sections : list

«input» wing_semi_span : float

ut» wing_sweep : float

it» wing_twist : float

wing_dihedral: float
wing_longitudinal_position: float
«input» wing_vertical_position : float
wing_root_airfoil : str
wing_root_chord : float
wing_tip_airfoil: str
wing_tip_chord : float

«input» tail_airfoil: str

«method» determine_engine_position: list

x !

«part» «part» «part» «part» «part» «part» «part» «part
fuselage | 1 left_horizontal_tail| 1 left_wing|1 right_wing | 1 vertical_tail (1 right_horizontal_tail| 1 right_engines|1..* left_engines|1..*
‘ «block» «blockn | «blocky «block» I
| Fuselage MirroredShape ‘ LiftingSurface Engine ;
: - e &
«part» «party
root |1 tip |1
«block»
Airfoil
E— =

Figure 6.4: SysML Block Definition Diagram representing the architecture of the Aircraft class. Note the use of the «block»
stereotype provided by SysML by default and the use of the «input», «method», and «part» stereotypes defined in SysML-for-
KBE. The small squares on the bottom left corner of the blocks indicate that these blocks have an Internal Block Definition

diagram associated to them and provide a direct link/navigation to that diagram.

ibd [Block] Airfoil[ Airfoil Internal Structure ])

«input»
thickness_factor : float = 1.0 «part»
airfoil_curve : FittedCurve [1]
«input» ‘ «attribute» «equal»
chord : float > points : list[Point] » points

«input»
airfoil_name : str

«input»
quantify : int

«input» ‘
position

Figure 6.5: SysML Internal Block Diagram representing the internal structure of the Airfoil class. Note the use of the «input»,
«attribute», and «part» stereotypes defined in SysML-for-KBE. The assignment of these stereotypes to the model elements

automatically applies the defined symbol styles in the diagram.
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«part»
right_engines : Engine [1..*]

position |
A
«part»
left_engines : Engine [1..*]
«method» | E—

determine_engine_position : list » position

Figure 6.6: Snippet of the Internal Block Diagram of the Aircraft class representing some of its elements. Note the use of the
«method» stereotype.

Interrelationships between Sub-ontologies

To assess the applicability of the defined interrelationships between the sub-ontologies of the Knowl-
edge Ontology, the satisfy requirements matrix and the allocation matrix depicted in Figure 6.7 and
Figure 6.8, respectively, were created. The satisfy requirements matrix defines satisfy relationships
between functional requirements and activities, performance requirements and attributes, and physi-
cal requirements and parts, respectively. On the other hand, the allocation matrix defines allocation
relationships between actions and properties.
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Figure 6.7: SysML Satisfy Requirements Matrix of the Simple Airplane app. Note the functional requirement SR-7 which is satis-
fied by various actions, the physical requirement SR-2.2 which is satisfied by the fuselage part, and the performance requirement
SR-3 which is satisfied by the payload_volume attribute.
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Figure 6.8: SysML Allocation Matrix of the Simple Airplane app. The elements of the Process package are displayed in rows
and the elements of the Product package are displayed in the columns.

6.2.2. Automatic Generation of KBE Application Code

Following the generation of the model in MSoSA, an XML file containing all its information was ex-
ported. The XML file contained approximately 57,000 lines of data. Using the developed translation
engines, this XML file was successfully translated into an intermediate file in JSON format, and the
Simple Airplane KBE application code was created from the JSON. The whole translation process took
less than one second. The resulting JSON file contained approximately 1,800 lines of data, represent-
ing a reduction in size of nearly 97% compared to the original XML file. Despite this reduction in size,
the JSON file retained all the essential knowledge required to automatically generate the code of the
KBE application and provide traceability within it. The internal structure of the resulting KBE application
consisted of the directory tree shown in Figure 6.9, effectively generating all the packages defined in
the model as folders and all the classes as Python files. It is important to note that the ‘MirroredShape’
class shown in Figure 6.4 is a ParaPy Geometry Primitive. As such, there is no need to generate a
dedicated Python file for its definition, as it is already predefined within ParaPy. Therefore, it only needs
to be imported into the classes that require its functionality.
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Figure 6.9: Directory tree of the Simple Airplane KBE application showcasing its internal folders and files automatically generated
by the translation engine developed in this research

The automatically generated code demonstrated good quality and a high level of completeness,
requiring only minor manual interventions, through the addition of code in areas that were clearly identi-
fied with descriptive ‘TODO’ comments, in order to enable the successful execution of a fully functioning
KBE application. These minor interventions consisted of adding code to parts of the KBE app that are
significantly more programming-intesive and challenging to implement automatically than other parts of
the code, such as, positioning geometry components and defining normal Python methods. Examples
of these areas where code had to be manually implemented are presented in Figure 6.10.

The code adequately fulfilled the intended requirements and specifications of the KBE app, with all
expected features implemented and operating correctly. Moreover, the code was well organized and
structured, easily readable, well documented, and adhered to PEP8 coding standards.
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@Part

def right_wing(self):

wnn

right wing (docstring)

TODO: implement 'position’

wn

return LiftingSurface(

)

dihedral=self.wing_dihedral,

# :sources: [self.wing_dihedral]
position=None,

# :sources: [self.wing_longitudinal_position, self.wing_vertical_position]
root_airfoil=self.wing_root_airfoil,
# :sources: [self.wing_root_airfoil]
root_chord=self.wing_root_chord,

# :sources: [self.wing_root_chord]
span=self.wing_semi_span,

# :sources: [self.wing_semi_span]
sweep=self.wing_sweep,

# :sources: [self.wing_sweep]
tip_airfoil=self.wing_tip_airfoil,

# :sources: [self.wing_tip_airfoill]
tip_chord=self.wing_tip_chord,

# :sources: [self.wing_tip_chord]
twist=self.wing_twist

# :sources: [self.wing_twist]

def determine_engine_position(self, |*args, *xkwargs) -> list:

wnn

# :targets: [self.right_engines.position, self.left_engines.position]

TODO: the method arguments must be implemented manually

win

raise NotImplementedError(

"The 'determine_engine_position' method has not yet been implemented!")

R/

Raising 'NotimplementedError' with descriptive message

Figure 6.10: Snippet of the areas of the code of the Simple Airplane app where minor interventions were needed through manual
completion of the code

6.2.3. Requirements Traceability
The requirements traceability functionality of the developed GUI was also tested, and it was verified
that all its capabilities, previously described in Section 5.4.2, worked as expected. This is illustrated in

Figure 6.11.
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Figure 6.11: Requirements Traceability tab of the developed GUI highlighting the verification of its capabilities

6.2.4. Final Working Application
The final Simple Airplane KBE application developed using the proposed MBSE-for-KBE framework

is shown in Figure 6.12.
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Figure 6.12: Screenshot showing the ParaPy GUI for the Simple Airplane KBE application developed using the proposed MBSE-
for-KBE framework

6.3. Modular UAV KBE Application
The capabilities of the MBSE-for-KBE framework tested during the development of the Modular UAV

KBE application are detailed in the following sections.
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6.3.1. Knowledge Capture and Formalization

The development process of the Modular UAV KBE application followed the proposed KBE app
development process outlined in Figure 5.20. Firstly, the skeleton structure of the KBE application was
defined in MSoSA using the MagicGrid-for-KBE method. Next, the skeleton code was automatically
generated from the model using the translation engines developed in this research. Finally, the detailed
knowledge and rules were manually added to the skeleton code using PyCharm.

This section presents only the main diagrams of the formal knowledge model of the Simple Air-
plane app that are required to provide more specific details about the features implemented and the
functionalities tested in the development of this app.

Process Sub-ontology

To assess the remaining elements of the Process sub-ontology that were not assessed in the pre-
vious case study, the activity diagram depicted in Figure 6.13 was created. In addition to the elements
already defined in the previous case study, this diagram also defines external services (and their allo-
cation to external tools). Furthermore, the diagram demonstrates the functionality of hyperlinking files
or webpages to different model elements, which are represented by the white file icon on the bottom
left corner of each element. This feature enhances the documentation capabilities of the framework
by storing all the links to the relevant documentation in a convenient and accessible location (i.e., the
element model that implements the knowledge contained within the respective documentation) and
allowing the user to open the associated files directly through the model element.

act [Activity] Execute Blade Element Theory Analysis|[ Execute Blade Element Theory Analysis ] ) h
® (- " \
| | : Calculate Blade Element Differentials
- _w/orS|l | T
[ : Configure Inputs | |
\ E o Y !
| | [ :Calculate Prandtl's Loss Coefficients
/ v . ' !
(*: Calculate Flight Conditions ) «allocate» I
] ! '  XFoil I : Calculate Prandtl Corrected )
| | Blade Element Differentials
v . . | ) L
( : Generate Blade Geometry ) N «externalService»
1 ' 2 | : Compute Lift and Drag coefficients ) i .
| | : Calculate Total Corrected
| Thrust, Torque, and Power
‘/ : Calculate Aigpeed Com};énents l |
e I
I | : Calculate Propeller
v | Performance Indicators
y N\
[ : Calculate Flow Angles | | —_— =
W ) |
| ’ ®
\ J

Figure 6.13: SysML Activity Diagram representing the “Execute Blade Element Theory Analysis” activity from the Modular UAV
app. Note the use of the stereotype «externalService» defined in SysML-for-KBE. The white icons on the bottom left corner of
the activities denote that they have an hyperlinked (external) file and provide a direct link/navigation to that file.

Product Sub-ontology
To assess the remaining elements of the Product sub-ontology that were not assessed in the pre-
vious case study, the block definition diagram depicted Figure 6.14 and the internal block diagrams
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depicted in Figure 6.15 and Figure 6.16, were created. In addition to the elements already defined
in the previous case study, these diagrams also define external tools, external functions, and actions.
Note that in Figure 6.16 only a few elements of the diagram are presented, highlighting the definition
of actions, as the entire diagram was too extensive and irrelevant for this section.

bdd [Block] XFoilAnalysis[ XFoilAnalysis Architecture ] )

«block»
Base
A

«block»
XFoilAnalysis

values
«input» blade_section_airfoil
«input» reynolds_number
«input» mach
«input» alpha
«attribute» section_for_analysis
«attribute» section_points_xfoil
«attributex xfoil_analysis
«attribute» last_aoa
«attribute» cl
«attribute» cd

T
@ | «use»

«externalTool»
XFoil
values
«externalFunction» run_xfoil
«externalFunction» create_dat_file_from_points
«externalFunction» read_logfile

)

Figure 6.14: SysML Block Definition Diagram representing the architecture of the XFoilAnalysis class. Note the use of the
«externalTool» stereotype defined in SysML-for-KBE.

ibd [Block] XFoilAnalysis[ XFoilAnalysis Internal Structure ])
© iXFoil
«externalFunction»
run_xfoil
}(input» Y «attribute» |
| alpha cd
‘ A
. vy L— . —
«input» L———— «attribute» % «attribute»
| mach xfoil_analysis - cl
» v ‘
«input» ‘ «attribute»
reynolds_| b ‘ A last_aoa
«input» | «attribute» | «attribute»
blade_section_airfoil > section_for_analysis » section_points_xfoil
|

Figure 6.15: SysML Internal Block Diagram of the XFoilAnalysis class representing some of its elements. Note the use of the
«externalFunction» stereotype defined in SysML-for-KBE.
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«action»

— > write_drone_step
“ trees I

«part»
step_writer : STEPWriter [1]
b
>

e

Figure 6.16: Snippet of the Internal Block Diagram of the Drone class representing some of its elements. Note the use of the
«action» stereotype defined in SysML-for-KBE.

Knowledge Reuse

Finally, the framework’s knowledge reuse capabilities were evaluated through two different ap-
proaches. Firstly, the ‘Execute Blade Element Theory Analysis’ activity and the XFoil’ external tool
were directly imported from a presets package stored in the knowledge repository. This package is
automatically imported at the beginning of each new project using the MagicGrid-for-KBE method tem-
plate defined in MSoSA. Secondly, project-to-project knowledge transfer was explored by manually
creating a copy (via copy/paste) of the ‘Airfoil’ class from the Simple Airplane app. The distinction
between these approaches lies in the preservation of connections. In the former approach, the im-
ported elements maintain their connection to the original elements in the presets package. In the latter
approach, the copied element becomes independent of its source.

In the case of the ‘Airfoil’ class, similarly to its usage in the Simple Airplane app where it was em-
ployed in the ‘LiftingSurface’ class to generate the root and tip airfoils of wings, in the Modular UAV app
it was employed in the ‘Blade’ class to generate the root and tip airfoils of propeller blades.

In both cases, the imported elements did not require any modifications. However, if modifications
had been necessary, the impact would have varied based on the approach. For the ‘Execute Blade
Element Theory Analysis’ activity and the XFoil’ external tool, any changes made within the MSoSA
project of the Modular UAV would have been reflected back in the presets package from which these
elements were imported (and vice-versa). This was possible due to the maintained connection between
them. Conversely, modifications made to the ’Airfoil’ class would not affect its original definition in the
Simple Airplane MSoSA project (and vice-versa), as the copied element remained independent from
its source.

This ability to reuse existing knowledge and the flexibility to modify it to suit the specific requirements
of the KBE app, within SysML models, has the potential to significantly reduce the development time
of KBE applications.

6.3.2. Automatic Generation of KBE Application Code

Following the generation of the model in MSoSA, an XML file containing all its information was ex-
ported. The XML file contained approximately 127,000 lines of data. Using the developed translation
engines, this XML file was successfully translated into an intermediate file in JSON format, and the
Modular UAV KBE application (skeleton) code was created from the JSON. The whole translation pro-
cess took around three seconds. The resulting JSON file contained approximately 5,500 lines of data,
representing a reduction in size of nearly 96% compared to the original XML file. Once again, despite
this reduction in size, the JSON file retained all the essential knowledge required to automatically gen-
erate the skeleton code of the KBE application and provide traceability within it.
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Similarly to the Simple Airplane case study, the automatically generated skeleton code was of good
quality, correctly implementing all expected features. The main difference was that, in this case, the au-
tomatically generated code consisted only of the app’s skeleton, and the detailed rules and expressions
used to compute each property had to be manually implemented in PyCharm. This manual implemen-
tation was facilitated by the presence of easily identifiable and descriptive comments in the code that
had been automatically generated during the translation process. Specifically, in the elements whose
detailed expression still had to be implemented, a ‘NotimplementedError’ was raised, accompanied
by a descriptive error message, and the source and target elements of each respective element were
written in its docstring. In cases where this approach was not applicable, ‘None’ was returned by the el-
ements, and descriptive “TODOs’ were included in their respective docstrings, indicating the necessary
tasks that needed to be completed. This is illustrated in Figure 6.17.

pitch_angle: float = Input(0.1065)

nun

# :targets: [self.thrust_coef, self.torque_coef]

Hyperlinks:
--> https://flyeval.com/js/2019DaiAnAnalytical.pdf

wun

@Attribute
def density(self):

wun

density (docstring)
# :sources: [self.altitude]
# :targets: [self.prop_diameter, self.hover_rpm, self.prop_torque]

raise NotImplementedError(
"The 'density' attribute has not yet been implemented!")

@Part
def battery(self):

wun

battery (docstring)
# :targets: [self.step_writer.trees]

TODO: implement 'max_current'
TODO: implement 'max_voltage'
TODO: implement 'num_motors'
return Battery(
flight_time=self.flight_time,
# :sources: [self.flight_time]
max_current=None,
# :sources: [self.motors.mot_max_curr]
max_voltage=None,
# :sources: [self.motors.mot_max_volt]
num_motors=None,
# :sources: [self.motors]
total_current=self.total_current
# :sources: [self.total_current]

Figure 6.17: Snippet of the code of the Modular UAV app showcasing the presence of easily identifiable and descriptive com-
ments
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6.3.3. Application Development Time

To assess the development time of the Modular UAV app using the MagicGrid-for-KBE methodology,
a time study was conducted. The results of this time study are presented in Table 6.1. It is important
to mention that the values presented reflect only the required modeling/coding effort, the time spent on
knowledge acquisition is not accounted for.

Table 6.1: Time Study of the Modular UAV app

Task Time [HH:mm)]

1. Set up the project in MSoSA 00:01
2. Create Requirements Model 00:30
3. Create Process Model 01:00
4. Create Product Model 10:00
5. Link Process to Product 00:20
6. Link Process/Product to Requirements 00:10
7. Translate the SysML model to KBE (skeleton) code 00:01
8. Add details to the code 08:30

TOTAL 20:32

The first task, setting up the project in MSoSA, was straightforward and took less than one minute
to complete since a pre-existing template, the MagicGrid-for-KBE method template, was utilized.

The second and third tasks involved creating the requirements and process models, respectively.
These models were deliberately kept simple as the formalization of this knowledge had not been pre-
viously done during the manual development of the application for the KBE course. Therefore, limited
comparisons could be drawn regarding the time spent on these tasks. The purpose of these tasks was
to enhance the model's completeness, thereby improving the knowledge captured during the develop-
ment of the KBE app.

The fourth task, creating the product model, proved to be the most time-consuming, requiring ap-
proximately 10 hours to complete. This was already expected, considering that developing the product
model requires the biggest modeling effort as it encapsulates all the knowledge that is automatically
translated into the KBE application code.

Tasks five and six involved linking processes to the products to which they are allocated, and linking
processes and products to the requirements they satisfy, respectively. These tasks were straightfor-
ward due to the simplified top-level requirements and processes defined earlier in tasks two and three.
Given that these steps were not performed during the manual development of the Modular UAV app for
the KBE course, limited comparisons could be made regarding the time required to complete each task.
The purpose of these tasks was to provide traceability of the captured requirements and processes to
the elements that satisfy/implement them in the application code, thereby improving the overall trans-
parency of the KBE app.

Task seven consisted of translating the SysML model into skeleton KBE code. This process in-
volved exporting the SysML model to the XML format provided by MSoSA and utilizing the developed
translation engines to automatically generate the application’s skeleton code. The entire process took
less than a minute.

Finally, task eight involved adding the details to the product model by manually writing the expres-
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sions for the code elements using PyCharm. This was a relatively time-consuming process due to the
size of the considered KBE app, taking approximately 8.5 hours to complete. However, the excellent
structure and organization of the automatically generated skeleton code, the presence of descriptive
‘TODO’ comments, and helpful documentation within the code significantly facilitated this process.

The development process for the Modular UAV app, utilizing the MBSE-for-KBE framework, in-
volved a total effort of approximately 20 hours and 30 minutes, combining both modeling and coding
activities. In contrast, the manual approach for creating the app during the KBE course required an
estimated 3 hours for modeling (specifically, generating a UML class diagram) and 20 hours for coding,
resulting in a combined effort of 23 hours.

These results demonstrate an 11% reduction in development time when employing the MBSE-for-
KBE framework. Additionally, the framework offers substantial benefits that contribute to a more com-
prehensive and detailed knowledge capture, improved requirements traceability, and enhanced trans-
parency within the application. These factors contribute to the reduction of the black-box perception
associated with KBE apps, which, in turn, could lead to decreased costs in future tool development
and maintenance. Furthermore, reducing the black-box perception of KBE applications can lead to
higher trust in the application by the various stakeholders, promoting the adoption of KBE technology
in the industry. Moreover, the utilization of the proposed framework promotes knowledge reuse in the
development of subsequent KBE apps, potentially resulting in further reductions in development times.

To provide a more accurate evaluation of the time efficiency of the new approach, a comparative
analysis was conducted by focusing only on tasks 4, 7, and 8, which align better with those performed
during the manual development of the Modular UAV app for the KBE course. The total time required to
complete these tasks using the proposed framework amounted to approximately 18.5 hours, while the
manual approach took 23 hours, demonstrating a reduction in the time that it took to develop a KBE
app with the same functionality as the previous one in approximately 20%.

Two possible limitations of this time study must be acknowledged. Firstly, is the fact that the time
study focuses only on the modeling and coding aspects of creating the KBE application, while assuming
that the time invested in knowledge acquisition would be consistent across both approaches. The pre-
sented case demonstrated that developing KBE applications via a combination of modeling and coding
- instead of just coding - offers benefits such as a better overview of the app and easier consolidation of
knowledge while generating the model, potentially resulting in faster knowledge acquisition. However,
this could not be tested in this case study because it is important to consider that during the author’s
second attempt at creating the application using the proposed framework, he was already more familiar
with its expected structure compared to their initial manual development of the app for the KBE course.
This increased familiarity could have positively influenced the time taken to develop the application
for the second time, and thus the results of such time study could have been biased. Secondly, it is
worth mentioning that the author’s lack of experience with MSoSA, in general, could have negatively
impacted the time required to develop the application using the newly proposed framework. At the time
of conducting this time study, the author was not aware of certain “modeling shortcuts” that could have
expedited the modeling process. In comparison, the author had significantly more coding experience
when he initially developed the KBE application for the KBE course, which could have made them more
efficient in that aspect. However, it is challenging to quantify the influence or impact of these factors
on the development of the app based solely on this single case.



6.3. Modular UAV KBE Application 71

6.3.4. Final Working Application

The final Modular UAV KBE application developed using the proposed MBSE-for-KBE framework
is shown in Figure 6.18.

Figure 6.18: Screenshot showing the Geometry View of the ParaPy GUI for the Modular UAV KBE application developed using
the proposed MBSE-for-KBE framework



Case Study

This chapter presents the case study used to assess the applicability of the developed MBSE-for-KBE
framework in the development of real-world KBE applications.

7.1. GKN Aerospace Fokker Elmo - EWIS Architecture Modeler

This case study, conducted in collaboration with GKN Aerospace Fokker EImo experts, focused on
the development of a KBE application for automating the design of Electrical Wiring Interconnection
Systems (EWIS) architectures. The main goals of this case study were threefold:

1. Firstly, to apply the developed framework to a real-world scenario during the early phases of the
conceptual design stage, in order to assess the framework’s performance in situations where
knowledge acquisition was ongoing and where knowledge was highly prone to change.

2. Secondly, to compare the development time of the KBE app skeleton using the proposed frame-
work against the time required by the industry experts using the traditional manual approach.

3. Thirdly, to obtain comprehensive feedback from industry experts regarding the performance of
the developed framework and its level of satisfaction in meeting their KBE app development
requirements.

In order to compare the development time of the EWIS Architecture Modeler app skeleton code
using the proposed framework versus the traditional approach employed at Fokker Elmo, two time
studies were conducted. The first study, conducted by the author, involved developing the app skeleton
using the proposed MBSE-for-KBE framework. The second study, carried out by a KBE expert at
Fokker EImo, involved developing the app skeleton using the manual approach traditionally used at
the company (previously described in Figure 2.3b). Table 7.1 presents the results of both time studies,
with relevant information in the table footnotes.
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Table 7.1: Comparative Time Study of the development of the EWIS Architecture Modeler app
(Proposed Framework vs. Traditional Approach)

Proposed Framework? Traditional Approach?

Task . .
Time [HH:mm] Time [HH:mm]

1. Create Requirements Model? 00:30 00:30
2. Create Process Model° 03:00 04:00
3. Create Product Model® 03:00 04:00
4. Link Process to Product 00:10 01:30¢
5. Link Process/Product to Requirements 00:10 00:45¢
6. Translate the Product model 00:01 02:00
to KBE (skeleton) code®

TOTAL 06:51 12:45

@ The tasks performed using the proposed framework were performed by the author, which at the time possessed limited
experience with the modeling tool (MSoSA). Conversely, the tasks performed using the traditional approach were performed
by a KBE expert at Fokker EImo. As a result, there is a slight mismatch in the learning curve position for each user in the
respective cases, suggesting that there is potential for an even bigger time difference between the two approaches (i.e., the
proposed framework might offer even greater time savings than those reported).

b The requirements model created using the traditional approach consisted only of a Microsoft Excel table format. Con-
versely, the requirements model created using the proposed framework encompassed both a table and a diagram. The
diagram was generated (semi-)automatically from the table, offering an additional perspective of the model.

¢ The models generated in both approaches contained exactly the same information, with the only difference between
them being that the models created using the proposed framework were SysML models and the models created using the
traditional approach were UML models. The time difference between the two approaches lies in the fact that the modeling
tool used in the proposed framework (MSoSA) offers certain functionalities that make the modeling process faster than in
the modeling tool used in the traditional approach (Microsoft Visio), such as, automatic diagram layout based on the type of
diagram and better interconnection between elements represented across multiple diagrams. Furthermore, Visio does not
enforce UML/SysML well-formedness rules as well as MSoSA, which potentially might lead to errors in the model requiring
further re-work.

d The times presented for the traditional approach are estimates, as these tasks are not actually performed in the traditional
approach. However, performing these tasks is essential to guarantee traceability of requirements and processes to the KBE
application code. In order to perform these tasks in the traditional approach, tables would have to be manually created in
Excel. It is important to consider that these tables are static and disconnected from the models, unlike the matrices that
are automatically created (and updated) in the proposed framework. Thus, in the traditional approach, any changes made
in the models would have to be manually propagated to the Excel tables, a process which is highly time-consuming and
error-prone.

€ The SysML/UML Product model to be translated contained a total of 27 blocks. Out of these, 12 contained an average of
5 ParaPy slots (inputs, attributes, and parts), while the remaining 15 were left empty (i.e., contained no slots).

The results of the comparative time study show a substantial reduction in the time required for the
initial knowledge model development and the code skeleton generation using the proposed framework.
The study revealed a considerable 46.3% decrease in the time required to generate knowledge models
and skeleton code through the implementation of the proposed framework. The translation of models
into application skeleton code in the traditional approach took 2 hours, accounting for approximately
15.7% of the total development time. In contrast, the automatic translation of the SysML model into
skeleton code took less than 1 minute, demonstrating the efficiency and time-saving advantages of the
MBSE approach.

These improvements in development time highlight the potential of the proposed framework in
streamlining the development process of KBE applications, reducing the manual effort required, and
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expediting the generation of application code.
According to feedback received from KBE experts at Fokker ElImo, the proposed framework offers
several notable benefits. These are described as follows:

1. Firstly, the established connection among requirements, process, and product models, enhances
the traceability of knowledge within the KBE app, reducing its black-box perception.

2. Secondly, the direct connection between the knowledge models and the application code, facili-
tated by the translation engines, mitigates the occurrence of inconsistencies between the models
and the code. This ensures a higher level of coherence and accuracy throughout the develop-
ment process, especially during the conceptual design phase where the modeled knowledge is
highly prone to change.

3. Thirdly, the automatically generated code demonstrates a quality comparable to that manually
produced by a KBE expert, alleviating concerns regarding the reliability and competence of the
automatically generated code.

Furthermore, one of the KBE experts at Fokker EImo conveyed their endorsement of the proposed
framework, expressing a willingness to recommend it to all colleagues, except for the most experienced
KBE developers. This exception stems from their already established proficiency in creating KBE apps
using their existing methods, which might make them less inclined to embrace a new approach and de-
viate from their established practices. This is directly related to the adoption and acceptance challenge
of implementing MBSE outlined in Section 3.3.



Conclusion

This chapter summarizes the key findings and outcomes of the thesis work. Section 8.1 describes
the main conclusions drawn from the presented research work and answers the research questions
presented in Chapter 4. In Section 8.2 recommendations for future work are proposed, highlighting
potential avenues for further investigation and suggesting areas for improvement or development based
on the identified limitations of the current work.

8.1. Conclusions

8.1.1. General Overview and Main Conclusions

Knowledge Based Engineering (KBE) applications offer a promising solution to address the increas-
ing complexity of engineering systems, the need for rapid time-to-market, and the need for achieving
reductions in the costs of product development. However, to date, existing KBE development method-
ologies have several limitations that impact the time needed for application development, the quality of
the resulting applications, and the ability to effectively preserve and reuse engineering knowledge.

In this research work, we propose the use of a Model-Based Systems Engineering (MBSE) based
framework to support the development of KBE applications, with the aim of improving knowledge cap-
ture and formalization, requirements traceability, knowledge reuse, and the development time of KBE
applications.

The proposed framework involves generating a formal knowledge model using the industry-standard
Systems Modeling Language (SysML), where the knowledge required for the application development
is captured in a digital model using multiple interconnected and synchronized views. Source code
is then automatically generated for the targeted KBE system by dedicated translators that parse the
knowledge model. Traceability of requirements onto the various elements of the KBE app architecture
is also provided, thereby reducing the typical black-box perception of KBE applications. Furthermore,
the framework allows to reuse knowledge from previously generated knowledge models, enabling ef-
fective project-to-project knowledge transfer.

The KBE applications developed during the verification and validation phase, and the case study
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carried out, prove the applicability of the framework to the development of KBE applications. Preliminary
results show that the learning curve to modeling is fairly intuitive and easy to learn; the time required for
generating the knowledge models is lower than current modeling processes; the automatically gener-
ated code is error-free, well-structured, and complies with existing coding standards, providing a correct
starting point for further app development, while resulting in time savings in the development of the app
skeleton.

The main contributions of this research project can be summarized as follows:

* A consistent way of capturing and representing requirements, process, and product knowledge
for KBE applications, supported by a graphical modeling language called SysML-for-KBE, based
on the Systems Modeling Language (SysML).

* A software tool to automatically generate KBE code from SysML models and assist in providing
traceability of requirements within KBE applications.

The developed framework directly targets the ParaPy KBE language, however the results from this
research work can be extrapolated and adapted to suit a broader spectrum of KBE languages, simply
by modifying the translation engines to account for the different ontology mapping required to map the
knowledge base ontology to the specific KBE language ontology.

8.1.2. Answers to Research Questions
Based on the research work carried out, answers can now be given to the initial research questions.
Starting by answering the main research question:

Q.1. “What is the impact of using MBSE to support the development of KBE applications
in terms of their transparency, requirements traceability, knowledge reuse, and development
time?”

MBSE provides additional rigor in the specification and development process of KBE applications.
The increased knowledge formalization provided by MBSE results in a more comprehensive and de-
tailed knowledge capture, enables traceability of requirements, and improves the transparency of the
applications. These factors contribute to the reduction of the black-box perception associated with KBE
apps, which, in turn, promotes knowledge reuse in the development of subsequent applications, poten-
tially resulting in reduced development times. Moreover, this should lead to decreased costs in future
tool development and maintenance.

Furthermore, the visual modeling approach offered by SysML enables product architects with limited
programming skills to generate application skeletons, which can then be further developed by KBE
developers in the target KBE development environment. This accessibility to KBE technology for less
IT-specialized engineers, coupled with the reduction of the black-box perception of KBE applications,
enhances trust and promotes industry acceptance of KBE technology.

However, a limitation of the present research lies in the difficulty of quantitatively measuring the
degree of improvement in application transparency, requirements traceability, knowledge reuse, and
validity of the KBE applications compared to the traditional ad hoc approach. Obtaining more compre-
hensive insights would require studying additional cases over an extended period and developing ap-
propriate metrics to accurately evaluate these factors. Addressing this limitation is crucial for a deeper
understanding of the effectiveness and impact of the proposed approach.
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Answering the sub-questions that were derived from the main research question:

Q.1.1. “To which phases of the KBE app development process can MBSE be applied, and which
customizations are necessary to support it?”

MBSE can be applied to the knowledge capture and formalization phases of the KBE app develop-
ment process. In order to achieve this, certain customizations need to be made to the modeling lan-
guage, modeling tool, and modeling method to ensure their suitability for supporting KBE application
development and reducing the learning curve for domain experts and other users of the methodology.

In terms of the modeling language, it is essential to streamline the concepts (diagrams and elements)
utilized and define new stereotypes that precisely capture the knowledge required for KBE application
development. In this research work, a specialized modeling language called SysML-for-KBE was de-
veloped based on the widely adopted Systems Modeling Language (SysML).

In terms of the modeling tool, it is necessary to simplify its functionalities and optimize the model-
ing process for KBE application development. Typically, modeling tools offer a plethora of features and
details that may not be directly relevant to develop KBE applications. By customizing the tool, unneces-
sary complexities can be eliminated, allowing users to focus on the essential aspects of KBE modeling
without being overwhelmed by irrelevant functionalities.

In terms of the modeling method, it should be specifically adapted to guide engineers through the
modeling process required for developing KBE applications. In this research work, a tailored method
known as the MagicGrid-for-KBE method was developed based on the foundation of the existing Mag-
icGrid method.

Q.1.2. “How to bridge the gap between the knowledge modeling phase and the code formulation
phase in the KBE app development process?”

Bridging the gap between the knowledge formalization phase and the code formulation phase in
the KBE app development process can be achieved through several key steps.

Firstly, it is essential to define an ontology that represents the knowledge used in KBE applications.
This ontology serves as a formal and structured representation of the domain-specific knowledge. In
the context of this research work, the ‘Knowledge Ontology’ was specifically designed and developed.

Additionally, the ontology of the target KBE system must be defined. This ontology captures the
specific concepts, relationships, and rules that govern the targeted KBE system. In this research work,
the ‘ParaPy Ontology’ was identified to encapsulate the key aspects of the target KBE system.

Once the knowledge ontology and the target KBE system ontology have been established, the next
step is to define a mapping between the two. This mapping links the relevant concepts and relationships
from the knowledge ontology to their corresponding counterparts in the target KBE system ontology.
In this research work, a mapping between the ‘Knowledge Ontology’ and the ‘ParaPy Ontology’ was
defined.

Finally, the development of translation engines plays a vital role in bridging the gap between knowl-
edge formalization and code formulation. These translation engines automate the process of converting
the knowledge ontology into the ontology of the target KBE system. This research work included the
development of translation engines that automatically generate the ParaPy code that embodies the cap-
tured knowledge and enables the functionality of the KBE application, ensuring a seamless transition
of knowledge from the formalized representation to the KBE system.
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Q.1.3. “What is the maturity of the automatically generated KBE code in terms of completeness,
reliability, and quality?”

The maturity of the automatically generated KBE application can vary depending on the level of
detail incorporated into the knowledge model. At the very least, the automatically generated KBE ap-
plication encompasses the essential skeleton code that forms the foundation of the application, whose
development is acknowledged to be a critical part in the overall KBE app development process. How-
ever, a more mature app can also be achieved if the user chooses to model the detailed engineering
rules and expressions in the knowledge model.

Nevertheless, the automatically generated code skeleton is of good quality, comparable to that
achievable through manual creation by a KBE expert. Additionally, it establishes a well-structured and
accurate starting point for further application development, leading to time savings in the development
of the application’s skeleton code.

Q.1.4. How to guarantee the synchronization and consistency between the knowledge models
and the KBE application encoding that knowledge?

Ensuring synchronization and consistency between knowledge models and the encoding of that
knowledge in the KBE application can be achieved through the development of dedicated translators
that facilitate the seamless conversion of the knowledge model into source code for the targeted KBE
system.

When modifications are made to the knowledge model, the dedicated translators automatically gen-
erate a new KBE skeleton code, thus guaranteeing synchronization between the model and the code.
This process enables developers to maintain consistency and coherence between the knowledge rep-
resentation and its implementation in the KBE application. However, the current workflow lacks the
capability to propagate changes made directly in the code back into the knowledge model, hindering
the bidirectional synchronization. To address this limitation, the development of “round-tripping” ca-
pabilities is suggested. These capabilities should empower developers to incorporate changes made
in the KBE app code back into the knowledge model, allowing for efficient updates and modifications.
Additionally, this functionality should enable the creation of knowledge models from existing KBE apps,
facilitating knowledge extraction.

8.2. Future Recommendations

Considering the conclusions derived from the present research and the identified limitations, several
recommendations for future work can be suggested. These recommendations can be summarized as
follows:

1. Create or customize a modeling tool, such as ParaPy’s Visual Editor or Magic Systems of Systems
Architect, to enhance the KBE application development process. The customization should focus
on adding or modifying specific features to better support the KBE modeling needs, as well as
removing unnecessary features to reduce the complexity of these tools.

2. Incorporate a round-trip functionality to establish bidirectional synchronization between the knowl-
edge model and the generated code. This functionality would enable changes made in the KBE
application code to be automatically reflected in the knowledge model, ensuring consistency and
maintaining synchronization.
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3. Implement protected blocks in the automatically generated code to safeguard user-written at-
tributes and critical code sections. Forinstance, special comments, such as #start_protected_block’
and ‘#end _protected block’, could be used to designate editable areas when re-importing the
code into the SysML model or re-generating the skeleton code after modifications to the knowl-
edge model. The inclusion of such functionality, similar to the capabilities provided by tools like
Eclipse Acceleo', would enhance the flexibility and maintainability of the automatically generated
code.

4. Create a Process traceability tab within the graphical user interface (GUI) to facilitate traceability
between activities, actions, and product elements in the KBE application. This tab would allow
engineers to ensure that each function of the KBE application is appropriately allocated to a cor-
responding product element, providing a comprehensive view of the implementation, and aiding
in validation.

5. Recreate the ParaPy Primitives, including their associated inputs and attributes, in a format that
can be automatically imported at the start of each new project in MSoSA, for example using the
XMI standard. This could involve creating a SysML model containing all existing ParaPy Primi-
tives to expedite the modeling workflow and provide a solid foundation for further development.
Alternatively, if a round-trip functionality is available, it could be used to parse the existing ParaPy
code base and automatically generate a neutral format that can be imported into MSoSA.

6. Expand the current database of preset processes and products available within the developed
knowledge repository. Increasing the repertoire of pre-existing processes and associated prod-
ucts would provide users with a broader range of preset options and facilitate more efficient de-
velopment of KBE applications.

7. Expanding the current capabilities of the developed translation engines in order to support the
definition of more than one class per module.

8. Explore the development of translation engines that support other KBE systems beyond the ca-
pabilities developed in this research. This expansion would enable the generation of code for
a broader range of KBE platforms, enhancing the applicability and versatility of the developed
framework.

9. Define an ontology that encompasses the modeling of user interface (Ul) elements in KBE ap-
plications. By incorporating Ul modeling into the knowledge model, translation engines can be
developed to automatically convert these models into executable code, facilitating the implemen-
tation of the Ul aspects of KBE applications.

"https://www.eclipse.org/acceleo/ (Accessed: 20/06/2023)
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System Model Views of the
MagicGrid-for-KBE Framework

The various system model views defined by the MagicGrid-for-KBE method, and implemented as a
template in Magic Systems of Systems Architect to facilitate the modeling process of KBE Applications

are depicted here. The presented examples are from the system model of the Simple Airplane KBE
application developed in this research.
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MagicGrid-for-KBE Project:
Simple Airplane

Welcome!

This is a new MagicGrid-for-KBE project with the structure and guidelines on how to use the
MagicGrid-for-KBE approach. This approach instructs you how to build a model-based
system specification that captures the knowledge used in the development of KBE
applications, and allows for automatic app code generation from the system model with the
help of custom-made translation engines. In the framework below, click the cell for the
information of each system model view.

PILLAR

REQUIREMENTS PRODUCT

BLACK BOX

1 Stakeholder Needs 2 Use Cases 3 System Context

N N

WHITE BOX

4 System Requirements 5 Functional Analysis 6 System Structure

Figure A.1: Start Page of the MagicGrid-for-KBE model template

Content Diagram 1 Stakeholder Needs| 1 Stakeholder Needs ])

Stakeholder Needs

Stakeholder needs in table View Summary

The Stakeholder Needs view helps you define and contain
the user needs, regulations, policies, principles, and internal
guidelines to develop a system.

Stakeholder Needs

Stakeholder needs in diagram

N

Stakeholder Needs

Figure A.2: Stakeholder Needs View
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Content Diagram 1 Use Cases [ 2 Use Cases ]J

Use Cases

Use cases
2

Use Cases
Use case scenarios

<

Generate Simple Conventional Airplane

Use cases traceability
A

Black-Box Functions
to System Context

View Summary

The Use Cases view allows you to refine functional
stakeholder needs with use cases and use case
scenarios.

Figure A.3: Use Cases View

Content Diagram 1 System Context [ 3 System Context ])

System Context

System contexts

N

System Context 1

Index

AN

View Summary

The System Context view allows you to
show how the system of interest interacts
with its environment.

Figure A.4: System Context View
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Content Diagram 2 System Requirements|[ 4 System Requirements ])

System Requirements

Index

System requirements in table

R

System Requirements

View Summary

You can use the System Requirements view to
specify the technical requirements that the
system must satisfy. Each system requirement
must be derived from one or more stakeholder
needs.

D

System requirements in diagram

i)

System Requirements

System requirements traceability

D 'S %y

System i RD|

Requi System Architecture From Stakeholder Needs
equirements to to System toSyet . e "

Stakeholder Needs o System Requirements

Requirements

Figure A.5: System Requirements View

Content Diagram 2 Functional Analysis| [:=] 5 Functional Analysis ]J

Functional Analysis

Internal system functions

= |

Generate simple airplane geometry

A
Functional Breakdown

Generate Empennage

Generate Lifting Surface

Functional analysis traceability

N
White-Box Functions
to System Structure

Index

View Summary

The Functional Analysis view allows you to
continue the functional use case analysis
which focuses on the internal system
functions. With this view you can identify the
conceptual subsystems responsible for a
group of functions.

Figure A.6: Functional Analysis View
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Content Diagram 2 System Structure [ [

System Structure ]J

System Structure

&

Aircraft Architecture

5

Engine Architecture

Fuselage Architecture

&

Aircraft Internal Structure

Engine Internal Structure

Fuselage Internal Structure

Lifti face

&

Airfoil Architecture

face Internal Structure

Airfoil Internal Structure

Overview Table
(Blocks)

Overview Table

Index

View Summary

The System Structure view helps you define the system
architecture. You can use this view to specify all the conceptual
subsystems of the system of interest, how the subsystems
inter-operate with one another and integrate into the whole.

[N

(Prop )

Figure A.7: System Structure View



JSON Schema of the Neutral
Language Knowledge Model

The JSON Schema of the Neutral Language Knowledge Model is defined across several files which
are stored in a directory with the following tree structure:

[JSON Schema]
JSON_for_KBE. json
[sub-schemas]

Requirement_Schema. json

Package_Schema. json

Class_Schema. json

[class sub-schemas]
Input_Schema. json
Attribute_Schema. json
Part_Schema. json
Action_Schema. json
Method_Schema. json

The contents of each file are presented ahead:

Listing B.1: JSON_for_KBE.json

1 {
2 "$schema": "https://json-schema.org/draft/2020-12/schema",
3 "$id": "Main_Schema. json",
4 "title": "JSON Schema for KBE",
5 "description": "The schema of the JSON file used for automatically generating KBE (ParaPy
) source code via the developed translation engine",
6 "type": "object",
7 "properties": {
8 "Product": {
9 "description": "The package that contains all the information about the structure
of the KBE application and that later will be translated into the source
code of the app",
10 "type": "object",

1 "additionalProperties": {
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"oneOf": [
{"$ref": "./sub_schemas/Package_Schema. json"},
{"$ref": "./sub_schemas/Class_Schema.json"}
]
}
Fs
"Requirements": {

"description": "The package that contains all the information about the
requirements of the KBE application and that later will be used to allow
traceability between the model and the code",

"type": "object",

"additionalProperties": {

"$ref": "./sub_schemas/Requirement_Schema. json"

}

}
Ty
"required": [

"Product",

"Requirements"
1,
"additionalProperties": false

Listing B.2: Requirement_Schema.json

"$schema": "https://json-schema.org/draft/2020-12/schema",
"$id": "Requirement_Schema. json",
"title": "Requirement Schema",
"description": "The schema of a single Requirement element",
"type": "object",
"properties": {

"derived from": {

"description": "The requirement(s) from which the given requirement is derived
from",

"type": "array",

"items": {

"type": "array",
"items": {
"type": "string"
},
"minItems": 2,
"maxItems":
}
b
"ig": {
"description": "The id of the given requirement",
"type": "string"
Fo
"name": {
"description": "The name of the given requirement",
"type": "string"
To
"satisfy slots": {
"description": "The KBE slots that satisfy the given requirement",
"type": "object",

"additionalProperties": {
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the given requirement",

the given requirement",

satisfies the given requirement",

name of the given slot",

name of the class that owns the given slot",

path to the given slot in the product model",

type of the given slot",

"$ref": "#/$defs/satisfy_slot"
}
},
"text": {
"description": "The text of
"type": "string"
},
"type": {
"description": "The type of
"type": "string"
}
3,
"required": [
"derived from",
"id",
"name",
"satisfy slots",
"text",
"type"
1,
"additionalProperties": false,
"$defs": {
"satisfy_slot": {
"description": "A slot that
"type": "object",
"properties": {
"slot name": {
"description": "The
"type": "string"
1,
"slot owner class": {
"description": "The
"type": "string"
1,
"slot path in model": {
"description": "The
"type": "array',
"items": {
"type": "string"
}
1,
"slot type": {
"description": "The
"type": "string"
}
Py
"required": [
"slot name",
"slot owner class",
"slot path in model",
"slot type"
]
}
}



20

21

22

23

24

25

20

21

22

23

24

26

27

28

93

Listing B.3: Package_Schema.json

"$schema": "https://json-schema.org/draft/2020-12/schema",

"$id": "Package_Schema.json",

"title": "Package Schema",

"description":

"The schema of a single Package element',

"type": "object",

"not": {

"type": "object",

"properties": {

"name":

{

"type": "string"

Yo
"required":

"name"

3,

[

"additionalProperties": {

"description": "A Package may contain other packages or classes",

"oneOf": [

{"$ref":
{"$ref":

n#u}’

"Class_Schema. json"}

Listing B.4: Class_Schema.json

"$schema": "https://json-schema.org/draft/2020-12/schema",

"$id": "Class_Schema.json",
"title": "Class Schema",
"description": "The schema of a single Class element",
"type": "object",
"properties": {
"actions":
"description": "The action slots of the given KBE class",
"type": "object",
"additionalProperties": {
"$ref": "./class_sub_schemas/Action_Schema. json"
}
},
"attributes": {
"description": "The attribute slots of the given KBE class",
"type": "object",
"additionalProperties": {
"$ref": "./class_sub_schemas/Attribute_Schema.json"
}
},
"documentation": {
"description": "The description/docstring of the given KBE class",
"type": "string"
Yo

"hyperlinks": {

"description": "The hyperlinks to the given KBE class",

"type":

"array",
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"items": {
"type": "string"
}
},
"import methods": {
"description": "The methods imported by the given KBE class",
"type": "object"
s
"inheritance": {
"description": "The classes from which the given KBE class inherits
"type": "array",
"items": {
"type": "string"
}
Yo
"inputs": {
"description": "The input slots of the given KBE class",
"type": "object",
"additionalProperties": {
"$ref": "./class_sub_schemas/Input_Schema. json"
}
P
"methods": {
"description": "The methods of the given KBE class",
"type": "object",
"additionalProperties": {
"$ref": "./class_sub_schemas/Method_Schema. json"
}
Fo
"name": {
"description": "The name of the given KBE class",
"type": "string"
To
"parts": {
"description": "The part slots of the given KBE class",
"type": "object",
"additionalProperties": {
"$ref": "./class_sub_schemas/Part_Schema. json"
}
¥
1,
"required": [
"actions",
"attributes",
"documentation",
"hyperlinks",
"import methods",
"inheritance",
"inputs",
"methods",
"name",
"parts"
1,
"additionalProperties": false

from",
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Listing B.5: Input_Schema.json

"$schema": "https://json-schema.org/draft/2020-12/schema",
"$id": "Input_Schema.json",
"title": "Input Schema",
"description": "The schema of a single Input element of a KBE class",
"type": "object",
"properties": {
"default": {
"description": "The default value of the given input",
"type": ["number", "string", "boolean", "object", "array", "null"]
},
"description": {
"description": "The description/docstring of the given input",
"type": "string"
},
"hyperlinks": {
"description": "The hyperlinks to the given input",
"type": "array",
"items": {
"type": "string"
}

1,
"input kind": {
"description": "The kind of the given input (i.e, 'required',
derived')",
"type": "string"
},
"name": {
"description": "The name of the given input",
"type": "string"
},
"sources": {
"description": "The source elements of the given input",
"type": "array",
"items": {

"type": "string"

},

"targets": {
"description": "The target elements of the given input",
"type": "array",
"items": {

"type": "string"

},

“type“: {
"description": "The type of the given input",
"type": "string"

3,

"required": [
"default",
"description",
"hyperlinks",

"input kind",

'optional’,

or
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"name",
"sources",
"targets",
“type n

Js

"additionalProperties": false

Listing B.6: Attribute_Schema.json

"$schema": "https://json-schema.org/draft/2020-12/schema",

"$id": "Attribute_Schema. json",
"title": "Attribute Schema",
"description": "The schema of a single Attribute element of a KBE class",
"type": "object",
"properties": {
"code": {
"description": "The code that allows to compute the expression of the given
attribute",
"type": "string"
Fo
"description": {
"description": "The description/docstring of the given attribute",
"type": "string"
To
"hyperlinks": {
"description": "The hyperlinks to the given attribute",
"type": "array",
"items": {
"type": "string"
}
Fs
"name": {
"description": "The name of the given attribute",
"type": "string"
},
"sources": {
"description": "The source elements of the given attribute",
"type": "array",
"items": {
"type": "string"
}
},
"targets": {
"description": "The target elements of the given attribute",
"type": "array",
"items": {
"type": "string"
}
},
"type": {
"description": "The type of the given attribute",
"type": "string"
}

3,

"required": [
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"code",
"description",
"hyperlinks",
"name" s
"sources",

"targets",

"type"
P
"additionalProperties": false
Listing B.7: Part_Schema.json
"$schema": "https://json-schema.org/draft/2020-12/schema",
"$id": "Part_Schema.json",
"title": "Part Schema",
"description": "The schema of a single Part element of a KBE class",
"type": "object",
"properties": {
"description": {
"description": "The description/docstring of the given part",
"type": "string"
},
"hyperlinks": {
"description": "The hyperlinks to the given part",
"type": "array",
"items": {
"type": "string"
}
1,
"name": {
"description": "The name of the given part",
"type": "string"
¥
"part inputs":{
"description": "The input elements of the given part",
"type": "object",
"additionalProperties": {
"$ref": "#/$defs/part_input"
}
P
"part name": {
"description": "The name of the classifier of the given part",
"type": "string"
To
"targets": {
"description": "The target elements of the given part",
"type": "array",
"items": {
"type": "string"
}
¥
1,
"required": [
"description",

"hyperlinks",
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45 "name",
46 "part inputs",
47 "part name",
48 "targets"
49 1,
50 "additionalProperties": false,
51 "$defs":{
52 "part_input": {
53 "description": "An input element of the given part",
54 "type": "object",
55 "properties": {
56 "expression": {
57 "description": "The code that allows to compute the expression of the
given part input",
58 "type": "string"
59 To
60 "sources": {
61 "description": "The source elements of the given part input",
62 "type": "array',
63 "items": {
64 "type": "string"
65 }
66 Fo
67 "targets": {
68 "description": "The target elements of the given part input",
69 "type": "array",
70 "items": {
7 "type": "string"
72 }
73 }
74 Fo
75 "additionalProperties": false,
76 "required": [
77 "expression",
78 "sources",
79 "targets"
80 ]
81 }
82 }
83
Listing B.8: Action_Schema.json
1 {
2 "$schema": "https://json-schema.org/draft/2020-12/schema",
3 "$id": "Action_Schema. json",
4 "title": "Action Schema",
5 "description": "The schema of a single Action element of a KBE class",
6 "type": "object",
7 "properties": {
8 "code": {
9 "description": "The code that allows to compute the expression of the given
action",
10 "type": "string"
1 },
12 "description": {

13 "description": "The description/docstring of the given action",
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1,

"type": "string"
Yo
"hyperlinks": {
"description": "The hyperlinks to the given action",
"type": "array",
"items": {

"type": "string"

1,
"name": {
"description": "The name of the given action",
"type": "string"
},
"sources": {
"description": "The source elements of the given action",
"type": "array",
"items": {

"type": "string"

},

"targets": {
"description": "The target elements of the given action",
"type": "array",
"items": {

"type

": "string"

"required": [

1,

"code" )
"description",
"hyperlinks",
"name" )
"sources",

"targets"

"additionalProperties": false

Listing B.9: Method_Schema.json

"$schema": "https://json-schema.org/draft/2020-12/schema",

"$id": "Method_Schema. json",
"title": "Method Schema",
"description": "The schema of a single Method element of a KBE class",
"type": "object",
"properties": {
"code": {
"description": "The code that allows to compute the expression of the given
method",
"type": "string"
Yo
"description": {
"description": "The description/docstring of the given method",
"type": "string"

},
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1,

"hyperlinks": {
"description": "The hyperlinks to the given method",
"type": "array",
"items": {

"type": "string"

},
"name": {
"description": "The name of the given method",
"type": "string"
},
"targets": {
"description": "The target elements of the given method",
"type": "array",
"items": {

"type": "string"

},

"type ". {
"description": "The type of the given method",
"type": "string"

"required": [

] s

"code",
"description",
"hyperlinks",
"name",
"targets",

"type n

"additionalProperties": false
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